
PARALLEL SEARCHING FOR A FIRST
SOLUTION1

Bożena BARTOSZEKa , Zbigniew J. CZECHb and Marek KONOPKAc

aComputing Laboratory, University of Kent, Canterbury, CT2 7NF, England2

bInstitutes of Computer Science, Silesian Technical University and
Polish Academy of Sciences, ul. Bałtycka 8, 44-100 Gliwice, Poland

cInstitute of Computer Science, Silesian Technical University, ul. Pstrowskiego 16,
44-100 Gliwice, Poland

Abstract. A parallel algorithm for conducting a search for a first solution to the problem of
generating minimal perfect hash functions is presented. A message-based distributed memory
computer is assumed as a model of parallel computations. A data structure, called reversed trie
(r-trie), was devised to carry out the search. The algorithm was implemented on a transputer
network. The experiments showed that the algorithm exhibits a consistent and almost linear
speedup. The r-trie structure proved to be highly memory efficient.

1. INTRODUCTION

Consider a static3 set W of m finite length words over an ordered alphabet. A hash function
is a functionh : W ! I that maps the setW into some given interval of integers I , say [0; k�1],
where k � m. The hash function computes for each word from W an address (an integer fromI) for the storage and retrieval of that word. If k = m and h is an injection, then we say that h
is a minimal perfect hash function (MPHF). Usually for a given set W many MPHFs exist. We
are interested in finding only one of these functions.

MPHFs are used for memory efficient storage and fast retrieval of items from a static set,
such as reserved words in programming languages, command names in operating systems,
commonly used words in natural languages etc.

Various algorithms for constructing MPHFs have been proposed. Many of them involve
an exhaustive search which terminates when a first solution is found. In this paper we present
a parallel algorithm for conducting such a search. We assume a message-based distributed
memory computer as a model of parallel computations.

The paper is organized as follows. Section 2 contains an outline of the sequential algorithm
which was a basis for our work. In section 3 we give an overview of some parallel search

1M. Konopka and Z. J. Czech were supported by the Polish Committee for Scientific Research under the grant
BK-608/RAu2/93. B. Bartoszek was supported by the European Committee under the Tempus grant.

2On leave from the Silesian Technical University.
3By static we mean a set that is essentially unchanging, i.e. it is not subject to insertions or deletions of elements.

1

algorithms. In section 4 we present our parallel algorithm and two implementations. Section 5
describes the experimental results, and section 6 contains conclusions.

2. A SEQUENTIAL ALGORITHM FOR FINDING MPHF

Czech and Majewski [1] proposed a linear time algorithm for finding MPHFs. It searches
for the MPHF of the form:h(w) = (h0(w) + g(h1(w)) + g(h2(w))) mod m
where h0, h1 and h2 are auxiliary pseudorandom functions, and g is a function implemented as
a lookup table, whose values are established during the exhaustive search.

The MPHF is constructed in three steps. First, the mapping step transforms a set of words
into a set of triples of integers h0, h1 and h2. The second step, ordering, divides set W into
subsets W0, W1, : : : , Wk, such that W0 = ;, Wi � Wi+1, and Wk = W , for some k. The
sequence of these subsets is called a tower, each subset Xi = Wi �Wi�1 is called a level of
the tower, and k is called a height of the tower. The third step, searching, tries to extend the
function h from the domain Wi�1 to Wi for i = 1; 2; : : : ; k.

Observe that allocating a place in the hash table for a word w requires selecting the valueU(w) = g(h1(w)) + g(h2(w)). There may exist a sequence of words fw0; w1; : : : ; wj�1g, such
that h1(wi) = h1(wi+1) and h2(wi+1) = h2(w(i+2)mod j), for i = f0; 2; 4; : : : ; j � 2g. Once
words w0, w1, : : : , wj�2 are allocated some places in the hash table, both g(h1(wj�1)) andg(h2(wj�1)) are set. Hence, word wj�1 cannot be allocated an arbitrary place, but it must be
placed in the hash table at locationh(wj�1) = (h0(wj�1) + U(wj�1)) mod m:
In the sequence the words w0, w1, : : : , wj�2 are independent (i.e. they have a choice of a place
in the hash table), whereas the word wj�1 is dependent (i.e. it has not such a choice). These
words are called in [1] canonical and noncanonical, respectively. It is easy to see thatU(wj�1) = g(h1(wj�1)) + g(h2(wj�1)) = Xp2path(wj�1)(�1)pU(wp)
where path(wj�1) is a sequence of words fw0; w1; : : : ; wj�2g, and thush(wj�1) = (h0(wj�1) + Xp2path(wj�1)(�1)pU(wp)) mod m:
If the place h(wj�1) is occupied, a collision arises and no MPHF for selected values of g can be
found.

