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Constructive consistency checking for partial speci�cation in ZEerke Boiten, John Derrick,Howard Bowman and Maarten SteenComputing Laboratory, University of Kent,Canterbury, CT2 7NF, U.K.(Phone: +44 1227 827615,Email: E.A.Boiten@ukc.ac.uk) �Revised version, December 19971 Introduction, goals and contextPartial speci�cation, or speci�cation by viewpoints , has arisen as a desirable method of specifyingcomplex systems in several contexts, particularly in requirements engineering [24] and for examplein Open Distributed Processing [29]. The central idea is that a speci�cation consists of a collectionof interlocking partial speci�cations, each of which describes the envisaged system from a di�erentviewpoint. In particular the speci�cation notation Z [39] is often advocated as a suitable language forthis style of speci�cation [1, 30, 37]. However, for collections of partial speci�cations to be meaningful,consistency between them has to be established. In the existing literature on viewpoint speci�cation,no satisfactory general solution for this is given. This paper describes how to check consistency be-tween partial speci�cations in Z, i.e. how to establish that di�erent partial speci�cations of one systemdo not impose contradictory requirements. Using the traditional re�nement relation in Z, we presenttechniques for constructing uni�cations (least common re�nements) of partial speci�cations, whichrepresent their combined requirements. Three relatively simple conditions on the partial speci�cationsand the predicate that relates them characterise consistency.The next subsections describe viewpoint speci�cation and a formal framework for consistencychecking for viewpoint speci�cation. Section 2 is a brief introduction into Z, its \states-and-operations"speci�cation style, and its re�nement relation. Section 3 describes the parameters of viewpoint uni-�cation. In a naive approach, these are only the partial speci�cations themselves, but in non-trivialcases an extra parameter turns out to be necessary: a correspondence between types used in thevarious viewpoints. A complementary approach is to map the types explicitly to a new type, and�nally it is shown how these extra parameters can be left implicit by designating default values forthem. Section 4 then goes on to present the uni�cation algorithm. Section 5 contains a proof that theuni�cation is a least common re�nement of the viewpoints { the conditions for consistency appear asextra assumptions necessary to complete this proof. Section 6 presents some variations and extensionsto the simple uni�cation algorithm, embedding it in a software development model. Section 7 thencompares our work to related approaches and techniques for partial speci�cation. Section 8 describesour conclusions and our ideas on how to proceed to make Z even more useful for partial speci�cation.This paper is based on [8], extending its results and signi�cantly extending its context.�This work was partially funded by the U.K. Engineering and Physical Sciences Research Council under grantnumber GR/K13035 and by British Telecom Labs., Martlesham, Ipswich, U.K.
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1.1 Viewpoint speci�cationIt is generally agreed that systems of a realistic size cannot be speci�ed in single linear speci�cations,but rather should be decomposed into manageable chunks which can be speci�ed separately. Thetraditional method for doing this is by hierarchical and functional decomposition. Nowadays, it is oftenclaimed [31] that this is not the most natural or convenient (in relation to \perceived complexity")method { rather systems should be decomposed into di�erent aspects . For each such viewpoint aspeci�cation of the system restricted to that particular aspect should be produced. Such partialspeci�cations may omit certain parts of the system, because they are irrelevant to the particularaspect, and need not describe certain behaviours because they do not concern that speci�c viewpoint.Descriptions of this nature seem particularly appropriate for systems with various kinds of \users",each with their own view of the system.Imagine, for example, the views of a library system that library managers, loan o�cers,clients, system operators, and programmers of the system would have. In the librarymanager's view a book has a price which is essential in the operation of buying a book,but which none of the other views would be much interested in. The loan o�cer's view oflending out a book would include updating the library statistics, which would not appearin a client's view of lending a book.Another reason which is often given for decomposing problems into aspects rather than subproblemsis that this \horizontal" subdivision would give a more natural separation of concerns. In particular,it allows each aspect to use specialised speci�cation languages, for example data
ow diagrams forcontrol 
ow, process algebras for \behaviour", data de�nition languages, et cetera. A �nal argumentin favour of viewpoint speci�cation is that it supports 
uid system development. The various viewpointspeci�cations can be gradually developed, often based on changes made to other viewpoints. To someextent this could even occur in parallel, in particular while the speci�cation is completed to re
ect allrequirements.One particular area in which viewpoint speci�cation plays an important role, and our initialmotivation to study viewpoint speci�cation and consistency, is in Open Distributed Processing (ODP),an ISO/ITU standardisation framework. The ODP reference model [29] de�nes �ve viewpoints forthe speci�cation of open distributed systems: enterprise, information, computational , engineeringand technology . These viewpoints are static in the sense that there is a �xed set of viewpoints, eachtargeting a prede�ned aspect of the system (as opposed to viewpoints in other methods). The useof formal description techniques in specifying these viewpoints is envisaged { in particular, Z is astrong candidate to be used in the information viewpoint [37]. For an overview of our project on thetechnical issues behind viewpoint speci�cation for ODP, see [5].The techniques described in this paper, however, are not speci�c to ODP speci�cation. Thetechniques for Z could also be used to formalise the ad-hoc treatment of uni�cation in [1], and insection 7.2 we demonstrate how our methods subsume some of those used for speci�cation by \views"in [30]. Our general approach to consistency checking (as described in other papers and summarisedin the next section) also applies to other viewpoint- or multiple paradigm speci�cation styles (e.g.[33, 43, 28, 14]), in particular when the speci�cations languages involved are formal ones.1.2 Consistency checking and uni�cationThere is one serious technical problem in partial speci�cation. Some elements (operations, variables,etc) of the envisaged system will be modelled in more than one viewpoint, and those descriptions willnot in general be identical. Di�erent viewpoints have di�erent perspectives of the system, and they arelikely to use di�erent speci�cation languages (for ODP the latter is a near certainty). This gives riseto an obligation to ensure that the partial speci�cations do not pose contradictory requirements: weneed to check for consistency , potentially between descriptions in di�erent languages and at di�erentlevels of abstraction. 2



However, �rst we need to de�ne what it means for a collection of viewpoint speci�cations tobe consistent. Viewing the speci�cations as predicates over some universe, the logical de�nition ofconsistency is that it is impossible to derive both some proposition and its negation from the combinedviewpoints.In the context of speci�cation and development of a concrete system, however, this abstract logicalapproach does not seem too useful. What is the universe we are quantifying over, and how do wemap our speci�cation language(s) to predicates over that universe? Would not a common semanticbasis for possibly multiple languages necessarily be at such a low level that performing any kind ofconsistency proof becomes extremely laborious [43]? Would it not make any arising inconsistencieshard to trace back to the original speci�cations? (For a more extensive discussion of these issues, cf.[6].) What do we mean by \the combined viewpoints", will it always just be the logical conjunctionof their formal interpretations, or do we need a more complex operator for combining viewpoints?Our general answer to these questions is extensively described in [13] and summarised below { theconcrete answer for Z speci�cations makes up the rest of this paper.A more constructive view of consistency is one that is oriented towards system development.Instead of providing direct semantics for the speci�cation languages, we encode our view of whatspeci�cations mean in development relations . Two speci�cations are in such a development relation ifwe consider one to be a correct (in the sense that it respects the requirements) development of the otheron the way to an eventual implementation. A development relation may cross a language boundary,examples of such relations are semantics and translations, or it may not, in which case re�nementrelations and equivalences form the main example. Note that another view of these developmentrelations is that they provide a development-based semantics: the meaning of a speci�cation is theset of all speci�cations that can be developed from it.Consistency checking is then de�ned as follows. Given a set of initial speci�cations, each with theirassociated development relation, does a viable implementation of all of them exist? That is, does acommon image of each of these initial speci�cations under their respective development relationsexist?This de�nition of consistency gives little guidance on how to actually establish consistency betweena collection of viewpoint speci�cations { generating the set of all implementations of each viewpointand then computing emptiness of the intersection of those implementation sets is unrealistic if notimpossible. We propose repeated uni�cation1 of pairs of speci�cations as a constructive method ofconsistency checking. The uni�cation of two speci�cations should have all the requirements imposedby both speci�cations. Formally this means that it should be a common image of the viewpointsthrough their respective development relations { in other words, a witness to binary consistencybetween the viewpoints. Moreover, if the uni�cation is to be used in consistency checking with a thirdviewpoint, it should impose no extra requirements besides those contained in the �rst two viewpoints,or else consistency checking might unnecessarily fail. Formally this amounts to choosing the mostgeneral uni�cation { if the development relations involved induce an ordering, we need to choose theleast uni�cation, where \least" is understood in the sense of fewest development steps done, leastdetail added, etc. This guarantees that a uni�cation of all viewpoints, if it exists, can be foundthrough a series of binary consistency checks.In practice it is often convenient to construct uni�cations in two steps. First one generates a candi-date least common development, i.e. some speci�cation that is the least uni�cation if one exists, andthen one performs some consistency tests on it to determine whether it actually is a least uni�cation.We will call such candidates \uni�cations" as well (using the term in a slightly sloppy sense). Finallynote that it is strictly speaking often incorrect to talk about the least uni�cation of a collection ofviewpoint speci�cations, since for most speci�cation languages and development relations there willbe many, often equivalent, ones.1It could be argued that this term is too technically loaded, and that one should use a di�erent term, e.g. amalga-mation[1], however there are enough parallels for us to maintain this term.3



2 Technical preliminariesThis section introduces some of the basic technical material on Z. The reader is referred to [39] fora complete description of Z. Here we will present �rst a brief overview of the main aspects of the\states-with-operations" speci�cation style in Z, and then the re�nement relation for it. The lasttwo subsections, on equivalence relations and unary consistency, are concerned with less standardmaterial, but are best treated here to avoid interrupting the 
ow of the story of later sections.2.1 Z: states and operationsAlthough there is no �xed interpretation (apart from the semantics) of Z speci�cations, in practiceusually the states-with-operations style of speci�cation described here is used. The idea is thatsome schemas are state schemas representing a state space, and other schemas of a particular formrepresent operations on this state. A state schema with a collection of operations de�ned on it andan initialisation schema together form an abstract data type (ADT ).The general form of a schema is Sname b= [Decls j Preds ] or, graphicallySnameDeclsPredswhere Sname is an identi�er denoting the schema's name; Decls is a series of declarations of the formx :S where x is the name of a component of the schema, and S is a set to which x should belong;Preds is a list of predicates (whose meaning is the conjunction of them all). Actually, declarationsmay also be references to schemas, see below. If Preds � true, it may be omitted (including the lineabove it). The meaning of a schema is a set of records that have as labels all the components declaredin Decls (and all those imported through schema references), and whose values satisfy Preds.Example 1 The meaning ofNumx :Nx � 2x � 4is the set (using Spivey's [39] uno�cial notation for \bindings", i.e. labeled records) Num=fhj x :2 ji;hjx :3 ji;hj x :4 jig.2If one of the declarations is a schema reference, all its declarations and predicates are included as well.Example 2 The meaning ofSquaresy :NNumy=x�xis the set Squares=fhj x :2 ;y :4 ji;hj x :3 ;y :9 ji;hj x :4 ;y :16 jig.4



