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Abstract

This paper looks at the problems of real time nétv@ffic monitoring. Some of the existing
approaches are reviewed, looking at both simpteriiiig systems and also systems based on
the use of finite state machines that can repaetifip events or capture data only when in
particular states. Finally, some existing impletaéon techniques are examined and an
outline proposal made for the design of a netwoknitoring system that uses finite state
machines implemented using associative processing.

1. Introduction

A problem with many network-monitoring systemshattthey generate data at a faster rate than ibean
processed. This becomes more so with higher spewbrks, particularly with networks operating atal
rates of 100 Mbps and above. It is a particulabfam if we wish to save the contents of packethar than
just collect statistical information about dataemetc. One approach is to store data until eheertain
period of time has elapsed or until we fill the italale storage space. We then stop the data captuilethe
data has been processed. Another approach isvéhatart processing data as soon as it is avaitalels
freeing up storage. This can give significant éases in the capture period, but only if the prsiogsrate
approaches the data capture rate. Ultimately hewef/the average data processing rate is legs tifa
average capture rate, then we fill our storagera@t to pause data capture. What is needed e
traffic monitoring system that can process datdhatetwork rate. This can however be difficulthaligh-
speed networks.

The next section looks at various techniques thatgssing systems can use to reduce the final anodun
data captured, including state based monitorintesys. Section 3 looks at the use of associativegssing
as a method of performing a fast search for pattdrat might match incoming data. Section 4 thgagyan
outline proposal for the design of a network maniitp system that uses finite state machines impheae
using associative processing. The last sectioesgbome conclusions and ideas for further workimarea.

2. Data Reduction Techniques

The difficulty for our monitoring system is thatritay be dealing with a very large amount of datd thas
far as the monitoring system is concerned — haswaihformation content. We may for example be
monitoring a high speed backbone network but oelyniterested in traffic belonging to particularestms. In
general, what is required is to use some methdittering that removes network traffic that is raftinterest.

2.1 Filtering systems

By using filtering systems, we aim to generate @ nmffic stream which has a lower data rate, but
effectively a higher information content — i.e.tle view of the next stage in the monitoring precte
traffic now has a higher entropy. We may be ablertplement our network traffic processing as aeliiye



of processing — where each filtering stage givesdhbcrease in traffic and hence a correspondiogase in
entropy.

network ___\| .. . . information
ot filter 1 filter 2 filter 3 > el

Initial stages in this pipeline may need to be inpénted in hardware to be able to operate at ttzerdtes
involved — but only perform simple operations. Tl stages in the pipeline may be implemented in
software and perform quite complex operations —dmly operate at a lower data rate. Intermedittges
could be based on embedded processing systemegraprmable logic as appropriate.

Some filtering systems can be implemented quitdyeasany network interface cards may allow filtegion
the basis of network destination address, partiljuthose designed for shared media such as Etherhe
number of traffic monitoring systems will providédring on the basis of network addressing, pdgsising
standard hardware or using custom network intesfadéhis can be extended to allow patterns to led ts
match against any part of the packet. As an exanipipp [1] describes a system in which each tifi
small data packet is matched against 0, 1 or dand&. Only packets matching these patterns welh the
captured for later analysis. This type of patteatahing can of course be extended in many waysh as
allowing the use of multiple patterns. We migherdfore capture only those packets that are tiagell
between particular source and destination addressgsvhich also are for example "DATA" packets.eTh
general function however is to use these filtesygtems to determine if a packet — or part of &etae
should be saved for later processing.

2.2 State based systems

We can extend our filtering system by using theaiadd state. As an example, logic analyzers — for
debugging hardware — normally allow data capturddostarted or stopped on detecting particular data
patterns. Thus the monitoring system moves betwiifferent states and operates differently in eaeltes

As an example, a finite state machine is shownvbelbich might describe the behavior or a simpledog
analyzer.

Not(start_trigger) and
Not(user_end)
user_start

Not(user_start)

start_trigger and
Not(user_end)

Not(end_trigger) and
end_trigger or Not(full) and

full or Not(user_end)
user_end

Here, a number of events may cause the logic agatgzchange state, such as actions by the useslsmdf
a start or end trigger pattern is seen. A singigpat bit is generated that controls data captueace data
will only be captured in state RUN. We can of cauextend this type of system for our traffic moniitg to
have many user-defined states.



Network protocols are often defined in terms ofténstate machines (FSMs), so it is convenientse a
FSM in network monitoring. Rather than pass omatwork data for an end system to decode, we san u
one or more FSM to monitor the network data. Tagat from the FSMs will need to have some type to
indicate what is being signaled and may also cordaime attached data — such as data from one @& mor
received packets.

