PARALLEL SEARCHING FOR A FIRST
SOLUTION

Bozena BARTOSZEK?, Zbigniew J. CZECHP and Marek KONOPK A°

aComputing Laboratory, University of Kent, Canterbury, CT2 7NF, England?
b ngtitutes of Computer Science, Silesian Technical University and
Polish Academy of Sciences, ul. Baltycka 8, 44-100 Gliwice, Poland
“Institute of Computer Science, Silesian Technical University, ul. Pstrowskiego 16,
44-100 Gliwice, Poland

Abstract. A parallel algorithm for conducting a search for a first solution to the problem of
generating minimal perfect hash functionsis presented. A message-based distributed memory
computer is assumed as amodel of parallel computations. A data structure, called reversed trie
(r-trie), was devised to carry out the search. The algorithm was implemented on a transputer
network. The experiments showed that the algorithm exhibits a consistent and almost linear
speedup. Ther-trie structure proved to be highly memory efficient.

1. INTRODUCTION

Consider astatic® set W of m finite length words over an ordered alphabet. A hash function
isafunctions : W — [that mapstheset W into somegiveninterval of integers 7, say [0, £ — 1],
where & > m. The hash function computes for each word from 1/ an address (an integer from
I) for the storage and retrieval of that word. If £ = m and & isan injection, then we say that &
isaminimal perfect hash function (MPHF). Usually for agiven set W many MPHFs exist. We
areinterested in finding only one of these functions.

MPHFs are used for memory efficient storage and fast retrieval of items from a static set,
such as reserved words in programming languages, command names in operating systems,
commonly used words in natural languages etc.

Various agorithms for constructing MPHFs have been proposed. Many of them involve
an exhaustive search which terminates when a first solution isfound. In this paper we present
a parallel agorithm for conducting such a search. We assume a message-based distributed
memory computer as amodel of parallel computations.

The paper is organized as follows. Section 2 contains an outline of the sequentia al gorithm
which was a basis for our work. In section 3 we give an overview of some parallel search

M. Konopkaand Z. J. Czech were supported by the Polish Committee for Scientific Research under the grant
BK-608/RAU2/93. B. Bartoszek was supported by the European Committee under the Tempus grant.

20n leave from the Silesian Technica University.

3By static we mean aset that isessentially unchanging, i.e. itisnot subject toinsertionsor deletionsof elements.

1

algorithms. In section 4 we present our parallel algorithm and two implementations. Section 5
describes the experimental results, and section 6 contains conclusions.

2. A SEQUENTIAL ALGORITHM FOR FINDING MPHF

Czech and Maewski [1] proposed a linear time algorithm for finding MPHFs. It searches
for the MPHF of the form:

h(w) = (ho(w) + g(ha(w)) + g(h2(w))) mod m

where ho, h1 and h, are auxiliary pseudorandom functions, and ¢ is a function implemented as
alookup table, whose values are established during the exhaustive search.

The MPHF is constructed in three steps. First, the mapping step transforms a set of words
into a set of triples of integers ho, h1 and h,. The second step, ordering, divides set W into
subsets Wo, Wa, ..., Wy, such that Wo = 0, W; C Wiiq, and Wy, = W, for some k. The
sequence of these subsets is called a tower, each subset X; = W; — W,_; iscaled alevel of
the tower, and % is called a height of the tower. The third step, searching, tries to extend the
function 4 fromthedomain W,_; toW; for: = 1,2,... k.

Observe that allocating a place in the hash table for a word w requires selecting the value
U(w) = g(ha(w)) + g(ha(w)). There may exist a sequence of words {wg, w1, ..., w;_1}, such
that hl(w,’) = hl(wH_l) and hz(wH_l) = hz(w(,’+2)mod]‘), for: = {O, 27 47 ce ,j — 2} Once
words wo, w1, ..., w;_» are alocated some places in the hash table, both g(A1(w;_1)) and
g(ha(w;_1)) are set. Hence, word w;_, cannot be allocated an arbitrary place, but it must be
placed in the hash table at location

h(w;j-1) = (ho(w;-1) + U(w;-1)) mod m.

