Network Traffic Monitoring — an architecture using associative
processing.

Gerald Tripp

Technical Report: 7-99
Computing Laboratory, University of Kent

1%' September 1999

Abstract

This paper investigates possible associative psiogs architectures for use in the
implementation of a real time network traffic mamihg system. The proposed solution is a
simple associative mono-processor based on a smatiber of electronic components
including state-of-the-art ternary content addreksanemory. This would enable a large
number of finite state machines to be implementhathvcould be used to track the activity of
multiple data channels at several protocol layefihe system would receive a stream of
packets of data from a network and could be prograthto generate output event messages
consisting of selectively captured network datatber information.

1. Introduction

This report looks at possible associative procegssirchitectures for implementing a network traffic
monitoring system. The aim here is to be ableottect useful traffic and other information froncamputer
network for further processing. To be able to penfohis function, any processor needs to be abfeltow
operations on multiple traffic streams from thewwk — only passing on occasional packets and athex
as required.

A previous report [1] looked at various methods fmrforming data reduction in network monitoring
systems and made a proposal for a finite state ima¢kSM) based system that used associative metaory
provide the tables for generating next state and E®M outputs. This report looks at how this can b
extended to enable a system to be built that weunlable a large number of finite state machineseto b
implemented which could be used to track the agtiof multiple data channels at several protocgeta.
The system would receive a stream of packets @f filam a network and could be programmed to geaerat
output event messages consisting of selectiveljucagh network data or other information.

The remainder of this document is structured devia. The next section gives a brief review of pheposal
made in [1]. The third section looks at some c# firoblems with implementing multiple FSMs and
introduces the concept of a hierarchical channséthaystem. Section four looks at the type of astitat

we may perform including proposals for arithmetperations and output event generation. The fitttion
describes the various ways in which the networla dafy be accessed by the FSM. Section six looks at
practical implementation issues and the final sediwoks at conclusions and ideas for further work.

2. Associative FSM Proposal

The system proposed in [1] simply uses associati@mory to implement the next state and output fanst
for FSM implementation. A benefit of this methodimplementation is that it allows us to use a tie&dy
large word of data from the network as input to B&Ms. As an example, a 32 bit input word would be
perfectly feasible using current associative menmryponents. The type of associative memory used i

ternary content addressable memory, sometimesredféo as functional memory [2]. This is usefulilas
allows patterns to be stored in the memory witthd@ithaving a value of 0, 1 or dont care. Thputhvalue
we are searching for is presented as a ‘key’ toctireent addressable memory (CAM) along with detafl
which bits of the memory word should be used fergbarch. The CAM compares the key with all (jpa}te
words stored in memory and gives a Match/Fail teskbr a match, the CAM either gives an addreshef
word or gives direct access to that memory locatidghthere are multiple matches, then the CAM wiill
typically select the one with the highest prioritysuch as the one with the lowest (or highest) nmgmo
address.

We then implement our FSM by using the CAM to s@table of code words such as below:

| State | Data match pattern | Nextstate] Actiorls

The FSM operates by presenting the current stadenatwork input data as ‘&ey', to the CAM. These
values are compared against the State and Data match patterns respectively of each code word in memory.
The highest priority code word to give a match will be used to generate the next state and the FSM output
(the action). Hence we are able to generate a series of these code words that specify the operation of our
FSM. One or more code words will be used for each current state, to specify the next state and actions for a
variety of different values of input data. For each state, we will need to ensure that all possible combinations
of input data values have been covered — this may require a code word for some states that matches don't care
for all bitsin the network data. As the matches are prioritized, care will need to be taken that the code words
are stored in memory in the correct order — e.g. the don't care case will obviously need to be the lowest
priority.

It is assumed that there will be an initial state that a FSM enters at the start of a received packet. The FSM
will then operate by using as input, words of data from that packet. This could be all words from the packet
in sequence, or the FSM itself might be able to select the data required. Each time a code word is retrieved
from the CAM, there may be an associated action that needs to take place. The actions could be used for
modifying the value of local variables — such as counters — they could modify the initial state that the FSM
enters at the start of a packet and they might also generate an output event such as capture of the current
packet.

3. Implementing Multiple FSMs

Any monitoring system will typically need to be able to monitor traffic from a large number of streams. As
an example, with ATM [3] we might have several AALS [4][5] frames that are being transmitted on different
VCI/VPIs. We can build asimple FSM that can track the framing of an AALS frame. However if wetry to
do this for several streams at the same time, then combining the FSM s together will quickly give a machine
with avery large number of states—it isfar easier to have a separate FSM for each stream.

