
da Cunha, Rudnei Dias and Hopkins, Tim (1993) Porting Linear Algebra
Subroutines from Transputers to Clusters of Workstations. Technical report.
University of Kent, Canterbury, UK, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21116/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21116/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

PORTING LINEAR ALGEBRA SUBROUTINES FROMTRANSPUTERS TO CLUSTERS OF WORKSTATIONS�RUDNEI DIAS DA CUNHA y AND TIM HOPKINS zAbstract. We report on our experiences in porting a number of linear algebrasubroutines, written in occam2, from a transputer environment to a cluster of work-stations using Fortran77 and the PVM message-passing system.1. Introduction. Linear algebra subroutines (LAS) are the building blocks ofmany large scienti�c and engineering software packages. Indeed most applicationsspend a large proportion of their time executing one or more of those subroutines.We have already shown in [3] and [2] that highly e�cient parallel implementationsof these LAS can also provide the building blocks for the e�cient parallel solution ofsystems of linear equations using iterative methods on transputer (T800) networks.In this paper we report on porting these implementations, written in occam2, to acluster of workstations.The software environment used on the workstations consists of Fortran77 andthe Parallel Virtual Machine (PVM) message-passing system [1], version 2.4.1 (anyreferences made to PVM in this paper refer to this version only). PVM is a highly-portable, public-domain package that provides the means of exchanging data betweentwo processes executing on a (possibly) heterogeneous network. It provides a d�-mon which, when executed on each of the machines involved in the computation, isresponsible for starting up the processes. The application software, coded in C orFortran77, communicates with other processes by calling the supplied PVM libraryroutines. Di�erent parallel programming models can be used, e. g. master-slave,single-program-multiple-data (SPMD), etc. , and the application may also use mixedmodels. Several machines are supported, ranging from Unix workstations to the InteliPSC/860 and including vector supercomputers. PVM is being supported by severalvendors, including IBM, Convex, HP and Meiko Scienti�c. The actual hardware usedwas a network of Sun Sparc2 workstations interconnected by Ethernet.A brief overview of the paper is as follows. We describe in x2 the porting of theLAS implementations from an occam2/transputer environment to a Fortran77/PVMenvironment. In x3 we provide some experimental results obtained using the For-tran77/PVM implementations and compare those with the occam2/transputer ver-sion; we also provide a scalability analysis of both versions. Finally we o�er someconclusions in x5.2. Porting the subroutines. We consider in detail the conversion of two LASroutines, for computing inner-products and matrix-vector products; these are the rou-tines where computation is distributed across the processors and involve communica-�THIS IS A PREPRINT OF A PAPER SUBMITTED TO THE WORLD TRANSPUTERCONGRESS. SINCE CHANGES MAY BE MADE BEFORE PUBLICATION WE THEREFOREREQUEST THAT IT WILL NOT BE CITED OR REPRODUCEDWITHOUT THE PERMISSIONOF THE AUTHORS.yCENTRO DE PROCESSAMENTO DE DADOS, UNIVERSIDADE FEDERAL DO RIOGRANDEDO SUL, BRASIL AND COMPUTING LABORATORY, UNIVERSITY OF KENT AT CAN-TERBURY,U.K.zCOMPUTING LABORATORY, UNIVERSITY OF KENT AT CANTERBURY, U.K.1