In the sequence the words wo, wy, .. ., w;_ are independent (i.e. they have a choice of a place
in the hash table), whereas the word w,_; is dependent (i.e. it has not such a choice). These
words are called in [1] canonical and noncanonical, respectively. It iseasy to see that

U(w;-1) = g(ha(w;-1)) + glha(wja)) = >0 (=DU(wy)

pepath(w;_1)

where path(w;_1) isasequence of words {wo, w1, . .., w;_»}, and thus

h(wj-1) = (ho(wj-1) + 3. (=1)"U(w,)) mod m.

pEpath(w;_1)

If the place i.(w,;_1) isoccupied, acollision arises and no MPHF for selected values of ¢ can be
found.
In the searching step the following combinatorial problem is solved:

find U(w;) € [0, m — 1], =1,2,...,k, where k is the height of the tower, such that values
h(w;) = (ho(w;) + U(w;)) mod m for canonical words w; € W, and h(w;) = (ho(w;) +
> pepath(w;)(—1)PU(w;,)) mod m for noncanonical words w; € W are al distinct, i.e. for any
wy and wy € W, h(wi) # h(wz). The U(w;)s (or U-values) are found during the exhaustive
search at every level X; of thetower. The search startswith U/ (w;) = 0 for each canonical word

2

ho(wl) ho(wz) ho(w4) ho(w3)

(b) ho(w5) ho(w6) ho(w7)
0 l l 12
SN NN BER BN
ho(wl) ho(wz) ho(w4) ho(w3)

(C) ho(w5) ho(w6) ho(w7)
0 l l l 12
HE BN EEE BN
ho(wl) ho(wz) ho(w4) ho(w3)

Figure 1: Fitting the pattern in the hash table

w;, i.e. an attempt is made to locate it at the position ho(w;) in the hash table. Once the hash
value for the canonical word w; on a given level of the tower is found, the value of U(w;) is
known. It enables to compute the hash values for the noncanonical wordson that level. The set
of the hash values of words on a given level X; of the tower is called a pattern. If all places
defined by the pattern are not occupied, the task on a given level is done and the next level is
processed. Otherwise, the pattern ismoved up the table modulo m: until the place whereit fitsis
found. Except for thefirst level of the tower, this search is conducted when the table is partially
filled. Thus, it may happen that no place for the pattern is found. In such a case the searching
step backtracks to earlier levels, assigns different hash values for words on these levels, and
then again recomputes the hash values for successive levels.

Example 1. Let tower 7' consists of the following sets (levels): X; = {wi1}, X2 = {wy, ws},
X3 = {wa}, X4 = {ws, we, wr7}. Assumethat thefirst words specified in each set are canonical.
Let ho values be:

w; | W1 W2 W3 Wy Ws W W7

hofw;))| 2 5 12 9 2 4 9

Thereisno problem with placing thefirst threelevels of 7" in the hash table by setting U(w1) =
U(wz) = U(wsz) = 0. The black boxes in Fig. 1a show the assigment of addresses to words
w1 10 ws. The words on level 4 form the pattern (2o(ws), ho(ws), ho(w?)) = (2, 4, 9). This
pattern cannot be placed in the table with U (ws) = 0 so we move it up the table, first by one
(Fig. 1b) and then by two positions (Fig. 1c) whereit finally fits. Thus, U(ws) = 2. O

In [2] Czech and Mgewski proposed backtrack pruning to speed up the search.
Consider two words w, and w, on level ¢ of the tower for which 2(w.) = (ho(w.) +
Y pepathiwa) (—1)PU(wp)) mod m = h(wy) = (ho(ws) + X gepath(u,) (— 1)U (wq)) mod m. Let

3

P = {w, | p € path(w,)} and Q = {w, | ¢ € path(wy)}, and let level(w), w € P U (), bea
function that returns atower level of w. After having discovered a conflict for words w, and wy
instead of decreasing : by 1, the search is continued on level d = max{ level(w)|w € P U Q},
such that if w € P N Q, level(w) = d, then the U(w) values have different signsin A(w,) and
h(wb).

As we have already mentioned, although there can be many solutions to the problem of
generating MPHFs, we are interested in finding any one of these solutions.