Assuming that this system is to be implemented with off the shelf components, we will be limited to the
number of separate areas of CAM that we can use. If we assert that only one FSM can receive network data
input events at any instance in time, then we can build multiple FSMs by having a single hardware
implementation — but have numerous sets of state information for independent FSMs stored in RAM. For
each FSM type, we will need a set of code words in CAM. Where there are severa instances of the same
FSM type, then these will often all be able to share the same set of code words — as the only state information
isheld in RAM.

Every instance of a FSM here is described as a channel and each channel can have its own area of RAM in
which its current state and other information may be stored. Each channel has a single FSM type, which is
referred to as its process Each process may have several channels. Any channel that needs to receive
network input events will need to be selected as the current channel and its current state set from memory.
When it has finished processing input events it will then be suspended awaiting its next invocation. The next
state to operate in may need to be saved in itslocal memory.

3.1 Selecting the current channel

We need to specify next how a channel is selectdte simplest method is probably for the currersreiel

to send an event to the channel that it would ttkénvoke. This could cause the new channel tobe
active and for the old channel to become inactifée next state for the old channel could thendeed
pending reception of another invocation event. ingghis technique, we are able to have a number of
processes, each dealing with different parts oftavark packet. For example, separate processdd beu
provided to deal with each protocol layer.

To enable channels to send events to each otheafmus reasons, an event type can be includdds i$
specified in the send action and can become thermuinvocation event for the new channel. To énéie
process of the new channel to test the value ofmfecation event, it can be included as part ef sbarch
key for the CAM. Hence the new process could haveumber of code words for its initial state, with
different values for the invocation event. This ellow the process to take different actions ichegase.

Following is an example of how we could select thguired channel to handle a particular streamaté d
from the network. Some of the code words beloweekghe current invocation event to bal, match
various values of a network address field and haveaction to select an associated channel. Ottag co
words are used to catch various error conditions.

Key Search Result

State Event Data Pattern Next state Action

Lookup | Cell 1 Init Send(Event <= NewPacket, Channell8%)
Lookup | Cell 2 Init Send(Event <= NewPacket, Channell82)
Lookup | Cell 3 Init Send(Event <= NewPacket, Channell83)
Lookup | Cell X LookupFail

Lookup | X X Error

(Note: X = Dont Care)

Here, the next state for the current channéhiis unless the search for the network address failghich

case we go to stateokupFail. If the current invocation event is nad| then we go to statérror. The next
state for the new channel will be found in its lozemory. It should be noted that in the threeesaabove,
‘Send’ would probably be invoking the same new process — although this does not need to be the case.

3.2 Hierarchical channels

With some simple additions to the system so far described, we can make this channel selection system
hierarchical and thus apply this to channels at higher protocol layers — such as IP addresses and TCP port
numbers. The only addition we require here is to enable the current channel to be used as part of the key for
searching the content addressable memory; this typically won't be used for much of the time except when
performing this hierarchical channel look up. Using this simple extension, it is still possible for multiple
channels to share the same process — the only additional requirement being a table of address lookup code
words for each channel it is managing.

As an example, we can rewrite the table of code words above, assuming that we may be entering this process
on one of three different channels (1,2,3), each relating to a different low level network address.

Key Search Result

State Event| Chan| Datal Next state Action

Lookup | Cell 1 1 Init Send(Event <= NewPacket, Channell8%)
Lookup | Cell 1 2 Init Send(Event <= NewPacket, Channell§2)
Lookup | Cell 1 3 Init Send(Event <= NewPacket, Channell83)
Lookup | Cell 2 10 Init Send(Event <= NewPacket, Chanrell85)
Lookup | Cell 2 15 Init Send(Event <= NewPacket, Chanrel 84)
Lookup | Cell 2 16 Init Send(Event <= NewPacket, Chanrell88)
Lookup | Cell 3 1 Init Send(Event <= NewPacket, Channell 88)
Lookup | Cell 3 5 Init Send(Event <= NewPacket, Channell89)
Lookup | Cell 3 3 Init Send(Event <= NewPacket, Channell8%)
Lookup | Cell X X LookupFail

Lookup | X X X Error

Each of the channels selected above relates taldmess pair. This scheme may be extended to handle
addresses for multiple protocol layers, the ongadivantage being the potential size of the lookbfes that
we may have to use.

In some cases we have network addresses thatrges than the word size used by our system, or &g m
have multiple address fields — such as source and destination address — within the same protocol layer. In
this case we may need to use this hierarchical address look up within a single process. To alow this, we
could introduce a new variable to modify and use as part of the search key. However, for the sake of
efficiency, this can be done by changing the value of the current channel number within the process as we
move through stages of hierarchical address lookup. This will need to be done vary carefully as we are aso
changing the current context — it appears appropriate to refer to this as a Goto.