2.3 Existing work

In his 'Information Collection Architecture' [2], éfshey uses finite state machines to recognizelaiegu
expressions that have been derived from stringshafnel symbols. These FSMs generate event outputs
which indicate the occurrence of particular patesn the input symbol stream. These event outhetsact

as inputs to successor FSMs that control countsed to record the number of occurrences of a pdatic
pattern in a measurement time interval (MTI). Téystem is soft, in that the state machine defingtican

be loaded at run time. It also gives high dataictdn, as it is used primarily to gather statatinformation

— which for any significant MTI will be a small tdon of the total data received from the network.

Richards [3] describes the use of state machinesnfmitoring broadband networks. His work looks at
network data at a high level, taking the input tet@e machine being an event, which contains fiéba:
length, type, timestamp, sequence number and teliraimount of attached data. At the lowest lavisl¢an
carry a packet arriving from a network such as dmA4] cell. The 'Statechart' representation ifslised
for his state machines, which allows the use ofdn@hy in the state structure. As the network prbb uses
only allows standard FSMs, Richards' implementattlows flat state machines to be created from the
statecharts. One of the examples he gives is miagsthe duration of PDUs sent over an ATM network.
This is implemented as two FSMs: one to run in ®vaek probe and one to run in a monitoring PC. The
FSM in the network probe generate events on stattesnd (and combined start & end for 1 cell PDUs) o
AAL-5 frames — each of these events carries a tangs giving the arrival time. The FSM in the PCeaiges
the frame-start and frame-end events and gendtai@sn frame-duration events.

Implementation techniques

The system described by Hershey [2] operates atwaonk symbol level and implements the FSMs using a
table look up system. In this, the current staig the input symbol are used as indices to sehechéw state
and any outputs. This is implemented in hardwacembining the indices to form an address to selest
required data from RAM. This enables large firstate machines to be built that will operate att r
primarily dependent on the speed of the RAM. Heysalso describes how it is possible to buildestat
machines that operate on an input of more than(ooesecutive) symbol per clock tick. He shows how
using these techniques it is possible to build mata to monitor 1 Gbps networks.

The system referred to by Richards [3] operates lgh level with the bottom level input events sisting
of cells arriving from the network. For the FSMsplemented on the network probe, a low-level forigat
generated consisting of a table of code words.s Ehinterpreted using a software implementatioittevr in
the programming language occam [6] and is desctilyeldnington in [7]. Each line in the table cosisi of
four 32-bit words. The first word specifies thedtion in the cell to be tested, the second arrd thbrds
give a match pattern and the final word gives adregbk to branch to if the match test fails. If thatch
succeeds, then execution proceeds to the next limeaddition, negative values for the first wordlicate
that one of a number of actions has to be performmech as: generating output events or moving aheo
next cell. As this system operates in softwara atored packet, it is able to have random accetbetcell.

2.4 Implementation Problems

When implementing any finite state machine systiéma,input data size will have a great influencettom
implementation and of course its performance. foee input data bits we can process in a singlekclo
cycle, the faster we can process data from thear&tviHowever if we have a large number of inpus lite
may make the implementation of the FSM very compl®a the other hand, a small number of input bits
may mean that our FSM may need a number of inteateedtates as parts of a large input word aredest
against a given pattern. In either case, this ¢exity might be hidden from the '‘programmer".



For the table lookup system described by Hershgyh2 amount of memory is very sensitive to thee of

the input data. The amount of memory used for igaimg the next state being.Zi+s bits — wherei is the
number of bits in the input symbol arl is the number of bits used for the state varigbieen that the

maximum number of states 8°). This system does however have the advantagemhaave a lookup

table giving the next state for all possible coratimns of the current state and the input bitsaldb has the
benefit that in using RAM for the tables, the FSkiplemented can be changed dynamically.

The code table system used by Linington [7] carratpeon large numbers of input bits from the nekwdt

is currently implemented in software, however itutbbe straightforward to construct a hardware ivers
However it has the disadvantage that a complex ES8Md compile into a system that makes multipléstes
on individual words of data. This means that in@ possible to place an upper bound on the psiogs
time for a packet — which is undesirable in a teaé system.

The standard method of implementing FSMs in hardvigrto compile these into a network of logic gates
with the current state held in a number of flipp#o This is the standard method used when builEBigls

in field programmable logic arrays (FPGASs). Geltgrgowever, building logic for FPGAs consists cfitng
tools to allocate logic cells and decide how sigraak routed between the cells — this can be tomeuming
and in some cases may require user interactiors plbssible to vary the function of logic at rime — for
example changing the contents of small internak lap tables — but we still have the same cell inter
connectivity unless we rebuild the design.

3. Associative processing

What we need for our FSMs is to be able to implenadiogic function that has as its inputs the cursgate
and a reasonably large word of data from the ndéwom terms of the specification, in each state may
have a number of different patterns that we wiskdmpare in turn against the network data and audtef
case when no match succeeds. Fortunately, ai®oltd this problem already exists: this is content
addressable memory — which is described below.

