University of

"1l Kent Academic Repository

Chadwick, David W, Casenove, Matteo and Siu, Kristy (2013) My private
cloud--granting federated access to cloud resources. Journal of Cloud
Computing, 2 (1). pp. 1-16. ISSN 2192-113X.

Downloaded from
https://kar.kent.ac.uk/43204/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1186/2192-113X-2-3

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/43204/
https://doi.org/10.1186/2192-113X-2-3
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

My private cloud — granting federated access to
cloud resources

David W Chadwick
Corresponding author
Email: d.w.chadwick@kent.ac.uk

Matteo Casenove
Email: m.casenove@gmail.com

Kristy Siu*
Email: kwss2@kent.ac.uk

! School of Computing, University of Kent, Canterbury CT2 7NF, UK

Abstract

We describe the research undertaken in the six month JISC/Efeg&€i My Private Clou
project, in which we built a demonstration cloud file storage semat allows users to logjin
to it, by using their existing credentials from a configunetsted identity provider. Onge
authenticated, users are shown a set of accounts that they arendrs of, based on their
identity attributes. Once users open one of their accounts, theyplead and download filgs
to it. Not only that, but they can then grant access to theirefeurces to anyone else in the
federated system, regardless of whether their chosen delegmtesed the cloud service
before or not. The system uses standard identity managementofsptattribute based
access controls, and a delegation service. A set of APIs have béeedd®r th
authentication, authorisation and delegation processes, and the softevheehaeleased ps
open source to the community. A public demonstration of the system is available online.

Keywords

Federated access, Attribute based access controls (ABAC), Defegatiuthority, Identity
management

Introduction

When anyone offers a new cloud service, one of the first thiveystypically do is register

the new users and give them a new set of credentials. We hibligve sub-optimal practise
for a number of reasons. Firstly it is burdensome on the user, whaodahlas too many sets
of credentials to remember. Secondly it is burdensome on the claudsotieveloper, who

has to: determine what type of authentication scheme to use,dbsécure store for the new
credentials and ensure that the authentication mechanism workelgeand correctly.

Thirdly it is burdensome on the operational staff who may havedister and remove users
from the system and deal with users losing their credemtmalsasking for new ones. Finally,
and perhaps most importantly, it can lead to security vulndrabjlsince it now becomes a
target for hackers to attack and steal the users’ credefitjaland users tend to lighten their

mental load by either choosing weak and easy to remember passwardsg the same
password for each of their systems.

All of these burdens can be reduced if we make use of trust withiems. Trust is known to
lower the cost of doing business [2]. If you can get a trusted plairty to provide a service
you need, which they specialise in, at less cost to yourselfythedon’t have to provide it,
and you can both benefit from the transaction. You obtain a higher quakgnate at a
lower cost, and they profit from selling their expertise. Sicloeid service providers want
users to trust them and use their new services, isn't it rdalsoimaexpect those same cloud
service providers to trust other service providers who alreadyadige in authenticating and
identifying users? These latter service providers are knowviaheasity providers (IdPs), and
there are already thousands of them in existence today, providingdneices to existing
end user service providers, through a process known as identity federation.

This trust based approach was adopted by the My Private Cloud peogetmonth project
funded by EPSRC/JISC, to see how trust based services from theing€d Trusted
Architecture for Securely Shared Services (TAS3) projectcf8]ld be applied to cloud
services. From our experiences of building federated servick®ei EC TAS3 project, we
decided to apply this to the open source S3 cloud service offereddayyptus [4]. TAS3's
trust model is based on Ronald Reagan’s famous saying “trusebiyt’. When applied to
web service providers this means that web services’ clien&C@) are able to trust web
service providers (WSPs) to provide the security services theytiadyby virtue of both the
contractual agreements they offer and the reputations they hanexd deom other service
users. Moreover the clients can subsequently validate that the WSPs do pro@deithiess
according to their contractual legal agreements through an audiaynwhich is sent
directly to them. In the context of the current project, the S3 clerwice is the WSC. Once
we have acknowledged that WSPs can be trusted, we can giaifdtthe trust, security and
privacy preserving infrastructures that cloud service providers eedoyr relying on these
trusted third parties to operate parts of the security infretsire. As researchers we can turn
our attention to the problems of designing and building tools and sefeicaslarge scale
trusted federated privacy preserving cloud infrastructure, with gma@ed access control,
user accessible audit trails, and trust assurance mechanisms.

Current state of the Art

When users submit their personal data to web sites and cloud proodays they have to

trust that the provider will act in accordance with its adsedipolicies and contract terms.
Users typically have no visibility about what happens to their afdéa it has been given to
the provider. Users have little evidence to tell them which prawittertrust and have no
control over the policy that is applied by the service provider to taa. If users do not

agree to the provider’'s terms and conditions, they are typicallyloatesl to use the service.
In the case of Amazon S3, for example, the user is presented \Wahgthy legal document
that has the following clause buried within it [5]:

4.2 Other Security and Backup. You are responsible for properly configuring
and using the Service Offerings and taking your own steps to maintain
appropriate security, protection and backup of Your Content, which may
include the use of encryption technology to protect Your Content from
unauthorized access and routine archiving Your Content.

This places a considerable burden on the user (data encryption, lEcRuand seems to
absolve the cloud service provider from all responsibility to keepldtee secure, and from
any liability should the data be lost, compromised or corrupted.t{ffiesof clause represents
a significant inhibitor to many users which prevents them from using cloud compmdang t

Many researchers similarly assume that cloud service prowdersot be trusted and that all
data must be encrypted before it is submitted to the cloud, serdmple [6]. Mowbray and
Pearson [7] recognize the problem of privacy protection when sumgnigensitive
information to (untrusted) clouds. Their solution uses a client basectymvanager which
obfuscates sensitive data before submitting it to the cloud.