tion between them. For the other LAS needed, for example, saxpys, vector scalings,Givens' rotations, we used the Fortran77 codes provided in the BLAS Level 1 library[4]. The �rst important issue to be considered is that of topology. The occam2 im-plementation of the LAS exploited the four links available on the T800 and a grid oftransputers was used (a torus interconnection was not needed for our applications).On the cluster of workstations, however, we do not have the
exibility of choosinga particular topology that suits an application. With the Ethernet connection avail-able, we are constrained to use a logically connected linear array of workstations. Thischange in topology dictated the major modi�cations which needed to be made to theLAS. Note that while nothing prevents us having a logically connected grid of work-stations, this would increase communication times, since each workstation has onlyone connection to the network.Before commencing the port, we carried out a number of experiments with PVMto assess its capabilities. We found that there is a signi�cant overhead in using theusual send/receive routines, where the message is routed to the destination processthrough the d�mons. However, PVM o�ers faster versions of these routines (calledfvsnd/fvrcv), which implement a point-to-point exchange of data between two pro-cesses without using the d�mons, and it is these routines that were used in ourimplementations.The porting process consisted of two distinct phases: modi�cation of the algo-rithms, due to the di�erence in topology, and translation from occam2 to Fortran77of the portions of the computational code.The main di�erence in the coding is obviously in the communication part. Theelegance of occam2 with its built-in statements for the send/receive operations doesnot exist in Fortran77/PVM. The exchange of data between two processes using PVMinvolves� initialisation of the PVM bu�er area by the sending process,� storing the data into the bu�er,� sending/receiving the data and� extraction of the data from the bu�er by the receiving process.These operations are performed by calling the appropriate PVM routines.The following example clari�es the modi�cations. Suppose a vector u of n double-precision elements is to be sent from processor 0 to processor 1. In Table 2.1 we showboth the occam2 and Fortran77 codes for the above situation.Sending Receivingout! VEC64; n::[u FROM 0 TO n] in? VEC64; n::[u FROM 0 TO n]call finitsend() msgtype=100call fputndfloat(n,u,info) from=0msgtype=100 call fvrcv(msgtype,from,pname,info)to=1 call fgetndfloat(n,u,info)call fvsnd(msgtype,to,pname,info)Table 2.1occam2 and Fortran77/PVM example codes for data exchange.There are some similarities between the occam2 and Fortran77 codes above. The2

messages are tagged, either by occam2's PROTOCOL tag (VEC64) or the msgtype variablein PVM. Information about who the sending or receiving processes are may be hiddenin occam2 (if, for instance, the channels in and out are PLACEd on physical links whichestablish the connection between processors 0 and 1), while in PVM we must specifythe name of both the receiver and the sender processes and their process numbers (thevariables pname, to and from). The info variable in PVM returns information aboutthe completion status of the routine being called. The message length is implicit inthe in? occam2 statement; however in PVM it is necessary to call another routine(rcvinfo) to obtain this information. Of course in some applications this may not benecessary, as in our case, where each process knows the message lengths explicitly.We now give details of the inner-product and matrix-vector product routines thatwere ported to Fortran77/PVM.2.1. Inner-product. The parallel inner-product computation has three distinctphases: a local computation on a subset of the vector elements, producing a partialvalue, an accumulation of these partial values, and �nally a broadcast of the inner-product value to all processors.In the occam2/transputer version we used a modi�cation, for grids of processors,of the recursive-doubling algorithm, for both the accumulation and broadcast phasesof the operation (for details see [3]). On a square grid of p = pp � pp processors,this modi�ed algorithm has a total communication step count of 2bpp=2c for each ofthese phases. For p < 64 this never requires more steps than the recursive-doublingalgorithm which uses dlog2 pe.Due to the topology used in the Fortran77/PVM implementation, we used thestandard recursive-doubling algorithm for the accumulation and broadcast phases.PVM o�ers a broadcast operation which works in recursive-doubling fashion; unfor-tunately this operation is not available in this form for the socket-based send/receiveoperations (in fact, it is implemented as p�1 send operations). For e�ciency reasons,we thus had to implement the accumulation and broadcast operations using recursive-doubling. Figure 2.1 shows the pattern of accumulation for both implementations.For the broadcast phase similar patterns occur.
Occam2/transputer implementation Fortran77/PVM implementation

