
Elshaikh, Abdalla, Salhi, Said and Nagy, Gábor (2015) The continuous p-centre 
problem: An investigation into variable neighbourhood search with memory. 
 European Journal of Operational Research, 241 . pp. 606-621. ISSN 0377-2217. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/47096/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.ejor.2014.10.006

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC0 (Public Domain)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/47096/
https://doi.org/10.1016/j.ejor.2014.10.006
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


1 
 

The continuous p-centre problem: An investigation into 

variable neighbourhood search with memory 

Abdalla Elshaikh,
  
Said Salhi, and Gábor Nagy

 

Centre for Logistics and Heuristic Optimisation (CLHO), Kent Business School, University 

of Kent, Canterbury, UK 

{ae201, s.salhi, g.nagy}@kent.ac.uk 

 

Abstract 

  A VNS-based heuristic using both a facility as well as a customer type neighbourhood 

structure is proposed to solve the p-centre problem in the continuous space. Simple but 

effective enhancements to the original Elzinga-Hearn algorithm as well as a powerful 

‘locate-allocate’ local search used within VNS are proposed. In addition, efficient 

implementations in both neighbourhood structures are presented. A learning scheme is 

also embedded into the search to produce a new variant of VNS that uses memory. The 

effect of incorporating strong intensification within the local search via a VND type 

structure is also explored with interesting results. Empirical results, based on several 

existing data set (TSP-Lib) with various values of p, show that the proposed VNS 

implementations outperform both a multi-start heuristic and the discrete-based optimal 

approach that use the same local search. 

 

Keywords- p-centre problem, continuous space, variable neighbourhood search with 

memory, adaptive search, Elzinga-Hearn algorithm. 

 

1 Introduction  

In the p-centre problem, the objective is to locate a given number (p) of facilities in order to 

minimize the maximum distance from a set of fixed points to their closest facilities. In this 

study, we investigate the case where the facilities can be located anywhere in the plane. This 

is contrary to the commonly used case where the facility locations are restricted to a 

candidate set of potential sites. The continuous solution though has some weaknesses in terms 

of practicality can be of help to identifying potential sites that are nearer to the best locations 

as gathering the data can, in some situations, be expensive. Also, the information obtained 

can be used as a green field solution for assessing the company’s chosen facilities. The most 

cited application of the p-centre problem involves the location of emergency facilities where 
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response times are critical. Thus, to obtain an ‘equitable’ solution, the objective is framed as 

the minimization of the worst response time instead of the average response time. Related 

economical implications include among others the recent work by Murray and Wei (2013) 

and the one by Lu (2013). The former used set covering and GIS to obtain the least number 

of facilities to cover the entire area of study. Two real life applications are used where the 

first one aims at locating emergency sirens in Dublin (Ohio) whereas the second is about the 

siting of fire station in Elk Grove (California). The paper by Lu (2013) explores the use of p-

center as part of emergency management while taking into account uncertain demand as this 

is very common in emergency logistics systems aiming at responding to natural disasters. A 

case study using the earthquake in Taiwan in 1999 is adopted. 

The existing research on the p-centre problem deals mainly with the network (or discrete) 

formulation of the problem; this version is usually referred to as the vertex p-centre problem. 

For a fixed value of p, the vertex p-centre problem can be solved in polynomial time. This 

can be done by evaluating each of the O (n
p
) possible combinations of p facility sites in 

polynomial time. For more details refer to Chen and Chen (2009) and Salhi and Al-Khedhairi 

(2010) and references therein.  

 For the continuous case, efficient solution approaches have been proposed for the one-centre 

problem (p = 1) including Elzinga and Hearn (1972) who devised an exact geometrical 

approach for solving optimally the problem. Enhancements to speed up the search were also 

introduced by several authors, see Xu et al. (2003) and references therein. For p=2, Drezner 

(1984a) designed an interesting exact algorithm where the idea is to enumerate efficiently all 

the possible disjoint pairs of subsets (i.e., n(n-1)/2 possibilities) by using the optimal 

algorithm for p=1 for each subset. For large values of p (p ≥ 3), the problem is known to be 

NP hard (see Megiddo and Supowit, 1984).   

This problem can also be considered as a MinMaxMin type problem with the following 

objective function 

 

where 

      n : the number of demand points (fixed points or customers) 

      p : the number of facilities to open 

      ( , )i i iP a b :  the location of fixed point ( 1,...., )i i n  

      0iw  :  the weight of fixed point ( 1,...., )i i n    

      

1,..., 1,...,
[ ( , )]i i j

X i n j p
Z Min Max w Min d P X

 

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1( ,...., )pX X X : the decision variables vector related to these p facility locations with     

              ( )j j jX x y  representing the location of the new facility j with 2; 1,...,jX j p   

   ( , )i jd P X : the Euclidean distance between iP  and 
jX ( 1,...., ; 1,...., )i n j p   

The above multiple facility location problem has been examined by a small number of 

authors, see Plastria (2002) and the references therein. For larger values of p and n, heuristic 

methods were developed by Drezner (1984b) and Eiselt and Charlesworth (1986) where the 

iterative procedures are based on the idea of ‘locate-allocate’ with the use of the 

add/drop/swap moves. A Voronoi diagram-based heuristic, that has the flavour of Cooper’s 

well-known locate-allocate strategy, was also proposed in Suzuki and Okabe (1995). This 

method was generalized by Wei et al. (2006) to account for irregular shapes and constraints 

on the possible locations of the new facilities. Relaxation methods, based on solving 

optimally small subsets of the original problem, which are then gradually increased in size by 

a given number of demand points, were developed by Chen and Chen (2009) for both the 

discrete and the continuous p-centre problem with excellent results. This method is 

interesting as it could generate optimal solutions though it is sensitive to the number of added 

points. Observing the literature two issues arise. Firstly the optimal methods can solve 

instances with limited sizes and secondly there are no meta-heuristics only greedy and simple 

improvement type methods. 

The contributions of the present paper include 

(i) Enhancements on the Elzinga-Hearn’s method which is part of the local search used 

for the p-center problem 

(ii) The design of a powerful meta-heuristic namely a VNS by introducing efficient 

neighbourhood structures and effective enhancements in its local search to solve 

large instances 

(iii) The incorporation of memory in VNS to provide flexibility and guidance to the 

search 

(iv) Extensive computational experiments for large instances leading to new results that 

are useful for benchmarking purposes including the optimal solutions for the discrete 

case.  

The paper is organised as follows: Enhancements for the Elzinga-Hearn algorithm (i.e. 

1p  ) are described in section 2 alongside an initial application and adaption to the p-centre 
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problem. In section 3, a VNS implementation is produced followed by improvement schemes 

in the generation of an effective neighbourhood structure in section 4 and enhancements on 

the local search in section 5. A learning mechanism that systematically responds to the 

characteristics of a given instance making VNS not memoryless is provided in section 6. In 

section 7 computational experiments are presented followed by our conclusion and 

suggestions in the last section. 

2 Enhancements to the Elzinga-Hearn algorithm 
 

Though the algorithm is polynomial of the order 2( )O n and hence very fast, any enhancement 

would seem not to be worthwhile if the aim was to solve the 1-centre problem only. 

However, our aim is to solve the p-centre problem instead where we need to resolve to 

solving the 1-center problem a large number of times and therefore the cumulative 

computational saving would be, in our view, worth considering. For completeness, a brief 

recall of the Elzinga-Hearn algorithm is first given followed by our proposed enhancements. 

 

2.1 A brief on the Elzinga-Hearn algorithm  

The optimal solution for the 1-centre problem ( X ) can be obtained with a geometrical-based 

approach using the following two results.  

Result 1 (Case of 2 critical points say  and s tP P ) 

The optimal solution X lies at the intersection of the set

( , ) { : ( , ) ( , ) 1,..., }s t s s t tL P P X w d P X w d P X s t n      and the line between the points 

ts PP  and . 

Let s

t

w
r

w
 . If 1r  the set L reduces to the perpendicular bisector, otherwise L is a circle with 

radius 
2

( , )
|1 |

s t

r
d P P

r
and centre 

2

21

s tP r P

r




. 

Result 2 (case of 3 critical points, say ,  and s t uP P P ) 

The optimal solution is determined by one of the pairs of points  and s tP P , or  and s uP P , or

 and t uP P leading to the points ,  or a b c respectively, or by all three points in which the 

solution lies at the intersection of ),( and ),(),,( utusts PPLPPLPPL leading to the points  

1 2 and .e e  
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From these five points 1 2{ , , , , }a b c e e , the choice will reduce to choosing one point either from  

1 2{ , } or { , , }e e a b c .  

In brief, the optimal solution can be determined by one, two or three fixed points only which 

are referred to, in the literature, as the critical points. Using these interesting results, Elzinga 

and Hearn (1972) developed the following algorithm (see Figure 1) to find the optimal 

location for the 1-centre problem in the continuous space. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: The original Elzinga-Hearn algorithm  

Regarding the addition of the 4
th

 point (Step 6 of Figure 1), six combinations need to be 

evaluated only (three using two points and the other three requiring three points). Moreover, 

if the problem is unweighted, there is no need to check all the six cases.  

 

2.2 The proposed enhancements 

Elzinga and Hearn (1972) noted the following weaknesses of their algorithm: (i) selection of 

the starting points (Step 1 of Figure 1) and (ii) the selection of the uncovered points in Step 2 

and Step 5 of Figure 1. Attempts to address these shortcomings were made by Hearn and 

Step 1: Choose any two points  and s tP P . Solve the weighted minimax location problem with    

           and s tP P  to find X using Result 1and let ( , )s sZ w d P X  

Step 2: If niPZXPdw iii 1,...,  ;  ),(   stop, else select a point uP such that ( , )u uw d P X Z (i.e., 

uncovered points). 