However, organisations have been regularly outsourcing (unencryptedardthprocessing
to third party providers for decades [8]. Many UK government’'sdilvices are already run
by third party providers and this is expected to grow and migoatdoud computing [9].

Consequently many organisations are routinely used to trusting thirdspaith their data

and the processing of it. It therefore seems logical to asdima most cloud service
providers will similarly assume the ‘trusted data handler’ labellue course. My Private
Cloud aimed to facilitate this process by providing cloud servioeigers (cloud SPs) with
the software tools, procedures and services to easily offerdrukiad services to cloud
users, by relying in part on external trusted WSPs.

Current cloud platforms (e.g. Amazon, Google, Eucalyptus etc.) do not sudpgerated
access, delegation of authority, or fine grained access control. primegrily use a simple
Access Control List (ACL) to provide access to other cloud ubegeneral, these are coarse
grained. Controlling who might invoke a virtual machine is often ioéstt to everyone or
no-one. Amazon’'s S3’s ACLs only allows users to specify the follovdogess levels:
anonymous access (everyone, including non-Amazon Web Services (4841S), all AWS
users, or named individual AWS users. All existing ACL based sygstge limited in only
being able to grant controlled access to other registered useazoA has recently extended
its Access Control system with Bucket Policies. These polatles users to manage access
to their S3 resources at the bucket level for both the buckets and the objects, prowidieg a
fine grained access control for those resources, but stitetimo other registered Amazon
users. As pointed out in [10], this rather crude access control maohawaikes it difficult to
use S3 as part of a (large) science project involving manybooitors. Also, the lack of a
fine-grained delegation mechanism impedes the use of S3 in daa-dcience projects
where scientists often want to delegate access rights partcular data set to an
application/job running on their behalf.

Different approaches to the cloud access control problem have beeshpdbin the
literature. V. Echevarria et.al [11] have developed a novel approdet P&rmission as a
Service (PaaS) which provides a separate access control s&omcethe other cloud
services. In PaaS, user data is encrypted in the cloud, usibgtattvased encryption (ABE),
to maintain confidentiality. Permissions are managed via decrypiggs kased on the
attributes of the users being granted access. Our approachl&s sinfaaS, in that access is
granted based on the attributes of the user, but there the syrelaild. We assume the cloud
service provider can be trusted to keep the information confideriaéneryption is not
mandatory (though the cloud provider can encrypt the data, as an optaduel added
service, if it wishes to). The user is given confidence tthdothrough the ability to attach
“sticky” policies to his data and receive audit summaries fitoencloud SP. The permissions
in our system are provided by ACLs decided by the user follotiegliscretionary access

control model. Moreover, our system permits delegation of accesdl@and the user to give
permission to someone who is not an existing cloud user, as longyasain be authenticated
by one of the trusted federation IdPs.

Recent work by Dongwan Shin [12] added fine grained role based accesss to laaS, by
introducing a trusted domain that is used to manage users, roleas@ss permissions. But
all the users, roles and permissions are managed centrallyg Withidomain, thus it does not
provide federated access or allow roles and attributes to benedddy external attribute
authorities, as in for example the UK Access Management FextefaB]. We believe that
these are essential features for scalability, and they are provided astparcurrent project.

Federated identity management, for example, as typified irstifgboleth implementation
[14], comprises a trusted Identity Provider (IdP), Service Provi8&) and user agent
(usually a web browser). The user attempts to access the BB user agent, but the SP, not
knowing who the user is, redirects the user to its trusted IdPufbemtication. If the SP
supports multiple 1dPs, then it may first ask the user to choos#wd# he wants to use for
authentication. When the user’s agent contacts the IdP, the uskedstasauthenticate, and
if successful, the IdP redirects the user back to the SP, prowitinggent with digitally
signed assertions to present to the SP. These assertions sayethaser has been
authenticated by the IdP, and that he has the attached id¢tniitytas. These attributes may
include a unique persistent identifier (PID) for the user, so lieaBP can provide a personal
service for the user on repeated visits. When we apply this neodkelud services, the cloud
service provider (cloud SP) becomes the SP, and the IdP can beistmgddP which the
cloud SP trusts, from any existing federation to which the cloud SP belongs.

Delegation of Authority allows a user (the delegator) to dedegaty of his privileges to

another user or application of his choice (the delegate) [15]. Wherbaskxrl or attribute

based access controls are used, then the delegator may deledater attribute instead of a
privilege, since privileges are assigned to roles and attriblites form of delegation is

superior to existing grid based delegation that relies on pratiices [16], since i) the

delegate must authenticate as himself, and not as a child afetbgator as in proxy
certificates (which is a form of masquerade) and ii) fireangd delegation is automatically
supported by the delegator delegating a subset of his identilyutdr. Delegation in

federated systems is made more difficult because the clouta$Rot have had contact with
the delegate before, therefore does not know how to recognise whicls uke chosen

delegate.

