University of

"1l Kent Academic Repository

da Cunha, Rudnei Dias and Hopkins, Tim (1993) Porting Linear Algebra
Subroutines from Transputers to Clusters of Workstations. Technical report.
University of Kent, Canterbury, UK, University of Kent, Canterbury, UK

Downloaded from
https://kar.kent.ac.uk/21116/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21116/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

PORTING LINEAR ALGEBRA SUBROUTINES FROM
TRANSPUTERS TO CLUSTERS OF WORKSTATIONS*

RUDNEI DIAS DA CUNHA f AND TIM HOPKINS ¥

Abstract. We report on our experiences in porting a number of linear algebra
subroutines, written in occam2, from a transputer environment to a cluster of work-
stations using Fortran77 and the PVM message-passing system.

1. Introduction. Linear algebra subroutines (LAS) are the building blocks of
many large scientific and engineering software packages. Indeed most applications
spend a large proportion of their time executing one or more of those subroutines.
We have already shown in [3] and [2] that highly efficient parallel implementations
of these LAS can also provide the building blocks for the efficient parallel solution of
systems of linear equations using iterative methods on transputer (T800) networks.
In this paper we report on porting these implementations, written in occam?2, to a
cluster of workstations.

The software environment used on the workstations consists of Fortran77 and
the Parallel Virtual Machine (PVM) message-passing system [1], version 2.4.1 (any
references made to PVM in this paper refer to this version only). PVM is a highly-
portable, public-domain package that provides the means of exchanging data between
two processes executing on a (possibly) heterogeneous network. It provides a dee-
mon which, when executed on each of the machines involved in the computation, is
responsible for starting up the processes. The application software, coded in C or
Fortran77, communicates with other processes by calling the supplied PVM library
routines. Different parallel programming models can be used, e. g. master-slave,
single-program-multiple-data (SPMD), etc. , and the application may also use mixed
models. Several machines are supported, ranging from Unix workstations to the Intel
iPSC/860 and including vector supercomputers. PVM is being supported by several
vendors, including IBM, Convex, HP and Meiko Scientific. The actual hardware used
was a network of Sun Sparc2 workstations interconnected by Ethernet.

A brief overview of the paper is as follows. We describe in §2 the porting of the
LAS implementations from an occam2/transputer environment to a Fortran77/PVM
environment. In §3 we provide some experimental results obtained using the For-
tran77/PVM implementations and compare those with the occam2/transputer ver-
sion; we also provide a scalability analysis of both versions. Finally we offer some
conclusions in §5.

2. Porting the subroutines. We consider in detail the conversion of two LAS
routines, for computing inner-products and matrix-vector products; these are the rou-
tines where computation is distributed across the processors and involve communica-

*THIS IS A PREPRINT OF A PAPER SUBMITTED TO THE WORLD TRANSPUTER
CONGRESS. SINCE CHANGES MAY BE MADE BEFORE PUBLICATION WE THEREFORE
REQUEST THAT IT WILL NOT BE CITED OR REPRODUCED WITHOUT THE PERMISSION
OF THE AUTHORS.

fCENTRO DE PROCESSAMENTO DE DADOS, UNIVERSIDADE FEDERAL DO RIO
GRANDE
DO SUL, BRASIL AND COMPUTING LABORATORY, UNIVERSITY OF KENT AT CAN-
TERBURY,

U.K.
fCOMPUTING LABORATORY, UNIVERSITY OF KENT AT CANTERBURY, U.K.

1

tion between them. For the other LAS needed, for example, saxpys, vector scalings,
Givens’ rotations, we used the Fortran77 codes provided in the BLAS Level 1 library
[4].

The first important issue to be considered is that of topology. The occam2 im-
plementation of the LAS exploited the four links available on the T800 and a grid of
transputers was used (a torus interconnection was not needed for our applications).
On the cluster of workstations, however, we do not have the flexibility of choosing
a particular topology that suits an application. With the Ethernet connection avail-
able, we are constrained to use a logically connected linear array of workstations. This
change in topology dictated the major modifications which needed to be made to the
LAS. Note that while nothing prevents us having a logically connected grid of work-
stations, this would increase communication times, since each workstation has only
one connection to the network.