3.3 Procedure calls

In many cases, after a process has finished reading network input data we may wish to return to the channel
from which we were invoked. This may be particularly the case with network protocols, where after
handling one protocol layer we wish to return to processing the layer below. Although we may know the
process we wish to return to, we may not know which channel was involved — we may of course be running
either process for any number of different channels.

Another issue is that of fragmentation. Other than at the lowest level, we may only have addressing
information in the first fragment that forms a packet at a higher level. Asan example using ATM, in the 2™
cell of an IP frame we have no indication of the IP addresses to which the cell belongs. As there is no
multiplexing of AALS frames on a single VCI/VPI, this cell must be the 2" cell for the IP frame that began
in the previous cell on this VPI/VCI. We need to have a general method such that one channel may
re-invoke the channel that was previously handling data for it at the next protocol layer above — both for the
current packet and for subsequent packets if there is a longer duration relationship. Unfortunately, this may
not be the channel that we actually sent an event to last time, as the process itself may have changed channels
as part of an address lookup.

The proposa here is to introduce a form of procedure cal. The procedure call takes as parameters, the
number of the channel being called and an event type. For the sake of clarity, we define here the calling
channel to be A and the called channel B.

call(chan = B, event = hello)
Channel Channel
A B
return

Figure 1 — Procedure call

During the procedure call, channel ASs: currentrofel, current event and the next state are pushedea
procedure call stack. The next state referred to is the next state for channel A — which is the state it will

-4 -

return to after the procedure call. The procedaée will take us to channel B and the initial statill be

loaded from memory in channel B. After channel B fiaished it issues a return action. This caukes
next state, channel and event for channel A toeb®ored from the stack. Channel B next stataigd in
memory at channel B as a new initial state. ChiaBsechannel number is also returned to channek/Aan
uplink’and can be saved in memory. This lastactgives us a link forward up to the last chanmelhave
returned from.

The final operation introduced here is that of arcall. This is similar to the standard call actibat allows
the value of channel to be provided dynamicallyrfritne calling channel’s local memory. This will igally

use the value returned by the last procedure called from this channel — although a channel could hold several

‘uplinks' if required.

3.3.1 Example of the use of channels and procedure calls

| look here at a simple program that counts the number of cells transferred between a group of three IP
addresses — all carried over ATM on agiven VPI/VCI. Here, the table entries for testing different addresses
are all shown as part of the specification — in practice, we would probably generate these automatically. For
the sake of simplicity, the code is shown as having random access into the contents of the cell. In a rea
implementation, the access to the cell contents might be implemented as sequential access as will be
described later in Section 5.

The software operates on three protocol layers: ATM layer; AALS layer and IP layer. The first two layers
each have a single channel that retains their current state. The IP layer has fourteen channels that relate to the
various combinations of 1P addresses and other channels that are not actually used to retain any significant
state information but only as interim channels used as part of address decoding. Whilst performing this
address decoding, the software uses a goto instruction to change the current channel number. Thisisto avoid
the overhead of using the call instruction, which would require us to build up intermediate stages of return
information on the stack.

The function of the software for each layer is briefly as follows:

e Atthe ATM layer, we call the AALS layer for cells that have the correct value of VPl and VCI. The
invocation event is streamf for cells with the end of frame marker set and stream for the others.

e Atthe AALS layer, we call into the preamble stages of the IP layer for the first cell in the AALS frame
and then make an up-call for the subsequent cellsin the frame.

« InthelP layer, for the first cell of a packet, the preamble stages perform the selection of the appropriate
channel for the given IP address pair and then generate an output event consisting of the current cell and
the old value of cellcount for this IP address pair. Each channel maintains a counter of the number of
cells that have been transferred between the given IP address pairs. Finally a call back channe is
returned for the AALS layer to call for subsequent cellsin this frame.

The program below consists of code fragments writtea pseudo code, based partly on VHDL syntasr F
each process, cs represents the current statesamrgghresents the next state. Only one channetiieaat a
time and the process for that channel will deteenfinw it changes state.