2Schema references need not be just schema names. One can also use decorations to the name, likeaccents, subscripts, exclamation marks, and question marks. In a schema reference this returns theschema with the decoration applied to all its components and predicates. So for example Num0has component x 0 , and Squares1 has components x1 and y1. When a schema reference is used asa predicate, this stands for the schema's predicate including all the restrictions on its components.In fact, a calculus of Z schemas exists, whose operators are the usual logical operators. Resultingschemas contain all the components, with their predicates combined according to the logical operators.Quanti�cation results in hiding of components, for more details cf. [39].The states-with-operations style has a particular interpretation for this. A schema with no dec-orated components (for example Num or Squares) is usually assumed to be a de�nition of a statespace. A schema which contains both the state space and its primed decoration is an operation onthis state space. The interpretation of an operation schema is that the primed state is the state afterthe operation, and the unprimed state is the state before.Example 3ToggleNum; Num0x + x 0 = 6Formally, Toggle represents f[x :2 ; x 0 :4];[x :3 ; x 0 :3];[x :4 ; x 0 :2]g but this is interpreted as an operationwhich changes x into 6�x .2Operations may be non-deterministic (more than one possible x 0 for a particular x { for example ifx 0 does not occur in the predicate) or partial (no possible x 0 for a particular x ). As an abbreviationfor Sname ; Sname0 one can use �Sname. Operations may have inputs, which are by convention allvariables decorated with ?, and variables decorated with ! as outputs. Initialisation operations areoften denoted as operations with no \before" state.Various object oriented variants of Z exist [40], which encapsulate the ADT by (essentially) drawinga schema box around it.Because of schema references, and because in a declaration of the form x :S an arbitrary set S maybe used instead of the type of x , schemas can be turned into equivalent ones by moving restrictionsbetween the predicate and the declarations.Example 4 Because N � Z, this is an alternative de�nition of Num:NumToox :Zx � 0x � 2x � 42In fact, because in the Z type system Z is not included in a larger type, NumToo is a canonicalrepresentation of Num. In general, replacing all schemas by equivalent ones such that all componentshave a \maximal" type is called schema normalisation. In a previous paper [19] on Z uni�cation, weassumed that all schemas were normalised { in the current paper we do not make this assumption.
5



2.2 Pre- and postconditionsUnlike some other speci�cation notations, speci�cations of operations in Z do not contain explicit pre-and postconditions. However, a unique characterisation of the precondition of an operation schemais possible.De�nition 5 (Precondition) If in an operation schema Op the state schema involved is State,and the output components are xi ! :Outi (i=1 : : n), then the precondition of Op is de�ned bypreOp= 9State0 ; x1! :Out1 ; . . . ; xn ! :Outn � Op2Thus, the precondition is a predicate2 on State and the input, characterising those situations whereit is possible to �nd output and after state which relate to them by Op.It is not possible in Z to give a similar characterisation of the postcondition of an operation, thougha notation postOp for it exists. For a schema Op b= [�D j pred ] which (to avoid some semanticproblems) satis�es the condition pred ) preOp , any condition P such that preOp^P , pred willdo as \the" postcondition, in particular pred itself. Thus any occurrence of postOp in the sequelshould be taken to refer to some possible postcondition of Op.2.3 Re�nementAn abstract data type consists of a state schema, an initialisation schema for that state, and acollection of operation schemas on that state. Such an ADT can be re�ned by resolving some of thenondeterminism in the operations, and/or by extending the applicability of operations. The ADT westart from is usually called the abstract ADT, and the re�ned one the concrete ADT. For an extensivedescription of re�nement in Z, cf. [42], which also covers backwards simulation based re�nement {this paper considers forward simulation only.Two types of re�nement are distinguished, namely operation re�nement which changes only one ofthe operations of the ADT, and data re�nement which changes the state schema, and as a consequencealso needs to replace all operations and the initialisation by ones operating on the new state.2.3.1 Operation re�nementOperations can be re�ned in two ways: by extending their domain of de�nition (i.e. weakening theirprecondition), or by making them more deterministic. If AOp and COp are both operations on thesame state State, both with input x?:X and output y ! :Y , then the conditions for COp to be anoperation re�nement of AOp3 are the following:termination COp should be de�ned (\guaranteed to terminate") everywhere where AOp is:8State ; x?:X � preAOp ) preCOpcorrectness wherever AOp is de�ned, COp should produce a result that AOp could have produced:8State ; State0 ; x?:X ; y ! :Y � preAOp^COp ) AOp2.3.2 Data re�nementIn data re�nement, the state schema is changed, and thus all operations and the initialisation needto be changed as well in order to operate on the new state. Assume (for simplicity) that the abstractstate AState and the concrete state CState have no components with a common name. The abstractand concrete state spaces need to be linked up by a so-called retrieve relation, which is representedby a schema2From the earlier discussion on schema calculus it should be clear that it is actually a schema { its components arethose of Op except for State0 and xi !.3Strictly speaking, for an ADT containing an operation AOp to be re�ned by an ADT which replaces AOp by COp.6



RetrAState; CStatePredwhere Pred determines how the elements of the two state spaces are connected. Data re�nement isde�ned with respect to this retrieve relation (though it is often implicitly existentially quanti�ed).For an ADT (AState; fAOpi j i 2 I g; AInit) to be re�ned by an ADT (CState; fCOpi j i 2I g; CInit) using retrieve relation Retr the following conditions need to hold.initialisation every concrete initial state needs to match some abstract initial state:8CState0 � CInit) (9AState0 � AInit^Retr0)and for every pair of operations AOpi ; COpi ; i 2 I ,input/output AOpi and COpi have the same inputs and outputs, w.l.o.g. assume that these arex? : X and y? : Y ;termination COpi should be de�ned on all representatives of AState on which AOpi is de�ned:8AState ; CState ; x?:X � preAOpi ^Retr ) preCOpicorrectness wherever AOpi is de�ned, COpi should produce a result related by Retr to one thatAOpi could have produced:8AState ; CState ; CState0 ; x?:X ; y ! :Y �preAOpi ^COpi ^Retr ) 9AState0 � Retr0^AOpiThe re�nement conditions imply that not all elements of the abstract type need to be relatedto some element of the concrete type, but just those elements which could be reached through theoperations. As an extreme case, consider the situation where Retr relates every point in the abstractspace to one and the same point in the concrete space. All data re�nement conditions hold triviallyin that case (with COpi the identity operation on that one point). Thus, the retrieve relation plays acrucial role in determining data re�nement, it needs to be chosen sensibly for data re�nement to havesigni�cance.If the retrieve relation is a total function from concrete to abstract state spaces, the conditionsbecome much simpler, cf. [39, 42].The conditions given above only relate ADTs with matching sets of operations. A question onemight ask as well (and one that we will need to ask ourselves later) is whether it is \allowed" to addoperations to an ADT in re�nement. There are two possible answers to this question:� The �rst is based on the strict behavioural view of a Z ADT. From this point of view, addingoperations to the \concrete" ADT is problematic, because it changes the behaviour of the ADTin its environment. Adding concrete operations that correspond to the identity operation on theabstract state may be less problematic, this depends on the interpretation of divergence. For afurther discussion of this issue, which is central in the re�nement of internal operations, cf. [16].An additional argument for sticking to this interpretation is that the re�nement rules for Z wereoriginally derived from just such a behavioural characterisation (cf. [42, 32]). If one strays fromthis view, the validity and usefulness of the existing re�nement rules have to be re-examined.� A second view, which �ts better with our use of Z, is that a Z ADT describes a collectionof services centered around a particular state. If the concrete ADT has an additional serviceavailable, this should make no di�erence to an environment expecting the collection of servicesof the abstract ADT only.Returning to the example of a library, the state of a Library ADT would be a collection of bookswith loan information for each of them. The Library ADT in the customer's view would have7



operations that change the loan information on books. However, the customer would not expectthe library state to be immutable between his visits. The library manager in his Library ADTwould probably have operations adding new books, for example. Adding such operations to amore global view would not invalidate the customer's view of things.We will give uni�cations of ADTs matching both of these interpretations { clearly for the secondone, a more liberal uni�cation algorithm results.2.4 Equivalence relationsIn the sequel, we will often be discussing state schemas and ADTs which are \equivalent", in di�erentways.One possibility for de�ning an equivalence relation is obvious. Data re�nement is a partial order,so by intersection with its converse (\mutual re�nement") we obtain an equivalence relation. Fromthe preceding sections it should be clear that mutual re�nement is an equivalence relation betweenADTs. This implies that in general we need to look at the state schema and all the operations andthe initialisation in order to establish mutual re�nement.Example 6 ConsiderThreey :f3g TInitThree0 Skip�Threey=y 0The ADT (Three; T Init; fSkipg) and the ADT with Num and Toggle from example 3 and an ap-propriate initialisation are mutual re�nements, in both directions with retrieve relationRetrNum; Threex=y2 However, sometimes we want to say that two state schemas are \essentially the same" withouthaving to consider them in the context of their collections of operations and initialisations. Thisequivalence relation we will call state isomorphism.De�nition 7 (State isomorphism) Two state spaces S and T are state isomorphic if a totalinjective function between them exists.2If S and T are isomorphic, they are essentially the same, modulo an injective relabelling of theirelements. There is a clear relationship between state isomorphism and mutual re�nement. If thestate of an ADT is isomorphic to another state schema, then the operations of the ADT can betranslated (using the total injective function) to create an ADT that is in the mutual re�nementrelation with the original ADT. The example above shows that the reverse is not true.In summary, there are at least three possible equivalence relations between (state) schemas, whichall imply each other in this order. The �nest relation is syntactic equality. Then there is semanticequivalence, between schemas which have the same sets of bindings. We will generally even use thisas an identity relation on schemas and call schemas \equal" or \identical" when they are \only"semantically equivalent. A slightly coarser one is isomorphism, essentially between schemas whichhave the same number of bindings. Mutual re�nement is a relation between ADTs (rather thanbetween state schemas) which is strictly weaker than state isomorphism.8



