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Abstract: Flexible endomicroscopes commonly use coherent fiber bundles with high core
densities to facilitate high-resolution in vivo imaging during endoscopic and minimally-invasive
procedures. However, under-sampling due to the inter-core spacing limits the spatial resolution,
making it difficult to resolve smaller cellular features. Here, we report a compact and rapid
piezoelectric transducer (PZT) based bundle-shifting endomicroscopy system in which a super-
resolution (SR) image is restored from multiple pixelation-limited images by computational
means. A miniaturized PZT tube actuates the fiber bundle behind a GRIN micro-lens and a
Delaunay triangulation based algorithm reconstructs an enhanced SR image. To enable real-time
cellular-level imaging, imaging is performed using a line-scan confocal laser endomicroscope
system with a raw frame rate of 120 fps, delivering up to 2 times spatial resolution improvement
for a field of view of 350 µm at a net frame rate of 30 fps. The resolution enhancement is
confirmed using resolution phantoms and ex vivo fluorescence endomicroscopy imaging of
human breast specimens is demonstrated.
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1. Introduction

The ability to analyse tissue morphology in its natural biological environment, without excising
a sample for pathology, could significantly impact the diagnosis and treatment of a range of
diseases. Thin coherent waveguides such as optical fibers and fiber bundles have played a key
role in bridging the gap between microscopes and endoscopes, providing a route to non-invasive
cellular-level visualization and assessment of human tissue in-vivo and in real-time [1]. They
have been used as compact endomicroscopic imaging probes for various high-resolution optical
modalities, including epi-fluorescence microscopy [2,3], fluorescence confocal microscopy [4–6]
optical coherence tomography [7, 8] and two-photon microscopy [9].
Several configurations for fiber optic confocal endomicroscopes have been developed in the

past. A detailed review can be found in [10]. They broadly fall into two categories: (i) distal
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scanning mechanisms using MEMS or piezo elements [6, 11, 12], and (ii) proximal scanning
systems using bare fiber bundles or fiber bundles with distal optics [4, 5]. The former typically
use a single optical fiber for light delivery and collection. This fiber is then itself scanned, or
the exiting light falls on a micro-scanning element. This can achieve a good lateral resolution,
comparable to a moderate-NA benchtop microscope. However, the typically large diameter of
the distal tip (∼ 5 mm) and often low scanning rates (∼ 1 frame/second) greatly restricts their
applicability for real-time clinical imaging applications.
Proximal scanning mechanisms, on the other hand, use a coherent fiber bundle instead of a

single mode fiber as an image guide. By coupling a conventional external beam scanning unit or a
camera to the proximal end of the fiber bundle, the size of the distal tip can be greatly reduced and
the speed of image acquisition can be improved (typically 10 to 120 fps), thus making real-time
in vivo imaging and video processing possible.

A significant problem with using fiber bundle endomicroscopes for point-of-care diagnostics,
however, is the trade-off between the resolution and achievable field of view (FOV). This is
because the quantity of fibers that can be packed into a single bundle (typically up to 30,000)
limits the number of effective pixels of information in the image. Further, the inter-core spacing
results in pronounced fiber-pixelation artefacts seen as a strong honeycomb pattern which reduces
the contrast and spatial resolution of the image [5]. For such systems, the achievable resolution is
not limited by diffraction or aberrations in the distal optics, but by the inter-core spacing, making
it difficult to resolve sub-cellular features when imaging biological samples.
Previously reported fiber bundle endomicroscopy systems often utilized computational ap-

proaches such as Gaussian smoothing or linear interpolation between the cores to eliminate the
pixelation artefacts [13–16]. However, these methods do not lead to an improvement in spatial
resolution caused due to under-sampling. An alternate approach is to begin with a low resolution
(LR) endomicroscopy image and attempt to increase the resolution by pixel Super-Resolution
(p-SR) techniques. p-SR is a well explored topic in the machine vision community, utilizing sub-
pixel source/image sensor shifting to create multiple under-sampled LR images and combining
them to reconstruct a super resolution (SR) image [17]. For fiber bundle endomicroscopes, if
the imaging probe shifts a small distance between the acquisition of two image frames, and this
shift is not an integer multiple of the fiber core spacing along the direction of motion, then if
the two images are registered and appropriately combined an enhancement in resolution can be
obtained. Indeed, this tends to occur naturally during video mosaicking [18] or can be induced
deliberately by causing random vibrations [19] or dithering [20, 21] of the fiber bundle. However,
as these motions are essentially uncontrolled, any improvement in resolution is variable and may
only occur along one direction. Further, for multi-frame methods, the enhancement is highly
dependent on the performance of the registration algorithm, and hence on the signal-to-noise
ratio of the images.