Step 3: Solve the weighted minimax location problem with  ,  and to find  and s t uP P P X Z using   

Result 2.  

Step 4: If the optimal location X is determined by two points, say  and s tP P , go to Step 2 

Step 5:  X is determined by three points. If niPZXPdw iii 1,...,  ;  ),(  stop; Otherwise choose             

              point vP such that ( , )v vw d P X Z (i.e., uncovered points). 

Step 6: - Using , ,  and s t u vP P P P select all combinations of two points to find the optimal location X   

                using Result 1, and choose all combinations of three points to find the optimal location X  

                using Result 2.  

-  Among these solutions, choose X  with the largest Z value.  

-  If the solution is determined by two points, let  and s tP P  be these 2 points and go to Step 2; 

 Otherwise (i.e., the solution is found by three points), let the three points be , P  and s t uP P and 

go to Step 5.    
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Vijay (1982), but with less convincing results. Here we propose two simple but effective 

enhancements for both the weighted and the unweighted cases. The steps of these two 

enhancements are similar to the original algorithm, except that Steps 1, 2 and 5 of Figure 1 are 

replaced as follows: 

Enhancement 1 (Enh 1) 

Only Step 1 is changed as follows.  

Step 1: 

   -   Determine the four corners of the rectangle with horizontal and vertical sides that covers 

all demand points, namely let 1 2 3 4{ , , , }B i i i i with 1
1,...,

( )i i
i n

i Arg Min w x


 , 

2
1,...,

( )i i
i n

i Arg Max w x


 , 1
1,...,

( )i i
j n

j Arg Min w y


 and 2
1,...,

( )i i
j n

j Arg Max w y


 .  

   -  Solve the weighted minimax location problem using Result 1 with  

       
,

 ( , ) ( , )
i j

s t i j
i j B

i j

w w
P P Arg Max d P P

w w



to obtain X and its cost ( , )s sZ w d P X . 

Enhancement 2 (Enh 2) 

This is an extension of Enh 1 where the uncovered point is chosen as the one with the 

greatest weighted distance in Steps 2 and 5. 

Step 1: Same Step 1 as in Enh 1.  

Step 2 (choice of   uP ) & Step 5  (choice of ) vP :  

   If ( , )  P ; 1,...,i i iwd P X Z i n    stop,  

   else select a point 
1,...,

    (or ) such that (or ) ( ( , ) )u v u v i i
i n

P P P P Arg Max w d P X Z


  (i.e., the 

uncovered point that has the greatest weighted distance from the previous solution) .  
 

2.3 Computational experiments  

The two enhancements were tested on random instances varying in size from n=10 to 

100 in increment of 10. For each value of n, 100 random instances were tested and average 

results are reported.  The fixed points are randomly generated in a square 2(0,100) . 

Our two proposed enhancements are found to yield extremely better results than the 

original implementation. Table 1 provides summary results with the % deviation defined as   
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(%) 100
E Orig

Orig

CPU CPU
Deviation

CPU


 with ECPU  and 

OrigCPU refer to the CPU times for   

Enh 1 (or Enh 2) and the original algorithm respectively. 

According to Table 1, both enhancements require fewer iterations than the original 

algorithm in all cases. The average total number of iterations is 4.46 (1.3+ 3.16) and 2.7 

(1.03+1.67) for Enh 1 and Enh 2 respectively compared to 9.61 (3.84+5.77) for the original 

algorithm. In general, Enh 1 and Enh 2 yield similar time reduction of the original algorithm 

though Enh 2 is slightly faster on average (58% vs 54%) but slightly slower when 70 n , see 

Figure 2.   

 

 Table 1: Average CPU time (in second), deviation (%) from the original and the number of 

iterations (over 100 instances of the unweighted case, from n = 10 to 100) 

 

 

In summary, either Enh 1 or Enh 2 can be used instead of the original algorithm when solving 

the 1-centre problem as part of the p-centre problem but in this study we propose the 

following rule: 

 If 70kn   use Enh 2,  Else use Enh 1         (1)                                                                       

where ( 1,..., )kn k p represents the number of customers in the k
th
 cluster 

1

( )
p

k

k

n n


 .   

 

To validate this claim further, an extensive testing was carried out based on a large sample 

with n=100 to 1000 with a step size of 50. It was observed that the same trend remains valid. 

For the weighted case, Enh 2 is always found to outperform Enh 1. 

n 

Original algorithm Enhancement 1 (Enh 1) Enhancement 2 (Enh 2) 

Average   

CPU 

# Iterations using CPU Time # Iterations using CPU Time # Iterations  using 

2 points 3 points 
Average   

CPU 

Deviation  

(%) 
2 points 3 points 

Average 

CPU 

Deviation  

(%) 
2 points 3 points 

10 0.12422 2.57 2.80 0.05195 58.1790 0.68 1.37 0.03318 73.2893 0.68 1.12 

20 0.13852 3.27 4.26 0.07595 45.1704 0.99 1.88 0.05925 57.2264 0.85 1.26 

30 0.11842 3.62 5.07 0.08967 24.278 1.13 2.10 0.07768 34.4030 0.93 1.56 

40 0.15604 3.68 5.80 0.07889 49.4425 1.21 2.87 0.06457 58.6196 0.99 1.62 

50 0.19849 4.03 6.30 0.11582 41.6495 1.11 3.67 0.08659 56.3756 0.94 1.94 

60 0.33901 3.76 6.25 0.10882 67.9007 1.51 3.21 0.08558 74.7559 1.18 1.78 

70 0.23006 4.41 6.61 0.09825 57.2937 1.48 3.62 0.09799 57.4068 1.08 1.83 

80 0.35598 4.14 6.83 0.10765 69.7595 1.53 4.23 0.14997 57.8712 1.15 1.86 

90 0.29601 4.20 7.15 0.13211 55.3698 1.64 4.50 0.17219 41.8297 1.19 2.02 

100 0.59411 4.76 6.64 0.1793 69.8204 1.75 4.10 0.20585 65.3515 1.30 1.75 

Average  3.84 5.77  53.8863 1.3 3.16  57.7129 1.03 1.67 
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This saving in computational effort can have a massive effect within heuristics that perform 

the ‘locate-allocate’ principle a large number of times as will be shown in the next subsection 

where a simple multi-start procedure is used for the p-centre problem.  

 

 

Figure 2: Average CPU time of the original algorithm and the enhancements       

(Enh 1 and Enh 2) (case of the unweighted problem, n = 10 to 100) 

We have also experimented with the following modifications but all combinations of these 

have proved to be slower than Enh 1 and Enh 2. 

(i) Using the farthest two points in terms weighted distance as initial starting points 

in Step 1. 

(ii) Using the farthest three points as initial starting points in Step 1. 

(iii)  Selecting the uncovered point in Steps 2 and 5 that has the greatest weighted 

distance from the previous solution.  

 

2.4 Effect of the Enhancements on the planar p-centre problem  

In this subsection we present computational results of the Multi-Start using the original 

algorithm (10 random runs) versus those of Enh 1 and Enh 2 for solving the p-centre problem.  

For illustration purposes, we chose one of the TSP-Lib instances (n = 1002) with p varying 

from 5 to 25 with an increment of 5. We performed 100 iterations for the original Multi-Start 

and used the required average time as a stopping criterion for the enhanced versions for 

which we record the number of iterations as well as the corresponding CPU time.  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 20 30 40 50 60 70 80 90 100

The original

Enh 1

Enh 2

CPU time (secs)  

n 
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A summary of the comparison between the original algorithm, Enh 1 and Enh 2 is given in 

Table 2. The results show that there is a significant difference in terms of the total number of 

iterations between the original algorithm and those of Enh 1 and Enh 2. The average 

deviations from the original algorithm (100 iterations) for Enh 1 and Enh 2 are 37.20% and 

31.60% respectively. In terms of CPU time, the deviations are -28.55% and -25.46%. Note 

that this saving could be made even larger if the hybrid rule (1) was used instead, as this 

could have been possible especially when p = 15 and 20. This is not performed here 

purposely as it may disguise the effect of the two enhancements. 

Table 2: Results of the Multi-Start using the original algorithm, Enh 1 and Enh 2 (for 100 

iterations, n=1002, from p = 5 to 25) 

n = 1002   

TSP-Lib 

The Original 

algorithm  
Enh 1 Enh 2 

 

P 

 

 # 

 iterations 

 

Average  

CPU 

Time 

 

CPU Time  

for 100 

iterations 

Correspo-

nding #   

iterations 

Improvement Deviations (%) 
 

CPU Time  

for 100 

iterations 

Correspo-

nding # 

iterations 

Improvement Deviations (%) 

CPU Time    

100 iterations 
 Iterations 

CPU Time    

100 iterations 
 Iterations 

5 100 10.48 5.97 170 43.03 70 7.35 140 29.87 40 

10 100 13.56 9.49 141 30.02 41 10.06 132 25.81 32 

15 100 18.52 13.78 133 25.59 33 14.67 125 20.79 25 

20 100 21.57 17.15 122 20.49 22 16.34 123 24.25 23 

25 100 27.22 20.79 120 23.62 20 19.99 138 26.56 38 

Average 100 

  

137.20 28.55 37.20 

 

131.60 25.46 31.60 

 

3  A VNS-based approach for the p-centre problem 

 

The basic idea of VNS is to change neighbourhoods systematically while using a local search 

within each neighbourhood to get to a corresponding local minimum. A brief outline of the 

basic VNS approach is given in Mladenovic and Hansen (1997) but new versions as well as 

advanced implementations and applications can be found in Hansen et al. (2010).  The 

different neighbourhood structures which we constructed are based on those used for the 

multi-source Weber problem (continuous p-median problem) with some additional changes to 

cater for the properties of the minimax objective function. These include customer-based 

moves (e.g., the removal/addition of one or more customers from a region), and facility-based 

ones (e.g., opening/closing one or more facilities).  