In the searching step the following combinatorial problem is solved:
find U(wi) 2 [0; m � 1], i = 1; 2; : : : ; k, where k is the height of the tower, such that valuesh(wi) = (h0(wi) + U(wi)) mod m for canonical words wi 2 W , and h(wj) = (h0(wj) +Pp2path(wj)(�1)pU(wp)) mod m for noncanonical words wj 2 W are all distinct, i.e. for anyw1 and w2 2 W , h(w1) 6= h(w2). The U(wi)s (or U -values) are found during the exhaustive
search at every level Xi of the tower. The search starts with U(wi) = 0 for each canonical word

2

h0(w1) h0(w2) h0(w4) h0(w3)120
h0(w5) h0(w6) h0(w7)h0(w1) h0(w2) h0(w4) h0(w3)120 h0(w1) h0(w2) h0(w4) h0(w3)120

? ??h0(w5) h0(w6) h0(w7)? ??h0(w5) h0(w6) h0(w7)? ??
(a)

(b)

(c)

Figure 1: Fitting the pattern in the hash tablewi, i.e. an attempt is made to locate it at the position h0(wi) in the hash table. Once the hash
value for the canonical word wi on a given level of the tower is found, the value of U(wi) is
known. It enables to compute the hash values for the noncanonical words on that level. The set
of the hash values of words on a given level Xi of the tower is called a pattern. If all places
defined by the pattern are not occupied, the task on a given level is done and the next level is
processed. Otherwise, the pattern is moved up the table modulo m until the place where it fits is
found. Except for the first level of the tower, this search is conducted when the table is partially
filled. Thus, it may happen that no place for the pattern is found. In such a case the searching
step backtracks to earlier levels, assigns different hash values for words on these levels, and
then again recomputes the hash values for successive levels.

Example 1. Let tower T consists of the following sets (levels): X1 = fw1g, X2 = fw2; w3g,X3 = fw4g,X4 = fw5; w6; w7g. Assume that the first words specified in each set are canonical.
Let h0 values be: wi w1 w2 w3 w4 w5 w6 w7h0(wi) 2 5 12 9 2 4 9

There is no problem with placing the first three levels of T in the hash table by setting U(w1) =U(w2) = U(w3) = 0. The black boxes in Fig. 1a show the assigment of addresses to wordsw1 to w4. The words on level 4 form the pattern (h0(w5); h0(w6); h0(w7)) = (2; 4; 9). This
pattern cannot be placed in the table with U(w5) = 0 so we move it up the table, first by one
(Fig. 1b) and then by two positions (Fig. 1c) where it finally fits. Thus, U(w5) = 2. 2

In [2] Czech and Majewski proposed backtrack pruning to speed up the search.
Consider two words wa and wb on level i of the tower for which h(wa) = (h0(wa) +Pp2path(wa)(�1)pU(wp)) mod m = h(wb) = (h0(wb) +Pq2path(wb)(�1)qU(wq)) mod m. Let

3

P = fwp j p 2 path(wa)g and Q = fwq j q 2 path(wb)g, and let level(w), w 2 P [Q, be a
function that returns a tower level of w. After having discovered a conflict for words wa and wb
instead of decreasing i by 1, the search is continued on level d = maxf level(w)jw 2 P [Qg,
such that if w 2 P \ Q, level(w) = d, then the U(w) values have different signs in h(wa) andh(wb).

As we have already mentioned, although there can be many solutions to the problem of
generating MPHFs, we are interested in finding any one of these solutions.

