
Cheval, Vincent (2012) Automatic verification of cryptographic protocols:
privacy-type properties. Doctor of Philosophy (PhD) thesis, ENS-Cachan.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/46883/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/46883/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

THÈSE

présentée à l’École Normale Supérieure de Cachan

pour obtenir le grade de

Docteur de l’École Normale Supérieure de Cachan

par : Vincent Cheval

Spécialité : Informatique

Automatic verification of cryptographic

protocols : privacy-type properties

Soutenance prévue le 03 décembre 2012

Composition du Jury :

— Bruno Blanchet examinateur

— Hubert Comon-Lundh directeur de thèse

— Stéphanie Delaune directrice de thèse

— Ralf Küsters rapporteur

— Jean-Yves Marion examinateur

— Alwen Tiu rapporteur

Thèse préparée au sein du Laboratoire Spécification et Vérification (LSV).

Résumé

Plusieurs outils ont été développé pour vérifier automatiquement les propriétés de sécurité sur des
protocoles cryptographiques. Jusqu’à maintenant, la plupart de ces outils permettent de vérifier
des propriétés de trace (ou propriétés d’accessibilité) tel que le secret simple ou l’authentification.
Néanmoins, plusieurs propriétés de sécurité ne peuvent pas être exprimées en tant que propriétés
de trace, mais peuvent l’être en tant que propriétés d’équivalence. L’anonymat, la non-traçabilité
ou le secret fort sont des exemples classiques de propriétés d’équivalence.

Typiquement, deux protocoles P et Q sont équivalent si les actions d’un adversaire (intrus) ne
lui permettent pas de distinguer P de Q. Dans la littérature, plusieurs notions d’équivalence ont
été étudié, par exemple l’équivalence de trace ou l’équivalence observationnelle. Néanmoins, ces
équivalences se révèlent être très difficiles à démontrer, d’où l’importance de développer des outils
de vérification automatique efficaces de ces équivalences.

Au sein de cette thèse, nous avons dans un premier temps travaillé sur une approche reposant
sur des techniques de résolution de contraintes et nous avons créé un nouvel algorithme pour
décider l’équivalence de trace entre deux protocoles pouvant contenir des conditionnelles avec
branches "else", et pouvant également être non-déterministe. Cet algorithme a donné naissance
à l’outil APTE (Algorithm for Proving Trace Equivalence) et a été appliqué sur des exemples
concrets comme le "Private authentification protocol" ainsi que le "E-passport protocol".

Cette thèse propose également des résultats de composition pour l’équivalence de trace. En par-
ticulier, nous nous sommes intéressés à la composition parallèle de protocoles partageant certains
secrets. Ainsi dans cette thèse, nous avons démontré que, sous certaines conditions, la compo-
sition parallèle de protocoles préserve les propriétés d’équivalence. Ce résultat fut appliqué au
"E-passport protocol".

Enfin, cette thèse présente une extension à l’outil de vérification automatique ProVerif afin
de démontrer automatiquement plus de propriétés d’équivalence. Cette extension a été implé-
menté au sein de ProVerif ce qui a permis de démontrer la propriété d’anonymat pour le "Private
authentification protocol".

Abstract

Many tools have been developed to automatically verify security properties on cryptographic
protocols. But until recently, most tools focused on trace properties (or reachability properties)
such as authentication and secrecy. However, many security properties cannot be expressed as
trace properties, but can be written as equivalence properties. Privacy, unlinkability, and strong
secrecy are typical examples of equivalence properties.

Intuitively, two protocols P, Q are equivalent if an adversary cannot distinguish P from Q by
interacting with these processes. In the literature, several notions of equivalence were studied, e.g.
trace equivalence or a stronger one, observational equivalence. However, it is often very difficult
to prove by hand any of these equivalences, hence the need for efficient and automatic tools.

We first worked on an approach that rely on constraint solving techniques and that is well suited
for bounded number of sessions. We provided a new algorithm for deciding the trace equivalence
between processes that may contain negative tests and non-determinism. A new tool called APTE
(Algorithm for Proving Trace Equivalence) was born from this algorithm and we applied our results
on concrete examples such as anonymity of the Private Authentication protocol and the E-passport
protocol.

We also investigated composition results. More precisely, we focused on parallel composition
under shared secrets. We showed that under certain conditions on the protocols, the privacy type
properties are preserved under parallel composition and under shared secrets. We applied our
result on the e-passport protocol.

At last this work presents an extension of the automatic protocol verifier ProVerif in order to
prove more observational equivalences. This extension have been implemented in ProVerif and
allows us to automatically prove anonymity in the private authentication protocol.

5

Contents

1 Introduction 11
1.1 Security challenge . 11
1.2 Cryptographic protocols . 12

1.2.1 Cryptographic primitives . 12
1.2.2 Protocols . 14
1.2.3 Security properties . 15

1.3 Difficulties of security verification . 16
1.3.1 General difficulties . 16
1.3.2 Specificities of equivalence properties . 17

1.4 Automatic verification using symbolic models . 17
1.4.1 Existing models . 17
1.4.2 Existing results . 18

1.5 Limitations of existing results . 19
1.6 Contributions . 20

1.6.1 Privacy-type properties in the applied pi calculus 20
1.6.2 Composing trace equivalence in a modular way 20
1.6.3 A decision procedure for trace equivalence 21
1.6.4 Proving more observational equivalences with ProVerif 21

1.7 Research Publications . 21

2 Preliminaries 23
2.1 Term Algebra . 23
2.2 Unification . 24
2.3 Equational theory . 25
2.4 Rewriting systems . 25

I Equivalence properties in the applied pi calculus 27

3 Modelling of cryptographic protocols 29
3.1 The applied pi calculus . 30

3.1.1 Syntax . 30
3.1.2 Semantics . 31

3.2 Behavioural equivalences and their relations . 33
3.2.1 Trace equivalence . 33
3.2.2 May-testing equivalence . 34
3.2.3 Relations between may-testing and trace equivalence 35
3.2.4 Observational equivalence . 38

3.3 Some security properties . 39
3.3.1 Guessing attacks . 39
3.3.2 Strong secrecy . 40
3.3.3 Anonymity . 40
3.3.4 Unlinkability . 42

3.4 The e-passport protocol . 42
3.4.1 Protocols description . 43
3.4.2 Security analysis . 44

4 Towards deciding trace equivalence 49
4.1 Intermediate calculus . 50

4.1.1 Syntax . 50
4.1.2 Semantics . 50
4.1.3 Equivalence . 52
4.1.4 Bounded intermediate processes . 53

4.2 Symbolic calculus . 54
4.2.1 Constraint system . 54
4.2.2 Syntax and semantics . 56
4.2.3 Symbolic trace equivalence . 58

4.3 Main result and conclusion . 60

5 Composing trace equivalence 61
5.1 Some difficulties . 62

5.1.1 Sharing primitives with tagging . 63
5.1.2 Composition context . 66

5.2 Preliminaries . 67
5.2.1 Material for composition . 67
5.2.2 Derived well-tagged processes . 70

5.3 Going back to the disjoint case . 72
5.3.1 Name replacement . 73
5.3.2 Unfolding the processes . 74
5.3.3 Soundness and completeness . 76
5.3.4 Main result . 77
5.3.5 A first composition result . 78

5.4 Main composition result . 79
5.4.1 Some additional difficulties . 79
5.4.2 Roadmap of the proof . 81
5.4.3 Static equivalence . 82
5.4.4 Soundness and completeness . 84
5.4.5 Dealing with internal communication . 86
5.4.6 Main composition result . 87

5.5 Application . 88
5.6 Conclusion . 89

II A decision procedure for trace equivalence 91

6 Model 93
6.1 Syntax and semantics . 94

6.1.1 Syntax . 94
6.1.2 Semantics . 94
6.1.3 Equivalence . 95

6.2 Symbolic calculus . 96
6.2.1 Semantics . 96
6.2.2 From trace equivalence to concrete symbolic equivalence 97

6.3 Getting rid of some recipes . 98
6.3.1 Getting rid of names . 98
6.3.2 Normalised recipe . 101
6.3.3 From concrete to constructor constraint systems 103

7 A decision procedure for symbolic equivalence 107
7.1 Preliminaries . 108

7.1.1 Extended frame . 108
7.1.2 Extended constraint systems . 109

7.2 Simplifying a constraint system . 112
7.2.1 The transformation rules . 112
7.2.2 Normalisation . 116
7.2.3 A strong strategy . 118

7.3 Simplifying sets of constraint systems . 120
7.3.1 From constraint system to vectors . 120
7.3.2 Matrices of constraint systems . 121

7.4 Our strategy . 123
7.4.1 First phase of the strategy . 124
7.4.2 Second phase of the strategy . 127
7.4.3 The final test . 130

8 Proof of the decision procedure 131
8.1 Invariants . 132

8.1.1 Invariants independent from the strategy . 132
8.1.2 Strategy invariants . 133

8.2 Soundness and completeness . 135
8.2.1 Preliminaries . 135
8.2.2 Core lemmas . 136
8.2.3 Application to matrices of constraint systems 137

8.3 Leaves . 139
8.3.1 Shape of the leaves . 139
8.3.2 Proving the symbolic equivalence . 140

8.4 Termination . 141
8.4.1 Termination of all steps of Phase 1 of the strategy 141
8.4.2 Association table . 144
8.4.3 Termination of all steps of Phase 2 of the strategy 146

8.5 Toward a more powerful attacker . 148
8.5.1 Semantic with predicate . 148
8.5.2 Toward deciding the trace equivalence w.r.t. a predicate 149
8.5.3 Toward deciding the symbolic equivalence w.r.t. a predicate 149

III ProVerif 153

9 Proving more observational equivalences with ProVerif 155
9.1 Model . 157

9.1.1 Syntax . 157
9.1.2 Semantics . 161

9.2 Using biprocesses to prove observational equivalence 163
9.2.1 Biprocesses . 164
9.2.2 From equational theories to rewrite rules . 165

9.3 Clause generation . 167
9.3.1 Patterns and facts . 167
9.3.2 Clauses for the attacker . 168
9.3.3 Clauses for the protocol . 169
9.3.4 Proving equivalences . 171
9.3.5 Proving Properties P1 and P2 . 171

9.4 Automatic modification of the protocol . 172
9.4.1 Targeted false attack . 173

9.4.2 Merging and simplifying biprocesses . 174
9.5 Applications . 177

9.5.1 Successful case study: the private authentication protocol 177
9.5.2 Limitations: the Basic Access Control protocol 178

10 Conclusion and perpectives 181

Bibliography 185

Appendices 191

A From the applied pi calculus to symbolics semantics 193
A.1 Proofs on relating equivalence . 193
A.2 Proofs on symbolic semantics . 196

B Composition of trace equivalence 205
B.1 Preliminaries . 205
B.2 Proof for the first result . 215
B.3 Proof of second result . 219

C Decision procedure of trace equivalence 231
C.1 Getting rid of some recipes . 231

C.1.1 Getting rid of public names in the recipes . 231
C.1.2 Normalised recipe . 235
C.1.3 Constructor constraint system . 238

C.2 General invariants . 243
C.2.1 Structure invariant . 243
C.2.2 Well-formed invariant . 246

C.3 Proof of completeness . 256
C.4 Strategy Invariants . 257

C.4.1 Preliminaries . 257
C.4.2 Preservation of the strategy invariants by the rules 261
C.4.3 Invariants specific to different steps and phases of the strategy 264

C.5 Proof of soundness . 277
C.5.1 Preliminaries . 277
C.5.2 Order relation on second order variables . 280
C.5.3 Preliminaries for soundness of Phase 1 Step a 282
C.5.4 Soundness . 286
C.5.5 Link between solutions . 294

C.6 Link between equivalence symbolic and the final test 296
C.6.1 Preliminaries . 296
C.6.2 Step e of the strategy . 296
C.6.3 Proof of symbolic equivalence on a leaf . 306

C.7 Proofs of termination . 314
C.7.1 Proofs of termination of each step of Phase 1 of the strategy 314
C.7.2 Proofs of results on association tables . 325
C.7.3 Proofs of termination of each step of Phase 2 of the strategy 330

D ProVerif 337
D.1 Equivalence proofs . 337

D.1.1 Lemmas for modelling the equational theory 338
D.1.2 Proof of Lemmas 9.6 and 9.7 . 340
D.1.3 Simplifications of the formulas . 342

D.2 Proof of the Automatic Modification . 343
D.2.1 Preliminary Lemmas . 343

D.2.2 Proofs for the merge function . 347
D.2.3 Proofs for the simpl Function . 348

Chapter 1

Introduction

1.1 Security challenge

Successfully exchanging secret information has always been a difficult and important task.
Several issues raise when secretly communicating with someone from a distance. Can the sender
be sure that the expected receiver of a message actually receives it? Was someone able to intercept
the message, and if there is one, was he able to understand the message? Ensuring that such
communication successfully holds can have a huge impact. For example, during the second world
war, the german army used a machine, called Enigma, for the generals to encrypt and decrypt
the orders they convey to their army. The allied forces spent huge amount of resources to gather
information, codenamed Ultra by the British army, by breaking many messages that had been
enciphered using the Enigma. Winston Churchill told King George VI after the war: "It was
thanks to Ultra that we won the war".

With the emergence of personal computers in the eighties and the internet in the nineties,
privately and secretly conveying informations has become a problem in our daily life. All the
international economy now goes through internet, most of the transactions of the stock market
are done online and all banks provide services that allow a client to access his bank account, make
transaction,. . . over the internet.

This last decade also witnesses the raise of wireless technology. The number of electronic devices
that communicate wirelessly in a single house increased drastically (e.g. smartphone, electronic
tablet, computer, printer, internet box). Even though users profit from the multiple interactions
between all the different devices, they also present serious security risks that are regularly reported
by the media. For instance, in 2009, during the creation of the french governmental organisation
Hadopi, concerns were raised in the public opinion about the capability of one to protect and
prove the security of his wireless internet connection.

The emergence of small communication devices (e.g. RFID tags, mobile phone) that we carry
almost all the time also raises the issue of traceability. Although the traceability of mobile phones
is already part of the cinematographic folklore, recent work reveals that the current communication
protocols between a mobile phone and its operator present major security flaws [AMR+12].

Even simple electronic devices might present a security risk. For example, the current paper
passports also contain a RFID chip that stores the critical information printed on the passport.
Such a passport is called an electronic passport or e-passport. It facilitates the checks at the airport
border and also ensures the authenticity of the passport. Although there exists an international
specification for such an electronic passport, parts of the implementation only depend on the
country that delivers the passport. Hence, recent studies have highlighted that the first versions
of the French electronic passports could be easily traced [ACRR10] whereas the English electronic
passports were not subject to such a flaw.

The previous examples are not of course an exhaustive list of applications whose security are
critical for the privacy of their users. In fact, new applications are still emerging in order to face

11

the society needs and present new security challenges. It is therefore crucial to ensure that the
applications we use are indeed secured.

1.2 Cryptographic protocols

1.2.1 Cryptographic primitives

Until few decades ago, the transmission of secret information consisted of modifying a message
using small algorithms so that it becomes unreadable to anyone but the sender and the intended
receiver of this message by relying on a secret key that they agreed on before hand. A symmetric
encryption algorithm allows the sender to encrypt his message using the shared secret key, whereas
a symmetric decryption algorithm allows the reader to decrypt the cipher using the shared secret
key (see Figure 1.1). Ideally, a third party cannot understand (or decrypt) the cipher if he does
not know the secret key shared between the sender and the receiver. Several symmetric encryption
schemes were invented over the years. One of the oldest is the Caesar cipher which was supposed
to be used by Julius Caesar. Typically, this encryption scheme consists of replacing the letters in
the text by shifting letters in the alphabet, the length of the shift being the encryption key. Hence,
"hello word" would be encrypted into "khoor zrug" with the key 3, i.e. A → D, B → E, . . . ,
Z → C. To decrypt this message, it suffices to reverse the shift of letters, i.e. D → A, E → B,
. . . , C → Z. This encryption scheme and the slightly more sophisticated methods were shown to
be easily breakable by using statistical analysis.

encrypt decryptM

the plain text

C

the cipher text

M

the plain text

the shared keyk k

Figure 1.1: Symmetric encryption scheme

The security of a symmetric encryption scheme relies on the length of the key. Indeed, with
the advent of powerful computers, an intruder might guess the shared secret key by trying every
possibility, called a brute-force attack. In 1977, the United States Federal Information Processing
Standard adopted the Data Encryption Standard (DES). While this encryption scheme was in-
ternationally used, this encryption method was shown to be vulnerable to brute-force attack due
to the length of the keys. This encryption scheme was later on replaced by the AES (Advanced
Encryption Standard) but DES is still used nowadays in several applications (e.g. ATM, email)
usually in combination with an other encryption schemes.

One of the downsides of the symmetric encryption schemes is the key-management. Indeed,
each pair of network members has to share a secret key, hence the number of required keys
increases quadratically with the number of network members. Moreover, when two new members
want to communicate, they first have to agree on the shared key, which can only be done if they
already share some secret key or have access to a secure channel (e.g. by meeting face-to-face).
Hence, this leads to the problem of "a dog chasing its tail". In 1976, W. Diffie and M. Hellman
invented the notion of asymmetric encryption schemes. In such encryption schemes, each member
of the network possesses a pair of keys, one private only known by the owner and used to decrypt
ciphers, and the other one public shared to anyone in the network and used to encrypt messages
(see Figure 1.2). Even though the keys are mathematically related, an intruder cannot deduce
the private key of a member from its public key. For example, in the Diffie-Hellman asymmetric

encryption scheme, this property is ensured by the fact that the discrete logarithm problem is
considered as difficult.

encrypt decryptM

the plain text

C

the cipher text

M

the plain text

the public key the private key

pk sk

Figure 1.2: Asymmetric encryption scheme

This encryption scheme has the advantage to solve the problem of key-management since on
the one hand, the number of required keys increases linearly in the number of network members
and, on the other hand, two members do not have to agree on a shared key beforehand (they only
have to send each other their own public key). Over the time, new asymmetric encryption schemes
have been proposed such as RSA, invented by R. Rivest, A. Shamir, and L. Adleman in 1978.

However, the computational cost of most of the existing asymmetric encryption schemes is
too high to be used in all applications (e.g. nobody would want to wait several minutes to get
a 20 euros bill at the ATM). Thus, key-establishment protocols have been developed such as the
Diffie-Hellman key exchange protocol [DH76]. In such protocols, two members of the network first
communicate using an asymmetric encryption scheme in order to establish a fresh secret key for a
symmetric encryption scheme e.g. AES. Once the shared key is established, the two members can
communicate using the symmetric encryption scheme. These fresh secret keys are called symmetric
session keys.

While the encryption schemes are designed to prevent anyone to understand a message unless
the decryption key is known, another cryptographic primitive called digital signature was designed
to demonstrate the authenticity of message. A valid signature gives some reason to believe that
the message was created by a known sender, and was not altered during the communication. In
1985, T. Elgamal proposed a signature scheme based on discrete logarithms [Gam85], which is
also based on a pair of public and private keys. Typically, a participant can sign a document using
his private signing key and anyone can verify the signed document using the public key of the
participant (see Figure 1.3). In contrast to the asymmetric encryption scheme, a signed document
does not necessarily hide the content of the message.

signature verificationM

the message

Ms

the signed message

ok

the private key the public key

sk pk

Figure 1.3: Digital signature scheme

Another cryptographic primitive called cryptographic hash function was designed to demon-

strate the integrity of a message. Typically, a hash function is a one-way function that takes
an arbitrary message and returns a fixed-size bitstring, i.e. a sequence of 0 and 1. Ideally, one
cannot recover the content of a message from its hash value. Moreover, an hash function should
be collision resistant, i.e. it should be difficult to find two messages with the same hash value. Of
course, this last property depends on the length of the bitstring returned by the hash function.
Typical examples of hash functions used nowadays are the MD5 and SHA-1. Similar cryptographic
primitives exists, called message authentication codes (or MAC), that allow one to authenticate
the hash value thanks to a secret key.

The cryptographic primitives previously described are probably the most common primitives
used in practice. In fact, these primitives are also the ones that will be used the most in this thesis.
There exist several other primitives that are specific to an application such as blind signatures
and trap door commitments for the electronic voting.

1.2.2 Protocols

Although it is essential to develop cryptographic primitives that are unbreakable, it is not
sufficient to ensure the security of the whole communications between members of the networks.
Even if an intruder is not able to break the cryptographic primitives, he can still gain some crucial
knowledge or mislead a participant by intercepting, modifying and comparing the messages that
are sent over the network. Hence it is crucial to analyse and verify not only the cryptographic
primitives but also the complete communications between members of the network.

To that extend, we rely on cryptographic protocols that describe the computations and commu-
nications between the different participants. For illustration purposes, we consider the communica-
tion protocols specified by the International Civil Aviation Organisation (ICAO) standard [ICA04]
and used for the electronic passports. In particular, the ICAO standard indicates that before any-
thing else, the reader (e.g. a customs officer) has to recover some keys ke and km that are printed
on the passport at the same page as the personal data and picture (usually, the customs officer
recovers them by optically scanning the passport). Then the reader and the e-passport must
execute the Basic Access Control (BAC) protocol in order to establish session keys to prevent
skimming and eavesdropping on the subsequent communications with the e-passport. The Alice
& Bob representation of this protocol is given in Figure 1.4.

Passport Tag
ke, km

Reader
ke, km

challenge

nT

xenc← senc(〈nR, nT , kR〉, ke)
xmac← mac(xenc, km)

〈xenc, xmac〉

yenc← senc(〈nT , nR, kT 〉, ke)
ymac← mac(yenc, km)

〈yenc, ymac〉

Figure 1.4: Basic Access Control protocol

senc(m, k) represents the application of a symmetric encryption scheme on the message m
with the secret key k. The choice of the symmetric encryption scheme is not relevant, as long

as it satisfies the desired properties. In fact, in the ICAO standard, the choice of the symmetric
encryption scheme is up to the state implementing the electronic passport. mac(m, k) represents
a message authentication codes of the message m with the secret key k. 〈m1, . . . ,mn〉 represents
the pairing of messages.

In this protocol, the participants proceed as follows: The reader starts by sending a challenge
to the passport. Upon receipt of such a challenge, the passport creates a fresh nonce, i.e. a random
bitstring, denoted nT , and sends it to the reader. Once the reader receives nT , he also creates two
fresh nonces, denoted nR and kR, and encrypts the pairing of the three nonces with the secret key
ke. The reader then creates a MAC of the cipher using the secret key km and sends both MAC
and cipher to the passport. The passport first verifies the integrity of the message he received by
computing himself a MAC of the cipher he received with the secret km and comparing with the
received MAC. Then it decrypts the cipher using the secret key ke and retrieves the three nonces
from the result of the decryption. After checking that the first nonce indeed corresponds to the
nonce nT that it generated at the beginning, the passport generates a fresh nonce kT and sends
back to the reader the encryption of the three nonces nT , nR and kT by the secret key ke with the
MAC of such an encryption using the secret key km. After checking the integrity of the MAC, the
reader checks the nonce nR and retrieves the nonce kT by decrypting the cipher with the secret
key ke.

Hence at the end of such a protocol, both participants, i.e. the reader and the passport, know
the values of the nonces kT and kR that will be used later on to extract key sessions. The security
of such a protocol should be ensured by the checks of the MACs and the nonces nT and nR

respectively by the passport and the reader.

1.2.3 Security properties

Verifying the security of a cryptographic protocol depends on the goal of such a protocol. For
example, the ICAO standard indicates that the data in the e-passport cannot be accessed except by
an authorised person or organisation. Hence, when describing a cryptographic protocol, it is crucial
to properly describe the security properties that such a protocol is supposed to achieve. Although
each cryptographic protocol might have its own security properties, there exist classical security
properties that are grouped into two different families: the trace properties and the equivalence
properties. Intuitively, the trace properties, such as authentication, specify that the protocols
cannot reach a bad state, whereas the equivalence properties specify the indistinguishability of
some instances of the protocols. In the literature, most of the work and tools focused on the trace
properties. Fewer works focus on equivalence properties and even fewer tools can automatically
verify equivalence properties. In this thesis, we will focus on equivalence properties and more
specifically on the following ones:

Anonymity In most of protocols, there is no guarantee concerning the privacy of the partici-
pants. Typically, a participant disclosing his identity to an intruder is not considered as a flaw in
the protocol. However, for some applications such as electronic voting, requiring that the iden-
tity of the voters cannot be disclosed is a necessity. Informally defined by the ISO/IEC standard
15408 [ISO09], anonymity is the property ensuring that a user may use a service or a resource with-
out disclosing the his(her) identity. The private authentication protocol [AF04], was specifically
designed to ensure mutual authentication between participants but also to ensure the anonymity
of the participants.

Unlinkability A protocol satisfying the anonymity property may still disclose informations on
a user by allowing an intruder to track several uses of this protocol by the same user. Such
informations might at the end allow the intruder to deduce or at least restrict the possible identities
of a user. Unlinkability is the property ensuring that a user may make multiple uses of a service
or a resource without others being able to link these uses together. For example, being able to
track the different purchases of a user on an online-shop may reveal the habits of a user. In an

other area, the french subway company of Paris provides cards that contain RFID chip to their
clients in place of the underground tickets. However, if the protocol used to communicate with
the RFID chip does not satisfy the unlinkability property then an intruder might be able to track
the daily movement of a user thus deducing for example his place of residence or workplace. The
Basic Access Control protocol on e-Passports was designed, according to the ICAO standard, to
make the passports unlinkable.

1.3 Difficulties of security verification

Verifying the security of a cryptographic protocol is a difficult task. Compared to trace prop-
erties, verifying equivalence properties is even more difficult.

1.3.1 General difficulties

The degree of security that we verify on a protocol is directly correlated to the capabilities (or
power) that we give to the intruder. As such, verifying a security property for a passive intruder
(i.e. when the intruder can only eavesdrop the communications between the participants) provides
less guarantees on the security than the case where we consider an active intruder (i.e. when the
intruder can intercept and modify the communications between the participants). However, the
more capabilities we give to the intruder, the more difficult it is to verify some security property on
a protocol. In fact, in the general case, deciding whether a protocol satisfies some security property
is undecidable ([DLMS99, AC02]) which is mainly due to the many sources of unboundedness in
the modelling of the capabilities of the intruder. We describe below some of these sources.

Number of sessions When verifying the security of a protocol, it is reasonable to consider that
the attacker can interact with any number of sessions of the protocol. In the case of the e-passport
protocol, the number of sessions would correspond to the number of people going through customs
which is usually a lot in any airport. However, since considering unbounded number of sessions
usually leads to undecidability, many works present decidability result for verification of security
properties for a bounded number of sessions of the protocol [MS01, Bau05, CD09a]. Note that
even when considering a bounded number of sessions, verifying the security of a protocol is still
difficult since an intruder can intercept messages and replace them by any message that he can
compute himself, which represent an infinite number of messages.

Cryptographic primitives As previously mentioned, there exists many different cryptographic
primitives, all of them having different behaviours, and some being more difficult to model than
others. For example, it is more difficult to verify some security property on a protocol that relies
on blind signatures rather than a protocol relying on symmetric encryption only. As such, decision
procedures usually fix or at least limit the the number of cryptographic primitives they can handle.

Environment Most of the time, security properties are ensured when considering the crypto-
graphic protocol in isolation. Indeed, no one can predict all the protocols that are running on a
network at the same time. Furthermore, real life protocols are usually complex and composed of
several sub-protocols that rely on the same cryptographic material. For example, the UMTS stan-
dard [3GP11, 3GP10b, 3GP10a] specifies tens of sub-protocols running in parallel in 3G mobile
phone systems. And, while one may hope to automatically verify each of these sub-protocols in
isolation, it is unrealistic to expect that the whole suite of protocols can be automatically checked.

On the other hand, we still want some guarantees on the security of the protocols when placed
in an environment with other protocols running at the same time, hence the need for secure
composition of cryptographic protocols. Whereas securely composing protocols when they do
not share any secret is an easy task, it is unrealistic to assume that a user always uses a different
password for each protocol. Even if it was the case, some applications rely, as previously mentioned,
on several sub-protocols that share passwords by construction.

1.3.2 Specificities of equivalence properties

As previously mentioned, equivalence properties intuitively indicate the indistinguishability of
some instances of the protocol whereas trace properties indicate that the protocol cannot reach a
bad state. More formally, when verifying a trace property, we have to verify that any execution
of the protocol cannot reach a bad state. On the other hand, when verifying an equivalence
property, we have to verify that for any execution of one of the instances of the protocol there
exists an indistinguishable execution of the other instance of the protocol. Hence, the alternation
of quantifiers makes even more difficult the verification of equivalence properties.

Even the modelling of indistinguishability is a difficult task and requires an extensive knowledge
of the capabilities of the intruder. Indeed, depending on what a real intruder can observe (e.g.
messages sent over the network, internal computation of honest participants), two executions
might not always be considered as indistinguishable. Therefore in the literature, several notions
of indistinguishability have been proposed (e.g. trace equivalence, may-equivalence, observational
equivalence [MNP02, AG99, AF01]) and the question of knowing which notion is best-suited to
model an intruder is disputable.

1.4 Automatic verification using symbolic models

One of the first task when verifying the security of a cryptographic protocol is to create a
model that represents the behaviour of the protocol and also the behaviour of an intruder.

1.4.1 Existing models

Early in the eighties, two different kinds of models emerge. This first ones, called computational
models, consider the messages sent over the network as bitstrings. Moreover, the behaviour of the
intruder is modelled as any probabilistic polynomial-time Turing machine. The cryptographic
primitives are also represented as polynomial algorithms. These models, since they are close to
the reality, offer strong guarantees on the security of cryptographic protocols. However, the proofs
are usually difficult, error prone and are almost impossible to automate.

In the second kind of models, called symbolic models, the behaviour of the protocols and in-
truders are abstracted. Typically, the messages are abstracted by terms and the cryptographic
primitives, assumed to be perfect (i.e. unbreakable), are abstracted by function symbols, hence
symbolic models are much simpler than computational models. As such, the verification of se-
curity properties on a protocol using a symbolic model also becomes simpler and can be auto-
mated. In the literature, there exists dozen of symbolic models, (e.g. spi-calculus [AG99], strand
space [FHG99]) that usually correspond to the need of a specific application or a theoretical result.
For example, symbolic models based on constraint systems (e.g. [MS01, CLS03]) were shown to be
well-adapted to deal with a bounded number of sessions whereas symbolic models based on Horn
clauses (e.g. [Wei99, Bla01, CLC03]) are more adapted to an unbounded number of sessions.

However, because of these abstractions, the guarantees provided by the verification of a security
property using symbolic models is usually weaker than the guarantees provided by the verifica-
tion of the same security property using computational models. Typically, whereas an attack in
symbolic models implies an attack in computational models, the conserve is not necessary true.
Hence when creating a cryptographic protocol, one could first rely on the automatic tools offered
by symbolic models to quickly detect possible attacks and so modify accordingly the protocol.
Then when no more attack is detected by symbolic models, one can rely on a computational
model to conclude. Recently, several works have attempted to derive conditions under which the
symbolic security implies the computational security, starting with M.Abadi and Ph. Rogaway in
2000 [AR00]. Although the first results mainly targeted trace properties, H. Comon-Lundh and
V. Cortier [CC08] showed that computational indistinguishability in presence of an active intruder
is implied by the observational equivalence of the corresponding symbolic protocol. This research
area is crucial since it allows one to use the automatic tools developed in the symbolic models to
obtain the strong securities of the computational models.

1.4.2 Existing results

As previously mentioned, verifying the security of a cryptographic protocol is a difficult task
even in symbolic models. Thus, all existing decidability results always consider restrictions of some
sort. The most common one consists of bounding the number of sessions of the protocol. Other
restrictions consist of fixing the cryptographic primitives that are considered or even studying
stronger notions of indistinguishability than the one modelling the capabilities of the intruder
(e.g. by giving too much power to the intruder) in the case of equivalence properties.

Automating the decision of equivalence properties. The automated verification of equiv-
alence properties for security protocols was first considered in [Hut02] (within the spi-calculus).
[Bau05, CD09a] gives a decision procedure for the trace equivalence of bounded deterministic
processes. In particular, the processes are restricted to be determinate and do not contain (non
trivial) conditional branching. Furthermore, the procedure seems not be well-suited for an imple-
mentation. [CR12] gives a decision procedure for the trace equivalence of bounded processes for
a class of primitives (that are defined by a subterm convergent rewrite system). The procedure is
probably not well-suited for an implementation. Furthermore, again only determinate processes
and trivial conditional branching are allowed.

Tools. Several techniques and tools have been designed for the formal verification of crypto-
graphic protocols. For instance CSP/FdR [RSG+00], ProVerif [Bla01], Scyther [Cre08],
Avispa [Vig06] and others. However, most results and tools only consider trace properties. To our
knowledge, there are only three tools that can handle equivalence properties: ProVerif [Bla01],
SPEC [TD10] and AKiSs [Cio11]. Note that the last two tools were built in parallel of this thesis
thus ProVerif was the only existing tool at the beginning of this thesis.

The tool ProVerif [Bla01] originally was designed to prove trace properties but it can also
check some equivalence properties (so-called diff-equivalence) [BAF08] that are usually too strong
to model a real intruder. Note that this is the only tool that can handle an unbounded num-
ber of sessions of a protocol with a large class of cryptographic primitives in practice. However,
ProVerif is not a decision procedure in the sense that it may not terminate, especially if the
equational theory modelling the cryptographic primitives is complex such as exclusive-or. Nev-
ertheless, this tool was used by several researchers to prove the security properties of protocols
(e.g. proving the absence of guessing attacks in EKE or proving the core security of JFK [BAF08],
privacy properties for electronic voting protocol [DKR09]).

The tool SPEC [TD10] gives a decision procedure for open-bisimulation for bounded processes
in the spi calculus. This procedure has been implemented. The scope is however limited: open-
bisimulation coincides with trace equivalence for determinate processes only and the procedure
also assumes a fixed set of primitives (symmetric encryption and pairing), and a pattern based
message passing, hence, in particular, no non-trivial conditional branching.

More recently, the tool AKiSs [Cio11] was developed in order to decide the trace-equivalence of
bounded processes that do not contain non-trivial conditional branching. Although this tool was
proved to be sound and complete, the algorithm was only conjectured to terminate for subterm
convergent equational theory.

Composition results. As previously mentioned, verifying some security property when con-
sidering several protocols running at the same time is usually too difficult, even when relying on
the automatic tools previously presented. Indeed, each tool requires a lot of computation time to
prove some equivalence properties, without taking into consideration the cases of non-termination.
Hence, there are a number of papers studying the secure composition of security protocols in sym-
bolic models (e.g. [GT00, CC10]) and in computational models (e.g. [Can01, KT11]). Actually,
a lot of results have been established for trace-based security properties, e.g. [GT00, ACS+08,
MV09, CC10].

Regarding equivalence-based properties, it has been shown that composition works for resis-
tance against guessing attacks in the passive case without any additional hypothesis [DKR08], and
in the active case when the protocols are tagged [DKR08, CDK11].

Other works study universal composability of protocols [Can01]. This approach consists of
defining for each sub-protocol an ideal functionality and then showing that a certain implementa-
tion securely emulates the ideal functionality. Since this initial work, the universal composability
framework has been improved in several ways, e.g. with joint states [BCNP04], without pre-
established session identifiers [KT11].

1.5 Limitations of existing results

Despite all the existing results, none of them can decide equivalence properties such as unlink-
ability on the Basic Access Control protocol described in Section 1.2.2. Moreover, the ICAO stan-
dard indicates that after a successful execution of the BAC protocol, several other sub-protocols
can be executed in any order. However, no existing composition result can handle unlinkability for
such sub-protocols. Indeed, the previous composition results in symbolic models [DKR08, CDK11]
assume that passwords are the only shared secrets and are not well-suited to analyse privacy-type
properties such as unlinkability. Hence the need to study the secure composition of protocols for
privacy-type properties.

Furthermore, from all the decision procedures (implemented or not) we described in the previ-
ous section, only ProVerif is able to handle non-trivial conditional branching. However, coming
back to the Basic Access Control (BAC) protocol, the ICAO standard indicates that if the pass-
port fails to check the MAC or the value of the nonce nT then it must output an error message.
On the other hand, it does not specify what the error message should be. Since the output of an
error message implies some non-trivial conditional branching in the protocol, only ProVerif can
take as input the Basic Access Control protocol.

One could argue that such error messages could be dismissed of the BAC protocol when
verifying some security properties but [ACRR10] showed that the early versions of French passports
did not satisfied the unlinkability property due to these error messages.

Attack on the French e-passport. [ACRR10] experimented on French, English, German,
Russian and Irish e-passports and discovered that for all of these passports but the French ones,
an error code "6300" is sent over the network when the check of the MAC or the nonce nT fails.
However, in the case of the French passports, [ACRR10] indicates that an error code "6300" is
sent when the check of the MAC fails and a different error code "6A80" is sent when the check
of the value of nT fails. The difference between these two error codes yields an attack on the
unlinkability property. The intruder proceeds as follows:

First the intruder eavesdrops an execution of the BAC protocol between a reader and the
passport he wants to track. Thus, from this execution, he obtains the message 〈m,mac(m, kmp)〉
that was send by the reader to the passport where m = senc(〈nR, nT , kR〉, kep), kep, kmp being the
keys of the targeted passport and nT is the random nonce generated by this passport. Then, when
a new passport comes along, the intruder plays the role of a reader by sending a challenge to this
passport. After discarding the freshly generated nonce that the passport sent and denoted n′

T , the
intruder replays the message 〈m,mac(m, kmp)〉. When receiving this message, the new passport
will necessary send an error message since either this passport is not the targeted passport (i.e
the check of the MAC will fail) or the check of the nonce n′

T will fail (nT being different from n′
T).

However, in the case of French passports, if the error code "6A80" is outputted then it means that
the check of the MAC succeeds and so the key used to compute the MAC is the key kmp of the
targeted passport. Thus by checking if the error code is either "6A80" or "6300", the intruder can
determine when the targeted passport executes the BAC protocol.

[ACRR10] showed that English passports satisfy the unlinkability property. It is therefore
crucial to include the error message in the description of the protocol thus to consider non-trivial

conditional branching, which discards all the existing procedures other than ProVerif. However,
the notion of equivalence decided by ProVerif is stronger than the usual behavioural equivalence
used to model the unlinkability property. Thus, ProVerif will fail to prove unlinkability on
English passports and yield a false attack. Even in the case of French passports, ProVerif also
yields a false attack.

In fact, these limitations are not specific to the e-passport protocol and can be found in several
case studies, e.g. the private authentication protocol [AF04] and the mobile telecommunication
protocols [AMR+12].

1.6 Contributions

This thesis is organised in three parts. In Part I, we study the privacy-type properties in the
applied pi calculus which are modelled by an equivalence between processes and we show that
the equivalence between processes compose well, provided some conditions on the protocols. In
Part II, we show that deciding the equivalence between processes is possible for a class of bounded
protocols with standard primitives. At last, in Part III, we propose an extension to the existing
tool ProVerif that removes some specific false attacks. We detail our contributions below.

1.6.1 Privacy-type properties in the applied pi calculus

In Chapter 3, we show how equivalence properties of cryptographic protocols can be expressed
in the applied pi calculus [AF01] by means of a behavioural equivalence on processes. More specif-
ically, we formalise the resistance to guessing attack, strong secrecy, anonymity and unlinkability
properties, and we provide with concrete examples of cryptographic protocols to illustrate the
equivalence properties. In particular, we describe in detail the different protocols that compose
the e-passport protocol and show how anonymity and unlinkabiltity are expressed in this protocol.

We also show the relations between classical behavioural equivalences, i.e. trace equivalence,
observational equivalence and may-testing equivalence. More specifically, we show that although
may-testing equivalence and trace equivalence are two very close notions, they are not equivalent.
We prove that trace equivalence indeed implies may-testing equivalence but we provide with an
example of processes that are may-testing equivalent but not trace equivalent. However, we
show that trace equivalence and may-testing equivalence coincide for image-finite processes (e.g.
processes without replication).

1.6.2 Composing trace equivalence in a modular way

The last chapter of Part I is devoted to the study of the preservation of trace equivalence under
parallel composition of processes. We identify sufficient conditions of disjointness, under which
protocols can “safely” be executed in parallel. We first state a composition result that also allows
the protocols to share the usual cryptographic primitives of symmetric and asymmetric encryption,
hashing, and signing, provided that these primitives are tagged and that public and verification
shared keys are not derivable. In this setting, we are able to establish a strong result that basically
says that the disjoint scenario, i.e. where protocols do not share any secret, is equivalent to the
shared one, i.e. where protocols share some secrets. This allows us to go back to the disjoint case
for which composition works unsurprisingly well.

Then, we further relax this condition. A second theorem shows that it is possible to compose
protocols that share public and verification keys even if those are known by the attacker, provided
that they are given to him from the beginning. However, in our setting such a sequence has to be
finite, and thus our result can only be applied in presence of a bounded number of public shared
keys. This is not a real limitation for the analysis of the e-passport application, but this could
lead us to an unrealistic situation for some other applications.

1.6.3 A decision procedure for trace equivalence

Part II is dedicated to a decision procedure for the trace equivalence between bounded pro-
cesses. We allow processes with non-trivial else branches and non-deterministic choice. Our
procedure is sound, complete and always terminate. In contrast to the tools ProVerif and
AKiSs, our algorithm only accepts a fixed set of primitives other than one-way functions, namely
symmetric and asymmetric encryption, digital signature and pairing. In addition, any one-way
function is accepted such as hash function. The behaviour of our cryptographic primitives are
expressed using rewriting systems and we assume that our destructors may fail.