2.5 Unary consistency in ZWe have discussed consistency between speci�cations, one might guess that this relates to the possi-bility of having consistency of a speci�cation. It might even be the case that inconsistency betweenspeci�cations shows up in their uni�cation being inconsistent in itself. Unfortunately, this is hardlythe case, as we will show later. However, for completeness' sake let us mention some of the ways inwhich a Z speci�cation on its own could be inconsistent.First, there are the direct contradictions, which all allow us to prove both P and : P for somepredicate P , or in other words which allow us to derive \false" from the speci�cation. This is thesimplest and most obvious de�nition of inconsistency in Z. The strong typing system of Z preventsquite a few classes of errors, but some kinds of contradictions can still be written, for example:� Postulating that an empty set has an element:x :?� Abusing the fact that a function is a set of pairs:f :N ! Nf=f(1;2);(1;3)g(of course similar examples exist for all the di�erent types of functions, including sequences).� Inconsistent free types (a lot has been written on this, see [39, 4, 38]), for example T ::=atomhhNii j funhhT ! T ii.It is clear that inconsistencies of this type will also be inconsistencies if they occur in partial speci�-cations. However, these inconsistencies will not be generated by our uni�cation techniques.A di�erent type of possible inconsistency occurs in the context of schemas with empty sets ofbindings, for example (trivially)D b= [ x :S j false ]. As long as we do not assert that we have a valuefrom D , this is not an inconsistency in the sense used above. However, in the states-with-operationsinterpretation of Z, a schema with an empty set of bindings is a speci�cation error. This is becausefor ADTs the so-called Initialisation Theorem needs to hold: the schema describing the initial stateof an abstract data type should not be empty.Except for checking the Initialisation Theorem, there will be no further need to discuss true unaryinconsistencies in this paper. It will become clear that our uni�cation method does not generate otherinternal inconsistencies for the language constructs considered in this paper4.3 Viewpoint uni�cation: the parametersIn this section we will discuss the parameters of viewpoint uni�cation. In a naive approach, theseare only the viewpoint speci�cations themselves. However, when state components of di�erent typesneed to be uni�ed, we have no choice but to be explicit about the relation between those types. Suchrelations we will call correspondence relations. It turns out that these are related one-to-one with thestate space in the uni�cation. From that observation, it follows that an alternative approach is tospecify the uni�ed state space explicitly, in terms of the viewpoint state spaces.3.1 Viewpoint speci�cationsAlthough viewpoint speci�cations could in principle be all kinds of Z speci�cations, containing othercomponents besides state and operation schemas, we will concentrate on those two. We do not expectother Z constructs to cause extra complications. An additional reason for concentrating on states and4Clearly uni�cation of axiomatic declarations should have the possibility of generating internal inconsistencies.9



operations is that these appear in the 
attening to Z of speci�cations in object oriented variants of Zlike ZEST [19].Most of the e�ort will be in unifying state spaces, and thus we will not discuss operations muchat this stage. This is because �nding a least common operation re�nement of two operations on thesame state space (\operation uni�cation") is relatively easy { e�ectively we factor the least common(data) re�nement into two independent \least" data re�nements and then possibly a least commonoperation re�nement step. The construction for least common \operation re�nement" of initialisationsis a special case of the construction for operation uni�cation. Adapting viewpoint operations tooperate on a common state space �rst is harder, because it is a data re�nement step. Data re�nementis intrinsically more complicated, as it involves an implicit existentially quanti�ed parameter: theretrieve relation involved. Choosing this retrieve relation in a sensible way indeed turns out to be thecrucial issue in viewpoint uni�cation.Example 8 As an example of two state spaces that might need to be uni�ed, consider the following.F1x :AppleNotWormEaten x F2x :FruitNotRotten xwhere we assume that it follows from the rest of the speci�cation that Apple is indeed a subset ofFruit.23.2 Intuitive state uni�cation, and the need for correspondencesIn this subsection we will give an intuitive de�nition of state uni�cation. This involves a particularinterpretation of state schemas, but this interpretation will only be temporarily assumed in order toclarify the issue. Once the correspondence has been identi�ed as a parameter to viewpoint uni�cation,it can be used to pinpoint any desirable interpretation of state schemas in viewpoint uni�cation. Thus,our intuitive de�nition may seem wrong, but there is enough generality in the eventual set up to encodeany other interpretation.So how do we unify the fruity state spaces given above? Let us assume that F1 allows us tochoose x from all apples, if we discard any worm-eaten ones. F2 likewise o�ers us any fruit, providedit is not rotten. Our intuitive interpretation of a state schema is that the declarations give a rangeof choice, and the predicates give restrictions. Uni�cation then should extend the range of choice,but combine the restrictions wherever they applied before. Looking at the schemas purely formally,this is an odd interpretation: predicates and subtypes are exchangeable, but we use disjunction onsubtypes and (restricted) conjunction on the predicates. For the examples we have dealt with so far[18, 19] however, this default interpretation seemed to capture the intuition much better. In the fruityexample, this would giveDx :FruitNotRotten xx 2 Apple ) NotWormEaten xNote that this interpretation also explains why we do not normalise state schemas (cf. section 2.1).In the general case, let us assume we have been given state schemas (we will frequently refer to10



these names in the sequel)D1x :SpredS D2x :TpredTcoming from two di�erent viewpoints. If we have to rely on implicit relations between the viewpoints,we should assume that everything that has the same name between two viewpoints should be uni�ed.Let us also assume D1 and D2 were both originally called D , and thus need to be uni�ed, but thatthey have been subscripted for disambiguation purposes. Types can be product types, so we canassume without loss of generality that every state space has only one component. According to theintuitive view given above, their uni�cation should be [19]:Dx :S [ Tx 2 S ) predSx 2 T ) predTHowever, this is not type correct in general: S[T is an error unless S and T have the same (maximal)type. A disjoint union of S and T would not be right either, since then values that S and T have incommon would be considered di�erent. Is the general solution to take a disjoint union when S andT are unrelated, and set union otherwise?Example 9 This example is based on a situation in a realistic case study [36] of a video telephonysystem. Given the following enumerated types in the di�erent viewpointsStatus1 ::= idle j connectedStatus2 ::= idle j connected j connectinghow do we unify the following schemas?Stat1x :Status1 Stat2x :Status2Formally the types Status1 and Status2 are unrelated (though this could be considered a quirk in theZ typing system). Thus, the general solution we suggested earlier will unify these two to a type of�ve elements rather than to Stat2 as we would have hoped.2 This last example illustrates another problem. What should happen if the uni�ed state at somepoint (through an operation from the second viewpoint) evolves to a state where x=connecting? Inparticular, which of the operations of the �rst viewpoint should still be applicable at that point? Noneof them, modelling that connecting is some transient intermediate state during which all operationsfrom the �rst viewpoint are disabled? Or should it be those which were applicable for x=connectedin the �rst viewpoint, making connecting a special case of connected, or similarly for idle? Suchquestions cannot usually be answered without extracting more information from the speci�er.This is where correspondence relations enter the picture. The ODP reference model [29] includescorrespondences which relate the viewpoint speci�cations, but it is not very speci�c on what thesecorrespondences could be. For the speci�c case of relating two Z viewpoint speci�cations, we cangive a concrete characterisation of what correspondences are. Apart from the implicit links betweenschemas and their components which happen to have the same names across viewpoints, they alsoinclude correspondence relations between the types of linked components. If two values a and b for11



some component x are in such a correspondence relation, this represents the fact that operationson the �rst viewpoint can safely assume that x=a when the second viewpoint maintains that x=band vice versa. Brie
y jumping ahead, we can answer the problematic questions on x=connectingabove using the correspondence relation. If connecting is not in the correspondence relation, it isindeed a transient intermediary state. If (connected;connecting) is in the correspondence relation,connecting is a special case of connected, as far as the �rst viewpoint is concerned. In any case, thecorrespondence relation will probably include (idle;idle) and (connected;connected) in order to makeexplicit that these names were not accidentally identical.As we will show, with examples, in the next subsection, introducing an explicit correspondencerelation also means we do not have to assume the intuitive interpretation used above. We will returnto the intuitive interpretation in subsection 3.5, where we show how we can avoid giving an explicitcorrespondence relation when it is \obvious" what it should be.3.3 Correspondence relations and uni�ed state spacesIn the previous subsection we have argued that it is in some cases necessary to provide an explicitcorrespondence relation between the types that a component has across the two viewpoints. In thissubsection we will show that this is su�cient information to �nd a type for that component in theuni�cation.The crucial idea is to make the type in the uni�ed state space a product of the types in the originalstate spaces. This idea originates in the method of speci�cation by views [30] which we will discussin section 7.2. The correspondence relation forms the kernel of this product type { however, someextra work is necessary for those values from the state spaces which are not in the domains of thecorrespondence relation.There are two ways of explaining the construction of the type used in the uni�ed state space. Oneis as a totalisation of the correspondence relation, the other is as a modi�cation of a disjoint sum. Wewill give both explanations, because they may provide better insight on how correspondence relationsare used, starting with the latter one.Even though the result is contained in a product type, we start with the sum of the types involved.Assume the types are S and T as in the general example above, and their correspondence relation isR � S � T . (In order to keep this explanation simple, we venture outside the Z typing system for amoment.) If 11 is a type with a single element not in S or T , let us call it ?, then we could de�ne thedisjoint union of S and T by5S + T = S � 11 [ 11� Ti.e. S + T =f(s ;t) j (s 2 S ^ t=?)_(s=?^t 2 T )g. The smallest product set containing this set isS? � T?, where Q? is the union of Q and 11. (Still a disjoint union, but of an appreciably simplerkind.) Now compute the state space as follows:states := S + Tfor each (s ;t) 2 R do states := (states n f(s ;?);(?;t)g) [ f(s ;t)gAn interpretation of the disjoint union of S and T is that no element from S is considered equal toone in T : The interpretation of the correspondence relation is that it asserts that some s representssome t (and vice versa). If that is the case, two di�erent elements (s ;?) and (?;t) in the modi�edunion need to be identi�ed to one (s ;t).The second explanation is that the correspondence relation needs to be totalised. Not everyelement of S and T is in the left/right domain of R { so we add to R pairs (s ;?) for each s 2 S notin the left domain of R (domR), and pairs (?;t) for each t 2 T not in the right domain of R (ranR).Let us call the resulting set a totalised correspondence relation. Totalised correspondence relations5This is probably the second-best known implementation of disjoint sum as a product, the better known one beingS + T = f0g � S [ f1g �T . 12