The exhaustive search applied in the third step of the algorithm has a potentially worst-case
time complexity exponential in the number of words to be placed in the hash table. The time to
perform the search depends on the size of table g. It has been proved that if jgj = 2m, then the
time to perform the search is negligible and is dominated by the time to perform the mapping
and ordering steps [1]. However, when the table size is decreased, the time taken by the search
grows exponentially (see Table 1). Since the g table contains the description of the MPHF, it is
desirable for g to be as small as possible.

3. PARALLEL SEARCH ALGORITHMS

The exhaustive search can be formulated as a search of a state-space usually structured as a
tree. A single state, or node, of the tree is transformed to successor states by using operators.
These transformations correspond to arcs between nodes and their successors in the tree. The
simplest approach to parallelization of the search is to apply at any node the operators to obtain
successor nodes, and then to search the subtrees beneath each node in parallel by different
processors. However, if we search only for a single solution and it is found in the first subtree,
the work done in the other subtrees is wasted. As a consequence, such a parallel search can give
a sublinear speedup or even a decrease in speedup with an increase in the number of processors.
It is also possible to obtain a superlinear speedup, when for example a solution is found relatively
quickly in the p-th subtree, where p is the number of processors. These anomalous results were
first observed and discussed by Lai and Sahni [3].

Kalé and Saletore [4] suggested two criteria to evaluate parallel search schemes:

(1) The time required to find a solution. A scheme must be able to consistently generate a
solution faster than the best sequential scheme. The speedup should be possibly close to p, and
must increase monotonically with the addition of processors.

(2) The amount of memory required to conduct the search. This amount depends on the search
scheme and may vary from linear to exponential function of the depth of the tree.

In [4] Kalé and Saletore proposed a priority based parallel depth-first search. The idea is to
mimic the behavior of the sequential algorithm and to search the tree left-to-right. As a result, the
wasted work done to the right of the first solution is minimized, which is desirable if a consistent
linear speedup is to be achieved. The priority bit-vectors, defined as the sequences of bits
of arbitrary length, are used. Priorities which are compared lexicographical ly are dynamically
associated with nodes when they are created. A zero-length priority vector is associated with the

4

root of the search tree. The priority of a descendant node is obtained by appending its number
— given by the ranking of descendant nodes from left-to-right — to the priority of its parent.
The active nodes are kept in a shared priority queue defining the order in which the nodes are
searched.

The worst-case queue length for the prioritized search is O(pdb). This length can be reduced
by making use of two techniques: binary decomposition and delayed-release [4]. We describe
shortly the latter one, as it is adopted in our algorithm. The idea behind the delayed-release
technique is that when a node is expanded, the descendants are not immediately available to
other processors. Only the first descendant is inserted into the queue. This is applied to every
node until a leaf node is reached. Then, all the nodes are released as active nodes and may be
picked up by other processors. As a result, the intermediate levels of the tree are skipped and
the tree is explored from its bottom.

The authors claim [4] that those techniques virtually eliminate the wasted work and decrease
the demanded memory to the amount of O(p + d).
4. AN R-TRIE BASED PARALLEL SEARCH

In our parallel search algorithm we use the technique of the processor farm. The basic
concept of farming consists of having a central controller — the Master process — that hands
out pieces of work to be processed by the members of a pool of Worker processes. The Master
stores the active nodes of the search tree that represent the partial solutions to the MPHF problem.
A solution is defined by a sequence of U-values, one value for each level of the tower. The
nodes are sent to the Workers which do the search by placing successive levels of the tower in
the hash table and reporting the results to the Master.

The partial solutions are kept in a specially devised data structure that we called a reversed
trie (r-trie). The name comes from its resemblance to the trie structure discussed by Knuth in
[5]. An r-trie is essentially a b-ary tree, whose nodes correspond to the U-values. The nodes
on level l represent the set of partial solutions that begin with a certain sequence of U-values.
In a single node of an r-trie we hold: a level number, a U-value for that level, a flag indicating
whether the node is assigned to a Worker or not, and a pointer to the parent node. We denote a
node by a pair (level number, U-value), and (1, 0) is the root of an r-trie. A partial (or complete)
solution is restored by traversing the nodes of an r-trie from a leaf up to its root. The active
nodes in an r-trie are arranged into a doubly-linked list named ActiveNodes. This list is used for
selecting nodes and handing them out to Workers.