Original project objectives

The main objective of the My Private Cloud project was to padtieg research software,
tools and methods from the European FP7 integrated project TAS3, touldeio order to
undertake the following proof-of-concept activities:

I. integrate a trust and reputation infrastructure into cloud services thatlew users to
determine which cloud providers are the most trustworthy, and that will block
untrustworthy users from gaining access to cloud resources;

ii. allow the users to set their own fine grained privacy policies for controlling all agesse
to their data whilst it is in the cloud;

iii. automatically enforce the user’s privacy policy before any requestor is allowed &@cess

the user’s data;

iv. ensure that the user’s privacy policy is “stuck” to their data and follows their data
around as it moves through the cloud;

v. allow the users to dynamically update their policies;

vi. ensure that legal and other policies (such as the cloud provider’s) are also enforced as
well as the user’s privacy policy, and that appropriate conflict resolution strategies are
adopted when conflicts arise;

vii. provide users with the ability to delegate access to their data to any otties eftheir
choosing;

viii. provide federated access to cloud services and the user’s data, theraimstrairing
the set of users (to those only known to the cloud provider);

ix. include the level of assurance (LoA), a measure of trustworthiness, in ble@@cdation
assertion so that access decisions can be based on this;

x. allow requestors to aggregate their roles and attributes from multiple sources of
authority so that finer grained privacy policies can be created;

Xi. provide users with (configurable) audit trails that provide them with fulbiity of
what happens to their data whilst it is in the cloud;

xii. provide an optional access o-ride capability (so called break the glass policies) wi
allow responsible requestors to over-ride the access control decision in an emergency
situation, when they are willing to justify this later.

The above were to be achieved by utilizing the software deliesdlmm the European FP7
TAS3 integrated project (http://www.tas3.eu/), which has provided openessoitevare for
the construction of a Trusted Architecture for Securely Shared Services.

Objectives shown irbold above were fully achieved, as well as some new originally
unanticipated objectives described in section 4 below. Those shouadiés above were
partially achieved, whilst those shown in normal font were not ateingtie to the time
constraints of the project.

New objectives

Whilst the original objectives remained valid, they could not alabtleieved in the short
duration of the project (6 months) due to the addition of new highertgrafsjectives which
became apparent once the project had started. When developing tipeofiosgpe it soon
became obvious that (sticky) policy based authorisation sysiertigeir owncannot provide
the user friendly access control functionality that is requirpeécically, a policy decision
point (PDP), which evaluates the policies stuck to a resource, ltymody answers Grant or
Deny to a request to access the resource. But when a delegatédgssietto the cloud, he
does not necessarily know which resources have been delegated iy bther users (and
even if he did, one would not want to burden the user with the memnal effhaving to
remember all the resources’ URLS). The only way the systarid find out which resources
were available to the delegate, using a PDP alone, would be &thyalugh its entire list of
resources asking the PDP if this user has access to them. This clearlgé&sid¢ for cloud-
scale resources, so another solution had to be sought. This introducedavtivwgmer priority
objectives into the project, namely:

- given the attributes of a user, enable the authorisation system to be ablantdyissly

which resources the user potentially has access to, and
- given aresource, enable the authorisation system to be able to instamthicdaysers,
based on their attributes, potentially have access to this resource.

When these two objectives are implemented as services, we c#menséo locate a user’s
resources at login time, and after that use the PDP to perioengrained access control on
them.

Once we started the project implementation, we realisedinthatder to gain wide scale
implementer acceptance, simply specifying the standard protacdiservices that need to
be implemented would not be sufficient. The EC TAS3 project had doaise hut
considerable implementation effort is still needed in order tsetihe security and trust web
services that it provides. Many toolkits need to be used in ¢todereate the secure SOAP
messages that are needed to talk the various protocols thatféhendisecurity web services
use. A much simpler interface is needed, which led to another higher priorityi\abject

- can we specify a set of easy to use APIs that will make it very easyglementers to
integrate the security services that we are providing into their cloud appigati

Consequently significant effort was spent during the project icifgpey and implementing
these APIs (in both natural language and in our chosen implementation language, PHP).

Finally, we wanted to make the federated S3 service veryteasg by end users. Amazon’s
S3 service is web browser based, whereas Eucalytus’s S3 gsesnaand line client. We
preferred the browser interface as it is much easier to use, so anothevebyastadded:

- canwe to make the Eucalyptus S3 service accessible via a standard web browgeana
new software is needed by the end user?

The result of this, is that our project then focussed on creatimonaeénd web application
(our new proxyS3 software) that interfaces with the useh thi2 security APIs and with the
Eucalyptus S3 service (Walrus) at the backend. This web applicaticadled the proxyS3
server. Unfortunately a disproportionate amount of effort was sjugimg the project on this
last objective, which we will discuss again in Lessons Learnt.

Architecture and design

The overall architecture is shown in Figure 1. The cloud servikesnase of many external
security services via a set of 3 security APIs: one for atitagion, one for authorisation,
and one for delegation. Behind each of the APIs lie infrastructur@aoents that provide
the appropriate service to the API. This architecture allowsnfrestructure components to
be changed, upgraded, and replaced etc. without affecting thehaidervice that the API
provides to the application (although the quality of the service waay with different
backend components).

Figure 1 The overall architecture.

The Authn API acts as a federation SP which contacts the coedifederation IdP asking it
to authenticate the user and return his identity attributes, incladiegsistent ID (PID). The

Authn API talks the standard SAML protocol, enhanced with the leva$sidrance, so that it
can talk to any IdP that supports this. In our architecture waaehe (single) federation
IdP with a proxyldP that:

I. is capable of talking multiple IdP protocols such as SAML, OpenlID, OAuth etc. to a
variety of IdPs. This allows us to add new IdPs and new IdP protocols at anwiihoait
effecting the cloud service, since its API continues to talk the enhanced SAMt@riato
the proxy IdP;

il. is configured with the level of assurance (LoA) of each federated IdP,tsbdha inform
the cloud service how trustworthy the IdP is;

iii. allows the user to choose which IdP he wishes to use for authentication, from the set tha

IS available;

iv. allows the user to link together his various IdP accounts in order to aggregatethites
and increase the LOA,

v. allows the cloud service provider to integrate its own corporate LDAP eervarder to
retrieve the identity attributes of its employees for finer grhaezess control;

vi. has a configurable Credential Validation Service (CVS) which contains polesy sayin
which IdPs are trusted to issue which attributes to whom [17].