The exhaustive search applied in the third step of the algorithm has a potentially worst-case
time complexity exponential in the number of words to be placed in the hash table. Thetimeto
perform the search depends on the size of table ¢. It has been proved that if |¢| = 2m, then the
time to perform the search is negligible and is dominated by the time to perform the mapping
and ordering steps [1]. However, when the table size is decreased, the time taken by the search
grows exponentially (see Table 1). Since the ¢ table contains the description of the MPHF, itis
desirable for ¢ to be as small as possible.

3. PARALLEL SEARCH ALGORITHMS

The exhaustive search can be formulated as a search of a state-space usually structured as a
tree. A single state, or node, of the tree is transformed to successor states by using operators.
These transformations correspond to arcs between nodes and their successors in the tree. The
simplest approach to parallelization of the search isto apply at any node the operatorsto obtain
successor nodes, and then to search the subtrees beneath each node in paralel by different
processors. However, if we search only for asingle solution and it isfound in the first subtree,
the work donein the other subtreesiswasted. Asaconsequence, such aparallel search can give
asublinear speedup or even adecrease in speedup with an increase in the number of processors.
Itisalso possibleto obtain asuperlinear speedup, when for exampleasolutionisfoundrelatively
quickly in the p-th subtree, where p is the number of processors. These anomalous results were
first observed and discussed by Lai and Sahni [3].

Kaé and Saletore [4] suggested two criteriato evaluate parallel search schemes:

(1) The time required to find a solution. A scheme must be able to consistently generate a
solution faster than the best sequential scheme. The speedup should be possibly close to p, and
must increase monotonically with the addition of processors.

(2) The amount of memory required to conduct the search. This amount depends on the search
scheme and may vary from linear to exponential function of the depth of the tree.

In [4] Kalé and Saletore proposed a priority based parallel depth-first search. Theideaisto
mimic the behavior of the sequential algorithm and to search thetreeleft-to-right. Asaresult, the
wasted work doneto theright of thefirst solution isminimized, which isdesirableif aconsistent
linear speedup is to be achieved. The priority bit-vectors, defined as the sequences of bits
of arbitrary length, are used. Priorities which are compared lexicographical ly are dynamically
associated with nodeswhen they are created. A zero-length priority vector i sassociated with the

root of the search tree. The priority of a descendant node is obtained by appending its number
— given by the ranking of descendant nodes from left-to-right — to the priority of its parent.
The active nodes are kept in a shared priority queue defining the order in which the nodes are
searched.

The worst-case queue length for the prioritized search is O(pdb). Thislength can be reduced
by making use of two techniques: binary decomposition and delayed-release [4]. We describe
shortly the latter one, as it is adopted in our agorithm. The idea behind the delayed-release
technique is that when a node is expanded, the descendants are not immediately available to
other processors. Only the first descendant isinserted into the queue. Thisis applied to every
node until a leaf nodeis reached. Then, all the nodes are released as active nodes and may be
picked up by other processors. As aresult, the intermediate levels of the tree are skipped and
thetreeis explored from its bottom.

The authorsclaim [4] that those techniques virtually eliminate the wasted work and decrease
the demanded memory to the amount of O(p + d).

4. AN R-TRIE BASED PARALLEL SEARCH

In our parallel search algorithm we use the technique of the processor farm. The basic
concept of farming consists of having a central controller — the Master process — that hands
out pieces of work to be processed by the members of a pool of Worker processes. The Master
storesthe active nodes of the search treethat represent the partial solutionsto the MPHF problem.
A solution is defined by a sequence of U-values, one value for each level of the tower. The
nodes are sent to the Workers which do the search by placing successive levels of the tower in
the hash table and reporting the results to the Master.

The partial solutions are kept in a specially devised data structure that we called a reversed
trie (r-trie). The name comes from its resemblance to the trie structure discussed by Knuth in
[5]. Anr-trieis essentially a b-ary tree, whose nodes correspond to the U-values. The nodes
on level [represent the set of partial solutions that begin with a certain sequence of U-values.
In asingle node of an r-triewe hold: alevel number, a U-value for that level, aflag indicating
whether the node is assigned to a Worker or not, and a pointer to the parent node. We denote a
node by apair (level number, U-value), and (1, O) istheroot of anr-trie. A partial (or complete)
solution is restored by traversing the nodes of an r-trie from a leaf up to itsroot. The active
nodesin an r-trieare arranged into a doubly-linked list named ActiveNodes. Thislistis used for
selecting nodes and handing them out to Workers.