are linked in a one-to-one way with correspondence relations between S and T : for totR the totalisedcorrespondence of R, we have totR=R[((S ndomR)�11)[ (11�(T nranR)), and R= totR \ S�T .Here ends our brief excursion outside the Z typing system; we now give the formal de�nitions inZ. The main di�erences arise from the need to use explicit injection functions (into free types) wherewe used set unions above. The one-to-one correspondence also holds in Z, it just looks a bit morecomplicated.6De�nition 10 (Type with bottom) For any type S , we de�ne the type S? by the following freetype de�nition:S? ::= ?S j justShhS iiFor all such types, a partial injection theS is de�ned as the inverse of the injection justS:theS :S? 7� Sdom theS= ran justS8 x :S � theS (justS x )=x2De�nition 11 (Totalisation of a relation) The totalisation7 totR of a relation R on two giventypes S and T is de�ned as follows:[S ;T ]tot :(S $ T )! (S? $ T?)8R :S $ T �totR = theS o9R o9 justT[fx : S n domR � (justS x ;?T )g [ fy :T n ranR � (?S ;justT y)g2This de�nition is generic in the types S and T { thus, every occurrence of tot in this paper has,besides its relation parameter, two types as parameters. We leave these implicit, trusting that in thecontext it will be clear what they should be.Totalised correspondences provide the possibility to specify anything between disjoint union (takethe correspondence to be the empty relation) and union (take the correspondence to be the identityrelation on the intersection). Moreover, they provide the opportunity to relate elements of types thatcannot be directly related in Z even if they appear to be identical:Example 12 (Union of enumerated types) Continuing example 9 we can form the union ofthese types by taking the correspondence relation to be f(connected;connected);(idle;idle)g : P(Status1�Status2). The totalised correspondence relation (abbreviating some names) is then the setf(just1 conned;just2 conned);(just1 idle;just2 idle);(?1;just2 conning)gwhich can be seen as a renaming of the set fconnected;idle;connectingg.6For an alternative formulation of this totalisation, using d'Inverno's optional construct [20], cf. [10].7Note that this totalisation is di�erent from the ones Woodcock and Davies [42] use in a similar context.13



2 As well as for creating uni�ed state spaces that are various types of unions of the viewpointstate spaces, correspondence relations can also be used to create state spaces that really feature tworepresentations of one data type.Example 13 Two viewpoints could have sets of numbers { one using the obvious representationPN and the other one using a sequence without duplicates:SetAsSetx : PN SetAsSeqx : seqN8 i ;j : dom x � x i=x j ) i=jand the correspondence relation between these two would be R � PN � seqN de�ned by(a;b) 2 R , a= ran b(or a subset of it restricted to sequences without duplicates).2 In particular, one viewpoint may have a more abstract view of a data type and another viewpointa more concrete one. The correspondence relation between those two types will then typically bethe (predicate of the) retrieve relation between them. E�ectively this extends viewpoint uni�cationwith data type implementation. Unlike in the other examples above, such correspondence relationswill typically be non-functional (e.g. in example 13, a set of n elements corresponds to n! di�erentsequences according to R). Another use of non-functional correspondence relations is in the methodof speci�cation by views [30]. In section 7.2 we will show with some examples how correspondencerelations and uni�cation can be used to generalise that speci�cation method. A more extensive accountof the relation between views, data re�nement and our viewpoint uni�cation techniques can be foundin [10].3.4 RelabellingIf it was not already clear from the complicated de�nition of totR, the last example clearly showedthat the uni�ed state space often looks more complicated than we would prefer. In many cases wherewe already know what the resulting state space should be, we end up making statements like theabove: there is some isomorphism between the state space with bottoms and a simpler one. It is notalways necessary for the result of uni�cation to be an easily understandable speci�cation. However,having a readable uni�cation would certainly be helpful if we need to do additional uni�cation withyet another viewpoint { if not for specifying the new correspondence relation, then for �nding whereany inconsistencies originated.The solution to this is to include yet another parameter to the uni�cation process: a relabelling.This relabelling should get us from totR to some (to be speci�ed) goal type V . However, if therelabelling is going to be just that, this implies that we need the speci�er to specify it in terms of S?and T?, which does not reduce the necessary e�ort much. It seems much more natural to have thespeci�er only specify the mappings from S and T to the goal type. Thus the following de�nition.De�nition 14 (Relabelling) A relabelling for state schemas D1 b= [ x :S j predS ] and D2 b=[ x :T j predT ] with correspondence relation R consists of a goal type V and two injective functionsQS :S ! V and QT :T ! V satisfying the conditions below:domQS�fx :S j predSg ^ domQT�fx :T j predTg8 s :S ; t :T � (s ;t) 2 R , QS s=QT t 14



2The functions need to be injective to ensure that the relabelling is indeed a relabelling and does notidentify elements that are di�erent. The �rst condition (totality on a restricted domain) ensures thatall elements of D1 and D2 can be renamed. The second condition has two aspects: from left to rightit ensures that a unique relabelling can be found for each (s ;t) pair, from right to left it also ensuresthat di�erent elements do not get identi�ed. A consequence of these conditions is that R needs to befunctional in both directions.When a relabelling is de�ned, the resulting state space consists of the goal type speci�ed in therelabelling. As with totalised correspondence relations, any further restrictions on the uni�ed stateschema will appear as additional predicates (to be de�ned in section 4.1).Thus, we have introduced relabelling as a possible extra parameter to uni�cation. The way inwhich we have de�ned it ensures that no extra proof obligations are incurred by adding a relabelling(apart from showing that it is a relabelling): the resulting state schema is isomorphic to the oneobtained without the relabelling.However, there is something more to be said about the relabelling de�ned this way. The secondcondition, due to its shape, can also be read as an extensional de�nition of the correspondence relationR { in other words, the correspondence relation is completely determined by the choice of relabelling.Thus, we can actually omit the correspondence when a relabelling is speci�ed, and just assume thatthe correspondence consists of those pairs of values which get renamed to the same value.Example 15 We could have solved the problem of complicated naming and isomorphism in example12 by not giving an explicit correspondence relation, but a relabelling instead. Let the goal type ofthe relabelling be Status2 (i.e., the type used in the second viewpoint). De�ne the relabelling functionQ1 :Status1! Status2 byQ1=f(idle;idle);(connected;connected)gand let Q2 be the identity function on Status2. These relabelling functions are total and injective, andthe correspondence relation that they implicitly de�ne is the one we had before { it actually equalsQ1.23.5 Default correspondence and default relabellingWe have established with examples that in some cases it is really necessary to provide an explicitcorrespondence relation. From our earlier remarks on \intuitive" state uni�cation it should alsofollow that in some cases it is clear what the correspondence relation should be. In order to reducethe speci�cation e�ort whenever possible, we de�ne default correspondence relations and defaultrelabellings. However, note that these defaults correspond to our interpretation of state schemas inuni�cation, and can thus be viewed to be just as arbitrary as that.The de�nition of a default correspondence relation is similar to the \general solution" we suggested(and discarded) in section 3.2: when the types of the viewpoint states are compatible, we take a setunion.De�nition 16 (Default correspondence) The default correspondence relation on schemas D1 b=[ x :S jpredS ] and D2 b= [ x :T jpredT ] is idS\T=f(x ;x ) � x 2 S\Tg if S\T is a well-typed expression(i.e. S and T have a common supertype).2When the types are not compatible, their disjoint union is the only obvious candidate. However, itis not a useful one since it guarantees that no common re�nement can be found. (Each viewpointwill want the initial value of the uni�ed ADT to correspond to one of its initial values, and thecorrespondence is empty.) 15



In order to maintain state consistency , cf. section 5.1, it may sometimes be advisable to restrictR to values in fx :S j predSg � fx :T j predTg.This default correspondence indeed results in a union:If R=idS\T , then domR= ranR=S \ T : Thus, the three subsets of totR (cf. the de�ni-tion) are fx :S \ T : � (justS x ;justT x )g which is isomorphic to S \ T , fx :S n (S \ T ) �(justS x ;?T )g which is isomorphic to S n T , and fy :T n (S \ T ) � (?S ;justT y)g whichis isomorphic to T n S : The isomorphic sets are disjoint, and together make up exactlyS [ T .The situation gets even simpler when we consider a default relabelling as well.De�nition 17 (Default relabelling: union) The default relabelling on schemas D1 b= [ x :S jpredS ] and D2 b= [ x :T j predT ] such that S \T is a well-typed expression is de�ned as follows. Thegoal type V =S [ T ; the relabelling functions are QS=idS ; QT=idT .2For reasons related to state consistency, it may sometimes be advisable to restrict QS to valuessatisfying predS , and similarly for QT .The above de�nition allows us not to specify any correspondence relation or relabelling, and endup with the intuitive uni�cation we proposed at the very beginning. This gives us \the best of bothworlds": if the intuitive uni�cation is the right one we can choose it without further ado; if it is notright we have a mechanism to specify what it should be.4 Viewpoint uni�cation: the algorithmThis section presents the algorithm for unifying two viewpoint speci�cations in the states-with-operations style. There are three aspects to this uni�cation: �rst, state schemas that occur in bothviewpoints need to be combined to uni�ed state schema, then operations on those (including initial-isations) need to be adapted to the uni�ed state schema, and �nally operations that occur in bothviewpoints (including initialisations) need to be uni�ed.4.1 State uni�cationThe correspondence relation and its totalisation form the main component of state uni�cation. Itonly remains to account for the predicates in the original state schemas, and to create an actual stateschema for the uni�ed state.If the correspondence relation is R � S�T , the inhabitants of the uni�ed state schema will be thetuples of totR. To account for the predicate predS , we include a predicate that should hold wheneverthe S?value is not ?S , and similarly for predT .De�nition 18 (Uni�ed state by correspondence) Given schemas D1 b= [ x :S j predS ] andD2 b= [ x :T j predT ], their uni�cation according to the correspondence relation R � S � T isDx1:S?; x2:T?(x1;x2) 2 totR8 x :S � x1=justS x ) predS8 x :T � x2=justT x ) predT2This looks like we are actually maintaining two values for the state variable x ; however, due to (x1;x2)being in totR it is the case that either exactly one of the two values is ? and thus invalid, or the twovalues are \equal" (since they are in R, and R only contains tuples of things we consider equal).16