In Chapter 6, we reduce the problem of trace equivalence to the problem of symbolic equiva-
lence between sets of constraint systems. A similar reduction is done in Chapter 4 for the applied
pi calculus. Due to the restricted sets of cryptographic primitives we consider, we show, in Chap-
ter 6, that it is possible to refine the symbolic equivalence by only considering canonical actions
of the intruder. In Chapter 7, we detail the procedure for deciding the symbolic equivalence be-
tween sets of constraint systems. The general idea of our algorithm consists of simplifying the
constraint systems until we reach sets of constraint systems that are simple enough to easily decide
the symbolic equivalence. Chapter 8 is dedicated to the proofs of soundness, completeness and
termination of our decision procedure of symbolic equivalence between sets of constraint systems.

Thanks to our algorithm, we are now able to automatically prove the anonymity and unlinka-
bility properties on the e-passport protocol [ACRR10], or the anonymity property on the private
authentication protocol [AF04] for a bounded number of sessions. An Ocaml implementation of
an early version of the procedure described in Part II has already been completed and concludes
within a few minutes for the private authentication protocol. The final implementation of the
decision procedure is still ongoing.

1.6.4 Proving more observational equivalences with ProVerif

As previously mentioned, due to the presence of non trivial conditional branchings in the BAC
protocol and the private authentication protocol, ProVerif yields false attacks when verifying the
unlinkability and anonymity properties respectively on such protocols. However, since ProVerif
is currently the only tool that can handle an unbounded number of sessions, we address the issue
of these particular false attacks and propose an extension of the ProVerif tool in Chapter 9.

The general idea of our extension is to transform before hand the input processes by simplifying
their control structure. To do so, we extend the behaviour of destructor function symbols so that
the tests previously performed by conditional branchings will now be performed directly inside
terms. We show in Chapter 9 how the original algorithm of ProVerif [BAF08] is adapted to our
new framework. Moreover, we propose an algorithm to automatically simplify the input processes
when such a simplification is possible.

Relying on an ongoing implementation of our extension, we can now automatically prove that
the private authentication protocol satisfies its desired anonymity property for an unbounded num-
ber of sessions. However, even with our extension, ProVerif still cannot prove the unlinkability
property for the BAC protocol and yields a new false attack.

1.7 Research Publications

Almost all the results obtained in this thesis have been published or submitted for publication.
The results on ProVerif (Chapter 9) should be submitted this fall.

Journals

— (Submitted) V. Cheval, V. Cortier, S. Delaune. Deciding equivalence-base properties using
constraint solving. Theoretical Computer Science, 2012.

Conferences

— M. Arapinis, V. Cheval and S. Delaune. Verifying privacy-type properties in a modular way.
In the Proceedings of the 25th IEEE Computer Security Foundations Symposium (CSF’12),
Cambridge, Massachusetts, USA, June 2012, IEEE Computer Society Press.

— V. Cheval, H. Comon-Lundh and S. Delaune. Trace Equivalence Decision: Negative Tests
and Non-determinism. In Proceeding of the 18th ACM Conference on Computer and Com-
munications Security (CCS’11), Pages 321-330, Chicago, Illinois, USA, October 2011, ACM
Press.

— V. Cheval, H. Comon-Lundh and S. Delaune. Automating security analysis: symbolic equiv-
alence of constraint systems. In the Proceedings of the 5th International Joint Conference
on Automated Reasoning (IJCAR’10), Pages 412-426, Edinburgh, Scotland, UK, July 2010,
Springer-Verlag.

Other

— V. Cheval. H. Comon-Lundh and S. Delaune. A decision procedure for proving observational
equivalence. In the Preliminary Proceedings of the 7th International Workshop on Security
Issues in Coordination Models, Languages and Systems (SecCo’09), Bologna, Italy, October
2009.

Tools

— V. Cheval. ADECS, a tool for deciding symbolic equivalence between two constraint systems
for a fixed set of cryptographic primitives
http://www.lsv.ens-cachan.fr/~cheval/program/adecs/

The implementations of the extension of ProVerif (Chapter 9) and the decision procedure for
trace equivalence described in Part II are still under development.

http://www.lsv.ens-cachan.fr/~cheval/program/adecs/

Chapter 2

Preliminaries

Contents

2.1 Term Algebra . 23

2.2 Unification . 24

2.3 Equational theory . 25

2.4 Rewriting systems . 25

In this chapter, we review several standard definitions and concepts that we will use in this
thesis.

2.1 Term Algebra

One starts with an infinite set of names, denoted N = {a, b, . . . , sk, n,m . . .}, which are used
to model atomic data, e.g. random numbers. We also define an infinite set of variables, denoted
X = {x, y, . . . ,X, Y, . . .}.

Let F be a signature, i.e. a finite set of function symbol. Let ar : F → N be the function
that associates to a function symbol a natural number, called arity. We call constant any function
symbol of arity 0.

We define a set of types, sometimes called sorts, denoted Type = {base, channel , key , . . .}. We
define a type system that associates to each variable and each name a type, and that associates
to each function symbol the types of its arguments and return value, denoted n : s , x : s and f :
s1 × . . .× sk → s, where n ∈ N , x ∈ X , f ∈ F with ar(f) = k, and s, s1, . . . , sk ∈ Type.

Terms are defined as names, variables, and function symbols applied to other terms. Let
N ⊆ N , X ⊆ X and F ⊆ F the set of terms built from N and X by applying the function symbols
in F is denoted by T (F,N ∪ X). Formally, T (F,N ∪ X) is the smallest set such that:

— X ∪ N ⊆ T (F,N ∪ X)

— for all f ∈ F, if ar(f) = k and f : s1× . . .×sk → s then for all t1 : s1, . . . , t1 : sk ∈ T (F,N∪X),
we have that f(t1, . . . , tk) : s ∈ T (F,N ∪ X).

We say that the set T (F,N∪X) is untyped when each term in the set have the same type. In such
a case, the types are omitted for the sake of simplicity.

The size of a term t, denoted |t| is defined recursively as follows:

— if t ∈ N ∪ X then |t| = 1

— if t = f(t1, . . . , tk) with f ∈ F and ar(f) = k then |t| = 1 +
∑k

i=1 |ti|

Example 2.1. Consider the following untyped signature

F = {senc/2, sdec/2, pk/1, 〈 〉/2, π1/1, π2/1, h/1}

23

that contains function symbols for asymmetric encryption, decryption and pairing, each of arity 2,
as well as projection symbols and the function symbol pk, each of arity 1. The ground term pk(sk)
represents the public counterpart of the private key sk.

Let a, b, ska ∈ N , we have that 〈senc(a, pk(ska)), b) is a ground term of T (F ,N).

The set of positions of t, denoted Pos(t), is a set of word over the alphabet of positive integers,
defined recursively such that:

— if t ∈ N ∪ X then Pos(t) = {ε}

— if t = f(t1, . . . , tk) with f ∈ F , then Pos(t) = {ε} ∪
⋃k

i=1{i · p | p ∈ Pos(ti)}

where · is the concatenation operator. For all p ∈ Pos(t), we denote by t|p the subterm defined
by induction on the length of p such that:

— if p = ε then t|p = t

— if p = i · q and t = f(t1, . . . , tk) then t|p = ti|q

We denote by root the function that associates to each term t ∈ T (F ,N ∪ X) the function
symbol at position ǫ (root position) in t. For t ∈ N ∪ X , we define root(t) = ⊥, where ⊥ is a new
symbol.

The set of subterms of a term t, denoted st(t), is the set such that

st(t) = {u | there exists p ∈ Pos(t) such that t|p = u}

The set of variables of a term t, denoted vars(t), is the set such that

vars(t) = {x ∈ X | there exists p ∈ Pos(t) such that t|p = x}

We say that t is a ground term when vars(t) = ∅. The set of names of a term t, denoted names(t),
is the set such that

names(t) = {n ∈ N | there exists p ∈ Pos(t) such that t|p = n}

These sets can be extended to any structure that contain terms.

A (k-)context C is a term in T (F ,N ∪ X ∪ {_1, . . . ,_k}) such that for all i ∈ {1, . . . , k}, _i

appears at most once in C. Given a k-context C, and t1, . . . , tk terms, we denote by C[t1, . . . , tk]
the terms C where we replace _i by ti for each i ∈ {1, . . . , k}.

2.2 Unification

A substitution is a function σ : X → T (F ,N ∪ X). Given a variable x and a substitution σ,
we denote by xσ the application of σ on x. We extend the application of a substitution to term
or any structure that contains variables in the expected manner. Given two substitutions σ1 and
σ2, we denote by σ1σ2 the composition of σ1 and σ2, i.e. for all x ∈ X , xσ1σ2 = (xσ1)σ2.

The domain of a substitution σ is the set {x ∈ X | xσ 6= σ}, denoted dom(σ). The image of
a substitution σ is the set {xσ | x ∈ dom(σ)}. The identity substitution, denoted id , is the only
substitution with empty domain.

Let X ⊂ X and a substitution σ. The restriction of σ to X is the substitution denoted σ|X (or
σ|X) such that dom(σ|X) = X ∩ dom(σ) and for all x ∈ dom(σ|X), xσ = xσ|X.

We adopt the notations {x1 7→ t1; . . . ;xn 7→ tn} and {t1/x1
; . . . ;tn /xn

} to represent a substi-
tution σ of domain {x1, . . . , xn} and such that xiσ = ti, for i = 1 . . . n.

A variable renaming is a bijection ρ from X to X . Note that a variable renaming is a substi-
tution such that img(ρ) = dom(ρ).

A name renaming is a bijection ρ from N to N . Similarly to substitutions, the application of ρ
on a name n is denoted nρ. We extend the application of a renaming to any structure that contains
names in the expected manner. The domain of a name renaming ρ, denoted dom(ρ), is the set

{n ∈ N | nρ 6= ρ}. The image of a name renaming ρ, denoted img(ρ), is the set {xρ | x ∈ dom(ρ)}.
Note that img(ρ) = dom(ρ).

Two terms t1, t2 ∈ T (F ,N∪X) are unifiable if there exists a substitution σ such that t1σ = t2σ.
In such a case, the substitution σ is a unifier of t1 and t2.

Given a finite set of equation between terms S = {t1 = s1; . . . ; tn = sn}, we say that a
substitution σ is a unifier of S if tiσ = siσ for i = 1 . . . n. Moreover, a substitution σ is the most
general unifier of S, denoted mgu(S), if

— vars(img(σ)) ⊆ vars(S); and

— σ is a unifier of S; and

— for all substitution σ′, σ′ is a unifier of S implies that there exists a substitution τ such that
σ′ = σ′τ .

In case S contains only one equation, i.e. S = {t = s}, we might denote the most general unifier

of S by mgu(t = s) or mgu(t, s). Moreover, we might sometimes use the symbol
?
= instead of =.

2.3 Equational theory

An equational theory is an equivalence relation on terms of T (F ,X ∪ N) that is closed under
application of contexts, closed under substitutions of terms for variables and closed under name
renaming. In most cases, an equational theory is derived from a finite set E of equations between
terms of T (F ,X). In such a case, we denote by =E the smallest equational theory containing E.
A slight abuse of language is usually done and we say that E is an equational theory. Given two
terms s and t, we say s and t are equal modulo the equation theory E when t1 =E t2.

Example 2.2. Consider the signature F of Example 2.1. We define the equational theory Eaenc

by the following equations:

adec(aenc(x, pk(y)), y) = x πi(〈x1, x2〉) = xi for i ∈ {1, 2}.

The first equation represents asymmetric decryption whereas the second one represents the first
and second projections of the pair.
For example, we have that π1(adec(aenc(〈n1, n2〉, pk(sk)), sk)) =Eaenc

n1.

In this thesis, we always consider that an equation theory is E is consistent, i.e. there exist
terms s and t such that s 6=E t.

2.4 Rewriting systems

A rewriting system R is a set of rewrite rules ℓ → r such that ℓ ∈ T (F ,X) r X and r ∈
T (F , vars(ℓ)). A term s is rewritten into t by a rewriting system R, denoted s →R t if the there
exists a rewrite rule ℓ → r ∈ R, a position p ∈ Pos(s) and a substitution σ such that s|p = ℓσ
and t = s[rσ]p. The reflexive transitive closure of the relation →R is denoted by →∗

R.
A rewriting system R is subterm if for all ℓ → r ∈ R, r is a subterm of ℓ, i.e. r ∈ st(ℓ).
A rewriting system R is confluent if for all terms s, u, v such that s →∗

R u and s →∗
R v, there

exists a term t such that u →∗
R t and v →∗

R t. Moreover, we say that R is convergent if R is
confluent and terminate.

A term t is in normal formal (w.r.t. to a rewrite system R) if there is no term s such that
t →R s. Moreover, if t →∗

R s and s is in normal form then we say that s is a normal form of t.
When the rewriting system R is convergent, the normal form of a term t is unique and is denoted
t↓.

Part I

Equivalence properties in the applied

pi calculus

27

Chapter 3

Modelling of cryptographic protocols

Contents

3.1 The applied pi calculus . 30

3.1.1 Syntax . 30

3.1.2 Semantics . 31

3.2 Behavioural equivalences and their relations 33

3.2.1 Trace equivalence . 33

3.2.2 May-testing equivalence . 34

3.2.3 Relations between may-testing and trace equivalence 35

3.2.4 Observational equivalence . 38

3.3 Some security properties . 39

3.3.1 Guessing attacks . 39

3.3.2 Strong secrecy . 40

3.3.3 Anonymity . 40

3.3.4 Unlinkability . 42

3.4 The e-passport protocol . 42

3.4.1 Protocols description . 43

3.4.2 Security analysis . 44

When verifying any security properties on a cryptographic protocol in a symbolic model, one
first have to properly define the model in which the cryptographic protocol and the security
property will be expressed. As mentioned in the introduction, there exist dozen of symbolic
models in the literature, but we focus our attention on the applied pi calculus [AF01], an expressive
model in which several results on trace and equivalence properties can be found in the literature
e.g. [BMU08, DKR07, ABF04]. As any symbolic model, the applied pi calculus abstracts the
messages by terms and the cryptographic primitives by function symbols. To model the properties
of such cryptographic primitives, the applied pi calculus relies on equational theories which are
most of the time represented by a set of equations between terms.

Since equivalence properties are expressed by the means of behavioural equivalence, we focus in
Section 3.2 on four main definitions of equivalence (observational equivalence, labeled bisimilarity,
may-testing equivalence, trace equivalence) and present the relations between these equivalences.
In particular, we show that may-testing does not imply trace equivalence. The difference between
the two notions is subtle. We exhibit a counter-example that relies on the fact that may-testing
equivalence requires the attacker to commit in advance on part of its behaviour, yielding a slightly
weaker attacker. We further show that may-testing equivalence does imply trace equivalence in
case the processes have finitely many successors (e.g for processes without replication): trace
equivalence and may-testing equivalence coincide for image-finite processes.

At last, we detail in this chapter the private authentication protocol [AF04] and some sub-
protocols that are described in the ICAO standard [ICA04] for the e-passport protocol, namely

29

Basic Access Control protocol, Passive Authentication protocol and Active Authentication proto-
col. The last two protocols will be used in Chapter 5 to illustrate our result about composition
of trace equivalence. Moreover, all these protocols will be part of our benchmark for the imple-
mentation of the decision algorithm of trace equivalence presented in Part II. At last, the private
authentication along with the BAC protocol will also serve as guidelines for our work on the tool
ProVerif [Bla01] (see Chapter 9).

3.1 The applied pi calculus

The applied pi calculus [AF01] is a derivative of the pi calculus that is specialised for modelling
cryptographic protocols. Participants in a protocol are modelled as processes, and the communi-
cation between them is modelled by means of message passing.

3.1.1 Syntax

To describe processes in the applied pi calculus, we rely on a sort system for terms defined in
Section 2.1. More specifically, we rely on two subsets of types: base types and channel types. The
details of the sort system are unimportant, as long as base types differ from channel types. As
such, we will denote Nb ⊂ N and Xb ⊂ X the infinite sets of names and variables of base type.
Similarly, we denote by Nch ⊂ N and Xch ⊂ X the infinite sets of names and variables of channel
type.

In the applied pi calculus, the function symbols only operate on and return terms of base type.
It implies that any term of channel type is either a variable in Xch or a name in Nch.

P,Q,R := 0 plain processes
P | Q
!P
νn.P
if u = v then P else Q
in(c, x).P
out(c, u).P

A,B,C := extended processes
P
A | B
νn.A
νx.A
{u/x}

where u and v are terms of any type, n is a name, x is a variable and c is a term of channel type,
i.e. a name or a variable.

Figure 3.1: Syntax of processes

The applied pi calculus defines plain processes, denoted by P,Q,R, and extended processes,
denoted by A,B,C. Plain processes are built up in a similar way to processes in pi calculus
except that messages can contain terms rather than just names. Extended processes add active
substitutions and restriction on variables (see Figure 3.1). The substitution {u/x} is an active
substitution that replaces the variable x with the term u. Active substitutions generalize the “let”
construct: νx.({u/x} | P) corresponds exactly to

“let x = u in P ”.

Example 3.1. Let Fsenc = {senc/2, sdec/2, f/1} be the signature composed of the symmetric
encryption/decryption and a unary function f. Consider the Handshake protocol [GML+93, DJ06]
describe in the Alice & Bob representation as follows:

0. A → B : senc(N, kAB)
1. B → A : senc(f(N), kAB)

In this protocol, we consider that the two participants A and B share a secret key kAB.

1. A starts by creating a fresh nonce N , i.e. a random number, and then sends to B this nonce
encrypted with the secret key kAB.

2. B recovers N by decrypting the message received, then applies a certain function f on N and
sends the result to A encrypted with the same secret key kAB.

3. At last, A also applies f on N , compares the result with the decryption of the message received
and then executes a certain protocol P if the test is successful.

We model this protocol using the applied pi calculus as follows:

νkAB . (νN. out(c, senc(N, kAB)). in(c, x). if sdec(x, kAB) = f(N) then P else 0.
| in(c, y). out(c, senc(f(sdec(y, kAB)), kAB)))

where c represents the public channel on which A and B communicate.

As usual, names and variables have scopes, which are delimited by restrictions and by inputs.
We write fvars(A), bvars(A), fnames(A) and bnames(A) for the sets of free and bound variables
and free and bound names of A, respectively. We say that an extended process is closed if all its
variables are either bound or defined by an active substitution. An evaluation context C[_] is an
extended process with a hole instead of an extended process.

Active substitutions are useful because they allow us to map an extended process A to its frame,
denoted Φ(A), by replacing every plain process in A with 0. Hence, a frame is an extended process
built up from 0 and active substitutions by parallel composition and restriction. The frame Φ(A)
accounts for the set of terms statically possessed by the intruder (but does not take into account
for A’s dynamic behavior). The domain of a frame Φ, denoted by dom(Φ), is the set of variables
for which Φ defines a substitution (those variables x for which Φ contains a substitution {M/x}
not under a restriction on x).

Example 3.2. Consider the signature Fsenc of Example 3.1 and the following process A made up
of three components in parallel:

νs.νsk .νx1.(out(c1, x1) | in(c1, y).out(c2, sdec(y, sk)) | {
senc(s,sk)/x1

}).

Its first component publishes the message senc(s, sk) stored in x1 by sending it on c1. The second
receives a message on c1, uses the secret key sk to decrypt it, and forwards the result on c2. We
have Φ(A) = νs, sk, x1.{

senc(s,sk)/x1
} and dom(Φ(A)) = ∅ (since x1 is under a restriction).

3.1.2 Semantics

We briefly recall the operational semantics of the applied pi calculus (see [AF01] for details).
First, we associate an equational theory E to the signature F . The purpose of this equational
theory is to represent the behaviour of the cryptographic primitives. We require the equational
theory to be closed under one-to-one renaming.

Structural equivalence, noted ≡, is the smallest equivalence relation on extended processes that
is closed under α-conversion of names and variables, by application of evaluation contexts, and
satisfying some further basic structural rules such as A | 0 ≡ A and !A ≡ !A | A, associativity and
commutativity of |, binding-operator-like behavior of ν, and when u =E v the equivalences:

νx.{u/x} ≡ 0 {u/x} ≡ {v/x} {u/x} | A ≡ {v/x} | A{v/x}

Example 3.3. Let P be the following process:

νs.νsk.
(
out(c1, senc(s, sk)) | in(c1, y).out(c2, sdec(y, sk))

)
.

The process P is structurally equivalent to the process A given in Example 3.2. We have that
Φ(P) = 0 ≡ Φ(A).

The operational semantics of processes in the applied pi calculus is defined by structural rules
defining two relations: structural equivalence (described above) and internal reduction, noted

τ
−→.

Internal reduction is the smallest relation on extended processes closed under structural equivalence
and application of evaluation contexts such that:

out(a, u).P | in(a, x).Q
τ
−→ P | Q{u/x}

if u = v then P else Q
τ
−→ P if u =E v

if u = v then P else Q
τ
−→ Q if u, v ground terms such that u 6=E v

The operational semantics is extended by a labeled operational semantics enabling us to reason
about processes that interact with their environment. Labeled operational semantics defines the

relation
ℓ
−→ where ℓ is a label in(c, u) where u is a term that may contain names and variables and

c is a term of channel type; a label out(c, u) or νu.out(c, u), where u is a variable of base type or
a name of channel type. The scopes of names and variables are only delimited by restrictions, i.e.
the input label in(c, u) does not restrict variables contrary to the plain process in(c, x).

We adopt the following rules in addition to the internal reduction rules. Below, the names a
and c are channel names whereas x is a variable of base type and y is a variable of any type.

In in(a, y).P
in(a,u)
−−−−→ P{u/y}

Out-Ch out(a, c).P
out(a,c)
−−−−−→ P

Open-Ch
A

out(a,c)
−−−−−→ A′ c 6= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

Out-T out(a,M).P
νx.out(a,x)
−−−−−−−→ P | {M/x}

x 6∈ fvars(P) ∪ fvars(M)

Scope
A

ℓ
−→ A′ u does not occur in ℓ

νu.A
ℓ
−→ νu.A′

bnames(ℓ) ∩ fnames(B) = ∅

Par
bvars(ℓ) ∩ fvars(B) = ∅ A

ℓ
−→ A′

A | B
ℓ
−→ A′ | B

Struct
A ≡ B B

ℓ
−→ B′ B′ ≡ A′

A
ℓ
−→ A′

Let A be the alphabet of actions (in our case this alphabet is infinite) where the special symbol
τ ∈ A represents an unobservable action. For every w ∈ A∗ the relation

w
−→ on extended processes

is defined in the usual way. By convention A
ǫ
−→ A where ǫ denotes the empty word.

For every s ∈ (Ar {τ})∗, the relation
s
⇒ on extended processes is defined by: A

s
⇒ B if, and

only if, there exists w ∈ A∗ such that A
w
−→ B and s is obtained from w by erasing all occurrences

of τ . Intuitively, A
s
⇒ B means that A transforms into B by experiment s. We also consider the

relation A
w
7−→ B and A

s
Z⇒ B that are the restriction of the relations

w
−→ and

s
⇒ on closed extended

processes.

Note that the labeled transition is not closed under application of evaluation contexts. More-
over the output of a term u needs to be made “by reference” using a restricted variable and an
active substitution. The rules differ slightly from those described in [AF01] but it has been shown
in [DKR07] that the two underlying notions of observational equivalence coincide.

Example 3.4. Consider the protocol P in Example 3.3. One possible sequence of transitions for
P is the following:

P
νx.out(c1,x)
−−−−−−−→ νs.νsk.(in(c1, y).out(c2, adec(y, sk)) | {

aenc(s,pk(sk))/x})
in(c1,x)
−−−−−→ νs.νsk.(out(c2, adec(senc(s, pk(sk)), sk)) | {

aenc(s,pk(sk))/x})
νy.out(c2,y)
−−−−−−−→ νs.νsk.({s/y} | {aenc(s,pk(sk))/x})

Note that all transitions in this sequence are visible actions. However, the two first transitions
only result on passing through a message. Hence, it is possible to apply an internal reduction:

P
τ
−→ νs.νsk.out(c2, adec(senc(s, pk(sk)), sk))

νy.out(c2,y)
−−−−−−−→ νs.νsk.{s/y}

Note that the frame is "smaller" than the frame in the previous sequence of transitions. It was
predictable by the fact that we replaced some labeled actions (visible for the attacker) by an internal
reduction (invisible action for the attacker).

3.2 Behavioural equivalences and their relations

Behavioural equivalences intuitively define the fact that no observer can see the difference
between two processes. They can be used to formalise many interesting security properties, in
particular privacy related properties, such as those studied in [AF04, DKR09, ACRR10, BCdH10].
Slightly more specifically, two processes can be said equivalent if an observer, whatever how
he behaves, observes the same (or equivalent) outputs from the two processes. This can be
formally defined as trace equivalence as introduced in [MNP02]. An alternative definition is testing
equivalence as defined for example by M. Abadi and A. Gordon [AG99]. In the context of the
pi calculus, may-testing and trace equivalences are known to be difficult to prove. Therefore, a
stronger notion has been proposed: observational equivalence, which requires in addition the two
processes to be (weakly) bisimilar.

This section is devoted to the definition of these three notions and the study of their relations
in the context of the applied pi calculus. We first introduce the notion of static equivalence
that compares sequences of messages, a notion of intruder’s knowledge that has been extensively
studied, for example in [AC06].

Definition 3.1 (static equivalence ∼). Two terms u and n are equal in the frame Φ, written (u =E

v)Φ, if there exists ñ and a substitution σ such that Φ ≡ νñ.σ, ñ ∩ (fnames(u) ∪ fnames(v)) = ∅,
and uσ =E vσ.

Two closed frames Φ1 and Φ2 are statically equivalent, written Φ1 ∼ Φ2, when:

— dom(Φ1) = dom(Φ2), and

— for all terms u, v, (u =E v)Φ1 if and only if (u =E v)Φ2.

Example 3.5. Consider the theory Eaenc (see Example 2.2), Φa = {aenc(a,pk(sk))/x1
}, and Φb =

{aenc(b,pk(sk))/x1
}. We have that (adec(x1, sk) =Eaenc

a)Φa whereas (adec(x1, sk) 6=Eaenc
a)Φb, thus

Φa 6∼ Φb. Note that Φa and Φb do not restrict sk, a nor b hence they are accessible to the attacker.

However, νsk.ϕ ∼ νsk.ϕ′. This is a non trivial equivalence. Intuitively, since sk is now
restricted, it can not appear in the tests which also implies that pk(sk), the encryption key, can
not appear directly in the tests. Thus, there is no test that allows one to distinguish the two frames.

3.2.1 Trace equivalence

For every closed extended process A, we define its set of traces, each trace consisting in a
sequence of actions together with the sequence of sent messages:

trace(A) = {(s, φ(B)) | A
s
Z⇒ B for some B}.

Note that, in the applied pi calculus, the sent messages of base type are exclusively stored in
the frame and not in the sequence s (the outputs are made by “reference”).

Two processes are trace equivalent if, whatever the messages they received (built upon previ-
ously sent messages), the resulting frames are in static equivalence.

Definition 3.2 (trace equivalence ≈t). Let A and B be two closed extended processes, A ⊑t B if
for every (s,Φ) ∈ trace(A) such that bnames(s) ∩ fnames(B) = ∅, there exists (s′,Φ′) ∈ trace(B)
such that s = s′ and Φ ∼ Φ′.

Two closed extended processes A and B are trace equivalent, denoted by A ≈t B, if A ⊑t B
and B ⊑t A.

As previously explained, proving trace equivalence of two protocols is very difficult. Indeed the
set of possible traces of a protocol is usually infinite hence one has to compute and compare two
sets of infinite traces. Furthermore, given two traces, one still need to prove the static equivalence
which also consist of evaluating and comparing an infinite set pair of terms.

Example 3.6. Consider A and B the two following protocols:

A
def
= out(c1, aenc(a, pk(sk))).out(c2, b)

B
def
= out(c1, aenc(b, pk(sk))) | out(c2, b)

We have that A 6≈t B. Indeed, we can find several traces that can’t be matched in both protocols.
For example, B can be reduced as follows:

B
νx.out(c2,x)
−−−−−−−−→ out(c1, aenc(b, pk(sk))) | {

b/x}

However, to output on the public channel c2, the protocol A must first output on the public channel
c1 and so such trace can’t be matched in A, hence the non-equivalence.

This trace is not the only witness of the non-equivalence. Indeed, one can reduce A and B as
follows:

A
νx.out(c1,x)
−−−−−−−−→ out(c2, b) | {

aenc(a,pk(sk))/x}
def
= A′

B
νx.out(c1,x)
−−−−−−−−→ out(c2, b) | {aenc(b,pk(sk))/x}

def
= B′

In such a case, we have that Φ(A′) = {aenc(a,pk(sk))/x} and Φ(B′) = {aenc(b,pk(sk))/x}. These
frames correspond to the frame in Example 3.5 and we already showed that Φ(A′) 6∼ Φ(B′), hence
the non-equivalence.

3.2.2 May-testing equivalence

We write A⇓c when A can send a message on c, that is, when A
ǫ
⇒ C[out(c,M).P] for some

evaluation context C that does not bind c. A test consists of any evaluation context C and any
channel name c. A closed extended process A passes the test if and only if C[A]⇓c. The notion of
testing gives rise to a may-testing preorder ⊑m and to a may-testing equivalence ≈m on the set of
closed extended processes.

Definition 3.3 (may-testing equivalence). Let A and B be two closed extended processes such
that dom(A) = dom(B), A ⊑m B if for any test (C, c) such that C is a closing evaluation context
for A (and B) we have that C[A]⇓c implies that C[B]⇓c. Two closed extended processes A and B
are in may-testing equivalence, denoted by A ≈m B, if A ⊑m B and B ⊑m A.

The idea of may-testing equivalence comes from the work of R. De Nicola and M. Hen-
nessy [NH84]. Our definition is similar to their notion of may-testing equivalence. Since then,
this notion of may-testing equivalence has been used in several cryptographic calculi, e.g. spi-
calculus [AG99]. This notion is usually shown to be equivalent to a notion of trace equivalence
(as the one given in Definition 3.2) that is easier to manipulate since the universal quantification
over all contexts has been removed.

Example 3.7. Coming back to the protocols A and B in Example 3.6, we can find back the
two witnesses of the non-equivalence brought to light using the notion of may-testing equivalence.
Indeed, we have that B⇓c2 while A 6⇓ c2. Furthermore, let C the following evaluation context:

C
def
= _ | in(c1, x).if adec(x, sk) = a then out(bad, a) else 0

where bad is a public channel. C is closing for A and B. Furthermore, we have that C[A]⇓bad
and C[B] 6⇓ bad. Note that the test performed in the if then else part of C corresponds exactly
to the test used to show that Φ(A′) and Φ(B′) are not statically equivalent in Example 3.5.

3.2.3 Relations between may-testing and trace equivalence

People usually consider that may-testing equivalence coincide with trace equivalence. Actually,
this result has been proved in two variants of the spi-calculus [MNP02, DSV03] and is in the
spirit of the main theorem stated in [AF01]. We tried to adapt their proof, but it happens
that the two notions do not coincide in the applied pi calculus setting. We indeed exhibit two
processes that are may-testing equivalent but not trace equivalent. However, these two notions are
similar and try to capture the same concept. We show that trace equivalence implies may-testing
equivalence (without any additional restriction) and the other implication holds as soon as we
consider processes without replication. More precisely, this last implication holds for processes
that are image-finite (up to static equivalence).

3.2.3.1 Trace equivalence implies may-testing equivalence

Theorem 3.1. For all A and B two closed extended processes,

A ≈t B implies that A ≈m B.

The proof of Theorem 3.1 requires to characterize any evolution of the contextualized process
A, that is, any evolution of C[A].

Given a closed extended process A and an evaluation context C[_], the proposition below
allows us to map a derivation issued from C[A] to a labeled trace issued from A. Note that we
only consider evaluation contexts having a special shape (there is no restriction in front of the
hole). This additional assumption is actually fulfilled when proving Theorem 3.1.

Proposition 3.1. Let A and B be two closed extended process with dom(A) = dom(B), and

C[_] = νñ.(D | _) be an evaluation context closing for A. If C[A]
ǫ

Z⇒ A′′ for some process A′′,
then there exist a closed extended process A′, an evaluation context C ′ = νñ′.(D′ | _) closing for

A′, and a trace tr ∈ (Ar{τ})∗ such that A′′ ≡ C ′[A′], A
tr
Z⇒ A′, and for all closed extended process

B′,

B
tr
Z⇒ B′ and Φ(B′) ∼ Φ(A′) imply that C[B]

ǫ
Z⇒ C ′[B′].

Proof (sketch).Proving Proposition 3.1 is quite technical thus the full proof can be found in Ap-
pendix A.1.

The proof of Proposition 3.1 works by induction on the length ℓ of the derivation of C[A]
ǫ

Z⇒ A′′.
The initial case (i.e. ℓ = 0) is almost trivial by defining C ′ = C thus we focus on the inductive
case (i.e. ℓ > 0):

The length of the derivation being strictly bigger than 0, we know that C[A]
ǫ

Z⇒ A′′ implies
C[A]

ǫ
Z⇒ A1

τ
7−→ A′′ for some closed extended process A1. Since the length of the derivation

C[A]
ǫ

Z⇒ A1 is strictly smaller than ℓ, we apply our inductive hypothesis: There exist a closed
extended process A′

1, an evaluation content C ′
1[_] = νñ′

1.(D
′
1 | _) closing for A′

1, and a labeled

sequence tr1 ∈ (Ar {τ})∗ such that A1 ≡ C ′
1[A

′
1], A

tr1
Z⇒ A′

1, and for all closed extended processes

B′
1, we have that B

tr1
Z⇒ B′

1 and Φ(B′
1) ∼ Φ(A′

1) imply that C[B]
τ
Z⇒ C ′

1[B
′
1].

Then, the proof consists of matching the internal reduction νñ′
1.(D

′
1 | A′

1)
τ
7−→ A′′ either to a

labeled transition applied on A′
1 or to a modification of the evaluation context C.

Typically, if the internal derivation is applied solely on A′
1, then we have C ′ = C ′

1, A
′
1

τ
7−→ A′

for some A′. On the other hand, if the internal derivation is applied solely on D′
1 then only the

evaluation context is modified, i.e. C ′[_] = νñ′
1.(D

′
2 | _), A′ = A′

1 and D′
1

τ
7−→ D′

2 for some D′
2.

The last possible case of internal reduction is a communication between D′
1 and A′

1. But then,
two cases must be distinguished: either the output was part of D′

1 and the input part of A′
1; or

the output was part of A′
1 and the input part of D′

1. Intuitively, if the input was part of A′
1 then

it will be matched by the labeled transition A′
1

in(c,M)
7−−−−−→ A′ where M is determined by the output

in D′
1. Else the internal reduction will be matched by the labeled transition A′

1

νx.out(c,x)
7−−−−−−−→ A′ for

some c.

The proof of Theorem 3.1 also relies on the fact that trace equivalence is closed by one-to-one
renamings of free names. This is formally stated in the lemma below:

Lemma 3.1. Let A and B be two closed extended processes such that A ≈t B and u be a
name (resp. variable) that occurs in fnames(A) ∪ fvars(A) ∪ fnames(B) ∪ fvars(B) and not in
bnames(A)∪ bvars(A)∪ bnames(B)∪ bvars(B), and u′ be a fresh name (resp. variable). We have
that A{u

′

/u} ≈t B{u
′

/u}.

We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Let A,B be two closed extended processes such that A ≈t B. Let C[_]
be an evaluation context closing for A (and B), and c be a channel name. We assume w.l.o.g.
that C[_] = νñ.(D | νm̃._) for some extended process D and for some sequences of names and
variables ñ and m̃. We assume w.l.o.g. that m̃∩(bnames(A)∪bvars(A)) = ∅ and m̃∩(bnames(B)∪
bvars(B)) = ∅. Let A2 = A{m̃

′

/m̃} and B2 = B{m̃
′

/m̃} where m̃′ is a sequence of fresh names
and variables. Thanks to Lemma 3.1, we have that A2 ≈t B2. Let C2[_] = νñ.νm̃′.(D | _). We
have that C[A] ≡ C2[A2] and C[B] ≡ C2[B2].

Assume now that C[A]⇓c. This means that there exist a closing evaluation context C1 that
does not bind c, a term M , and a plain process P such that C[A] ≡ C2[A2]

ǫ
Z⇒ C1[out(c,M).P].

Applying Proposition 3.1 on A2, B2 and C2[_], we know that there exist a closed extended
process A′

2, a closing evaluation context C ′
2[_] = νr̃.(E | _) for A′

2 and tr ∈ (A r {τ})∗ such

that C1[out(c,M).P] ≡ C ′
2[A

′
2], and A2

tr
Z⇒ A′

2, and for all closed extended process B′
2 such that

B2
tr
Z⇒ B′

2 and Φ(B′
2) ∼ Φ(A′

2), we have that C2[B2]
ǫ

Z⇒ C ′
2[B

′
2]. Moreover, we assume w.l.o.g. that

bnames(tr) ∩ fnames(B2) = ∅.
Since C ′

2 = νr̃.(E|_), we can deduce from C1[out(c,M).P] ≡ C ′
2[A

′
2] that the output out(c,M)

comes either from the process E or from A′
2. We distinguish these two cases:

— The output out(c,M) comes from E. Since, we have that A2 ≈t B2, we know that that

there exists B′
2 such that B2

tr
Z⇒ B′

2 and Φ(A′
2) ∼ Φ(B′

2). Therefore, we have that C2[B2]
ǫ

Z⇒
C ′

2[B
′
2] ≡ νr̃.(E | B′

2). But by hypothesis, we know that the output out(c,M) comes from
E and c 6∈ r̃. Hence we have that C2[B2]⇓c, and since C[B] ≡ C2[B2], we conclude that
C[B]⇓c.

— The output out(c,M) comes from A′
2. Thus, we have that A′

2 ≡ νṽ.(out(c,M).P | A3)

with c 6∈ ṽ, r̃. Thus, we have that A′
2

νz.out(c,z)
7−−−−−−−→ νṽ.(P | A3 | {M/z}) (if M is a term of

channel type, the transition is different but the proof can be done in a similar way.) Let

A′′ = νṽ.(P | A3 | {M/z}) and tr′ = tr · νz.out(c, z), we have that A2
tr′

Z⇒ A′′. Since we

have that A2 ≈t B2, we have that there exists B′
2 such that B2

tr′

Z⇒ B′
2 and Φ(A′′) ∼ Φ(B′

2).

Thus, we can deduce that there exists B′ such that B2
tr
Z⇒ B′ νz.out(c,z)

7−−−−−−−→ B′
2. Therefore,

we have that there exist a term N , an evaluation context C3 and a process Q such that
B′ ≡ C3[out(c,N).Q] and c is not bound by C3. Furthermore, we have that Φ(A′

2) ∼ Φ(B′)

which means that C2[B2]
ǫ

Z⇒ C ′
2[B

′], and thus C2[B2]
ǫ

Z⇒ C ′
2[C3[out(c,N).Q]]. Hence, we have

that C2[B2]⇓c, and since C[B] ≡ C2[B2], we conclude that C[B]⇓c.

3.2.3.2 May-testing equivalence does not imply trace equivalence

While may-testing and trace equivalences seem to be two very similar notions, may-testing
equivalence actually does not imply trace equivalence. Roughly, in may-testing equivalence, the
attacker is allowed to perform a sequence of inputs/outputs followed by a finite number of tests,
but he has to commit on these tests before knowing how the communication actions will be used.
In trace equivalence, all the tests are considered through static equivalence. The attacker does

not have to commit on the tests he wants to use in advance. So, the attacker is more adaptive in
trace equivalence and this gives him more power.

We describe two processes A and B such that A 6≈t B whereas A ≈m B. Let A and B be the
two following processes:

— A = νb.νc1.
(
out(c1, token) | in(c1, x).out(c, b) | in(c1, x).B

)
; and

— B = νc2.
(
out(c2, h(a)) | in(c2, x).out(c, x) | !in(c2, x).out(c2, h(x))

)
.

We consider the empty equational theory and a signature which only contains the symbol h of
arity 1 (with no equation). The private channel c1 in A is used to model the choice operator. The
behavior of A consists of outputting a fresh name b or executing the process B. The processes B
relies also on a private channel, namely c2, whose purpose is to model the choice operator. An
execution of B will output a message of the form h(h(. . . h(a) . . .)) on the public channel c, for an
arbitrary number of h. In the remaining, we denote by hn(a) the term obtained by applying n
times h on top of a.

Regarding trace equivalence, we have that:

— trace(A) = {(ǫ, 0); (tr, νb.{b/x}); (tr, {h(a)/x}); . . . ; (tr, {h
n(a)/x}); . . .}

— trace(B) = {(ǫ, 0); (tr, {h(a)/x}); . . . ; (tr, {
hn(a)/x}); . . .}

with tr = νx.out(c, x). We can easily see that A 6≈t B: the frame νb.{b/x} is not statically
equivalent to any other frame in trace(B).