Before commencing the port, we carried out a number of experiments with PVM
to assess its capabilities. We found that there is a significant overhead in using the
usual send/receive routines, where the message is routed to the destination process
through the daemons. However, PVM offers faster versions of these routines (called
fvsnd/fvrcv), which implement a point-to-point exchange of data between two pro-
cesses without using the deemons, and it is these routines that were used in our
implementations.

The porting process consisted of two distinct phases: modification of the algo-
rithms, due to the difference in topology, and translation from occam?2 to Fortran77
of the portions of the computational code.

The main difference in the coding is obviously in the communication part. The
elegance of occam2 with its built-in statements for the send/receive operations does
not exist in Fortran77/PVM. The exchange of data between two processes using PVM
involves

e initialisation of the PVM buffer area by the sending process,
storing the data into the buffer,
sending/receiving the data and
extraction of the data from the buffer by the receiving process.
These operations are performed by calling the appropriate PVM routines.

The following example clarifies the modifications. Suppose a vector u of n double-
precision elements is to be sent from processor 0 to processor 1. In Table 2.1 we show
both the occam2 and Fortran77 codes for the above situation.

Sending Receiving
out! VEC64; n::[u FROM 0 TO n] in? VEC64; n::[u FROM O TO nl
call finitsend() msgtype=100
call fputndfloat(n,u,info) from=0
msgtype=100 call fvrcv(msgtype,from,pname,info)
to=1 call fgetndfloat(n,u,info)
call fvsnd(msgtype,to,pname,info)

TABLE 2.1

occam2 and Fortran77/PVM example codes for data exchange.

There are some similarities between the occam? and Fortran77 codes above. The
2

messages are tagged, either by occam2’s PROTOCOL tag (VEC64) or the msgtype variable
in PVM. Information about who the sending or receiving processes are may be hidden
in occam? (if, for instance, the channels in and out are PLACEd on physical links which
establish the connection between processors 0 and 1), while in PVM we must specify
the name of both the receiver and the sender processes and their process numbers (the
variables pname, to and from). The info variable in PVM returns information about
the completion status of the routine being called. The message length is implicit in
the in? occam?2 statement; however in PVM it is necessary to call another routine
(rcvinfo) to obtain this information. Of course in some applications this may not be
necessary, as in our case, where each process knows the message lengths explicitly.

We now give details of the inner-product and matrix-vector product routines that
were ported to Fortran77/PVM.

2.1. Inner-product. The parallel inner-product computation has three distinct
phases: a local computation on a subset of the vector elements, producing a partial
value, an accumulation of these partial values, and finally a broadcast of the inner-
product value to all processors.

In the occam2/transputer version we used a modification, for grids of processors,
of the recursive-doubling algorithm, for both the accumulation and broadcast phases
of the operation (for details see [3]). On a square grid of p = \/p x \/p processors,
this modified algorithm has a total communication step count of 2[,/p/2] for each of
these phases. For p < 64 this never requires more steps than the recursive-doubling
algorithm which uses [log, p].

Due to the topology used in the Fortran77/PVM implementation, we used the
standard recursive-doubling algorithm for the accumulation and broadcast phases.
PVM offers a broadcast operation which works in recursive-doubling fashion; unfor-
tunately this operation is not available in this form for the socket-based send/receive
operations (in fact, it is implemented as p—1 send operations). For efficiency reasons,
we thus had to implement the accumulation and broadcast operations using recursive-
doubling. Figure 2.1 shows the pattern of accumulation for both implementations.
For the broadcast phase similar patterns occur.

Occam2/transputer implementation Fortran77/PVM implementation

B Bl ol

= Sepl

—=» Step2

Fic. 2.1. Ezchange patterns for accumulation phase of inner-product.

2.2. Matrix-vector product. In the application of interest to us, we needed
to solve systems of linear equations where the coefficient matrix is derived from the
five-point finite-difference approximation of a partial differential equation (PDE).