Example 2. Fig. 2b shows the r-trie. The nodes on level 3, e.g., represent partial solutions
given by the following sequences of U-values: (0, 5, 2) and (0, 5, 3). O

The advantage of ther-trie structure over the approach by Ka é and Saletore isthat we do not
need to compute priority vectors. Also, no priority queue has to be maintained. To find anode
to assign for aWorker we scan the ActiveNodes list inspecting at most p — 1 of its elements.

4.1. Parallel-C implementation

4.1.1. Worker processes

A Worker process receives two types of messages from the Master:

New. This message contains a new partial solution for carrying on the search. It consists of a
level number where the new partial solution begins, a number of levelsin the solution, and the
U-values, one value for each level.

Continue. This message has no components. Upon receiving the Continue message a \Worker
continues its search with the currently available partial solution.

Let i be the number of the last level placed by a Wobrker, and let the New message it received
from the Master contain the n-level partial solution beginning from level j. (Since the Master
keeps track of the progress of each Worker, ; < : always holds.) In response, the Worker frees
all the places in the hash table occupied by thewordson levelsj, 5 + 1, ..., «. Thenit places
the words from levels 5, j + 1, ..., j + n — 2 by making use of the U-values received, and
continuesthe search from level j + n — 1. Denote thislevel as ky. The ideaof delayed-release
is adopted in our algorithm. Thus, placing of successive levels of the tower in the hash tableis
continued until:

Case 1. The Worker encountersaleaf in the search tree, i.e. alevel that cannot be placed as an
extension to the current solution. Suppose that the Worker must backtrack to level £. If &£ < ko,
then the Worker sends a message DeepBack to the Master along with the value of £. & > ko
means that the Worker has placed some levels of thetower. A minimum number of levelswhich
the Worker must place before communicating with the Master is a parameter to the algorithm.
This parameter can be viewed as a grain size or granularity of search work. We denoteit by s.
If & > ko+ s, 1.e. theWorker has placed arequired number of levels, then it sendsto the Master
the U-values for the placed levels. Otherwise (& < ko + s holds) it continues the search.

Case2. TheWorker placed thelast level of thetower inthe hash table. In such acasethe Worker
sends to the Master the U-values for the placed levels and the information that the solution has
been found.

To accelerate the initial phase of the search, all the Workers after placing the first level
with UU[1] = 0 continue the search until abacktrack occurs. Then, the first Worker sends to the
Master amessage containing the number of placed levelsand the corresponding U-values. Each
Worker backtracks then a number of levels equal to its number and resumes the search, i.e. the
first Worker backtracks one level, the second Worker two levelsetc. |If aWorker isto backtrack
below the second level, it freesall placesin the hash table except for the places occupied by the
words on the first level, and waits for a New message.

4.1.2. Master process

The Master holds partial solutions and assigns work to Workers. It stores pointers to last
nodes processed by each Worker and keeps track of idle Workers. When active nodes become
available, they are sent to idle Workers. Once anode is assigned to a Worker its assign flag is
set. The Master receives three types of messages from Workers:

Partial Success. This message is sent when a Worker placed successfully some levels, and then
encountered a level which cannot be placed. It contains the number of levels placed along with
the corresponding U-values. Suppose that the Worker placed » levels beginning from level ¢,
andon level 4 n it backtracked tolevel : + n — 1. Let the U-valuesreceived be U[:], U[: + 1],
..., Uli+n—1]. If thelast node processed by the Worker was the first node on the ActiveNodes
list, the Master sends the Continue message to the Worker. Then it changes the U-value of the
last node processed by the Worker to U[:], and insertsnodes (¢ + 1, U + 1)), (¢ + 2, U[: + 2]),
ooy @+ n—=2U[t 4+ n —1])inther-trie. The Master also addsto the r-trie new active nodes
U+ D, +LU+14+1),...,¢+n—2U[i +n— 2]+ 1). These are dternativesfor
expansion. If the Worker did not process the first node on the ActiveNodes list, such anodeis
found and its corresponding partial solutions is computed. This solution is compared with the
one received from the Worker. The fragment in which they differ is sent back to the Worker as
aNew message.