An alternative is to induce controlled micro-shifts of the fiber bundle bymechanical means. This
concept was first suggested, although not demonstrated, for confocal endomicroscopy in [21, 22]
and later shown in principle using a translation stage for epi-fluorescence endomicroscopy
in [23, 24]. In [23], a fiber bundle was placed in direct contact with the sample and shifted
laterally, using a bulky stage, in various patterns. Higher resolution images were then obtained
by a reconstruction technique based on mean threshold bitmapping and a 2-fold resolution
improvement was achieved. In [24], a maximum a posteriori (MAP) estimate of the HR image
was calculated using conjugate gradient descent and a 2.8 times enhancement was achieved for
imaging a USAF target using 16 LR images. Furthermore, an abstract from Cheng et al. suggested
using a piezo tube for inducing the shift, and their work aimed at enhancing the resolution of
two-photon endomicroscopy [25].
To date, these handful of studies have been initial proof-of-concept experiments only. Ap-

proaches relying on random motion may be too inconsistent for clinical use, while for induced
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motion, high-speed scanning systems are difficult to miniaturize and the system sacrifices image
acquisition rate and probe size for improved image quality. Even if the current approaches were
successfully miniaturized, when the moving fiber bundle is placed in direct contact with the
tissue, friction and tissue deformation will tend to make them unreliable for clinical practice.
In this paper, a new high-resolution endomicroscope that incorporates a miniaturized piezo-

electric tube scanner to induce precise micro-shifts of the fiber bundle is presented. To avoid
problems with friction and tissue deformation, the fiber is scanned behind a miniature objective
lens and does not make direct contact with the sample. Building on our preliminary work reported
in [26], an optimal fiber-shifting pattern is derived and a fast Delaunay triangulation based p-SR
algorithm is used to restore an SR image from multiple pixelation-limited LR images. The fiber
shifting endomicroscope achieves a 2-fold improvement at 30 fps for a FOV of 350 µm. To
validate the concept, a prototype fiber-shifting probe was assembled using a stock PZT tube and
a GRIN lens and was employed in ex vivo tissue imaging studies.

2. Methods

2.1. Fiber-shifting endomicroscopy system

A schematic of the fiber-shifting super-resolution endomicroscopy system for fluorescence
imaging is illustrated in Fig.1(a). The proximal face of the fiber bundle is coupled to the optical
imaging system which, for the purposes of this study, was a custom, high-speed, line-scan
confocal laser endomicroscopy (LS-CLE) unit. The bundle was a fused Fujikura imaging fiber
bundle (FIGH-30-850N) with approximately 30,000 cores. The Fujikura bundle chosen as
this model is commonly used for endomicroscopy imaging due to the small core spacing and
hence good intrinsic resolution. However, the proposed approach can be implemented using any
endomicroscopy scanning system and fiber bundle without major modification.

A full description of the LS-CLE system’s operating principles can be found in [27]. In brief, a
cylindrical lens (f=50 mm) is used to create a focused line from a 50 mW, 488 nm laser (Vortran
Stradus, 488). A galvo-mirror (Thorlabs GVS001) sweeps the line across the proximal end of the
fiber bundle in a direction perpendicular to the line. The bundle relays the line to the tissue via the
distal GRIN objective, and returns collected fluorescence from all the points along the line, which
is then imaged onto a monochrome rolling-shutter CMOS camera (Flea 3, FL3-U3-13S2M-CS).
The rolling shutter of the CMOS camera operates as a virtual detector slit that rejects most of the
out-of-focus light, leading to optical sectioning at frame rates of up to 120 Hz.
The optical system of the distal probe assembly is designed to achieve high magnification

imaging in close proximity to the tissue surface. A schematic of the distal probe, which consists
of the fiber bundle, a miniaturized quadruple PZT piezoelectric tube (PI Ceramics, PT230.94)
and a high-NA (0.8) GRIN microlens is shown in Fig.1(b). The lower end of the PZT tube
is mounted in a custom 3D printed plastic holder while the upper end (tube tip) can freely
move in all three dimensions. The fiber bundle is passed through the center of the PZT tube
and rigidly secured to the distal end of the tube tip through a custom designed and 3D printed
holder. For applications where the PZT is used for resonant scanning, the free-length of the fiber
determines its resonance. However, here we make use of small displacements only, using the
PZT for non-resonant scanning, and the free length of the fiber bundle was fixed to be 10 mm.
The outer surface of the PZT tube is separated into quartered electrodes. When two voltages

equal in magnitude and opposite in sign are applied on two opposite quadrants, x or y, a bending
motion is generated resulting in a lateral tip displacement along the respective axis. The inner
surface of the tube is coated with an electrode, which is grounded in our experiments since we
are interested only in transverse deflection. When the voltage Vy is applied on the y-axis electrode
pair, the deflection ∆y of a PZT tube can be expressed by the following equation:
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Fig. 1. Schematics of (a) the line-scan confocal laser endomicroscopy (LS-CLE) system with
(b) fiber-shifting distal probe. The proximal face of the fiber bundle is placed at the focal
plane of the LS-CLE and the distal end is actuated by a PZT tube behind a GRIN lens with
1.92X magnification. (c) A photograph of the assembled 3D printed probe holder tube with
5 mm outer diameter. A UK one pound coin is shown for scale.