Example 2. Fig. 2b shows the r-trie. The nodes on level 3, e.g., represent partial solutions
given by the following sequences of U-values: (0, 5, 2) and (0, 5, 3). 2

The advantage of the r-trie structure over the approach by Kalé and Saletore is that we do not
need to compute priority vectors. Also, no priority queue has to be maintained. To find a node
to assign for a Worker we scan the ActiveNodes list inspecting at most p � 1 of its elements.

5

4.1. Parallel-C implementation

4.1.1. Worker processes

A Worker process receives two types of messages from the Master:

New. This message contains a new partial solution for carrying on the search. It consists of a
level number where the new partial solution begins, a number of levels in the solution, and the
U-values, one value for each level.

Continue. This message has no components. Upon receiving the Continue message a Worker
continues its search with the currently available partial solution.

Let i be the number of the last level placed by a Worker, and let the New message it received
from the Master contain the n-level partial solution beginning from level j. (Since the Master
keeps track of the progress of each Worker, j � i always holds.) In response, the Worker frees
all the places in the hash table occupied by the words on levels j; j + 1; : : : ; i. Then it places
the words from levels j; j + 1; : : : ; j + n � 2 by making use of the U-values received, and
continues the search from level j + n� 1. Denote this level as k0. The idea of delayed-release
is adopted in our algorithm. Thus, placing of successive levels of the tower in the hash table is
continued until:

Case 1. The Worker encounters a leaf in the search tree, i.e. a level that cannot be placed as an
extension to the current solution. Suppose that the Worker must backtrack to level k. If k < k0,
then the Worker sends a message DeepBack to the Master along with the value of k. k � k0

means that the Worker has placed some levels of the tower. A minimum number of levels which
the Worker must place before communicating with the Master is a parameter to the algorithm.
This parameter can be viewed as a grain size or granularity of search work. We denote it by s.
If k � k0 + s, i.e. the Worker has placed a required number of levels, then it sends to the Master
the U-values for the placed levels. Otherwise (k < k0 + s holds) it continues the search.

Case 2. The Worker placed the last level of the tower in the hash table. In such a case the Worker
sends to the Master the U-values for the placed levels and the information that the solution has
been found.

To accelerate the initial phase of the search, all the Workers after placing the first level
with U [1] = 0 continue the search until a backtrack occurs. Then, the first Worker sends to the
Master a message containing the number of placed levels and the corresponding U-values. Each
Worker backtracks then a number of levels equal to its number and resumes the search, i.e. the
first Worker backtracks one level, the second Worker two levels etc. If a Worker is to backtrack
below the second level, it frees all places in the hash table except for the places occupied by the
words on the first level, and waits for a New message.

6

4.1.2. Master process

The Master holds partial solutions and assigns work to Workers. It stores pointers to last
nodes processed by each Worker and keeps track of idle Workers. When active nodes become
available, they are sent to idle Workers. Once a node is assigned to a Worker its assign flag is
set. The Master receives three types of messages from Workers:

PartialSuccess. This message is sent when a Worker placed successfully some levels, and then
encountered a level which cannot be placed. It contains the number of levels placed along with
the corresponding U-values. Suppose that the Worker placed n levels beginning from level i,
and on level i+ n it backtracked to level i+ n� 1. Let the U-values received be U [i], U [i+ 1],: : : , U [i+n�1]. If the last node processed by the Worker was the first node on the ActiveNodes
list, the Master sends the Continue message to the Worker. Then it changes the U-value of the
last node processed by the Worker to U [i], and inserts nodes (i+ 1; U [i+ 1]), (i+ 2; U [i+ 2]),: : : , (i+ n� 1; U [i+ n � 1]) in the r-trie. The Master also adds to the r-trie new active nodes
(i; U [i] + 1), (i+ 1; U [i+ 1] + 1), : : : , (i+ n� 2; U [i+ n� 2] + 1). These are alternatives for
expansion. If the Worker did not process the first node on the ActiveNodes list, such a node is
found and its corresponding partial solutions is computed. This solution is compared with the
one received from the Worker. The fragment in which they differ is sent back to the Worker as
a New message.