-- process for cell level, channel 1
cell: process(cs, data)
begi n
case cs is
ATMCELL =>
if (data.vpi = 1) and (data.vci = 15) and (data.pti /= Tail) then
-- Cell

ns <= ATMEND;
call (chan <= 2, event <= strean);
elsif (data.vpi = 1) and (data.vci = 15) then
-- Last cell in an AAL5 franme
ns <= ATMEND;
call (chan <= 2, event <= streanf);
el se
-- cell not on correct VPI/VC
ns <= ATMEND;
end if;

-- cell processing conplete
ATMEND =>
Action(Get next cell);
ns <= ATMCELL

end case
end process

-- process to decode AAL5 fram ng, channel 2
-- all cells on appropriate VPI/VC
AAL: process(cs, data)
begi n
case cs is
AALS5I DLE =>
if (event = strean) then
-- first cell of AAL5 frame
ns <= AAL5I PEND;
uplink := call(chan <= 3, event <= first);
el se
-- first and last cell of AAL5 frame
ns <= AAL5END
uplink := call(chan <= 3, event <= first);
end if;

AALS5I PEND =>
ns <= AAL5BODY;
return;

AAL5BCDY =>

if event = streamthen

ns <= AAL5I| PEND;

upcal | (chan <= uplink, event <= body);
el se

ns <= AALSEND;

upcal | (chan <= uplink, event <= body);
end if;

AALS5END =>
ns <= AAL5I DLE;
return;

end case
end process

-- process to look up | P addresses and count cells
I P: process(cs, data)
begi n
case cs is
-- first cell of an AAL5 frane, channel 3 (check |IP source)
| PSRC =>
if event = first then
if data.ipsrc = IP1l then
ns <= | PDST; goto(chan <= 10);
elsif data.ipsrc = | P2 then
ns <= | PDST; goto(chan <= 20);
elsif data.ipsrc = | P3 then
ns <= | PDST; goto(chan <= 30);

el se
ns <= | PNONE; goto(chan <= 4)
end if;
el se
ns <= | PSRC,
return;
end if;
-- not one of the |P address pairs we were | ooking for, channel 4
| PNONE =>
ns <= | PNONE;
return;

-- first cell of an AAL5 frane, channels 10, 20, 30 (Check |IP destination)
| PDST =>

if (chan = 10) and (data.ipdst = |IP1l) then
ns <= | PCELL; goto(chan <= 11);

elsif (chan = 10) and (data.ipdst = | P2) then
ns <= | PCELL; goto(chan <= 12);

elsif (chan = 10) and (data.ipdst = | P3) then
ns <= | PCELL; goto(chan <= 13);

elsif (chan = 20) and (data.ipdst = |P1) then
ns <= | PCELL; goto(chan <= 21);

elsif (chan = 20) and (data.ipdst = | P2) then
ns <= | PCELL; goto(chan <= 22);

elsif (chan = 20) and (data.ipdst = IP3) then
ns <= | PCELL; goto(chan <= 23);

elsif (chan = 30) and (data.ipdst = |P1) then
ns <= | PCELL; goto(chan <= 31);

elsif (chan = 30) and (data.ipdst = |IP2) then
ns <= | PCELL; goto(chan <= 32);

elsif (chan = 30) and (data.ipdst = | P3) then
ns <= | PCELL; goto(chan <= 33);

el se
ns <= | PNONE; goto(chan <= 4)
end if;
-- cell on a known | P address pair, chans 11, 12, 13, 21, 22, 23, 31, 32, 33
| PCELL =>
-- First cell, generate an output event with a copy of the cell and the old
-- value of cellcount for this channel
Qut put Event (Currentcel |, cellcount);

ns <= | PCELL2

| PCELL2 =>
cellcount := cellcount + 1
ns <= | PCELL2
return;

end case
end process

3.4 Dynamic Channels.

A difficulty with the system proposed so far isttlitarequires all of the addresses relating to dedsto be
known in advance at specification time. This maybrealistic, as we may not know what data isefing

on a network until we start monitoring it. The eskbes may also be rather transitory. Web acoess f
example is likely to produce multiple TCP conneasicto changing destinations. Because of this, the
monitoring system itself needs to be more dynamétchange if required with network conditions.

-7-

At a low level, we may wish to just give a seriésrasks and collect all data that matches the maBks
example we could capture all IP frames to/from egilP address. If we wish to try to investigdte t
operations of protocols such as TCP, we need tarerthat we have properly de-multiplexed the vaiou
streams — each of which may need to retain its own state information. To do this we need to be able to
identify individual streams as they are created. We could do this by reporting new streams back to a control
processor and alowing it to generate a new program. This however is likely to be slow and may risk losing
the very data that we are trying to capture. An alternative method is to alow the program to create new
channels dynamically, along with new CAM entries to invoke them. Such a system that allows a program to
modify itself will obviously need to be well managed.

3.4.1 Creating a new channel

To create a new channel dynamically, we need a certain amount of information about the channel type
required. Primarily, this is the process that the channel executes and also how and when it should be
invoked. The latter details are the concern of the calling process and this will need to provide some form of
template for the code word to perform the invocation. The code word template will need to be updated with
information concerning the state, channel, event and data to use for the search fields and also any details such
as the new channel number for the code word result. This new code word will need to be written into the
content addressable memory in a position that gives it the correct priority with respect to other code words
for that state. In terms of instantiating a new channel, we will need to select an unused channel [number] and
update this to point to the required process. The new channel can then be invoked and required to initialize
itself.