 

3.1 A Basic customer-based VNS 

 

The steps of the VNS that uses a customer-based neighbourhood, and which we call VNS 

(CN) for short, are given in Figure 3. 
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Figure 3: A basic Customer-Based VNS Algorithm (VNS(CN)) 

Explanation of some of the steps 

Step 0 (the construction of the neighbourhood structures) 

Here we remove k customers randomly and allocate them to other open facilities. We 

refer to this type of neighbourhood as max; 1,...,kCN k K with maxK denoting the number of 

neighbourhood structures (
maxK p 

 
). 

Step 1 (the initial solution) 

This is generated randomly by choosing p fixed points, though other schemes could also 

be used. 

Step 2b (the solution of the 1-centre problem) 

 Our enhancements on the Elzinga-Hearn algorithm using rule (1) are applied to solve the 

1-centre problem for both the source and the destination clusters (i.e., the affected clusters). 

Note that this step could also be inserted at the beginning of the local search in Step 2c. 

Step 2c (the local search) 

A locate-allocate procedure, which is similar to that of Cooper (1964), is used here.  

  Step 0: Specify maxmax  and CPUK and set 0Time  . Define the neighbourhood structures    

              max; 1,...,kCN k K  

Step 1: Generate an initial feasible solution ( )X , record the objective function ( )Z X and set    

             1k  . 

Step 2: While maxk K  do                                                              

– Step 2a:  Generate a neighbouring solution ' ( )kX CN X                     “Shaking Part”                                      

– Step 2b: apply the Elzinga-Hearn algorithm or the enhanced versions for the affected   

         clusters. Let 'X be the new solution                              “Continuous locations”  

– Step 2c: Apply a local search to obtain ''X starting from 'X         “Local Search Part” 

– Step 2d:   If ( '') ( ) set X ''  and 1,  else set 1Z X Z X X k k k       “Evaluation Part”                                                                                                      

   

Step 3: Record Time. 

           If 
max  record the incumbent solution  and stop.Time CPU X                                                                     

Else set 1k  and go to step 2. 
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(i) Given the p locations with their centre ( 1,..., )jX j p , allocate each customer to its  

nearest centre and define for each centre j, the subset 
jW , as  

1,...,
1,...,

{( )  : ( , ) min ( , )}, 1,...,j i i n i j i k
k p

W P d P X d P X j p


    

(ii)   In each subset ( 1,..., )jW j p ,  determine the optimal location 
jX  using  (1). 

(ii) While there is a change in at least one of the subset 
jW  or the location

; 1,...,jX j p , return to (i), else record the incumbent solution X and stop. 

This local search will be revisited in Section 5. 

Customer-based VNS(CN) enhancement 

Given that any circle of minimum radius can be determined by two or three critical points on 

its circumference or simply by a singleton point, we build our enhancement by taking this 

information into account. A preliminary study showed that allocating a critical point, instead 

of a non-critical point, to another facility is likely to be more efficient. In this enhancement, 

which we call VNS(CN), the critical points of the largest circle are allocated to the other 

facilities. The only step of Figure 3 which is changed is Step 0. This is replaced by 

Step 0: Define max; 1,...,kCN k K  as the sequence of neighbourhood structures representing 

the k critical points of the largest circle with maxK being 2 or 3 depending on the 

number of critical points that define the largest circle at a given iteration.  

3.2 The Facility-based VNS  

In this section, the facility-based neighbourhood algorithm, VNS(FN) for short, is presented. 

Its steps are similar to those of the VNS(CN) given in Figure 3 except that in the shaking part, 

k open facility locations are selected randomly and inserted into other places. These facilities 

can be located either in the discrete space (fixed points) or in the continuous space. 

Therefore, this type of neighbourhood which we denote by max( ); 1,...,kFN X k K  can be 

classified under two categories namely VNS1(FN) and VNS2(FN), which are defined as 

follows:  

 

Algorithm VNS1 (FN) 

Here we define the k
th 

neighbourhood structure max( ); 1,...,kFN X k K  as  
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'

1 1

( ) \
k k

k r r

r r

FN X X X X
 

  where 'and { ,..., }r r nX X X P P X          (2) 

The main steps of  VNS1(FN) are similar to VNS(CN) of Figure 3 except that Step 0, Step 2a 

and Step 2b are replaced as follows:  

Step 0: Define max( ); 1,...,kFN X k K using (2) with 
maxK p 

 
        

Step 2a : Generate ' ( )kX FN X  using (2) 

Step 2b:  This step is now void as there is no destination cluster or source cluster.  

Algorithm VNS2(FN) 

Here the k
th 

neighbourhood structure max( ); 1,...,kFN X k K is defined as follows 

 '

1 1

( ) \
k k

k r r

r r

FN X X X X
 

         ' 2where and  r rX X X S                                       

2

1,..., 1,..., 1,..., 1,...,

 with {( , ) : ( ) ( )& ( ) ( )}i i i i
i n i n i n i n

S x y Min a x Max a Min b y Max b
   

                       (3) 

VNS2(FN) is similar to VNS1(FN) except that Step 0 and Step 2a are replaced by 

Step 0: Define max( ); 1,...,kFN X k K using (3) with 
maxK p 

 
 

Step 2a: Generate ' ( )kX FN X  using (3) 

Step 2b:  This step is also void here as there is no destination cluster or source cluster.  

Based on a preliminary experiment, the performance of VNS2(FN) is found to be relatively 

better than VNS1(FN). We therefore concentrate on proposing simple but effective 

enhancements on VNS2(FN). We first develop an effective neighbourhood structure which is 

then followed by enhancements on the local search. 

 

4 A New Neighbourhood Structure 
 

There are some steps in VNS2(FN), especially in the shaking phase of Step 2a which are 

worth examining. We aim to shake with a strong perturbation, also known as ‘Intensified 

shaking’ in the literature, see Mladenovic et al. (2013).  

The first idea which comes to one’s mind is to reallocate the facilities with small circles and 

insert them randomly in the larger ones. However, when the solution of the p-centre location 

problem is not optimal, it is observed that the facility in the largest circle and at least one of 
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its neighbouring facilities cannot be in the right location. This observation led us to explore 

the idea of reallocating instead the facility locations of the larger circles (1
st largest, the 2

nd
 

largest,..., the thK )( max  largest circle) including the facilities that are around them. This idea 

can be further refined by focussing on the largest circle and the facilities that are around it 

only and then locate any facility removed randomly in the largest circle and in its surrounding 

areas defined by its neighbouring circles which we will explore next. This is achieved using 

the following two neighbourhood definitions namely the neighbourhood attraction and the 

neighbourhood removal.  

For the sake of simplicity let’s index the largest circle as 1C defined by 1 1( , )X R with 1X  as its 

centre and 1R  as its radius. The remaining 1p   circles are indexed in ascending order based 

on their distances from the largest circle using the distance measure 1( , ); 2,...,jd X X j p .  

The following additional notation is used. 

Notation 

jC : the j
th 

nearest circle to the largest circle 
1; 2,...,C j p   

jC : the area encompassed by circle ; 1,...,jC j p  

 { : ( , ) ; 1,..., }; 1,...,j i j i j jCP P W d P X R i n j p     : the set of critical points of   

           (| | 3); 1,...,j jC CP j p  ) 

jlRC : the area encompassed by the circle centered at ; 1,...,jl CP j p   

j

j j jl

l CP

CR C RC


  : the j
th

 critical region made up of 
jC and its | |jCP surrounding  

( ); 1,...,jl jRC l CP j p   

max

1

; 1,...,
k

k j

j

UCR CR k K


  : the union of the k critical regions  

' :kCC the facilities encompassed by the artificial circle centered at 1X with a radius      

         .1,...,    1);    (i.e.,  otherwise     and 1  if  ),(  111 pkkRRk XXdR kk  


 

We refer to 'kCC  as the 'thk covering circle. This can also be defined as a sequence 

' 1 '{ } { ,..., }k kCC X X  representing the facility of the largest circle and the ' 1k  nearest 

facilities to it.   
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4.1 Facility Attraction  

 

For example, consider Figure 4 which shows three regions (i.e.,
1  with lRC l representing the 

critical points 1 2 3,  and a a a ). It can be shown that these 3 regions could not contain any 

facility worth considering. This is because if one of these regions contained a facility, the 

point of that region would have been already allocated to this facility. For instance, if the 

region of point 1a  contained a facility, 1a would be closer to this facility than its serving 

facility 1p , and therefore 1a  would have already been allocated to that facility instead. This 

is an interesting and powerful property which is also given and proved in Mladenovic et al. 

(2003).  

We take this observation into account to define our neighbourhood for attracting facilities.  

This is achieved by exploring those regions defined by 
jlRC as the regions where a facility 

could be located; 1,...,  and jj p l CP  . 

 

 

 

 

 

 

 

 

  

 

 

 

4.2  Facility Removal 

 

In the k
th

 neighbourhood, instead of removing k facilities randomly from X , we remove these 

facilities from ' where '  is the level at that iteration, ' 1,...,kCC k k p , see Figure 5 for an 

illustration.  The way 'k  is updated is defined next. 