Step 1

Step 2Fig. 2.1. Exchange patterns for accumulation phase of inner-product.
3

2.2. Matrix-vector product. In the application of interest to us, we neededto solve systems of linear equations where the coe�cient matrix is derived from the�ve-point �nite-di�erence approximation of a partial di�erential equation (PDE).The PDE is approximated by placing a square grid consisting of l + 1 rows andcolumns over the region of interest giving l2 internal grid points. At each point, theapproximate value of the PDE is dependent on, at most, four neighbouring points inthe vertical and horizontal directions.This approximation provides us with a natural parallel implementation on a gridof processors, as used in the occam2/transputer implementation, where the exchangeof data in the vertical and horizontal directions matches the interaction between theelements of the approximation grid. We may distribute the data among the processorsusing geometric partitioning by blocks: each processor holds dl=ppe � dl=ppe gridpoints and exchanges dl=ppe grid points with 2, 3 or 4 nearest neighbours, dependingon its position relative to the boundary of the grid.In the Fortran77/PVM version, we can use another form of geometric partition-ing, better suited to the linear array of workstations. We partition the data in verticalpanels, where each process will hold l�dl=pe grid points. The processes then need toexchange l grid points with either 1 or 2 processes on either side. Figure 3.1 shows thedata partitioning and exchange patterns for both versions, the black squares represent-ing internal grid points and the white squares and rectangles indicating transputersand workstations, respectively.3. Results. In this section we present some experimental results showing thescalability of the implementations. The occam2 version was tested on a Meiko Com-puting Surface, using square grids of up to 25 T800-20 transputers each with 4Mbyteof memory. The tests with the Fortran77/PVM implementation were made on a net-work of 8 Sun Sparc2 workstations each with 32Mbyte of memory and a 64kbyte cachememory. The workstations were connected via an Ethernet. We stress the fact thatthe tests were made while other applications were using both the workstations andthe network. The arithmetic operations were executed in double-precision in bothversions.
Occam2/Transputer implementation Fortran 77/PVM implementation

Fig. 3.1. Data partitioning and exchange patterns for matrix-vector product.
4

The tests consisted of running the implementations for di�erent values of n andp. The results showed that the Fortran77/PVM implementation was at least twiceas fast as the occam2/transputer version. However, the scalability of the latter washigher, as shown in the speed-up graphs (Figure 3.2). The speed-ups are computed foreach version with respect to a sequential implementation of the operations, executedon a single T800 or Sun Sparc2.With respect to inner-products, we note that the occam2/transputer versionachieves good speed-ups for smaller values of n than the Fortran77/PVM version andthe same is true for the matrix-vector products. We note that the Fortran77/PVMimplementations produce a superlinear e�ect for large n; we have traced this to theincreased amount of cache memory available on the workstations.The smaller speed-ups achieved by the Fortran77/PVM version are due to higherlatency times in the Ethernet network compared to the transputer links. The transfertime is dependent on the communications hardware and on the software processeswhich are responsible for sending and receiving the data, and making it availableto the application. For example, transferring 100 double-precision words over thetransputer links takes 11ms in our implementation giving a rate of 5:58Mbit/s, whileon the Ethernet network it requires 15ms (4:31Mbit/s).