3.4.2 Simple channel allocation system

As an initial study, | cover here a simple dynamic channel system that has a fixed number of channels
alocated for each process and a set of pre-alocated static entries created to invoke these from the calling
process.

The method proposed here is that processes may have a number of place holder entries for code words that
are already associated with pre-allocated channels and contain appropriate actions — but are flagged in such a
way that the CAM will ignore these during a standard search. If the search for a data value (or channel) fails,
then the final entry for the given state can be an allocate instruction. This can search for one of the
appropriate spare entries with the same value for state and update this with the values used for the current
search. The entry can then be flagged as active. Any hits originally specified as don't care can be left
unchanged — thus allowing the template to determine which fields will be used in a search. The action
associated with the new entry can then be executed asif it had been found during the original search —thisis
likely to be a Call or Goto instruction.

To enable this system to operate for a period of time, we will need to free channels that are no longer
required and de-allocate their invocation code word. A specia return instruction could be implemented that
performs a return from the current channel and also de-allocates the code word that took us into that channel.
In practice, the major problem may be how to know when channels should be de-allocated. The whole topic
of garbage collection needs further work and | plan to cover thisin alater paper.

3.5 Summary

As can be seen, the introduction of channels and procedure calls has made quite a departure from a standard
FSM and moved more towards a programming style of implementation. It is for this reason that | use the
term processto refer to the FSM.

The system proposed has a number of special actions that control the scheduling of processes. These may
need to be altered and extended as aresult of experience. Those proposed so far are:

e Send(event, channel) Send event to channel andedbsieh

e Call(event, channel) As send, but wait for returd aschedule calling process

e Return Return to calling process

e Upcall(event, *channel) As call, but use run-timéueafor channel number from memory
e Goto(channel) Change channel within a process. (Btex¢ refers taew channel.)
e Allocate Create a new code word and execute it

e Dreturn As return, but de-allocate the code word itnaokes the process

As well as the above, there will also need to bleemtactions that can be performed to enable the
implementation of arithmetic operations and gem@nadf output events. This is covered in the reedtion.

4. Actions

The previous section looked at examples of actammeerned with process scheduling, however, a numbe
of different types of action could be associatethwach code word such as given below.

¢ Scheduling

« Data flow

e Arithmetic operations

e Output event generation

The actions controlling data flow are required &iedmine which data items from the packet are tised
searches. Some systems might not allow any cootenl this at all, whereas others may enable sSpetdta
items to be used. This topic is covered in motaiti® the section 5.

4.1 Arithmetic Operations

It is likely that processes may wish to perform @ienarithmetic operations, such as addition andraation
—if only to enable counters to be implemented. In the last section, it was proposed that each channel should
have an area of local memory in which to store information specific to that channel, such as current state and
other variables. In addition to this, it may also be useful to have some global memory that is accessible by all
channels. It is proposed here that a simple three-address architecture processor instruction could be used as
an action and that this should have access to both the global memory and also the memory local to the current
channel. A three-address instruction is proposed to allow most simple operations to be performed in asingle
action. This should alow as a minimum: add, subtract and move operations. Some provision should also be
provided for immediate values to be used. To ensure that it is possible to fit such an instruction into the
CAM result field, it may need to share a single immediate field with other actions and it may need to keep the
memory address fields used relatively small.

In addition to simple arithmetic operations, there are likely to be functions that are specific to the network or
communication protocol — such as calculating a CRC. It is envisaged that special hardware would be
provided to assist with the performance of these functions, probably operating in parallel with other processor
activity.

4.2 Output event generation

In his dissertation, Richards [6] uses event messages for the input and output of his FSMs. These event
messages contain a length, type, timestamp, sequence number and an optional data field. At the lowest level
he uses these to carry packets of data from the network to an initial FSM. Output from a FSM is aso an
event message and these can be inputs to other FSMs. The type field specifies the event being generated and
aso identifies how the data field should be interpreted.

For the inter-FSM communication within the processor described here, events are also used for scheduling —
athough in this case all the event consists of is an event type and a channel to which it is sent. Any of these
FSMs could potentially wish to send event messages to other external FSMs — this might consist of multiple

event messages from multiple channels for a sirggleived network packet. Thesdernal event messages
could potentially contain data from one or morekgcstatistical information or just notificatiof @n event.