DeepBack. This message is sent when a Worker executed backtrack pruning (see sec. 2). It
contains the level number to which the Worker backtracked. Let this number be 7, and let the
last node processed by the Worker be (j, U[j]). The Master traverses the r-trie starting from
node (7, U[;]) until node (z, U[:]) isencountered. Thenit removesfromther-trieall not assigned
active descendants of node (¢, {/[:]), and creates and sends a New message to the Worker.

Total Success. Thismessageis sent when aWorker placed successfully thelast level of thetower.
It contains the U-valuesfor the levels placed.

Example 3. Consider an example search carried out by Workers Py, P, and P3, and the Master.

Initialy, the r-trie consists of two nodes. (1, 0) and (2, 0) (Fig. 2a). Suppose that during the
search the following messages are sent to the Master:

Messageno. Messagetype fromWorker U-vaues

1 Partial Success P (5, 2, 6)
2 Partial Success P (8,1,5)
3 DeepBack P to level 2
4 Partial Success P3 (7,5)

In response to message 1 the Master changes the U-value of node (2, 0) to 5 and insertsin the
r-trie new nodes (3, 2), (4, 6), (2, 6) and (3, 3). Nodes (4, 6), (3, 3) and (2, 6) become active
(Fig. 2b). As mentioned earlier, P, backtracks one level so it continues the search from node
(4, 6);. P, continues from node (3, 3), and P; from node (2, 6). Suppose that P; has placed

7

successfully the next three levels (message 2). The Master sends to P, a Continue message
since the node (4, 6) is the first node on the ActiveNodes list. Then it changes the U-value of
node (4, 6) to 8 and insertsnodes (5, 1), (6, 5), (4, 9) and (5, 2) asactive nodesin ther-trie. Now
suppose that P, sends message 3. Having received it the Master removes from the r-trie node
(3, 3) and sendsto P, anew partial solution (by making use of a New message) beginning from
level 3 with U-values (2, 8, 2). Thus, P, will continue the search from level 5. Suppose that
P53 has placed successfully the next two levels (message 4). The Master changes the U-value
of node (2, 6) to 7 and insertsin the r-trie nodes (3, 5) and (2, 8). Now thefirst active node not
assigned yet is (4, 9). The Master sends to ;3 a new partial solution beginning at level 2 with
U-values (5, 2, 9). Thus P; will continue the search from level 4. Fig. 3 shows a state of the
r-trie at that moment. Active nodes (6, 5), (5, 2) and (4, 9) are assigned. O

@) (b)

1,0 1,0
|) LI
ActiveNodes 2.0 2.5 -
3,2 <.

_ A
ActiveNodes

) [PR

Figure 2: (@) Initial state of ther-trie; (b) The r-trie after message 1 has been processed

ActiveNodes
—>

Figure 3. Ther-trie after message 4 has been processed

4.2. Occam implementation

Here we discuss the major differences between the occam implementation of the algorithm
and the Parallel-C implementation presented above.

4.2.1. Worker processes

A Worker process receives one extra message from the Master, the End message. This has
no components and is sent when the solution has been found.

This implementation has no backtrack pruning, thus with the DeepBack message a \orker
sends no & value.

4.2.2. Master process

The Master process receives only two types of messages from the Worker processes:

Success. Thisis exactly the same message as the Partial Success message. When the Master
receives the Success message with the last level placed, it sends a single End message to the
Workers.

DeepBack. This message is sent when a Worker backtracks one level below the start level. It
has no components, as mentioned above.
4.2.3. Thefarming harness

In the occam implementation a farming harness was written specifically for the application.
Such a harness consists of two processes:

Solitter. This process performsthe distributon of jobs from the Master to the farm. Asthe jobs
are numbered for specific Workers, the Splitters direct each one accordingly.