3.1 Content addressable memory

The associative memory that is commonly used imdgpetion hardware is sometimes referred to as binary
content addressable memory. With random accessomewe obtain items from the memory by using an
index as the address of the data to be read. Wdithent addressable memory, things are the othgr wa
around; we provide a piece of data and the memeayches for its location. This typically operagsthe
user providing a 'key' to use for the search andildeof which bits of the memory word should bedisn

the search. The memory chip compares the key alittocations in memory and gives a match/fail fesu
For a match, the memory chip will give typicallywgieither the word's address or direct accesstavtird in
memory. If multiple locations give a match, thee tmemory chip will often select the one with thghlest
“priority’ — such as the one with the lowest (gh@st) memory address.

Another form of content addressable memory is Trgroantent addressable memory — which is sometimes
referred to as functional memory [8]. This tygeremory contains a mask word for every word obdhgat

is stored in the memory. This allows us to storécpatterns within the content addressable memavith
each bit having values of 0, 1 or don't care. Wihenmemory chip is searching for a piece of infation, it

will search for a pattern that gives a match fer diata key provided.

3.2 Existing work

The general area of using forms of content addbéssaemory to build computing systems is refereds
associative processing. Grosspietsch gives a gwfevork in this area in [8], which is also a udef
introduction. In general, associative processipstesns consist of some type of processing logit itha
closely coupled with content addressable memory.lotAof research work has involved the design of



associative parallel processing systems — somigesEthave processing modules attached to smaKsbtifc
associative memory, such as a word. | am speltfficaferencing below some papers that describe the
implementation of mono-processor systems as itagpat this point that these would be the moswagie
when considering the application proposed in thisgp.

A research group at J.W.Goethe-Universitat Frankfas developed a processor called AMssociative
Micro-programmable Multipurpose Monoprocessor) [H]0]. This is based on the AMD 2900 series
bit-slice components [11] and has closely couplssbaiative memory. A basic instruction set proside
standard von Neumann style of operation using 8@ Xeries components, plus an associative ingtruct
set provides access to the operations performedg) tisé associative memory.

A network specific processor is described in [Mhich operates on an ATM cell stream. This isralsi

chip that performs a number of operations on alipipef ATM cells. A processor core is includedtinas
a closely coupled area of content addressable meninis enables searching and table look up ojpersat
to be defined by the application program thatasest in a separate on-chip instruction memory

One of the major uses of content addressable metaday is probably for implementing address talites
network routers and switches. This is particulagpropriate when we have a large number of bithén
address field and a sparse use of the address. spleecan take the channel or destination addréss o
packet, search for this value in content addressad@imory and use the result to determine the oupete
and possibly a new value for the packet channelbeumPerforming this operation using a hardwargert
addressable memory is typically a lot faster th#ter@ative software mechanisms, particularly when
operating on large address fields.

4. Proposal

The system | am proposing here uses ternary coamthtessable memory as a kind of program store to
implement FSMs for network monitoring. The aiméhés to build a relatively simple processing system
and to that end, no conventional von Neumann stiytgoeration is provided.

The program consists of a table of code words as/stbelow:

| State | Data match pattern |  Nextstate] Actiorls

When the system starts, an initial state is defin€His might be the same for all tests or it mighta state
that refers to a particular data channel. The amogexecutes by presenting the content addressshtery

with the value of the current state and the wordaif from the network to be checked. These asekeld

against the state and data match pattern fielgctisely. If a match succeeds, then the restirmed from
the CAM is the next state and details of any astimnbe performed. This process is repeated fdn e@rd

of data contained in the packet. One of the fawtions this might perform is to update the inisitdte either
for all tests or for a particular data channel.

As the program executes, the current state wilhgba As the current state is used as part ofrat ito the
content addressable memory, this will mean theedint tests may be performed in each state. gelar
number of prioritised matches may therefore bequaréd in each state — limited only by the amount of
memory that is available.

The system defined above requires that at leastemtesucceeds or no new next state will be defirEads
will often require an else clause for each staté&chvibests against don't care for all bits in théadaatch
pattern.

4.1 Example

To show how this could operate in practice, he@nigxample showing how we might attempt to extifaet
source address from an IP datagram carried over AWNE assume here that we have already determined
that this is the first cell of an AAL5 [13], [14fdme and that this probably contains an IP datagi&fa start

by looking at the first word of the cell body. THe datagram may have been carried directly inAA&5



frame, or it may have used LLC/SNAP encapsulat@rrdéuted protocols [15]: this has a prefix of AAA
03, 00-00-00, 08-00. There may well be better viaydo this, but it gives a simple example.