In any hardware implementation, if we wish to operan real time then we may need to restrict the
complexity of the events we are able to pass arthmdystem. The type of output events actualppstted

by a particular system is likely to depend on theant of resources available and the likely perfamoe
overheads involved. There are a wide variety afsflities and | identify a few example solutidmsiow
with their pros and cons.

1. Any number of processes can generate event(s)ydibamat for a single packet.

Perhaps an ideal solution, however we need to dengihe overhead in creating the event message and
the data paths involved in getting the messagas wutput port.

2. Any process can generate short fixed length evesgtsages consisting of a few words of information,
plus one process is able to generate a data evesgage that includes a sequence of words from the
current packet.

Possible compromise. The short event messaged beubenerated sequentially by any process that
wishes to create them — if we have a resource conflict then it should be permissible to wait for a few
clock cycles for the previous message to complete. The data event message could be created by separate
hardware that operates autonomously.

3. Single output event message consisting of the current data packet, plus a fixed number words of data.

Allow any process to decide whether we wish to generate an output event. Simple to implement in
hardware as this may be implemented as part of the flow of network data through the system. May be
common to keep entire packets of data if we are filtering out packets to be processed in more detail
elsewhere. However, the disadvantage is the requirement to output a whole packet, even if we only wish
to send a short event message containing little or no data from the network.

Of the above, solution 2 looks like a good compromise as it gives autonomy to individual processes to be
able to generate events. For a first implementation, solution 3 could be a possibility if resources were
limited.

4.3 Summary

There are a number of actions which we may wish to specify as part of the result from the CAM search.
These can consist of control over scheduling, network data flow, arithmetic operations and generation of
output events. In any implementation there may be restrictions over the combinations of these that may be
specified as a single action. There may be resource conflicts over use of memory for example, and because
of this it might be appropriate to allow a single "instruction” that specifies one of a number of possible tasks
including a scheduling or an arithmetic operation. Depending on the word size of the result from CAM, there
may also need to be some compromise over the size and number of separate fields used to specify the
Action. This may imply that fields may need to be shared between separate operations.

The CAM result word is likely to be structured in a similar way to a micro-instruction. In the first instance,
micro-programming tools could be used for software development — although in the longer term, custom
compilation or synthesistools will be required.

5. Network Data

There are two basic methods that we can use to access the content of a packet to provide words of data to use
in CAM search operations. We can provide random access into the body of the packet or we can provide
sequential access. The choice of the access method may depend on the programming environment required
and aso on the resources that are available for the hardware design. The two methods of operation are
outlined below.

-10 -

5.1 Sequential Access

This is a common method of handling network dathardware. The network data flows into the systém

an input port and is only accessible by the prameisssequence. To avoid the processor needingeoate

at exactly the same clock rate that the data arivem the network, we may need to use some FIFO
buffering to provide input queues. If the procedsdast compared to the network, then this mehasthe
processor may examine each data item many tinregjifired. We may also be able to choose which svord
from memory we wish to use — i.e. skipping those that we are not interested in. The action that is generally

not available isthat of rewinding the data stream and looking at a previous data item that has already passed.

One of the benefits of using sequential access is that we do not need to be able to store the whole of the
packet that we are processing — storage can be a problem with some combinations of network and hardware
implementation.

In terms of programming, sequential access can be difficult to use. We can move forward through the data
using positive relative movements, although this requires us to know where we currently are. In genera this
probably requires us to always enter a process pointing at a particular word of data. As an aternative we
could use an absolute movement — to go to a particular position within the packet.

5.2 Random access

In this case, the whole packet is stored in memory and may be accessed by the processor in any sequence.
This can make programming alot easier. However in some circumstances a process may not know where its
data begins within the packet — e.g. if lower protocol layers have variable amounts of header information. In
these cases it may be necessary to provide an index register that points at the start of data for the current
process. The index register may need to be updated on a procedure call and the old value held on a stack
awaiting areturn.

The disadvantage of providing random access is that we need to have enough memory within or closely
coupled to the processor to be able to hold any packet received. This may not be a problem with networks
such as ATM, because of the small size of the cell. However with other networks it may be possible to
receive packets with a variable length and with a large maximum packet size. 1deally, we would like to store
the packet within the processor. However for some hardware implementations — such as with some FPGAs —
the maximum packet size may be too high to allow this. Newer generations of FPGA are being produced
with significantly larger amounts of memory, so this may be less of a problem now than it wasin the past.

Another problem is that our memory needs to be multi-port. Access to the memory is required by the
processor itself and aso for network data input and output event generation. In practice a dua ported
memory may be suitable by using one port for the processor and one to share between network data input and
output event generation. The packet memory islikely to need to hold at least three packets — one for input of
the next packet, one for the current packet being processed and one for the previous packet in case it is (still)
required for output event generation. The memory can be managed easily by splitting this into pages, each of
which can hold a maximum size packet.