∆y =
2
√

2d31VyL2

π(D + h)h (1)

where d31 is the piezoelectric strain constant, Vy is the applied voltage, L is the tube length, D is
the inner tube diameter and h is the thickness of the tube. For tube diameter much greater than
wall thickness, (D + h) ≈ D and Eq. (1) leads to Chen’s result for tube deflection [28].

A stock 1.4 mm diameter gradient index (GRIN) micro-lens assembly (GRINTech GT-MO-
080-0415-488) is fixed in front of the fiber bundle such that the distal tip of the fiber is imaged
onto a plane approximately 80 µm deep in the tissue, with a 1.92X magnification factor. As the
GRIN lens does not move, this avoids friction between the moving fiber and the tissue which
would otherwise make the scanning less reproducible due to tissue deformation. The entire probe
assembly is encased in a custom 3D printed plastic tube with a 45 mm rigid length (including the
GRIN lens) and 5 mm outer diameter (OD). A photograph of the prototype probe is shown in Fig.
1(c).

In standard-resolution operation, the camera is operated in free-run mode, which allows
low-resolution (LR) images to be acquired at the full frame rate of 120 fps, by generating a trigger
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pulse on its strobe output pin at the start of each frame acquisition. The pulse triggers the analog
output of a data acquisition card (NI-USB 6211) which has a 16-bit, 250 KS/s sampling rate,
to send a ramp voltage signal to the galvo-scanning mirror, with some user-specified delay. In
super-resolution mode, activated by the click of a button on the custom control software, the trigger
pulse also triggers the delivery of a series of drive signals to the PZT tube, as explained in the next
section. This results in the fiber bundle being shifted to a series of different positions, synchronised
such that one image frame is acquired for each position. An experimentally determined delay
is provided such that the data acquisition starts once the fiber bundle reaches each stationary
position, and an image frame is acquired for each position of the PZT tube at 120 fps.

2.2. Electronic circuit for PZT actuation

A data acquisition card (NI-USB 6009) was used to produce a DC voltage, in the range from
0 V to 5 V, from one of the analogue outputs of the card (AO0), as depicted in Fig. 2(b). This
voltage was split into two different signals with equal magnitude and opposite sign through an
inverting amplifier (Analog Devices, OP275) with unitary gain, followed by signal buffering
via two voltage-followers (Analog Devices, OP275), before being fed as the input for two PZT
amplifiers (PI, E413.00) with gain of 50 V/V and output span between -250 V and 250 V and
connected to the power grid line. The routing of these amplified signals or drive voltages to the
corresponding PZT electrode pair was achieved by two solid state relays (Omron, G6S-2-Y) that,
when triggered, excite the electrodes independently. The trigger signals were generated by two
digital outputs from the acquisition card with 5 V of magnitude. Since the electronic current
provided by the card was not enough to activate the relays, due to the low impedance of their
coils, an additional transistor (Multicomp, 2N2222) in a common-collector configuration was
employed to supply a larger current to the relays and activate the switching mechanism. A charge
pump device (Linear Technology, LTC1054) was used to produce a negative 5 V supply for all
the electronic components except the PZT amplifiers, as the acquisition card could only generate
the positive 5 V. Symmetric supply levels were required to accommodate the bipolar signals
leading to the PZT amplifiers.

2.3. PZT characterization

Following probe assembly, the dependence of the fiber bundle tip deflection on the voltage
applied to the PZT electrodes was measured. To achieve this, the distal end of the fiber bundle was
imaged onto a camera using a microscope objective using the experimental set-up shown in Fig.
2(a). The output of a laser diode (Vortran, 488) was focused onto the fiber bundle via Objective1
with 40X magnification. The transmitted light was imaged onto a monochrome CCD camera
(Thorlabs, DCU224C, 1280 x 1024 pixels) via a 20X microscope Objective2. When a single
core of the fiber bundle was illuminated, the output showed some distribution of power among
neighboring cores, indicating that inter-core coupling was occurring. An intensity thresholding
algorithm was applied to eliminate the low-intensity neighboring pixels and a centroid estimation
algorithm was used to find the center of a single core of the fiber bundle.