The FSM here is described in a language that iscblosely upon VHDL. The word size used is 32:bit
The default number base is hex, with hex don't shoavn as '?". The DATA signal is updated to doritae
next data word from the network on each clock tidke current state of the FSM is defined by tlaest
variable CS. This is updated with the value oftrstate (NS) on each clock tick — although to sspece the

code for this is not shown.

Architecture assoc of IPtest is
type state is: START, LLC2, IP1, P2, |P3,
signal CS : state; -- Current state
signal NS : state; -- Next state
signal OK : bool ean
signal SA : std_logic_vector (31 downto 0);
signal DATA : std_logic_vector (31 downto 0);
Begi n

-- Note: for a VHDL specification,

pr ocess( DATA, CS)
case CSis

START =>
K <= fal se
i f DATA = "AAAA0300" then
NS <= LLCZ;
elsif data = "4???????" then
NS <= | P2;
el se
NS <= ENDI P;
end if;
LLC2 =>
if data = "00000800" then
NS <= | P1;
el se
NS <= ENDI P;
end if;
Pl =>
if data = "4?2??2????" then
NS <= | P2;
el se
NS <= ENDI P;
end if;
1P2 =>
NS <= | P3
|P3 =>
NS <= | P4;
| P4 =>
SA <= DATA;
NS <= | P5;
| P5 =>
K <= true;
NS <= ENDI P;
ENDI P =>
NS <= ENDI P;
end case;

end process;
end;

| P4

I P5, ENDI P,

there al so needs to be a process that
-- copies NSinto CS on the active edge of the system cl ock.

(not shown)

-- looks like a LLC header

-- may be an |IPv4 frame

-- no, not |Pv4

-- yes it is an LLC/I SNAP header
-- no, not |Pv4

-- may be an |IPv4 frame

-- no, not |Pv4

-- ignore

-- ignore

-- save source address

-- we probably have an IP frane

-- finished

Taking the source code above, we should be abterpile this into a series of entries for the asgo®
program store such as shown below. | have nangatied here to show how any actions are perforntei.



likely that the memory word will need to be extetide contain a number of fields to allow operatitmbe
performed on a set of global variables or variabdgted to a particular data channel.

State Data match Next state Action
START AAAA0300 LLC2 XK <= fal se
START 4227?27?77 | P2 K <= fal se
START 27?7?7277 ENDI P K <= fal se
LLC2 00000800 | P1

LLC2 27?27?2277 ENDI P

| P1 4227?27?77 | P2

| P1 ?2??27?7?27?7?7? ENDI P

| P2 ?2?27??27??27?7 | P3

| P3 27?7?7277 | P4

| P4 27?7?7277 | P5 SA <= DATA
I P5 222272222 ENDI P K <= true
ENDI P 2??7??7?77? ENDI P

The words of the program are shown with the highasrity at the top of the table.

5. Conclusions

The proposed system described above appears tofdmsiale method of implementing FSMs for use in
network monitoring. The use of associative memntoryold match patterns is a method in which we can
performing quite complex matching of packet corgeint real time. Unlike the table lookup system
described by Hershey [2], this system cannot howguarantee to be able to match any possible input
function, however it is likely that this should rm too much of a problem in practice. As netwaritgcols

are generally designed for ease of decoding byebeiving computer system, we might hope that acfice

we may only be checking for a limited number ofadaiord patterns or values in each state. An olsviou
departure from this will be data items such as oétvaddresses. However, as we will often see epase

of a large address field, this should not be toehmof a problem — indeed associative memory isadstrd
method of implementing fast table look up in desisach as network switches and routers.

As this paper only constitutes a proposal for diogcof research, there are evidently a large nurobareas
that need to be addressed. The following subae@ddresses some of these and gives ideas ftiefurt
work.

5.1 Further work

Other specific areas that can be identified at ploiit for investigation include methods for implemting
multiple FSMs in the monitoring system and also heevdeal with multiple independent channels of data
from the network without generating an explosiothi@ size of the FSMs used.

To aid investigation into this research area, tegigh of a reference implementation would be vesgful.
The process of designing such a system shouldigighdreas of weakness that require further workis
reference implementation will then need to be medehnd simulated to check the assumptions matkeein
design and also to measure the performance ofrdpgoped implementation. Any proposed implementatio
will need to be based on existing or proposed hardwomponents so as to obtain an idea as to wiibéne
design is practical and to gain realistic figuresgerformance.

To enable this system to be tested with a richo§ehonitoring specifications, it is important thatset of
software tools be created that will support theegation of code-tables from specifications of tisMs.

Lastly, it would be beneficial to construct a ptgfe hardware implementation of such a system andect
this to a real network. This would help to deterenihe effectiveness of the system with real ndiviiaffic
and could be a useful network-monitoring tool.
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