 

Figure 4: An example of 3 regions that do not contain any 

facility for a circle defined by 3 critical points  

x 

    Demand points  
    New facilities . 
♦   

r .

 a3 

p1 

a2 

a1 
r 

r 

Region of 

point a1 

 

Region of 

point a2 
 

Region of 

point a3 
 

r 

♦ 

♦ 

♦ 

p2 p3 .

 

.

 ♦ 

♦ 

♦ 

♦ 

♦ 

y

p4 .

 
♦ 

♦ 



15 
 

 

 

 

 

 

 

 

 

 

The new neighbourhood  

The new
thk neighbourhood structure that combines the facility attraction and the facility 

removal is defined as follows:  

                            '

max

1 1

( ) \ ; 1,...,
k k

k r r

r r

FN X X X X k K
 

        (4) 

Where 1 '( ,..., ) ; '; ' 1,...,k kX X CC k k k p    and ' '

1( ,..., )k kX X UCR  and the thj facility is 

located in the continuous space delimited by ; 1,...,jCR j k     

The updating of 'kCC  

As the removal process of the k facilities and their insertion is linked to VNS and to the 

corresponding covering circle 'kCC at a given iteration, we briefly describe how the value of 

'k is updated which will also be given in the algorithm that follows in Figure 6. We first 

remove a facility from 1CC  namely the facility encompassed by the largest circle, this facility 

is then located randomly in 1UCR . The local search is then applied on this perturbed solution. 

If the solution is not improved, we remove 2 facilities from 2CC and insert them randomly in 

2.UCR This process is repeated until we reach 
maxKCC . At this iteration if there is no 

improvement we revert back to 1k   as in the standard VNS but we continue increasing 'k  

by setting max' 1k K  instead. We continue increasing the radius of the covering circle until 

we either reach pCC  (note that k can be any value between 1 and maxK but 'k p ) or an 

improved solution is found where we revert back to ' 1k k  . If the latter case happens, we 

Figure 5: An example of the levels of covering circles 

that are dynamically increasing from the source region 

of a 9-centre.  
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decrease the radius of 
'kCC by setting ' ' 1k k   where we remove 1k k   facilities from 

' 1k pCC CC   and so on until we reach 1CC . However as 'k k , to control the increase and 

the decrease of 'k  we introduced an indicator which we call Flag . If 1Flag   the covering 

circle is increasing ( ' ' 1)k k  , otherwise it is decreasing ( ' ' 1)k k  . However if at any 

iteration 'k k , we reset 'k k and 1Flag  . As we start with 1CC  we initialise  to 1Flag .  

Based on the neighbourhood structure described earlier and the way 'kCC is updated, the new 

VNS(FN) algorithm is summarised in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     Figure 6: The new VNS2(FN) algorithm 

 

As an example in Figure 5, from 1CC  (the largest circle) we select its facility 4p to locate 

randomly in 1UCR  (in one of the regions 
1  with lRC l being one of the critical points). If the 

  Step 0: Specify max maxand CPUK and set Time=0. Define the neighbourhood structures    

              max; 1,...,kFN k K  using (4) 

Step 1: Generate an initial feasible solution X , record the objective function ( )Z X and set    

             ' 1k k   and 1Flag   

Step 2: While maxk K  do                                                              

– Step 2a:  (i) If '  set 'k k k k  and Flag=+1 

                              (ii) Generate ' ( )kX FN X using (4)   ‘‘Shaking Part”                                 

– Step 2b: apply the Elzinga-Hearn algorithm or the enhanced versions for the affected   

         clusters                                                                           “Continuous locations”  

– Step 2c: Apply a local search to obtain ''X starting from 'X             “Local Search Part” 

– Step 2d:                                                                                                  “Evaluation Part”              

If  ( '') ( ) set X ''  , ( ) ( ''), 1 , ' 1 and 1 

otherwise set 1 and

Z X Z X X Z X Z X k k Flag

k k

     

 
   

         If 1Flag                                                                                 “The update of 'kCC ” 

              If '  then set ' ' 1 else 1k p k k Flag      

          Else  

               If ' 1 then set ' ' 1,else 1k k k Flag       

Step 3: Record Time. 

           If 
max  Time CPU we record the incumbent solution ( )X  and stop                                                                    

Else set 1k  and go to step 2. 

 



17 
 

local search improves the solution, we will record the new solution and start again from the 

new 1CC ; otherwise we explore  2CC where we have two facilities p4 and p6. These will be 

located randomly in the continuous space of 2UCR . 

5 Enhancements on the allocation phase (local search) 

 

The second part of the Cooper’s locate-allocate procedure (i.e., the allocation phase) is also 

modified here. We propose two enhancements to be used when there is no improvement after 

the exchange between the location and the allocation phases. These include the allocation of 

the critical points and the closure of the non-promising facilities.  

 

5.1 Allocate a critical point of the largest circle to another facility 

 

Here we focus on a simple but effective reallocation of the critical points of the largest circle 

to their neighbouring facilities.  

 

Additional notations 

'

1 set of facilities encompassed by the circle ( ,2 ),l MaxC C l R l CP   

''

1  set of facilities encompassed by the circle ( , ),l MaxC C l R l CP   

' ''

1

' ''

{ \ ; 1,..., }, :  

       the set of facilities that are encompassed by  but not by 

l j l l

l l

V X C C j p l CP

C C

   
 

The reasoning behind this enhancement is to remove a critical point 1( )l CP and reallocate it 

in the neighbouring facilities that surround point l based on the subset lV . This is performed 

for all 1l CP .  The main steps of this procedure, which we refer to ALLOC, are given in 

Figure 7.  

Note that in case there is more than one largest circle (case of tie) the procedure is repeated. 

This allocation process continues until a better allocation cannot be found.  
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Step 1: Set 1' MaxR R R   

   For each 1l CP                                     // set of critical points of the largest circle  

{ 

  Step 2: Solve the 1-centre problem for the largest circle without l and record its new radius ( )R l . 

        Step 3: Construct 
' '',  and l l lC C V   

        Step 4: For each lj V  (with | | 0)lV   do the following:         { 

(i) Allocate l to facility j 

(ii)  Solve the 1-centre problem for region j and record its radius R(j) 

(iii)   
maxIf jR R                      

            if ( ) & ( ) '  set ' ( ), '  and 'jR l R R l R R R l l l j j      

            elseif '  then ' , '  and 'j jR R R R l l j j     } 

}      

Step 5:         

max maxif 'set '  and record '  (chosen critical point) and '(the facility attracting ')R R R R l j l         

Figure 7: The allocation procedure (ALLOC) 

 

Figure 8 (a) shows 
1 1

' '' and a aC C  based on the critical point 1a , initially served from facility 1p . 

There are three facilities 2 3 4,  and pp p in the region of 
1aV .  

Allocating a1 to one of these three facilities can improve the solution as long as the radius of 

the destination cluster is less than maxR . Figure 8 (b) shows the case where the critical point 

1a  is allocated to facility 2p  yielding a new radius '

max maxR R . 

 

  

 

 

 

 

 

 

 

 

Figure 8 (a): Possible allocation of one of the 

critical points of the largest circle 

 

The largest 

circle 

a2 

a1 . Rmax p1 
c1 

p5 . p2 

a3 

b1 b2 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

The second 

level of the 

critical point 

. 

.  

p3 
Rmax 

2Rmax 

x 

y 
♦ 

.
♦ 

c2 

d1 . p4 

d2 
♦ 

♦ 
The first 

level of the 

critical point  

 

♦ 

c1 

Figure 8 (b): A better solution of the same problem 

by allocating a critical point of the largest circle 
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To illustrate the impact of this reallocation, computational results of the Multi-Start 

algorithm using 1000 runs with and without this scheme are given in Table 3. The existing 

data set with known optimal solutions ( 439n   TSP-Lib) with 10 to 100p   is used here.  

The integration of this reallocation procedure has improved the solution by up to 13% (when

100p  ), with an average of over 4.5% while requiring a negligible extra computing time. 

Table 3: Effect of the reallocation (based on 1000 runs of Multi-Start) 

 

 

 

 

 

 

5.2 Removal of the non promising facilities 

The idea is to identify those facilities that serve the critical fixed points only and to 

allocate them to other facilities which will lead to such facilities having no customers and 

hence a reduction in the number of facilities. These saved facilities could then be located in the 

continuous space encompassed by the larger circles.  

1 if | | | |; 1,...,
    

0                  otherwise      

j j

j

W CP j p
Let

 
 


 

Let q be the number of facilities saved. These q facilities are then located one at time near the 

critical points of the largest circle based on the reallocation scheme described in Figure 8. The 

main steps of this removal procedure are summarised in Figure 9. 

For instance, Figure 10 (a) shows a feasible solution of a 5-centre problem. Here the critical 

points of the circle centered at p3, namely 1 2 3,  and c c c  are allocated to the facilities located at 

p5, p4 and p2 respectively. Note that there are no non-critical points encompassed by this circle. 