Input voltages in the range of 0 to 125 V with a step-size of 5 V were provided to the x and y

axis of the PZT tube scanner from the PZT amplifiers. For each axis, the lateral displacement of
the fiber bundle tip was estimated by tracking the position of the centroid of the focused spot on
the CCD camera, averaged over 5 runs. A representative plot of deflection versus applied voltage
along the x-axis is shown in Fig. 2(c). As the input voltage is increased, the displacement of the
fiber bundle tip gradually increases. From these direct measurements, a voltage shift of 5 V was
determined to correspond to a tip deflection of (0.61 ± 0.03) µm. For the Fujikura fiber bundle
with an inter-core spacing of 4.48 µm (estimated from an SEM image of the fiber bundle), the
desired shift is half the core spacing, i.e. about 2.24 µm corresponding to a drive voltage of 19 V.
Using the theoretical model given in Eq. (1) for the stock PZT tube from PI Ceramics
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Fig. 2. (a) PZT characterization test: Optical setup for illuminating a single core of the fiber
bundle and estimating the tip deflection by tracking the position of the centroid of the focused
spot on the CCD camera. Objective1 is microscope objective with 40X magnification and
Objective2 is with 20X magnification. (b) Schematics of PZT driver circuit. (c) 2-D plot of
fiber bundle deflection versus applied voltage on the PZT electrode pair.

(PT230.94) with quoted dimensions 30(L) × 3.2(OD) × 2.2(ID) mm, d31 of −180 × 10−12m/V, a
drive voltage of 19 V should result in a lateral deflection of about 2.05 µm. By assuming that
the fiber bundle inside the PZT tube, with fiber free-length of 10 mm, will experience lateral
deflections proportional to its length (considering only deformations in the elastic regime and
without torsion occurring along the fiber length), the estimated deflection of the fiber tip is about
2.73 µm. In practice we measured a smaller deflection which we attribute to the stiffness of the
fiber bundle.

2.4. Super resolution (SR) image reconstruction

The SR image reconstruction task is divided into two stages: a one-time calibration and then
subsequent reconstruction of each SR image as depicted in Fig. 3. The calibration stage involves
identifying the position of the center of each core in the bundle, and determining the geometric
transformation matrix for each step of the fiber bundle shifting pattern driven by the PZT. In
the second stage, a fast Delaunay triangulation (DT) based interpolation algorithm is used to
reconstruct a SR image from the multiple LR images acquired at each position. The approach is
similar to that proposed by [29], adapted to improve resolution of fiber bundle endomicroscopy
images.
Prior to acquisition, a dark background calibration is performed by recording 50 frames

with the tip of the probe covered. The probe is then pointed at a bright uniform target, and the
core-center positions are detected using a Hough transform. A circular area of interest is taken
using a convex hull algorithm to remove artefacts from the edges of the fiber bundle, leading to
final image diameter of 350 µm.

The probe is then pointed at an object with high-resolution detail (such as a USAF resolution
target). The chosen pattern of fiber bundle shifts is run, LR images are acquired from each shifted
position and the background image is subtracted from each. A sub-pixel frequency domain based
phase correlation technique presented in [30] is then used to estimate the geometric transformation
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Fig. 3. Sequence of steps illustrating Delaunay triangulation based reconstruction of SR
image from a set of fiber-bundle pixelation limited LR image frames

between the consecutive LR image frames. The geometric transformation is made in one step
using a discrete Fourier transform, thus making it high-speed. Given two LR images, f1(x, y) and
f2(x, y), shifted horizontally and vertically by (4x, 4y) with respect to each other, in the Fourier
domain their relationship can be expressed as:

F2(u, v) = e2πi(uT 4x+vT 4y)F1(u, v) (2)

where F1(u, v) and F2(u, v) are 2D Fourier transforms of f1(x, y) and f2(x, y) respectively. For N
image frames, the shift parameters (4x) and (4y) between every image frame fk(x, y) and the
first image f1(x, y) are computed from Eq. (2) as the least-squares solution of the slope of the
phase difference.

An array of core-center positions is then assembled from the measured core positions for each
position of the fiber bundle, with each set of core positions shifted using the estimated shift
parameters (4xk, 4yk). If there are N cores in the bundle, and p fiber bundle positions are used,
this results in a total of Np core positions. A Delaunay triangulation (DT) is then formed over these
Np core positions by first computing the Voronoi diagram. The Voronoi diagram decomposes
the HR reconstruction grid into regions around each core position such that all the points in
the region around each core, ci , are closer to ci than any other core. A Delaunay triangulation
mesh is constructed by connecting points with which the Voronoi cells have common boundaries
such that every pixel is enclosed in one triangle with vertices corresponding to the closest three
core-center positions. A reconstruction grid is chosen, the enclosing triangle is identified for each
pixel, and each pixel location is converted to triangular barycentric co-ordinates (a measure of its
distance from each vertex of the enclosing triangle). For cores ci at vertex i, for i = 1, 2, 3, p as
the pixel location and A1, A2 and A3 to be the area of three triangles c2c3p, c1c3p and c1c2p, the
barycentric co-ordinate bi is calculated as:

bi =
Ai

A1 + A2 + A3
where i = 1, 2, 3 (3)

This concludes the one-time calibration, which is used as the input to the reconstruction of all
subsequent SR images.

