University of

"1l Kent Academic Repository

Rodgers, Peter and Vidal, Natalia (1999) Pragmatic Graph Rewriting Modifications.
In: Proceedings of the 1999 IEEE Symposium on Visual Languages. . pp.
206-207. IEEE ISBN 0-7695-0216-4.

Downloaded from
https://kar.kent.ac.uk/21777/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/VL.1999.795904

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/21777/
https://doi.org/10.1109/VL.1999.795904
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Pragmatic Graph Rewriting M odifications

P.J. Rodgers and N. Vidal
Computing Laboratory, University of Kent, U.K. em#.J.Rodgers@ukc.ac.uk, N.Vidal@ukc.ac.uk

Abstract

We present new pragmatic constructs for easing pro-
gramming in visual graph rewriting programming lan-
guages. The first is a modification to the rewgtiprocess
for nodes the host graph, where nodes specifie@rase
Only’ in the LHS of a rewrite match at most oncéhvé
corresponding node in the host graph. This redubes
previously common use of tags to indicate the prsgof
matching in the graph. The second modification gt
the application of LHS graphs, where those spetifie
'Single Match'’ are tested against the host graple time
only. This reduces the need for control flags thdate the
progress of execution of transformations.

1. Introduction

Graph rewriting is an increasingly popular visuat-p
adigm for applications where graphs are the dontidata
structure. We discuss some on going modificatiorsith
a language in the light of our experience in prograng
with the Grrr [1] graph drawing variant of the Sgicpro-
gramming language [2].

Spider was always envisaged as a prototype, medifia
ble experiment in serial deterministic programmirigh
graph rewrites. Hence it has minimal features, tvisien-
plifies its semantics, but which can mean that paots are
difficult to construct. There was a trade off betwecom-
plexity a programming language, and it ease of ése.
needs for changes to the paradigm become appatemt,
ations to the implementation of the system areiliéabe-
cause of its prototype nature. The constructs dssxaihere
are part of an on going pragmatic process to impihe
ease of use of Spider.

The two methods of modifying the rewriting method
that are given in this paper are both specifiegtéaph trans-
formations, which are lists of graph rewrites. Aagjn re-
write is a pair of graphs, a LHS and a RHS. Thiedéhces
between the LHS and RHS define the changes to be ma
to the host graph if the LHS graph of the rewritgches in
the host graph. Transformations are initiated bgger

nodes in the host graph, and the rewrites are rityrtest-
ed in turn in a top down manner until one LHS magh

The first modifier is an extra possible featuraoties
in the LHS of a rewrite. When specified by a prognaer
as ‘Once Only’ anode in a LHS of a rewrite canchatith
each node in the host graph at most once.

The second modifier is a feature of rewrites. Anigav
specified as ‘Single Match’ will only match oncerithg
the execution of that transformation. Usually, tibyg down
matching method used by Grrr forces each LHS graplke
considered in turn as a potential match in the goaph.
However, once the LHS of a Single Match Rewrite has
been found in the host graph, it will not be tesfteda
match again.

The two new constructs are additions to the languag
S0 we maintain backwards compatibility with pre\dwer-
sions of Spider.

2. Therewrite modifiers

The scope for both the new features are the trigge
node in the host graph that initiated the transéiiom.
This means that a Once Only Node that matches a imod
the host graph as a consequence of one trigger witde
only affect the matching initiated by the samegeignode,
but has no effect on the matching of another triggele of
the same name, so that the node in the host geapimatch
again.

The addition of Once Only nodes is designed toecedu
the use of tags in transformations. The use of imgem-
mon when programming in Grrr as a they are uséualdie
cate which nodes have been visited. Typically aritew
will test for the negative presence of a tag attddio a data
node, and if not present the rewrite will perforome ac-
tion on the node and create a tag attached thé next ap-
plication of the transformation will then not matelith
that data node. After all the relevant nodes hagenb
matched the tags must be removed by a garbagetotie
transformation.