A feasible solution of a 4-centre for the same problem is then presented in Figure 10 (b), 

where the new .   maxmax1 RRR   The facility initially located at 3p can now be relocated in the 

largest circle centered at 1p leading to having two facilities, each with a radius maxR . 

n= 439 
TSP-Lib 

 

Multi-Start 
Multi-Start + Reallocation 

Objective function & CPU Improvement Deviation (%) 

p  Z CPU Time Z CPU Time Z CPU Time 

10 1803.120 55.264 1753.080 55.280 2.775 0.029 

20 1140.290 77.219 1125.280 77.260 1.316 0.053 

30 975.000 91.129 975.000 91.129 0 0 

40 822.344 123.082 760.345 123.124 7.539 0.034 

50 739.193 133.444 698.771 133.546 5.468 0.076 

60 635.044 146.088 570.088 146.267 10.23 0.123 

70 570.088 160.304 570.088 160.398 0.000 0.059 

80 570.088 168.239 542.707 168.304 4.803 0.039 

90 570.088 175.736 570.088 175.737 0 0.001 

100 503.271 196.791 437.679 196.989 13.03 0.101 

Average 

    
4.516 0.051 



20 
 

Figure 9: The removal procedure of the non-promising circles 

 

 

 

 

 

 

 

 

.  

 

 

     Step 1: set 0q  and record 1C                                    //number of empty circles 

Step 2: For each facility j with 1; 1,..., doj j p    

 { 

For 
jl CP do  { 

(i) Construct lV   

(ii) For each lr V  assign l to facility r and solve the 1-center problem of the    

               affected region to yield rR .   

(iii)  If max go to the next  
l

r
r V
Min R R j


                                     // delete facility j                              

 Else  set 
l

r
r V

s Arg Min R


 and update temporarily the radius and the centre of the 

affected circle s  } 

             Facility j  is closed and q=q+1   

      } 

Step 3: If 0q   there is no change  and stop 

           Else  

          For 1,...,t q  

(i) locate the 
tht closed facility randomly in 1C  

(ii) Apply the ‘locate-allocate procedure’ to find the new solution for the     

            p q t   centre problem, and update 1C  if necessary. 

Figure 10 (b): The same objective function 

value but for its corresponding 4-centre 

location problem (Step 2 of Figure 8) 
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Figure 10 (a): A feasible solution of a         

5-centre location problem (removal of       

the facility at location  p3) 
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Table 4 shows the computational results of this enhancement, when it is applied on the 

solutions of the multi-start algorithm with 1000 runs using the existing TSP data (n=439 

TSP-Lib). 

Table 4: Results of the Multi-Start for 1000 iterations with and without the removal-based 

enhancement  

 

 

 

 

 

 

 
5.3 The VNS(FN) algorithm 

 

Our VNS(FN) algorithm is the VNS2(FN) algorithm described in Figure 6 with the local 

search in step 2c incorporating the ALLOC procedure of Figure 7 and the removal 

mechanism given in Figure 9.   

 

6 A VNS with Memory 

In the traditional VNS-based implementations the search is memoryless. In this section we 

intend to incorporate learning within the search so to identify any useful values of the 

parameters that are worth controlling in VNS.  

6.1 The Algorithm 

The learning consists of two stages. In the first stage, we record some information about the 

the progress of the VNS. This is performed during a certain time period defined as  % of the 

maximum CPU. The information that we are interested in includes the use of the 
thk  

neighbourhood, the level of the coverage 'k  and the value of maxK . The second phase uses 

the information obtained to guide the search in subsequent iterations of the VNS.  A skeleton 

of the VNS with memory is given in Figure 11. 

n= 439  

 TSP-Lib 

Multi-Start  Multi-Start  +  Facility Removal procedure #  

Saved 

Facilities  Z CPU Time 
Objective function & CPU Deviation (%) 

p  Z CPU Time Z CPU Time 

10 1753.080 48.086 1753.080 48.417 0 0.688 0 

20 1226.020 71.793 1226.020 71.840 0 0.065 0 

30 975.000 92.004 975.000 92.029 0 0.027 0 

40 975.000 107.657 975.000 109.056 0 1.299 0 

50 834.742 141.196 822.344 141.417 -1.485 0.157 1 

60 655.386 167.267 631.495 167.538 -3.645 0.162 1 

70 580.005 175.504 503.271 176.015 -13.230 0.291 3 

80 570.088 178.622 459.619 179.251 -19.380 0.352 5 

90 570.088 190.107 459.959 190.944 -19.320 0.440 6 

100 503.271 192.665 332.838 194.025 -33.870 0.706 7 

Average 

    

-9.092 0.419 2.3 



22 
 

In Step 2 we can gather the information by recording the score of each neighbourhood either 

as a fraction of its use, or just the number of success. A density function say 

'
max

1

( )
Pr ( )

( )
K

k

Score k
ob k

Score k






         (5) 

can then be computed  with '

maxK defining the initial value of maxK .  

The new value of maxK  could be set as 

'

max max|{ {1,..., }: Pr ( ) 0}|K k K ob k   .       (6) 

 

 

Step 1: Set ' '

max max max, ,  , F ; 1,...,  and generate an initial solution  kCPU K N k K    

Step2 (Learning phase):   

(i) Apply any variant of VNS during maxCPU and record
'

max( ) for each neighbourhood structure ; 1,...,Score k k k K , and any 

other useful information.  

(ii) Compute '

maxPr ( ); 1,...ob k k K using (5) and calculate maxK using (6).  

Step 3 (Adaptive VNS):  

            Use the information gathered in step 2 (ii) for the remaining iterations of VNS. 

 

Figure 11: The VNS(FN) with Memory (VNS-M) 

6.2 Application of VNS-M to the planar p-center problem 

The facility-based neighbourhood can incorporate the process of learning by identifying the 

number of the preselected facility candidates (k) and the levels of the covering circles. Note 

that the customer-based neighbourhood method does not have such a flexibility as the value of 

k  is fixed to 1, 2 or 3, representing the number of critical points and also the source region is 

fixed being defined by the largest circle. Since VNS(FN) is found to be the best performer, 

the learning process is carried out using this variant only. 
 

Phase I: Learning process (Steps 1 & 2 of VNS-M) 

Here, we use  = 0.25 for simplicity. We observe VNS(FN) behaviour by recording the 

information mentioned above. 
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The levels of the covering circle (k’) 

As the chosen facility is found by dynamically changing the radius of the covering circle

'; ' 1,...,kCC k p , the level 'k  is identified whenever a better solution is found. In other 

words, if there is an improvement at a given 'kCC , the frequency of using such a level will be 

increased by one. 

The neighbourhood structure (k) 

 We record the number of times the solution is improved using the 
thk  neighbourhood 

structure; max1,...,k K ( k facilities are removed and inserted somewhere else according to 

our previous strategies). Furthermore, as part of the process we also derive maxK accordingly.  

Phase II: Integrating the information within the search (Step 3 of VNS-M) 

The information that is recorded in the first phase (the value of '; ' 1,...,k k p  and the 

value of max; 1,...,k k K ) is then used to guide the search in VNS(FN). Two schemes are 

explored: 

The range (min, max) 

As the size of the covering circle is dynamic, we would like to determine the maximum level 

that has achieved improvement. The same idea is also applied to fix the range for the value of 

k , i.e. [ , ]a b .  Note that in the classical VNS, a = 1 and b=Kmax whereas here though 1,a b

is not necessarily maxK . However, in some cases, it was observed that the values of 'k and k 

can be further away from their respective means than what is deemed reasonable (outliers), 

those that lie beyond the mean + 2standard deviations. Therefore, such outliers are excluded 

from our analysis. 

A preliminary study shows that this method has two weaknesses: (i) there is a possibility that 

some levels within the range did not improve the solution leading to a waste of time in 

exploring these levels, and (ii) the probabilities of using each level is considered to be the 

same, meaning that all levels have the same level of importance. It was however observed 

that some levels improve the solution several times, while others only a few times or none. 

These two weaknesses also occur in determining the k values. The next scheme attempts to 

overcome these two weak points.  

The frequency of occurrence 

The idea is to choose (0,1)  uniformly and compute   
1

1

( ) with ( ) Pr ( ) 
L

t

L F F L ob t



   
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where Pr ( )ob t  refers to the probability of choosing the level ( 1,..., )tht t p or the  

maxneighbourhood ( 1,..., )tht t K and  is computed using (5). In other words, the higher the 

probability of a given level or neighbourhood is, the higher the chance that such level or 

neighbourhood will be chosen. Figure 12 illustrates how such a scheme can be used. 

This technique is also referred to, in the literature, as the inverse method. This method 

is more adaptive as both the values of  and 'k k are pseudo-randomly selected.  

 

 

 

 

 

 

 

 

 

 

 

Some Comparative results 

A preliminary experiment using both schemes on a TSP data set with n = 439 and p varying 

from 10 to 100 in steps of 10 is given in Table 5. The results based on 10 runs show that 

applying this scheme is more efficient than the range-based. For instance, the overall average 

deviations for the best results are 0.80% and 1.15%, with the average results being 1.96% and 

2.65%. The ST Deviation values of 6.46 and 3.17 of schemes 1 and 2 respectively, also 

confirm that the frequency-based scheme is more reliable especially for large values of 

( ;  30).p eg p   

7 Computational Experiments 

 

The proposed heuristics are coded in C++ and run on a PC computer with an Intel Core 2 

Duo processor, 2.0 GHz CPU and 4G memory. For the optimal solution of the discrete case, 

an integrated C++ code, with CPLEX incorporated within it, is used and run in the same 

computer. Our enhancements are used to test the following existing data sets (n=439, 575, 

783, 1002 and 1323 TSP-Lib) with various values of p (p=10 to 100 with an increment of 

Figure 12:  Selection of  using 

the frequency of occurrence 

0 

1 

α 

Kmax

k 

F (k) 
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10). For n=439, we compare the computational results of our VNS based approaches to the 

optimal solutions provided by Chen and Chen (2009). For the other larger data sets no 

optimal solutions are available. To assess the performance of our approach, we used an 

efficient implementation of the set covering-based approach that optimally solves the vertex 

p-centre problem, as will be explained later. The optimal discrete solutions are then refined in 

the continuous space by applying the same local search as described in this paper. We run the 

multi-start procedure 10000 iterations and select the best solution. For consistency, we use 

the corresponding CPU time for the multi start as a stopping criterion in our VNS methods.  