During imaging, following acquisition of the set of LR images from each shifted position, the
core intensity is extracted from each core in each image. The resulting SR image is reconstructed
by assigning each pixel an intensity value, Ip , obtained by triangular linear interpolation between
the intensity values of the three nearest cores of the enclosing Delaunay triangle using:

Ip = b1IC,1 + b2IC,2 + b3IC,3 (4)
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where IC,i is the intensity values of the core at vertex i and bi is the corresponding pre-calculated
barycentric co-ordinate for that reconstruction pixel p. In the last step, a median filter is used
to remove salt-and-pepper impulse noise from the reconstructed SR image. For the protoype
system reported here, LR images were recorded at 120 fps and then processed offline, but the
reconstruction step is computational inexpensive and could be implemented in real-time.

3. Results

3.1. Evaluation of scanning patterns

The distribution of energy within each fiber core, and hence the area of the sample that each core
integrates over, follows an approximately Gaussian profile, with a mode field diameter (MFD)
smaller than the spacing between adjacent cores. Knowledge of the core-spacing and MFD is
therefore necessary to determine the scanning pattern with the optimal number and magnitude of
fiber shifts in order to enhance resolution while maintaining an acceptable frame rate. For the
fiber bundle, the core diameter and inter-core spacing were estimated by acquiring SEM images
as 2.45 µm and 4.48 µm respectively. The MFD was experimentally measured (by imaging onto
a camera with 20X microscope objective) to be about (4.23 ± 0.14) µm, and the full width half
maximum (FWHM) to be (2.49 ± 0.08) µm.
Applying the Rayleigh criterion for an Airy disc with the same FWHM (i.e. with a first

minimum at 1.19 times the FWHM), the minimum fiber bundle shift necessary to obtain two
resolved peaks would be approximately 2.96 µm. Using the Sparrow criterion the required shift
is about 2.12 µm. If we compare these values to the core spacing of 4.48 µm, it is clear that there
is significant under-sampling occurring in conventional fiber bundle systems, and a potential for
up to a 2-fold resolution improvement by fiber shifting.
To determine the desired scanning pattern, independently from the performance of the PZT,

we tested the use of 1-D linear and 2-D square scanning patterns using a motorized translation
stage (8MT173, Standa Ltd.). A simple test involved imaging a high-resolution 1951 USAF target
consisting of 9 groups of horizontal and vertical line pairs with various spacings. As the target
was not fluorescent, it was back-illuminated by a green LED and imaged in transmission. Figure
4(a) shows the image acquired with the LS-CLE system and 1.92X GRIN lens (no fiber bundle).
This represents the fundamental limit on resolution from diffraction and aberrations in the optics.

Figure 4(b) shows an image of the target through the fiber bundle and 1.92X GRIN micro-lens
without any processing. This and subsequent images are cropped from the full field of view which
is 350 µm. Figure 4(c) shows an image reconstructed by the Gaussian smoothing (σ = 1.7 pixels)
and Fig. 4(d) by Gaussian smoothing with a pre-histogram equalization as proposed in [14] on a
single LR image. Figure 4(e) shows an image reconstructed by the DT algorithm on a single LR
image. Figures 4(f) and (g) show the results of applying the proposed SR technique using 1-D and
2-D square patterns with the fiber bundle shifted by half the inter-core spacing between images.
This corresponds to combining 2 images in Fig. 4(f) and 4 images in Fig. 4(g) with 2.24 µm
inter-image shift. For better visualization, a cropped image of high resolution features consisting
of Group 7, elements 3-6, and all elements of Group 8 and 9 are presented. The zoomed insets
correspond to Group 7, element 6 (G7,E6) and the numeral ‘8’.
The Nyquist frequency of the bare fiber bundle corresponds to approximately 112 lp/mm.

Due to the 1.92X magnification of the GRIN microlens, the Nyquist frequency of the fiber
bundle with lens corresponds to approximately 215 lp/mm. The smallest line pairs on the USAF
target that can be completely resolved for a single LR image are of Group 7, Element 6, as
shown in Fig. 4(b). This corresponds to 228.1 lp/mm and a bar width of 2.19 µm. For the image
reconstructed by applying only Gaussian smoothing, Gaussian smoothing with a pre histogram
equalization and the DT algorithm to a single LR image, the pixelation artefacts are reduced,
due to which line pairs from Group 8, Element 1, with a spatial frequency of 256 lp/mm can be
resolved. However, no significant improvements in spatial resolution can be observed. For the
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Fig. 4. Cropped images of USAF resolution target back-illuminated by a green LED, with
fiber shifting motion performed using a translation stage. Large images show Group (G) 7,
Elements (E) 3-6, and all elements of Group 8 and 9. Smaller zoomed images show G7,E6,
a 2-D plot of the intensities of pixels along the line segment shown by a white line on G7,E6,
and the numerical ‘8’. (a) Image acquired with the LS-CLE system and 1.92X GRIN lens
(no fiber bundle). (b) Raw experimental LR input image acquired with a fiber bundle and
1.92X GRIN lens. (c-e) Image reconstructed by (c) Gaussian smoothing (σ = 1.7 pixels), (d)
Gaussian smoothing with pre histogram equalization and (e) DT algorithm on a single LR
image. The respective SR images reconstructed using the proposed method are shown for (f)
a 1-D shift pattern where 2 images are acquired with shift of 2.24 µm, (g) a 2-D shift pattern
where 4 images are acquired in a square pattern with a shift of 2.24 µm, and (h) a 2-D shift
pattern where 8 images are acquired with a 1.12 µm inter-image shift. (i) Single un-cropped
image representing all elements of groups 6-9 of USAF target reconstructed using the DT
algorithm and 2x2 pattern. Full field of view of each acquired image (in white circle) is
350 µm. Region of interest (marked in red) corresponds to image (g). The scale bar is 10 µm.