On the other hand, we have that A ≈m B. This is a non trivial equivalence that is not easy
to prove. Below, we only give an intuition. First, it seems clear that B ⊑m A since A can easily
mimic the process B by performing first an internal communication and giving the token to the
last part of the process. Regarding the other inclusion, consider a test (C, c) such that C is a
closing evaluation context for A. The most interesting case is when C[A] outputs the fresh name
b on the channel c and then performs some tests on this message. However, since the execution
trace that leads to the output on c is fixed, we know the tests that have been performed in such
a situation, and we can compute n0 such that the same tests will be satisfied if the outputted
message was hn0(a) instead of b (for instance, we can choose for n0 the number of occurrences of
h in the tests plus one).

3.2.3.3 Case of image-finite processes

As illustrated in Section 3.2.3.2, may-testing equivalence does not imply trace equivalence in
general. However, the implication holds as soon as we consider processes without replication. More
precisely, this implication holds for processes that are image-finite (up to static equivalence).

Definition 3.4 (image-finite). An extended process A is image-finite if for each sequence of actions

tr, the set of equivalence classes {Φ(A′) | A
tr
⇒ A′}/ ∼ is finite.

Any process without replication is image-finite. Indeed, if a process A does not contain a
replication then we have that {Φ(A′) | A

tr
⇒ A′} is a finite set up to structural equivalence, thus

so is {Φ(A′) | A
tr
⇒ A′}/ ∼.

Note that the processes defined in Subsection 3.2.3.2 are not image-finite.

Theorem 3.2. Let A and B two closed extended processes with dom(A) = dom(B) and such that
A and B are image-finite. We have that:

A ≈m B implies that A ≈t B

Proof. Assume that A 6≈t B. We assume w.l.o.g. that A 6⊑t B. In such a case, there exists
a witness for the non equivalence. This means that there exists (tr, φ) ∈ trace(A) such that
bnames(tr) ∩ fnames(B) = ∅, and

1. either there does not exist Φ′ such that (tr,Φ′) ∈ trace(B);

2. or for all (tr,Φ′) ∈ trace(B), we have that Φ′ 6∼ Φ.

Moreover, we assume that no name in tr is bounded twice (i.e. νa. can not occur twice in tr) and
bounded names in tr are distinct from free names that occur in A, B, and tr.

We build an evaluation context C according to the trace tr and also the tests that witness
the fact that static equivalence does not hold. Let Str = {Φ′ | (tr,Φ′) ∈ trace(B)}. Since B is
image-finite, we know that Str/ ∼ is finite. Let {Φ′

1, . . . ,Φ
′
m} = Str/ ∼. If we are in the first case,

i.e. Str = ∅, we have that m = 0.

We know that {1, . . . ,m} = T+ ⊎ T− with:

— for each i ∈ T+, there exist two terms Mi and Ni such that fvars(Mi)∪ fvars(Ni) ⊆ dom(Φ),
(Mi =E Ni)Φ, and (Mi 6=E Ni)Φ

′
i; and

— for each i ∈ T−, there exist two terms Mi and Ni such that fvars(Mi)∪ fvars(Ni) ⊆ dom(Φ),
(Mi 6=E Ni)Φ, and (Mi =E Ni)Φ

′
i.

Let bad be a fresh channel name that does not occur in A and B. Let P1, . . . , Pm, Pm+1 be the
plain processes defined as follows:

— Pm+1
def
= out(bad, bad).0

— for 1 ≤ i ≤ m, we define Pi as follows:

Pi
def
= if Mi = Ni then Pi+1 else 0 when i ∈ T+

Pi
def
= if Mi = Ni then 0 else Pi+1 when i ∈ T−

Let {a1, . . . , ak} be channel names that occur free in A, B, and tr. Let X 0
ch = {xa1

, . . . , xak
}

be a set of variables of channel type, and σ = {xa1
7→ a1, . . . , xak

7→ ak}. We define C such that
C = Q(tr,X 0

ch) | _ where Q(tr,Xch) is defined by recurrence on tr as follows:

— if tr = ǫ then Q(tr,Xch) = P1;

— if tr = in(a,M).tr′ then Q(tr,Xch) = out(xaσ,M).Q(tr′,Xch);

— it tr = out(a, c).tr′ then Q(tr,Xch) = in(xaσ, y). if y = xcσ then Q(tr′,Xch) else 0 where y is
fresh variable of channel type; and

— if tr = νc.out(a, c) then Q(tr,Xch) = in(xaσ, xc). if xc ∈ Xchσ then 0 else Q(tr′,X ′
ch) where

X ′
ch = Xch ⊎ {xc}.

We use the conditional if u ∈ {u1, . . . , uk} then 0 else P as a shortcut for

if u = u1 then 0 else (if u = u2 then 0 else (.... (if u = uk then 0 else P))).

We can see that C[A]⇓bad since (tr,Φ) ∈ trace(A) and Φ satisfies by definition all the tests
that are tested in Pm. However, by construction of C, we have that C[B] can not emit on bad.

The class of image-finite processes is not the only class of processes where the may-testing
equivalence implies the trace equivalence. In [MNP02], they proved that the may-testing equiva-
lence implies the trace equivalence using a property of their equational theory. They provide an
equational theory E such that any frame could be characterized by a finite formula on terms mod-
ulo E, i.e. for all frames Φ, a formula φ is the characteristic formula of Φ if for all frames Φ′, Φ′ ∼ Φ
is equivalent to Φ′ (as substitution) satisfies φ. With such property on the equational theory, one
can show that may-testing equivalence implies trace equivalence using a proof similar to the proof
of Theorem 3.2. Typically, given a closed extended process A and a trace (tr,Φ) ∈ trace(A), we
build the same context C as in the proof of Theorem 3.2, except that the processes Pk will be
defined following the characteristic formula of Φ.

3.2.4 Observational equivalence

Observational equivalence has been initially introduced as a mean for proving may-testing or
trace equivalence. Comparing to may-testing and trace equivalence, the observation equivalence
also checks the bisimilarity of the two processes.

Definition 3.5 (observational equivalence). Observational equivalence is the largest symmetric
relation R between closed extended processes with the same domain such that ARB implies:

1. if A⇓c, then B⇓c;

2. if A
ǫ

Z⇒ A′, then B
ǫ

Z⇒ B′ and A′RB′ for some B′;

3. C[A]RC[B] for all closing evaluation contexts C.

However, proofs of observational equivalences are difficult because of the universal quantifica-
tion over all contexts. Therefore, an alternative definition has been proposed, considering labeled
transitions for the processes.

Definition 3.6 (labeled bisimilarity ≈). Labeled bisimilarity is the largest symmetric relation R
on closed extended processes such that A R B implies

1. φ(A) ∼ φ(B),

2. if A
τ
7−→ A′, then B

ǫ
Z⇒ B′ and A′ R B′ for some B′,

3. if A
ℓ
7−→ A′ and bnames(ℓ) ∩ fnames(B) = ∅ then B

ℓ
Z⇒ B′ and A′ R B′ for some B′.

Example 3.8. Consider the theory Eaenc and the two processes Pa = out(c, aenc(a, pk(sk))) and
Pb = out(c, aenc(b, pk(sk))). We have that νsk.Pa ≈ νsk.Pb whereas Pa 6≈ Pb. These results are
direct consequences of the static (in)equivalence relations stated and discussed in Example 3.5.

It has been shown that observational equivalence coincides with labeled bisimilarity [AF01,
Liu11]. In the literature, one can also find several results about the relation between observa-
tional and trace equivalence. As expected, observational equivalence is strictly stronger than trace
equivalence. J. Engelfriet has shown that observational equivalence and trace equivalence actu-
ally coincide in a general model of parallel computation with atomic actions, when processes are
determinate [Eng85]. In [CD09a], the authors generalise this result to the applied pi calculus and
show that a large class of processes, named simple processes, enjoys the determinacy property.

3.3 Some security properties

We presented different behavioural equivalences in Section 3.2 which typically differ from the
power we give to the attacker. When describing the security properties we will use the trace
equivalence, i.e. ≈t, however all these security properties are still valid when replacing the trace
equivalence by an other behavioural equivalence. Of course, since some behavioural equivalences
are stronger than others (see Section 3.2), one protocol might satisfy a security property for one
behavioural equivalence and not for an other equivalence. We present in this section some security
properties that has been studied in the literature and we provide small examples to illustrate
them.

3.3.1 Guessing attacks

In our model, we assume that all cryptographic primitives are perfect. For example, an intruder
cannot obtain a from senc(a, k) without knowing the secret key k. Typically, this assumption relies
on the length of the key to ensure that an intruder cannot try all possible passwords, i.e. break
the cipher using a brute force attack. However, in many applications such as mail, online bank
account, etc, a human user will usually use a password whose length is at most 20 characters.
Thanks to the power of nowadays computers, an intruder may be able deduce these passwords
using a brute force attack. These short passwords are called weak secret.

However, a weak secret is not necessary a flaw in the security of a protocol. Indeed, during
a brute force attack, an intruder still has to distinguish the cases where he guessed the correct
key or not. Hence the notion of guessing attack was introduced to represent the capability of
an intruder to deduce weak secret and obtain relevant information from it. Typically, a guessing
attack works as follows: The intruder first interacts with several sessions of a protocol (usually

small number of sessions since most of online protocols allow only a small number of fail attempts
on your password) then in a next phase the intruder may try offline all possible passwords on the
message he previously received, i.e. guessing a key is done without interaction with the protocols.

Although guessing attacks are considered as equivalence properties, they are not modelled
by equivalence of processes but equivalence of frames instead. The is formalise by the following
definition [DKR08, Bau05].

Definition 3.7. Let νk.Φ be a closed frame. Assume that k is a weak secret. We say that νk.Φ
is resistant to guessing attacks on k if, and only if, νk.(Φ | {k/x}) ∼ νn.νk.(Φ | {n/x}) where
x 6∈ dom(Φ) and n is a fresh name.

An extended process A is resistant to guessing attacks on k ∈ bnames(A) if for every (tr, B) ∈
trace(A), Φ(B) is resistant to guessing attacks on k.

Example 3.9. Consider the Handshake protocol given in Example 3.1. We show that the hand-
shake protocol is not resistant to guessing attacks on k. Indeed, let’s denote A the process from
Example 3.1. Hence (tr, νkAB .Φ) ∈ trace(A) where tr = νw1.out(c, w1).in(c, w1).νw2.out(c, w2)
and Φ = νN.νt.({senc(N,kAB)/w1

} | {senc(f(N),kAB)/w2
}. However, one can note that νkAB .(Φ |

{kAB/w3
}) 6∼ νkAB .νk(Φ | {k/w3

}). Indeed, the test sdec(w2, w3) =E f(sdec(w1, w3)) can distin-
guish the two frames. This attacks is well known and can be found in the literature [GML+93].

3.3.2 Strong secrecy

When two honest agents exchange a secret during the execution of a protocol, we usually want
that this secret may never be deduce by an intruder. This security property, called simple secrecy,
is in fact a reachability property and do not require behavioural equivalence to be modelled.

On the other hand, there exists a stronger security property, called strong secrecy and intro-
duced in [Bla04], where an intruder must not notice when the value of the secret changes. The
strong secrecy can be model as follows:

Definition 3.8. Let A be a closed extended process such that A ≡ C[A′ | {M/x}] for some
evaluation context C, extended process A′, term M . We say that A preserves the strong secrecy of
M if we have:

C[A′ | {M/x}] ≈t νk.C[A′ | {k/x}]

The original definition of strong secrecy can be found in [Bla04] and is slightly stronger that
the one we provide. Indeed, instead of checking the strong secrecy of a specific message, they
check the strong secrecy of a free variable which can be replaced by any message. While these two
notions do not coincide in general, they do coincide for many usual equational theories.

3.3.3 Anonymity

Anonymity is informally defined by the ISO/IEC standard 15408 [ISO09] as the property en-
suring that a user may use a service or a resource without disclosing the user’s identity. Formally,
anonymity has been defined to hold [ACRR10] when an outside observer cannot tell the difference
between a system in which the user with a publicly known identity id0 executes the analysed
protocol, from the system where id0 is not present at all.

Definition 3.9. Let P be a closed extend process. Let νk̃ stands for νk1. . . . νkn where k1, . . . , kn
are long term secrets used in P . We say that P satisfies anonymity if the following equivalence
holds:

νk̃.((!νid . !P) | !P{id0/id}) ≈t νk̃.(!νid . !P)

where id might be contained in P and id0 is a fresh free name.

Intuitively, anonymity is satisfied if an observer cannot tell if the user id0 (known to the
attacker) has been executing the protocol P or not. Note that if P does not contain id , the
anonymity trivially holds.

If we look at, as it is often done in automatic protocol verification, a bounded number of
sessions of the protocol P , the above formal property needs to be adapted. In the case of one
session for example, we will say that P preserves anonymity if the following equivalence holds

νk̃. P{id1/id} ≈ νk̃. P{id2/id}

Informally, this corresponds to the fact that an attacker cannot tell if a session of P is executed
by id1 or by some other user id2.

Example 3.10. We consider a simplified version of a protocol given in [AF04] designed for trans-
mitting a secret without revealing its identity to other participants. In this protocol, A wishes
to engage in communication with B whereas B is willing to talk to A. However, A does not
want to compromise its privacy by revealing its identity or the identity of B more broadly. The
participants A and B proceed as follows:

A → B : aenc(〈Na, pk(skA)〉, pk(skB))

B → A : aenc(〈Na, 〈Nb, pk(skB)〉〉, pk(skA))

First A sends to B a nonce Na and its public key encrypted with the public key of B. If the
message is of the expected form then B sends to A the nonce Na, a freshly generated nonce Nb

and its public key, all of this being encrypted with the public key of A. Otherwise, B sends out
a “decoy” message: aenc(Nb, pk(skB)). This message should basically look like B’s other message
from the point of view of an outsider. This is important since the protocol is supposed to protect
the identity of the participants.

When A receives a message from B, A tries to decrypt it and checks that the second component
of the decryption corresponds to the nonce Na he first created. He also checks that the third
component corresponds to the public key of B. If the checks fail then A does nothing. After a
successful execution of this protocol, A and B will be able to use NA and Nb as shared secrets.
However for the sake of simplicity, we will consider here that they do nothing.

In this protocol, we assume that the association between principals and their public keys is
known, even to the intruder. This might be model in the applied pi calculus by a server that
outputs the public key of a principal associated with its identification.

A session of role B played by agent b with a can be modelled by the plain process B(b, a) where
N = adec(y, sk b). Note that B is not given the value ska but is directly given the value pk(ska),
that is the public key corresponding to A’s private key. Similarly, a session of role A played by
agent a with b can be modeled by the plain process A(a, b) where M = adec(z, ska).

A(a, b)
def
= νna.out(c, aenc(〈na, pk(ska)〉, pk(sk b))).in(c, z).0

B(b, a)
def
= νnb.in(c, y).if proj2(N) = pk(ska)

then out(c, aenc(〈proj1(N), 〈nb, pk(sk b)〉〉, pk(ska))).0
else out(c, aenc(nb, pk(sk b))).0

Intuitively, this protocol preserves anonymity of the participant a if an attacker cannot distin-
guish whether b is willing to talk to a (represented by the process B(b, a)) or willing to talk to a′

(represented by the process B(b, a′)), provided that a, a′ and b are honest participants. This can
be modeled by the following equivalence:

νska.νska′ .νskb.
(
S | B(b, a) | A(a, b)

)
≈t νska.νska′ .νskb.

(
S | B(b, a′) | A(a′, b)

)

where S represents the server that associates principals and their public keys, i.e.

S
def
= {〈a,pk(ska)〉/z1} | {〈a

′,pk(ska′)〉/z2} | {〈b,pk(skb)〉/z3}

This is a non-trivial equivalence however the “decoy” message plays an important role. Indeed,
considering now the process B−(b, a) where, instead of sending a decoy message when the test fail,

the process does nothing:

B−(b, a)
def
= νnb.in(c, y).if proj2(N) = pk(ska)

then out(c, aenc(〈proj1(N), 〈nb, pk(sk b)〉〉, pk(ska))).0
else 0

In such a case, the trace equivalence does not hold anymore. This can be easily shown by consid-
ering the sequence of actions s = in(c, aenc(〈ni, proj2(z1)〉, proj2(z3))).νx.out(c, x). We have that
(s,Φ) ∈ trace

(
νska.νska′ .νskb.(S | B−(b, a) | A(a, b))

)
for some Φ. However, this sequence s does

not have a corresponding trace for the process νska.νska′ .νskb.
(
S | B−(b, a′) | A(a′, b)

)
.

3.3.4 Unlinkability

Unlinkability is informally defined by the ISO/IEC standard 15408 [ISO09] as the property
ensuring that a user may make multiple uses of a service or a resource without others being able
to link these uses together. Formally, unlinkability has been defined to hold [ACRR10] when a
system in which the analysed protocol can be executed by each user multiple times looks the same
to an outside observer that the system in which the analysed protocol can be executed by each
user at most once.

Definition 3.10. Let P be a closed extend process. Let νk̃ stands for νk1. . . . νkn where k1, . . . , kn
are long term secrets used in P . We say that P satisfies unlinkability if the following equivalence
holds:

νk̃.!νid .!P ≈t νk̃.!νid .P

where id might be contained in P .

In other words, unlinkability is satisfied if an observer cannot tell if the users can execute
multiple or at most once the protocol P . Note that if P does not contain id then the equivalence
trivially holds.

Now one can also look at a bounded number of sessions of the protocol. In this case we need to
consider at least two sessions. Consider two sessions of the protocol, we will say that P preserves
unlinkability if the following equivalence holds

νk̃.νid. (P | P) ≈t νk̃.(νid.P | νid.P)

Informally, this corresponds to the fact that an attacker cannot tell if the two sessions of P are
executed by the same user, or by two different users.

Note that if we consider more than two sessions, several equivalences are possible to express
unlinkability. For example, if you consider three sessions of the protocol, one might consider that
the three sessions are executed by the same user and one might also consider that two out of
three sessions are executed by the same user while the third session is executed by another user.
Section 3.4 illustrates this security property on the e-passport protocol.

3.4 The e-passport protocol

One of the purpose of this thesis is to apply our results (practical and theoretical) on con-
crete protocols such as the e-passport protocol. Indeed, passports now contain a chip that stores
additional information such as pictures and fingerprints of its holder. In order to ensure pri-
vacy, these chips include a mechanism that do not let the passport disclose private information to
external users. Section 3.3 formally describes the e-passport protocol that was partially studied
in [ACRR10] and the security properties we are interested in, i.e. anonymity and unlinkability.

An electronic passport (or e-passport) is a paper passport with an RFID chip that stores
the critical information printed on the passport. The International Civil Aviation Organisation
(ICAO) standard [ICA04] specifies the communication protocols that are used to access these
information.

3.4.1 Protocols description

The information stored in the chip is organised in data groups (dg1 to dg19). For example,
dg5 contains a JPEG copy of the displayed picture, and dg7 contains the displayed signature. The
verification key vk(skP) of the passport, together with its certificate sign(vk(skP), skDS) issued by
the Document Signer authority are stored in dg15. The corresponding signing key skP is stored in
a tamper resistant memory, and cannot be read or copied. For authentication purposes, a hash of
all the dgs together with a signature on this hash value issued by the Document Signer authority
are stored in a separate file, the Security Object Document:

sod
def
= 〈sign(h(dg1, . . . , dg19), skDS), h(dg1, . . . , dg19)〉.

The ICAO standard specifies several protocols through which these information can be ac-
cessed. First, the Basic Access Control (BAC) protocol establishes session keys ksenc and ksmac

to prevent skimming and eavesdropping on the subsequent communication with the e-passport.
Once the BAC protocol has been successfully executed, the reader gains access to the informa-
tion stored in the RFID tag through the Passive Authentication and the Active Authentication
protocols that can be executed in any order.

Passport Tag
ke, km

Reader
ke, km

challenge

nT ∈ N
nT

nR, kR ∈ N
xenc← senc(〈nR, nT , kR〉, ke)
xmac← mac(xenc, km)

〈xenc, xmac〉

Verify mac, Verify nT

kT ∈ N
yenc← senc(〈nT , nR, kT 〉, ke)
ymac← mac(yenc, km)

〈yenc, ymac〉

Verify mac, Verify nR

ksenc ← f1(kT , kR)
ksmac ← f2(kT , kR)

ksenc ← f1(kT , kR)
ksmac ← f2(kT , kR)

Figure 3.2: Basic Access Control protocol

The Basic Access Control (BAC) protocol is a key establishment protocol (see Figure 3.2). It
relies on the keys ke and km that are printed on the passport at the same page as your personal
data and your picture (usually, the customs officer get the key ke and km by optically scanning
your passport). These keys are usually composed of some of your personal data and some small
random number, hence these keys are easily broken if the intruder knows some basic data of its
target or if he had once access to its passport.

When the verification of a mac or the verification of the nonces nT and nR fail then an error
message is outputted. [ACRR10] showed that the unlinkability of the BAC protocol is broken if
the error messages are different (case of the french passport) hence we will consider that the errors
messages outputted are the same (case of the english passport).

The detail of the functions f1 and f2 are not important. We use them to illustrate the fact that
the key sessions that will be used in the next two protocols are derived from kT and kR.

Passport Tag
ksenc, ksmac, skP

Reader
ksenc, ksmac, vk(skP)

rnd ∈ N
xenc← senc(〈init, rnd〉, ksenc))
xmac← mac(xenc, ksmac)

〈xenc, xmac〉

Verify mac and init

nce ∈ N
sigma ← sign(〈nce, rnd〉, skP)
yenc← senc(sigma, ksenc)
ymac← mac(yenc, ksmac)

〈yenc, ymac〉

Figure 3.3: Active Authentication protocol

The Active Authentication (AA) protocol is an authentication mechanism that prevents cloning
of the passport chip (see Figure 3.3). It relies on the fact that the secret key skP of the passport
cannot be read or copied. The reader sends a random challenge to the passport, that has to return
a signature on this challenge using its private signature key skP . The reader can then verify using
the verification key vk(skP) that the signature was built using the expected passport key.

The Passive Authentication (PA) protocol is an authentication mechanism that proves that
the content of the RFID chip is authentic (see Figure 3.4). Through PA the reader retrieves the
information stored in the dgs and the sod . It then verifies that the hash value stored in the sod

corresponds to the one signed by the Document Signer authority. It further checks that this hash
value is consistent with the received dgs.

3.4.2 Security analysis

The protocols BAC, PA and AA rely on symmetric encryption, message authentication codes,
signatures and the verification key generation function, to meet their security requirements.

According to the ICAO standard, once the keys ksenc and ksmac have been established using
the BAC protocol, the reader can decide to execute PA and/or AA in any order. Formally, it
corresponds to the parallel composition of PA and AA. Note that the execution of PA and AA
occurring only when BAC succeed implies that the processes modeling BAC are in fact contexts
on which the processes of PA and AA are plugged. However, instead of considering the three
protocols at the same time, we might want to analyze first the privacy of BAC in isolation. Then,
after considering that the keys ksenc and ksmac are “securely” pre-shared, we analyze the privacy

Passport Tag
ksenc, ksmac, skP

Reader
ksenc, ksmac, vk(skP)

xenc← senc(read, ksenc)
xmac← mac(xenc, ksmac)

〈xenc, xmac〉

Verify mac and read

yenc← senc(〈dg
1
, . . . , dg

19
, sod〉, ksenc)

ymac← mac(yenc, ksmac)

〈yenc, ymac〉

Figure 3.4: Passive Authentication protocol

of the parallel composition of PA and AA. Hence, in this section, we will provide the equivalences
that model anonymity and unlinkability for BAC protocol in isolation, and also for the the parallel
composition of PA and AA under securely pre-shared ksenc and ksmac.

3.4.2.1 Security of BAC

We consider an arbitrary number of passports, each running an arbitrary number of times the
BAC protocol. This situation can be modelled in our calculus as follows:

P
def
= !νke. νkm. !BAC

where the subprocess BAC model one session of the BAC protocol respectively. Typically, each
successful session of BAC create fresh session keys ksenc and ksmac that will be used in the PA
and AA protocols.

To express unlinkability discussed in Section 3.3.4, we need on one hand to consider a system in
which e-passports can execute the BAC protocol multiple times, and on the other hand a system
in which e-passports can execute the BAC protocol at most once. This is modeled by the following
equivalence:

!νke. νkm. !BAC ≈t !νke. νkm.BAC

Normally, to express anonymity discussed in Section 3.3, we would need to consider a victim’s
e-passport but in the BAC protocol, the only data that can relevantly identify an e-passport
are the keys ke and km. However, if we allow the intruder to know the value of ke and km of
the victim’s passport then it trivially breaks the anonymity of the protocol (he only has to try
decrypting messages, if the decryption succeed then it is the victim’s passport else it is not). On
the other, if we do not allow the intruder to know the value of the keys ke and km of the victim’s
passport then the equivalence would be trivial, i.e. !νke. νkm. !BAC ≈t!νke. νkm. !BAC, and so
the anonymity is trivially preserved.

3.4.2.2 Security of the parallel composition of PA and AA

This case is very similar to the privacy of the BAC protocol. However, there is a lot more
information (i.e. nonces) that is used in the PA and AA protocols, hence one should be be careful

about the names that depend on the passport itself and the one that depend on a session of the
protocols. We consider an arbitrary number of passports, each running an arbitrary number of
times the PA and the AA protocols. This situation can be modelled in our calculus as follows:

P
def
= νskDS . !νskP . νid . νsig. νpic. . . . !νksenc. νksmac. (PA | AA)

where id, sig, pic, ... represent the name, the signature, the displayed picture, etc of the e-passport
owner, i.e. the data stored in the dgs (1-14) and (16-19). The subprocesses PA and AA model
one session of the PA and AA protocol respectively. The name skDS models the signing key of
the Document Signing authority used in all passports. Each passport (identified by its signing
key skP , the owner’s name, picture, signature, ...) can run multiple times and in any order the
PA and AA protocols, but with different secret session keys ksenc and ksmac, that should be
established through execution of the BAC protocol (but that we have abstracted from).

Anonymity. To express anonymity discussed in Section 3.3.3, we will need to consider a victim’s
e-passport, whose name id0, signature sig0, picture pic0, etc. are known to the attacker. The
victim’s e-passport follows like any other e-passport the PA and AA protocols which can be
respectively modelled by the following processes:

PA0
def
= PA{id0/id, sig0/sig, pic0/pic, . . . , skP 0}

AA0
def
= AA{id0/id, sig0/sig, pic0/pic, . . . , skP 0}

To formally express anonymity, we will consider the following contexts:

C[_1,_2]
def
= ! νskP . νid. νsig. νpic. . . .

! νksenc. νksmac. _1

| νskP0. !νksenc. νksmac. _2

where the second hole will be filled with the process modelling the victim’s e-passport, while the
first hole will be filled with the processes modelling any other e-passport. Note that the signing key
skP0 of the victim’s passport is not known to the attacker. The latter may know the verification
key vk(skP 0) (accessible from dg15) but not the signing key which is stored in a tamper resistant
memory.

This system will be compared to the one where the victim’s e-passport is not present at all.
For this we consider the following context:

C ′[_]
def
= !νskP . νid. νsig. νpic. . . . ! νksenc. νksmac. _

whose unique hole will be filled with the processes modelling any e-passport but the victim’s.
Hence the anonymity of the PA and the AA protocols is modelled by the following equivalence:

νskDS .C[PA | AA,PA0 | AA0] ≈t νskDS .C
′[PA | AA]

Unlinkability. To express unlinkability discussed in Section 3.3.4, we need on one hand to
consider a system in which e-passports can execute the PA and AA protocols multiple times, and
on the other hand a system in which e-passports can execute the PA and AA protocols at most
once. For this we consider the two following contexts:

C[_]
def
= !νskP . νid. νsig. νpic. . . .

!νksenc. νksmac.

C ′[_]
def
= !νskP . νid. νsig. νpic. . . .

νksenc. νksmac. _

These two contexts differ on the replication before the generation of the session keys ksenc

and ksmac, modelling in the first case an unbounded number of executions of the process that

will fill the unique hole, and in the second case a unique session of the filling process. Hence the
unlinkability of the PA and the AA protocols is modelled by the following equivalence:

νskDS .C[PA | AA] ≈t νskDS .C
′[PA | AA]

Chapter 4

Towards deciding trace equivalence

Contents

4.1 Intermediate calculus . 50

4.1.1 Syntax . 50

4.1.2 Semantics . 50

4.1.3 Equivalence . 52

4.1.4 Bounded intermediate processes . 53

4.2 Symbolic calculus . 54

4.2.1 Constraint system . 54

4.2.2 Syntax and semantics . 56

4.2.3 Symbolic trace equivalence . 58

4.3 Main result and conclusion . 60

In the previous chapter, we presented several definitions of behavioural equivalence that can be
used to model the observational capabilities of an intruder. Hence, when verifying an equivalence
property on a cryptographic protocol, the choice of the behavioural equivalence that we have to
check is crucial. As mentioned in the introduction, the question of knowing which equivalence
is best-suited to model an intruder is disputable. Although the may-testing equivalence is, in
our opinion, the most appropriate equivalence to model the observational capabilities of an in-
truder, we prefer the trace equivalence that is easier to manipulate. This choice does not matter
when considering bounded number of sessions since both equivalences coincide in such a case (see
Section 3.2.3).

Moreover, the proof of [CC08] indicates that standard cryptographic definitions for security,
based on indistinguishable games, are soundly abstracted by trace equivalence, with no need for
observational equivalence. Conversely, two processes may not be observationally equivalent and
yet be cryptographically indistinguishable.

The main contribution of this chapter is to adapt, from existing results, a proof technique
for deciding trace equivalence. Since replication very quickly yields to undecidability even in
the simpler case of accessibility properties [DLMS99, AC02], we focus here on processes without
replication.

The applied pi calculus is elegant and convenient for expressing security protocols. However, its
syntax and semantics (in particular name restriction and parallel composition) does not ease the
verification task. In contrast, constraint systems are much simpler and capture exactly the core of
protocol executions. They have shown their usefulness for analysing security protocols, for secrecy
and authentication properties (e.g. [MS01, CLS03, CDM11, CKRT03]) as well as equivalence
properties (e.g. [DKR07, CD09a]).

We show a reduction result for general processes without replication and for arbitrary equa-
tional theories. We reduce the decidability of trace equivalence (for bounded processes) to deciding
symbolic equivalence between sets of constraint systems. To transfer executions from the applied pi

49

calculus to constraint systems, we introduce an intermediate calculus inspired by [DKR07, Liu11].
But contrary to their work, we allow replication in the process. This is useful when we want to
prove some theoretical results such as our work on composition of trace equivalence (see Chap-
ter 5).

4.1 Intermediate calculus

As mentioned in [DKR07], the semantics of the applied pi calculus is not well-suited for defining
a symbolic semantics. One of the main reason is the presence of the structural equivalence in the
semantics. It leads to too many traces for the same sequence of actions that are not necessary
when studying behavioural equivalence and in particular the trace equivalence. On the other hand,
the semantics of intermediate processes are more linear than the applied pi calculus semantics.

4.1.1 Syntax

We consider a new infinite subset of X , called parameters, AX = {ax 1, ax 2, . . . , axn, . . .}.
Typically, the parameters will be used to express the domain of a frame and will avoid the possible
confusion with the variables inside a process.

Definition 4.1 (intermediate process). An intermediate process is a triple (E ;P; Φ) where:

— E is a set of names that represents the names restricted in P;

— Φ = {ax 1 ⊲ t1, . . . , axn ⊲ tn} where t1, . . . , tn are ground terms, and ax 1, . . . , axn ∈ AX
are parameters;

— P is a multiset of plain processes such that null processes are removed and fvars(P) = ∅.

Additionally, we require intermediate processes to be variable distinct, i.e. any variable is at most
bound once.

Given a sequence Φ = {ax 1 ⊲ t1, . . . , axn ⊲ tn} where t1, . . . , tn are terms, we also denote
by Φ its associated frame, i.e. {t1/ax1

} | . . . | {tn/axn
}.

Given a closed extended process A of the original applied pi, we can easily transform it into
an intermediate process Ã = (E ;P; Φ) such that A is structurally equivalent to E .(P | Φ) up to a
renaming of the variables in dom(Φ). The idea is to rename names and variables to avoid clashes,
to apply the active substitutions, to remove the restrictions on variables, and finally to push the
restrictions on names, that define the scope of active substitutions with free variable, in front of
the process.

Example 4.1. Consider the extended process A described below (M and N are some terms that
do not contain n):

νsk.νx.(out(c, aenc(x, pk(sk))).νn.out(c, n).out(c, y) | {M/x} | {N/y})).

An intermediate process A′ associated to A is:

A′ = (E ;P; Φ)
= ({sk}; out(c, aenc(M, pk(sk))).νn.out(c, n).out(c,N); {ax 1 ⊲ N}).

We have that A{y 7→ ax 1} ≡ νE .(P | Φ).

4.1.2 Semantics

The semantics for intermediate processes is given in Figure 4.1. The rules Open-Chi, Out-
Chi, Ini, Out-Ti and Pari correspond respectively to the rule Open-Ch, Out-Ch, In, Out-T
and Par in the semantic of the applied pi calculus. The rules Commi, Theni and Elsei correspond

to the internal reduction of the applied pi calculus. The rules Newi and Repli do not appear
explicitly in the applied pi calculus but correspond in fact to the rule Struct.

For the rule Open-Chi, we consider a new infinite subset of Nch, i.e. set of name of channel
type, denoted Ch such that Ch = {ch1, . . . chn, . . .}. Hence, when in the rules in Figure 4.1, we
indicate "chm is a fresh channel name", it implies that the last application of the rule Open-Chi

in the derivation used the name chm−1. Intuitively, we use this set of channel names to dismiss
the sequence of actions tr equivalent through renaming of the bounded names of channel type in
tr. Note that one of the purpose of using of the parameters in AX is similar to the purpose of
using the channel names in Ch.

Let Ai be the alphabet of actions for the intermediate semantics. For every w ∈ A∗
i the

relation
w
−→i on intermediate processes is defined in the usual way. For s ∈ (Ai r {τ})∗, the

relation
s
⇒i on intermediate processes is defined by: A

s
⇒i B if, and only if there exists w ∈ A∗

i

such that A
w
−→i B and s is obtained by erasing all occurrences of τ . Note that by definition,

intermediate processes are closed.

(E ; {if u = v then Q1 else Q2} ⊎ P; Φ)
τ
−→i (E ; {Q1} ⊎ P; Φ) if u =E v (Theni)

(E ; {if u = v then Q1 else Q2} ⊎ P; Φ)
τ
−→i (E ; {Q2} ⊎ P; Φ) if u 6=E v (Elsei)

(E ; {out(p, u).Q1; in(p, x).Q2} ⊎ P; Φ)
τ
−→i (E ; {Q1;Q2{x 7→ u}} ⊎ P; Φ) (Commi)

(E ; {in(p, x).Q} ⊎ P; Φ)
in(p,M)
−−−−−→i (E ; {Q{x 7→ u}} ⊎ P; Φ) (Ini)

if p 6∈ E , MΦ = u, fvars(M) ⊆ dom(Φ) and fnames(M) ∩ E = ∅

(E ; {out(p, u).Q} ⊎ P; Φ)
νaxn.out(p,axn)
−−−−−−−−−−→i (E ; {Q} ⊎ P; Φ ∪ {axn ⊲ u}) (Out-Ti)

if p 6∈ E , and axn is a variable such that n = |Φ|+ 1

(E ; {out(p, c).Q} ⊎ P; Φ)
out(p,c)
−−−−−→i (E ; {Q} ⊎ P; Φ) (Out-Chi)

if p, c 6∈ E

(E ; {out(p, c).Q} ⊎ P; Φ)
νchm.out(p,chm)
−−−−−−−−−−−→i (E ; ({Q} ⊎ P){c 7→ chm}; Φ) (Open-Chi)

if p 6∈ E , c ∈ E , chm is a fresh channel name

(E ; {νk.Q} ⊎ P; Φ)
τ
−→i (E ∪ {n};Q{k 7→ n} ⊎ P; Φ) (New)

if n is a fresh name with the same type as k

(E ; {!Q} ⊎ P; Φ)
τ
−→i (E ; {!Q;Q} ⊎ P; Φ) (Repl)

(E ; {P1 | P2} ⊎ P; Φ)
τ
−→i (E ; {P1;P2} ⊎ P; Φ) (Par)

where p, c are channel names, u, v are ground terms, and x is a variable.

Figure 4.1: Intermediate semantics

Example 4.2. Consider the P the following protocol:

νs.νsk.
(
out(c1, senc(s, sk)) | in(c1, y).out(c2, sdec(y, sk))

)
.

P is a plain process hence its associated intermediate process is P̃ = (∅; {P}; ∅). Consider now

the sequence of transitions for P described in Example 3.4. We had P
tr
⇒ P ′ = νs.νsk.({s/y} |

{aenc(s,pk(sk))/x}) with tr = νax 1.out(c1, ax 1). in(c1, ax 1). νax 2.out(c2, ax 2). The corresponding

trace of P is obtained as follows:

P̃
τ
−→i

τ
−→i

τ
−→i ({s′, sk′};

{
out(c1, aenc(s

′, pk(sk′))); in(c1, y).out(c2, adec(y, sk
′)
}
; ∅)

νax1.out(c1,ax1)
−−−−−−−−−−−→i ({s′, sk′};

{
in(c1, y).out(c2, adec(y, sk

′)
}
; {ax 1 ⊲ aenc(s′, pk(sk′))})

in(c1,ax1)
−−−−−−→i ({s′, sk′};

{
out(c2,M)

}
; {ax 1 ⊲ aenc(s′, pk(sk′))})

νax2.out(c2,ax2)
−−−−−−−−−−→i ({s′, sk′}; ∅; {ax 1 ⊲ aenc(s′, pk(sk′)); ax 2 ⊲M})

with M = adec(senc(s′, pk(sk′)), sk′). Note that M =E s′. If we denote by (E1;P1; Φ1) the last
intermediate process in the derivation and tr′ = νax 1.out(c1, ax 1). in(c1, ax 1). νy.out(c2, ax 2), we

have that P̃
tr′

⇒i (E1;P1; Φ1). Furthermore, if we denote σ the substitution {x 7→ ax 1; y 7→ ax 2},
we also have νE1.Φ1 ≡ Φ(P ′)σ and tr′ = trσ.

In Example 3.4, we also consider a sequence of transitions with an internal reduction, i.e.
P

tr
⇒ P ′ = νs.νsk.({s/y}) with tr = νy.out(c2, y). The corresponding trace of P ′ is obtained as

follows:

P̃
τ
−→

τ
−→

τ
−→ ({s′, sk′};

{
out(c1, aenc(s

′, pk(sk′))); in(c1, y).out(c2, adec(y, sk
′)
}
; ∅)

τ
−→i ({s′, sk′};

{
out(c2,M)

}
; ∅)

νax1.out(c2,ax1)
−−−−−−−−−−→i ({s′, sk′}; ∅; {ax 1 ⊲M})

with M = adec(senc(s′, pk(sk′)), sk′). Once again, if we denote by (E1;P1; Φ1) the last intermediate

process in the derivation and tr′ = νax 1.out(c2, ax 1), then P̃
tr′

⇒i (E1;P1; Φ1). Furthermore, if we
denote σ the substitution {y 7→ ax 1}, we also have νE1.Φ1 ≡ Φ(P ′)σ and tr′ = trσ.

In both sequences of transitions, the rule Newi creates fresh names s′ and sk′ while we could
have kept s and sk. It is important to create fresh names each time to avoid clashes between
names, especially when the name restriction is under a replication.

4.1.3 Equivalence

Let A = (E1;P1; Φ1) be an intermediate process. We define the set of its traces as follows:

tracei(A) = {(s, νE2.Φ2) | (E1;P1; Φ1)
s
⇒i (E2;P2; Φ2) for some (E2;P2; Φ2)}

Two intermediate processes are in (intermediate trace) equivalence if for any trace, the two
corresponding frames are statically equivalent.

Definition 4.2 (≈t for intermediate processes). Let A and B be two intermediate processes having
the same set of restricted names, i.e. A = (E1;P1; Φ1), B = (E2;P2; Φ2) and E1 = E2.

The processes A and B are intermediate trace equivalent, denoted by A ≈t B, if for every
(s, νE .Φ) ∈ tracei(A) such that bnames(s) ∩ fnames(B) = ∅ there exists (s′, νE ′.Φ′) ∈ tracei(B)
such that s = s′ and νE .Φ ∼ νE ′.Φ′ (and conversely).

Despite the differences between the two semantics, it can be shown (see Proposition 4.1) that
the two notions of trace equivalence coincide.

Proposition 4.1. Let A and B be two processes without replication. Consider the two associated
intermediate processes: (E ;PA; ΦA) and (E ;PB ; ΦB).

The processes A and B are trace equivalent (i.e. A ≈t B in the original applied pi calculus
semantics) if, and only if, (E ;PA; ΦA) ≈t (E ;PB ; ΦB).

Example 4.3. Coming back to Example 3.10, the anonymity of the private authentication protocol
is given by the following equivalence.

νska.νska′ .νskb.
(
S | B(b, a) | A(a, b)

)
≈t νska.νska′ .νskb.

(
S | B(b, a′) | A(a′, b)

)

where S represent the server that associates principals and their public keys, i.e.