The Once Only construct allows tags to be avoided b
iterating through a graph one node at a time vhighrtode
specified in the LHS as a Once Only Node. As a eons
guence, transformations are clearer and easigrecify,



with a reduced number of primitives, including lese of
negatives. Also, during execution programming stegs
avoided and the host graph has more clarity because
longer contains these tags.

The use of Once Only Nodes can be seen in Figlire 2.
which shows a Once Only Node, ‘C’, with a shadeckba
ground, in the first three LHS graphs of the transfation.
This transformation is part of a program to laya&-Tree.
‘DoBase’ places the nodes at the bottom of the imes
line.

leval @

2

B
=}

3
level
DoBase
ast

b

i

Figure 2.1: The transformation ‘DoBase’

The second new construct, Single Match, allows the
control of execution of rewrites to be specifiedrenpre-
cisely. The technique previously was to introdulcagd,
and as with tags, negatives in LHS graphs wouldere
the subsequent matching of rewrites which creaked t
flags. Now rewrites specified as Single Match wilitch a
single time in the host graph, and will be ignodeding
subsequent applications of the trigger node. Ak Wihce
Only the overall effect is to streamline transfotioms,
lessening the number of negatives and reducinglther
in the host graph.

Figure 2.1 illustrates the use of Single Match Risr
The first rewrite is shaded, indicating that theggammer
has specified that it is single match. It will ontatch a sin-
gle time in the host graph for each instance ofttigger
node initiating the transformation, so that aftewriting
the host graph the rewrites can be disregarded finotmer
matching. This also demonstrates that Single M&eh
writes may contain Once Only Nodes. There is lititer-
action between the two new techniques. The first

transformation will be used at most a single tiane] the
node in the host graph that matches with ‘C’ camnatch
with a Once Only Node in another rewrite when thes
trigger node initiates this transformation.

An addition to the rules governing which triggeideo
of two in the host graph is applied first has bewme. This
is because of an history of matching in the hoaplris
now required to be stored, as all host graphs nawve lto
have knowledge about which nodes have already been
matched. Previously where two nodes were insepatabl
connecting subgraphs, node label or age, eitheld dmei
executed safely, as either node will have the seffeet.
Now if one trigger has matched a Once Only Nod8io¢
gle Match Rewrite, the effects may not be the sdrance
the additional rule that the trigger node furtitesbugh its
rewriting process is executed first. This retains serial
deterministic application of trigger nodes.

3. Conclusions

We have presented two new serial graph rewriting
modifiers. The Once Only Nodes described allow paoy
mers to more easily iterate through the nodes host
graph, whilst the Single Match Rewrites allow closen-
trol of execution order. The net effect is to makegram-
ming in Grrr simpler and more effective.

We know of no obvious analogous constructs in other
systems, either visual or textual. This confirmsloelief in
the interesting and unique nature of the grouprofjam-
ming paradigms inspired by the work of graph rewngit
and graph grammar researchers.

We regard this work as an on going process in éxper
menting with our graph rewriting paradigm, and éhare
many other possible extensions and changes posSitte
cerning the modifiers discussed here, experimematith
the modifiers discussed here, extending Once @néyb-
graphs is conceivable, given a sensible interpogtaind a
method of identifying primitives with different lals
across LHS graphs.

Acknowledgements

This work was supported by the EPSRC UK research
council, grant GR/M23564.

References

=

P.J. Rodgers. A Graph Rewriting Programming Lagguor
Graph Drawing. P.J. RodgeRroceedings of the 14th IEEE
Symposium on Visual Languages (VL!98). 32-39. 1998.

2. P.J.Rodgers and P.J.H. King. A Graph Rewritirgy#l Lan-
guage for Database Programmifige Journal of Visual Lan-
guages and Computing 8(6)cademic Press. pp. 641-674.
December 1997.