DeepBack. This message is sent when a Worker executed backtrack pruning (see sec. 2). It
contains the level number to which the Worker backtracked. Let this number be i, and let the
last node processed by the Worker be (j; U [j]). The Master traverses the r-trie starting from
node (j; U [j]) until node (i; U [i]) is encountered. Then it removes from the r-trie all not assigned
active descendants of node (i; U [i]), and creates and sends a New message to the Worker.

TotalSuccess. This message is sent when a Worker placed successfully the last level of the tower.
It contains the U-values for the levels placed.

Example 3. Consider an example search carried out by Workers P1, P2 and P3, and the Master.
Initially, the r-trie consists of two nodes: (1, 0) and (2, 0) (Fig. 2a). Suppose that during the
search the following messages are sent to the Master:

Message no. Message type from Worker U-values
1 PartialSuccess P1 (5; 2; 6)
2 PartialSuccess P1 (8; 1; 5)
3 DeepBack P2 to level 2
4 PartialSuccess P3 (7; 5)

In response to message 1 the Master changes the U-value of node (2, 0) to 5 and inserts in the
r-trie new nodes (3, 2), (4, 6), (2, 6) and (3, 3). Nodes (4, 6), (3, 3) and (2, 6) become active
(Fig. 2b). As mentioned earlier, P1 backtracks one level so it continues the search from node
(4, 6);. P2 continues from node (3, 3), and P3 from node (2, 6). Suppose that P1 has placed

7

successfully the next three levels (message 2). The Master sends to P1 a Continue message
since the node (4, 6) is the first node on the ActiveNodes list. Then it changes the U-value of
node (4, 6) to 8 and inserts nodes (5, 1), (6, 5), (4, 9) and (5, 2) as active nodes in the r-trie. Now
suppose that P2 sends message 3. Having received it the Master removes from the r-trie node
(3, 3) and sends to P2 a new partial solution (by making use of a New message) beginning from
level 3 with U-values (2, 8, 2). Thus, P2 will continue the search from level 5. Suppose thatP3 has placed successfully the next two levels (message 4). The Master changes the U-value
of node (2, 6) to 7 and inserts in the r-trie nodes (3, 5) and (2, 8). Now the first active node not
assigned yet is (4, 9). The Master sends to P3 a new partial solution beginning at level 2 with
U-values (5, 2, 9). Thus P3 will continue the search from level 4. Fig. 3 shows a state of the
r-trie at that moment. Active nodes (6, 5), (5, 2) and (4, 9) are assigned. 2

1, 0

2, 0

1, 0

2, 5

3, 2

4, 6

2, 6

3, 3

ActiveNodes

ActiveNodes

(a) (b)

Figure 2: (a) Initial state of the r-trie; (b) The r-trie after message 1 has been processed

1, 0

2, 5

3, 2

4, 8

5, 1

6, 5

2, 7 2, 8

3, 5

4, 9

5, 2

ActiveNodes

Figure 3: The r-trie after message 4 has been processed

8

4.2. Occam implementation

Here we discuss the major differences between the occam implementation of the algorithm
and the Parallel-C implementation presented above.

4.2.1. Worker processes

A Worker process receives one extra message from the Master, the End message. This has
no components and is sent when the solution has been found.

This implementation has no backtrack pruning, thus with the DeepBack message a Worker
sends no k value.

4.2.2. Master process

The Master process receives only two types of messages from the Worker processes:

Success. This is exactly the same message as the PartialSuccess message. When the Master
receives the Success message with the last level placed, it sends a single End message to the
Workers.

DeepBack. This message is sent when a Worker backtracks one level below the start level. It
has no components, as mentioned above.

4.2.3. The farming harness

In the occam implementation a farming harness was written specifically for the application.
Such a harness consists of two processes:

Splitter. This process performs the distributon of jobs from the Master to the farm. As the jobs
are numbered for specific Workers, the Splitters direct each one accordingly.

Merger. This process collects results from the Workers and passes them back to the Master. In
times of choice the Mergers give priority to the results from the Worker not the neighbouring
Merger.

