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Abstract

We present new pragmatic constructs for easing pro-
gramming in visual graph rewriting programming lan-
guages. The first is a modification to the rewriting process
for nodes the host graph, where nodes specified as ’Once
Only’ in the LHS of a rewrite match at most once with a
corresponding node in the host graph. This reduces the
previously common use of tags to indicate the progress of
matching in the graph. The second modification controls
the application of LHS graphs, where those specified as
’Single Match’ are tested against the host graph one time
only. This reduces the need for control flags to indicate the
progress of execution of transformations.

1. Introduction

Graph rewriting is an increasingly popular visual par-
adigm for applications where graphs are the dominant data
structure. We discuss some on going modifications to such
a language in the light of our experience in programming
with the Grrr [1] graph drawing variant of the Spider pro-
gramming language [2].

Spider was always envisaged as a prototype, modifia-
ble experiment in serial deterministic programming with
graph rewrites. Hence it has minimal features, which sim-
plifies its semantics, but which can mean that programs are
difficult to construct. There was a trade off between com-
plexity a programming language, and it ease of use. As
needs for changes to the paradigm become apparent, alter-
ations to the implementation of the system are feasible be-
cause of its prototype nature. The constructs discussed here
are part of an on going pragmatic process to improve the
ease of use of Spider.

The two methods of modifying the rewriting method
that are given in this paper are both specified in graph trans-
formations, which are lists of graph rewrites. A graph re-
write is a pair of graphs, a LHS and a RHS. The differences
between the LHS and RHS define the changes to be made
to the host graph if the LHS graph of the rewrite matches in
the host graph. Transformations are initiated by trigger

nodes in the host graph, and the rewrites are normally test-
ed in turn in a top down manner until one LHS matches.

The first modifier is an extra possible feature of nodes
in the LHS of a rewrite. When specified by a programmer
as ‘Once Only’ a node in a LHS of a rewrite can match with
each node in the host graph at most once.

The second modifier is a feature of rewrites. A rewrite
specified as ‘Single Match’ will only match once during
the execution of that transformation. Usually, the top down
matching method used by Grrr forces each LHS graph to be
considered in turn as a potential match in the host graph.
However, once the LHS of a Single Match Rewrite has
been found in the host graph, it will not be tested for a
match again.

The two new constructs are additions to the language,
so we maintain backwards compatibility with previous ver-
sions of Spider.

2. The rewrite modifiers

 The scope for both the new features are the trigger
node in the host graph that initiated the transformation.
This means that a Once Only Node that matches a node in
the host graph as a consequence of one trigger node will
only affect the matching initiated by the same trigger node,
but has no effect on the matching of another trigger node of
the same name, so that the node in the host graph can match
again.

The addition of Once Only nodes is designed to reduce
the use of tags in transformations. The use of tags is com-
mon when programming in Grrr as a they are used to indi-
cate which nodes have been visited. Typically a rewrite
will test for the negative presence of a tag attached to a data
node, and if not present the rewrite will perform some ac-
tion on the node and create a tag attached to it. The next ap-
plication of the transformation will then not match with
that data node. After all the relevant nodes have been
matched the tags must be removed by a garbage collection
transformation.

The Once Only construct allows tags to be avoided by
iterating through a graph one node at a time with the node
specified in the LHS as a Once Only Node. As a conse-
quence, transformations are clearer and easier to specify,
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with a reduced number of primitives, including less use of
negatives. Also, during execution programming steps are
avoided and the host graph has more clarity because it no
longer contains these tags.

The use of Once Only Nodes can be seen in Figure 2.1,
which shows a Once Only Node, ‘C’, with a shaded back-
ground, in the first three LHS graphs of the transformation.
This transformation is part of a program to layout a B-Tree.
‘DoBase’ places the nodes at the bottom of the tree in a
line.

Figure 2.1: The transformation ‘DoBase’

The second new construct, Single Match, allows the
control of execution of rewrites to be specified more pre-
cisely. The technique previously was to introduce flags,
and as with tags, negatives in LHS graphs would prevent
the subsequent matching of rewrites which created the
flags. Now rewrites specified as Single Match will match a
single time in the host graph, and will be ignored during
subsequent applications of the trigger node. As with Once
Only the overall effect is to streamline transformations,
lessening the number of negatives and reducing the clutter
in the host graph.

Figure 2.1 illustrates the use of Single Match Rewrites.
The first rewrite is shaded, indicating that the programmer
has specified that it is single match. It will only match a sin-
gle time in the host graph for each instance of the trigger
node initiating the transformation, so that after rewriting
the host graph the rewrites can be disregarded from further
matching. This also demonstrates that Single Match Re-
writes may contain Once Only Nodes. There is little inter-
action between the two new techniques. The first

transformation will be used at most a single time, and the
node in the host graph that matches with ‘C’ cannot match
with a Once Only Node in another rewrite when the same
trigger node initiates this transformation.

An addition to the rules governing which trigger node
of two in the host graph is applied first has been made. This
is because of an history of matching in the host graph is
now required to be stored, as all host graphs now have to
have knowledge about which nodes have already been
matched. Previously where two nodes were inseparable by
connecting subgraphs, node label or age, either could be
executed safely, as either node will have the same effect.
Now if one trigger has matched a Once Only Node or Sin-
gle Match Rewrite, the effects may not be the same, hence
the additional rule that the trigger node furthest through its
rewriting process is executed first. This retains the serial
deterministic application of trigger nodes.

3. Conclusions

We have presented two new serial graph rewriting
modifiers. The Once Only Nodes described allow program-
mers to more easily iterate through the nodes in a host
graph, whilst the Single Match Rewrites allow closer con-
trol of execution order. The net effect is to make program-
ming in Grrr simpler and more effective.

We know of no obvious analogous constructs in other
systems, either visual or textual. This confirms our belief in
the interesting and unique nature of the group of program-
ming paradigms inspired by the work of graph rewriting
and graph grammar researchers.

We regard this work as an on going process in experi-
menting with our graph rewriting paradigm, and there are
many other possible extensions and changes possible. Con-
cerning the modifiers discussed here, experimentation with
the modifiers discussed here, extending Once Only to sub-
graphs is conceivable, given a sensible interpretation and a
method of identifying primitives with different labels
across LHS graphs.

Acknowledgements

This work was supported by the EPSRC UK research
council, grant GR/M23564.

References

1. P.J. Rodgers. A Graph Rewriting Programming Language for
Graph Drawing. P.J. Rodgers. Proceedings of the 14th IEEE
Symposium on Visual Languages (VL’98). pp. 32-39. 1998.

2. P.J. Rodgers and P.J.H. King. A Graph Rewriting Visual Lan-
guage for Database Programming. The Journal of Visual Lan-
guages and Computing 8(6). Academic Press. pp. 641-674.
December 1997.