Example 19 (Union of enumerated types, ctd.) The uni�cation of Stat1 b= [ x :Status1 ] andStat2 b= [ x :Status2 ] from example 9 is fairly simple using the correspondence relationR=f(connected;connected);(idle;idle)g with its totalisation (cf. example 12). The only predicateremaining is (x1;x2) 2 totR which we have expanded below, the other two reduce to true.Dx1:Status1?; x2:Status2?(x1=justStatus1 connected ^ x2=justStatus2 connected)_(x1=justStatus1 idle ^ x2=justStatus2 idle)_(x1=?Status1 ^ x2=justStatus2 connecting)which is isomorphic to Stat2.2 For the following two examples we will use the default correspondence relation.Example 20 The schemasD1x :Z1 � x � 5 D2x :Z9 z :N � x=z + zhave the same type of component so their default correspondence relation is the identity relation onthat type. The schema that results from uni�cation is, after some simpli�cations, using theZ as theinverse of justZDx1:Z?; x2:Z?(x1;x2) 2 tot f(x ;x ) j x 2 Zg1 � theZ x1 � 59 z :N � theZ x2=z + zwhich is a complicated way of describing the schema [x :f2;4g] .2Example 21 Schemas D1 b= [ x :S ] where S b= 1 : :5 and D2 b= [ x :T ] where T b= fz :N � z+zg havethe identity relation on S \ T as the default correspondence relation, i.e. f(2;2);(4;4)g. The schemaresulting from their uni�cation is (�rst predicate expanded, last two reduce to true):Dx1:S?; x2:T?(x1=?S ^x2 2 fz :N n f1;2g � justT (z + z )g)_(x1;x2) 2 fz :f2;4g � (justS z ;justT z )g_(x1 2 fz :f1;3;5g � justS zg^x2=?T )This schema is isomorphic to D b= [ x :S [ T ].2These two examples illustrate the e�ect of normalisation on state uni�cation, the schemas in example17



20 are the normalised versions of those in example 21, but their uni�cations are very di�erent indeed.This di�erence is caused by di�erent (default) correspondence relations being used.Indeed, the default correspondence relations may be di�erent for schemas that are semantically equalbut syntactically di�erent { as a function of the schemas, it is de�ned on their syntax rather than on theirsemantics (the latter being the more usual thing to do in the Z world). This does not point out a defect inour set up { the correspondence relation can and should always be chosen sensibly { but rather re
ects ourobservation that the syntactical form does seem to matter for the intuitive interpretation of Z state schemaseven when the semantics does not make a distinction.Alternatively, if a relabelling is given, we can use that to determine the state uni�cation.De�nition 22 (Uni�ed state by relabelling) Given schemas D1 b= [ x :S j predS ] and D2 b=[ x :T j predT ], and a relabelling (V ;QS ;QT ) their uni�cation isDy :V8 x :S � QS x=y ) predS8 x :T � QT x=y ) predT2Example 23 Using the default relabellings, the uni�cation for example 20 isDy :Z8 x :Z � x=y ) 1 � x � 58 x :Z � x=y ) 9 z :N � x=z + zwhich can be simpli�ed to D b= [ y :Z j 1 � y � 5^ 9 z :N � y=z + z ]. The uni�cation for example 21will be (both predicates reducing to true) D b= [ y :S [ T ].2 The �nal example shows that a schema with a singleton set of bindings might ful�ll a very usefulrole when we apply this state uni�cation rule: modulo state isomorphism, it is the unit of stateuni�cation if we use the largest possible correspondence. Thus, we can formally treat the situationthat a state only occurs in one of the two viewpoints by assuming it is de�ned to be the singletonstate in the other viewpoint.Example 24 (The singleton state) For the states D1 b= [ x :f1g ] and D2 b= [ x :T j predT ]the largest possible correspondence relation is the one that links 1 to every T . Its totalisation isfx : T � (just1; justTx )g, and the resulting uni�ed state is:Dx1:fjust1gx2:T?x2 2 ran justT8 x : T � x2 = justT x ) predTwhich, is clearly isomorphic to D2.2In [8] we presented the empty state schema as the unit of state uni�cation. This is a correct alternative,but not very useful, as an ADT with an empty state schema fails its Initialisation Theorem.18



4.2 Operation adaptationIf a state schema has been uni�ed with another one, the operations (including initialisation) in theviewpoint in which the �rst state schema resides will also need to be changed to operate on the newstate. This amounts to choosing the least (in re�nement order) data re�nement of each operationwhere the retrieve relation is essentially the correspondence relation (see the proof in section 5.1 forthe exact details of this). The adapted operation should be applicable whenever the relevant statecomponent is not ? and the original operation's precondition holds, and it should return a uni�edstate that represents the original operation's postcondition, which also implies that the relevant statecomponent is not ?.De�nition 25 (Operation adaptation: correspondence) Given schemas D1 b= [ x :S j predS ]and D2 b= [ x :T j predT ] with correspondence relation R � S � T , an operation that was originallyde�ned on the state D1 byOp1�D1; Decl1pred1gets adapted to the new state schema by changing it toAdOp1�D ; Decl1x1 2 ran justSx10 2 ran justSlet x == theS x1 ; x 0 == theS x10 � pred1and similarly for operations on D2.A degenerate case of this is initialisation adaptation: initialisation scheme Init1 b= [D 01 j init1 ] getsadapted toAdInit1D 0x10 2 ran justSlet x 0 == theS x10 � init1and similarly for the other viewpoint's initialisation.2The last predicate in AdOp1 can also be written as pred1[theS x1=x ][theS x10 =x 0]. The situation isonly slightly more complicated for operations which operate on multiple states { the rule above canthen be applied repeatedly, and the only complication is the bookkeeping of which references to stateshave been updated to refer to changed states.There is a variant to be used when the state has been uni�ed via a relabelling rather than anexplicit correspondence relation.De�nition 26 (Operation adaptation: relabelling) Given schemas D1 b= [ x :S j predS ] andD2 b= [ x :T jpredT ] with relabelling (V ;QS ;QT ), an operation that was originally de�ned on the stateD1 by Op1�D1; Decl1pred1 19



gets adapted to the new state schema (cf. De�nition 22) by changing it toAdOp1�D ; Decl18 x ;x 0 : S � QS x=y ^QS x 0=y 0 ) pred1and similarly for operations on D2.For initialisation scheme Init1 b= D 01 j init1 ] we now getInit1D 08 x 0 : S � QS x 0=y 0 ) init1and similarly for the initialisation of D2.24.3 Operation uni�cationThe uni�cation of two viewpoint operations (adapted to operate on the same uni�ed state) shouldexhibit possible behaviour of each of the viewpoint operations in each situation where the viewpointoperation was applicable. This requirement can be formalised using pre- and postconditions. Theuni�ed operation should be applicable whenever one of the viewpoint operations is, i.e. its preconditionshould be the disjunction of the viewpoint operation preconditions. Moreover, when the uni�edoperation is applied to a state satisfying one particular precondition, a state should result that satis�esthe corresponding postcondition. Such an operation uni�cation is also described by Ainsworth et al.[1], there called union, although they do not mention that the union may not exist. In the moreabstract setting of binary relations used by Frappier et al [25] the same construct appears as thedemonic join.De�nition 27 (Operation uni�cation) The candidate least uni�cation of operation schemasAdOp1 and AdOp2, both operating on the same state and having the same collection of inputs andoutputs Decls, is given by8UnOpDecls ; �DpreAdOp1_ preAdOp2preAdOp1 ) postAdOp1preAdOp2 ) postAdOp22 That this schema only de�nes the desired uni�cation under additional restrictions is shown insection 5.2.The uni�cation of two initialisations operating on the same state is a degenerate case of this.Because initialisations (obviously) have no preconditions, the result is a pure conjunction:8Wim Feijen pointed out the similarity between the conditions in this schema and those in thew(eakest)p(recondition)-calculus for the guarded command P1 ! Op1 2 P2 ! Op2 where prei has the role of theguard. 20



De�nition 28 (Initialisation uni�cation) The candidate initialisation uni�cation of two initial-isations on the same state, [D 0 j init1 ] and [D 0 j init2 ] is the following:UnInitD 0init1 ^ init22For a meaningful uni�cation, it needs to be established whether the Initialisation Theorem holds forthe resulting ADT { i.e., in the above de�nition, whether init1 ^ init2 is satis�able. This property wewill call initialisation consistency.De�nition 29 (Initialisation consistency) Two abstract data types are initialisation consis-tent with respect to a correspondence relation if the uni�cation of their initialisation adaptations issatis�able (i.e., satis�es the Initialisation Theorem of the candidate uni�ed ADT).24.4 The algorithm in fullThe full algorithm for unifying two viewpoint speci�cations, using the uni�cations and adaptationsdescribed above, is now as follows.A viewpoint speci�cation is assumed to consist of a collection of ADTs. For each ADT(D1; Init1; Ops1) in one viewpoint that corresponds to an ADT (D2; Init2; Ops2) in theother viewpoint, construct an ADT in the uni�cation as follows:1. Establish a correspondence relation R between (the component types of) D1 andD2, and construct the state uni�cation of D1 and D2 based on that correspondencerelation. This gives the state of the resultant ADT.2. Check state consistency of D1 and D2 according to R; if it does not hold, the resultantADT is likely not to be a common re�nement, and a full re�nement proof needs tobe carried out in order to check this at the end.3. Adapt all operations in Ops1 and Ops2 and the initialisations to the uni�ed state.(These operations do not get added to the constructed ADT at this stage.)4. Construct the initialisation uni�cation of the adapted initialisations. If the resultinginitialisation is satis�able, it is the initialisation of the resultant ADT; if not, thewhole uni�cation process has failed.5. For each pair of matching operations, check their operation consistency. If it fails,the whole uni�cation process has failed. If it succeeds, construct their operationuni�cation and add it to the resultant ADT.6. It depends on the interpretation of ADTs (as discussed at the end of section 2.3.2)what happens to the remaining adapted operations:� In the strict behavioural approach: for each adapted operation Op remainingfrom the �rst viewpoint, construct the operation adaptation AdId2 of the secondviewpoint's identity operation (�D2). Then add the operation uni�cation of Opand AdId2 to the resultant ADT, provided they are operation consistent (if not,uni�cation has failed). Analogously for adapted operations remaining from thesecond viewpoint.� In the \services" approach: add all remaining adapted operations to the resultantADT. 21