These processes run at high priority so that messages (jobs and results) destined for other
processors can be passed on immediately.

9

Fig. 4 shows a farm of three transputers.

Splitter Splitter

Merger

Master Worker Worker

Buffer

Buffer Merger

Figure 4: An example farm

5. EXPERIMENTAL RESULTS

The parallel algorithm was implemented in Parallel-C under control of the Express Parallel
Programming Environment and in occam on UKC’s Meiko Surface. We ran the algorithm on a
transputer system with ten T800 20 MHz transputers configured into a linear array. The Master
was run on the first transputer, and the Workers were run on the remaining transputers. The
experiments were conducted for the six sets of words of sizes m = 50; 60; : : : ; 100. For these
sets tables 1 and 2 show the execution times of the sequential search (using only one transputer)
in Parallel-C and occam. Fig. 5 and fig. 6 show the speedup of the Parallel-C and occam
implementations respectively, as a function of the number of processors. The granularity of
search work, s, is a parameter to the graphs. Each point of a graph was computed as an average
over the 36 results measured for all the sets and the values of parameter � = 0:45; 0:46; : : : ; 0:5.m � = 0:45 � = 0:46 � = 0:47 � = 0:48 � = 0:49 � = 0:5

50 180.818 85.126 63.051 25.91 8.893 3.239
60 183.126 116.579 48.067 19.989 5.82 3.188
70 218.984 128.58 99.849 51.777 33.204 6.387
80 312.699 83.06 56.375 25.222 11.843 5.492
90 174.454 126.423 76.583 51.919 13.223 4.778

100 329.219 201.531 63.777 39.217 13.407 4.052

Table 1: Sequential search times in seconds (Parallel-C), jgj = �m
10

m � = 0:45 � = 0:46 � = 0:47 � = 0:48 � = 0:49 � = 0:5
50 227.658 195.883 112.862 84.468 58.293 21.217
60 382.592 260.768 80.682 73.845 44.657 10.769
70 385.010 250.005 144.504 66.800 57.800 13.147
80 318.291 200.772 205.961 45.931 29.858 17.782
90 402.634 322.956 181.241 123.641 55.215 14.851

100 865.847 445.430 244.551 115.510 57.919 44.709

Table 2: Sequential search times in seconds (occam), jgj = �m
6. CONCLUSIONS

We presented the parallel algorithm for conducting a search for a first solution to the problem
of generating MPHFs. The algorithm uses the technique of the processor farm, and adopts the
idea of delayed-release [4]. The special data structure, called reversed trie (r-trie), was devised
to carry out the search. The experiments showed that the parallel algorithm exhibits a consistent
and almost linear speedup (cf. Figs. 5 and 6). As a grain size of the search work increases, a
superlinear speedup can be obtained (cf. Fig. 5). The r-trie structure proved to be highly memory
efficient.

2 3 4 5 6 7 8 9 10
Number of processors

0
1
2
3
4
5
6
7
8
9

10
11
12
13

S
pe

ed
up

s=1

s=2

s=3s=3

s=4

s=5

Figure 5: Speedup versus number of processors (Parallel-C)

11

s=1

s=2

s=3

s=4

s=5

2 3 4 5 6 7 8 9 10
Number of processors

0

1

2

3

4

5

6

7

8

9

S
pe

ed
up

Figure 6: Speedup versus number of processors (occam)

REFERENCES

[1] Z.J. Czech and B.S. Majewski, A linear time algorithm for finding minimal perfect hash
functions, The Computer Journal 36 (4) (1993).

[2] Z.J. Czech and B.S. Majewski, Generating a minimal perfect hash function inO(M 2) time,
Archiwum Inform. Teoret. i Stos. 4 (1-4) (1992) 3-20.

[3] T.H. Lai and S. Sahni, Anomalies in parallel branch-and-bound algorithms, Comm. ACM
27 (6) (1984) 594-602.

[4] L.V. Kalé and A. Saletore, Parallel state-space search for a first solution with consistent
linear speedups, Intern. Journ. of Parallel Program. 19 (4) (1987) 251-293.

[5] D.E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching (Addison-
Wesley, New York, 1973) 481-499.

12