The proxy IdP is an enhancement of the SimpleSAMLphp [18] IdP. Wedaude new
modules to it, and replaced the Facebook module which was out of date Eighows the
IdP selection screen that is presented to the user. After theclhiseses his IdP, he is
redirected to it, authenticates, and is then returned to the cloucesavhich is given the full
set of identity attributes of the user, including the PID and.ti®, by the proxy IdP. The
design, implementation and user trials of the proxyldP are descibdd9]. A full
description of the Authn API can be found in [20] and in the online docurentait the
proxy S3 service [21].

Figure 2 The proxylDP screen.

The Authz API is responsible for authorising the user to accessrees. It has a backend
PDP and a database that stores the access rights of thedeséfied by their identity
attributes, to the resources, also identified by their identitjpates. API calls are available
to add rights, remove rights and get rights from the database, and abtaiuthorisation
decision from the PDP. As described in Section 4, it is curreatiypossible to use only a
standard policy decision point (PDP), since additional supporting functionslineeded
which has not yet been standardized e.g. the ability to determirteaatess rights a user
has. For this reason, the database is used to obtain the initial gdagehof user access rights
to resources, then the PDP is called to determine any additiora/ pated constraints, such
as limits on the time of access, or whether break the glast lme first enacted etc. A full
description of this API can be found in [20] and [21].

The Delegation API allows one user, the delegator, to delegatattailyite to another user,
the delegate. It has a Delegation Issuing Web Service (RE)to support it. This web
service has a backend LDAP directory that holds the users, botlatdetegnd the delegates,
and the attributes that the former have delegated to the lalive)g with any delegation
constraints, such as the period of delegation and whether the e#iritan be re-delegated
etc. The delegated attributes and delegation constraints arenheigitally signed X.509
attribute certificates in the delegate’s LDAP entry, so tihey cannot be tampered with. The

attribute certificates are signed by the delegation seitgetf. There were several obstacles
to overcome in using our pre-existing DIS in the current project, leegktare discussed in
the next section.

API validation

In order to validate the security APIs, we built a proxyS3 serwikich front ends a normal
S3 service through its APIs (which are provided by both Amazon’sEamdlyptus’s S3
services). The proxyS3 service has been designed and built in aamdakhion, with
configuration options specifying the resources and actions sa et be adapted to other
cloud storage services. The proxyS3 service comprises four partsedhety APIs (which
can be used by any cloud service), the normal S3 APIs, a Gd>ure input from the user
and display results to the user) and the application logic whiclssexéoth sets of APIs to
upload, download files, and grant and enforce fine grained access ® atserThe
application logic calls the security APIs and enforces tlhesaas they make, before calling
the S3 APIs and displaying the results to the user via the @Ukrins of policy based
authorisation, the application logic is a policy enforcement point YR##ch calls the
security APIs in order to interact with the security sewi@ithentication, authorisation and
delegation) before enforcing their decisions when calling th&F8. Figure 3 (top) shows
the Welcome screen which the user is presented with when first contactolgutieservice.

Figure 3Welcome screen and account chooser screen.

The proxyS3 uses the AWS library, which is written in php, to commigenigdh the cloud

S3 service. It was therefore natural to write the entire p@®»sgvice and security APISs in
php. Whilst Eucalyptus provide a command line client, Amazon alreadyaisveb browser
to manage its S3 resources, but this is very limited in the asdion and delegation
services that it provides. Our proxyS3 provides a much richteofseapabilities via our

defined security APIs, and in this way the user is able to prowide grained control to the
S3 resources by using a standard web browser.

The proxyS3 service has an account database (DB) of S3 keys gutkemtication
credentials) for all the registered accounts so that the @8xgpplication can make requests
to S3 on the account holder’s behalf. There is a many to many rgapgiween users and
accounts. Users are identified by a set of identity attribateslarly account holders. Thus
one user may have a set of attributes which entitles him to ewera different accounts
(e.g. a professor from the University of Kent with PID abc, coulthbeowner of three S3
accounts: one for professors from the University of Kent, one lfdraBc, and one for all
professors). Likewise many different users may possess thileuts required to be the
owner of any particular S3 account (e.g. all professors dttinersity of Kent can be the
owners of a single S3 account). See the bottom screen shot of Bigarethe Account
Chooser window which allows the user to choose which account he wistrest® or open.
When a federated user wishes to create an account on the &3 $ystthe first time, the
proxy S3 service can make an ‘add user’ request to the S3 service, actingdmtheole, in
order to add a new user to the cloud S3 system. It can then download the S3 userialsredent
from the cloud and store them in the DB. Whenever a federatechoxsewishes to access
this S3 account, the proxyS3 service can extract the credentiaisgtie DB and access the
account on behalf of the user. This design hides the use of keys frasetiseand all the use
of keys is performed inside the proxyS3 service. In order to msisecurity, the DB

should be stored separately from the proxyS3 module so that it capdmtely protected,
e.g. by encrypting the keys if necessary.