Table 5: Deviation (%) average and best results for the VNS-M using the range and the 

frequency-based technique using 10 random runs 

n = 439 
 

 The optimal 

solutions  

(Z) 

Using the range  Using the frequency of occurrence  
 

p 
     Deviation %   

    Average Results  
Deviation %  
 Best Results  

ST  

DEV 

 Deviation %   
   Average Results  

  Deviation % 
Best Results  

ST  

  DEV 

10 1716.510 0 0 0 0 0 0 

20 1029.710 0 0 0 0 0 0 

30 739.193 0.29 0 6.69 0 0 0 

40 580.005 1.42 0 12.55 0.45 0  8.33 

50 468.542 3.09 0 12.38 2.69 0.94  4.04 

60 400.195 4.20 1.98 7.37 2.92 0.85  6.17 

70 357.946 1.58 1.23 3.28 1.42 1.27  1.62 

80 312.500 6.73 2.45 11.74 5.38 1.98  4.27 

90 280.903 3.28 2.35 4.65 2.83 1.69  2.25 

100 256.680 5.95 3.54 5.95 3.90 1.30 4.00 

Average  2.65 1.15 6.46 1.96 0.80  3.17 

 

7.1 Comparisons against Existing results (small data set) 

For simplicity and ease of repeatability, the initial solution in our VNS-based heuristics is 

taken as the solution of the multi-start algorithm with 100 runs. In Table 6, the results for 

VNS(CN) and VNS(FN) with and without memory are reported. Our experiments show that 

both VNS heuristics (CN and FN) produce better results than the multi-start heuristic as well 

as the optimal solution based on the discrete case. In brief, the performance of VNS(CN) was 

slightly inferior to the VNS(FN) memoryless as the overall average deviation values from the 

optimal solutions are 0.429% and 0.362% respectively.  It can be seen that VNS(FN) with 

memory is more effective, as the overall deviation has been reduced to 0.233%.  

The optimal solutions are found by Chen and Chen (2009) who used an interesting relaxation 

method based on solving a succession of small sub-problems. The authors add a number of 

demand points each time the obtained optimal solution of the sub problem happens to be not 

feasible for the entire problem. For simplicity, in our subsequent tables, we refer to these 

values by k as reported in their paper.  
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Table 6: Deviation (%) of VNS(FN) (with and without memory) and CN from the optimal 

solution 

n  p  

The 

optimal 

solutions  

Multi-Start’ 

for 10 000 

iterations 

Neighbourhood 

Customer-based  

VNS(CN) 

Neighbourhood Facility-based  

VNS (FN) 

 Memoryless With Memory 

(VNS-M) 

Z Deviation % Deviation % Deviation % Deviation % 

439 

10 1716.5099 2.016 0 0 0 

20 1029.7148 11.417 0 0 0 

30 739.19297 31.901 0 0 0 

40 580.00539 18.062 0 0 0 

50 468.54162 29.412 0.674 0.284 0.674 

60 400.19527 42.452 0.349 0.845 0.349 

70 357.94553 59.267 1.272 0 0 

80 312.5000 30.703 1.203 1.203 0.017 

90 280.90256 25.928 0.395 0.395 0.395 

100 256.68019 27.457 0.395 0.896 0.896 

Average 

 

27.862         0.429    (4)         0.362   (5)        0.233   (5) 

( ): The number of times when the optimal solution is obtained.         Bold: The best solutions found. 

 

 

7.2 Results on larger  data set 

Four larger datasets (n= 575, 783, 1002 and 1323 TSP-Lib) are used to assess the 

performance of our enhancements, see Table 7. As no optimal solution is available for these 

cases, we compute the deviation from the best solution as Deviation (%) = 
( )

100 H best

best

Z Z

Z


 

with ZH denotes the Z value found by heuristic ‘H’ and Zbest refers to the best value of Z 

found by the heuristics. To provide additional comparisons, two strategies for generating the 

initial solution are proposed: 

a) The solution of the multi-start procedure with 100 runs – Here, we use the solution of 

the multi-start algorithm with 100 runs, as previously shown in Table 6. 

b) The optimal solution of the vertex-centre problem – The idea here is to determine the 

optimal solution of the vertex p-centre problem as a starting point using the set 

covering-based approach mentioned earlier. 

 

In general, Table 7 shows that the performance of VNS(FN) with memory namely 

VNS-M outperforms all the others, yielding 34 best solutions in total, (i.e., 20 obtained using 

the solution of the multi-start and 14 with the optimal solution of the discrete problem). The 

CN-based approach achieved the best solution 13 times using the multi-start and 4 times with 

the discrete case (17 in total).  
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Table 7: Deviation (%) of VNS(FN) (with and without memory), VNS(CN), Multi-Start and 

the optimal solution based on the discrete case  

 

 

n  

 

 

p  

Overall  

best 

solutions 

 

Multi Start 

(10 000 

Iterations) 

 

 

 

VNS(CN) 

 

 

VNS(FN) 

  

Optimal  

Discrete 

solutions 

 

Discrete  

+ 

 Continuous 

Using  Discrete –based                 

initial solutions  

Z 

Discrete  + 

Continuous 

 +  

VNS(CN) 

 Discrete + Continuous      

      + VNS(FN) 

Memory

less 

With 

Memory 

(VNS-M) 

 

Memory 

less 

 

With 

Memory 

(VNS-M) 

 575  

  

10 67.9258 1.910 0.998 0.998 0 6.984 2.484 0.998 0.998 0 

20 45.6219 3.096 0 0.745 0 7.939 3.217 1.025 0.596 0 

30 35.5563 9.050 0 0 0.156 10.833 5.815 3.862 0.503 2.823 

40 30.2648 14.507 1.646 1.264 0 10.032 6.854 1.801 1.908 2.056 
50 26.1731 17.837 0.365 2.396 1.131 12.432 6.175 2.396 2.805 0 

60 23.6215 18.706 2.518 0 0.293 14.303 10.395 2.719 3.243 0.844 

70 21.0586 14.756 2.124 1.773 0 17.567 11.214 2.716 2.908 3.137 
80 19.5576 24.958 0.167 1.878 1.492 19.365 6.719 0.036 2.899 0 

90 17.9234 23.566 0.814 2.374 0 22.360 14.612 0.814 2.308 3.486 

100 16.6208 28.514 0.541 0.46 0.467 24.031 14.473 2.458 2.334 0 

Average 
 

15.690 0.917 1.189 0.3539 14.585 8.196 1.883 2.050 1.235 

 783  

 

10 79.3127 0 0 0 0 5.262 4.558 0 0 0 

20 53.4605 2.713 0.429 0.685 0 6.340 6.118 0.919 1.013 0.429 

30 42.3949 11.837 0 2.063 0.494 8.657 2.986 0.949 1.525 1.871 

40 35.9619 10.751 1.591 0 0.411 10.005 6.157 14.74* 14.74* 14.74* 

50 31.4086 15.17 0.19 0.87 0 10.750 5.404 31.38* 31.38* 31.38* 
60 28.0533 18.185 0 0.036 1.098 11.930 7.892 23.55* 23.55* 23.55* 

70 25.4456 20.885 0 1.568 0.694 13.356 9.633 6.977 8.519 4.643 

80 23.5601 22.668 0.845 0.057 0 14.282 10.723 9.557 2.418 0.697 
90 21.7099 24.708 1.572 3.672 0 17.435 12.946 5.208 3.373 1.806 

100 20.334 26.014 1.086 2.026 0 18.231 12.252 6.759 3.672 1.086 

Average 

 

15.293 0.571 1.098 0.2697 11.625 7.8669 10.004 9.019 8.020 

 

1002  

  

10 2389.36 0.889 0 0 0 6.312 4.031 0 0 0 

20 1609.54 4.662 0 1.292 1.29 7.252 4.194 1.29 1.29 0.122 
30 1231.36 8.418 0.108 2.02 0 9.334 3.131 0.108 0.801 1.18 

40 1030.4 17.064 1.299 1.352 0 13.698 5.702 2.994 1.352 2.047 
50 906.228 16.389 0 1.141 0.193 13.609 10.949 0 0.962 1.217 

60 801.474 21.130 0.153 2.196 0 13.842 8.099 2.216 1.027 1.324 

70 727.154 17.700 0.976 1.291 0 16.894 11.407 1.619 2.047 0 

80 664.798 22.029 1.722 2.298 1.046 14.558 5.563 1.046 1.046 0 

90 604.494 28.273 0 1.725 0.745 18.428 8.420 0.965 2.728 4.134 

100 559.017 29.425 2.078 3.73 2.078 20 8.074 3.73 3.630 0 

Average 
 

16.598 0.634 1.705 0.5352 13.393 6.957 1.397 1.488 1.002 

1323  

 

10 2897.49 0.327 0.237 0.067 0.067 6.206 1.735 0.067 0.067 0 

20 1886.82 4.414 0 0 0 6.868 4.602 0 0 0 

30 1466.97 8.293 1.622 2.673 0.984 11.216 5.967 0.681 1.927 0 

40 1236.38 12.405 0 0.343 1.210 9.381 4.986 0.343 0.631 0.343 

50 1060.82 15.989 0 1.458 0.420 11.920 8.016 1.229 0.841 1.458 
60 941.87 12.663 1.227 2.194 0 12.862 6.481 0.738 0.464 1.925 

70 844.967 19.382 0.934 1.615 0 15.025 11.329 2.119 1.016 0.491 

80 774.764 15.335 1.092 2.646 0 15.526 11.745 2.183 2.614 1.644 
90 720.625 24.000 0.661 0 2.117 15.455 10.936 4.787 0.34 0.204 

100 662.936 28.633 2.237 1.662 5.129 18.729 10.774 2.494 1.649 0 

Average 

 

14.144 0.801 1.266 0.993 12.319 7.657 1.464 0.955 0.607 

Overall  

Average 

 

15.431       

(1) 

0.731           

(13) 

1.314          

(7) 
0.538     

  (20) 

12.965              

(0) 

10.102 

(0) 

7.657             

(4) 

3.378         

(3) 

2.716       

(14) 

( ): The number of cases when the best solution is found.   Bold: The best solutions found.   *: No VNS due to CPU time. 