5 Proofs and consistency conditionsHere we present what amounts to a correctness proof for the uni�cation rules given above. Theproof will be in three steps: showing that the adapted operations with the uni�ed state form datare�nements of the viewpoints; showing that uni�ed operations are (operation) re�nements of theadapted operations; and �nally a proof that the uni�cation is a least common re�nement. The proofgiven below imposes extra conditions on the viewpoint speci�cations in two places: one is operationconsistency which is needed to prove the correctness of operation uni�cation, the other is state con-sistency which follows from analysis of the preconditions of the adapted operations. Together withthe initialisation consistency condition, these form the consistency conditions of the two viewpoints.The proofs assume that the �rst viewpoint is an ADT with state D1 b= [ x :S j predS ] and anoperation Op1 b= [�D1; Declsjpred1 ], the second viewpoint is an ADT with state D2 b= [ x :T jpredT ]and an operation Op2 b= [�D2; Decls j pred2 ], with their uni�cation according to correspondencerelation R and adapted operations etc. as de�ned above. Often the contributions of input and outputparameters to operations are ignored in order to simplify the formulas in the proofs { adding themwould add no complication to the structure of the proofs, and no extra conditions.5.1 Operation adaptation is data re�nementFirst we show that the uni�ed state with the adapted operations form data re�nements of the view-points with operations. For that purpose we have to link the state schemas using a retrieve relation.For the uni�ed state schema D and the state schema D1 of the �rst viewpoint the retrieve relation isgiven by the schemaRetr1D1; Dx1=justS xNote that this retrieve relation re
ects our intuitive view of how these speci�cations relate, in otherwords, if data re�nement is established it is also a meaningful data re�nement (cf. our earlier remarksin section 2.3.2). There are three conditions to prove that D with AdOp1 is a valid data re�nement ofD1 with Op1. The initialisation condition is guaranteed to hold by construction of the initialisationadaptation, and the fact that any value of each original state space is represented in the uni�ed statespace. The remaining two conditions are, making any universal quanti�cations implicit:1. preOp1^Retr1 ) preAdOp12. preOp1^Retr1^AdOp1 ) 9 x 0 � Retr10^Op1The proof of the �rst property has a big hurdle in the middle of it. For simplicity we ignore thecontribution of Decls to the predicate AdOp1 since it makes the same contribution to Op1. The term\translation" in the hints stands for the replacement of some quanti�ed variables by new ones.preAdOp1� f de�nition of pre g9 x10 ; x20 � AdOp1� f de�nition AdOp1 g9 x10 ; x20 � D ^D 0 ^ x1 2 ran justS^ x10 2 ran justS ^ pred1[theS x1=x ][theS x10=x 0]� f conjuncts independent of new state g 22



D ^ x1 2 ran justS^ 9 x10 ; x20 � D 0 ^ x10 2 ran justS ^ pred1[theS x1=x ][theS x10=x 0]� f WISH: x20 always exists here;translation x 0 := theS x10 (so justS x 0 := x10) gD ^ x1 2 ran justS ^ 9 x 0 � D1[theS x10=x ]^pred1[theS x1=x ]� f de�nition of pre gD ^ x1 2 ran justS ^ preOp1[theS x1=x ]( f de�nition Retr1, substitution gRetr1^ preOp1Of course the crux of this proof is the step marked with WISH. It is clear that we need an extracondition here, the predicate really depends on x20 through the conjunct D 0. A correct x20 may notexist in exactly one type of situation: (x10 ;x20)=(justS s ;justT t) and (s ;t) 2 R, predS [s=x ] holdsbut predT [t=x ] does not hold. That is to say, the output value of the operation is linked by thecorrespondence relation to an \illegal" value, whereas the input value is linked to a legal one (andthus not excluded from the translated precondition Retr1^ preOp1). At this point we will assumethat the viewpoints are state consistent to prevent this problem:De�nition 30 The two state schemas D1 b= [ x :S j predS ] and D2 b= [ x :T j predT ] are stateconsistent with respect to the correspondence relation R � S � T i�(s ;t) 2 R , (predS [s=x ] , predT [t=x ])2 This is a su�cient, but not a necessary condition; for a further discussion of related properties,see section 5.4. The second property is more easily proved:9 x 0 � Retr10^Op1� f de�nitions g9 x 0 � D10 ^D 0 ^ x10=justS x 0 ^D ^D 0 ^ pred1� f D and D 0 independent of x 0; theS is inverse of justS g(9 x 0 � D10 ^ theS x10=x 0 ^ pred1)^D^D 0� f one point rule for existential quanti�er gpredS [theS x10=x ]^pred1[theS x10=x 0]^D^D 0( f �rst conjunct follows from D 0; property of substitution gpred1[theS x1=x ][theS x10=x 0]^x1=justS x ^D^D 0( f de�nitions AdOp1 and Retr1, add conjunct gpreOp1 ^AdOp1 ^Retr1Of course the proof for the second viewpoint is completely analogous.5.2 Operation uni�cation is re�nementThe operation uni�cation UnOp of two operations AdOp1 and AdOp2 as de�ned in section 4.3 shouldbe a re�nement of each of the operations. In order for it to be a least common re�nement, it should23



weaken the precondition no more than is necessary, which implies that the precondition of UnOpshould be the disjunction of the preconditions of AdOp1 and AdOp2. We will establish a conditionfor this to be true �rst.We write pre1 for preAdOp1 etc for clarity in the following calculation, and assume for simplicitythat the operations have no input or output:preUnOp� f de�nition pre g9State0 � (pre1 _ pre2)^(pre1 ) post1)^(pre2 ) post2)� f pre1 and pre2 do not refer to State0 g(pre1 _ pre2)^9State0 � (pre1 ) post1)^(pre2 ) post2)� f case analysis on pre1 and pre2;9State0 � prei ) posti holds by de�nition of pre g(pre1 _ pre2)^9State0 � pre1 ^ pre2 ) post1 ^ post2� f pre1 and pre2 do not refer to State0 g(pre1 _ pre2)^(pre1 ^ pre2 ) 9State0 � post1 ^ post2)In other words, the precondition of the union is only the disjunction of the preconditions if bothpostconditions can be satis�ed when both preconditions are. This is an essential condition which willform part of our consistency check. In fact, it will turn out to be a condition for the union to be acommon re�nement of the operations, and it is useful to give it a name. The extension to includeinput and output parameters is straightforward.De�nition 31 Operations A and B , operating on the same state space State, both with inputx?:X and output y ! :Y , are said to be operation consistent i�8State ; x?:X � preA^ preB ) 9State0 ; y ! :Y � postA^ postB2 In order to show that UnOp is a common re�nement of AdOp1 and AdOp2, it su�ces to give onlythe half of the proof for one viewpoint. Because this step involves no change of state space, we onlyneed to prove the two conditions for operation re�nement, again omitting universal quanti�cations:1. preAdOp1 ) preUnOp2. preAdOp1^UnOp ) AdOp1The �rst condition is only true if the operation consistency condition holds, see the calculation ofpreUnOp above (and then it is a one line proof). The second is easily proved using the fact that thepredicate part of an operation schema A can be given as preA^ postA:5.3 Uni�cation is leastThe �nal step of the least common re�nement proof is showing that the uni�cation is a least commonre�nement. This will be done by showing that an arbitrary re�nement of both viewpoints is necessarilya re�nement of the uni�cation.Suppose an ADT with state schema E and operation schema Opp also form a (data) re�nementof both viewpoint speci�cations (D1;Init1; fOp1g) and (D2;Init2; fOp2g), and that the state of E is24



given by the (fresh) variable y . This means that two retrieve relations exists, let us assume they aregiven by (i=1 ;2)RetriDi ; EretriThe assumption that these are data re�nements translates into assumptions we can use in proofs:1. preOpi ^Retri ) preOpp2. preOpi ^Retri ^Opp ) 9 x 0 � Retri 0^OpiWe now prove that, under these assumptions, (E ;EInit; fOppg) is a data re�nement of(D ;UnInit; fUnOpg). Thus we have to �nd some retrieve relation RetrED such that91. preUnOp^RetrED ) preOpp2. preUnOp^RetrED^Opp ) 9 x10 ; x20 � RetrED0^UnOpOur choice for that retrieve relation is the following schema.RetrEDD ; Eretr1[theS x1=x ]_retr2[theT x2=x ](The main motivation for this particular choice is that it works.)Now we prove the two properties. For the �rst we leave out universal quanti�cation over y , the\concrete state".8 x1; x2 � preOpp ( preUnOp^RetrED� f assuming operation consistency g8 x1; x2 � preOpp ( (preAdOp1_ preAdOp2)^RetrED� f de�nition RetrED g8 x1; x2 � preOpp( (preAdOp1_ preAdOp2)^D^E^retr1[theS x1=x ]_retr2[theT x2=x ]( f calculus g8 x1; x2 � preOpp( (preAdOp1^D^E ^retr1[theS x1=x ])_(preAdOp2^D^E ^retr2[theT x2=x ])� f de�nition preAdOpi (state consistency);translation (x1;x2) := (justS x ;justT y) g8 x ; y � preOpp( (preOp1^D1^E ^retr1)_((preOp2)[y=x ]^D2^E ^retr2[y=x ])� f de�nition Retri ; assumptions gtrue9The contribution of the initialisations in \least" is omitted here { it should be obvious that the conjunction usedin de�nition 28 indeed generates the \least" initialisation, given that the ordering used is implication.25