S
def
= {〈a,pk(ska)〉/z1} | {〈a

′,pk(ska′)〉/z2} | {〈b,pk(skb)〉/z3}

where the processes B and A are both plain processes. This equivalence can also be expressed with
intermediate processes. The server S will be put directly in the frame while the names ska, ska′

and skb will be put into the set of restricted names:

(E ; {B(b, a) | A(a, b)}; Φ0) ≈t (E ; {B(b, a′) | A(a′, b)}; Φ0)

where:

— E = {ska, ska′, skb}; and

— Φ0 = {ax 1 ⊲ 〈a, pk(ska)〉, ax 2 ⊲ 〈a′, pk(ska′)〉, ax 3 ⊲ 〈b, pk(skb)〉}.

4.1.4 Bounded intermediate processes

As mentioned earlier, our intermediate semantics was inspired by [DKR07]. However, in their
semantics, they do not have a rule for replication (since they consider processes without replication)
but they also do not have a rule for name restriction. Indeed, [DKR07] considers a class of protocol
where the restricted names where all pushed inside E .

Example 4.4. Consider the extended process A and its associated intermediate process A′ in
Example 4.1:

A′ = ({sk}; out(c, aenc(M, pk(sk))).νn.out(c, n).out(c,N); {ax 1 ⊲ N}).

where M and N do not contain n. We can build a similar intermediate process A′ where we push
n inside the set of restricted names:

A′′ = ({sk, n}; out(c, aenc(M, pk(sk))).out(c, n).out(c,N); {ax 1 ⊲ N}).

Note that A′ and A′′ are not in structural equivalence but we have A′ ≈t A
′′. Indeed, structural

equivalence does not allow one to push all the restrictions in front of a process.

Given an intermediate process A = (E ;P; Φ) without replication and a fixed sequence of actions
tr, the presence of name restrictions in P yields necessary an infinite set of traces with this specific
sequence of actions tr due to the infinite choice of name n in the rule New. However, most of
the frames of these traces only differ by renaming of bound variables. Intuitively, pushing the
name inside the set of restricted names is similar to only considering one representative frame of
{Φ | (tr,Φ) ∈ tracei(A)}/ ≡.

From now on, we will say that an intermediate process (E ;P; Φ) is bounded if P do not contain
replication nor name restriction. Given a process A = (E ;P; Φ) without replication such that
names are bound only once and there is no clash between free and bound variables, we will say that
the process (E ′;P ′; Φ′) is its associated bounded intermediate process if Φ = Φ′, E ′ = E∪bnames(P)
and P ′ is the multiset P where any name restriction, i.e. νn, are removed.

Example 4.5. Coming back to Example 4.3, the anonymity of the private authentication protocol
can be expressed with bounded processes by the following equivalence:

(E ′; {B′(b, a) | A′(a, b)}; Φ0) ≈t (E
′; {B′(b, a′) | A′(a′, b)}; Φ0)

where E ′ = E ∪ {na, nb} and A′(a, b), B′(b, a) are defined such that:

A′(a, b)
def
= out(c, aenc(〈na, pk(ska)〉, pk(sk b))).in(c, z).0

B′(b, a)
def
= in(c, y).if proj2(N) = pk(ska)

then out(c, aenc(〈proj1(N), 〈nb, pk(sk b)〉〉, pk(ska))).0
else out(c, aenc(nb, pk(sk b))).0

4.2 Symbolic calculus

In this section, we propose a symbolic semantics for our calculus similar to [Bau07, DKR07,
RT01, CZ06]. By treating inputs symbolically, our symbolic semantics avoids potentially infinite
branching of execution trees due to inputs from the environment. Correctness is maintained by
associating with each process a set of constraints on terms. As mentioned in the previous section,
we will only consider bounded intermediate processes in the rest of this chapter.

4.2.1 Constraint system

We consider a new set X 2 of variables called second order variables X,Y, . . . In order to avoid
conflict between the variables in X 2 and the one we already used to described the protocol and
the processes, we consider a new set X 1 of variables, called first order variables, for the variables
used in the processes. Note that X 1, X 2, AX are all disjoint subsets of X . We call recipe, usually
denoted ξ, the terms in T (F ,N ∪ X 2 ∪ AX). We say that a recipe ξ is closed (or ground) if
ξ ∈ T (F ,N ∪ AX). Given a recipe ξ ∈ T (F ,N ∪ X 2 ∪ AX), we denote param(ξ) the set of
parameter in ξ, i.e. vars(ξ) ∩ AX .

A constraint system represents the possible executions of a protocol once an interleaving has
been fixed.

Definition 4.3 (constraint system). A constraint system is a tuple (E ; Φ;D;Eq) where

— E is a set of names (names that are initially unknown to the attacker);

— Φ is a sequence of the form {ax 1 ⊲ t1, . . . , axn ⊲ tn} where ti are terms and ax i are variables
of AX .

— D is a set of deducible constraints of the form X, i
?

⊢ x with i ≤ n, X ∈ X 2, x ∈ X 1.

— Eq is a set of equations and inequations of the form s
?
= s′ or s

?

6= s′ where s, s′ are first-order
terms of same type.

Intuitively, the terms ti represent the terms sent on the network, their variables represent

messages sent by the attacker. Moreover, a constraint X, i
?

⊢ x is meant to ensure that x will
be replaced by a deducible term. The size of Φ, denoted |Φ| is its length n. Given a set D of
constraints, we denote by vars1(D) (resp. vars2(D)) the first order (resp. second order) variables
of D, that is vars1(D) = fvars(D) ∩ X 1 (resp. vars2(D) = fvars(D) ∩ X 2).

We also assume the following conditions are satisfied on a constraint system:

1. for every x ∈ vars1(D), there exists a unique X such that (X, i
?

⊢ x) ∈ D, and each variable X
occurs at most once in D.

2. for every 1 ≤ k ≤ n, for every x ∈ vars1(tk), there exists (X, i
?

⊢ x) ∈ D such that i < k.

The last property implies that any variables in Φ must be previously introduced by a deducible
constraint in D. Given a recipe ξ with parameters included in ax 1, . . . , axk and Φ = {ax 1 ⊲

t1, . . . , axn ⊲ tn}, n ≥ k, ξΦ denotes the term ξ where each ax i has been replaced by ti. The

structure of a constraint system C = (E ; Φ;D;Eq) is given by E , |Φ| and {(X, i) | (X, i
?

⊢ x) ∈ D}.
A positive constraint system is a constraint system that does not contain any inequation.

Example 4.6. The tuple C1 = (E ; Φ0 ∪ {ax 4 ⊲ t};D1;Eq1) where

— E = {ska, ska′ , skb, nb, na},

— Φ0 = {ax 1 ⊲ 〈a, pk(ska)〉, ax 2 ⊲ 〈a′, pk(ska′)〉, ax 3 ⊲ 〈b, pk(skb)〉},

— t = aenc(〈π1(adec(y, skb)), 〈nb, pk(skb)〉〉, pk(ska)),

— D1 = {Z1, 3
?

⊢ z1x; Y, 3
?

⊢ y; Z2, 3
?

⊢ z2}; and

— Eq1 = {z1
?
= c; proj2(adec(y, skb))

?
= pk(ska); z2

?
= c}.

is a constraint system. We will see that it corresponds to an execution of the process B′(b, a)
presented in Example 4.5.

Definition 4.4 (solution). A solution of a constraint system C = (E ; Φ;D;Eq) is a pair of substi-
tutions (σ, θ) such that σ is a mapping from vars1(C) to T (F ,N), θ is a mapping from vars2(C)
to T (F ,N r {E},AX), and:

1. for every (X, k
?

⊢ x) ∈ D, we have that (Xθ)(Φσ) = xσ and param(Xθ) ⊆ {ax 1, . . . , axk};

2. for every (s
?
= s′) ∈ Eq, we have that sσ =E s′σ;

3. for every (s
?

6= s′) ∈ Eq, we have that sσ 6=E s′σ.

The substitution θ is called second-order solution of C, and the substitution σ is called the first-
order solution of C associated to θ. The set of solutions of a constraint system C is denoted Sol(C).
A constraint system C is satisfiable if Sol(C) 6= ∅.

Intuitively, in the preceding definition the substitution θ stores the computation done by the
adversary in order to compute the messages he sends (stored in σ) during the execution.

Example 4.7. Continuing Example 4.6, a solution to C1 = (E1; Φ1;D1;Eq1) is (σ, θ) where
dom(θ) = {Z1, Z2, Y }, Z1θ = Z2θ = c, and Y θ = aenc(〈ni, proj2(ax 1)〉, proj2(ax 3)) with ni a
public name of base type (i.e. ni 6∈ E1). Furthermore, σ is the substitution whose domain is
{z1, z2, y} and such that z1σ = z2σ = c, and yσ = aenc(〈ni, pk(ska)〉, pk(skb)).

Note that given a constraint system and a substitution θ, there exists at most one substitution
σ such that (σ, θ) is a solution of this constraint system. On the other hand, given a substitution
σ, there might exist several substitutions θ such that (σ, θ) is a solution. Intuitively, this due to
the fact that there might exist several ways, i.e. recipes, to deduce a term. For example, we can
deduce a from 〈a, a〉 by applying the first or the second projection. This is why one can find works
in the literature (e.g. [Bau07]) where the solutions of a constraint system are only described trough
the second-order solution. However, having both substitutions as representation of a solution is,
in our opinion, more intuitive and facilitate manipulation of solutions in proofs.

As for processes in the applied-pi calculus, it is also possible to define equivalence of (sets of)
constraint systems. Two sets of constraint systems Σ and Σ′ are in equivalence if for any solution
of a constraint system in Σ, there exists a constraint system in Σ′ that has the same solution and
such that the resulting frames are in static equivalence.

Definition 4.5 (symbolic equivalence). Let Σ and Σ′ be two sets of constraint systems that contain
constraint systems having the same structure. We say that Σ and Σ′ are in symbolic equivalence,
denoted by Σ ≈s Σ′, if for all C ∈ Σ, for all (σ, θ) ∈ Sol(C), there exist C′ ∈ Σ′ and a substitution
σ′ such that (σ′, θ) ∈ Sol(C′) and νE .Φσ ∼ νE .Φ′σ′ (and conversely) where C = (E ; Φ;D;Eq) and
C′ = (E ; Φ′;D′;Eq′).

Example 4.8. Consider the sets of constraint systems Σ = {C1, C2, C3} and Σ′ = {C′
1, C

′
2, C

′
3} as

defined in Example 4.9. These two sets are in symbolic equivalence whereas the sets {C1} and {C′
1}

are not in symbolic equivalence. Indeed, consider the substitutions (σ, θ) given in Example 4.6.
We obtain that (σ, θ) ∈ Sol(C1) whereas θ 6∈ Sol(C′

1). Indeed, we have that θ = {Z1 7→ c, Z2 7→
c, Y 7→ aenc(〈ni, proj2(ax 1)〉, proj2(ax 3))}. Thus, in order to satisfy item 1 of Definition 4.4, the
substitution σ′ should be σ′ = {z1 7→ c, z2 7→ c, y 7→ aenc(〈ni, pk(ska)〉, pk(skb))}. However, such
a substitution σ′ will not satisfy item 2 since the equality π2(adec(yσ

′, skb)) =E pk(ska′) does not
hold. This allows us to conclude that {C1} 6≈s {C′

1}.

4.2.2 Syntax and semantics

From a bounded intermediate process (E ;P; Φ), we can compute the set of constraint systems
capturing its possible executions, starting from the symbolic process (E ;P; Φ; ∅; ∅) and applying
the rules defined in Figure 4.2.

Definition 4.6 (symbolic process). A symbolic process is a tuple (E ;P; Φ;D;Eq) where:

— E is a set of names;

— P is a multiset of plain processes that do not contain name restriction, replication, where

null processes are removed and such that fvars(P) ⊆ {x | X
?

⊢ x ∈ D};

— (E ; Φ;D;Eq) is a constraint system.

The rules of Figure 4.2 define the semantics of symbolic processes. This relation transforms
a symbolic process into a symbolic process. The aim of this symbolic semantics is to avoid the
infinite branching due to the inputs of the environment. This is achieved by keeping variables
rather than the input terms. The constraint system gives a finite representation of the value these
variables are allowed to take.

(E ; {if u = v then P1 else P2} ⊎ P; Φ;D;Eq)
τ
−→s (E ; {P1} ⊎ P; Φ;D;Eq ∪ {u

?
= v}) (Thens)

(E ; {{if u = v then P1 else P2} ⊎ P; Φ;D;Eq)
τ
−→s (E ; {P2} ⊎ P; Φ;D;Eq ∪ {u

?

6= v}) (Elses)

(E ; {out(p, u).Q1; in(q, x).Q2} ⊎ P; Φ;D;Eq)
τ
−→s (E ; {Q1;Q2{x 7→ u}} ⊎ P; Φ;D;Eq ∪ {p

?
= q})

(Comms)

(E ; {P | Q} ⊎ P; Φ;D;Eq)
τ
−→s (E ; {P ;Q} ⊎ P; Φ;D;Eq) (Pars)

(E ; {in(p, x).Q} ⊎ P; Φ;D;Eq)
in(Z,Y)
−−−−−→s

(E ; {Q{x 7→ y}} ⊎ P; Φ;D ∪ {Y, n
?

⊢ y;Z, n
?

⊢ z};Eq ∪ {z
?
= p})

if Y, y, Z, z are fresh variables, n = |Φ| (Ins)

(E ; {out(p, u).Q} ⊎ P; Φ;D;Eq)
νaxn.out(Z,axn)
−−−−−−−−−−−→s

(E ; {Q} ⊎ P; Φ ∪ {axn+1 ⊲ u};D ∪ {Z, n
?

⊢ z};Eq ∪ {z
?
= p})

if axn ∈ AX such that n = |Φ|, Z, z are fresh variables (Out-Ts)

(E ; {out(p, c).Q} ⊎ P; Φ;D;Eq)
out(Z,Y)
−−−−−−→s

(E ; {Q} ⊎ P; Φ;D ∪ {Z, n
?

⊢ z ;Y, n
?

⊢ y};Eq ∪ {z
?
= p ; y

?
= c})

if c 6∈ E and Y, y, Z, z are fresh variables, n = |Φ| (Out-Chs)

(E ; {out(p, c).Q} ⊎ P; Φ;D;Eq)
νchm.out(Z,chm)
−−−−−−−−−−−→s

(E ; ({Q} ⊎ P){c 7→ chm}; Φ;D ∪ {Z, n
?

⊢ z};Eq ∪ {z
?
= p})

if c ∈ E , Z, z are fresh variables with n = |Φ|, chm a fresh channel name (Open-Chs)

u, v are terms having the same type, x is a variable of any type, and p, q, c are terms of channel
type, i.e. names or variables.

Figure 4.2: Symbolic semantics

The Thens (resp. Elses) rule allows the process to pass a conditional. The corresponding
constraint is added in the set of equations and inequations Eq. When a process is ready to input
a term on a public channel p, a deducible constraint is added in the set D (rule Ins). When a
process is ready to output a term u on a public channel p, the outputted term is added to the

frame Φ (rule Out-Ts), which means that this term is made available to the attacker. Note that
when this term is actually a channel name, say c, the situation is slightly different. We distinguish
two cases depending on whether c is restricted or not. In particular, in case of an output of a
bound channel name, the rule Open-Chs requires renaming the channel name (as this is done
in the rule Out-Ts). This is needed for our symbolic trace equivalence relation since we require
both the left- and right-hand processes to use the same label without allowing α-conversion.

The relations
w
−→s and

s
⇒s are defined as for our intermediate semantics.

Example 4.9. Continuing Examples 4.5, the constraint system C1 = (E ; Φ0 ∪{ax 4 ⊲ t};D1;Eq1)
(see Example 4.6) is one of the constraint systems obtained by applying our symbolic rules on
the process (E ; {B′(b, a) | A′(a, b)}; Φ0; ∅; ∅) and considering the following symbolic trace trs =
in(Z1, Y). νax 4. out(Z2, ax 4). But there is two more possible constraint systems for the same
sequence trs. The first one is C2 = (E ; Φ2;D2;Eq2) where:

— Φ2 = Φ0 ∪ {ax 4 ⊲ aenc(nb, pk(skb))}; and

— D2 = {Z1, 3
?

⊢ z1;Y, 3
?

⊢ y;Z2, 3
?

⊢ z2}; and

— Eq2 = {z1
?
= c; proj2(adec(y, skb))

?

6= pk(ska); z2
?
= c}.

This constraint system corresponds to the execution of B′(b, a) but in the else branch. The last
one is C3 = (E ; Φ3;D3;Eq3) where:

— Φ3 = Φ0 ∪ {ax 4 ⊲ aenc(〈na, pk(ska)〉, pk(skb))}; and

— D3 = {Z1, 3
?

⊢ z1;Y, 3
?

⊢ y;Z2, 3
?

⊢ z2}; and

— Eq3 = {z1
?
= c; z2

?
= c}.

This last constraint system corresponds to the first input of B′(b, a) but then the output of A′(a, b).
This is why there is no restriction on the variable y in C3.

For the same sequence trs, similar constraint systems, denoted C′
1, C

′
2 and C′

3 can be derived for
the process (E ; {B′(b, a′) | A′(a′, b)}; Φ0). The occurrences of ska will be replaced by ska′ (except
the occurrence in Φ0).

We show that the set of symbolic processes obtained from a symbolic process (E ;P; Φ; ∅; ∅)
exactly captures the set of intermediate traces of the intermediate process (E ;P; Φ). More specif-
ically, we show that each solution of the symbolic processes corresponds to a trace of the interme-
diate process (Proposition 4.2) and reciprocally for each trace of the intermediate process there
exists a corresponding solution of the symbolic process (Proposition 4.3). Figure 4.3 represents
the relations between the intermediate and symbolic semantics.

Symbolic

Intermediate

C1 = (E1; Φ1;D1;Eq1) C2 = (E2; Φ2;D2;Eq2)

(E1;P1; Φ1;D1;Eq1) (E2;P2; Φ2;D2;Eq2)

(E1;P
′
1; Φ

′
1) (E2;P

′
2; Φ

′
2)

ℓsθ2 = ℓi

ℓs

ℓi

(σ1, θ1) ∈ Sol(C1)
P1σ1 = P ′

1

Φ1σ1 = Φ′
1

(σ2, θ2) ∈ Sol(C2)
P2σ2 = P ′

2

Φ2σ2 = Φ′
2

Figure 4.3: Relations between symbolic and intermediate semantics

The soundness of
αs−→s w.r.t.

α
−→i is given by the following proposition (proof in Appendix A.2).

Proposition 4.2 (soundness). Let (E1;P1; Φ1;D1;Eq1), and (E2;P2; Φ2;D2;Eq2) be two symbolic
processes such that

— (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2), and

— (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)).

Let θ1 = θ2|vars2(D1) and σ1 = σ2|vars1(D1). We have that:

1. (σ1, θ1) ∈ Sol((E1; Φ1;D1;Eq1)), and

2. (E1;P1σ1; Φ1σ1)
αsθ2−−−→i (E2;P2σ2; Φ2σ2)

The completeness of the symbolic semantics w.r.t. the intermediate one is given by the following
proposition (proof in Appendix A.2).

Proposition 4.3 (completeness). Let (E1;P1; Φ1;D1;Eq1) be a symbolic process. Let (σ1, θ1) ∈

Sol((E1; Φ1;D1;Eq1)). Let (E ;P; Φ) be an intermediate process such that (E1;P1σ1; Φ1σ1)
α
−→i

(E ;P; Φ). There exist a symbolic process (E2;P2; Φ2;D2;Eq2), a pair of substitutions (σ2, θ2), and
a symbolic action αs such that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2);

2. (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2));

3. (E ;P; Φ) = (E2;P2σ2; Φ2σ2); and

4. αsθ2 = α.

Example 4.10. Continuing Example 4.9 and 4.6, the constraint system C1 = (E ; Φ0 ∪ {ax 4 ⊲

t};D1;Eq1) was shown to be obtained by applying our symbolic rules on the process (E ; {B′(b, a) |
A′(a, b)}; Φ0; ∅; ∅) and considering the following symbolic trace trs = in(Z1, Y). νax 4. out(Z2, ax 4):

(E ; {B′(b, a) | A′(a, b)}; Φ0; ∅; ∅)
trs⇒s (E ; {A

′(a, b)}; Φ0 ∪ {ax 4 ⊲ t};D1;Eq1)

Furthermore, in Example 4.7, we exhibited a solution of C1: (σ, θ) where dom(θ) = {Z1, Z2, Y },
Z1θ = Z2θ = c, Y θ = aenc(〈ni, proj2(ax 1)〉, proj2(ax 3)) with ni a public name of base type (i.e.
ni 6∈ E1), σ is the substitution whose domain is {z1, z2, y} and such that z1σ = z2σ = c, and
yσ = aenc(〈ni, pk(ska)〉, pk(skb)). Thus:

(E ; {B′(b, a) | A′(a, b)}; Φ0)
tr
⇒i (E ; {A

′(a, b)}; Φ0 ∪ {ax 4 ⊲ t′})

where tr = trsθ and t′ = tσ.

Given an intermediate bounded process, there exists only a finite number of symbolic traces
(up to renaming of the second variables of the trace). In this section, we will use this property to
show how to reduce the problem of deciding the trace equivalence to the problem of deciding the
symbolic equivalence of sets of constraint systems.

4.2.3 Symbolic trace equivalence

Due to Proposition 4.1, it is sufficient to establish the link between symbolic equivalence and
intermediate trace equivalence of intermediate processes.

Following the approach of [Bau07], we compute from an intermediate process A = (E ;P; Φ)
the set of constraint systems capturing the possible executions of A, starting from its associated

symbolic process As
def
= (E ;P; Φ; ∅; ∅) and applying the rules defined in Figure 4.2. Formally, we

define the set of traces of a symbolic process as follows:

traces(As) = {(trs, (E2; Φ2;D2;Eq2)) | As
trs⇒s (E2;P2; Φ2;D2;Eq2) for some E2,P2,Φ2, D2, Eq2}

When trs is fixed, we also write (trs,Σ) ∈ traces(As) to define the set Σ as the set of constraint
systems {C | (trs, C) ∈ traces(As)}.

Two intermediate bounded processes are in intermediate trace equivalence if and only if, for
any symbolic trace, their corresponding sets of constraints are in symbolic equivalence, which we
call symbolic trace equivalence.

Definition 4.7 (symbolic trace equivalence). Let A and B be two intermediate bounded processes.
They are in symbolic trace equivalence if for every sequence trs of symbolic actions, we have that:

{C | (trs, C) ∈ traces(As)} ≈s {C | (trs, C) ∈ traces(Bs)}

where As and Bs are the symbolic processes associated to A and B.

By relying of Propositions 4.2 and 4.3, we are now capable of establishing that trace equivalence
coincide with symbolic trace equivalence. Figure 4.4 presents a sketch of proof of Proposition 4.4.

Symbolic

Intermediate

(trs,Σ) ∈ traces(A) (trs,Σ
′) ∈ traces(B)

(σ, θ) ∈ Sol(C) (σ′, θ) ∈ Sol(C′) and Φ(C)σ ∼ Φ(C′)σ′

(tr,Φ) ∈ tracei(A) (tr,Φ′) ∈ tracei(B) and Φ ∼ Φ′

Hyp: Σ ≈s Σ
′

Hyp: A ≈t B

Φ(C)σ = Φ
trsθ = tr

Prop. 4.3

Φ(C)σ = Φ
trsθ = tr

Prop. 4.2

Φ(C′)σ′ = Φ′

trsθ = tr

Prop. 4.2

Φ(C′)σ′ = Φ′

trsθ = tr

Prop. 4.3

The steps of the proof that symbolic trace equivalence implies trace equivalence are represented
by the simple arrows, whereas the steps of the proof that trace equivalence implies symbolic trace
equivalence are represented by the double arrows.

Figure 4.4: Symbolic trace equivalence and trace equivalence coincide

Proposition 4.4. Let A and B be two intermediate bounded processes: A ≈t B if, and only if A
and B are in symbolic trace equivalence.

Proof. We show the two directions separately. Let A = (E ;PA; ΦA) and B = (E ;PB ; ΦB).

Case (⇐): We have to show that for every (tr,Φ′
A) ∈ tracei(A) there exists (tr,Φ′

B) ∈ tracei(B)
such that νE .Φ′

A ∼ νE .Φ′
B (and reciprocally). Let (tr,Φ′

A) ∈ tracei(A). By definition of tracei(A),

this means that there exists P ′
A such that (E ;PA; ΦA)

tr
⇒i (E ;P

′
A; Φ

′
A). Let As = (E ;PA; ΦA; ∅; ∅)

and σ, θ be the substitutions identity. We have that (σ, θ) ∈ Sol((E ; ΦA; ∅; ∅)). Thanks to Propo-
sition 4.3, a simple induction on |tr| allows us to deduce that there exist a symbolic process
A′

s = (E ;P ′s
A ; Φ′s

A;D
′
A;Eq′A), a pair of substitution (σ′

A, θ
′), and a sequence trs of symbolic actions

such that:

1. (E ;PA; ΦA; ∅; ∅)
trs⇒s (E ;P

′s
A ; Φ′s

A;D
′
A;Eq′A);

2. (σA, θ
′) ∈ Sol((E ; Φ′s

A;D
′
A;Eq′A));

3. (E ;P ′
A; Φ

′
A) = (E ;P ′s

Aσ′
A; Φ

′s
Aσ

′
A); and

4. trsθ
′ = tr.

Let C′
A = (E ; Φ′s

A;D
′
A;Eq′A). By definition of traces(As), we have that (trs, C

′
A) ∈ traces(As).

Since A and B are in symbolic trace equivalence, we deduce that there exist a substitution σ′
B and

C′
B = (E ; Φ′s

B ;D
′
B ;Eq′B) such that (trs, C′

B) ∈ traces(Bs) with (σ′
B , θ

′) ∈ Sol(C′
B) and νE .Φ′s

Aσ
′
A ∼

νE .Φ′s
Bσ

′
B . By definition of traces(Bs), we have that (E ;PB ; ΦB ; ∅; ∅)

trs⇒s (E ;P ′s
B ; Φ′s

B ;D
′
B ;Eq′B)

for some P ′s
B . Now, thanks to Proposition 4.2, a simple induction on |trs| allows us to deduce that

(E ;PB ; ΦB)
trsθ

′

⇒ i (E ;P ′s
Bσ′

B ; Φ
′s
Bσ

′
B). If we denote Φ′

B = Φ′s
Bσ

′
B and since tr = trsθ

′, we clearly
have that (tr, νE .Φ′

B) ∈ tracei(B). At last, we already showed that νE .Φ′s
Aσ

′
A ∼ νE .Φ′s

Bσ
′
B and so

νE .Φ′
A ∼ νE .Φ′

B . Hence the result holds. The other inclusion can be shown in a similar way.

Case (⇒): We have to show that A and B are in symbolic trace equivalence, i.e. for every
sequence trs of symbolic actions,

{C | (tr, C) ∈ traces(As)} ≈s {C | (tr, C) ∈ traces(Bs)}

Let (trs, C′
A) ∈ traces(As) and (σA, θ) ∈ Sol(C′

A). By definition of traces(As), we know that
there exists P ′s

A such that As
ws⇒s (E ;P

′s
A ; Φ′s

A;D
′
A;Eq′A) and C′

A = (E ; Φ′s
A;D

′
A;Eq′A).

Thanks to Proposition 4.2, we have that A
trsθ⇒ i (E ;P ′s

AσA; Φ
′s
AσA). Since A and B are in

trace equivalence, we deduce that there exists (E ;P ′
B ; Φ

′
B) such that B

trsθ⇒ i (E ;P ′
B ; Φ

′
B) and

νE .Φ′s
AσA ∼ νE .Φ′

B . Thanks to Proposition 4.3, we deduce that there exist (E ;P ′s
B ; Φ′s

B ;D
′
B ;Eq′B),

a pair of substitutions (σB , θ
′), and a sequence tr′s of symbolic actions such that:

1. Bs

tr′s⇒s (E ;P ′s
B ; Φ′s

B ;D
′
B ;Eq′B);

2. (σB , θ
′) ∈ Sol((E ; Φ′s

B ;D
′
B ;Eq′B));

3. (E ;P ′
B ; Φ

′
B) = (E ;P ′s

BσB ; Φ
′s
BσB); and

4. tr′sθ
′ = trsθ.

Let C′
B = (E ; Φ′s

B ;D
′
B ;Eq′B). Actually, we can assume that w′

s = ws (by renaming the second
order variables that occur in w′

s). Moreover, since wsθ
′ = wsθ, we have that θ′ = θ. Lastly, since

νE .Φ′s
AσA ∼ νE .Φ′

B and Φ′
B = Φ′s

BσB , we easily deduce that νE .Φ′s
AσA ∼ νE .Φ′s

BσB .

4.3 Main result and conclusion

In this chapter, we have shown that deciding trace equivalence of processes in the applied pi
calculus can be reduced to deciding symbolic equivalence of sets of constraint systems. Hence, we
extract a decision procedure for trace equivalence.

Theorem 4.1. Given an algorithm for deciding symbolic equivalence between sets of constraint
systems, we can derive an algorithm for deciding trace equivalence between processes without repli-
cation.

Proof. The algorithm for deciding trace equivalence follows from Proposition 4.4: Given a fixed
sequence of symbolic labels trs, given ΣA such that (trs,ΣA) ∈ traces(As), for any renaming α of
the second order variables of trs, we have (trsα,Σα) ∈ traces(As). Hence, when computing the
set of constraint systems capturing the possible executions of A, we only consider one sequence of
symbolic labels trs to represent the set {tr′s | (tr

′
s,Σ

′
A) ∈ traces(As) and tr′s is equal to trs through

renaming of second order variables}. Of course the same sequence of symbolic labels trs must be
used to represent the set {tr′s | (tr′s,Σ

′
B) ∈ traces(Bs) and tr′s is equal to trs through renaming of

second order variables}. In such a case, there is only a finite set of traces of a symbolic process to
consider, and each symbolic trace leads to a finite number of constraint systems.

Thanks to this reduction result, we can now focus on deciding the symbolic equivalence be-
tween sets of constraint systems. So far, the previous works in the literature focus on symbolic
equivalence between two positive constraint systems [Bau07, TD10, CR12] and not between two
sets of constraint systems. More details on these three previous works are given in the introduc-
tion of Chapter 6. Using these algorithms, [CD09a] shows that the trace equivalence of simple
processes can be decided by reducing the problem of trace equivalence for simple processes to the
symbolic equivalence between two positives constraint systems.

Even though the class of protocol that can be expressed as simple process is large, protocols that
need non-trivial else branches, private channels or that are not deterministic, such as the private
authentication protocol and thee-passport protocols, cannot be expressed as simple processes. This
is why, in Part II, we provide a decision procedure for symbolic equivalence of sets of constraint
systems with standard cryptographic primitives and inequalities.

Chapter 5

Composing trace equivalence

Contents

5.1 Some difficulties . 62

5.1.1 Sharing primitives with tagging . 63

5.1.2 Composition context . 66

5.2 Preliminaries . 67

5.2.1 Material for composition . 67

5.2.2 Derived well-tagged processes . 70

5.3 Going back to the disjoint case . 72

5.3.1 Name replacement . 73

5.3.2 Unfolding the processes . 74

5.3.3 Soundness and completeness . 76

5.3.4 Main result . 77

5.3.5 A first composition result . 78

5.4 Main composition result . 79

5.4.1 Some additional difficulties . 79

5.4.2 Roadmap of the proof . 81

5.4.3 Static equivalence . 82

5.4.4 Soundness and completeness . 84

5.4.5 Dealing with internal communication 86

5.4.6 Main composition result . 87

5.5 Application . 88

5.6 Conclusion . 89

As previously mentioned, most of the existing techniques for analysing protocols with respect
to privacy-type properties (e.g. [TD10, BAF08]), consider protocols to be executed in isolation.
But in reality many applications run in parallel and the underlying protocols may interact in
unexpected ways if cryptographic material is shared amongst them. This situation can arise if,
for example, a user chooses the same password for two different network services, or a server uses
the same key for different protocols. Furthermore, real life protocols are usually complex and
composed of several sub-protocols that rely on the same cryptographic material. For example, the
e-passport protocol (see Section 3.4) is composed of at least three sub-protocols (BAC, AA and
PA) that share private keys.

Unfortunately, even if a protocol is secure for an unbounded number of sessions, there is
no guarantee if the protocol is executed in an environment where other protocols sharing some
common keys are executed. The interaction with the other protocols may dramatically damage the
security of the former protocol. This is a well-known fact that has been already observed for trace-
based security properties e.g. [GT00, CC10], and that remains true for privacy-type properties.

61

An attacker may take advantage of a protocol Q to break anonymity of another protocol P that
has been proved secure in isolation. This can happen for instance if the security of P relies on the
secrecy of a particular shared key that is revealed by the protocol Q.

In order to enable verification of complex real life systems, composition theorems for modular
reasoning about security and privacy are therefore desirable. They may allow one to deduce
security guarantees for a complex protocol, from the security guarantees of the individual sub-
protocols. The goal of this chapter is to study the composition of protocols with respect to
privacy-type properties.

As mentioned in the introduction, most of the existing results focus on trace properties and few
focus on equivalence properties. However, we highlight a result closely related to ours that is the
one of S. Ciobaca and V. Cortier [CC10]. Their result holds for any cryptographic primitives that
can be modelled using equational theories, and their main result transforms any attack trace of
the combined protocol into an attack trace of one of the individual protocols. This allows various
ways of combining protocols such as sequentially or in parallel, possibly with inner replications.
Although, the major difference with our result is that they consider trace-based security properties,
and more precisely secrecy (encoded as a reachability property), the proof technique we present
in this chapter is directly inspired from their work.

More specifically, we show that whenever processes P and Q (resp. P ′ and Q′) satisfy some
disjointness properties (e.g. tagged processes, no shared key revealed, . . .), we can derive that P
and Q running in parallel under the composition context C[_] are equivalent to P ′ and Q′ running
in parallel under the composition context C ′[_], i.e.

C[P | Q] ≈ C ′[P ′ | Q′]

from the equivalences C[P] ≈ C ′[P ′] and C[Q] ≈ C ′[Q′]. The composition context under which two
processes are composed contains the shared keys possibly under some replications. We illustrate
the application of our results on the e-passport protocol described in Section 3.4.

5.1 Some difficulties

The secure parallel composition of protocols is an easy task if the protocols do not share any
secret key which is represented by the following lemma.

Lemma 5.1. Let P,Q, P ′, Q′ four processes. P ≈t Q and P ′ ≈t Q
′ imply P | P ′ ≈t Q | Q′.

This lemma comes directly from the fact the trace equivalence is closed under application of
a composition context. This holds in many cryptographic calculus and more specifically in the
applied pi calculus.

However, as soon as the protocols share some private keys, some difficulties arises. In particular,
the security of the parallel composition can be compromised if one of the protocol revealed a shared
key.

Example 5.1. Consider the equational theory introduced in Example 2.2 and consider the two
processes Pi = νr.out(c, aenc(〈r, id i〉, pk(skS))) with i ∈ {1, 2}. The first component generates a
fresh random number r, publishes the message aenc(〈r, id i〉, pk(skS)) containing its identity id i

by sending it on the public channel c. Note that the encryption of a pairing where one of its
component is a fresh nonce is a way to model randomized asymmetric encryption.

We have that νskS .P1 ≈t νskS .P2. This equivalence may express for instance the anonymity
of the identity id i.

Assume now that P is executed in an environment where another protocol Q = νskS . out(c, skS)
is executed as well and Q uses the same asymmetric key skS as the protocol P . Clearly, the
equivalence expressing the anonymity of P does not hold anymore:

νskS .
(
νr.out(c, aenc(〈r, id1〉, pk(skS))) | out(c, skS)

)

6≈t

νskS .
(
νr.out(c, aenc(〈r, id2〉, pk(skS))) | out(c, skS)

)

Indeed, in this example, id1 and id2 are both public so can appear in the tests for the static
equivalence. Hence a witness for the non-trace equivalence consists of the sequence of actions
tr = νax 1.out(c, ax 1).νax 2.out(c, ax 2) and the test proj2(adec(ax 1, ax 2)) = id1

As shown by the example above, the equivalence P1 ≈t P2 holds thanks to the secrecy of skS ,
and thus a protocol Q that uses this key skS should at least not reveal it. Revealing shared keys
would clearly compromise the security of P .

Actually, even if shared keys are not revealed, the interaction of two protocols using common
primitives may compromise their security (also true for trace properties such as secrecy).

Example 5.2. Consider the processes Pi with i ∈ {1, 2} as defined in Example 5.1 and consider
the process Q defined as follows:

Q
def
= in(c, x).out(c, adec(x, skS))

The equivalence expressing the anonymity of P (for one session) holds. We have that νk.P1 ≈t

νk.P2 whereas the equivalence expressing the anonymity of P in presence of Q does not hold
anymore. We have that:

νskS .
(
P1 | Q

)
6≈t νk.

(
P2 | Q

)

The sequence of actions tr = νax 1.out(c, ax 1).νax 2.out(c, ax 2) and the test ax 2 = id1 are a witness
of the non-equivalence. Intuitively, instead of revealing the secret key skS, Q can be used as an
oracle to decrypt a ciphertext that comes from the process P , and thus Q can be used to reveal the
identity hidden in the ciphertext.

5.1.1 Sharing primitives with tagging

In this chapter, we will use the intermediate calculus with its associated semantics. However,
given a plain process P , we will sometimes also denote by P the intermediate process (∅; {P}; ∅).

To avoid a ciphertext from a process to be decrypted by another one, we can consider processes
that use disjoint primitives. However, this is an unnecessarily restrictive condition. So, we consider
protocols that may share some cryptographic primitives provided they are tagged. Tagging is a
syntactic transformation that consists in assigning to each protocol an identifier (e.g. the protocol’s
name) that should appear in any encrypted message. Many relevant equational theories are not
so easy to tag (e.g. exclusive or). So, we only consider a fix common signature with its associated
equational theory, denoted (F0,E0), and we explain how to transform any process built on a
signature F (possibly larger that F0) into a tagged process.

The common signature F0 is defined as follows:

{sdec/2, senc/2, adec/2, aenc/2, pk/1, 〈 〉/2, proj1/1, proj2/1, sign/2, check/2, vk/1, h/1}

The common equational theory E0 is defined by the following equations (i ∈ {1, 2}):

sdec(senc(x, y), y) = x adec(aenc(x, pk(y)), y) = x
proji(〈x1, x2〉) = xi check(sign(x, y), vk(y)) = x

For our composition results, we will assume that the processes we want to compose are built
on (Fa ∪ F0,Ea ∪ E0) and (Fb ∪ F0,Eb ∪ E0), where (Fa,Ea), (Fb,Eb) and (F0,E0) are disjoint
signatures.

5.1.1.1 Tagging a term

We define the signature Ftagc
= {tagc/1, untagc/1} where tagc and untagc are two function

symbols that we will use for tagging. The role of the tagc function is to tag its argument with the
tag c. The role of the untagc function is to remove the tag. To model this interaction between
tagc and untagc, we consider the equational theory:

Etagc
= {untagc(tagc(x)) = x}.

Intuitively, tagging a protocol PA, built on (Fa ∪F0,Ea ∪ E0), with the tag a will result a process
built on (Fa ∪ Ftaga

∪ F0,Ea ∪ Etaga
∪ E0). We denote by F+

c = Fc ∪ Ftagc
and E+

c = Ec ∪ Etagc

with c ∈ {a, b} and a, b are the two tags that we will use in this chapter.

Definition 5.1. Let u be a term built on Fc ∪F0 (c ∈ {a, b}). The c-tagged version of u, denoted
[u]c is defined as follows:

[senc(u, v)]c
def
= senc(tagc([u]c), [v]c) [sdec(u, v)]c

def
= untagc(sdec([u]c, [v]c))

[aenc(u, v)]c
def
= aenc(tagc([u]c), [v]c) [adec(u, v)]c

def
= untagc(adec([u]c, [v]c))

[sign(u, v)]c
def
= sign(tagc([u]c), [v]c) [check(u, v)]c

def
= untagc(check([u]c, [v]c))

[h(u)]c
def
= h(tagc([u]c))

[u]c
def
= u when u ∈ X ∪N

[f(u1, . . . , un)]c
def
= f([u1]c, . . . , [un]c) otherwise.

Note that we do not tag the pairing function symbol (this is actually useless), and we do not
tag the pk and vk function symbols. Actually, tagging pk and vk would greatly help us to establish
our results and would also avoid us to introduce some additional assumptions, but this would lead
us to consider an unrealistic modeling for asymmetric keys. Some of the difficulties encountered
with asymmetric keys will be discussed in Section 5.4.

Example 5.3. Consider ui = aenc(〈r, id i〉, pk(skS)) with i ∈ {1, 2} and v = proj2(adec(x, skS)).
We have that [ui]a = aenc(taga(〈r, id i〉), pk(skS)), whereas [v]b = proj2(untagb(adec(x, skS))).

5.1.1.2 Tagging a process

Before extending the notion of tagging to processes, we have to express the tests that are
performed by an agent when he receives a message that is supposed to be tagged. Indeed, the
main purpose of tagging PA and PB with two different tags is to ensure that the intruder cannot
reinject a message obtained from PA (resp. PB) into the process PB (resp. PA). Hence to do so,
the tagged version of PA and PB will check that each message they receive are properly tagged
with the tags a and b respectively. This is the purpose of testc(u) that represents the tests which
ensure that every projection and every untagging performed by an agent during the computation
of u is successful.