reconstructed image using a 1-D shift only, although the image quality is enhanced, the resolution
enhancement is somewhat directionally dependent. The smallest resolvable line pairs correspond
to Group 8, Element 2, a spatial frequency of 287.4 lp/mm as shown in Fig. 4(f). When LR
images which are shifted in a 2D square pattern are combined using the proposed SR algorithm,
the smallest resolvable lines are Group 8, element 6, as shown in Fig. 4(g). This corresponds to a
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spatial frequency of 456.1 lp/mm and a bar width of 1.1 µm, resulting in an approximately 1.8X
resolution improvement compared with reconstruction from a single image.
We then compared the spatial resolution improvement from the 2D square pattern when the

fiber bundle is shifted by half and one-fourth of the inter-core spacing, corresponding to 4
images with 2.24 µm and 8 images with 1.12 µm inter-image shift, shown in Figs. 4(g) and
(h) respectively. It is observed that the 2-D square pattern provides about 2-fold resolution
improvement whether 4 or 8 images are used, broadly as expected from the measurement of the
core spot size. Using the LS-CLE system with an image acquisition rate of 120 fps, for an SR
image reconstructed from 4 LR images, an overall acquisition rate of 30 fps can be achieved
which makes it suitable for real-time imaging. Given the significant frame rate penalty of using 8
images without any noticeable further resolution improvement, the 2x2 pattern was selected for
use with the prototype probe as the optimal fiber shifting pattern for biological tissue imaging
experiments. Figure 4(i) shows an un-cropped image of all elements groups 6-9 of USAF target
reconstructed using the DT algorithm and 2x2 pattern for reference.

3.2. Probe spatial resolution estimation

To determine the spatial resolution of the prototype probe, the square wave transfer function,
which is a similar concept to the modulation transfer function, was determined by finding the
observed modulation depth across all elements of USAF target Groups 6-9, averaged over 3 runs.
Four image frames were acquired by scanning the imaging probe in a 2-D square pattern, with
the fiber bundle shifted by half the inter-core spacing, and the contrast was measured for the SR
image reconstructed using the algorithm described above. We compared this with the contrast
of an image reconstructed using the same DT algorithm applied to a simple average of four
frames and to an image acquired directly through the 1.92X GRIN lens with no fiber bundle. The
observed modulation depth (square wave contrast) of the USAF bar patterns is plotted against
their spatial frequencies in Fig. 5(a).

Fig. 5. (a) Square wave modulation contrast obtained by applying the DT algorithm on the
average of 4 frames and the proposed SR method. This is compared with imaging through
the 1.92X GRIN lens optical system with no imaging bundle.Image of USAF target showing
all elements of Groups 8 and 9, reconstructed using the proposed method where fiber shifts
are generated using (b) PZT scanner and (c) motorized translation stage. (d) Shows 2-D
graph of the intensities of pixels along a line segment on G8, E2-6. Scale bar is 10 µm.

We first consider the contrast of Group 7, Element 6 on USAF target (228.1 lp/mm) as it is
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closest to the Nyquist frequency of the fiber bundle with the GRIN lens. The average modulation
depth was calculated as 55.9% using the proposed method, improved from 28% for the average of
four LR images. Qualitatively, the PZT based fiber-shifting probe can resolve Group 8, Element 6
of the USAF target, which corresponds to 456.1 lp/mm or a bar width of 1.1 µm, as shown in
Fig. 5(b). The measured contrast using the proposed SR algorithm at 456.1 lp/mm was 29.7%
while that for the averaged LR images was 2.6%. Figure 5(c) shows an image of Group 8 and
9 of USAF target obtained when a programmable translation stage was used for fiber-shifting.
By comparing the pixel intensities along a line-segment on G8, E2-6 of Figs. 5(b) and (c) it
can be seen that the resolution enhancement obtained using the PZT based prototype probe is
comparable to that obtained using the translation stage, as shown Fig. 5(d).