Whilst our intention was for the proxyS3 service to automatiaagyster new users (i.e.
accounts) with the S3 service, unfortunately the Eucalyptus API dicllow the entire

process to be fully automated. Human administrator involvement isredqum the

registration process, so we had to mark new accounts as “pendingthehaser asked for
them to be created. They had to stay in the pending state unt@ldounistrator activated
Eucalyptus’s new user registration process. Once the account Imaadbeated, it can then
be opened by the user as described above.

All the security functionality of the proxyS3 service isrid out by the three security APIs.
Users do not need new cloud provided credentials (keys) to aceegsottyS3 service.
Instead, they use their existing authentication credentials to logia federated identity
provider which is trusted by the proxyS3 service. This trusted Idi® $kads the user’s
attributes to the proxyS3 service which allows it to deterntieeaccounts this user is the
owner of. In our demonstration proxyS3 service, we have configureddkeS# to trust our
proxyldP, rather than an actual IdP, since this provides greatebilitg and protocol
support as described earlier. The proxyldP is configured to trudtodevset of identity
providers from the UK Access Management Federation, Google béaice Twitter and
OpenID. This was simply to ensure that a maximal set o&wsrild try out our pilot service
and experiment with it, since most people have a login account widast one of these
identity providers. We would not expect valuable cloud services to hale & lax trust
policy in an operational environment!

Implementing the delegation API raised several challenges. mhan problem we
encountered is that neither the delegators nor the delegates taaky iknown to the
delegation issuing service (DIS), so the LDAP directorynigailly empty. We solved this
problem by dynamically populating the LDAP directory at the tohelelegation, with the
Persistent Identifiers (PIDs) and IdPs of both users. The contnaitidP name and PID is
globally unique throughout a federation, so no two users will ever theeveame LDAP
distinguished name built from these two components. Since the delegali@ady logged in
at the time of delegation, the proxyS3 service has access Rilhiand IdP. Unfortunately,
neither the proxyS3 service nor the delegator will know the Plihefdelegate. They also
may not know which IdP the delegate is registered with. So hohe idelegator to refer to
his chosen delegate? We solved this problem through a process knowrlegatiole by
invitation”. This splits the delegation process into two sub processebe first phase,
delegation request, the delegator requests to delegate an attobaiteelegate. The top
window of Figure 4 shows the screen for this, in which the delegasties to delegate the
Family attribute to his Dad. Since the delegator is already kriowthe cloud service, his
IdP/PID can be stored in the DIS’s LDAP directory. The Bt8v issues an invitation token
for the delegator to give to the delegate. It stores a copki®falong with the delegated
attributes and any delegation constraints. The invitation token tigllgca randomly
generated 128 bit secret number, so it is reasonably strong éofdice or guessing attacks.
The cloud service converts this into a “secret” URL which isgzh&mck to the delegator.
This is shown in the bottom screen shot of Figure 4. The delegator mesvtgis URL to his
chosen delegate, by any out of band means e.g. via SMS, email aryr&iok. Once the
delegate clicks on the URL, phase 2, delegation acceptance, bHgnsloud service now
presents the delegate with the federated authentication scgedfigeire 2, which requires
the user to choose her IdP and authenticate. Once authenticatédlethette is identified by

his PID and IdP, and can be added to the DIS’'s LDAP service. A niegatien attribute
certificate can be created for her by the DIS, and storéérn LDAP entry. Whenever a user
authenticates to the cloud service, it should ask the DIS foatarnlyutes which have been
delegated to this user, and add them to the identity attributeslgdoby the IdP. In this way

the user can be given access to both the accounts that he or sharmwh® resources that

have been delegated to him or her. So from now on the delegate may authenticate to the cloud
service and access the delegated resources as often as hee wislses, until either the
delegation expires, or the delegator revokes the delegation, in wisehtlea attribute
certificate is removed from his/her LDAP entry.

Figure 4 The delegation screens.

Another issue we had to solve, is which attribute should be delegateel delegate by the
delegator. It would not be appropriate to allow the delegator to delege of his IdP
provided attributes to anyone, since he has no authority to dodhithe first author of this
paper should not be allowed by the cloud service to delegate hisr&ityivid Kent professor
attribute to anyone. The solution we conceived of, was to make thgattelen attribute
authority for his own attributes, and to allow him to specify his ottribate values such as:
friend, family, project X member etc. The attribute type isomuatically created by the
delegation issuing service based on the identity of the delegasveby ensuring global
uniqueness of the delegated attribute type and value.

Achievements

Overall the project was very successful and achieved mast afiginal objectives as well as
several new ones. Its main achievements were the spaoificd a set of three security APIs
for cloud services and a pilot cloud storage service that demodgt@teto use them. These
security APIs have been specified in natural language asawett PHP. They have been
implemented in PHP as open source code and are publicly availaile¢hieoproject’s web
site [21].

We have made the proxyS3 service into a permanent public demonstraadabla at
https://authz.tas3.kent.ac.uk/proxyS3 which anyone can log into andthsg dlready have
an account at either: Google, Facebook, Twitter, the UK Accessigdanent Federation, or
any OpenlID provider. This should cover the vast majority of Intarsers. We distribute the
open source code, documentation, published papers and several powerpoint joreserdat
the public pages of the cloud service. In this way customers canmgpewith the service,
and if they like it, use the service to download its code and documentation.

Of the original objectives that were not fully achieved, only twoewemt attempted: adding a
trust and reputation service and auditing. This was simply to do wahbkaof time in the
original project. It would be possible, given a new project, to integhatse functionalities in
an application independent way via some new APIs.