Definition 5.2. Let u be a term built on F+
c ∪ F0 with c ∈ {a, b}. We define testc(u) as follows:

— testc(u)
def
= testc(u1)∧ testc(u2)∧ tagc(untagc(u)) = u, if u = g(u1, u2) with g ∈ {sdec, adec,

check};

— testc(u)
def
= testc(u1) ∧ u1 = 〈proj1(u1), proj2(u1)〉, if u = proji(u1) with i ∈ {1, 2};

— testc(u)
def
= true, if u is a name or a variable;

— Otherwise u = f(u1, . . . , un) for some n, and testc(u)
def
= testc(u1) ∧ . . . ∧ testc(un).

Note that in the first case, e.g. u = sdec(u1, u2), if u is a ground term then we have
tagc(untagc(u)) =E u if and only if the decryption succeeds and the plain text is tagged with
the tag c, i.e. u1 =E senc(tagc(u3), u2) for some u3.

For any term u, testc(u) is a conjunction of elementary formulas (equalities between term).
Hence, given a ground substitution α such that fvars(u) ⊆ dom(α), we say that α satisfies testc(u),
denoted α � testc(u) if α satisfies all elementary formulas of testc(u) whereas α satisfies t1 = t2,
denoted α � t1 = t2, if t1α↓ = t2α↓.

Example 5.4. Again, consider the terms ui = aenc(〈r, id i〉, pk(skS)) with i ∈ {1, 2} and v =
proj2(adec(x, skS)). We have that:

— [ui]a = aenc(taga(〈r, id i〉), pk(skS)) and testa([ui]a) = true.

— [v]b = proj2(untagb(adec(x, skS))) and testb([v]b) is the following conjunction:

tagb(untagb(adec(x, skS))) = adec(x, skS) ∧ 〈proj1(v
′), proj2(v

′)〉 = v′

where v′ = untagb(adec(x, skS)).

Let α1 = {x 7→ n}, α2 = {x 7→ aenc(tagb(n), skS)} and α3 = {x 7→ aenc(tagb(〈n, n
′〉), skS)}. We

have that α1 6� testb([v]b) and α2 6� testb([v]b) but α3 � testb([v]b).

We can now explain how to tag an intermediate process. Let A = (E ;P; Φ) be an intermediate
process built on Fc ∪ F0 with c ∈ {a, b} such that P = {P1, . . . , Pℓ}, and Φ = {ax 1 ⊲ u1, . . . , axn ⊲

un}. The c-tagged version of the process A, denoted [A]c, is the process (E ; [P]c; [Φ]c) where
[P]c = {[P1]c, . . . , [Pℓ]c}, and [Φ]c = {ax 1 ⊲ [u1]c, . . . , axn ⊲ [un]c}.

For plain processes, the transformation [P]c is defined as follows:

[0]c
def
= 0 [!P]c

def
= ![P]c [P | Q]c

def
= [P]c | [Q]c

[νk.P]c
def
= νk.[P]c [in(u, x).P]c

def
= in(u, x).[P]c

[out(u, v).Q]c
def
= if testc([v]c) then out(u, [v]c).[Q]c else 0

[if u1 = u2 then P else Q]c
def
= if testc([u1]c) ∧ testc([u2]c) then

if [u1]c = [u2]c then [P]c else [Q]c
else 0

The logical connector ∧ that are used in testc(u) are syntactic sugar that can be easily encoded
using nested conditionals.

Roughly, instead of simply outputting a term v, a process will first performed some tests to
check that the term is correctly tagged, thanks to testc([v]c), and he will output its c-tagged
version [v]c. For a conditional, the process will first check that the terms u1 and u2 are correctly
tagged before checking that the test is satisfied.

Note that testc() is always applied on a term that is tagged thanks to []c. It may seems counter
intuitive since one the purpose of testc(u) is to verify that u is well tagged whereas the purpose of
[u]c is to tag the term u. Indeed, for a ground term u that do not contain the symbol functions
sdec, adec, proji or check, we have that testc([u]c) = true. However, since we tag an intermediate
process, the term on which we apply []c are not necessary ground. Furthermore, the value of their
variable may differ in each derivation of the intermediate process. Hence, the tests testc([u]c) will
ensure that for any derivation of the processes, the instantiation of [u]c is properly tagged.

Example 5.5. We consider the processes P and Q defined in Example 5.2. Assume that P and
Q are tagged with respectively the tags a and b. Hence we have:

[Q]b = in(c, x).if tagb(untagb(adec(x, skS))) = adec(x, skS) then out(c, untagb(adec(x, skS))) else 0

Note that testb(untagb(adec(x, skS)))
def
= tagb(untagb(adec(x, skS))) = adec(x, skS).

Consider now the intermediate process A = (∅, [Q]b, ∅) and (tr, νE .Φ) ∈ tracei(A) such that
tr = in(c,M).νax 1.out(c, ax 1) for some M . The presence of the conditional in [Q]b ensure that
M =E aenc(tagb(u), pk(skS)) for some u. This is consistent with the goal of Q which is to reveal
any plain text that is encrypted with pk(skS).

Note that the test only verifies the tags of the part of M on which the process [Q]b will apply
some function symbols. In this example, even if u is tagged with the tag a or not tagged at all, M
will satisfy the test. Intuitively, the intruder may have built u from scratch or even receive it from
the process [P]a but from the point of view of Q, u is only some bitstring that is stored as-is.

5.1.2 Composition context

We saw in Example 5.1 that parallel composition of processes under name restriction may
reveal itself to be problematic. However, for the purpose of this work, i.e. parallel composition
of processes for security property such as anonymity and unlinkability, composition under name
restriction is not enough.

Example 5.6. Coming back to the e-passport protocol (Section 3.4), the anonymity of the parallel
composition of the Active Authentication protocol (AA) and the Passive Authentication protocol
(PA) can be expressed with the following equivalence:

νskDS .C[PA | AA,PA0 | AA0] ≈t νskDS .C
′[PA | AA]

where C and C ′ are contexts defined as follows:

C[_1,_2]
def
= ! νskP . νid. νsig. νpic. . . .

! νksenc. νksmac. _1

| νskP 0. !νksenc. νksmac. _2

C ′[_]
def
= !νskP . νid. νsig. νpic. . . . ! νksenc. νksmac. _

However, if we now look at the protocols AA and PA in isolation, the anonymity of theses
protocols would be expressed with the two following equivalences:

νskDS .C[AA,AA0] ≈t νskDS .C
′[AA]

νskDS .C[PA,PA0] ≈t νskDS .C
′[PA]

One can note that in the previous example, the parallel composition is done under contexts
which are different depending on the side of the equivalence. However, note that each time, the
contexts we consider for expressing anonymity are only composed of replication, parallel compo-
sition and name restriction.

Furthermore, note that in Example 5.6, the restriction of some shared keys occurs under a
replication, e.g. ksenc, ksmac. Hence, considering composition in a simpler setting where only a
bounded number of keys k̃ are shared (as done in e.g. [CD09b]), would not allow us to establish
unlinkability or anonymity in a modular way, but only some results of the form:

νk̃.P1 ≈t νk̃.P2 ⇒ νk̃. (P1 | Q) ≈t νk̃. (P2 | Q)

assuming that processes P1, P2, and Q satisfy some additional conditions.

Thus, we introduce the notion of composition context that will help us to describe under which
keys the composition has to be done. Note that a composition context may contain several holes,
parallel operators, and nested replications.

Definition 5.3. A composition context C is defined by the following grammar where n is a name
of base type.

C,C1, C2 := _ | νn.C | !C | C1|C2

We only allow names of base type (typically keys) to be shared between processes through the
composition context. In particular, they are not allowed to share a private channel even if each
process can use its own private channels to communicate internally. We also suppose w.l.o.g. that
names occurring in C are distinct. A composition context may contain several holes. We can
index them to avoid confusion. We write C[P1, . . . , Pℓ] (or shortly C[P]) the process obtained by
filling the ith hole with the process Pi (or the ith process of the sequence P). We will also use
P | Q to represent the sequence of processes obtained by putting in parallel the processes of the
sequences of same size P and Q componentwise, i.e. the sequence P1 | Q1, . . . , Pℓ | Qℓ.

In Example 5.1, we saw that revealing a shared key is problematic for composition. Since some
shared key may be restricted under a replication, we have to consider renaming and formalise the
notion of revealing a shared key. Note that all names that occur in a composition context do not
necessary represent shared keys.

Example 5.7. Coming back to Example 5.6 and Figure 3.3 and 3.4, the names skDS , id, sig, pic,
dg1, . . . , dg19 are only used in the Passive Authentication protocol and so are not shared keys. On
the other hand, the secret key skP , associated to each passport, is used in both Active and Passive
Authentication protocols (vk(skP) is stored in dg15). Moreover, the session keys ksenc and ksmac

are also used in both Active and Passive Authentication protocols and so ksenc, ksmac and skP
are the only shared keys in the composition contexts νskDS .C and νskDS .C

′.

Definition 5.4. Let A be an intermediate process of the form (E ;C[P1, . . . , Pℓ]; Φ) where C is a
composition context, and let key ∈ {n, pk(n), vk(n) | n ∈ E or n occurs in C}. We say that the
intermediate process A reveals the shared key key when:

Either fnames(key) ∈ E, and

— A
w
⇒i (E

′;P ′; Φ′) for some (E ′;P ′; Φ′); and

— MΦ′ =E key for some M such that fvars(M) ⊆ dom(Φ′) and fnames(M) ∩ E ′ = ∅.

Or, we have that fnames(key) occurs in C, the i0
th hole is in the scope of νfnames(key), and

— (E ∪ {s};C[P+
1 , . . . , P+

ℓ]; Φ)
w
⇒i (E ′;P ′; Φ′) with P+

i

def
= Pi if i 6= i0 and P+

i0

def
= Pi0 |

in(c, x).if x = key then out(c, s) else 0; and

— MΦ′ =E s for some M such that fvars(M) ⊆ dom(Φ′) and fnames(M) ∩ E ′ = ∅.

where s and c are fresh.

Intuitively, a key is revealed if there exists a trace of the extended process where this key
can be deduced by the intruder. Hence, in the case where the shared key is in the set of private
names E , the definition is straight forward. However, in the case where the shared key appears in
the composition context, due to the scope in which the key key is restricted, we say that key is
revealed if the intruder is able to deduce the fresh private name s which is possible if and only if
the intruder is able to output key on the fresh public channel c.

Example 5.8. Consider the composition context C[_] = !νskS ._. Consider the process P1 de-
scribed in Example 5.1. The intermediate process (∅;C[P1]; ∅) does not reveal the keys skS, pk(skS)
and vk(skS). Indeed, let key ∈ {skS , pk(skS), vk(skS)}, the intermediate process

({s};C[P1 | in(c, x).if x = key then out(c, s) else 0]; ∅)

can not reach a configuration from which s will be derivable by the attacker.

5.2 Preliminaries

As mentioned at the beginning of this chapter, our proof technique is similar to the one
of [CC10] and consists of transforming any trace of the combined processes that share secret keys
into a trace of a composition of the processes where no secret key is shared. In this section, we
will introduce the main notions that will be useful to define and prove such transformation.

5.2.1 Material for composition

As mentioned in Section 5.1, we consider in this chapter several signatures with their associated
equational theories. We have (Fa,Ea) and (Fb,Eb) that are not specified, (F0,E0) the common
signature, and the two signatures that we use for tagging processes: (Ftaga

,Etaga
) and (Ftagb

,Etagb
).

Moreover, we know that all those signatures and equational theory are disjoint two at a time and
consistent. Since a message sent over the network can be formed with a combination of all these

signatures, we introduce several notions that will help us describing a term. We define F and E

the union of the previous signatures and equational theories, i.e. F = Fa ∪Fb ∪F0 ∪Ftaga
∪Ftagb

and E = Ea ∪ Eb ∪ E0 ∪ Etaga
∪ Etagb

.

5.2.1.1 Factors

The term N is alien to M if root(N) ∈ Fi, root(M) ∈ Fj and i 6= j. We now introduce the
notion of factors. A similar notion is also used in [CR05].

Definition 5.5 (factors). Let M ∈ T (F ,N ∪ X). The factors of M , denoted Fct(M), are the
maximal syntactic subterms of M that are alien to M

The factors will help us determine which parts of a term might have been computed by the
processes PA and PB that we want to compose. Indeed, if the root of a term comes from the
signature Fa and the root of one of its factors comes from Fb then it’s likely that this factor was
computed by PB and then injected into the process PA. However, its is not necessary the case
since PA and PB share the signature F0.

Example 5.9. Assume that Fa is the signature made up of the constant symbol 0 and the binary
function + and that the associated equation theory Ea is the following set of equations:

x+ (y + z) = (x+ y) + z x+ 0 = x
x+ y = y + x x+ x = 0

Let u be a term built upon (Fa∪F0,Ea∪E0) such that u = sdec(〈n1+ 〈n2, n3〉, proj1(n1+n2)〉, n3).
The term n1 + 〈n2, n3〉 is a syntactic subterm of u alien to u since root(n1 + 〈n2, n3〉) ∈ F+ and
root(u) ∈ F0. We have that

Fct(u) = {n1 + 〈n2, n3〉, n1 + n2, n3}

For our composition result, we work with tagged processes, i.e. [PA]a and [PB]b. As described
in Section 5.1, theses processes check the tags of a term before sending it over the network. While
senc(taga(n), k) might have been computed by the process PA, the term senc(n, k) could not have
been computed by PA since it is not tagged with the tag a and was most likely computed by the
intruder. Hence for terms whose root is in the common signature, we introduce a specific notion
of factors that takes into account terms.

Definition 5.6 (Factor for F0). Let u be a term. We define FctF0
(u) the factors of a term u for

F0 as the maximal syntactic subterms of u of the form f(tagi(u1), u2) with f ∈ {senc, aenc, sign}
and i ∈ {a, b}; or of the form h(tagi(u1)) with i ∈ {a, b}; or whose root symbol is not in F0.

Example 5.10. Consider the theory (Fa,Fa) given in Example 5.9. Let u be a term built on
(Fa ∪ Ftaga

∪ F0),Ea ∪ Etaga
∪ E0) such that u = 〈senc(taga(n1), 〈n1 + n2, n3〉), sign(n4, n5)〉. We

have:

— Fct(u) = {taga(n1); n1 + n2; n3; n4; n5}

— FctF0
(u) = {senc(taga(n1), 〈n1 + n2, n3〉); n4; n5}

— FctF0
(n1 + n2) = {n1 + n2}

We can see in this example that since the root of u is in F0, FctF0
(u) gives more informations

than Fct(u). Indeed, senc(taga(n1), 〈n1 + n2, n3〉) could have been computed by [PA]a whereas
sign(n4, n5) could not have been computed by [PA]a or [PB]b. Hence, only n4 and n5 might have
been computed by our processes.

5.2.1.2 Ordered rewriting

Most of the definitions and results in this subsection are borrowed from [CR05] and [CD12]
since we use similar techniques. We consider the notion of ordered rewriting defined in [DJ90],
which is a useful tool that has been used (e.g. [BS96]) for proving correctness of combination of
unification algorithms. It will allows us to use rewriting systems rather than equational theories
which are sometimes difficult to handle in proofs.

Let ≺ be a simplification ordering on ground terms , i.e. ≺ satisfies that for all ground terms
u, v1, v2, and for any position p 6= ǫ in m, v1 ≺ u[v1]p and v1 ≺ v2 implies u[v1]p ≺ u[v2]p. Assume
furthermore that ≺ is total, the minimum for ≺ is a name nmin and the constants in F are smaller
that any ground term that is neither a constant nor a name. We define F+ to be the set of the
function symbols of F plus the name nmin, i.e. F+ = F∪{nmin}. In what follows, we furthermore
assume that nmin is never used under restriction in frames.

Given a possibly infinite set of equations O, we define the ordered rewriting relation →O

by t →O t′ if and only if there exist an equation u1 = u2 ∈ O, a position p in M and a substitution τ
such that:

t = t[u1τ]p, t′ = t[u2τ]p and u2τ ≺ u1τ

It has been shown (see [DJ90]) that by applying the unfailing completion procedure to a set of
equations E we can derive a (possibly infinite) set of equations O such that on ground terms:

1. the relations =O and =E are equal,

2. the rewriting system →O is convergent.

It was showed ([BS96]) that applying unfailing completion to two disjoints sets of equations, e.g.
Ea ∪ Eb, yields the set of generated equations O that is the disjoint union of the two systems Oa

and Ob obtained by applying unfailing completion procedures to Ea and to Eb respectively. We
can easily extend this result to E = Ea ∪ Eb ∪ E0 ∪ Etaga

∪ Etagb
since they are all disjoint two at a

time.
Thus, applying unfailing completion to E yields the set of generated equations O that is the

disjoint union of Oa,Ob, . . . ,Otagb
obtained by applying unfailing completion procedures respec-

tively to Ea,Eb, . . . ,Etagb
. In fact, applying the unfailing procedure (see [DJ90]) on E0 (resp. Etaga

and Etagb
) yields O0 = E0 (resp. Otaga

= Etaga
and Otagb

= Etagb
). Typically, it is due to the fact

that each equation has a variable as right hand side, which is subterm of the left hand side of the
equation. Therefore, the rewriting systems →O0

, →Otaga
and →Otagb

are as follows:

→Otaga
: untaga(taga(x)) → x

→Otagb
: untagb(tagb(x)) → x

→O0
:





sdec(senc(x, y), y) → x
adec(aenc(x, pk(y)), y) → x
proj1(〈x, y〉) → x
proj2(〈x, y〉) → y
check(sign(x, y), vk(y)) → x

Since the relation →O is convergent on ground terms, we define t↓ as the unique normal form
of the ground term t for →O.

We can now state two lemmas that we will use in the next sections. Intuitively, the first lemma
shows that the rewrite rules, applied during the normalisation of a term with factors in normal
form, never modify these factors. The second lemma indicates that the normalisation and the
replacement of factors commute, provided that the replacement preserved the equalities between
factors.

Lemma 5.2 (Proved in [CD12]). Let t be a ground term such that all its factors are in normal
form and root(t) ∈ Fi with i ∈ {a, b, taga, tagb, 0}. Then

— either t↓ ∈ Fct(t) ∪ {nmin},

— or root(t↓) ∈ Fi and Fct(t↓) ⊆ Fct(t) ∪ {nmin}.

Lemma 5.3. Let t be a ground term such that t = C[u1, . . . , un] where C is a context built on Fi,
i ∈ {a, b, taga, tagb, 0} and u1, . . . , un are the factors of t in normal form. Furthermore, let D be
the context built on Fi (possibly a hole) such that t↓ = D[uj1 , . . . , ujk] with j1, . . . , jk ∈ {0 . . . n}
and u0 = nmin (the existence is given by Lemma 5.2). For all ground terms v1, . . . , vn in normal
form and alien to t, if

∀(p, q) ∈ {0 . . . n}, up = uq ⇔ vp = vq

then C[v1, . . . , vn]↓ = D[vj1 , . . . , vjk] with v0 = nmin

Proof. Thanks to Lemma 19 of [CD12], and the fact that u1, . . . , un are factors in normal form, we
know that the derivation of t is due to rewriting rules from Oi. Hence, we do a proof by induction
on the length L of the derivation

t →Oi
t1 →Oi

t2 →Oi
. . . →Oi

tn →Oi
t↓

where each tn are minimal among the terms N such that tk−1 →Oi
N .

Base case L = 0: In such a case, t is in normal form and so C = D, n = k and jℓ = ℓ for all ℓ ∈
{1, . . . , n}. Let v1, . . . , vn in normal form and alien to t such that for all (p, q) ∈ {0 . . . n}, up = uq

implies vp = vq. We show that C[v1, . . . , vn] is in normal form.
Assume that it is not the case. Let’s denote M = C[v1, . . . , vn]. Thanks to Lemma [CD12].19,

we know that there exists a rule in Oi applied on M . Let M ′ be the minimal term for ≺ among
the terms N such that M →Oi

N . Let ℓ = r ∈ Oi applied on M at position p with substitution
σ in order to obtain M ′.

Since the factors v1, . . . , vn are in normal form, the position p is above or incomparable with
any position corresponding to a factor of M . Thus, for all x ∈ fvars(ℓ), there exists a position p′

of C such that xσ = C[v1, . . . , vn]|p′ . Combined with the fact that t being in normal form implies
that ℓ and t|p are not unifiable, we have that there exists two positions q, q′ of C and a variable x ∈
fvars(ℓ) such that xσ = C[v1, . . . , vn]|q = C[v1, . . . , vn]|q′ and C[u1, . . . , un]|q 6= C[u1, . . . , un]|q′ .
Thus there exists j, j′ ∈ {1, . . . , n} such that vj = vj′ and uj 6= uj′ which is in contradiction with
our hypothesis.

Inductive step L > 0: We have t →Oi
t1 →∗

Oi
t↓. Let ℓ = r ∈ Oi applied on t at position p with

substitution σ in order to obtain t′. Thanks to Lemma 5.2, we know that t′ = C ′[uj1 , . . . , ujk], with
j1, . . . , jk ∈ {0, . . . n} and u0 = nmin. With the same proof as in the base case, we can show that
the same rule ℓ = r can be applied on C[v1, . . . , vn] at position p with a substitution σ′. By mini-
mality of the term t1 and monotonicity of ≺, we have that fvars(r)σ′ ⊆ fvars(ℓ)σ′ ∪{nmin} (same
for σ). With p being a position of C and r is built upon Fi, we have that (C[u1, . . . , un])[rσ]p =
C ′[uj1 , . . . , ujk] implies (C[v1, . . . , vn])[rσ

′]p = C ′[vj1 , . . . , vjk]. Thus by application of our induc-
tive hypothesis on t1 and C ′[vj1 , . . . , vjk], the result holds.

5.2.2 Derived well-tagged processes

We are now focus on the messages that are sent over the network during the execution of the
processes. For a term u that does not contain any tag, we defined in Section 5.1, a way to construct
a term that is properly tagged (i.e. [u]i). Hence, for a term properly tagged, we would never have
senc(n, k) where n and k are both nonces, for example. Instead, we would have senc(tagi(n), k).
However, even if we can force the processes to properly tag their term, we do not have any control
on what the intruder can build. Typically, if the intruder is able to deduce n and k, he is allowed to
send to a process the term senc(n, k). Similarly, while we can restrict our processes to only apply
vk and pk on a nonce, we can not restrict the intruder from using these cryptographic primitive
with terms different from a nonce.

Hence, we need to describe what kind of frame and process we obtained in a trace of a tagged
process. To do so, we assume from now on that processes and frames are coloured by a or b.
Intuitively, colouring a process by a means that this process was derived from a process originally
tagged by a. The same way, we say that a frame element (ax ⊲ u) of a frame is coloured by a

if u was output by a process derived from a process originally tagged by a. We denote col(ax) the
colour of the frame element (ax ⊲ u), and col(P) the colour of the process P .

Definition 5.7. Let (E ;P; Φ) be an intermediate process. Let’s denote Φ = {ax 1 ⊲ u1, . . . , axn ⊲

un}. We say that νE .Φ is a derived well-tagged frame if for all i ∈ {1, . . . , n}, ui is a derived
well-tagged term up to ax i, i.e. there exists a term v, a substitution α and c ∈ {a, b} such that:

— for all vk(t), pk(t′) ∈ st(v), t, t′ ∈ N

— ui = [v]cα; and

— α � testc([v]c); and

— for all x ∈ dom(α), either v is not a variable and xα is a derived well-tagged term up to
ax i; or there exists M such that fvars(M) ⊆ {ax 1, . . . , ax i−1}, fnames(M) ∩ E = ∅ and
MΦ = xα.

The terms [v]c represent the term that was in the original process before instantiation, e.g.
out(c, [v]c). On the other hand α represents the value of the variables defined by the inputs, e.g.
in(c, x). The third condition is due the fact that in a tagged process, there is always a condition
that test testc([v]c) before outputting it. Hence, if ui is in the frame, it necessary means that α
satisfies the tests testc([v]c).

Note that the definition is recursive. Indeed, since α represents the instantiation of the variables
defined by the inputs, given a variable x of dom(α), either it was instantiated by the rule Ini and
so the intruder can deduce xα; or it was instantiate by an internal communication, i.e. Commi,
and so it means that xα is also well-tagged up to ax i (since the term xα comes from another
tagged process).

The condition v is not a variable allows us to avoid an infinite loop in the definition. Indeed,
if this condition did not exist, then any term u would be well-tagged up to ax i (take v a variable
and α such that vα = u). In our case, when v is a variable, it will necessary means that this
variable was instantiate by the rule Ini and so that the intruder could deduce it.

Example 5.11. Coming back to Example 5.12, we have E = {ska
S , sk

b
S , r

′} and the following
frame:

Φ(A′
d) = {ax 1 ⊲ aenc(taga(〈r

′, id1〉), pk(sk
a
S)); ax 2 ⊲ aenc(tagb(u), pk(sk

b
S))}

where u = aenc(taga(〈r
′, id1〉), pk(skaS)). This is a well-tagged frame.

Indeed, consider first u1 = aenc(taga(〈r
′, id1〉), pk(sk

a
S)). Let v1 = aenc(〈r′, id1〉, pk(sk

a
S)) and

α1 be the identity. We have:

— ska
S ∈ N hence the first condition is satisfied

— aenc(taga(〈r
′, id1〉), pk(skaS)) = [v1]aα1

— testa([v]a) = true and α1 � true.

— The last property is trivially true since dom(α1) = ∅.

Consider now u2 = aenc(tagb(u), pk(sk
b
S)). Let v2 = aenc(x, pk(sk b

S)) and α2 = {x 7→ u1}. We
have:

— sk b
S ∈ N hence the first condition is satisfies

— [v2]b = aenc(tagb(x), pk(sk
b
S)) hence [v2]bα2 = u2

— Once again testb([v2]b) = true and α2 � true

— At last, we already show that xα2 = u1 is well-tagged up to ax 1 hence it is also well-tagged
up to ax 2. Note that the last property is also satisfied by the fact that ax 1Φ(A

′
d) = xα = u1.

Similarly to the notion of a derived well-tagged frame, we introduce the notion of derived
well-tagged process.

Definition 5.8. Let P a coloured plain process and α be a ground substitution such that fvars(P) ⊆
dom(α). We will says that (P, α) is a derived well-tagged process if

— either P = [Q]i;

— or P = out(u, [v]i).[Q]i, α � testi([v]i);

— or P = if [u]i = [v]i then [Q1]i else [Q2]i with α � testi([u]i) ∧ testi([v]i)

— or P = if testi([v]i) then
(
if [u]i = [v]i then [Q1]i else [Q2]i

)
else 0 with α � testi([u]i)

where i = col(P) and Q,Q1, Q2 are processes built on Fi ∪ F0, and u, v are some terms.
For a coloured multi-set of processes P, we say that (P, α) is an original well-tagged multi-set

of processes if for all P ∈ P, (P, α) is an original well-tagged process.

Intuitively, in a derived well-tagged process (P, α), P represents a subprocess of the original
process Pa or Pb (depending on the colour of P) and α represents the values of the variables in-
stantiated by the rule Ini. The definition of a derived well-tagged process expresses all the possible
states of a plain process obtained from a derivation of (E0; {Pa, Pb}; ∅) or (E0; {Pa, Pbρ

−1}; ∅).

5.3 Going back to the disjoint case

In this section, we will focus on our first composition result. As mentioned in previous sections,
we show that the disjoint case (i.e. where the processes do not share any secret) and the shared
case (i.e. when the processes share some secrets) are equivalent provided some conditions. More
specifically, we will show that given two sequences of plain processes PA and PB , built on Fa ∪F0

and Fb ∪ F0 respectively, given a composition context C, we have that:

C[[PA]a | [PB]b] ≈t C[[PA]a] | C[[PB]b].

if C[[PA]a] and C[[PB]b] do not reveal any shared key in {k, pk(k), vk(k) | k occurs in C}. A sketch
of proof of right implication of this equivalence is given in Figure 5.1.

Shared case Disjoint case

Soundness

Unfolding

Qs = (E0; {Pa;Pb}; ∅) Qd = (E0; {Pa;Pbρ
−1}; ∅)

∃(tr, νE0.Φ0) ∈ tracei(Qs)
and νE .Φ ∼ νE0.Φ0

∃(tr, νE0.Φ
′
0) ∈ tracei(Qd)

and νE .Φ ∼ νE0.Φ
′
0

∀(tr, νE .Φ) ∈ tracei(C[[PA]a | [PB]b]) ∃(tr, νE .Φ′) ∈ tracei(C[[PA]a] | C[[PB]b])
and νE .Φ ∼ νE .Φ′

Lem 5.10below:Cor 5.2

Lemma. 5.8 Lemma. 5.8

ρ is a fresh renaming of the shared private name and both Qs and Qd are bounded intermediate
processes.

Figure 5.1: Sketch of proof of C[[PA]a | [PB]b] ⊑t C[[PA]a] | C[[PB]b]

Intuitively, given a trace of the shared case (i.e. of the processes that share secret), we start
by unfolding the replications in the process w.r.t. the trace so that we do not have any more
replication or name restriction. Then, thanks to our soundness lemma, we show that this trace
can be transform into a trace of the disjoint case (i.e. of the processes that do not share secret).
We conclude by showing that a trace of a process that has been unfold can be transformed into
a trace of this process. The sketch of proof for the left implication of this equivalence is similar
although we use a completeness result, instead of a soundness result, in order to transform a trace
on the disjoint case into a trace of the shared case.

This section is devoted to the complete proof of this result.

5.3.1 Name replacement

As mentioned in Figure 5.1, we have to transform a trace of the shared case into a trace of the
disjoint case, and vice versa. In fact, we will see that the transformation will mainly consist of
replacing some instances of the shared names by fresh ones.

Example 5.12. Consider the process P1 in Example 5.1, the composition context C = νskS ._
and the process Q = in(c, x).out(c, aenc(x, pk(skS))). We tag P1 and Q respectively with the tags
a and b. Hence the intermediate process corresponding to the shared case is the following:

As = (∅;C[νr.out(c, aenc(taga(〈r, id1〉), pk(skS))) | in(c, x).out(c, aenc(tagb(x), pk(skS))); ∅)

while the disjoint case corresponds to the following intermediate process:

Ad = (∅;C[νr.out(c, aenc(taga(〈r, id1〉), pk(skS)))] | C[in(c, x).out(c, aenc(tagb(x), pk(skS)))]; ∅)

Now, let tr be the sequence of labels νax 1.out(c, ax 1).in(c, ax 1).νax 2.out(c, ax 2). We have that

As
tr
⇒ A′

s and Ad
tr
⇒ A′

d where

A′
s = ({ska

S , r
′}; ∅; {ax 1 ⊲ aenc(taga(〈r

′, id1〉), pk(skaS)); ax 2 ⊲ aenc(tagb(u), pk(sk
a
S))})

A′
d = ({ska

S , sk
b
S , r

′}; ∅; {ax 1 ⊲ aenc(taga(〈r
′, id1〉), pk(skaS)); ax 2 ⊲ aenc(tagb(u), pk(sk

b
S))})

where u = aenc(taga(〈r
′, id1〉), pk(sk

a
S)). In A′

d, ska
S corresponds to the renaming of the name

skS restricted over P1 while sk b
S corresponds to the renaming of the name skS restricted over Q

(application of the rule Newi). Furthermore, if we look at the second message of each frame, we
can see that they are equal up to replacement of one instance of ska

S by sk b
S. Typically, the key

ska
S that is used to encrypt with the tag a stays ska

S in the disjoint case while the key ska
S that is

used to encrypt with the tag b is replace by sk b
S.

Even if Example 5.12 use very simple processes, we will see that all the messages in the processes
and frames of two matched traces are equal up to a replacement of instances of "shared keys" with
their corresponding "disjoint keys". We introduce a notion that formalise this replacement of
names.

Let ρ be a bijective renaming of names of base type such that for all k ∈ dom(ρ), k is a “fresh
name”. Let δρc (c ∈ {a, b}) be functions on terms that is defined as follows:

— δρa(u) = u when u is a name or a variable;

— δρb (u) = k when u↓ = kρ for some k ∈ dom(ρ) and root(u) 6∈ Fb ∪ Ftagb
∪ F0; otherwise

δρb (u) = u when u is a name or a variable;

— δρc (f(t1, . . . , tk)) = f(δρd(t1), . . . , δ
ρ
d(tk)) if f ∈ Fd ∪ Ftagd

with d ∈ {a, b}.

— δρc (f(tagd(t1), t2)) = f(tagd(δ
ρ
d(t1)), δ

ρ
d(t2)) if f ∈ {senc, aenc, sign} and d ∈ {a, b}

— δρc (h(tagd(t1))) = h(tagd(δ
ρ
d(t1))) if d ∈ {a, b}

— δρc (f(t1, . . . , tk)) = f(δρc (t1), . . . , δ
ρ
c (tk)) otherwise

Intuitively, img(ρ) correspond to the key generated in the shared case (same as the key gen-
erated by PA in the disjoint case), e.g. ska

S , while dom(ρ) corresponds to keys generated by PB

in the disjoint case, e.g. sk b
S . The purpose of δρb is to replace the keys used by PB in the shared

case but created by PA (i.e. img(ρ)) with the keys generated by PB (i.e. dom(ρ)). We consider
the names of dom(ρ) “fresh" in the sense that the names in dom(ρ) should never appear in the
argument of δρa and δρb .

Example 5.13. Coming back to Example 5.12, we have ρ = {sk b
S 7→ ska

S}, δρa(ax 1Φ(A
′
s)) =

ax 1Φ(A
′
d) and δρb (ax 2Φ(A

′
s)) = ax 2Φ(A

′
d).

Note that δρa and δρb do not behave the same way depending of the message being properly
tagged or not.

Example 5.14. Let ρ = {sk b
S 7→ ska

S} and consider the following terms:

— u1 = aenc(n, pk(ska
S)) and so δa(u1) = aenc(n, pk(ska

S)) and δb(u1) = aenc(n, pk(sk b
S))

— u2 = aenc(taga(n), pk(sk
a
S)) and so δa(u2) = δb(u2) = aenc(taga(n), pk(sk

a
S))

— u3 = aenc(tagb(n), pk(sk
a
S)) and so δa(u3) = δb(u3) = aenc(tagb(n), pk(sk

b
S))

Note that in both previous examples, the terms we considered are already in normal form. We
prove three lemmas that describe some properties of δρa and δρb on terms in normal form (proofs
in Appendix B.1).

Lemma 5.4. If t1, t2 are terms (that do not use dom(ρ)) in normal form then for all i ∈ {a, b},
t1 = t2 is equivalent to δρi (t1) = δρi (t2).

The previous lemma shows that δρa and δρb preserve equality between terms. It allows us to
prove the following result:

Lemma 5.5. Let t1, t2 two terms (that do not use dom(ρ)) in normal form. If δρa(t1) = δρb (t2)
then t1 = t2.

While the two previous lemmas mainly focus on the relations between equality and the name
replacement. The following lemma indicates that the root and irreductibility of terms is also
preserved by δρa and δρb .

Lemma 5.6. Let u be a term in normal form that do no use dom(ρ). We have that for all
i ∈ {a, b}, δρi (u) is in normal form and root(δρi (u)) = root(u).

5.3.2 Unfolding the processes

The first difficulty is the presence of the replication in the composition context C and also in
the sequences of processes PA and PB . The main idea is to unfold the replication in advance so
that replication is not needed anymore. Of course, it is impossible to unfold in advance a process
P so that all traces of P are included in this unfolded process. However, given a trace P , it is
possible to unfold P so that at least this specific trace is included in the unfolded process. The
main idea of unfolding a process P given a trace of P is to replace any instance of !Q in P by
Q | . . . | Q where the number of parallel composition is higher than the number of application
of Repli in the derivation of the trace. At last, similarly to Chapter 4, we move forward the
name restriction so that the unfolded process is an bounded intermediate process (i.e. without
replication nor name restriction).

Example 5.15. Consider the processes P1 (renamed P) and Q in Example 5.12. Furthermore,
consider the composition context C = νskS .!_ and consider the intermediate process As = (∅;C[P |
Q]; ∅). We have that for all n ∈ N, (trn, νEn.Φn) ∈ trace(As) where:

— trn = νax 1.out(c, ax 1).νaxn.out(c, axn)

— En = {skS , sk
′
S , r1, . . . , rn}

— Φn = {ax 1 ⊲ aenc(taga(〈r1, id1〉), pk(skS)); . . . ; axn ⊲ aenc(taga(〈rn, id1〉), pk(skS))

Now consider the intermediate process Af
s = (∅; {νskS .

(
P1 | . . . | Pn | Q1 | . . . | Qn

)
}; ∅) where for

all i ∈ {1, . . . , n}, Pi = P and Qi = Q. The process Af
s is an unfolded process of As given the

trace (trn, νEn.Φn). Furthermore, we have that (trn, νEn.Φn) ∈ trace(Af
s).

We can announce an intuitive result on unfolded process:

Lemma 5.7. Let n ∈ N. Let A be an intermediate process and A′ be the unfolded intermediate
process where we replace every instance of !P in A by P1 | . . . | Pn with Pi = P for all i ∈
{1, . . . , n}. We have that

— trace(A′) ⊆ trace(A)

— if (tr, νE .Φ) ∈ trace(A) such that the derivation contains less than n application of Repli
then (tr, νE .Φ) ∈ trace(A′)

Proof (sketch). Intuitively, given a trace of A′ the idea is to replace each τ action corresponding
to the application of Pari on an instance P | . . . | P , by an application of Repli on !P .

Similarly, to show that (tr, νE .Φ) ∈ trace(A′), we replace each τ action corresponding to the
application of Repli on an instance !P , by an application of Pari on P | . . . | P . It is possible
since we know that there is less than n application of Repli.

Note that in the previous example, we only focused on the “shared case". But, since we have
to link the shared case with the disjoint case, we show that we can unfold the same way the
intermediate processes representing the shared and disjoint case. This can be expressed with the
following lemma.

Lemma 5.8. Let C be a composition context. Let PA (resp. PB) be a sequences of plain processes
built on Fa ∪ F0 (resp. Fb ∪ F0).

Let D = (∅;C[[PA]a] | C[[PB]b]; ∅) and S = (∅;C[[PA]a | [PB]b]; ∅), we have that for all
(tr, νE .Φ) ∈ trace(D) (resp. trace(S)), there exists a renaming ρ and two bounded intermediate
processes S′ = (E0; {Pa, Pb}; ∅) and D′ = (E0; {Pa, Pbρ

−1}; ∅) such that

— dom(ρ) ∪ img(ρ) ⊆ E0 and dom(ρ) does not appear in {Pa, Pb}

— for all i ∈ {a, b}, there exists P ′
i built on Fi ∪ F0 such that such that Pi = [P ′

i]i

— there exists Φ′ such that (tr, νE0.Φ′) ∈ trace(D′) (resp. trace(S′)) and νE0.Φ′ ∼ νE .Φ

— for all (tr′, νE0.Φ′′) ∈ trace(S′) (resp trace(D′)), there exists νE ′.Φ′ such that (νE ′.Φ′) ∈
trace(S) (resp trace(D)) and νE ′.Φ′ ∼ νE0.Φ

′′

Note that δρa(Pa) = Pa and δρb (Pb) = Pbρ
−1

Proof. Assume w.l.o.g that (tr, νE .Φ) ∈ trace(S). Hence, we have that S
tr
⇒ (E ;P; Φ) for some P.

Thus, there exists a word w such that S
w
−→ (E ;P; Φ) where tr = w r τ . Let N be the number of

τ action corresponding to the application of the rule Repli.
Let C ′ be the composition context without replication, P ′

A and P ′
B the sequences of plain

process without replication such that C ′[[P ′
A]a | [P ′

B]b] corresponds to C[[PA]a | [PB]b] where we
replaced every instance !P by P1 | . . . | PN for some where Pi is a renaming of P .

Let Pa be the plain process C ′[[P ′
A]a] where we removed all name restriction and let Pb be

the plain process C ′[[P ′
B]b] where we removed all name restriction. At last, let ρ be a renaming

such that dom(ρ) are fresh names and img(ρ) = bnames(C ′). At last, let E0 = bnames(C ′) ∪
bnames(P ′

A) ∪ bnames(P ′
B) ∪ dom(ρ).

Let S′ = (E0, {Pa, Pb}, ∅) and D′ = (E0{Pa, Pbρ
−1}, ∅). We have that S′ is a bounded interme-

diate process associated to (∅, {C ′[[P ′
A]a | [P ′

B]b]}, ∅). Furthermore, since dom(ρ) is only composed
of fresh names, Pbρ

−1 is a renaming of C ′[[P ′
B]b] and so D′ is a bounded intermediate process

associated to (∅, {C ′[[P ′
A]a] | C

′[[P ′
B]b]}, ∅). We conclude by applying Lemma 5.7.

Example 5.16. Coming back to Example 5.15, consider the intermediate process As and the
trace (trn, νEn.Φn) ∈ trace(As). Furthermore, consider the intermediate process Ad = (∅;C[P] |
C[Q]; ∅). The process D′ and S′ obtained thanks to Lemma 5.8 from Ad and As are the processes
(E0; {Pa, Pb}; ∅) and (E0; {Pa, Pbρ

−1}; ∅) where:

— E0 = {skS , sk
′
S , r1, . . . , rn}

— ρ = {sk ′
S 7→ skS}

— Pa = [P1 | . . . | Pn]a where Pi = out(c, aenc(taga(〈ri, id1〉), pk(skS))), for all i = 1 . . . n

— Pb = [Q1 | . . . | Qn]b where Qi = in(c, x).out(c, aenc(x, pk(sk ′
S)))

5.3.3 Soundness and completeness

In this subsection, we focus our attention on the transformation of a trace from the “shared
case" (resp. “disjoint case") to a trace from the “disjoint case" (resp. “shared case").