The second proof is a quite complicated one. We are asked to prove that 8 x1; x2; y � P ) (9 x10 ; x20 �Q) for certain predicates P and Q : The proof proceeds by �rst showing how 9 x10 ; x20 � Q can berewritten as 9 x 0 � Q1_9 x 0 � Q2. Then we do a case introduction on P such that P=(P1_P2) and weshow that (i=1 ;2) 8 x1; x2; y � Pi ) (9 x 0 � Qi) follows from the assumption that E is a re�nementof the i-th viewpoint, which then completes the proof.9 x10 ; x20 � RetrED0^UnOp� f de�nition UnOp, assuming operation consistency g(9 x10 ; x20 � RetrED0 ^AdOp1)_(9 x10 ; x20 � RetrED0 ^AdOp2)The simpli�cations of these disjuncts will be completely analogous so we show only one:9 x10 ; x20 � RetrED0 ^AdOp1( f de�nition of RetrED0 and AdOp1 g9 x10 ; x20 � D 0 ^ E 0 ^ (retr1[theS x1=x ])0 ^D ^ x1 2 ran justS^ x10 2 ran justS ^ pred1[theS x1=x ][theS x10=x 0]� f assuming state consistency, translate x10 := justS x 0 g9 x 0 � D10 ^ E 0 ^ retr10 ^D ^ x1 2 ran justS ^ pred1[theS x1=x ]� f de�nition of Retr1 g9 x 0 � Retr10 ^D ^ x1 2 ran justS ^ pred1[theS x1=x ]The antecedent (we called it P in the proof overview above) of the universal quanti�cation can berewritten in the form P1_P2 as follows:preUnOp^RetrED^Opp� f assuming operation consistency g(x1 2 ran justS ^ preAdOp1 ^RetrED ^Opp)_ (x2 2 ran justT ^ preAdOp2 ^RetrED ^Opp)Now we show that each of the disjuncts in the antecedent (Pi ) proves one of the disjuncts in theconsequent (Qi ). Again these two proofs are completely analogous, so only one is given.8 x1; x2; y � x1 2 ran justS ^ preAdOp1 ^RetrED ^Opp) 9 x 0 � Retr10 ^D ^ x1 2 ran justS ^ pred1[theS x1=x ]( f assuming state consistency, translate x1 := justS x g8 x ; y � preOp1^D1^E ^retr1^Opp) 9 x 0 � Retr10 ^ pred1 ^D1� f de�nition Retr1, assumption gtrueThis concludes our proof that every common re�nement of the viewpoints is a re�nement of theuni�cation, and thus the uni�cation is indeed a least common re�nement.
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5.4 Concluding remarks on the algorithmThe proofs above have shown that our uni�cation algorithm produces a least common re�nementwhen three relatively simple conditions are satis�ed: initialisation consistency, operation consistencyand state consistency .Operation consistency appears to be su�cient and necessary for a common re�nement of twooperations on the same state to exist. However, it can only be established once there is a uni�edstate, so state uni�cation really has to come �rst. Thus, indirectly operation consistency also dependson the choice of correspondence relation. The same holds for initialisation consistency, which can beviewed as a degenerate case of operation consistency.State consistency, however, is certainly not a necessary condition. The following example demon-strates this.Example 32 We return to the state schemas and correspondence rules used in example 23 andbefore. Unifying D1 b= [ x :Z j 1 � x � 5 ] and D2 b= [ x :Z j 9 z :N � x=z + z ] with default relabellingand implicit correspondence relation idZ yields D b= [ y :f2;4g ]. This violates the state consistencycondition, for example for x=1, (1;1) is in the correspondence relation, the predicate of D1 holds, butthat of D2 does not. However, if the only operation de�ned on both viewpoints isTogglei�Dix + x 0 = 6then the uni�cation is a re�nement of both original speci�cations. This is because the new state spaceD is closed under the operations Togglei .2Apparently a condition weaker than state consistency would also su�ce. The condition we are lookingfor is that if a before-state is linked to a uni�ed state by the state uni�cation's retrieve relation, apossible corresponding after-state should also be linked to the uni�ed state by that retrieve relation.State consistency guarantees this condition, by making sure the correspondence relation does notlink legal with illegal values. Another option would be to demand that all operations \respect" thecorrespondence relation, but this would give a quanti�cation over all present and future operations.Also, that would make state uni�cation dependent on operations, which seems to introduce a circulardependency.So, now we know that state consistency is formally too strong, is it a problem to impose it as acondition on state uni�cation? We should probably let our interpretation come to the rescue here.In general, in Z data re�nement it is not necessary for every abstract state to be represented by aconcrete state. However, in the examples we have considered so far, the data types de�ned in theviewpoints included only meaningful values that would be just as meaningful in the uni�cation. Fora uni�ed state space not to represent some values of a viewpoint state space just seems wrong inour interpretation. This is exactly what state consistency prevents. Thus, state consistency maybe formally too strong for checking that a uni�cation is a re�nement, in our interpretation it is theright condition even when it is not formally necessary. A methodological advantage of using the stateconsistency condition is that it simpli�es the uni�cation process: state uni�cation can be done mostlyindependently of operation uni�cation. A new operation may be added to both viewpoints at any laterpoint without the possible consequence of invalidating state uni�cation { however, if new operationsfail their operation consistency checks, this may still indicate that the correspondence relation wasnot chosen correctly. Obviously a certain way of guaranteeing state consistency is to de�ne R not onS � T but on its subset fx :S j predSg � fx :T j predTg.The fact that our uni�cation is the least common re�nement whenever it exists, and the manyproperties that hold of Z re�nement as a partial order, strongly suggest that when the uni�cationis not a re�nement of the viewpoints, no common re�nement satisfying the given correspondencerelation exists, so an inconsistency between the viewpoints has been found.27



6 Variations and extensions to the algorithmWe have given an algorithm in the previous sections, essentially to unify two viewpoint speci�cations,each of which consists of a number of state schemas with their operation schemas. In this section wedescribe some ways of extending and adapting this algorithm to make it usable in more situationsand part of a multiple viewpoints software development model.6.1 Deriving correspondencesApart from giving explicit or default correspondence relations, there may in some cases be anotherway of establishing a correspondence relation. This method, similar to a common way of establishing(bi-)simulations between process algebraic speci�cations, starts from the requirement of initialisationconsistency. In the case where each initialisation determine a unique initial value, these values need tobe related by the correspondence for initialisation consistency to hold. Operation consistency demandsthat for matching operations, values linked by the correspondence before the operation need to resultin values linked by the correspondence afterwards. The smallest set satisfying these properties for alloperations is a sensible correspondence relation.6.2 More than two viewpointsThe properties of Z data re�nement, in particular transitivity and the existence of a least commonre�nement (as proved in section 5), guarantee that the method of �nding a uni�cation of multipleviewpoints by an arbitrary sequence of binary uni�cations (cf. section 1.2) will indeed work for Zviewpoints. However, there is one important issue to be addressed: what correspondence relationswill be needed for establishing consistency between n viewpoints?It is clear that state uni�cation using the default correspondences and default relabellings oncompatible types is associative, in other words, the schemas resulting from any bracketing of theuni�cation are semantically identical. For example, the three state schemasD1x :SpredS D2x :TpredT D3x :VpredV(assuming S [ T [ V is well-de�ned) will be uni�ed toDx :S [ T [ Vx 2 S ) predSx 2 T ) predTx 2 V ) predVno matter which order of uni�cation is taken. In fact, it appears that in this situation it might bepro�table not to do operation adaptation and operation uni�cation on the intermediate state, butonly on the three-way state uni�cation.The general case, however, is not as easy. We cannot expect the speci�er to come up withcorrespondence relations in terms of the intermediate state spaces (which involve bottoms etc.), so allwe can assume is that correspondence relations between viewpoint state spaces exist. So the generalsituation for n=3 is that we haveD1x :SpredS D2x :TpredT D3x :VpredV28



with correspondence relations R12 � S � T , R13 � S � V , R23 � T � V . In order to unify a stateand a uni�ed state, we have to derive a new correspondence relation between them. The most obviousway of doing this is to assume that e.g. (for the case where D1 and D2 are uni�ed �rst) R12;3 is thesmallest relation satisfying(justS s ;x ) 2 totR12^(s ;v) 2 R13 ) ((justS s ;x );v) 2 R12;3(x ;justT t) 2 totR12^(t ;v) 2 R23 ) ((x ;justT t);v) 2 R12;3However, for arbitrary initial correspondence relations the resulting three-way state uni�cations arisingfrom di�erent orders of uni�cation are not even necessarily isomorphic.Example 33 In the general schema above, take all predicates to be true and let the sets be given bythe one element free types S ::= a, T ::= b, V ::= c, and the correspondence relations by R12=?,R13=f(a;c)g and R23=f(b;c)g. Then R12;3=f((justS a;?T );c);((?S ;justT b);c)g and its totalisationis a two element set, but R1;23=f(a;(justT b;justV c))g and its totalisation will be a one element set.2Clearly extra conditions on the various correspondence relations are necessary for n-way correspon-dence relations to make sense { maybe we could even call this correspondence consistency . Thesituation becomes a little simpler if we only allow the speci�cation of a minimal number of thesecorrespondence relations, with all others derived from those. This certainly seems realistic when theviewpoints can be viewed to be in a sequence (probably of increasing level of detail) where for eachviewpoint only the correspondences to the ones adjacent to it are necessary.6.3 Local state componentsState uni�cation via correspondence relations unfortunately does not model all possible ways of com-posing state spaces. In particular, it is not immediately obvious how to model that components ofa state space are local to their viewpoint, i.e. cannot be changed by operations from outside thatviewpoint. This seems to be a consequence of the fact that the uni�cation is a least re�nement morethan anything else. The empty correspondence relation does model the (inconsistent!) situation wherestate spaces are completely unrelated, but there the viewpoints turn out to completely exclude eachother in the uni�cation. Now consider the situationD1x :SpredS D2x :Ty :VpredTVwhere we really want only a correspondence between the two components labelled x . Given R � S�T ,how do we construct a sensible correspondence R0 � S � (T � V ) ? The obvious solution is not torestrict the y component at all, i.e. to have(s ;(t ;v)) 2 R0 , (s ;t) 2 R^predTV [t=x ;v=y ]However, an operation adapted from D1 to the uni�ed state will now change the x components, butalso allow the y component to be changed to an arbitrary value satisfying predTV { not necessarilythe value of y before. This is an unavoidable e�ect of the fact that the uni�cation is \least" cf. [10].We are not aware of a correspondence relation which would come closer to allowing y to be a genuinelocal component. Given the correspondence relation R0 and the state space it induces, there are someways of varying the operation adaptation which will bring the \local component" interpretation alittle closer. For simplicity, assume R is total, so we can assume the uni�ed state space to be29



Dx1:S ; x2:T ; y :V(x1;x2) 2 RpredS [x1=x ]predTV [x2=x ]Possible alternative adaptations of an operation given byOp�D1pred1include one which forces the y component to change only if it needs to:Ad�Dpred1[x1=x ; x10 =x 0](9 z :T � (x10 ;(z ;y)) 2 R0) ) y 0=ywhich will be a re�nement10, but not a least re�nement in general; or one which does not allow they component to change at all:Ad�Dpred1[x1=x ; x10 =x 0]y 0=ywhich is not even a re�nement if predTV [x20 =x ] does not hold whenever predTV [x2=x ] does.The best solution we can o�er (in the above situation) is for the second viewpoint to includeoperationsOp�D2y 0 = yfor all operations Op from the �rst viewpoint which should not a�ect local variables y . The \strictbehavioural" approach to extra operations (cf. section 2.3.2) amounts to stating that all variables ofone viewpoint are \local" for operations that only the other viewpoint o�ers.The last example of an alternative operation adaptation shows that the issue of local state com-ponents is closely related to the \framing" problem, which is: how to specify what an operation isallowed to change and what it is supposed to keep unchanged. Partial solutions to this problem, inthe context of partial speci�cation in Z, are also discussed in [30].6.4 Partial speci�cation of inputs and outputsDue to the input/output condition on data re�nement (cf. section 2.3.2), in operation uni�cationwe needed to assert that both operations had identical sets of inputs and outputs. This imposes a10Provided state consistency holds. 30