3.3. Imaging results

The performance of the fiber shifting endomicroscopy system was tested by imaging lens tissue
cleaning paper and ex vivo human breast tissue. In standard resolution mode, images were
acquired at 120 fps and in SR mode four images were acquired in a 2-D square pattern at 30 fps.
The deflection voltage applied to each electrode-pair of the PZT tube was ± 19V, corresponding
to a 2.24 µm shift. The one-time calibration step to determine the core-center positions and shift
parameters was performed by repeating the 2D square scanning pattern multiple times on a USAF
resolution target. For each axis, the standard deviation of the shift, averaged over 5 runs was about
0.12 µm. The estimated shift values were then used as the input for SR image reconstruction for
all the test samples. All processing was performed offline in MATLAB, although the system is
suitable for real-time applications.
Figure6 shows cropped images, with zooms in the insets, of lens tissue paper stained with

0.02% acriflavine hydrochloride solution. Four image frames were acquired by scanning the
imaging probe in the 2-D square pattern with 2.24µm inter-image shifts. For comparison, a
single acquired LR image, labeled as ‘Raw Image’, is shown in Fig. 6(a), as well as the Gaussian
smoothing (σ = 1.7 pixels) and the DT algorithm reconstruction of this single LR raw image,
labeled ‘Single Gauss’ and ‘Single DT’ in Figs. 6(b) and (c) respectively. An image reconstructed
using the DT algorithm on an average of four acquired frames, labeled ‘Mean DT’, is shown in
Fig. 6(d), and an image reconstructed using the proposed SR algorithm, labeled ‘Proposed SR’,
is in Fig. 6(e). Full field of view images of a single LR frame and SR image reconstructed using
the PZT based fiber-shifting probe and proposed SR algorithm are shown in Fig. 6(f).

For Figs. 6(a)-(e), a small area where two lens paper fibers overlap was chosen and magnified
3.1 times for visualization purposes. The intensity values along a yellow line are plotted in Fig.
6(g). For the raw image, the fiber pixelation artefacts lead to significant intensity modulations
making it difficult to distinguish fiber strands of the lens tissue paper. For the ‘Single Gauss’,
Single DT’ and ‘Mean DT’ reconstruction, although the fiber-cores are no longer visible, the
edges appear fuzzy and image contrast at the peaks corresponding to the center of each lens paper
fiber is low: 5%, 8.2% and 10.8% for peak-1 and 21.3%, 28.0% and 27.8% for peak-2 respectively.
Using the proposed SR algorithm the two fibers of lens tissue paper are clearly distinguishable,
resulting in narrower and well-defined peaks with image contrast values of 24.6% for peak-1 and
40.0% for peak-2.

We then performed fluorescence fiber bundle endomicroscopy imaging of normal adipose
cells of human breast tissue. Small cut-outs (2 mm x 2 mm) were sectioned from the tissue
specimen and stained using acriflavine hydrochloride 0.02% in saline solution. The specimen
was immersed in a test tube containing the staining solution for 1 minute and then rinsed with
water to remove excess stain, before being imaged immediately. Figure 7(a)-(e) shows cropped
images and zoomed insets of stained adipose cells of normal breast tissue. Figure 7(f) shows
un-cropped images of a single frame and reconstruction using the proposed SR algorithm. The
adipose cells appear as dark hexagons with bright borders. There are sparse nuclei on the borders
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Fig. 6. Results from imaging lens tissue paper using four imageswith a 2x2 square shift pattern,
showing (a) single raw acquired LR image, (b) reconstruction by Gaussian smoothing on a
single LR image, (c) reconstruction by DT algorithm on a single LR image, (d) reconstruction
by DT algorithm on the average of 4 shifted LR images, (e) reconstruction using the proposed
SR method and (f) un-cropped images of single LR frame and SR image reconstructed
using the proposed method. For (a)-(e), images are cropped to 233x233 pixels for better
visualization. Zoomed insets (3.1X magnification) correspond to a small area where two
lens paper fibers overlap. (g) Plot of pixel intensity along a line segment shown on the insets.
Image contrast values are calculated at *peak-1 and **peak-2. The scale bar is 10 µm.

which are positively stained by the dye and can be clearly distinguished as hyper-fluorescent
dots [31]. LR and SR images were reconstructed as for the tissue paper.
For Figs. 7(a)-(e), a small area where two nuclei are close to each other was chosen and