Merger. This process collects results from the Workers and passes them back to the Master. In
times of choice the Mergers give priority to the results from the Worker not the neighbouring
Merger.

These processes run at high priority so that messages (jobs and results) destined for other
processors can be passed on immediately.

Fig. 4 shows afarm of three transputers.

Buffer Splitter Splitter
Master Worker Worker
Buffer Merger Merger

Figure4: Anexample farm

5. EXPERIMENTAL RESULTS

The parallel algorithm was implemented in Parallel-C under control of the Express Parallel
Programming Environment and in occam on UKC’'s Meiko Surface. We ran the algorithmon a
transputer system with ten T800 20 MHz transputers configured into a linear array. The Master
was run on the first transputer, and the Workers were run on the remaining transputers. The
experiments were conducted for the six sets of words of sizes m = 50, 60, ..., 100. For these
setstables 1 and 2 show the execution times of the sequentia search (using only one transputer)
in Parallel-C and occam. Fig. 5 and fig. 6 show the speedup of the Parallel-C and occam
implementations respectively, as a function of the number of processors. The granularity of
search work, s, isaparameter to the graphs. Each point of agraph was computed as an average
over the 36 resultsmeasured for all the setsand thevalues of parameter 5 = 0.45, 0.46, ..., 0.5.

m | 3—=045]3—-046|3 =047 3-048]3=049]3=05
50 | 180.818 | 85.126| 63.051| 2591 | 8.893| 3.239
60 | 183.126 | 116579 | 48.067 | 19.989 582 | 3.188
70| 218984 | 12858 | 99.849| 51777 | 33204| 6.387
80| 312699 | 83.06| 56.375| 25222| 11.843| 5.492
90 | 174454 | 126423 | 76583 | 51.919| 13.223| 4778
100 | 329219 | 201531 | 63777 | 39217 | 13407| 4.052

Table 1: Sequentia search timesin seconds (Parallel-C), |g| = pm

10

m | 3—=045]3—-046|3 =047 3-048]3=049]3=05
50 | 227.658 | 195.883 | 112.862 | 84468 | 58293 | 21.217
60 | 382592 | 260.768 | 80.682 | 73.845| 44.657| 10.769
70 | 385010 | 250.005| 144504 | 66.800 | 57.800| 13.147
80| 318291 | 200772 | 205961 | 45931 | 29.858| 17.782
90 | 402634 | 322956 | 181241 | 123641 | 55215| 14.851
100 | 865.847 | 445430 | 244551 | 115510 | 57.919| 44.709

Table 2: Sequentia search timesin seconds (occam), |g| = fm

6. CONCLUSIONS

We presented the parallel algorithm for conducting asearch for afirst solutionto the problem
of generating MPHFs. The algorithm uses the technique of the processor farm, and adopts the
idea of delayed-release[4]. The special data structure, called reversed trie (r-trie), was devised
to carry out the search. The experiments showed that the parallel algorithm exhibi ts a.consi stent
and almost linear speedup (cf. Figs. 5 and 6). Asagrain size of the search work increases, a
superlinear speedup can be obtained (cf. Fig. 5). Ther-triestructure proved to be highly memory

efficient.

Speedup

3 4

5 6

7 8
Number of processors

Figure 5: Speedup versus number of processors (Parallel-C)

11

s=5

Number of processors

Figure 6: Speedup versus number of processors (occam)

REFERENCES

[1] Z.J. Czech and B.S. Maewski, A linear time algorithm for finding minimal perfect hash
functions, The Computer Journal 36 (4) (1993).

[2] Z.J.Czechand B.S. Majewski, Generating aminimal perfect hash functionin O(M?) time,
Archiwum Inform. Teoret. i Stos. 4 (1-4) (1992) 3-20.

[3] T.H. La and S. Sahni, Anomaliesin parallel branch-and-bound algorithms, Comm. ACM
27 (6) (1984) 594-602.

[4] L.V. Kdéand A. Sdetore, Parallel state-space search for a first solution with consistent
linear speedups, Intern. Journ. of Parallel Program. 19 (4) (1987) 251-293.

[5] D.E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching (Addison-
Wesley, New York, 1973) 481-499.

12