The PDE is approximated by placing a square grid consisting of [+ 1 rows and
columns over the region of interest giving 12 internal grid points. At each point, the
approximate value of the PDE is dependent on, at most, four neighbouring points in
the vertical and horizontal directions.

This approximation provides us with a natural parallel implementation on a grid
of processors, as used in the occam2/transputer implementation, where the exchange
of data in the vertical and horizontal directions matches the interaction between the
elements of the approximation grid. We may distribute the data among the processors
using geometric partitioning by blocks: each processor holds [1/\/p] x [l//p] grid
points and exchanges [1/,/p] grid points with 2, 3 or 4 nearest neighbours, depending
on its position relative to the boundary of the grid.

In the Fortran77/PVM version, we can use another form of geometric partition-
ing, better suited to the linear array of workstations. We partition the data in vertical
panels, where each process will hold I x [I/p] grid points. The processes then need to
exchange [grid points with either 1 or 2 processes on either side. Figure 3.1 shows the
data partitioning and exchange patterns for both versions, the black squares represent-
ing internal grid points and the white squares and rectangles indicating transputers
and workstations, respectively.

3. Results. In this section we present some experimental results showing the
scalability of the implementations. The occam?2 version was tested on a Meiko Com-
puting Surface, using square grids of up to 25 T800-20 transputers each with 4Mbyte
of memory. The tests with the Fortran77/PVM implementation were made on a net-
work of 8 Sun Sparc2 workstations each with 32Mbyte of memory and a 64kbyte cache
memory. The workstations were connected via an Ethernet. We stress the fact that
the tests were made while other applications were using both the workstations and
the network. The arithmetic operations were executed in double-precision in both
versions.

Occam2/Transputer implementation Fortran 77/PVM implementation
H N H N H N
=~ =~ H N H N H N
H N H N H N
¢ ¢ ¢ H N H N H N
H N H N H N H N H N H N
—— - - -
H N H N H N H N H N H N
t t t H N H N H N
H N H N H N
]] H N H N H R
H N H N H N

Fic. 3.1. Data partitioning and exchange patterns for matriz-vector product.

The tests consisted of running the implementations for different values of n and
p. The results showed that the Fortran77/PVM implementation was at least twice
as fast as the occam2/transputer version. However, the scalability of the latter was
higher, as shown in the speed-up graphs (Figure 3.2). The speed-ups are computed for
each version with respect to a sequential implementation of the operations, executed
on a single T800 or Sun Sparc2.

With respect to inner-products, we note that the occam2/transputer version
achieves good speed-ups for smaller values of n than the Fortran77/PVM version and
the same is true for the matrix-vector products. We note that the Fortran77/PVM
implementations produce a superlinear effect for large n; we have traced this to the
increased amount of cache memory available on the workstations.

The smaller speed-ups achieved by the Fortran77/PVM version are due to higher
latency times in the Ethernet network compared to the transputer links. The transfer
time is dependent on the communications hardware and on the software processes
which are responsible for sending and receiving the data, and making it available
to the application. For example, transferring 100 double-precision words over the
transputer links takes 11ms in our implementation giving a rate of 5.58 Mbit /s, while
on the Ethernet network it requires 15ms (4.31Mbit/s).

12

10

12

10

Inner-product: occam2/T800

‘ ‘ ‘ 12
Sp=1 —
n= 250 -+
n= 500 -+ 10
n=1000 -=
n=2000 -*--
n=5000 -=&-- 8
n=10000 -*--
n=20000 o
N=40000 -+ & 6
4
2
1 1 1 1 O
2 4 6 8 10
p
Inner-product: Fortran77/PVM
‘ ‘ ‘ 12
10
1 8
J (% 6
1 4
1 2
0
2 4 6 8 10

Matrix-vector product: occam2/T800

Sp=1 —
n=1024 -~
n= 4096 -+
n=16384 -=
N=65536 -x--

Matrix-vector product: Fortran77/PVM

10

S=1—
n=1024 - -
n= 4096 -+

n=16384 ©

N=65536 -~--

Fi1G. 3.2. Speed-ups for the LAS implementations.