With respect to the partially achieved objectives, most of taesé¢o do with using policies
for fine grained privacy control. Whilst the policy infrastructiself was integrated into the
cloud security APIs, there was insufficient time to implentbatfront end GUIs that would
allow users to set their privacy policies and update them. Whdshave built GUIs that
allow users to set their access control rules, based on tibeitaedrof the requestor, this does

not provide an interface for setting more sophisticated featurds agicetention periods,
purpose of use, or conditions such as time constraints. In the TAS3 prvejestperimented
with several different policy GUIs — a natural language GUI¢mlasd in [22], and a simple
matrix GUI of roles vs. resources in which the user clicksvér®us cells to indicate which
users (roles) are granted access to which resources. The faatgtelge GUI provides more
functionality than the implemented attribute based GUI, but is mdfieutti to use. The
matrix GUI provides less functionality than the attribute basedl $SB\i¢e the matrix’s roles
and resources are statically configured, whilst the attribated GUI dynamically changes
the user's choices as more attribute values become known to thgSProervice.
Consequently neither of the GUIs developed within the TAS3 project were used further.

Lessons learnt

User interfaces are extremely important as this is hogftevare product is finally judged by
end users. However, intuitive, easy to use GUIs are very time corgwand resource
intensive to produce. Research projects often do not have the tiragooraes to spend on
this feature, as often there is little “research” in providhig functionality. It is primarily an
engineering task. When we decided to make the Eucalyptus réé8esaccessible via a
standard web browser, we effectively had to build the entirae@®® énd again as dynamic
web pages served from an Apache server. This consumed a larget ahdevelopment
effort from the short six month project, and, in retrospect, was probablthe best use of
our very limited resources. Consequently, in a subsequent projetty(Bblicy Based Open
Source Security APIs for the Cloud), in which we have added fedeaatess to OpenStack,
we decided to enhance the existing OpenStack command line interktbes than produce
new browser based interfaces. This was certainly less tmsuming, but it was not without
its problems. Specifically, all of the existing IdPs expeetrsiso be using web browsers for
authentication, and therefore do not provide command line interfaces doiththermore
their web based login pages are all formatted differently arsgptelifferent content to their
users. So it would have been impractical to try to parse thesexaadtehe username and
password fields from them. We solved this problem by invoking thebsalser from the
command line interface, which allows the user to login using ttstirex IdP browser based
interface with which he is familiar, and then asking the usepmtirmue with the command
line interface, now that he has been authenticated.

Providing an appropriate GUI for setting security and privacy @alics also a very difficult
task. Even providing an application dependent GUI, where many of taegers of the
policies are already known, and some can be fixed, it is styldifficult, due to the number
of possibilities and combinations that still remain. Providing aniegimn independent
security policy GUI where none of the parameters are known or fixed beforehartbrs alr
magnitude more difficult. We have had a previous EPSRC respajett which researched
this topic and which formed the basis of our current natural langaligeThis is capable of
creating simple RBAC policies for any application. But thil is not sophisticated enough
to cater for all the different policy constructs that may beded (such as time constraints
and arbitrary conditions), nor for all the different ways thatusaturally use to specify the
same thing. At the same time it is still more difficult use the application independent
constrained natural language GUI than a specially tailored and aoestrapplication
dependent GUI. We conclude that constructing application dependent polisya@Jat the
limit of our current computer science abilities, and that much mesearch is needed into
building application independent policy management GUIs.

Further work is still required in a number of other areas. Ontdogfiattribute types and
identity provider classes are needed in order to simplify therisg APIs and make them
scalable to Internet scale. The API programmer will then lle ®0 ask for classes of
attributes from classes of identity provider rather than haargpécifically list them all e.g.
request a credit card attribute from a bank, rather than acdligaattribute from HSBC or a
MasterCard attribute from Barclays Bank.

Providing an implementation of the security APIs in PHP has prowddgabd initial proof of

concept, but one language alone is not sufficient for all cloud develwpase since cloud
applications may be developed in other programming languages sisthas, Java or C.
Developing security APIs in other languages requires developeffent rather than research
effort.

The current PHP implementation works well and has been steted,tbut it may not be as
scalable as some cloud applications require, and certainly sonme @Xxisting back end

services that it uses, such as LDAP, the PERMIS delegativitessethe PDP, and MySQL

database may not be as elastic as many cloud applications rdquimake the security APIs
and their supporting services horizontally and massively scalabde huge research and
development task in itself and should not be underestimated.

Limitations and conclusions

The proxyS3 service is a proof of concept cloud application that showshieoapplication
independent security APIs can be used by any cloud application to pfed&tated access,
enhanced fine grained access controls, and delegation of authoritge@ingty APIs use
attribute based access controls, so that access to a cloud resobased on a user’s
validated attributes from one or more trusted identity providergadsaf on a locally issued
account ID. In this way users do not need to register for a oesuat with the cloud service
before they can be granted access to it. Public access cavehet@a cloud resource by
simply not requiring the user to have any valid attributes. Delegation of aytisasiipported
by the account holder becoming an attribute authority, and creating his own unidpugesttr

The current project did not attempt to integrate several trisgtidbservices due to a lack of
time. In particular, no audit services were introduced, and no teputaervice was
incorporated. Thus cloud users are not able to validate that thedtrestvices are behaving
as expected, nor are they able to determine which cloud providers are the mostttrystw

Whilst the authz API does support a call out to a PDP holding awthonsand privacy
policies, we did not have time to implement the passing of spokgies to the PDP via the
cloud service and the browser interface. As explained aboventérgace would have to be
application specific, with many parameters being fixed byafh@ication, so that users have
an easy, but limited, set of policy choices to make.