magnified 3.1 times, as shown in the insets, for visualization purposes. The intensity values along
a yellow line are plotted as a function of distance in Fig. 7(g). From the intensity plot, it is evident
that for the raw image, the fiber-pixelation artefacts lead to significant intensity modulations
making it difficult to identify any underlying structures. For ‘Single Gauss’, ‘Single DT’ and
‘Mean DT’, the profile appears as a single broad band with some modulations in intensity but
the contrast for them is significantly low, less than 1.3%. As a result, the two nuclei cannot
be resolved. Using the proposed SR algorithm, two peaks corresponding to the two nuclei are
observed with image contrast values of 14.0% for peak-1 and 12.2% for peak-2, making it possible
to resolve the two neighboring nuclei, which otherwise was not possible.
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Fig. 7. Results from imaging adipose cells of human breast tissue using four images with a
2x2 square shift pattern, showing (a) raw single acquired LR image, (b) reconstruction by
Gaussian smoothing on a single LR image, (c) reconstruction by DT algorithm on a single
LR image, (d) reconstruction by DT algorithm on the average of 4 images, (e) reconstruction
using the proposed SR method and (f) un-cropped images of single LR frame and SR image
reconstructed using the proposed method, with field of view of 350 µm. For (a)-(e), images
are cropped to 233x233 pixels for better visualization. Zoomed insets (3.1X magnification)
correspond to a small area containing adjacent nuclei on the borders of adipose cells.(g) Plot
of pixel intensity along a line shown in the insets. Image contrast is calculated at *peak-1
and **peak-2. The scale bar is 10 µm.

4. Discussion

The imaging results demonstrate that the proposed PZT based fiber shifting system allows for
an enhancement of the resolution compared to reconstructions based on single images. These
experiments were conducted using a line-scan confocal laser endomicroscopy system because of
the high image acquisition rate of 120 fps. With the proposed system, SR images can be acquired
at 30 fps, making it suitable for real-time imaging applications. In principle, the proposed system
can be implemented with any microscope and fiber bundle without major hardware modification.
The reconstructed images demonstrate higher contrast, and details such as nuclear shape are
more readily visualized in the zoomed-in sections.
In the literature, several nuclear morphometric metrics such size, shape and number in a

given area, as well as nucleus/cytoplasm ratio, have been shown to help distinguish between
normal, benign and neoplastic breast conditions, making it important to resolve each nuclei
accurately [32]. The preliminary experiments reported here demonstrate that the system has
sufficient resolution to resolve features separated by less than 2.2 µm (on the USAF target) and
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nuclei with a diameter of about 2.5 µm. Considering that the neoplastic tissue exhibits an increase
in size for the population of nuclei, these ex vivo imaging results suggest a potential benefit of
this system for cancer diagnosis by real-time assessment of epithelial structures with sub-cellular
resolution. However, further work will be required to determine the applicability of this work
to nucleic imaging more generally, and to establish whether there is a significant benefit over
lower-resolution approaches.

The prototype probe was constructed using a stock GRIN lens and PZT tube. A drive voltage of
19 V was applied to each electrode-pair of the PZT tube to achieve the required lateral deflection
of 2.24 µm, which is equal to half the inter-core spacing of the Fujikura fiber bundle. This is
below the stipulated limit of 42.4 V peak AC as per the IEC 60601-1 standard, making the
approach suitable for clinical in vivo imaging.

The entire probe assembly had a 45mm rigid length (including the GRIN lens) and a 5mm outer
diameter (OD). This makes the device currently too large to be used through most endoscope
working channels. The limiting elements of the design are the PZT tube, with dimensions
30(L) × 3.2(OD) × 2.2(ID) mm, and the 3D printed outer tube. Future designs could use
custom-made smaller PZT scanning tubes for better compactness, as well as thinner-walled
outer packaging. Such a system could be deployed through the working channel of conventional
endoscopes and provide the basis for improving the diagnostic performance of optical biopsy
systems, increasing the ability to identify and differentiate features of normal and neoplastic cells
at sub-cellular scale.
As a multi-frame techniques, the approach requires minimal motion between image frames

in order to function correctly. Hence, the method reported here requires that the probe is held
steady against the tissue, and could not be used with video mosaicking techniques. When motion
is present, it would be possible to adapt the algorithm to instead make use of the motion of the
probe, rather than the controlled motion of the PZTs, for super-resolution. However, at this point,
the repeatability benefits of the approach would be lost.
The two-fold improvement in resolution was achieved using a Delaunay triangulation based

SR construction algorithm and a 2x2 scanning pattern. Using this algorithm, no benefit was
found to the use of a more dense scanning pattern. However, it is possible that a further resolution
enhancement could be obtained by using different reconstruction algorithms and scanning patterns.
A large number of pixel-super-resolution algorithms have been developed for other applications,
with a comparison of the performance and computation time of some such approaches available
in [24,33]. It may be possible to adapt these algorithms to this application and develop customized
scanning patterns to exceed the gains demonstrated here.

5. Conclusion

We have developed a miniaturized, high-speed PZT-based fiber shifting endomicroscope to
enhance the resolution over conventional fiber bundle based imaging systems. The fiber shifting
endomicroscope provides almost a two-fold improvement in resolution, and coupled to a high-
speed scanning system could provide real-time imaging of biological samples at 30 fps. The
approach can be used for other fiber bundle based imaging systems, providing that a four-fold
reduction in net frame rate is acceptable. By improving the resolution while maintaining a large
field-of-view, this technique could potentially provide the basis for improving the diagnostic
abilities of endomicroscopes in the clinic.
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