10

4. Using the LAS as building blocks. We consider as an example one of
the most widely used iterative method for solving systems of linear equations, the
Preconditioned Conjugate-Gradients (PCGQ). Its implementation requires three LAS;
saxpys, inner-products (and vector 2-norms) and matrix-vector products. We have
shown in [3] and [2] that we may obtain an efficient parallel implementation of PCG
(and other iterative methods) by using parallel implementations of the LAS, and
that the overall efficiency of the method is closely linked to the efficiency of the LAS
implementations.

In Figure 5.1 we show the speed-ups of both occam2/transputer and Fortran77/PVM
implementations of PCG. This particular implementation of PCG uses polynomial
preconditioning, where the preconditioning matrix is expressed as a sequence of sax-
pys and matrix-vector products, implemented using parallel versions of the LAS. Note
that the scalability of both versions is similar to that of the underlying LAS opera-
tions. The Fortran77/PVM version no longer exhibits the superlinear effect shown
in Figure 3.2 for the matrix-vector product. We attribute this to the increased com-
munication costs imposed by the need to perform two inner-products and one vector
2-norm per iteration.

5. Conclusion. In this paper we have shown that we may successfully port linear
algebra software developed in occam2 on a network of transputers to Fortran77/PVM
on a cluster of workstations. The use of occam2 on the transputer allowed us to take
advantage of the excellent development environments to produce efficient parallel
implementations.

Although differences in the topology used, dictated by the availability of commu-
nication resources in the hardware, caused modifications to the algorithms used to
implement those subroutines, the translation of the code was reasonably straightfor-
ward. The computational part of the code posed no problems whilst the interprocess
communication code required slightly more work due to the different ways in which
the exchange of messages are treated between occam2 and PVM.

PCG: Fortran77/PVM

PCG: occam2/T800

T 9 T T T
Sp=1 — 8 r Sp=1 —
n=4096 -<--- n=4096 -+
n=16384 -+ 5 7+ n=16384 -+
n=65536 -= ’ n=65536 -=
Lot 6 [
5 L
o 4l -
+
3F
2 L
Il Il 1 Il Il Il Il Il
30 35 1 2 3 4 5 6
p

FiG. 5.1. Speed-ups for the PCG implementations.

The experimental results showed that for the hardware/software used in the tests,
the Fortran77/PVM implementations preserved much of the parallel efficiency of their
occam? counterparts. Although the Fortran77/PVM version did execute slightly
faster due to the more powerful processor, its scalability was not as good as the
occam2/transputer implementation.

We believe that with the current developments in hardware and software, better
results both in terms of execution time and scalability can be achieved in the two
environments. The use of the T9000 will certainly improve the execution times of
the occam?2 version, while clusters of workstations, interconnected through FDDI or
other technologies, together with improved message-passing systems, will provide a
better scalability for the Fortran77/PVM implementation. In the future, we intend
to extend our results to cover the T9000-based machines and the use of version 3.0 of
PVM, which is expected to reduce the communication overheads.

REFERENCES

[1] A. BEGUELIN, J. DONGARRA, A. GEIST, R. MANCHEK, AND V. SUNDERAM, A user’s guide to
PVM Parallel Virtual Machine, Research Report ORNL/TM-11826, Oak Ridge National
Laboratory, 1992.

[2] R.DpA CUNHA AND T. HOPKINS, The Parallel Solution of Partial Differential Equations on Trans-
puter Networks, Transputing for Numerical and Neural Network Applications, IOS Press,
Amsterdam, 1992, pp. 96 109. Also as Internal Report No. 17-92, Computing Laboratory,
University of Kent at Canterbury, U.K.

, The Parallel Solution of Systems of Linear Equations using Iterative Methods on Trans-
puter Networks, Transputing for Numerical and Neural Network Applications, IOS Press,
Amsterdam, 1992, pp. 1-13. Also as Internal Report No. 16-92, Computing Laboratory,
University of Kent at Canterbury, U.K.

[4] J. DONGARRA, J. DU CRrOzZ, S. HAMMARLING, AND R. HANSON, An extended set of FORTRAN
Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 14 (1988),
pp. 1-17.

(3]