In conclusion, the 6 month My Private Cloud project gave us good insigiotshow to
provide a rich set of security services to cloud developers, througitrdtaction of a set of
security APIs. Providing open source security APIs to cloud develsherdd both increase
the security of the developed cloud applications whilst simultaneowslycing the
development effort that is needed to do this. We believe that this skould continue and

that further security features should be added via new securily, As well as additional
implementations of the existing APIs be developed in further languages swthas. P

Endnotes

More sophisticated PDPs may be able to return Not Applicable,eimiigiate and Break
The Glass responses as well.

Abbreviations

ABAC, Attribute based access controls; ABE, Attribute based encryption; ACigsac
control list; API, Application programmable interface; AWS, Amazon welbices; CVS,
Credential validation service; DIS, Delegation issuing service; EPSRMdamgig and
physical sciences research council; FP7, Framework programme 7; Gphjcataiser
interface; laaS, Infrastructure as a service; IdP, Identity pmoudtieC, Joint information
services committe; LDAP, Lightweight directory access protocoP FHEblicy decision point;
PEP, Policy enforcement point; PHP, PHP: Hypertext preprocessor; RHxt&a
identifier; RBAC, Role based access controls; S3, Simple storage s&&igk;, Security
assertions markup language; SOAP, Simple object access protocol; SMS, Sisadinge
service; SP, Service provider; TAS3, Trusted architecture for securebdstevices; URL,
Uniform resource locator; WAYF, Where are you from; WSC, Web services
consumer/client; WSP, Web services provider

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DWC - wrote the paper, intellectual and conceptual design. MC ail&ktdesign and
implementation of proxyS3 system. KS - Implementation and design afylgP,
installation and user instructions. All authors read and approved the final manuscript.

Acknowledgements

This project has received funding from the UK JISC and EPSRC wrdet ref. no.
EP/1034181/1 (My Private Cloud) and the EC FP7 under grand agreement no. 216287
(Trusted Architecture for Securely Shared Services)

References

1. See for example: “Update: Over 450,000 emails and passwords allstelely from
Yahoo” at http://www.infoworld.com/d/security/over-450000-emails-and-passwords
allegedly-stolen-yahoo-197609 and “6 Million Passwords Stolen from Linkedt
http://www.techcessgroup.com/newsletter-content/item/111-6-millioawaasls-stolen-
from-linkedin.html (last accessed 16 Oct. 12)

2. Zak PJ, Knack S (1998) “Trust and growth”. Available at SSRN/fsgpn.com/abstract =
136961 or http://dx.doi.org/10.2139/ssrn.136961 (last accessed 16 Oct. 12)

3. TAS3, see http://www.tas3.eu/. (last accessed 16 Oct. 12)

4. See “AWS and Eucalyptus” at http://www.eucalyptus.com/learn/amazs-
compatibility. (last accessed 7 Feb 2013)

5. See “AWS Customer Agreement” at http://aws.amazon.com/agn&éast accessed 15
October 2012)

6. Wang W, Li Z, Owens R, Bhargava B (2009) Secure and efficemetsa to outsourced
data, Proceedings of the 2009 ACM workshop on cloud computing se¢G@gw ’'09).
ACM, New York, NY, USA, pp 55-66

7. Mowbray M, Pearson S (2009) “A client-based privacy managerldad computing”,
Proceedings of the fourth international ICST conference on COMmunicatistensy
softWAre and middlewaREEOMSWARE '09). ACM, New York, NY, USA, p 8, Article 5

8. Applegate LM, Montealegre R (1991) “Eastman Kodak organizatiomagiag
information systems through strategic alliances”. Harvardrigssi School Case 9-192-030,
Boston, MA

9. See “Efficiency drive will grow government outsourcing and clougeissays Ovum” at
http://www.computerworlduk.com/news/public-sector/3256210/efficiency-driViegnow-
government-outsourcing-and-cloud-usage-says-ovum/ Last accessed 15 October 2012)

10. Palankar MR, lamnitchi A, Ripeanu M, Garfinkel S (2008) “Amazon S3d@nce
grids: a viable solution?”, Proceedings of the 2008 internationgtsitop on Data-aware
distributed computing (DADC '08). ACM, New York, NY, USA, pp 55-64.
doi:10.1145/1383519.1383526, http://doi.acm.org/10.1145/1383519.1383526

11. Echevarria V, Liebrock LM, Dongwan S (2010) “Permission Managenmysiers:
Permission as a Service in Cloud Computing”, IEEE 34th Annual Comfofervare and
Applications Conference Workshop (COMPSACW). pp 371-375,
10.1109/COMPSACW.2010.71

12. Dongwan S, Akkan H (2010) “Domain-based virtualized resource managenuéoid
computing”, 6th International Conference on Collaborative Computingwadtking,
Applications and Worksharing (CollaborateCom), pp 1-6

13. UKAMF, see http://www.ukfederation.org.uk/ (last accessed 15 Oct 2012)

14. Bob Morgan RL, Scott C, Steven C, Walter H, Ken K (2004) “fetdé security: the
shibboleth approach”. Educ Q 27:4

15. Chadwick DW (2008) “Dynamic delegation of authority in Web servidas'Periorellis
P (ed) “Securing Web services: practical usage of standardspacdications”. Newcastle
University. Idea Group Inc, Newcastle, pp 111-137