5

0

2

4

6

8

10

12

0 2 4 6 8 10

S
p

p

Inner-product: occam2/T800

Sp=1
n= 250
n= 500
n= 1000
n= 2000
n= 5000

n=10000
n=20000
n=40000

0

2

4

6

8

10

12

0 2 4 6 8 10
S

p

p

Matrix-vector product: occam2/T800

Sp=1
n= 1024
n= 4096

n=16384
n=65536

0

2

4

6

8

10

12

0 2 4 6 8 10

S
p

p

Inner-product: Fortran77/PVM

Sp=1
n= 250
n= 500

n= 1000
n= 2000
n= 5000
n= 10000
n= 20000
n= 40000
n= 50000
n=100000
n=500000

0

2

4

6

8

10

12

0 2 4 6 8 10

S
p

p

Matrix-vector product: Fortran77/PVM

Sp=1
n= 1024
n= 4096

n=16384
n=65536

Fig. 3.2. Speed-ups for the LAS implementations.
6

4. Using the LAS as building blocks. We consider as an example one ofthe most widely used iterative method for solving systems of linear equations, thePreconditioned Conjugate-Gradients (PCG). Its implementation requires three LAS;saxpys, inner-products (and vector 2-norms) and matrix-vector products. We haveshown in [3] and [2] that we may obtain an e�cient parallel implementation of PCG(and other iterative methods) by using parallel implementations of the LAS, andthat the overall e�ciency of the method is closely linked to the e�ciency of the LASimplementations.In Figure 5.1 we show the speed-ups of both occam2/transputer and Fortran77/PVMimplementations of PCG. This particular implementation of PCG uses polynomialpreconditioning, where the preconditioning matrix is expressed as a sequence of sax-pys and matrix-vector products, implemented using parallel versions of the LAS. Notethat the scalability of both versions is similar to that of the underlying LAS opera-tions. The Fortran77/PVM version no longer exhibits the superlinear e�ect shownin Figure 3.2 for the matrix-vector product. We attribute this to the increased com-munication costs imposed by the need to perform two inner-products and one vector2-norm per iteration.5. Conclusion. In this paper we have shown that we may successfully port linearalgebra software developed in occam2 on a network of transputers to Fortran77/PVMon a cluster of workstations. The use of occam2 on the transputer allowed us to takeadvantage of the excellent development environments to produce e�cient parallelimplementations.Although di�erences in the topology used, dictated by the availability of commu-nication resources in the hardware, caused modi�cations to the algorithms used toimplement those subroutines, the translation of the code was reasonably straightfor-ward. The computational part of the code posed no problems whilst the interprocesscommunication code required slightly more work due to the di�erent ways in whichthe exchange of messages are treated between occam2 and PVM.

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35

S
p

p

PCG: occam2/T800

Sp=1
n= 4096

n=16384
n=65536

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

S
p

p

PCG: Fortran77/PVM

Sp=1
n= 4096

n=16384
n=65536

Fig. 5.1. Speed-ups for the PCG implementations.7

The experimental results showed that for the hardware/software used in the tests,the Fortran77/PVM implementations preserved much of the parallel e�ciency of theiroccam2 counterparts. Although the Fortran77/PVM version did execute slightlyfaster due to the more powerful processor, its scalability was not as good as theoccam2/transputer implementation.We believe that with the current developments in hardware and software, betterresults both in terms of execution time and scalability can be achieved in the twoenvironments. The use of the T9000 will certainly improve the execution times ofthe occam2 version, while clusters of workstations, interconnected through FDDI orother technologies, together with improved message-passing systems, will provide abetter scalability for the Fortran77/PVM implementation. In the future, we intendto extend our results to cover the T9000-based machines and the use of version 3.0 ofPVM, which is expected to reduce the communication overheads.REFERENCES[1] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam, A user's guide toPVM { Parallel Virtual Machine, Research Report ORNL/TM-11826, Oak Ridge NationalLaboratory, 1992.[2] R. da Cunha and T. Hopkins, The Parallel Solution of Partial Di�erential Equations on Trans-puter Networks, Transputing for Numerical and Neural Network Applications, IOS Press,Amsterdam, 1992, pp. 96{109. Also as Internal Report No. 17-92, Computing Laboratory,University of Kent at Canterbury, U.K.[3] , The Parallel Solution of Systems of Linear Equations using Iterative Methods on Trans-puter Networks, Transputing for Numerical and Neural Network Applications, IOS Press,Amsterdam, 1992, pp. 1{13. Also as Internal Report No. 16-92, Computing Laboratory,University of Kent at Canterbury, U.K.[4] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, An extended set of FORTRANBasic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 14 (1988),pp. 1{17.

8