5.3 Word size and alignment

To provide a high throughput, it is advantageous to use a relatively large word size for the network data —
such as 32 bits wide — and also a high clock speed. This may run at a higher throughput than the data input
from the network and hence require input FIFO buffering to provide rate adaptation and also to change the
word size if thisis required. ldeally, it would be useful to provide the input buffering within the processor
itself to avoid external fast, wide data paths.

A problem with using a large data word for the network data is that depending on the format of the packet,

words of data within the packet may not fall on the word boundaries introduced at the input FIFOs. In
general, protocol designers try to avoid this problem as it can also generate problems for programmers

-11 -

writing protocol software. However to ensure we aot caught out by this problem, we may need lawal
the data to be accessed on any byte boundary — this may require us to read two words of data and use a barrel
shifter to extract the required word of data.

5.4 Caching

To improve performance, it may be necessary to provide a caching system to enable the required word of
network data to be accessed quickly. This is particularly the case with sequential access systems as there
may be delays in moving forward along the stream of data. A simple method of caching that we can provide
here isto cache the current item being accessed and a number of subsequent words in the data stream. Asthe
program moves forward along the data stream, we can discard old items from the cache and fill with new
items from the network. This should enable us to access a number of different words directly that we are
likely to require next. If we assume that the packet usually keeps to the same word alignment, then we could
cache only words at the current word alignment — although this means there will always be a cache miss if
the program moves forward to a different word alignment.

6. Implementation Issues

From an engineering viewpoint, designs are only really interesting if you can build them ! | look here at
some of the practical aspects of this type of processor architecture and argue that it should be possible to
build a practical system such as discussed in this paper using components that are currently available or
which should be available shortly.

6.1 CAMs, keys and actions

A significant change recently has been the availability of fast, moderately large, ternary CAMs. One such
component is the NL85721 from Netlogic [7], which at the time of writing is available as samples. This
CAM is 8K x 128 hits and has a 64-bit bus to carry the key or results of a search. The 128 bit word can be
partitioned as required, however for best performance we can use this with a key and result field each <=64
bits — such that we can carry the data over the bus in a single clock cycle. This CAM will run at clock rates
of up to 66 MHz, although due to pipelining it takes a few clock cycles between searching with the key and
receiving the associated resullt.

Using a 64-bit key, we can have a 32-bit data key and still have 32 bits to divide between state, channel and
event. If we use 12 bits for each of state and channel, then we can define some very large FSMs and also up
to 4096 channels. 8K wordsrelatesto alot of FSM, however the space is used up quite quickly if we wish to
have alarge number of channels— as we need at least one code word for each channel we wish to invoke.

With a 64 bhit result, we can specify new values for state, channel and event. We should aso be able to
specify a number of different possible actions although possibly not all combinations together. A logical
split may be to have an instruction that specifies a scheduling, arithmetic or output event operation and then
to have separate control over data flow.

6.2 Conventional Memory

Conventional memory can be implemented using standard synchronous static memory components. These
are readily available that operate at clock rates of 100 MHz or even higher. If it was acceptable to have a
small amount of memory for each channel, then a basic system could be constructed that used a single
64K x 32 bit memory chip. This could provide — for example — 16 words of local memory for each of 4095
channels + 16 words of global memory.

-12 -

6.3 Control and actions

Control of the CAM search and execution of actinstiuctions can be implemented using a conventional
micro-architecture, with micro-code control stongapping table and sequencer etc. This could clotiteo
operation of most of the processor, except for ampnomous activities such as network data flow amg
output event generation based on packet contents.

Arithmetic functions can be implemented using avestional ALU and multiplexor structure with access
the external memory. Scheduling is closely tiewvith key generation and this could be easily immated
as a series of key registers [state, channel, edata], a local stack and access to external mgmiey
registers could be updated as required from a nuwibgossible sources including memory, stack oIMCA
result. For good performance, the data pathsdioeduling should be separate from those used itinzatic
operations. This will not however be the caseafaress to memory unless this is kept in a separateory
space. The data key will be updated primarily froetwork data.

6.4 Network data and Output events

The implementation of the network data system dépend on whether this is via random or sequential
access. A system using random access would prpbabdjuite straightforward to design but would riegu
implementation hardware that can provide large ghaaulti-port memory. A system that uses sequkentia
access would require less resources but wouldlydealenhanced with a caching mechanism which nody n
use many resources but will probably require gaitet of logic to control the cache and transpbd t
network data.