16. Tuecke S, Welch V, Engert D, Pearliman L, Thompson M (2004) “Int&r688 Public
Key infrastructure (PKI) proxy certificate profile”. RFC3820, &3820, June 2004.
Available from http://datatracker.ietf.org/doc/rfc3820/

17. Chadwick DW, Otenko S, Nguyen TA (2009) “Adding support to XACML rfati-
domain user to user dynamic delegation of authority”. Int J Inf Secur 8(2):137-152

18. SimpleSAMLphp is available from http://simplesamiphp.org (lasessed 7 February
2013)

19. Chadwick DW, Inman G, Siu KWS, Ferdous MS (2011) “Leveraging soefalorks to
gain access to organisational resources”. To appear in Proc. AMM D Chicago, lllinois,
USA, pp 43-52, http://dx.doi.org/10.1145/2046642.2046653

20. Chadwick DW, Casenove M (2011) “Security APIs for My private clowganting
access to anyone, from anywhere at any time”. IEEE CloudCom 2@idns Greece, pp
792-798. doi:10.1109/CloudCom.2011.122. ISBN 978-1-4673-0090-2

21. The online demonstration “Welcome to the Cloud Storage ServicaVagable at
https://authz.tas3.kent.ac.uk/proxyS3/. The online documentation and open sourde code
available by clicking the Public Resources link. (last accessed 15 Oct 12)

22. Shi L, Chadwick DW (2011) “A controlled natural language interfeor authoring
access control policies”. Proceedings of the 2011 ACM Symposium pledpgComputing,
TaiChung, Taiwan, pp 1524-1530, Available from http://portal.acm.org/citatioPidfm
1982510#

Authz Database PDP

Account
DB
Authz API
Authn /
API
SC"".‘d (Simple
ervice
SAML
h SP) Other IdPs
php ~ .
Org
LDAP
Delegation API
LEGEND

O = Cloud API Security Services
Q = External Services
O = Locally Provided Services

N

Figure 1

Delegation Issuing
Web Service

@ Select an authentication source by clicking one of the links below - Mozilla Firefox]

File Edit View History Bookmarks Tools Help &

REFEDS - M... | jw Thinking ab... | [OpenStack ... | &J 1SC)* Securi...| { "} Bike to Wor... | +) Connecting... | 4) Journal of C...|) JoCCASA|S...| { ; Authorisati... | &} Select an...

Copyright

¥ Next 4 Previous & Highlightall [¥] Match case

) proxyS3 - Mozilla Firefox

File Edit View History Bookmarks Tools Help
< 1ARCS - AR...| 7 {1} Active ...| L] Autonomo... | || Research ... | | 1dentityero...| | Future Eve...| @Fourth of J...| = hitpi/..0.0xt | W Capabilty ... |Ke Taughtpo... | i proys3 | L] identitygro..| > + -
&2 e ([T ntips //auth. tas3 kent.ac.uk 5443 /pr0xy53/ 7 -lc|[9-
() Most Visited | Customize Links | Index of xrif2.0/specs/ || Search Results: T-Mob... |] 404 Not Found

University of ‘
kemit /.

Welcome to the Cloud Storage Service

This is the public page of the proxyS3 service. You can access public resaurces from here o login to the restricted area to manage your awn cloud resources
Public Resources Restricted Access

&

Chaose the public resource from this list and then access it. ~ Login to control access to your own cloud resources.

Contact Us | Terms of Use | Tradems |
x

[04 3uly 2011]
Top. The Welcome Screen

proxyS3 - Mozilla Firefox

File Edit View History Bockmarks Tools Help
< FYARCS - AR...| ¢ {1} Actie ...| || Autonomo.. | || Research... | | 1denttyBro... | || Future Eve... | @Fourth of ... | - http:/..0.0¢t | W Capabilty ... | Ke Taught po.
€)? O ([=m=Em tas3 ent. php

[Most Visited] Customize Links] Index of Ari/2.0/specs/ || Search Results: T-Mob... [404 Not Found
T = —m

-l

.
@i

Eucalyptus ‘

Access files from one of your accounts:

| Account Type Account Name

Personal Account Account=dwc8

Role at University University =kent.ac.uk,Role =staff
Role Role=staff

Company Account Company=kent.ac.uk

david's Account Family

Update account

Cortact Us | Jerms of Use | Trademarks | Privacy Stetement
‘Copyright ©2011 ~-. Al Rights Reserved.

Figure 3 Bottom. The Account Chooser Screen.

University of

Kent /!

My contacts Group Name Famiy [0k]["cancer |
Dad

» proxys3files

Top. Creétingué New Delegate

@ pros3 Firefox

File Edit View History Bookmarks Tools Help

T@ @ hitps://authz.tas2 kent.ac.ule5443/proxyS3/bucks.php & | M - AVG Secure Search
< |openstack... | £ Dropbox .| 53 Changeleb... | 5 New Trends...| El Openstack ..

oo | s FleWP1v2..| . PatB-editin..| | Blueprints

My Buckets

Your new contact has been recorded.
» My contacts

; This is your contact's secret link. Please give this secret to your contact and ask him or her to click on it The system will then ask your contact to
Mybuckets ' loginin order to identify him or her whenever they access this site.

_ _ Please note that this secret link can only be used once.

https://authz.tas3.kent.ac.uk:5443/proxys3
» newone / i 380

» proxys3files
el
e

S—

X Find: mapping & Next 4 Previous & Highlightall [7] Match case (L% Reached end of page, continued from top.

Figure 4 Bottom. Getting the Secret URL

926395310£05d735e4c31£8d245e3ae6b8