We will assume that processes of different colours do not share private channels. We denote by
δρ(·) the function that apply δρa(·) on frame elements or processes coloured by a, and that apply
δρb (·) on frame elements or processes coloured by b. Moreover, given i ∈ {a, b} and α a ground
substitution, we denote by δρi (α) the substitution such that dom(α) = dom(δρi (α)) and for all
x ∈ dom(α), xδρi (α) = δρi (xα).

5.3.3.1 Static equivalence

We first show that a frame Φ in the shared case and its corresponding frame in the disjoint
case, i.e. δρ(Φ) are statically equivalent. This result is derived from the following lemma (proof
in Appendix B.2):

Lemma 5.9. Let E be a set of names and Φ = {ax 1 ⊲ u1, . . . , axn ⊲ un} such that νE .Φ is a
derived well-tagged frame in normal form. Let ρ be a renaming such that dom(ρ) ∪ img(ρ) ⊆ E
and dom(ρ) ∩ fnames(Φ) = ∅. If one of the two following conditions is satisfied:

(a) for all k ∈ img(ρ), νE .Φ 6⊢ k, νE .Φ 6⊢ pk(k) and νE .Φ 6⊢ vk(k)

(b) for all k ∈ img(ρ) ∪ dom(ρ), νE .δρ(Φ) 6⊢ k, νE .δρ(Φ) 6⊢ pk(k) and νE .δρ(Φ) 6⊢ vk(k);

then for all M such that fvars(M) ⊆ dom(Φ) and fnames(M)∩E = ∅, for all i ∈ {a, b}, δρi (MΦ↓) =
Mδρ(Φ)↓.

Intuitively, Lemma 5.9 shows that the knowledge deduced by the intruder is the same (up to
renaming δρ) in Φ and δρ(Φ) as long as no shared key, public key and verification key are revealed
(represented by img(ρ) and dom(ρ)). From this lemma, we can derive two corollaries:

Corollary 5.1. Let E be a set of names. Let Φ such that νE .Φ is a derived well-tagged frame in
normal form. Let ρ a renaming such that dom(ρ)∪ img(ρ) ⊆ E and dom(ρ)∩ fnames(Φ) = ∅. The
two following properties are equivalent:

— for all k ∈ img(ρ) ∪ dom(ρ), νE .δρ(Φ) 6⊢ k, νE .δρ(Φ) 6⊢ pk(k), νE .δρ(Φ) 6⊢ vk(k)

— for all k ∈ img(ρ), νE .Φ 6⊢ k, νE .Φ 6⊢ pk(k), νE .Φ 6⊢ vk(k)

Proof. Assume first that for all k ∈ img(ρ)∪ dom(ρ), νE .δρ(Φ) 6⊢ k, νE .δρ(Φ) 6⊢ pk(k), νE .δρ(Φ) 6⊢
vk(k). Assume now that there exists k ∈ img(ρ) such that νE .Φ ⊢ k. Hence there exists M such
that fvars(M) ⊆ dom(Φ), fnames(M)∩E = ∅ and MΦ↓ = k. But by Lemma 5.9, we deduce that
δρa(MΦ↓) = Mδρ(Φ)↓ and so Mδρ(Φ)↓ = δρa(k) = k. Hence νE .δρ(Φ) ⊢ k which is a contradiction
with our hypothesis. All the other cases are done in a similar way.

Thanks to this result, we will be able to prove that if the shared keys are not revealed in the
disjoint case then they will not be revealed in the shared case.

Corollary 5.2. Let E be a set of names. Let Φ such that νE .Φ is a derived well-tagged frame in
normal form and let E be a set of names. Let ρ be a renaming such that dom(ρ)∪ img(ρ) ⊆ E and
dom(ρ) ∩ fnames(Φ) = ∅. If for all k ∈ img(ρ), νE .Φ 6⊢ k, νE .Φ 6⊢ pk(k) and νE .Φ 6⊢ vk(k), then
we have νE .Φ ∼ νE .δρ(Φ).

Proof. Let M1,M2 two term such that fvars(M1,M2) ⊆ dom(Φ) and fnames(M1,M2) ∩ E = ∅.
Thanks to Lemma 5.4, we have that M1Φ↓ = M2Φ↓ is equivalent to δρa(M1Φ↓) = δρa(M2Φ↓). But
thanks to Lemma 5.9, this is equivalent to M1δ

ρ(Φ)↓ = M2δ
ρ(Φ)↓. Thus the result holds.

5.3.3.2 Soundness

We now give our soundness lemma which shows that any trace of the “shared case" can be
matched by a similar trace in the “disjoint case".

Lemma 5.10 (Soundness). Let S = (ES ;PS ; ΦS), S′ = (E ′
S ;P

′
S ; Φ

′
S) and D = (ED;PD; ΦD) be

three bounded intermediate processes. Assume that S
ℓ
−→ S′, ΦS is well-tagged and there exists a

derived well-tagged multi-set of processes (P0, α) and a renaming ρ, such that

— dom(ρ) ∪ img(ρ) ⊆ ES, dom(ρ) ∩ fnames(PS ,ΦS) = ∅; and

— ES = ED, ΦD↓ = δρ(ΦS↓); and

— PS = P0α and PD↓ = δρ(P0)δ
ρ(α↓)↓; and

— for all traces (tr,Φ) of D, for all k ∈ img(ρ) ∪ dom(ρ), Φ 6⊢ k, Φ 6⊢ pk(k) and Φ 6⊢ vk(k).

There exists a bounded intermediate process D′ = (E ′
D;P ′

D; Φ′
D), a derived well tagged multi-set of

processes (P ′
0, α

′) such that Φ′
S is well-tagged and:

— E ′
S = ES = E ′

D and Φ′
D↓ = δρ(Φ′

S↓); and

— P ′
S↓ = P ′

0α
′↓ and P ′

D↓ = δρ(P ′
0)δ

ρ(α′↓)↓; and

— D
ℓ
−→ D′.

5.3.3.3 Completeness

On the other hand, our completeness lemma shows that any trace of the “disjoint case" can be
matched by a similar trace in the “shared case".

Lemma 5.11 (Completeness). Let S = (ES ;PS ; ΦS), D = (ED;PD; ΦD) and D′ = (E ′
D;P ′

D; Φ′
D)

and be three bounded intermediate processes. Assume that D
ℓ
−→ D′, ΦS is a derived well-tagged

frame and there exists a derived well-tagged multi-set of processes (P0, α) and a renaming ρ, such
that

— dom(ρ) ∪ img(ρ) ⊆ ES, dom(ρ) ∩ fnames(PS ,ΦS) = ∅; and

— ES = ED, ΦD↓ = δρ(ΦS↓); and

— PS = P0α and PD↓ = δρ(P0)δ
ρ(α↓)↓; and

— for all traces (tr,Φ) of D, for all k ∈ img(ρ) ∪ dom(ρ), Φ 6⊢ k, Φ 6⊢ pk(k) and Φ 6⊢ vk(k).

There exists a bounded intermediate process S′ = (E ′
S ;P

′
S ; Φ

′
S), a derived well tagged multi-set of

processes (P ′
0, α

′) such that Φ′
S is a derived well-tagged frame and:

— E ′
S = ES = E ′

D and Φ′
D↓ = δρ(Φ′

S↓); and

— P ′
S↓ = P ′

0α
′↓ and P ′

D↓ = δρ(P ′
0)δ

ρ(α′↓)↓; and

— S
ℓ
−→ S′.

The proofs of Lemmas 5.10 and 5.11 can be found in Appendix B.2. Note that in both lemmas,
the invariants are the same. P0 represents subprocesses of the original process and α represents
the value of the variables restricted by the inputs.

5.3.4 Main result

We conclude this section by the first main result of this chapter:

Theorem 5.1. Let C a composition context. Let PA and PB two sequences of plain processes
built on Fa ∪ F0 and Fb ∪ F0 respectively. If C[[PA]a] and C[[PB]b] do not reveal any shared key
in {k, pk(k), vk(k) | k occurs in C} then we have that:

C[[PA]a | [PB]b] ≈t C[[PA]a] | C[[PB]b].

Proof. Let’s denote S = (∅;C[[PA]a | [PB]b]; ∅) and D = (∅;C[[PA]a] | C[[PB]b]; ∅). We first
show that for all (tr, νE .Φ) ∈ trace(S), there exists νE ′.Φ′ such that (tr, νE ′.Φ′) ∈ trace(D) and
νE .Φ ∼ νE ′.Φ′.

Let (tr, νE .Φ) ∈ trace(S). Thanks to Lemma 5.8, we know that there exist a renaming ρ and
two bounded intermediate processes S′ = (E0; {Pa, Pb}; ∅) and D′ = (E0; {Pa, Pbρ

−1}; ∅) such that

— dom(ρ) ∪ img(ρ) ⊆ E0 and dom(ρ) does not appear in {Pa, Pb}

— for all i ∈ {a, b}, there exists P ′
i built on Fi ∪ F0 such that Pi = [P ′

i]i

— there exists Φ0 such that (tr, νE0.Φ0) ∈ trace(S′) and νE0.Φ0 ∼ νE .Φ

— for all (tr′, νE0.Φ′′) ∈ trace(D′), there exists νE ′.Φ′ such that (tr′, νE ′.Φ′) ∈ trace(D) and
νE ′.Φ′ ∼ νE0.Φ

′′

(tr, νE0.Φ0) ∈ trace(S′) implies that there exists a bounded intermediate process S′′ = (E0;PS ;

Φ0) such that S′ w
−→ S′′ where tr = wr τ . Furthermore, we have Pa = [P ′

a]a and Pb = [P ′
b]b hence

({Pa, Pb}, id) is a derived well-tagged multi-set of process. Moreover, since Pa and Pb are coloured
with a and b respectively, and δρa(Pa) = Pa, δρb (Pb) = Pbρ

−1, we deduce that {Pa, Pbρ
−1}↓ =

δρ({Pa, Pb})↓. At last, by hypothesis we know that C[[PA]a] and C[[PB]b] do not reveal any
shared key in {k, pk(k), vk(k) | k occurs in C} hence it implies that C[[PA]a] | C[[PB]b] does not
reveal any shared key in {k, pk(k), vk(k) | k occurs in C}. Thus, we conclude thanks to Lemma 5.8
that D does not reveal any shared key in {k, pk(k), vk(k) | k ∈ img(ρ) ∪ dom(ρ)}.

We have shown that S′ and D′ satisfy the conditions of Lemma 5.10, hence using a simple
induction on the size of the derivation S′ w

−→ S′′ and thanks to Lemma 5.10, we show that there
exists a bounded intermediate process D′′ = (E0;PD; Φ′

0) such that D′ tr
⇒ D′′, Φ′

0 is a derived
well-tagged frame and Φ′

0↓ = δρ(Φ0↓). But thanks to Corollaries 5.1 and 5.2, we deduce that
νE0.Φ0↓ ∼ νE0.δρ(Φ0↓). It implies that νE0.Φ0↓ ∼ νE0.Φ′

0↓ and so νE0.Φ0 ∼ νE ′
0.Φ

′
0.

Since (tr, νE0.Φ
′
0) ∈ trace(D′), then by Lemma 5.8, we also deduce that there exists νE ′.Φ′ such

that (νE ′.Φ′) ∈ trace(D) and νE ′.Φ′ ∼ νE0.Φ
′
0. But we have νE0.Φ0 ∼ νE .Φ and νE0.Φ0 ∼ νE0.Φ

′
0,

hence we conclude that νE .Φ ∼ νE ′.Φ′.
Finally, we prove that for all (tr, νE .Φ) ∈ trace(D), there exists νE ′.Φ′ such that (tr, νE ′.Φ′) ∈

trace(S) and νE .Φ ∼ νE ′.Φ′. The proof is symmetrical to the first case except that we apply
Lemma 5.11 instead of Lemma 5.10.

5.3.5 A first composition result

From the previous theorem, we can derive our first composition result.

Corollary 5.3. Let C and C ′ be two composition contexts. Let PA, P ′
A (resp. PB , P ′

B) be
two sequences of plain processes built on the signature Fa ∪ F0 (resp. Fb ∪ F0). Assume that
C[[PA]a] and C[[PB]b] (resp. C ′[[P ′

A]a],C
′[[P ′

B]b]) do not reveal any shared key in {k, pk(k), vk(k) |
k occurs in C} (resp. {k, pk(k), vk(k) | k occurs in C ′}). We have that:

C[[PA]a] ≈t C
′[[P ′

A]a]

C[[PB]b] ≈t C
′[[P ′

B]b]

C[[PA]a | [PB]b] ≈t C
′[[P ′

A]a | [P ′
B]b]

Proof. This composition result is proved in two main steps.

1. We have the equivalences C[[PA]a] ≈t C
′[[P ′

A]a] and C[[PB]b] ≈t C
′[[P ′

B]b]. Thus, thanks to
Lemma 5.1, we can show that:

C[[PA]a] | C[[PB]b] ≈t C
′[[P ′

A]a] | C
′[[P ′

B]b].

2. Then, we apply Theorem 5.1 on both sides of the equivalence, and we obtain the expected
result:

C[[PA]a | [PB]b] ≈t C
′[[P ′

A]a | [P ′
B]b].

Note that in the hypothesis of Corollary 5.3, the equivalences C[[PA]a] ≈t C ′[[P ′
A]a] and

C[[PB]b] ≈t C ′[[P ′
B]b] holds for the signatures (F+

a ∪ F+
b ∪ F0,E

+
a ∪ E+

b ∪ E0). In fact, one can
show that C[[PA]a] ≈t C ′[[P ′

A]a] only have to hold on the signature (F+
a ∪ F0,E

+
a ∪ ∪E0) which

is more natural. Indeed, the process PA and P ′
A are only build on F+

a ∪ F0 and the signatures
(F+

a ∪ F0,E
+
a ∪ ∪E0) and (F+

b ,E+
b) are disjoint. Even if [CD12] only shows a result on static

equivalence and not trace equivalence, one can adapt their proof technique to show this result.

The main issue with this composition result is the hypothesis that no shared public or verifi-
cation key can be deduced by the intruder. This lies in opposition to the purpose of the public
and verifications that is to be known by anyone.

However, in some cases, it is not unreasonable to assume that some verification or public
keys are not deducible by the intruder. For example, coming back to the e-passport protocol (see
Section 3.4), we know that each passport has a private signing key skP stored in a tamper resistant
memory and the associated verification key vk(skP) is stored in the data group dg15. However,
this data group is never send in clear over the network. Typically, in the Passive Authentication
protocol, the data groups are encrypted under the symmetric session key ksenc obtained after
execution of the Basic Access Control protocol. Hence, the verification of the e-passport will not
be deducible by the intruder, provided of course that the intruder did not already know such
verification key.

This could model for example an intruder that try to gain informations on some e-passports
without any specific target in mind. Although one can assume that an intruder knows the verifi-
cation keys of few targeted passports, it seems unrealistic to assume that an intruder knows the
verification key of all the passports that have been hanged up so far. In such a case, one could
apply our first composition result for the unlinkability of the parallel composition of the tagged
protocols AA and PA.

Indeed, this security property is given by the following equivalence:

νskDS .C
′[[PA]a | [AA]b] ≈t νskDS .C

′′[[PA]a | [AA]b]

where C ′′[_]
def
= !νskP . νid. νsig. νpic. . . . νksenc. νksmac. _ and C ′[_]

def
= !νskP . νid. νsig. νpic.

. . . ! νksenc. νksmac. _. Moreover, as mentioned in Example 5.7, the private signing key skDS is
not a shared key since it is only used in the Passive Authentication protocol and so vk(skDS) is
allowed to be deducible by the intruder. Hence, it would remain to verify that the session keys
ksenc, ksmac and the signing key skDS are not deducible; and of course that the tagged protocols
satisfy the unlinkability property in isolation.

5.4 Main composition result

In the previous section, we presented a first composition result. However, this result does not
hold as soon as some shared keys are revealed: such a key can be a symmetric shared key, the
private part of an asymmetric key pair, but also the public part of an asymmetric key pair. In
this section, we will see that we can relax this condition by allowing shared public or verification
keys to be revealed from the beginning.

5.4.1 Some additional difficulties

First, as shown by the example below, we do not want public keys to be revealed (for the first
time) during the execution of the protocol.

Example 5.17. We consider a slightly different version of the process Pi introduced in Exam-
ple 5.1. Basically, we remove the random r inside the encryption and we consider its well-tagged
version. We consider the following processes:

[P ′
i]a

def
=
= out(c, aenc(taga(id i), pk(skS))) i ∈ {1, 2}

Consider the composition context C[_] = νskS . _. Note that, the equivalence C[[P ′
1]a] ≈t

C[[P ′
2]a] still holds in this setting. Assume now that [P ′

i]a is executed in presence of the well-
tagged process Qpk = out(c, pk(skS)). Clearly, the equivalence expressing the anonymity of [P ′

i]a
does not hold anymore. We have that:

C[[P ′
1]a | Qpk] 6≈t C[[P ′

2]a | Qpk]

Actually, the knowledge of pk(skS) will allow the attacker to distinguish the message emitted
by [P ′

1]a from the one emitted by [P ′
2]a by rebuilding the message aenc(taga(id1), pk(skS)) since

id1 is public, and comparing it to the message outputted by P ′
1 and P ′

2.

To avoid the problem mentioned above, we will assume that shared keys that are revealed
have to be revealed from the very beginning. This hypothesis seems indeed reasonable since the
purpose of a public key is in general to be disclosed at the beginning, or eventually never revealed
to an outsider.

Note that the previous example is not a counter-example anymore if we analyse the equivalence
expressing the anonymity of [P ′

i]a assuming that pk(skS) is known by the attacker from the
beginning. The fact that pk(skS) is revealed during the execution of Qpk will not give any additional
power to the attacker. However, the resulting equivalence still does not hold but essentially because
the equivalence expressing the anonymity of P pk (without the presence of Q) does not hold anymore
in this setting.

Example 5.18. We consider again the process Pi as presented in Example 5.1 with an additional
output to reveal the public key pk(skS) at the very beginning. Basically, we consider the well-tagged

process P ′′
i

def
=
= out(c, pk(skS)).[Pi]a.

We have that C[P ′′
1] ≈t C[P ′′

2] with C[_] = νskS ._. Now, the presence of Qpk will not prevent
this equivalence to hold. Indeed, we have that:

C[P ′′
1 | Qpk] ≈ C[P ′′

2 | Qpk].

This hypothesis that states that shared keys are either known from the beginning or never
revealed during the execution of the protocol is reasonable, and seems to be sufficient to establish
a composition result. However, this complicates a bit the setting. In particular, as illustrated in
Example 5.19, there is no hope to obtain a result as the one stated in Theorem 5.1. The situation
where the processes share some keys is not equivalent in this setting to the situation where the
processes do not share any key.

Example 5.19. Consider the processes P ′′
i and Qpk used in Example 5.18. We have seen that

composition works under the composition context C = νskS ._. However, we have that (i ∈ {1, 2}):

C[P ′′
i | Qpk] 6≈t C[P ′′

i] | C[Qpk].

Indeed, on the left-hand side, the same public-key will be output twice whereas the process on the
right-hand side will emit two different public keys. The attacker will observe such a difference.
The strong result stated in Theorem 5.1 allowing us to easily make the link between the joint state
case and the disjoint case does not hold anymore.

The problems encountered for composing processes that reveal shared keys are due to the fact
that we do not want to tag the function symbols pk and vk that are used to model asymmetric
keys: such a tagging scheme would lead us to an unrealistic modelling of asymmetric keys.

5.4.2 Roadmap of the proof

We now consider public keys and verifications keys that can be made public from the beginning
through an initial frame Φ0 that will represent the initial knowledge of the attacker. As illustrated
in Subsection 5.4.1, we cannot rely on Theorem 5.1 anymore to establish our composition result.
We will still go back to the disjoint case but we have to explain how a trace corresponding to the
situation where processes share some keys is transformed and mapped to a trace that models the
disjoint case. We cannot simply consider the identity transformation as it was done to establish
the previous result. The sets of traces issued from both situations are not the same anymore.

Consider the initial frame Φ0 = {ax 1 ⊲ f1(k1), . . . , axn ⊲ fn(kn)} and initial set of private
names K0 such that for all i ∈ {1, . . . , n}, fi ∈ {pk, vk} and ki ∈ K0. Consider K′

0 the subset of K0

that regroups all shared keys of K0 between PA, PB , P ′
A and P ′

B . The result we want to show in
this section is similar to Corollary 5.3, i.e.

(K0;C[[PA]a]; Φ0) ≈t (K0;C
′[[P ′

A]a]; Φ0)

(K0;C[[PB]b]; Φ0) ≈t (K0;C
′[[P ′

B]b]; Φ0)

(K0;C[[PA]a | [PB]b]; Φ0) ≈ (K0;C
′[[P ′

A]a | [P ′
B]b]; Φ0)

Of course, as Corollary 5.3, we impose some additional conditions on our processes. The most
important one is that (K0;C[[PA]a]; Φ0) and (K0;C[[PB]b]; Φ0) (resp. (K0;C[[P ′

A]a]; Φ0), and
(K0;C[[P ′

B]b]; Φ0)) do not reveal any key in {k, pk(k), vk(k) | k ∈ K′
0} unless the key occurs

explicitly in Φ0; and do not reveal any shared key in {k, pk(k), vk(k) | k occurs in C (resp. C ′)}.
Hence, the only shared public or verification keys that can be revealed to the intruder must be in
Φ0.

The first step to prove the result is similar to the proof of Corollary 5.3, i.e. we will rely on the
fact that the trace equivalence is closed under disjoint parallel composition. Moreover, we rename
the restricted names in order to avoid clashes between the two sets of restricted names (possible
since the trace equivalence is closed under renaming of restricted names). Hence if we denote ρ0
a renaming on names such that dom(ρ0) are fresh names and img(ρ0) = K′

0, the “disjoint case"
would be represented by the following equivalence:

(K; {C[[PA]a] | C[[PB]b]ρ
−1
0 }; Φ′

0) ≈t (K; {C[[P ′
A]a] | C[[P ′

B]b]ρ
−1
0 }; Φ′

0)

where K = K0 ∪ K0ρ
−1
0 and Φ′

0 = Φ0 ⊎ Φ0ρ
−1
0 .

Note that in Φ0 ⊎Φ0ρ
−1
0 , the parameters of Φ0ρ

−1
0 should be renamed so that the parameters

of Φ′
0 constitute a sequence. However, to facilitate the comprehension, we will denote Φa =

{axa
1 ⊲ f1(k1), . . . , ax

a
n ⊲ fn(kn)} and Φb = {ax b

1 ⊲ f1(k1), . . . , ax
b
n ⊲ fn(kn)} where Φa (resp.

Φb) represents the initial frame of C[PA] and C[P ′
A] (resp. C[PB] and C[P ′

B]). Hence, we have
Φ′

0 = Φa ⊎ Φbρ
−1
0

The main problem with this equivalence is that given a trace of (K; {C[[PA]a]; Φ
′
0), we have no

guarantee that the actions in the trace which are due to the process C[[PA]a] (resp. C[[P ′
B]b]ρ

−1
0),

would be matched with some actions on the process C[[P ′
A]a] (resp. C[[PB]b]ρ

−1
0). To solve

this issue, we will rely on the fact that the trace equivalence is also closed under renaming of
public names. Indeed, if we denote ρCha

a renaming of channel names such that dom(ρCha
) =

fnames(PA, P ′
A)∩ Ch and img(ρCha

) are fresh channel names , we have that (K0;C[[PA]a]; Φa) ≈t

(K0;C
′[[P ′

A]a]; Φa) implies (K0;C[[PA]a]ρCha
; Φa) ≈t (K0;C

′[[P ′
A]a]ρCha

; Φa).
If we denote ρChb

a fresh renaming of public channel names of PB and P ′
B, the “disjoint case"

will in fact be represented by the following equivalence:

(K; {C[[PA]a]ρCha
| C[[PB]b]ρ

−1
0 ρChb

}; Φ′
0) ≈t (K; {C[[P ′

A]a]ρCha
| C[[P ′

B]b]ρ
−1
0 ρChb

}; Φ′
0)

where K = K0 ∪ K0ρ
−1
0 and Φ′

0 = Φa ⊎ Φbρ
−1
0 . With such equivalence, an action labeled for

example in(c,M) with c ∈ img(ρCha
) would automatically be match by some input in PA or P ′

A.

From there, the proof of our main result will be similar to Section 5.3. Typically, given a
trace (tr,Φ) of (K0;C[[PA]a | [PB]b; Φ0), we will start by unfolding the process according the given
trace (see Lemma 5.12). Then using a soundness lemma (see Lemma 5.14), we will show that
this trace can be matched to a similar trace (tr′,Φ′) in the disjoint case, i.e. (K; {C[[PA]a]ρCha

|
C[[PB]b]ρ

−1
0 ρChb

}; Φ′
0). Thanks to the equivalence representing the “disjoint case", we will find a

matching trace (tr′,Φ′′) in (K; {C[[P ′
A]a]ρCha

| C[[P ′
B]b]ρ

−1
0 ρChb

}; Φ′
0). At last, using our complete-

ness lemma (see Lemma 5.15), we will show that we can derive from (tr′,Φ′′) a trace (tr,Φ′′′) of
(K;C[[PA]a | [PB]b; Φ0) such that the frames Φ′′′ and Φ are statically equivalent.

We first state the lemma that unfolds the processes according to a specific trace.

Lemma 5.12. Let C be a composition context. Let PA (resp. PB) be a sequences of plain processes
built on Fa ∪F0 (resp. Fb ∪F0) such that fnames(Pa)∩ Ch ⊆ dom(ρCha

) and fnames(Pb)∩ Ch ⊆
dom(ρChb

). Furthermore, we assume that dom(ρ0), img(ρCha
) and img(ρCha

) do not occur in C,
PA and PB. At last, we assume that the shared private names between PA and PB are included in
img(ρ0), i.e. K0 ∩ names(PA) ∩ names(PB) ⊆ img(ρ0).

Let D = (K0 ∪K0ρ
−1
0 ; {C[[PA]aρCha

] | C[[PB]bρ
−1
0 ρChb

]}; Φa ⊎Φbρ
−1
0) and S = (K0; {C[[PA]a |

[PB]b]}; Φa ⊎ Φb), we have that for all (tr, νE .Φ) ∈ trace(D) (resp. (tr, νE .Φ) ∈ trace(S)), there
exists a renaming ρ and two bounded intermediate processes S′ = (E0; {Pa, Pb}; Φa ⊎ Φb) and
D′ = (E0; {PaρCha

, Pbρ
−1ρChb

}; Φa ⊎ Φbρ
−1) such that

— ρ| dom(ρ0) = ρ0, dom(ρ) ∪ img(ρ) ⊆ E0 and dom(ρ) does not appear in {Pa, Pb}

— for all i ∈ {a, b}, there exists P ′
i built on Fi ∪ F0 such that such that Pi = [P ′

i]i

— there exists Φ′ such that (tr, νE0.Φ′) ∈ trace(D′) (resp. trace(S′)) and νE0.Φ′ ∼ νE .Φ

— for all (tr′, νE0.Φ
′′) ∈ trace(S′) (resp trace(D′)), there exists νE ′.Φ′ such that (νE ′.Φ′) ∈

trace(S) (resp trace(D)) and νE ′.Φ′ ∼ νE0.Φ′′

Note that δρa(Pa) = Pa, δ
ρ
b (Pb) = Pbρ

−1, δρa(Φa) = Φa and δρb (Φb) = Φbρ
−1

Proof. The proof is very similar to the proof of Lemma 5.8. Assume w.l.o.g that (tr, νE .Φ) ∈

trace(S). Hence, we have that S
tr
⇒ (E ;P; Φ) for some P. Thus, there exists a word w such that

S
w
−→ (E ;P; Φ) where tr = wrτ . Let N be the number of τ action corresponding to the application

of the rule Repli.
Let C ′ be the composition context without replication, P ′

A and P ′
B the sequences of plain

process without replication such that C ′[[P ′
A]a | [P ′

B]b] corresponds to C[[PA]a | [PB]b] where we
replaced every instance !P by P1 | . . . | PN for some where Pi is a renaming of P .

Let Pa be the plain process C ′[[P ′
A]a] where we removed all name restriction and let Pb be the

plain process C ′[[P ′
B]b] where we removed all name restriction. At last, let ρ be a renaming such

that ρ|dom(ρ0) = ρ0, dom(ρ)rdom(ρ0) are fresh names and img(ρ) = (bnames(C ′)∩ fnames(P ′
A)∩

fnames(P ′
B))∪ img(ρ0). At last, let E0 = K0 ∪ bnames(C ′)∪ bnames(P ′

A)∪ bnames(P ′
B)∪dom(ρ).

Let S′ = (E0; {Pa, Pb}; Φa ⊎ Φb) and D′ = (E0, {PaρCha
, Pbρ

−1ρChb
},Φa ⊎ Φbρ

−1
0). We have

that S′ is a bounded intermediate process associated to (K0, {C
′[[P ′

A]a | [P ′
B]b]},Φa ⊎ Φb).

Furthermore, we know that names(Φb) ⊆ K0. Hence we have that Φbρ
−1
0 = Φbρ

−1. More-
over, since dom(ρ) r dom(ρ0) is composed of fresh names and dom(ρ0) do not occur in C,
PA and PB , then dom(ρ) do not occur in C ′, P ′

A and P ′
B . Hence Pbρ

−1 is a renaming of
C ′[[P ′

B]b] and so (E0; {Pa, Pbρ
−1}; Φa ∪ Φbρ

−1) is a bounded intermediate process associated to
(K0 ∪ K0ρ

−1
0 , {C ′[[P ′

A]a] | C
′[[P ′

B]b]},Φa ∪ Φbρ
−1
0). But ρCha

and ρChb
are both renaming on pub-

lic channel and img(ρCha
), img(ρChb

) do not occur in C ′, P ′
A and P ′

B. Hence, we deduce that
D′ = (E0; {PaρCha

, Pbρ
−1ρChb

}; Φa ∪ Φbρ
−1) is a bounded intermediate process associated to D.

We conclude by applying Lemma 5.7.

5.4.3 Static equivalence

We will assume, as in Section 5.3, that processes and frames are coloured by a or b. Furthermore
assume that Φa (resp. Φb) is coloured by a (resp. b).

In Section 5.3.3.1, we gave a lemma which stated that given a well-tagged frame Φ, and a
recipe M of the intruder, δρi (MΦ↓) = Mδρ(Φ)↓ for all i ∈ {a, b}, provided that the frame did not
reveal any shared key including the public and verification key. This is not true anymore when
some public or verification key are revealed.

Example 5.20. Consider the initial frame Φ = Φa ⊎ Φb. We have δρ(Φa ⊎ Φb) = Φa ⊎ Φbρ
−1.

More specifically, axa
1Φ = ax b

1Φ = f(k) for some f ∈ {pk, vk} and k ∈ img(ρ). While we still have
δρa(ax

a
1Φ↓) = axa

1δ
ρ(Φ)↓ and δρb (ax

b
1Φ↓) = ax b

1δ
ρ(Φ)↓, we have on the other hand:

— δρb (ax
a
1Φ↓) = δρb (f(k)) = f(k)ρ−1 and axa

1δ
ρ(Φ)↓ = f(k).

— δρa(ax
b
1Φ↓) = δρa(f(k)) = f(k) and ax b

aδ
ρ(Φ)↓ = f(k)ρ−1.

This counter example given in Example 5.20 is very simple but the main idea is that the
application of δρ on a frame Φ depends on how the frame is coloured. Hence, if a public key or
verification key is accessible on a frame element of Φ, the application of δρa and δρb on this frame
element will not produce the same result since the public key and verification keys are not tagged.

Example 5.21. Consider E = {k1, k2, k
′
1, k

′
2} and the renaming ρ = {k′1 7→ k1, k

′
2 7→ k2}. Con-

sider the frame Φ = Φa ⊎ Φb ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k2)〉} where Φa = {axa
1 ⊲

pk(k1), ax
a
2 ⊲ pk(k2)} and Φb = {ax b

1 ⊲ pk(k1), ax
b
2 ⊲ pk(k2)}. At last, assume that ax 5 is

coloured by a and ax 6 is coloured by b. Let M = 〈ax 5, ax 6〉. We have that

— MΦ↓ = 〈〈pk(k1), id1〉, 〈id2, pk(k2)〉〉;

— δρa(MΦ↓) = MΦ↓;

— δρb (MΦ↓) = 〈〈pk(k′1), id1〉, 〈id2, pk(k
′
2)〉〉;

— δρ(Φ) = Φa ⊎ Φbρ
−1 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k

′
2)〉}

While Mδρ(Φ)↓ is not equal to both δρa(MΦ↓) and δρb (MΦ↓), we can still find new recipes that will
link the results.

The idea is to extract from the recipe M the part that use the public key revealed (i.e. contained
in Φa and Φb) and use the corresponding recipe of Φa or Φb depending on which δρi we have to apply.
Indeed, note that ax 5Φ↓ = 〈ax b

1, proj2(ax 5)〉Φ↓. Similarly, we have ax 6Φ↓ = 〈proj1(ax 6), ax
a
2〉Φ↓.

Consider the recipes Ma = 〈ax 5, 〈proj1(ax 6), ax
a
2〉〉 and Mb = 〈〈ax b

1, proj2(ax 5)〉, ax 6〉:

— Maδ
ρ(Φ)↓ = 〈〈pk(k1), id1〉, 〈id2, pk(k2)〉〉 = δρa(MΦ↓)

— Mbδ
ρ(Φ)↓ = 〈〈pk(k′1), id1〉, 〈id2, pk(k

′
2)〉〉 = δρb (MΦ↓)

Following Example 5.21, we are now able to show the following result (Proof in Appendix B.3):

Lemma 5.13. Let Φ and Φ′ two frames in normal form such that dom(Φ) = dom(Φ′). Assume
that Φ and Φ′ have the same colors, i.e. for all (ax ⊲ u) ∈ Φ, for all (ax ′ ⊲ u′) ∈ Φ′, ax = ax ′

implies col(ax ⊲ u) = col(ax ′ ⊲ u′).
Let E be a set of names and let ρ a renaming such that dom(ρ) ∪ img(ρ) ⊆ E and dom(ρ) ∩

fnames(Φ,Φ′) = ∅. Let’s denote Φ+ = Φa ⊎ Φb ⊎ Φ and Φ′
+ = Φa ⊎ Φb ⊎ Φ′.

If the following properties are satisfied:

— νE .Φ+, νE .Φ′
+ are well-tagged

— νE .δρ(Φ+) ∼ νE .δρ(Φ′
+)

— for all u ∈ {k, pk(k), vk(k) | k ∈ img(ρ) ∪ dom(ρ)}, νE .δρ(Φ+) ⊢ u or νE .δρ(Φ′
+) ⊢ u implies

that u ∈ img(δρ(Φa ⊎ Φb))

then for all M such that fnames(M) ∩ E = ∅ and fvars(M) ⊆ dom(Φ+), there exists Ma and Mb

such that fnames(Ma,Mb) ∩ E = ∅, fvars(Ma,Mb) ⊆ dom(Φ+) and:

1. δρa(MΦ+↓) = Maδ
ρ(Φ+)↓ and δρa(MΦ′

+↓) = Maδ
ρ(Φ′

+)↓

2. δρb (MΦ+↓) = Mbδ
ρ(Φ+)↓ and δρb (MΦ′

+↓) = Mbδ
ρ(Φ′

+)↓

Similarly to Lemma 5.9, Lemma 5.13 induces a corollary that will help us prove the static
equivalence between traces in the shared case.

Corollary 5.4. Let Φ and Φ′ two frames in normal form such that dom(Φ) = dom(Φ′). Assume
that Φ and Φ′ have the same colors. Let E be a set of names and let ρ a renaming such that
dom(ρ) ∪ img(ρ) ⊆ E, dom(ρ) ∩ fnames(Φ,Φ′) = ∅ and ρ| dom(ρ0) = ρ0. Let’s denote Φ+ =
Φa ⊎ Φb ⊎ Φ and Φ′

+ = Φa ⊎ Φb ⊎ Φ′.

If the following properties are satisfied:

— νE .Φ+, νE .Φ′
+ are well-tagged,

— νE .δρ(Φ+) ∼ νE .δρ(Φ′
+),

— for all u ∈ {k, pk(k), vk(k) | k ∈ img(ρ) ∪ dom(ρ)}, νE .δρ(Φ+) ⊢ u or νE .δρ(Φ′
+) ⊢ u imply

that u ∈ fnames(δρ(Φa ⊎ Φb))

then νE .Φ+ ∼ νE .Φ′
+.

Proof. Let M,N such that fnames(M,N) ∩ E = ∅ and fvars(M,N) ⊆ dom(Φ+). Assume
that MΦ+↓ = NΦ+↓. Thanks to Lemma 5.4, we know that MΦ+↓ = NΦ+↓ is equivalent to
δρa(MΦ+↓) = δρa(NΦ+↓). But thanks to Lemma 5.13, we know that there exists two recipe Ma

and Na such that :

— δρa(MΦ+↓) = Maδ
ρ(Φ+)↓ and δρa(MΦ′

+↓) = Maδ
ρ(Φ′

+)↓

— δρa(NΦ+↓) = Naδ
ρ(Φ+)↓ and δρa(NΦ′

+↓) = Naδ
ρ(Φ′

+)↓

Hence we have δρa(MΦ+↓) = δρa(NΦ+↓) is equivalent to Maδ
ρ(Φ+)↓ = Naδ

ρ(Φ+)↓. By hy-
pothesis, we know that νE .δρ(Φ+) ∼ νE .δρ(Φ′

+), hence Maδ
ρ(Φ+)↓ = Naδ

ρ(Φ+)↓ is equivalent
to Maδ

ρ(Φ′
+)↓ = Naδ

ρ(Φ′
+)↓. Therefore we deduce that it is also equivalent to δρa(MΦ′

+↓) =
δρa(NΦ′

+↓). At last, once again thanks to Lemma 5.4, we have that δρa(MΦ′
+↓) = δρa(NΦ′

+↓)
is equivalent to MΦ′

+↓ = NΦ′
+↓ and so we conclude that MΦ+↓ = NΦ+↓ is equivalent to

MΦ′
+↓ = NΦ′

+↓.

5.4.4 Soundness and completeness

For this subsection, we consider E0 a set of private names and Pa, Pb two processes without
name restriction or replication, and coloured respectively by a and b. At last consider ρ a renaming
such that:

— dom(ρ) ∪ img(ρ) ⊆ E0 and dom(ρ) does not appear in Pa, Pb, Φa or Φb.

— for all i ∈ {a, b}, there exists P ′
i built on Fi ∪ F0 such that Pi = [P ′

i]i.

— for all i ∈ {a, b}, fnames(Pi) ∩ Ch ⊆ dom(ρChi
) and img(ρChi

) does not appear in Pa or Pb.

We will denote D = (E0; {PaρCha
, Pbρ

−1ρChb
}; Φa ⊎ Φbρ

−1) and S = (E0; {Pa, Pb}; Φa ⊎ Φb). We
assume that Pa and Pb do not share any private channel name, i.e. fnames(Pa) ∩ fnames(Pb) ∩
Ch ∩ E0 = ∅, and do not use variable of channel type.

For our soundness and completeness, we want to preserve a similar invariant as Lemmas 5.10
and 5.11. Typically, for a derivation D

tr
⇒ (E0;PD; ΦD), we want to match it in the shared case

to a derivation S −→∗ (E0;PS ; ΦS) where ΦD↓ = δρ(ΦS↓), PS = P0α and PD↓ = δρ(P0)δ
ρ(α↓)↓,

for some original well-tagged multi-set of processes (P0, α).
However, contrary to Lemmas 5.10 and 5.11, we can’t use the same sequence of actions tr.

Typically, it is due to the fact that, as we saw in Subsection 5.4.3, given a recipe M and a frame
Φ that may reveal some verification or public keys, we may have δρa(MΦ↓) 6= δρb (MΦ↓). Hence
the main idea is to transform the sequence of labels tr using Lemma 5.13.