 

The memoryless VNS(FN) obtained 7 and 3 times the best out of 40 for strategies (a) 

and (b) respectively. It can also be observed that the optimal solution based on the discrete 

case fails to find even one best solution, while the multi-start algorithm (10000 runs) 
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achieved the best solution only once. In addition, the average deviation values also confirm 

that the performance of VNS(FN) with memory always yield relatively better results than 

those of the other enhancements, with an overall average deviation of 0.538 % and 2.716% 

when using the solution of the multi-start and the optimal discrete solution respectively. 

These compare favourably with (0.731 %, 7.657%) and (1.314 %, 3.378%)) for VNS(CN) 

and VNS(FN) without memory respectively. Note that when p = 40, 50 and 60 with n = 783 

there was no remaining time to run the VNS when the optimal discrete solutions was used as 

the initial solutions on its own consumed more time than required by the multi start. 

In brief, we can confirm that the performance of the VNS(CN) is better than the VNS(FN) 

without memory, but the incorporation of learning into the search has made VNS(FN) with 

memory to be the best performer. 

 

7.3 Time performance  

A comparison between the average total CPU time of the Multi-Start algorithm (10000 

iterations) and the average CPU time when the best continuous solution is found for both 

cases (using the solution of the multi-start procedure with 100 runs and the optimal discrete 

solutions as the initial solutions) as well as Chen and Chen's results (when it is available) is 

presented in Table 8. It is worth noting that the recording of when the best solution is obtained 

could be useful in designing a more advanced stopping rule. To achieve this, we record the 

CPU time when the best solution is found by a given heuristic as HT  and compute the 

deviation from the CPU time required for 10000 iterations of the multi-start algorithm which 

we refer to as MST  . Deviation is computed as follows:  

 
( )

(%) 100 H MS

MS

T T
Deviation

T


  

To provide a fair comparison in terms of CPU, we use the following transformation as given 

by Dongarra (2013) with 1
2 1

2

n
T T

n
 where 1T  represents the reported time in Machine 1 and 

2T  the estimated time in Machine 2. 1 2 and n n  refer to the number of Mflops in Machines 1 

and 2, respectively. For more information, see http://www.roylongbottom.org.uk.  As the 

computer by Chen and Chen (2009) cannot be easily identified for the number of Mflops, we 

provide an approximate time using a slightly slower but similar computer namely a PC Intel 

Pentium 4 (3.06 GHz), 2 GB of main memory. 
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Table 8 shows that the overall deviations of CPU time when the best solution is found to 

increase with n for all the algorithms. For instance, in VNS (CN), when using the solution of the 

multi-start (100 runs) as the initial solution, the overall deviations vary from nearly -82% for 

n=439 to nearly -40% for n=783.  

In general, it can be seen that applying VNS(FN) and  VNS(CN) require around 50% of the time 

required by the multi start algorithm. 

 

Table 8: Average CPU time of the Multi-Start algorithm (for p=10 to 100 in increment of 10), 

Deviation (%) of CPU time for VNS(FN) (with and without memory) and VNS(CN) 

*:Time when the best solution is found  

k: the number of added demand points at each stage in the Chen and Chen’s paper 
 

 

7.4 An intensification of the local search in VNS (GVNS) 

In this section we intensify the local search within VNS which is based on the allocation 

procedure ‘ALLOC’ of Figure 7. We achieve this by exploring not only one critical point of the 

largest circle at a time but also all the 3 pairs of critical points as well as all the three critical 

points simultaneously.  

Adaptation of ALLOC  

ALLOC is based on the following neighbourhood structure 1( )N X  which is the removal of one 

critical point 1l CP  and inserting it in the best region in lV . 

Here we extend this to cater for 2 3( )and ( )N X N X to define the neighbourhoods that 

simultaneously remove all the possible 2 critical points (3 pairs) and the full triplet (3 critical 

points) from the largest circle. This is performed by solving the corresponding 1-center problem 

(Step 2 of ALLOC) on the reduced largest circle and allocating these critical points in their 

respective 
1

,lV l CP  (Step 3 where the construction of lV is carried out and Step 4 where the 

n          

Deviation (%)   

Average total 

CPU time 

(10000 

iterations)  

(secs) 

Initial solution based on 100 restarts 
Initial solution based on  

Discrete-based 

Chen and Chen's results 

(Continuous Solutions) 

VNS(CN) 

(Best  

 CPU Time)*  

VNS(FN) 

 (Best  CPU Time)* VNS(CN) 

(Best  

 CPU Time)* 

VNS(FN) 

 (Best  CPU Time)* Improved 

relaxation 

(k=7) 

Binary 

relaxation 

(k=6) 
Memory 

less 

With 

Memory 

(VNS-M) 

Memory 

less 

With 

Memory 

(VNS-M) 

439 1497.56 -81.73 -73.21 -74.64 -77.38 -65.11 -74.39 -88.37 -98.72 

575 1681.81 -55.90 -47.52 -36.91 -31.59 -32.58 -17.22  N/A N/A 

783 2762.45 -39.85 -39.65 -48.84 -28.70 -17.55 -15.00  N/A N/A 
1002 4398.09 -45.43 -59.28 -57.98 -9.95 -44.12 -44.13  N/A N/A 

1323 5662.98 -50.79 -33.67 -48.44 -47.06 -41.83 -37.05  N/A N/A 

Average 

 

-54.74 -50.67 -53.36 -38.94 -40.24 -37.56  N/A N/A 
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choice is made). Steps 1 and 5 of ALLOC remain unchanged. In other words instead to choose 

the best move from at most 3 cases we now intensify the search by evaluating at most 7 cases.  

We incorporate the above VND with the three neighbourhood structures 1 2 3, and N N N  as our 

local search in Step 2c in both VNS(CN) and in our best variant of VNS(FN) namely VNS-M. 

Table 9: Deviation (%) of VNS(FN) and VNS (CN) with and without VND 

 

 

n  

 

 

p  

 

Overall  

 

 Best 

 

 solutions 

 

(Z) 

Without intensified local search (VND) With intensified local 

search (VND) 

 

Initial solution  

based on 100 restarts 

Initial solution 

based on 

Discrete case  

 

Initial solution based 

on 100 restarts 

VNS  

(CN) 

VNS(FN) 

Memory 

less 

 

VNS-M 
 

VNS-M 
VNS 

(CN) 

 

VNS-M 

 575  

  

10 67.9258 0.998 0.998 0 0 0 0 

20 45.6219 0 0.745 0 0 0 0 

30 35.5563 0 0 0.156 2.823 0 0.503 

40 30.2648 1.646 1.264 0 2.056 0.698 0.322 

50 26.1731 0.365 2.396 1.131 0 0.463 0.820 

60 23.6215 2.518 0 0.293 0.844 1.624 0.687 
70 21.0586 2.124 1.773 0 3.137 1.134 0.917 

80 19.5086 0.418 2.134 1.747 0.251 0 1.002 

90 17.9234 0.814 2.374 0 3.486 0.582 0.621 
100 16.5511 0.965 0.883 0.89 0.421 0 0.329 

Average 
 

0.985 1.257 0.422 1.302 0.450 0.520 

 783  

 

10 79.3127 0 0 0 0 0 0 

20 53.4405 0.466 0.723 0.037 0.466 1.051 0 

30 42.3949 0 2.063 0.494 1.871 0.456 0.213 
40 35.9619 1.591 0 0.411 14.74 1.227 0.274 

50 31.184 0.911 1.597 0.720 32.32 0 1.078 
60 28.0533 0 0.036 1.098 23.55 1.098 1.098 

70 25.4456 0 1.568 0.694 4.643 1.772 0.387 

80 23.5601 0.845 0.057 0 0.697 0.048 0.14 
90 21.7099 1.572 3.672 0 1.806 2.375 1.022 

100 20.334 1.086 2.026 0 1.086 0.813 0.689 

Average 

 
0.647 1.174 0.345 8.119 0.884 0.490 

 

1002  

  

10 2389.36 0 0 0 0 0 0 

20 1609.54 0 1.292 1.29 0.122 0 0.567 
30 1231.36 0.108 2.02 0 1.18 1.180 0.210 

40 1030.4 1.299 1.352 0 2.047 1.154 1.276 
50 901.455 0.529 1.677 0.724 1.753 0 0.561 

60 801.474 0.153 2.196 0 1.324 1.603 0.745 

70 727.154 0.976 1.291 0 0 0.976 0.236 

80 664.798 1.722 2.298 1.046 0 1.256 1.256 

90 604.152 0.057 1.782 0.802 4.193 0 1.022 

100 559.017 2.078 3.730 2.078 0 2.078 2.078 

Average 
 

0.692 1.764 0.594 1.062 0.825 0.795 

1323  

 