6.5 Implementation and resources

Apart from the external RAM and CAM, it should besgible to implement the remainder of a simpleesyst
within a single large FPGA. The choice of wheth®ruse random or sequential access will depend on
whether the FPGA technology used is able to proladge areas of multi-port memory. Alternativedy,
sequential access system could be implemented alttbia relatively small cache. The cache coniogic
should not consume much FPGA resources, althougbult use a lot of design’time. The implemeiaat

of ALU and scheduling should not use too much resodespite the potentially wide bus widths us&te
control system is generaly light on resources, apart from the memory used for the micro-code control store —
again this is resource hungry unless specificaly supported by the FPGA. Implementation of output event
generation will need to be combined with the network data system and should be straightforward.

Network
Data In
Key/Result Data
Control Add
CAM e FPGA ess SRAM
Status etc Control
Network
Data Out

Figure 2 — Simple Associative Processor for Networklonitoring

In conclusion, it should be possible to build a@ensystem with three components: an FPGA, a tgrnar
CAM and a static RAM. Compromises may need to be made depending on the type of FPGA used —

-13 -

particularly concerning whether large areas of Rédh be synthesized. A simple design should betable
fit within one of the commonly used FPGAs so lomgitacan provide small areas of RAM for queues and
stacks. If a state-of-the-art FPGA is used sucthasXilinx Virtex [8] series, then it should be gzible to
implement a more sophisticated system, using randooess to network data and providing relatively
general output event generation.

7. Conclusions

This paper looks at architectural proposals foreawork traffic monitoring system that uses assoat
processing techniques. A method is presentedallais multiple FSMs to be implemented as processes
that execute out of a single content addressablaamecomponent. A process instance is referregdsta
channel, and this retains its state in RAM betwiegncations. Only one channel can be active attang,

and channels can invoke each other using a vasfatyethods. This paper then looks at the typesctibns
that a FSM may perform and the various methodshiitlwthe FSM could access the network data. Rinall
the practical issues of implementation are investid.

A conclusion that is drawn from section six, istthashould be possible to build a practical systnthe
type discussed here using a small number of conrmgenédn terms of instruction execution time, ttyipe of
processor is slower than state-of-the-art von-neuamahitectures. The associative processor howeagan
advantage when we wish to perform multiple comparisons — such as testing for network addresses or multiple

possible values of packet formats — as we can perform these comparisons in parallel. Finaly, the speeds of

processors and conventional RAM have increased over time; it appears that this is currently happening with

CAM components.

7.1 Further work

The next stage of this work is to build a model of a hardware implementation of such a processor and to
simulate the design. This can then be tested with a variety of simulated input data and monitoring ‘programs
to evaluate the performance. From this work, it should be possible to identify potential problems and any
performance bottlenecks. It would be interesting to compare of the performance and complexity of the
various agorithms discussed in this paper to determine those which are the most suitable. Finally here, there
needs to be more work on management of dynamic channels and the associated problems of termination and
garbage collection.

A second stage can be to synthesize logic for a simulated processor and hence evaluate the amount of logic
required for the design and the possible performance in terms of overall clock rate. This will inevitably lead
to modifications in the model to improve performance. Thiswill also aid choice of appropriate algorithms as
noted above. Finaly here, prototype hardware could be constructed and tested with real network traffic.

For such a system to be useful in the field, there will need to be suitable tools provided to enable a user to

write monitor ‘programs' in a high level language and to compile or synthesize these into the tables of code
words required by the processor.

References

[1] Gerald Tripp, Rea Time Network Traffic Monitoring, Technical Report: 5-99, Computing
Laboratory, University of Kent, May 1999.

[2] K.E.Grosspietsch, Associative Processors and Memories: A Survey. |[EEE MicroVol. 12, No. 3,
June 1992, pp. 12-19.

[3] M. DePrycker, Asynchronous Transfer Mode: Solution for Broadband ISDN, 2" Edition,
Ellis Horwood, 1993.

-14 -

(4]

(5]
(6]

[7]

(8]

ITU-T Recommendation 1.362, BISDN ATM Adaptatidayer (AAL) Functional Description,
1993.

ITU-T Recommendation 1.363, BISDN ATM Adaptatikuayer (AAL) Specification, 1993

S.G.Richards, The Use of State Machine Technolodroadband Network Monitoring,
Dissertation submitted for the degree of M.Sc. istilibuted Systems. University of Kent. 1996.

IPCAM-2, NL85721, Ternary Content Addressablerivey (IPCAM™) 8K x 128
Advanced Information, Revision 2.1. Netlogic Misystems.

Xilinx Virtex ™ 2.5V Field Programmable Gate Arrays. Advance Pco8pecification.
February 16, 1999 (Version 1.3). Xilinx, Inc.

-15 -