Example 5.22. Coming back to Example 5.21, consider the process Pa = out(c, 〈pk(k1), id1〉)
and Pb = out(c, 〈id2, pk(k2)〉).in(c, x).out(c, aenc(tagb(x), pk(k1))). Furthermore, consider the set
E0 = {k1, k2, k′1, k

′
2}, ρ = {k′1 7→ k1, k

′
2 7→ k2}, ρCha

= {c 7→ ca} and ρChb
= {c 7→ cb}. At last

consider the frames Φa = {axa
1 ⊲ pk(k1), ax

a
2 ⊲ pk(k2)} and Φb = {ax b

1 ⊲ pk(k1), ax
b
2 ⊲ pk(k2)}

coloured respectively with a and b. We denote Φ0 = Φa ⊎ Φb

Let’s denote S = (E0; {Pa, Pb}; Φa ⊎ Φb) and D = (E0; {PaρCha
, Pbρ

−1ρChb
}; Φa ⊎ Φbρ

−1). We
have:

S
νax5.out(c,ax5)
−−−−−−−−−−→ (E0; {Pb}; Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉})
νax6.out(c,ax6)
−−−−−−−−−−→ (E0; {P ′

b}; Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k2)〉})
in(c,M)
−−−−−→ (E0; {P

′′
b }; Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k2)〉})

νax7.out(c,ax7)
−−−−−−−−−−→ (E0; ∅; Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k2)〉, ax 7 ⊲ u})

where M = 〈ax 5, ax 6〉, u = aenc(tagb(v), pk(k1)) P ′
b = in(c, x).out(c, aenc(tagb(x), pk(k1))), P

′′
b =

out(c, u) with v = 〈〈pk(k1), id1〉, 〈id2, pk(k2)〉〉.
In Example 5.21, we showed that Mbδ

ρ(Φ)↓ = δρb (MΦ↓) where Mb = 〈〈ax b
1, proj2(ax 5)〉, ax 6〉

and Φ = Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k2)〉}. Since the input corresponding to the
label in(c,M) corresponds to a process coloured by b, we will replace M by Mb in the sequence of
action. Similarly, the output corresponding to the label νax 5.out(c, ax 5) corresponds to a process
coloured by a, hence we will replace c by cρCha

= ca. Thus:

D
νax5.out(ca,ax5)
−−−−−−−−−−−→ (E0; {δ

ρ
b (Pb)ρChb

}; Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉})
νax6.out(cb,ax6)
−−−−−−−−−−−→ (E0; {δ

ρ
b (P

′
b)ρChb

}; Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k
′
2)〉})

in(cb,Mb)
−−−−−−→ (E0; {δ

ρ
b (P

′′
b)ρChb

}; Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k
′
2)〉})

νax7.out(cb,ax7)
−−−−−−−−−−−→ (E0; ∅; Φ0 ⊎ {ax 5 ⊲ 〈pk(k1), id1〉, ax 6 ⊲ 〈id2, pk(k

′
2)〉, ax 7 ⊲ u′})

where u′ = aenc(tagb(v
′), pk(k′1)) with v′ = 〈〈pk(k′1), proj2(〈pk(k1), id1〉)〉, 〈id2, pk(k

′
2)〉〉. Note that

δρb (P
′
b)ρChb

= in(c, x).out(cb, aenc(tagb(x), pk(k
′
1))) and δρb (P

′′
b)ρChb

= out(cb, u
′) .

Moreover, note that v′↓ = 〈〈pk(k′1), id1〉, 〈id2, pk(k
′
2)〉〉 and δρb (u↓) = u′↓. More generally, if we

denote by ΦS and ΦD the last two frames of the derivations, we have δρ(ΦS↓) = ΦD↓.

We formalise the transformation of sequence of labels (see Example 5.22) in the following
lemmas (proofs in Appendix B.3):

Lemma 5.14 (Soundness). If for all (tr,Φ) ∈ trace(D), for all u ∈ {vk(k), pk(k) | k ∈ img(ρ) ∪

dom(ρ)}, νE0.Φ ⊢ u implies that u ∈ img(Φa ⊎Φbρ
−1), then for all S

w
−→ (E0;PS ; ΦS) such that w

does not contain any τ action that corresponds to an internal communication between two processes

of different colours, we have that ΦS is well-tagged and there exists D
w′

−→ (E ;PD; ΦD) such that
ΦD↓ = δρ(ΦS↓).

Furthermore, if w = ℓ1.ℓn then w′ = ℓ′1.ℓ
′
n such that for all k ∈ {1, . . . , n},

— if ℓk = νaxm.out(c, axm) is an output coming from a process coloured by i ∈ {a, b}, then
ℓ′k = νaxm.out(cρChi

, axm)

— if ℓk = in(c,M) is an input coming from a process coloured by i ∈ {a, b}, then ℓ′k =
in(cρChi

,Mi) with MiΦD↓ = δρi (MΦS↓).

— if ℓk = out(c, d) is an output coming from a process coloured by i ∈ {a, b} with d a channel
name, then ℓ′k = out(cρChi

, dρChi
)

— if ℓk = νchm.out(c, chm) is an output coming from a process coloured by i ∈ {a, b} with chm

a channel name, then ℓ′k = νchm.out(cρChi
, chm)

— if ℓk = τ , then ℓ′k = τ .

Note that in Lemma 5.14, we only consider traces that do not have internal communication
between two processes of different colours. Indeed, for these internal communications, we will
apply a specific transformation (see Example 5.23).

Lemma 5.15 (Completeness). Let D
w
−→ (E0;PD; ΦD). Let Φ+ be a ground well-tagged frame

such that Φ+ = Φa ⊎ Φb ⊎ Φ for some Φ, and Φ+, ΦD have the same colours. If the following
properties are satisfied:

— w = ℓ1.ℓn

— νE0.ΦD ∼ νE0.δρ(Φ+)

— for all u ∈ {k, vk(k), pk(k) | k ∈ img(ρ) ∪ dom(ρ)}, νE0.δρ(Φ+) ⊢ u or νE0.ΦD ⊢ u implies
that u ∈ img(Φa ⊎ Φbρ

−1)

— for all k ∈ {1, . . . , n}, if ℓk = in(c,Mk) with c ∈ img(ρChi
), i ∈ {a, b} then there exists M i

k

such that Mkδ
ρ(Φ+↓)↓ = δρi (M

i
kΦ+↓).

then there exists a label w′ = ℓ′1.ℓ
′
n and a well-tagged frame ΦS such that S

w′

−→ (E ;PS ; ΦS),
ΦD↓ = δρ(ΦS↓), and for all k ∈ {1, . . . , n},

— if ℓk = νax .out(c, ax) with c ∈ img(ρChi
), i ∈ {a, b} then ℓ′k = νax .out(cρ−1

Chi
, ax)

— if ℓk = in(c,Mk) with c ∈ img(ρChi
), i ∈ {a, b}, then ℓ′k = in(cρ−1

Chi
,M i

k).

— if ℓk = out(c, d) with c ∈ img(ρChi
), i ∈ {a, b} and d a channel name, then ℓ′k = out(c, d)ρ−1

Chi

— if ℓk = νchm.out(c, chm) with c ∈ img(ρChi
), i ∈ {a, b} and chm a channel name, then

ℓ′k = νchm.out(cρ−1
Chi

, chm)

— if ℓk = τ then ℓ′k = τ

5.4.5 Dealing with internal communication

As mentioned earlier, Lemma 5.14 focuses on traces of S that do not have internal communi-
cation between processes of different colours. More specifically, since in the intermediate process
D, the processes coloured by a and b do not share any channel name, then an internal communi-
cation in a trace of S between processes of different colours could not be matched by an internal
communication in a trace of D anymore. However, we know that the processes Pa and Pb do not
share private channel name. Hence, if an internal communication occurs between two processes of
different colours in a trace of S, then it implies that this internal communication was done over
a public channel. This will allow us to modify the trace of S in order to remove such internal
communication.

Example 5.23. Coming back to Example 5.22, we have:

S
νax5.out(c,ax5)
−−−−−−−−−−→ (E0; {Pa, P

′
b}; Φ0 ⊎ {ax 5 ⊲ 〈id2, pk(k2)〉})

τ
−→ (E0; {out(c, aenc(tagb(u), pk(k1)))}; Φ0 ⊎ {ax 5 ⊲ 〈id2, pk(k2)〉})

where u = 〈pk(k1), id1〉. To match this trace to a trace of D, we first have to remove the internal
communication between Pa and P ′

b. To do so, we replace the internal communication by the
sequence of label νax 6.out(c, ax 6).in(c, ax 6):

S
νax5.out(c,ax5)
−−−−−−−−−−→ (E0; {Pa, P

′
b}; Φ0 ⊎ {ax 5 ⊲ 〈id2, pk(k2)〉})

νax6.out(c,ax6)
−−−−−−−−−−→ (E0; {P ′

b}; Φ0 ⊎ {ax 5 ⊲ 〈id2, pk(k2)〉, ax 6 ⊲ u})
in(c,ax6)
−−−−−−→ (E0; {out(c, aenc(tagb(u), pk(k1)))}; Φ0 ⊎ {ax 5 ⊲ 〈id2, pk(k2)〉, ax 6 ⊲ u})

Then we can apply the transformation described in Lemma 5.14 to obtain the corresponding trace
of D:

D
νax5.out(cb,ax5)
−−−−−−−−−−−→ (E0; {Pa, δ

ρ
b (P

′
b)}; Φ0 ⊎ {ax 5 ⊲ 〈id2, pk(k

′
2)〉})

νax6.out(ca,ax6)
−−−−−−−−−−−→ (E0; {δ

ρ
b (P

′
b)}; Φ0 ⊎ {ax 5 ⊲ 〈id2, pk(k

′
2)〉, ax 6 ⊲ u})

in(cb,M)
−−−−−−→ (E0; {out(cb, aenc(tagb(v), pk(k

′
1)))}; Φ0 ⊎ {ax 5 ⊲ 〈id2, pk(k

′
2)〉, ax 6 ⊲ u})

where M = 〈ax b
1, proj2(ax 6)〉 and v = 〈pk(k′1), proj2(u)〉. Note that v↓ = 〈pk(k′1), id1〉 = δρb (u↓).

However, it remains one final issue with the internal communication. As mentioned in Subec-
tion 5.4.2, the proof technique for our main result consists of taking a trace (tr,Φ) of (K0;C[[PA]a |
[PB]b; Φ0) (the shared case), matching it with a trace (tr′,Φ′) of the disjoint case, i.e. the pro-
cess (K′

0; {C[[PA]a]ρCha
| C[[PB]b]ρ

−1
0 ρChb

}; Φ′
0). Then, thanks to the equivalence representing the

“disjoint case", we consider the trace (tr′,Φ′′) in (K′
0; {C[[P ′

A]a]ρCha
| C[[P ′

B]b]ρ
−1
0 ρChb

}; Φ′
0) such

that Φ′′ ∼ Φ′, and at last we apply the completeness lemma in order to come back to a trace
(tr,Φ′′′) of the shared case, i.e. (K0;C

′[[P ′
A]a | [P ′

B]b; Φ0).
As we saw in this subsection, the trace internal communication between processes of different

colours in (tr,Φ) are replaced by a sequence of visible actions of the form νax .out(c, ax).in(c,M) in
the trace (tr′,Φ′). However, when considering the trace (tr′,Φ′′) obtained thanks to the equivalence
representing the disjoint case, it is possible that some τ -actions are applied between the actions
labeled νax .out(c, ax) and in(c,M) in the trace (tr′,Φ′′). But the two actions must be applied in
sequence in order to transform back the sequence of actions νax .out(c, ax).in(c,M) into an internal
communication in the trace (tr,Φ′′′). Hence, we show that it is possible to find a derivation of the
trace (tr′,Φ′′) where the two actions νax .out(c, ax) and in(c,M) are applied consecutively.

Lemma 5.16. Let D′ be an intermediate bounded process and w a sequence of labels such that
D

w
−→ D′. If w = w1.w2.w3 with w2 ∈ νax .out(c1, ax).τ

∗.in(c2,M), c1 ∈ img(ρChi
), c2 ∈

img(ρChj
) and i 6= j, then there exist two sequences of label w′, w′

2 such that w′ = w1.w
′
2.w3,

w′
2 ∈ τ∗.νax .out(c1, ax).in(c2,M).τ∗ and D

w′

−→ D′.

Proof. D
w
−→ D′ and w = w1.w2.w3 with w2 ∈ νax .out(c1, ax).τ

∗.in(c2,M) imply that there exist

D1, . . . , Dn such that D
w1−−→ D1

νax .out(c1,ax)
−−−−−−−−−→ D2

τ
−→ . . .

τ
−→ Dn−1

in(c2,M)
−−−−−−→ Dn. By hypothesis

on D, we know that processes of different colors in D do not share public nor private channels.
Thus, a τ action, i.e. Else, Then and Comm, can only be applied on processes of same colour.
But, applying a τ action on a process of colour i does not modify the processes whose colours are
j 6= i.

Let S1 = (E ;Pa ⊎ Pb; Φ) be an intermediate bounded process such that for all P ∈ Pa (resp.
Pb), col(P) = a (resp. b). Assume that we apply a τ action, denoted τa, on Pa, i.e. there exists
P ′
a such that S1

τa−→ (E ;P ′
a ⊎ Pb; Φ) = S2. Assume now that we apply a τ action, denoted τb, on

Pb, i.e. there exists P ′
b such that S2

τb−→ (E ;P ′
a ⊎P ′

b; Φ) = S3. Hence S1
τa−→ S2

τb−→ S3. But we can
see that S1

τb−→ (E ;Pa ⊎ P ′
b; Φ)

τa−→ S3. Thus it is possible to swap τ actions.

With a similar proof, we can show that if S1
νax .out(c1,ax)
−−−−−−−−−→ S2

τb−→ S3, with τb a τ action initiated

by a process of colour b, then we also have that there exists S′
2 such that S1

τb−→ S′
2

νax .out(c1,ax)
−−−−−−−−−→ S3.

Furthermore, once again with a similar proof, we can show that if S1
τa−→ S2

in(c2,M)
−−−−−−→ S3, with τa

a τ action initiated by a process of colour a, then there exists S′
2 such that S1

in(c2,M)
−−−−−−→ S′

2
τa−→ S3.

Therefore, a simple induction on the number of τ actions in the derivation D
w1.w2−−−−→ D′

allows us to prove that there exists D′
2, . . . , D

′
n−1 and an index k ∈ {1, . . . , n − 2} such that

D1
τb−→ D′

2
τb−→ . . .

τb−→ D′
k

νax .out(c1,ax)
−−−−−−−−−→ D′

k+1

in(c2,M)
−−−−−−→ D′

k+1
τa−→ . . .

τa−→ Dn. Hence the result
holds.

5.4.6 Main composition result

We can now state the main composition result of this chapter (proof in Appendix B.3)

Theorem 5.2. Let PA, P ′
A (resp. PB , P ′

B) be two sequences of plain processes built Fa ∪ F0

(resp. Fb ∪ F0). Let K0 be a finite set of names of base type, and C and C ′ be two composition
contexts. Let K′

0 be a subset of K0 such that K′
0 = names(PA, P

′
A) ∩ names(PB , P

′
B) ∩ K0. Let

Φ0 = {ax 1 ⊲ f1(k1), . . . , axn ⊲ fn(kn)} with fi ∈ {pk, vk}, and ki ∈ K0 for any i ∈ {1, . . . , n}.
Assume that the processes (K0;C[[PA]a]; Φ0) and (K0;C[[PB]b]; Φ0) (resp. (K0;C[[P ′

A]a]; Φ0), and

(K0;C[[P ′
B]b]; Φ0)):

— do not reveal any key in {k, pk(k), vk(k) | k ∈ K′
0} unless if the key occurs explicitly in Φ0;

and

— do not reveal any shared key in C (resp. C ′);

Lastly, we assume that plain processes PA, P ′
A and PB , P ′

B do not use variable of channel type.
In such a case,

(K0;C[[PA]a]; Φ0) ≈t (K0;C
′[[P ′

A]a]; Φ0)

(K0;C[[PB]b]; Φ0) ≈t (K0;C
′[[P ′

B]b]; Φ0)

(K0;C[[PA]a | [PB]b]; Φ0) ≈t (K0;C
′[[P ′

A]a | [P ′
B]b]; Φ0)

5.5 Application

In this section, we present an example of application of Theorem 5.2 using the e-passport
protocol. In Section 3.4, we described that the anonymity of the parallel composition of the
protocols AA and PA can be expressed with the following equivalence:

νskDS .C[PA | AA,PA0 | AA0] ≈t νskDS .C
′[PA | AA]

where C and C ′ are contexts defined as follows:

C[_1,_2]
def
= ! νskP . νid. νsig. νpic. . . .

! νksenc. νksmac. _1

| νskP 0. !νksenc. νksmac. _2

C ′[_]
def
= !νskP . νid. νsig. νpic. . . . ! νksenc. νksmac. _

Using the ProVerif tool [BAF08], we tried to prove these two equivalences, but it failed to
terminate. The problem comes from the PA protocol. Indeed, while ProVerif fails to prove that
PA satisfies anonymity and unlinkability (ProVerif does not terminate), it can perfectly prove that
AA satisfies these two properties.

In order to exploit the fact that ProVerif is able to prove anonymity of the AA protocol,
we show how we can apply Theorem 5.2 on the e-passport protocol. More specifically, we use
Theorem 5.2 to show that the anonymity (resp. unlinkability) of the protocol PA with tags
implies the anonymity (resp. unlinkability) of the parallel composition of the protocols AA and
PA with tags to the problem of anonymity of PA with tags.

First of all, note that both protocols PA and AA use the primitive mac/2 that can be modelled
using our hash function h and the pairing, i.e. mac(u, k) is modelled by h(〈u, k〉). With this
modelisation, we have that both protocols PA and AA are built over F0 which means that it is
possible to tag these protocols. We will tag PA with a and AA with b. Note that the protocols
PA and AA do not have private channel nor variable of channel type.

Secondly, the key skDS corresponds to the private signing key of a signing authority. Hence,
we will assume that the intruder knows the verification key vk(skDS). Moreover, for the victim’s e-
passport, we might consider that the intruder have access to the verification key vk(skP0). Hence,
using intermediate processes, the anonymity of the parallel composition of the protocols AA and
PA with tags can be expressed with the following equivalence:

({skDS , skP 0}; {C
′′′[[PA]a | [AA]b, [PA0]a | [AA0]b]}; {ax 1 ⊲ vk(skDS), ax 2 ⊲ vk(skP0)})

≈t

({skDS , skP 0}; {C
′[[PA]a | [AA]b]}; {ax 1 ⊲ vk(skDS), ax 2 ⊲ vk(skP0)})

where C ′′′ is defined as follows:

C ′′′[_1,_2]
def
= ! νskP . νid. νsig. νpic. . . .

! νksenc. νksmac. _1

| !νksenc. νksmac. _2

Note that both C ′ and C ′′′ are composition context. While ProVerif can not prove this previous
equivalence, it can prove that the following equivalence holds:

(K0; {C
′′′[[AA]b, [AA0]b]}; Φ0) ≈t (K0; {C

′[[AA]b]}; Φ0)

where K0 = {skDS , skP 0} and Φ0 = {ax 1 ⊲ vk(skDS), ax 2 ⊲ vk(skP 0)}.
It remains to prove that the shared key are not revealed. As already mentioned in Sub-

section 5.1.2, the only shared keys between the protocols PA and AA are skP0 and the several
instance of ksenc,ksmac and skP . Hence we have to show that (K0; {C

′′′[[AA]b, [AA0]b]}; Φ0),
(K0; {C

′[[AA]b]}; Φ0), (K0; {C
′′′[[PA]b, [PA0]b]}; Φ0), and (K0; {C

′[[PA]b]}; Φ0) do not reveal the
keys skP0 and the several instances of ksenc, ksmac, skP and vk(skP). Note that according to
the hypotheses of Theorem 5.2, we should also check that the processes do not reveal vk(ksmac),
pk(ksmac),. . . However, since the processes only use ksmac, ksenc as symmetric key, and skP as
signing key, one can note that these checks are not necessary.

According to Definition 5.4, the process (K0; {C
′′′[[PA]b, [PA0]b]}; Φ0) do not reveal the keys

skP0, ksenc, ksmac, skP and vk(skP) if:

— ({skDS , skP 0}; {C
′′′[[PA]b, [PA0]b]}; Φ0) preserves the secret of skP0; and

— ({skDS , skP 0, s}; {C
′′′[[PA]b|in(c, x).if x = key then out(c, s) else 0, [PA0]b]}; Φ0) preserves the

secrecy of s, with key ∈ {ksenc, ksmac, skP , vk(skP)}; and

— ({skDS , skP 0, s}; {C
′′′[[PA]b, [PA0]b|in(c, x).if x = key then out(c, s) else 0]}; Φ0) preserves the

secrecy of s, with key ∈ {ksenc, ksmac, skP , vk(skP)}.

Similar conditions exist for the three others processes. Using ProVerif, we are able to prove that
all these conditions hold. Hence, thanks to Theorem 5.2, we have that:

(K0; {C
′′′[[PA]b, [PA0]b]}; Φ0) ≈t (K0; {C

′[[PA]b]}; Φ0)

implies

(K0; {C
′′′[[AA]a | [PA]b, [AA0]a | [PA0]b]}; Φ0) ≈t (K0; {C

′[[AA]a | [PA]b]}; Φ0)

5.6 Conclusion

In this chapter, we investigated composition results for privacy-type properties expressed using
trace equivalence. We have shown that secure protocols can be safely composed. We consider arbi-
trary equational theories and we assume that protocols may share some usual primitives provided
they are tagged. Moreover, we have to assume that the shared keys are not revealed and we allow
public and verification shared keys to be known by the intruder, provided that they were given at
the beginning (using the frame Φ0). However, in our setting (and in many others) such a sequence
has to be finite and thus we are only able to deal with a bounded number of public shared keys.

To relax this hypothesis without modifying our model, we need to abstract the public shared
keys. For example, the public shared keys initially given to the intruder could be modelled by a
unique private shared key (e.g. sk0) and the successive applications of a new one-way function
(e.g. s/1). Hence, if {pk(sk1), . . . , pk(skn), . . .} represented the infinite set of public shared keys
initially given to the intruder then this would be modelled by the set

{pk(sk0), pk(s(sk0)), pk(s(s(sk0))), . . .}

Then, relying on this representation, we could build a server that distributes the shared public
keys to the intruder, e.g.

S = νd.(out(c, pk(sk0)).out(d, sk0) |!in(d, x).out(c, pk(s(x))).out(d, s(x)))

where c is a public channel. However, we would probably need to add in the hypotheses of our
composition result that any successive application of s on sk0 cannot be deduced by the intruder.

We also showed in this chapter how to apply our composition result on the parallel composition
of the Active Authentication and Passive Authentication protocols from the e-passport protocols.
However, we had to abstract the symmetric session keys that were generated by the Basic Access
Control protocol beforehand. Thus, to include the Basic Access Control protocol, we would have
to establish a “sequential" composition result. The term sequential may be misleading since there
is no general sequence operator in the applied pi calculus that would compose for example the
process (A | B) with the process (P | Q). In fact, in the case of the e-passport protocols, the
Active Authentication and Passive Authentication) protocols are plugged inside the Basic Access
Control protocol, i.e.

BACP [PAP | AAP] | BACR[PAR | AAR]

where BACP [_],PAP and AAP (resp. BACR[_],PAR and AAR) are the processes represented
the role of the passport (resp. the reader). Note that the processes of the Basic Access Control
protocol are modelled by the means of contexts where the holes represented where the others
processes will be plugged. This plugging is crucial to properly model the behaviour of the whole e-
passport protocols. Indeed, since the protocols PA and AA should only be executed if the protocol
BAC succeeded then they must be plugged in the proper conditional branch of the protocol BAC
which model a successful execution.

Such a “sequential" composition result would probably subsume the results presented in this
chapter.

Part II

A decision procedure for trace

equivalence

91

Chapter 6

Model

Contents

6.1 Syntax and semantics . 94

6.1.1 Syntax . 94

6.1.2 Semantics . 94

6.1.3 Equivalence . 95

6.2 Symbolic calculus . 96

6.2.1 Semantics . 96

6.2.2 From trace equivalence to concrete symbolic equivalence 97

6.3 Getting rid of some recipes . 98

6.3.1 Getting rid of names . 98

6.3.2 Normalised recipe . 101

6.3.3 From concrete to constructor constraint systems 103

We are focusing on a decision procedure of trace equivalence of bounded processes that al-
lows a set of standard cryptographic primitives, in particular signatures, pairing, hash function,
symmetric and asymmetric encryptions. Moreover, we will consider that the primitives such as
decryption, projection, . . .may fail. Hence instead of modelling the behaviour of these crypto-
graphic primitives with an equational theory as in Part I, they will be modelled by a set of rewrite
rules. Thus, we propose in this chapter a new model adapted to the behaviour of these primitives,
and that is still close to the applied pi calculus.

The aim of this chapter is to provide with a number of simplifications and restrictions of the
trace equivalence problem, without losing in generality. First, following the footsteps of Chapter 4,
we reduce the decidability of trace equivalence to decidability of symbolic equivalence between sets
of constraint systems. Then, we simplify the problem of symbolic equivalence by

1. getting rid of free names in the processes and the actions of the intruder; and

2. only considering normalised recipe

3. only considering constructor constraint system, i.e. constraint system which only contains
constructor terms.

Chapter 7 will then be dedicated to a decision procedure of symbolic equivalence between sets of
constructor constraint systems.

Amongst the existing tools, only SPEC [TD10] relies on constraint systems whereas the tools
ProVerif [Bla01] and AKiSs [Cio11] relies on Horn clauses. However, since the aim of [TD10]
is a decision procedure for open-bisimulation for bounded processes in the spi-calculus, they re-
duce this problem to the problem of symbolic equivalence between positive constraint systems.
Baudet [Bau05, Bau07] also proves decidability of equivalence between positive constraint systems
but for a much larger set of primitives that is for subterm convergent theories. In [CR12], a shorter
proof of the result by Baudet is given. Although our decision procedure lacks of cryptographic

93

primitives in comparison of [Bau05, Bau07], their procedure along with [CD09a] is restricted the
trace equivalence of determinate processes that do not contain (non trivial) conditional branching.

6.1 Syntax and semantics

6.1.1 Syntax

Similarly to the applied pi calculus, we consider an infinite set of names N and an infinite set
of variable X . However, we define Fc and Fd the finite sets of constructor function symbols and
destructor function symbols respectively. More specifically, we consider:

Fc ⊇ {senc/2, aenc/2, pk/1, sign/2, vk/1, 〈 〉/2, h/1}
Fd = {sdec/2, adec/2, check/2, proj1/1, proj2/1}.

We allow Fc to contain more primitives than the one we specified. It allows the users to consider
some constants or primitives such as mac. The constructor terms, resp. ground constructor terms,
are those in T (Fc,N ∪ X 1), resp. in T (Fc,N).

We model the properties of our cryptographic primitives by the following set of rewrite rules:

sdec(senc(x, y), y) → x
adec(aenc(x, pk(y)), y) → x
check(sign(x, y), vk(y)) → x

proj1(〈x, y〉) → x
proj2(〈x, y〉) → y

This term rewriting system is convergent. Note that only the specified primitives intervene in the
rewriting system.

A ground term u is a message if v↓ is a constructor term for all v ∈ st(u). We define the
predicate Message(·) on terms such that Message(u) is true if, and only if, u is a message. For
instance, the terms sdec(a, b), proj1(〈a, sdec(a, b)〉), and proj1(a) are not messages. Intuitively, we
view terms as modus operandi to compute bitstrings where we use the call-by-value evaluation
strategy.

For our processes, since we do not consider replication, we define processes that are similar to
the bounded intermediate processes defined in Chapter 4. The grammar of our plain processes is
as follows:

P,Q,R := 0
P | Q
P +Q
if u1 = u2 then P else Q
in(u, x).P
out(u, v).P

where u1, u2, u, v are terms, and x is a variable.
This is almost identical to the definition of plain processes in the applied pi calculus. However,

we added the choice operator P +Q. As mentioned in Chapter 3, this could have been modelled
using private channels but we added it to enhance the efficiency of our algorithm. Moreover,
we confuse channel with message. At last, similarly to the bounded intermediate processes (see
Section 4.1.4), there is no name restriction in the plain processes.

As last, we define concrete processes from Definition 4.1 of intermediate processes with this
definition of plain processes.

6.1.2 Semantics

The semantics of concrete processes is given in the Figure 6.1. Note also that, since we allow
arbitrary terms for channels, we have to check whether the channel is known by the attacker or
not (see rules In and Out). Moreover, we check that all terms that have to be evaluated during
the execution are messages.

Let Ac be the alphabet of actions for the intermediate semantics. For every w ∈ A∗
c the

relation
w
−→c on intermediate processes is defined in the usual way. For s ∈ (Ac r {τ})∗, the

relation
s
⇒c on intermediate processes is defined by: A

s
⇒c B if, and only if there exists w ∈ A∗

c

such that A
w
−→c B and s is obtained by erasing all occurrences of τ . Note that by definition,

intermediate processes are closed.

(E ; {if u = v then Q1 else Q2} ⊎ P; Φ)
τ
−→i (E ; {Q1} ⊎ P; Φ) (Thenc)

if u↓ = v↓, Message(u) and Message(v)

(E ; {if u = v then Q1 else Q2} ⊎ P; Φ)
τ
−→i (E ; {Q2} ⊎ P; Φ) (Elsec)

if u↓ 6= v↓ or ¬Message(u) or ¬Message(v)

(E ; {out(u, t).Q1; in(v, x).Q2} ⊎ P; Φ)
τ
−→i (E ; {Q1;Q2{x 7→ t}} ⊎ P; Φ) (Commc)

if Message(u),Message(v),Message(t) and u↓ = v↓

(E ; {in(u, x).Q} ⊎ P; Φ)
in(N,M)
−−−−−−→i (E ; {Q{x 7→ t}} ⊎ P; Φ) (Inc)

if MΦ = t, fvars(M,N) ⊆ dom(Φ), fnames(M,N) ∩ E = ∅
NΦ↓ = u↓, Message(MΦ), Message(NΦ), and Message(u)

(E ; {out(u, t).Q} ⊎ P; Φ)
νaxn.out(M,axn)
−−−−−−−−−−−→i (E ; {Q} ⊎ P; Φ ∪ {axn ⊲ t}) (Outc)

if MΦ↓ = u↓, Message(u), fvars(M) ⊆ dom(Φ), fnames(M) ∩ E = ∅
Message(MΦ), Message(t) and axn ∈ AX , n = |Φ|+ 1

(E ; {P1 | P2} ⊎ P; Φ)
τ
−→i (E ; {P1;P2} ⊎ P; Φ) (Parc)

(E ; {P1 + P2} ⊎ P; Φ)
τ
−→i (E ; {P1} ⊎ P; Φ) (Choicec-1)

(E ; {P1 + P2} ⊎ P; Φ)
τ
−→i (E ; {P2} ⊎ P; Φ) (Choicec-2)

where u, v, t are ground terms, and x is a variable.

Figure 6.1: Concrete semantics

As we will see in Chapter 9, checking whether a term is a message is very similar the check
of failure of a term evaluation in ProVerif. In ProVerif, the evaluation of terms is explicit
in let x = D in P whereas in our semantics, the evaluation of a term is performed on the fly.
Typically, given a plain process P , one can transform P into a ProVerif process that has the
same behaviour by replacing every out(u, t) by let x = addeval(u) in let y = addeval(t) in out(x, y),
every in(u, x) by let y = addeval(u) in in(y, x),

Similarly to Chapter 4, given a concrete process (E1;P1; Φ1), the set of its traces is defined by:

tracec((E1;P1; Φ1)) = {(s, νE2.Φ2) | (E1;P1; Φ1)
s
⇒c (E2;P2; Φ2) for some (E2;P2; Φ2)}

Note that due to our semantics, we have in fact E1 = E2.

Example 6.1. Consider the sequence of actions tr′ = νax 1.out(c1, ax 1).in(c1, proj1(〈ax 1, sdec(a,
b)〉)).νax 2.out(c2, ax 2). For all concrete process A, no trace in tracec(A) can have tr′ as sequence
of actions. Indeed, for all Φ, Message(proj1(〈ax 1, sdec(a, b)〉)Φ) = false.

Intuitively, the intruder will never be able to compute proj1(〈ax 1, sdec(a, b)〉)Φ since the com-
putation of sdec(a, b) will fail and so 〈ax 1, sdec(a, b)〉 does not represent a bitstring.

6.1.3 Equivalence

We redefine the static equivalence (Definition 3.1) in this context.

Definition 6.1. Let E a set of private names. Let Φ and Φ′ two frames. We say that νE .Φ and
νE .Φ′ are statically equivalent, written νE .Φ ∼c νE .Φ′, when dom(Φ) = dom(Φ′) and when for
all terms M,N such that fvars(M,N) ⊆ dom(Φ) and fnames(M,N) ∩ E = ∅, we have:

— Message(MΦ) if and only if Message(MΦ′)

— if Message(MΦ) and Message(NΦ) then MΦ↓ = NΦ↓ if and only MΦ↓ = NΦ′↓.

The second item of Definition 6.1 corresponds to the usual definition of the static equivalence.
However, we add the conditions Message(MΦ) and Message(NΦ) otherwise the equality MΦ↓ =
NΦ↓ would be meaningless. Note that we do not require that Message(MΦ′) or Message(NΦ′)
but it is implied by the first item of the static equivalence.

We recall the definition of trace equivalence in Section 3.1 that we adapt to our set of traces
and static equivalence:

Definition 6.2 (trace equivalence ≈t). Let A and B be concrete processes with the same set of
private names E. A ⊑t B if for every (s, νE .Φ) ∈ tracec(A), there exists (s′, νE .Φ′) ∈ trace(B)
such that s = s′ and νE .Φ ∼c νE .Φ

′.
Two closed extended processes A and B are trace equivalent, denoted by A ≈t B, if A ⊑t B

and B ⊑t A.

Note that we do not have anymore the condition fnames(B) ∩ bnames(s) = ∅. This condition
was essential for the applied pi calculus since a action label could be of the form νc.out(p, c) with
c a channel name. In our case, only the parameters ax i can be found in s hence we necessary have
bnames(s) = ∅.

6.2 Symbolic calculus

In order to decide the trace equivalence between two concrete process, we propose, similarly
to Section 4.2, a symbolic calculus and its semantics. We consider the constraint system (Defini-
tion 4.3) and symbolic process (Definition 4.6) used in Section 4.2.

6.2.1 Semantics

We recall the notations used in the symbolic calculus in Chapter 4.2: We consider a new set X 2

of variables called second order variables X,Y, . . . To avoid conflict between the variables in X 2

and the one we already used to described the protocols and the processes, we denote by X 1 the
latter set variables and call them first order variables. Note that X 1, X 2, AX are all disjoint
subsets of X . We call recipe, usually denoted ξ, the terms in T (F ,N ∪X 2 ∪AX). We say that a
recipe ξ is closed (or ground) if ξ ∈ T (F ,N ∪ AX). Given a recipe ξ ∈ T (F ,N ∪ X 2 ∪ AX), we
denote param(ξ) the set of parameters in ξ, i.e. vars(ξ) ∩ AX .

We adapt the definition of solutions of a constraint system so that it matches with the concrete
semantics (see Figure 6.1).

Definition 6.3 (concrete solution). A concrete solution of a constraint system C = (E ; Φ;D;Eq)
is a pair of substitutions (σ, θ) such that σ is a mapping from vars1(C) to T (F ,N), θ is a mapping
from vars2(C) to T (F ,N r {E},AX), and:

1. for all (X, k
?

⊢ x) ∈ D, (Xθ)(Φσ) = xσ, param(Xθ) ⊆ {ax 1, . . . , axk} and Message(xσ);

2. for all (s
?
= s′) ∈ Eq, sσ↓ = s′σ↓, Message(sσ) and Message(s′σ);

3. for all (s
?

6= s′) ∈ Eq, sσ↓ 6= s′σ↓, or ¬Message(sσ), or ¬Message(s′σ).

4. for all (ax i ⊲ ui) ∈ Φ, Message(uiσ)

The substitution σ is called the first-order solution of C associated to θ, called second-order solution
of C. The set of solutions of a constraint system C is denoted Solc(C). A constraint system C is
satisfiable if Solc(C) 6= ∅.

Compared to the usual definition of solution (see Definition 4.4), we added the fact that every
term in the constraint system has to be a message after instantiation. Moreover, the first order
terms of a frame element also has to be a message as it is specified in the rule (Outc).

Example 6.2. Coming back to the Example 4.7, we had (σ, θ) ∈ Sol(C1). But (σ, θ) also satisfies
all conditions of a concrete solution, hence (σ, θ) ∈ Solc(C1).

The rules of Figure 6.2 define the semantics of symbolic processes. Similarly to Section 4.2,
this relation transforms a symbolic process into a symbolic process. Once again, thanks to this
symbolic semantics, we avoid infinite branching due to the inputs of the environment. We added
some rules for the choice operator and we removed the rules that was specific to the outputs of
channel names.

(E ; {if u = v then P1 else P2} ⊎ P; Φ;D;Eq)
τ
−→cs (E ; {P1} ⊎ P; Φ;D;Eq ∪ {u

?
= v}) (Thensc)

(E ; {{if u = v then P1 else P2} ⊎ P; Φ;D;Eq)
τ
−→cs (E ; {P2} ⊎ P; Φ;D;Eq ∪ {u

?

6= v}) (Elsesc)

(E ; {out(u, t).Q1; in(v, x).Q2} ⊎ P; Φ;D;Eq)
τ
−→cs (E ; {Q1;Q2{x 7→ t}} ⊎ P; Φ;D;Eq ∪ {u

?
= v})

(Commsc)

(E ; {P | Q} ⊎ P; Φ;D;Eq)
τ
−→cs (E ; {P ;Q} ⊎ P; Φ;D;Eq) (Parsc)

(E ; {P +Q} ⊎ P; Φ;D;Eq)
τ
−→cs (E ; {P} ⊎ P; Φ;D;Eq) (Choicesc-1)

(E ; {P +Q} ⊎ P; Φ;D;Eq)
τ
−→cs (E ; {Q} ⊎ P; Φ;D;Eq) (Choicesc-1)

(E ; {in(u, x).Q} ⊎ P; Φ;D;Eq)
in(Z,Y)
−−−−−→cs

(E ; {Q{x 7→ y}} ⊎ P; Φ;D ∪ {Y, n
?

⊢ y;Z, n
?

⊢ z};Eq ∪ {z
?
= u})

if Y, y, Z, z are fresh variables, n = |Φ| (Insc)

(E ; {out(u, t).Q} ⊎ P; Φ;D;Eq)
νaxn.out(Z,axn)
−−−−−−−−−−−→cs

(E ; {Q} ⊎ P; Φ ∪ {axn+1 ⊲ t};D ∪ {Z, n
?

⊢ z};Eq ∪ {z
?
= u})

if axn ∈ AX such that n = |Φ|, Z, z are fresh variables (Outsc)

u, v, t are terms and x is a variable.

Figure 6.2: Concrete symbolic semantics

Note that the rules are almost identical to the symbolic semantics used for the applied pi
calculus, except for the new/removed rules. Indeed, all the new requirement of the concrete
semantics were added in the definition of a concrete solution of a constraint system instead of
being added in the symbolic semantics directly. We define the relations

w
−→cs and

tr
⇒cs as usual.

We denote tracecs(A) the set of concrete symbolic traces of a concrete process as follow:

tracecs(A) = {(tr, (E ; Φ;D;Eq)) | A
tr
⇒cs (E ;P; Φ;D;Eq) for some E ,P,Φ, D,Eq}

When tr is fixed, we also write (tr,Σ) ∈ tracecs(A) to define the set Σ as the set of constraint
systems {C | (tr, C) ∈ tracecs(A)}.

6.2.2 From trace equivalence to concrete symbolic equivalence

Following the results of Chapter 4, we define the concrete symbolic equivalence between two
sets of constraint systems.

Definition 6.4 (concrete symbolic equivalence). Let Σ and Σ′ be two sets of constraint systems
that contain constraint systems having the same structure. We say that Σ and Σ′ are in concrete
symbolic equivalence, denoted by Σ ≈c

s Σ′, if for all C ∈ Σ, for all (σ, θ) ∈ Solc(C), there exists
C′ ∈ Σ′ and a substitution σ′ such that (σ′, θ) ∈ Solc(C′) and νE .Φσ ∼c νE .Φ′σ′ (and conversely
for all C′ ∈ Σ′) where C = (E ; Φ;D;Eq) and C′ = (E ; Φ′;D′;Eq′).

The definition of ≈c
s is very close to the definition of ≈s (see Definition 4.8). Typically, only

the solutions used in the equivalence and the static equivalence are different between ≈c
s and ≈s.

Example 6.3. Coming back to the Example 4.8, Σ ≈c
s Σ′ also holds. Moreover {C1} and {C′

1}
are not in concrete symbolic equivalence.

We establish the link between trace equivalence and concrete symbolic equivalence:

Theorem 6.1. Let A and B two concrete processes: A ≈t B if, and only if, for all sequences of
symbolic actions tr, for all (tr,Σ) ∈ tracecs(A), for all (tr,Σ′) ∈ tracecs(B), Σ ≈c

s Σ
′.

Proof (sketch). The proof of this theorem is an adaptation of the proof of Proposition 4.4. It also
relies on soundness and completeness results similar to Lemmas 4.2 and 4.3 that focus on concrete
solutions instead of solutions of a constraint system and focus on

w
−→cs instead of

w
−→s. The proofs

of these lemmas are a simple adaptation of the proofs of Lemmas 4.2 and 4.3.

The focus on the rest of this part is to provide an algorithm that decide that concrete symbolic
equivalence between two sets of constraint systems.

6.3 Getting rid of some recipes

Deciding the symbolic equivalence of sets of constraint systems is a difficult problem. One
the main issues is that the set of recipes T (F ,AX ∪N) that have to be considered for the static
equivalence and also for the solutions of a constraint system is infinite. In this section, we aim at
reducing this set of recipes. More specifically, we will first show that Σ ≈c

s Σ
′ is equivalent to the

symbolic equivalence where we do not consider public names for the intruder (≈T (F,AX)
s). Then

we show that it is equivalent to the symbolic equivalence where we do not consider public names
and recipes that are not normalised (≈Πn

s) . Lastly, we will show that there exist Σ1, Σ′
1 sets

of constraint systems that only contain constructor terms, called constructor constraint systems,
such that Σ ≈c

s Σ′ is equivalent to Σ1 ≈s Σ′
1 where ≈s excludes recipes containing public names

or recipe not normalised. Moreover, the predicate Message(·) is no longer required.