limitation on partial speci�cation: every speci�er of (an aspect of) a particular operation needs toknow all inputs and outputs of that operation, even those which are irrelevant and unused in thatparticular viewpoint. This might not be desirable or even realistic.This problem can be removed by adopting a generalisation of data re�nement, called IO-re�nement[9]. This re�nement relation allows adding inputs and outputs, provided the original outputs can bereconstructed from the new outputs. As a consequence of that, uni�cation based on IO-re�nementalso allows di�erent sets of inputs and outputs for the operations. The paper [9] also gives a formalmotivation for IO-re�nement: it is derived from the same abstract characterisation used in [42] toderive standard data re�nement.6.5 Consistency checking in a software development modelIn this section we will sketch brie
y how we envisage the use of constructive consistency checkingthrough uni�cation as a part of a software development model. More on this issue can be found inthe extensive literature on the use of viewpoints in software engineering, e.g. [21, 24, 22] { though theemphasis there is on requirements engineering rather than on the development phase. Our particularapproach to consistency handling in a development situation is described in more detail in [6].Clearly, in the initial speci�cation phase viewpoints need to be developed mostly independently.Occasionally consistency checks can already be done, and in particular establishing correspondencerelations early on seems sensible (similar to having data dictionaries). Architectural semantics andspeci�cation styles could provide guidelines for this (cf. section 8).In the development phase, there are essentially two extreme options. One is to unify all viewpointspeci�cations �rst, and then develop the resulting uni�cation. This guarantees a common implemen-tation will be found if one exists, and that only one consistency check needs to be done. However,this also eliminates all the advantages of viewpoint speci�cation in this phase. No matter how so-phisticated our uni�cation techniques will become, it remains likely that uni�cations will be complexand more unwieldy than traditional complete speci�cations. (Though they are still likely to be morecorrect due to the separation of concerns that viewpoint speci�cation allows.)The other extreme is to only use uni�cation for consistency checking, and to develop the viewpointspeci�cations independently as far as possible. Because every development step potentially introducesan inconsistency (by choosing a re�nement that is not \common"), consistency checking needs to bedone relatively often. That makes this method more suitable for situations where the overlap betweenthe viewpoints is relatively small. Combining these two extremes, a rough guideline would be tounify early where there is much overlap between the viewpoints, and to develop independently wherethere is little. Additionally, there are approaches [24] which allow for development to continue in thepresence of a (temporary) inconsistency.Thus far we have only described a linear (or tree-like) development process, with success or failureat the end of it, depending on the outcome of the �nal consistency check. The discovery and resolutionof inconsistencies will add iterations to the development process. Not every inconsistency discoveredis a serious error in speci�cation or development. For example, there may be no serious problem if anoperation's precondition is restricted in the uni�ed state space because of conditions imposed throughanother viewpoint (\restrictive co-re�nement" in the terms of [2], cf. section 7.1). This will often bethe desirable e�ect, and this can usually be resolved by restricting the viewpoint operation or eventhe state space it operates on in the initial speci�cation, or by reducing the correspondence relation.Another example is given in the case study of our techniques in [7], where operation consistency holdsonly if a \free" constant of the speci�cation has a trivial value. Such restrictions change the meaningof the initial speci�cation, though in the light of the discussion in section 6.1 the correspondencerelation may in some cases be viewed as derived from the speci�cation.
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7 Related issues and approaches7.1 Viewpoint amalgamation and co-re�nementAn approach very similar to ours is the one advocated by Ainsworth, Wallis, et al [1, 3, 2]. They usethe term amalgamation for what we call uni�cation, and union for what we call operation uni�cation.Their state uni�cations are driven by ad-hoc reasoning [1] or by retrieve relations [2] { the latter arefairly close to our correspondence relations. This can be observed from the retrieve relations we usedin the proofs in section 5: together these contain exactly the same information as the correspondencerelation.An important concept in their approach is co-re�nement [3]. They claim that ordinary re�nement(for example in Z) is too restrictive to be used in viewpoint speci�cation, because it does not allowviewpoints to put restrictions on operations in other viewpoints. Using co-re�nement instead ofre�nement amounts to maintaining a predicate which represents these restrictions, and which needsto be satis�able for co-re�nement to hold. Comparing this to our approach, part of these predicateswould indeed show up as inconsistencies; others will be part of non-trivial correspondence relations.Having such a predicate also gives increased possibilities for incremental speci�cation.7.2 Speci�cation by views: non-functional correspondence relationsThe method of speci�cation by views as advocated by Daniel Jackson [30] is very similar to viewpointspeci�cation. The arguments in favour are similar to ours: separation of concerns, with a specialemphasis on the possibility of having multiple co-existing representations of states. Such multiplerepresentations are linked by invariants which ful�ll the same role as our correspondence relations.The views are linked in a syntactically simple way: by de�ning a new state space consisting of theview state spaces restricted by the invariant. This has as a side e�ect that the combined views donot necessarily relate as well semantically to the original views. In terms of this paper, the combinedstate space is the correspondence relation rather than its totalisation, so when the invariant is nottotal some operations may not be re�ned because some of their after values have been excluded inview composition. An extensive comparison of these methods may be found in our paper [10], we willpresent part of an example here.So far in this paper all correspondence relations (except in example 13) have actually been injectivefunctions . We can incorporate (and generalise) Jackson's method, and in general incorporate datatype re�nement, by using non-functional correspondence relations. As an example, we will presentsome of the editor example as used by Jackson, based on [41]. For more details of the speci�cation,cf. [30, 10]. This example will also point out the semantical di�erence between the two methods.Example 34 (Two views of an editor) One way of specifying the state space of an editor isthe following.Fileleft;right : seqCharThe sequence left describes all the characters to the left of the cursor, and right all those to the rightof it. One operation on this view is inserting a character:insertChar�Filec?:Charleft0= lefta hc?iright0=right 32



In the second view on editors, the Grid view, the state is a sequence of sequences of limited length,each constituent sequence representing a line, with a cursor position. This allows speci�cation ofoperations like moving the cursor down.Gridlines : seq seqCharx ;y :NpredGridwhere predGrid ensures that lines is a correctly wrapped sequence of lines of limited length with (x ;y)a sensible cursor position in that grid. A non-immediate consequence of this predicate is that no wordcan be longer than the maximum line length, because it cannot then be correctly wrapped.The predicate linking the views has both views in its signature, so one way of representing it is asthe schemaEditorF ile; Gridlefta right= a= lines^#left=x +�(i : 1 : : y�1 � #lines[i ])This states that both views should represent the same text, and that the cursor positions shouldmatch: left should be as long as all of the lines before line y together, plus all of line y up to columnx : In view composition, this is all the information we need. The schema Editor acts as the uni�edstate space, to which we can now adapt the operations, for exampleinsertCharE b= [�Editor j insertChar ]This ensures that a corresponding Grid for the new File will be found. However, using Editor as theuni�ed state tacitly excludes some of the values from the original views. In particular, any File witha word longer than the maximum line length is excluded because there is no corresponding Grid forit. This has a serious semantic e�ect. Editor with insertCharE is not a data re�nement of Gridwith insertChar. A state where a word only just �ts on a line is still in Editor, but the state afteradding one more character is not, thereby excluding the former one from pre insertCharE.In viewpoint composition, this problem can be resolved. Because the invariant is not total on theFilestate space, some bindings of File will get linked to ?, using the invariant as the correspondencerelation. The resulting state space, after some renaming, is:FileandGridx1:Filex2:Grid?(x1;theGrid x2) 2 R_(x2=?Grid^x1 2 Longwordfiles)where R is the relational representation of the invariant, and Longwordfiles the set of \forbidden"Files. The adaptation of insertChar to this state space will be a data re�nement.2In general, data re�nements and other relations between state spaces can be incorporated in view-point uni�cation, by taking the predicates involved as the basis of correspondence relations. Thisyields all the advantages of view composition and data re�nement, often without introducing theirdisadvantages. A formal justi�cation of this can be found in [10].33



7.3 Demonic join and feature interactionDesharnais, Frappier, Mili and others [11, 25, 26] study a calculus (lattice) of binary relations with are�nement relation which has great similarities to operation re�nement in Z. In their framework, our\operation uni�cation" appears as \demonic join", which is only de�ned if a consistency condition (ouroperation consistency) holds. They use the term \program construction by parts" [25] for what we callviewpoint- or partial speci�cation. In their recent work [26] they demonstrate that this approach canalso be used to investigate the problem of feature interaction. Features (e.g. of a telephone system)can only be combined without interaction when their demonic join is well-de�ned. In our approach,each feature would be a separate viewpoint (operation).7.4 Conjunction as compositionZave and Jackson describe in several papers [43, 44] a multiparadigm speci�cation technique, withimpressive applications in speci�cations of telephone switching systems. Their work is similar to oursin that it uses Z and other languages for partial speci�cation. For consistency checking, they use atranslation of all speci�cations to �rst order predicate logic. Composition of partial speci�cations isthen \just" conjunction [43]. In our approach to uni�cation in Z and between Z and other languages,at some level of interpretation composition is also conjunction { however, as we have argued in [6],we prefer not to work at this level for reasons of traceability.A particular concern mentioned in [44]:\There is no general method for establishing inter-speci�cation consistency in the presenceof shared state components."we believe is one of the main issues that has been addressed, and partially solved, in the currentpaper.7.5 OthersApproaches in which Z speci�cations are augmented with speci�cations in other formalisms can alsobe viewed as speci�cations with multiple viewpoints, which may have consequences similar to thosedescribed in our work on comparing viewpoints in LOTOS and Z [17, 15]. However, most methodsthat combine Z with some other language manage to avoid the consistency issue by the use of layeringtechniques, or by using the various languages in di�erent stages of development [28, 35]. Kasurinenand Sere [33], for example, in their integration of Z and action systems use a layering technique, Zproviding the types and operations to be used in the action systems descriptions.Other viewpoint methods [22] generally do not base their notion of consistency on developmentrelations. Partly this is due to the fact that they use languages which are less formal or developmentoriented than the ones we use. Consistency is often determined by explicit consistency relationson and between the viewpoints [23], based on overlap identi�cation (akin to our correspondences)and similarity analysis. Uni�cation, however, also seems a useful process for consistency checking inrequirements engineering [14].8 Future workPromotionAn established method of combining state spaces and their operations in Z is that of framing andpromotion. The actual promotion is where operations on components of a system get combined to formtop level operations. Often so-called framing schemas are used in this, which ensure that uninvolvedparts of the system remain unchanged. This technique can be pro�tably used for specifying viewpointsat di�erent levels of abstraction, cf. the example of a telephone system in [30] or that of the diningphilosophers in [18]. The latter example also shows that, provided it is used in a particular way (which34
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