10 2897.49 0.237 0.067 0.067 0 0.237 0.067 
20 1868.92 0.958 0.958 0.958 0.958 0.88 0 

30 1466.97 1.622 2.673 0.984 0 2.107 1.408 

40 1236.38 0 0.343 1.21 0.343 0 1.009 
50 1060.82 0 1.458 0.42 1.458 0.700 0.841 

60 941.672 1.249 2.216 0.021 1.946 0 0.759 

70 844.967 0.934 1.615 0 0.491 1.016 1.306 
80 774.764 1.092 2.646 0 1.644 1.82 0 

90 720.625 0.661 0 2.117 0.204 0.227 1.004 

100 662.936 2.237 1.662 5.129 0 1.403 0.573 

Average 

 

0.899 1.364 1.091 0.705 0.839 0.697 

Overall  Average 

# best 
0.806 
(10) 

1.390 
(6) 

0.613 

(16) 

2.797 
(11) 

0.749 
(13) 

0.626 
(7) 
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Computational results 

The same data sets and the same stopping criterion that were used in the previous 

computational results are also applied here. The overall results of the best variants 

investigated in this study are given in Table 9. Note that the results obtained by those 

methods that are found to be inferior and dominated  by at least another method, such as the 

multi-start for instance, are not reported in this summary table.  In particular, the results 

obtained by VND that starts from the optimal solution of the discrete problem are not 

reported as the results are almost always inferior. The new results are very competitive as 8 

new best results were discovered (6 based on VNS(CN) and  2 with VNS-M) excluding 9 

other already found best solutions. Also, the new variants are found to be better suited for the 

very large instance where an average of slightly less than 0.7% is achieved. In addition, very 

encouraging overall average deviations of 0.629% and 0.839% are recorded by VNS(CN) and 

VNS-M respectively which compare favourably against the best results found by VNS-M  

(i.e., 0.613%). This slight deterioration can be due to the time spent in VND which obviously 

slightly limit the exploration of VNS given that the same computational time of 10,000 multi-

starts is used. 

 

7.5  Brief  results on the Discrete case   
 

For completeness we also provide the optimal solutions for the vertex p-centre problem for 

these large instances using the set covering-based approach, see Table 10. This is based on 

Daskin (1995) algorithm but incorporates an efficient data structure for sorting the useful 

elements of the distance matrix that are used during the search (see Al-Khedhairi and Salhi 

(2005)) besides starting with tighter initial upper and lower bounds as suggested by Salhi and 

Al-Khedhairi (2010). This basic enhancement speeds up the convergence considerably as it 

considers the existing distance elements of the distance matrix only as well as it identifies 

empty gaps between successive distances including the final empty gap between the last 

upper and lower bounds.  

This is also relatively more efficient than the Chen-Chen algorithm which is sensitive to the 

number of demand points added (the k value in their paper). For instance, when n = 1323 the 

average CPU time are 227.27 and 1188.83 seconds respectively. The current approach also 

reduces the number of Cplex calls by almost half, which is significant when compared to the 

original implementation of Daskin (1995). 
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  Table 10: The optimal solution, CPU time and number of calls to Cplex 

 

 

 

    NF: Not Found within 24 hours of CPU  

*: based on the first 3 instances (p=10, 20, 30) 

k: the number of added demand points in the Chen and Chen’s paper 

 

 

8 Conclusion and Suggestions 
 

         A VNS-based approach is designed to solve the p-centre problem on the plane which 

seems to have not attracted as many researchers as one may wish especially for larger 

instances. A local search which is similar to Cooper’s algorithm is used. Enhancements on 

the well known Elzinga-Hearn algorithm for the 1–centre problem are presented that 

produced nearly 60% reduction in CPU time. This is then embedded as part of the local 

search in VNS for solving the p-centre problem. Two modifications are proposed in our 

local search (allocation phase) as well as new neighbourhood structures designed for this 

particular location problem.  The idea of incorporating learning within the search on the 

 

TSP-

Lib 

P Z 

Discrete-based 
Chen and Chen's results 

(Discrete Solutions) 

CPU  

Time 

#   

 Cplex 

calls 

Improved 

relaxation 

(k=13) 

Binary 

relaxation 

(k=11) 

 
439 

10 1971.830 2.61 12 0.46 0.26 

20 1185.590 2.51 13 3.57 1.19 

30 883.529 2.75 11  N/A  N/A 

40 671.751 2.73 10 2.62 0.49 

50 564.025 3.22 10  N/A  N/A 

60 500.000 3.75 9  N/A  N/A 

70 474.341 3.78 9  N/A  N/A 

80 410.030 4.02 10  N/A  N/A 

90 395.284 3.02 7  N/A  N/A 

100 350.000 4.08 10  N/A  N/A 

 Average 

 

 10.1  N/A N/A 

 

575 

10 72.670 61.16 11  N/A  N/A 

20 49.244 63.54 11  N/A  N/A 

30 39.408 1081.12 12  N/A  N/A 

40 33.301 363.24 12  N/A  N/A 

50 29.427 509.12 11  N/A  N/A 

60 27.000 269.88 10  N/A  N/A 

70 24.758 364.15 12  N/A  N/A 

80 23.345 267.35 12  N/A  N/A 

90 21.931 93.84 9  N/A  N/A 

100 20.615 32.68 10  N/A  N/A 

 Average 

 

 11  N/A N/A 

 

783 

10 83.486 11.22 11  N/A  N/A 

20 56.850 429.46 11  N/A  N/A 

30 46.065 1941.59 10  N/A  N/A 

40 39.56 4164.56 9  N/A  N/A 

50 34.785 5567.42 8  N/A  N/A 

60 31.400 7610.13 10  N/A  N/A 
70 28.844 3029.35 10  N/A  N/A 

80 26.925 1412.01 11  N/A  N/A 

90 25.495 975.77 9  N/A  N/A 
100 24.041 304.06 13  N/A  N/A 

Average  

 

 10.2  N/A N/A 

n  

TSP

-Lib 

p Z 

Discrete-based 
Chen and Chen's results 

(Discrete Solutions) 

CPU 

Time 

#     

 Cplex 

calls  

Reverse 

relaxation 

(k=16) 

Binary 

relaxation 

(k=16) 

 
1002 

10 2540.180 13.37 13  N/A  N/A 

20 1726.270 79.39 11  N/A  N/A 

30 1346.290 29.53 14  N/A  N/A 

40 1171.540 229.17 14  N/A  N/A 

50 1029.560 64.95 12  N/A  N/A 

60 912.414 10.12 11  N/A  N/A 

70 850.000 9.85 11  N/A  N/A 

80 761.577 6.55 11  N/A  N/A 

90 715.891 7.12 10  N/A  N/A 

100 670.820 7.20 12  N/A  N/A 

 Average 

 

 11.9 N/A N/A 

 

1323 

10 3077.300 100.98 13 115.63 15.76 

20 2016.400 101.93 17 255.09 88.80 

30 1631.500 138.21 13 1028.47 341.53 

40 1352.360 324.86 14 988.99 965.10 

50 1187.270 400.96 14 3366.75 7168.02 

60 1063.010 829.02 13 5232.12 5104 

70 971.925 89.21 12 677.49 657.48 

80 895.055 120.51 15 118.08 588.73 

90 832.000 78.77 10 62.24 365.10 

100 787.095 88.23 12 43.46 334.71 

 Average 

 

 13.3 1188.83 1562.92 

1817 

10 457.905 906.10 14 65.64  N/A 

20 309.014 7120.13 17 5281.43  N/A 
30 240.987 4807.74 14 11398.47  N/A 

40 209.436 42066 10  N/A  N/A 

50 184.905 72811 13  N/A  N/A 
60 162.637 71249 14  N/A  N/A 

70 +  NF NF NF  N/A  N/A 

 Average * 

 

 15.0 5581.85 N/A 
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best enhancement namely VNS(FN) proved to be very effective. This VNS with memory 

can be considered as a new adaptive VNS variant which can be easily implemented in 

many other combinatorial and global optimisation problems. To intensify the search 

within the VNS, a VND type mechanism is embedded into the local search which 

generated interesting new best results. The multi-start procedure is adopted for comparison 

purposes and its computing time used as a basis. The optimal solution of the vertex p-centre 

problem (the discrete case) is also found using an efficient implementation of the set covering 

based approach which is then refined for the continuous space by the same local search. Four 

TSP data sets with n = 439, 575, 783, 1002 and p varying from p =10 to 100 with a step of 10 

are used as a platform to test our methodology. To our knowledge, this is the first time such 

larger instances were attempted. In summary, the VNS that uses facility-based and memory 

proved to be the best performer and the most robust when compared to the other methods.  

 

          For future research, it may be interesting to incorporate into our approach the optimal 

method given by Drezner (1984a) for the case of 2,p   whenever two clusters are 

considered worth solving optimally. In this study, we explored the removal of the non-

promising facilities by identifying those facilities that serve the critical fixed points only, this 

can be relaxed to also consider those facilities that also have, in addition to the critical point,  a 

small number of non-critical fixed points. Other related location problems with different 

objective function such as the Min Max Sum or other types of covering (maximum or partial 

covering on the plane) can also be investigated using our methodology. The methodology can 

also be extended to cater for area coverage which may or may not be convex as attempted by 

Wei et al. (2006). The use of memory within VNS, or in any other meta-heuristic that relies 

on certain parameters or on the sequence in which certain moves are implemented, could, in 

our view, be a challenging but a promising research avenue that is worthwhile exploring.  
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