6.3.1 Getting rid of names

One of the infinite components in T (F ,AX ∪ N) is the infinite set of names N . We show in
this subsection that we do not need to consider the names N in the intruder’s recipes.

6.3.1.1 Processes without free names

First of all, we have to distinguish two kinds of names: the ones that are already used by the
processes and the ones that might be introduced by the intruder in the trace. In a first step,
illustrated in the Example 6.4, we avoid free names in the processes by privatising and disclosing
them.

Example 6.4. Consider the concrete process A defined as follows:

A = ({sk}; out(c, aenc(a, pk(sk))).in(c, x).νn.out(c, 〈x, n〉); ∅).

We can transform A into a process A′ that does not contain any free public name by putting the
free names c, a inside the private set of names and adding two frame elements with c and a:

A′ = ({sk , c, a}; out(c, aenc(a, pk(sk))).in(c, x).νn.out(c, 〈x, n〉); {ax 1 ⊲ c, ax 2 ⊲ a}).

Consider now the trace (tr, νE .Φ) ∈ tracec(A) where E = {sk}, tr = νax 1.out(c, ax 1).in(c, ax 1).
νax 2.out(c, ax 2) and Φ = {ax 1 ⊲ aenc(a, pk(sk)), ax 2 ⊲ 〈aenc(a, pk(sk)), n〉}. There exists a
similar trace (tr′, νE ′.Φ′) ∈ tracec(A

′) where:

— E ′ = {sk , c, a}

— tr′ = νax 3.out(ax 1, ax 3).in(ax 1, ax 3).νax 4.out(c, ax 4)

— Φ′ = {ax 1 ⊲ c; ax 2 ⊲ a; ax 3 ⊲ aenc(a, pk(sk)); ax 4 ⊲ 〈aenc(a, pk(sk)), n〉}

We formalise the transformation presented in Example 6.4 in the following lemma.

Lemma 6.1. Let A = (EA;PA; ΦA) and B = (EB ;PB ; ΦB) be two closed concrete processes such
that EA = EB and dom(ΦA) = dom(ΦB). Let’s denote n = |ΦA|. Assume that A and B contains
m − 1 free names, i.e. fnames(A) ∪ fnames(B) = {c2, . . . , cm} and let c1 be a fresh name in N .
Let Φ0 the frame {ax 1 ⊲ c1, . . . , axm ⊲ cm}, Φ′

A (resp Φ′
B) be the frame obtained from ΦA (resp.

ΦB) by replacing every (axk ⊲ uk) ∈ ΦA (resp. ΦB) by (axk+m ⊲ uk). The following property
holds:

A ≈t B if, and only if, (E0;PA; Φ0 ∪ Φ′
A) ≈t (E0;PB ; Φ0 ∪ Φ′

B)

where E0 = fnames(A) ∪ fnames(B) ∪ E

Proof (sketch). Let’s denote A′ = (E0;PA; Φ0∪Φ
′
A) and B′ = (E0;PB ; Φ0∪Φ

′
B). The proof consists

of applying a simple transformation on the traces of A and B. Considering (tr, νEA.(ΦA ∪Φ1
A)) ∈

trace(A), we transform tr into tr′ as follows:

— we replace every instance of ci in tr by ax i, for all i ∈ {1, . . . ,m}.

— we replace every instance of ax i by axm+i for all i > n

Similarly, we transform Φ1
A into Φ2

A by replacing every (ax i ⊲ u) in Φ1
A by (ax i+m ⊲ u). Note that

both transformations are bijective. One can easily show that (tr′, νE0.(Φ0∪Φ′
A∪Φ2

A)) ∈ tracec(A
′).

Similarly, if (tr, νEB .(ΦB ∪ Φ1
B)) ∈ trace(B), then (tr′, νE0.(Φ0 ∪ Φ′

B ∪ Φ2
B)) ∈ tracec(B

′) with Φ2
B

is obtained from Φ1
B by replacing every (ax i ⊲ u) in Φ1

B by (ax i+m ⊲ u) .
At last, one can show that νE .(ΦA∪Φ1

A) ∼c νE .(ΦB∪Φ1
B) if and only if νE0.(Φ0∪Φ′

A∪Φ2
A) ∼c

νE0.(Φ0 ∪Φ′
B ∪Φ2

B) by applying on the recipes the same transformations used for the sequence of
labels.

Thanks to Lemma 6.1, we can now assume that there is no public names in our constraint
system. Indeed, given a concrete process A such that fnames(A) = ∅, for all (tr, C) ∈ tracecs(A),
fnames(C) = ∅. Moreover Lemma 6.1 also indicates that Φ0 contains at least one frame element
(ax 1 ⊲ c1) with c1 ∈ N . Thus, if A is the concrete process obtained from Lemma 6.1 then there
exists a ∈ N such that for all (tr, C) ∈ tracecs(A), ax 1Φ = a where C = (E ; Φ;D;Eq).

6.3.1.2 Removing all names in the recipes

In the previous paragraph we showed how avoid free names in the processes. However, as
previously mentioned, the intruder might still introduce new public names in the sequence of labels
tr. We show that it is possible to model the public names in N by h(h(. . . h(ax 1) . . .)). Consider
a constraint system C = (E ; Φ;D;Eq) such that fnames(C) = ∅. Following Lemma 6.1, we assume
that Φ is not empty and ax 1Φ ∈ E . Since N is a countable set, we denote NrE = {b1, . . . , bn, . . .}.
Intuitively, we would represent each bi by hi(ax 1) in the recipe of the intruder where hi(·) is i
successive applications of h on ax 1. However, this model may not work for all solutions of a
constraint system.

Example 6.5. Consider the constraint system C = (E ; Φ;D;Eq) where:

— E = {a, c}

— Φ = {ax 1 ⊲ a, ax 2 ⊲ senc(c, x)}

— D = {X, 2
?

⊢ x;Y, 2
?

⊢ y}

— Eq = {c
?

6= sdec(y, h(a))}

Consider θ = {X 7→ b1, Y 7→ ax 2} and σ = {x 7→ b1, y 7→ senc(c, b1)}. We have that (σ, θ) ∈
Solc(C). Indeed, we trivially have Message(a), Message(b1) and Message(senc(c, b1)). Further-

more ¬Message(sdec(senc(c, b1), h(a))) since sdec(senc(c, b1), h(a)) is in normal form. Thus c
?

6=
sdec(y, h(a)) is satisfied by σ.

However, if we replace apply our replacement of free names introduced by the intruder, we obtain
that θ′ = {X 7→ h(ax 1), Y 7→ ax 2} and so σ′ = {x 7→ h(a), y 7→ senc(c, h(a))}. Unfortunately
(σ′, θ′) 6∈ Solc(C) since Message(c), Message(sdec(senc(c, h(a)), h(a))) and c↓ = sdec(senc(c, h(a)),
h(a)).

On the other hand, if we consider the replacement bk 7→ h2×k(ax 1), then we obtain that θ′′ =
{X 7→ h(h(ax 1)), Y 7→ ax 2} and so σ′′ = {x 7→ h(h(a)), y 7→ senc(c, h(h(a)))}. In such a case,
(σ′′, θ′′) ∈ Solc(C).

As illustrated in Example 6.5, we cannot fix the replacement of the public names in advance
when checking the symbolic equivalence. The replacement will depend on the solutions that we
consider. Let N be a positive integer. Let a ∈ E . We denote σE,N,a and θE,N the replacements
defined for all i ∈ N

+ by biσE,N,a = hi×N (a) and biθE,N = hi×N (ax 1).
We now show that when checking the concrete symbolic equivalence of sets of constraint sys-

tems, we only have to consider the recipes of the intruder that do not contain names. Let’s denote
∼T (F,AX) the concrete static equivalence where we only consider recipe ξ, ξ′ ∈ T (F ,AX), and

let’s denote ≈T (F,AX)
s the symbolic equivalence on concrete constraint systems which only consider

the solution (σ, θ) with fnames(θ) = ∅, and rely on the static equivalence ∼T (F,AX). The proof of
the following lemma can be found in Appendix C.1.

Lemma 6.2. Let Σ and Σ′ two sets of constraint systems that contain constraint systems having
the same structure. Assume that E is the common set of privates names in Σ and Σ′. At last,
assume that there exists a ∈ E such that for all C ∈ Σ ∪ Σ′, ax 1Φ = a with Φ the frame of C.

If Σ ≈
T (F,AX)
s Σ′ then for all C ∈ Σ, for all (σ, θ) ∈ Solc(C), there exists N ′ such that

for all N > N ′, there exist C′ ∈ Σ′ and a substitution σ′ such that (σ′, θ) ∈ Solc(C
′) and

νE .ΦσσE,N,a ∼T (F,AX) νE .Φ
′σ′σE,N,a.

The previous lemma is not sufficient to prove that Σ ≈
T (F,AX)
s Σ′ implies Σ ≈c

s Σ′. Indeed,
we matched each solution of a constraint system in Σ with a solution in a constraint system in Σ′

but the static equivalence does not correspond to the usual static equivalence ∼c. Moreover, for
two ground frames Φ and Φ′, we do not necessarily have that νE .ΦσE,N,a ∼T (F,AX) νE .Φ

′σE,N,a

implies νE .Φ ∼c νE .Φ
′

Example 6.6. Let E = {a, c}. Let Φ = {ax 1 ⊲ a, ax 2 ⊲ senc(c, b1)} and Φ′ = {ax 1 ⊲ a, ax 2 ⊲

senc(c, h(a))}. Consider ξ = sdec(ax 2, b1). Message(ξΦ) holds whereas Message(ξΦ′) does not
hold. Hence Φ 6∼c Φ

′.

However, if we assume that N = 1, ΦσE,1,a = {ax 1 ⊲ a, ax 2 ⊲ senc(c, h(a))} and Φ′σE,1,a =
{ax 1 ⊲ a, ax 2 ⊲ senc(c, h(a))}. Since ΦσE,1,a = Φ′σE,1,a, we trivially have ΦσE,1,a ∼T (F,AX)

Φ′σE,1,a. On the other hand, if we assume that N = 2, then ΦσE,2,a 6∼T (F,AX) Φ
′σE,2,a.

Note that the previous example raises the same issues than Example 6.5: We can not fix in
advance the representation of names even for the static equivalence. However, we show in the next
lemma how we obtain the static equivalence ∼c from ∼T (F,AX). (Proof in Appendix C.1)

Lemma 6.3. Let E be a set of private names. Let Φ and Φ′ two ground frames with the same
domain and ax 1Φ = ax 1Φ

′ ∈ E. If for all N ′, there exists N > N ′ such that ΦσE,N,a ∼T (F,AX)

Φ′σE,N,a then Φ ∼c Φ
′.

Thanks to Lemmas 6.2 and 6.3, we can now show that ≈c
s is the same relation than ≈

T (F,AX)
s .

Lemma 6.4. Let Σ and Σ′ two finite sets of constraint systems that contain constraint systems
having the same structure. Assume that E is the common set of private names in Σ and Σ′. At
last, assume that there exists a ∈ E such that for all C ∈ Σ ∪Σ′, ax 1Φ = a with Φ the frame of C.
The following property holds:

Σ ≈c
s Σ

′ if, and only if, Σ ≈T (F,AX)
s Σ′

Proof. We first prove the right implication of the equivalence (⇒). Let C ∈ Σ and let (σ, θ) ∈
Solc(C) such that for all X ∈ dom(θ), fnames(Xθ) = ∅. By hypothesis Σ ≈c

s Σ′ hence there
exist C′ ∈ Σ′ and a substitution σ′ such that (σ′, θ) ∈ Solc(C′) and Φσ ∼c Φ′σ′. We show that
νE .Φσ ∼T (F,AX) νE .Φ

′σ′. Let ξ, ξ′ ∈ T (F ,AX) such that param(ξ) ⊆ dom(Φσ) and param(ξ′) ⊆
dom(Φσ). ξ, ξ′ ∈ T (F ,AX) implies that ξ, ξ′ ∈ T (F ,AX ∪ N r E) and fnames(ξ, ξ′) ∩ E = ∅.
Since Φσ ∼c Φ′σ′, we can deduce that Message(ξΦσ) is equivalent to Message(ξΦ′σ′); and if
Message(ξΦσ) and Message(ξ′Φσ) then ξΦσ↓ = ξ′Φσ↓ is equivalent to ξΦ′σ′↓ = ξ′Φ′σ′↓. Thus
νE .Φσ ∼T (F,AX) νE .Φ

′σ′ and so the result holds.

The other inclusion of the symbolic equivalence ≈
T (F,AX)
s is proved symmetrically.

We now prove the left implication (⇐). Let C ∈ Σ and let (σ, θ) ∈ Solc(C). For a con-
straint system C′, let’s denote Φ(C′) the frame of C′. Thanks to Lemma 6.2, there exists N ′

such that for all N > N ′, there exist C′ ∈ Σ′ and a substitution σ′ such that (σ′, θ) ∈ Solc(C
′)

and Φ(C)σσE,N,a ∼T (F,AX) Φ(C
′)σ′σE,N,a. Hence, {(N, C′, σ′) | (σ′, θ) ∈ Solc(C

′) and Φ(C)σσE,N,a

∼T (F,AX) Φ(C
′)σ′σE,N,a} is an infinite set. However, Σ′ is a finite set of constraint systems thus

there exists C′ ∈ Σ′ such that the set S2 = {(N,σ′) | (σ′, θ) ∈ Solc(C
′) and Φ(C)σσE,N,a ∼T (F,AX)

Φ(C′)σ′σE,N,a} is infinite. Furthermore, when C′ and θ are fixed, by definition of a solution of
a constraint system, we have that for all σ1, σ2, (σ1, θ) ∈ Solc(C′) and (σ2, θ) ∈ Solc(C′) im-
plies σ1 = σ2, i.e. the first order solution is fixed by the second order solution. Thus for all
(N1, σ1), (N2, σ2) ∈ S2, σ1 = σ2. It implies that there exists σ′ such that (σ′, θ) ∈ Sol(C′) and
for all N ′ > 0, there exists N > N ′ such that Φ(C)σσE,N,a ∼T (F,AX) Φ(C′)σ′σE,N,a. Hence by
Lemma 6.3, we conclude that Φ(C)σ ∼ Φ(C′)σ′.

The other inclusion of the symbolic equivalence ≈c
s is proved symmetrically.

6.3.2 Normalised recipe

In the previous subsection, we have shown that we do not have to consider public names in
the recipes for the intruder, which reduces a lot the search space for the symbolic equivalence of
constraint systems. We will see in this subsection that we can also ignore some recipes that always
provide redundant informations for the intruder. Typically, assume that ξ1, ξ2 are two recipes such
that for all ground frame Φ, their applications always produce the same result, i.e. ξ1Φ↓ = ξ2Φ↓,
then these recipes will not help an intruder to distinguish one frame from another. Thus, we will
not consider both recipes but only keep one.

Example 6.7. Let ξ1, ξ2, ξ3 be the recipes such that:

1. ξ1 = proj1(〈ξ
′
1, ξ

′′
1 〉) for some ξ′1, ξ

′′
1 ;

2. ξ2 = adec(aenc(ξ′2, ξ
′′
2)) for some ξ′2, ξ

′′
2 ;

3. ξ3 = check(senc(ξ′3, ξ
′′
3)) for some ξ′3, ξ

′′
3 .

In fact, for all frames Φ, ξ1Φ↓ = ξ′1Φ↓, ξ2Φ↓ = ξ′2Φ↓ and ¬Message(ξ3Φ). Since this is true for any
frame, they do not provide new informations for the intruder that might help him distinguishing
two sets of constraint systems. Hence we will only consider ξ′1 and ξ′2 and ignore ξ1, ξ2, ξ3.

Following the Example 6.7, we define a new set of recipes, denoted Πn, and we show that it is
complete and sound to only consider this new set of recipes when deciding the symbolic equivalence
of sets of constraint systems.

Definition 6.5. We say that ξ ∈ T (F ,AX ∪ X 2) is a normalised recipe if, and only if, for all
f(ξ1, . . . , ξn) ∈ st(ξ), f ∈ Fd implies that root(ξ1) 6∈ Fc. We denote Πn the set of normalised
recipes.

Even if the recipes in Πn are called normalised recipes, they do not exactly correspond to the
normalisation of a recipe by the rewriting system. More specifically ξ ∈ Πn implies ξ↓ = ξ whereas
the converse is not true.

Example 6.8. Consider the recipe ξ = check(senc(ax 1, ax 2)). ξ is a recipe in normal form w.r.t.
the rewriting system but ξ 6∈ Πn.

Intuitively, T (F ,AX) r Πn represents all recipes that will either never provide the intruder
with any new information or that will never satisfy the predicate Message(·). The predicate
Message(·) is also easier to verify on the recipes in Πn as stated in the following lemma. (Proof in
Appendix C.1)

Lemma 6.5. Let Φ be a ground frame such that for all (ax i ⊲ ui) ∈ Φ, Message(ui). Let ξ ∈ Πn a
ground recipe such that param(ξ) ∈ dom(Φ). ξΦ↓ ∈ T (Fc,N) if, and only if, Message(ξΦ) holds.

The following lemma shows that the intruder do not lose messages of a frame by only considering
the recipes in Πn. (Proof in Appendix C.1)

Lemma 6.6. Let Φ be a ground frame such that for all (ax i ⊲ ui) ∈ Φ, Message(ui). Let
ξ ∈ T (F ,N∪AX). If Message(ξΦ) then there exists a ground recipe ξ′ ∈ Πn such that ξΦ↓ = ξ′Φ↓,
Message(ξ′Φ) and param(ξ′) ⊆ param(ξ)

We denote ∼Πn
the static equivalence that only consider the recipe in Πn. We show in the

next lemma that the static equivalence is preserved when considering the recipes in Πn. (Proof in
Appendix C.1)

Lemma 6.7. Let Φ and Φ′ be two ground frames such that for all (ax i ⊲ ui) ∈ Φ (resp. Φ′),
Message(ui). Φ ∼T (F,AX) Φ

′ is equivalent to Φ ∼Πn
Φ′.

Note that in the previous lemma, we omitted the set of private names E . Since we do not
consider names in the recipe when checking the static equivalence, this set is not needed anymore
thus we may ignore it. We denote ≈Πn

s the symbolic equivalence of sets of concrete constraint
systems where we only consider solutions (σ, θ) where for all X ∈ dom(θ), Xθ ∈ Πn; and that rely
on the static equivalence ∼Πn

.

Lemma 6.8. Let Σ and Σ′ two sets of constraint systems that contain constraint systems with
the same structure. The following property holds:

Σ ≈T (F,AX)
s Σ′ if, and only if, Σ ≈Πn

s Σ′

Proof. The right implication of this equivalence (⇒) is rather simple. Indeed, for all C ∈ Σ, for
all (σ, θ) ∈ Solc(C), if for all X ∈ dom(θ), Xθ ∈ Πn then for all X ∈ dom(θ), Xθ ∈ T (F ,AX).

Hence with Σ ≈
T (F,AX)
s Σ′, it implies that there exists C′ ∈ Σ′ and a substitution σ′ such that

(σ′, θ) ∈ Solc(C′) and Φσ ∼T (F,AX) Φ′σ′, where Φ (resp. Φ′) is the frame of C (resp. C′). By
definition of a solution of a constraint system, (σ, θ) ∈ Solc(C) and (σ′, θ) ∈ Solc(C

′) imply that for
all (ax i ⊲ ui) ∈ Φσ (resp. Φ′σ′), Message(ui). Hence by Lemma 6.7, Φσ ∼T (F,AX) Φ

′σ′ implies
Φσ ∼Πn

Φ′σ′ which allows us to conclude.
We now focus on the left implication of this equivalence (⇐). Let C = (E ; Φ;D;Eq) ∈ Σ and

let (σ, θ) ∈ Solc(C) such that for all X ∈ dom(θ), Xθ ∈ T (F ,AX). We show by induction on k
that there exists (σ′, θ′) such that:

— for all (X, i
?

⊢ x) ∈ D,if i ≤ k then (Xθ′)(Φσ′) = xσ′, Message(xσ′), xσ′↓ = xσ↓, Xθ′ ∈ Πn

and param(Xθ′) ⊆ {ax 1, . . . , ax i}

— for all (ax i ⊲ ui) ∈ Φ, if i ≤ k then uiσ↓ = uiσ
′↓ and Message(uiσ

′).

Base case k = 0: This case is trivial since for all (X, i
?

⊢ x) ∈ D, for all (ax j ⊲ uj) ∈ Φ, i > 0 and
j > 0.

Inductive step k > 0: In such a case, thanks to our induction hypothesis, we know that there
exists (σ′, θ′) satisfying the above properties for k − 1. Hence, we show how to extend σ′ and θ′

for frame elements (axk ⊲ uk) ∈ Φ and deducible constraint (X, k
?

⊢ x) ∈ D.
Let (axk ⊲ uk) ∈ Φ. By definition of a constraint system, we know that for all x ∈ vars1(uk),

there exists (X, i
?

⊢ x) ∈ D such that i < k. By induction hypothesis, we know that xσ′ is defined,
Message(xσ′) and xσ′↓ = xσ↓. Thus, we deduce that ukσ↓ = uk(σ↓)↓ = uk(σ

′↓)↓ = ukσ
′↓. We

now prove that Message(ukσ
′). We already know by (σ, θ) ∈ Solc(C) that Message(ukσ). Moreover,

by our induction hypothesis, we also know that for all x ∈ vars1(uk), Message(xσ′). Therefore
Message(ukσ

′) is equivalent to for all u ∈ st(uk), uσ′↓ ∈ T (Fc,N). But Message(ukσ) implies
that uσ↓ ∈ T (Fc,N). At last, since for all x ∈ vars1(u) ⊆ vars1(uk), xσ′↓ = xσ↓, we deduce that
uσ↓ = uσ′↓ and so uσ′↓ ∈ T (Fc,N). Therefore, Message(ukσ

′).

Let (X, k
?

⊢ x) ∈ D. We have proved that for all (ax i ⊲ ui) ∈ Φ, if i ≤ k then Message(uiσ
′),

Message(uiσ) and uiσ
′↓ = uiσ↓. Moreover, (σ, θ) ∈ Solc(C) implies that param(Xθ) ⊆ {ax 1, . . . ,

axk}. Hence (Xθ)Φσ↓ = (Xθ)Φσ′↓; and Message((Xθ)(Φσ)) implies that Message((Xθ)(Φσ′)).
Thus by Lemma 6.6, there exists ξ ∈ Πn such that (Xθ)(Φσ′)↓ = ξ(Φσ′)↓, Message(ξ(Φσ′))
and param(ξ) ⊆ param(Xθ). We deduce that param(ξ) ⊆ {ax 1, . . . , ax i}, Message(ξ(Φσ′)) and
ξ(Φσ′)↓ = (Xθ)Φσ↓. By defining Xθ′ = ξ and xσ′ = ξ(Φσ′), the result holds.

We have shown that there exists (σ′, θ′) ∈ Solc(C) such that for all X ∈ dom(θ′), Xθ ∈ Πn; and
for all x ∈ dom(σ′), xσ↓ = xσ′↓. Thanks to our hypothesis Σ ≈Πn

s Σ′, we deduce that there exists
C′ = (E ; Φ′;D′;Eq′) ∈ Σ′ and σ′′ a substitution such that (σ′′, θ′) ∈ Solc(C

′) and Φσ′ ∼Πn
Φ′σ′′.

By Lemma 6.7, we deduce that Φσ′ ∼T (F,AX) Φ
′σ′′. But for all X ∈ dom(θ), Message((Xθ)(Φσ′)),

Message((Xθ′)(Φσ′)) and XθΦσ′↓ = Xθ′Φσ′↓. Thus by Φσ′ ∼T (F,AX) Φ′σ′′, we deduce that
Message((Xθ)(Φ′σ′′)) and Xθ(Φ′σ′′)↓ = Xθ′(Φ′σ′′)↓.

Since Φσ↓ = Φσ′↓ and for all x ∈ vars1(D), xσ↓ = xσ′↓, then we deduce that for all X ∈
dom(θ), Xθ(Φσ)↓ = Xθ(Φσ′)↓ = Xθ′(Φσ′)↓. Therefore, thanks to Φσ′ ∼T (F,AX) Φ

′σ′′, we deduce
that Xθ(Φ′σ′′)↓ = Xθ′(Φ′σ′′)↓. Using the similar reasoning as when we showed that (σ′, θ′) ∈
Solc(C), we prove that there exists σ′′′ such that (θ, σ′′′) ∈ Solc(C

′) and for all x ∈ dom(σ′′),
xσ′′′↓ = xσ′′↓. At last, since Φσ↓ = Φσ′↓, Φσ′′↓ = Φσ′′′↓, Φσ′ ∼T (F,AX) Φ′σ′′ and for all
(ax i ⊲ ui) ∈ Φσ (resp. Φσ′, Φ′σ′′, Φ′σ′′′), Message(ui), we conclude that Φσ ∼T (F,AX) Φ′σ′′′.
Thus the result holds.

6.3.3 From concrete to constructor constraint systems

The definition of a solution of a concrete constraint system imposes that all first order terms
in the constraint systems must be messages, except for terms in the inequations. Hence, when
considering a solution (σ, θ) of a concrete constraint system, one could expect the terms in σ to

be constructor terms. Moreover, given an equation u
?
= v in the constraint system, we will see

that it is possible to check if this equation is unsatisfiable, or else to transform it into conjunction
of equations that contain only constructor terms. Intuitively, by transforming the terms in our
constraint systems into constructor terms, checking the predicate Message(·) on the frame, equation
and inequation will be much easier. Furthermore, since we only consider the recipes in Πn for the
solutions of our constraint systems, checking of the predicate Message(·) will also become useless
thanks to Lemma 6.5.

6.3.3.1 Narrowing

Example 6.9. Consider the equation sdec(x, a)
?
= y. Let σ be a substitution on constructor terms

such that Message(sdec(xσ, a)), Message(yσ) and sdec(xσ, a)↓ = yσ↓. Message(sdec(xσ, a)) implies
that sdec(xσ, a)↓ ∈ T (Fc,N). Thus, it is only possible if there exists u such that xσ↓ = senc(u, a).
Note that in this case, sdec(xσ, a)↓ = u.

Hence, we want to replace the equation sdec(x, a)
?
= y by E =

(
x

?
= senc(x′, a) ∧ x′ ?

= y
)

where
x′ is a fresh variable. Note that since there is no more destructors in E, a substitution σ′ on
constructor terms satisfies E if and only if xσ′ = senc(x′σ′, a) and x1σ

′ = yσ′. Thus, there is no
need to check the predicate Message(·) or even normalisation, but only the syntactic equality which
easier and faster.

In Example 6.9, we illustrate the transformation that we will apply on the equations in our
constraint system. Simplifying the inequations of a constraint system requires the introduction of
universal quantifiers.

Example 6.10. Coming back to Example 6.9, we saw that sdec(x, a)
?
= y can be replaced by

the conjunction of equations x
?
= senc(x′, a) ∧ x′ ?

= y. Actually, x′ is (implicitly) existentially

quantified: the formulas sdec(x, a)
?
= y and ∃x′.x

?
= senc(x′, a) ∧ x′ ?

= y are equivalent

Hence if we now consider the inequation sdec(x, a)
?

6= y, one can replace it by the following
formula:

∀x′.x
?

6= senc(x′, a) ∨ x′
?

6= y

We introduce the notion of narrowing [JK91] that formalises the transformations applied on
equations and inequations illustrated in Examples 6.9 and 6.10.

Definition 6.6 (Narrowing). Let R be our set of rewriting rules. We define the narrowing as a

binary relation on T (F ∪ N ,X 1), denoted ֌R, such that : for all s, t ∈ T (F ∪ N ,X 1), s
σ
֌R t

if, and only if, there exists a non variable position p of s and a renaming of a rewriting rule
ℓ → r ∈ R such that σ = mgu(ℓ, s|p) and t = sσ[rσ]p.

In order to simplify the proof of correctness, soundness and termination of the transformation,
we will only use the innermost strategy for the narrowing.

Example 6.11. Coming back to Example 6.9, sdec(x, a)
σ
֌R x′ where σ = {x 7→ senc(x′, a)}.

We extend the narrowing rule to a conjunction of equations between terms such that:

s
?
= v ∧ E

σ
֌R t

?
= v′ ∧ E′

where s
σ
֌R t, v′ = vσ and E′ = Eσ.

From now on, we confuse a substitution σ = {x1 7→ u1, . . . , xn 7→ un} with the associated

conjunction of equation x1
?
= u1 ∧ . . . ∧ xn

?
= un. Moreover, we denote σ �c u

?
= v when

Message(uσ), Message(vσ) and uσ↓ = vσ↓. Similarly, we denote �c u
?

6= v when ¬Message(uσ),
or ¬Message(vσ) or uσ↓ 6= vσ↓. We extend �c naturally to conjunctions and disjunctions of
equations and inequations with quantified variables. The following lemma shows the soundness
and completeness the narrowing rule on conjunction of equations. (Proof in Appendix C.1)

Lemma 6.9. Let E and E′ be two conjunctions of equations between terms such that E
σ
֌R E′.

For all substitutions τ on ground constructor terms,

— τ �c E
′ implies that στ �c E

— τ �c E implies that there exists τ ′ such that τ = (στ ′)|dom(τ) and τ ′ �c E
′

We also extend the narrowing rule to formulas of the form ∀x̃
∨m

j=1 uj

?

6= vj such that:

∀x̃.
m∨

j=1

uj

?

6= vj ֌R ∀ỹ.
n∨

i=1

u′
i

?

6= v′i

where E =
∧m

j=1 uj
?
= vj , σ ∧ E′ =

∧n
i=1 u

′
i

?
= v′i, E

σ
֌R E′, ỹ = x̃ ∪ (vars1(σ)r vars1(E)).

The soundness and completeness of this narrowing rule is shown in the following lemma. (Proof
in Appendix C.1)

Lemma 6.10. Let φ = ∀x̃
∨m

j=1 uj

?

6= vj and φ′ = ∀ỹ
∨n

i=1 u
′
j

?

6= v′j two formulas such that
φ֌R φ′. For all substitutions τ of constructor terms, τ �c φ if and only if τ �c φ

′.

6.3.3.2 Constructor constraint systems

We will use the narrowing on equations and inequations presented in the previous paragraph
to build constraint systems that only contain constructor terms.

Definition 6.7 (Constructor constraint system). A constructive constraint system is either ⊥ or
a tuple (Φ;D;Eq) where:

— Φ is a sequence of the form {ax 1 ⊲ t1, . . . , axn ⊲ tn} where ti are constructor terms and ax i

are variables in AX ;

— D is a set of deducibility constraints of the form X, i
?

⊢ u, with i ≤ n, X ∈ X 2 and u is a
constructor term.

— Eq is a conjunction of formulas of the form u
?
= v or ∀ỹ.

∨m
j=1 uj

?

6= vj where u, v, uj , vj are
constructor terms.

We also assume that following conditions are satisfied on a constructor constraint system:

1. each variable X ∈ X 2 occurs at most once in D

2. for every 1 ≤ k ≤ n, for every x ∈ vars1(tk), there exists (X, i
?

⊢ u) ∈ D such that
x ∈ vars1(u) and i < k.

3. for every free variable x of Eq, there exists (X, i
?

⊢ u) ∈ D such that x ∈ vars1(u).

Compared to Definition 4.3 , a deducibility constraint allows constructor terms as right hand
terms, whereas in Definition 4.3 we only allowed variables. Furthermore, Eq is more general than
the conjunction of equations and inequations in Definition 4.3. Note that we do not have the set
of private names E in the definition of a constructor constraint system. Intuitively, we consider
that all names that occur in a constructor constraint system are private and so E is omitted.

Example 6.12. Let C be the concrete constraint system (E ; Φ ∪ {ax 4 ⊲ t};D;Eq) where

— E = {ska, ska′ , skb, nb, na},

— Φ = {ax 1 ⊲ pk(ska), ax 2 ⊲ pk(ska′), ax 3 ⊲ pk(skb)},

— t = aenc(〈proj1(adec(y, skb)), 〈nb, pk(skb)〉〉, pk(ska)),

— D = {Z1, 3
?

⊢ z1x; Y, 3
?

⊢ y; Z2, 3
?

⊢ z2}; and

— Eq = {z1
?
= c; proj2(adec(y, skb))

?
= pk(ska); z2

?
= c}.

The constructor constraint system C′ associated to C is the triplet (Φ′ ∪ {ax 5 ⊲ t′};D′;Eq′) where

— Φ′ = {ax 1 ⊲ c, ax 2 ⊲ pk(ska), ax 3 ⊲ pk(ska′), ax 4 ⊲ pk(skb)}

— D′ = {Z1, 4
?

⊢ c; Y, 4
?

⊢ aenc(〈y′, pk(ska)〉, pk(sk b)); Z2, 4
?

⊢ c}

— t′ = aenc(〈y′, 〈nb, pk(sk b)〉〉, pk(ska))

— Eq = ⊤.

Note that as mentioned in Subsection 6.3.1, we put the free name c in the frame.

We will denote σ � u
?
= v when uσ = vσ. Moreover, we denote σ � u

?

6= v when uσ 6= vσ. We
extend � naturally to conjunctions and disjunctions of (in)equations with quantified variables.

Definition 6.8 (solution of a constructor constraint system). A solution of a constructor con-
straint system C = (Φ;D;Eq) consists of a mapping σ from vars1(D) to to ground constructor
terms and a substitution θ mapping vars2(D) to ground recipes such that:

— for every (X, k
?

⊢ u) ∈ D, we have Xθ ∈ Πn, (Xθ)(Φσ)↓ = xσ and param(Xθ) ⊆
{ax 1, . . . , axk}.

— σ � Eq

We denote Sol(C) the set of solutions of C.

Example 6.13. Coming back to the Example 6.12, (σ, θ) ∈ Sol(C′) where:

— σ = {y′ 7→ h(c)}

— θ = {Z1 7→ ax 1, Y 7→ aenc(〈h(ax 1), ax 2〉, ax 4), Z2 7→ ax 1}

We can adapt the definition of static equivalence and symbolic equivalence to constructor
frames and constraint systems.

Definition 6.9 (static equivalence). Two ground constructor frames Φ and Φ′ are statically equiv-
alent, denoted Φ ∼ Φ′, if and only if dom(Φ) = dom(Φ′) and for all ξ, ξ ∈ Πn, if param({ξ, ξ′}) ⊆
dom(Φ) then

— ξΦ↓ ∈ T (Fc,N) is equivalent to ξ′Φ↓ ∈ T (Fc,N)

— if ξΦ↓, ξ′Φ↓ ∈ T (Fc,N), then ξΦ↓ = ξ′Φ↓ is equivalent to ξΦ′↓ = ξ′Φ′↓.

Definition 6.10 (symbolic equivalence). Two sets Σ and Σ′ of constructor constraint systems
having the same structure are symbolically equivalent, denoted Σ ≈s Σ′, if and only if for all
C ∈ Σ, for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ and a substitution σ′ such that (σ′, θ) ∈ Sol(C′)
and Φσ ∼ Φ′σ′ (and conversely for any C′ ∈ Σ′) where Φ and Φ′ are the respective frames of C
and C′.

As previously mentioned, we show the relation between symbolic equivalence of sets of con-
structor constraint system and the symbolic equivalence ≈Πn

s of sets of concrete constraint system.
(Proof in Appendix C.1)

Lemma 6.11. Let Σ1,Σ
′
1 two sets of concrete constraint systems having the same structure. There

exist Σ2,Σ
′
2 two sets of constructor constraint systems having the same structure such that:

Σ1 ≈Πn
s Σ′

1 if and only if Σ2 ≈s Σ
′
2

We summarise what we proved along this section in the following theorem.

Theorem 6.2. Given a decision procedure for the symbolic equivalence of sets of constructor
constraint systems, the problem of trace equivalence between two concrete processes is decidable.

The algorithm proceeds as follows: Given A and B two concrete processes with the same set
of names. We first build the two concrete processes A′ and B′, that do not consider public names,
by following Lemma 6.1. Second, we compute the sets tracecs(A

′) and tracecs(B
′) (possible since

A′ and B′ do not contain replication). Third, we compute the set S of pair of sets of constructor
constraint systems such that:

— if (tr,Σ) ∈ tracecs(A
′), (tr′,Σ′) ∈ tracecs(B

′) and tr = tr′ then (Σ,Σ′) ∈ S;

— if (tr,Σ) ∈ tracecs(A
′) (resp. tracecs(B

′)) and for all (tr′,Σ′) ∈ tracecs(B
′) (resp. tracecs(A

′)),
tr 6= tr′ then (Σ, ∅) ∈ S

Four, for every (Σ,Σ′) ∈ S, we compute the sets of constructor constraint systems Σ1 and Σ′
1

from Σ and Σ′ respectively by following the proof of Lemma 6.11. At last we apply the decision
procedure for symbolic equivalence of sets of constructor constraint systems on Σ1 and Σ′

1.
The soundness and completeness of this algorithm are ensured by Theorem 6.1 and Lem-

mas 6.1, 6.4, 6.8 and 6.11.
Note that adding (Σ, ∅) in the set S does not necessary imply that A 6≈t B. Indeed, it is

possible that all constraint systems in Σ do not have any solution and in such a case, we would
have Σ ≈c

s ∅.
The next chapter is devoted to a decision procedure for symbolic equivalence between two sets

of constructor constraint systems.

Chapter 7

A decision procedure for symbolic

equivalence

Contents

7.1 Preliminaries . 108

7.1.1 Extended frame . 108

7.1.2 Extended constraint systems . 109

7.2 Simplifying a constraint system . 112

7.2.1 The transformation rules . 112

7.2.2 Normalisation . 116

7.2.3 A strong strategy . 118

7.3 Simplifying sets of constraint systems . 120

7.3.1 From constraint system to vectors . 120

7.3.2 Matrices of constraint systems . 121

7.4 Our strategy . 123

7.4.1 First phase of the strategy . 124

7.4.2 Second phase of the strategy . 127

7.4.3 The final test . 130

This chapter is dedicated to the presentation of a decision algorithm for the symbolic equiva-
lence between two sets of constructor constraint systems. The general idea of our decision algo-
rithm is borrowed from earlier work on deducibility constraints: we simplify the constraints until
we get a simple form, on which the equivalence problem should be easy. Since we consider pairs of
(sets of) constraint systems, the simplification rules should be applied on both (sets of) systems at
the same time; when this corresponds to guessing an attacker action, it should be the same rule,
which is applied on both (sets of) systems. The second main difference concerns the equivalence
checking: we have to keep track of an extended frame, recording some of the deductions of the
attacker, and check the static equivalence of all instances, when the constraints are in solved form.

W.r.t. the previous constraint solving algorithms, there are many additional difficulties, which
we will point along the chapter. One of the problems is that, when applying the rules in a naive
way, the two constraint systems do not necessarily reach a solved form at the same time. So, we
may need to apply further rules, even when one of the systems is in solved form, which causes
termination issues.

Finally, along the algorithm, we guess for instance whether or not a key is deducible. This
introduces negative deducibility constraints, which might be hard to solve. We turn around the
difficulty, keeping track of previous choices (e.g., whether a key was deducible or not). This yields
matrices of constraint systems: the rows correspond to sets of constraint systems, that share the
same structure, but may yield different outputs of the protocol, and different rows correspond to

107

different guesses of deducibility along the constraint simplification. This complication in the syntax
allows some simplifications in the algorithm, since we may take advantage of the bookkeeping of
different rows.

Since the correctness, completeness and termination of our algorithm are rather technical, we
delayed most of the proofs in the appendices, focusing on the algorithm itself. In the section 7.1,
we introduce most of the definitions together with a few examples. The algorithm is explained
in the section 7.2. We start with single constraint systems, before extending the rules to pairs of
(sets of) constraint systems, and later matrices of constraint systems. Chapter 8 is dedicated to
the proof of soundness, completeness and termination of the algorithm.

7.1 Preliminaries

As mentioned earlier, the general idea of our algorithm consists of simplifying the constraint
system by applying simplification rules that guess for example an attacker action, or whether a key
is deducible or not, . . . During the execution of these guesses, we need to be able to keep track of the
results of these guesses. However, the definition of a constructor constraint system (Definition 6.7)
is too restrictive to contain all the informations we need. For example, while guessing that a key

sk is deducible might be represented by adding a deducible constraint X, i
?

⊢ sk , there is no way
to represent, in a constraint system that follows Definition 6.7, that the key sk is not deducible.
Therefore, we extend in this section the definitions of constructor constraint systems, frames, . . .

7.1.1 Extended frame

In previous chapters, a frame is used to record the sequence of messages (or terms in a symbolic
execution) that have been sent by the participants of the protocol. We extend this notion to record
some additional informations on attacker’s deductions. Typically sdec(X, ζ), i ⊲ u records that,
using a decryption with the recipe ζ, on top of a recipe X, allows one to get u (at stage i). After
recording this information in the frame, we may rely on this bookkeeping, and no longer consider
a decryption on top of X.

Definition 7.1 (extended frame). An extended frame Φ (resp. a closed extended frame) is a
sequence {ζ1, i1 ⊲ u1; . . . ; ζn, in ⊲ un} where:

— u1, . . . , un are constructor terms (resp. ground constructor terms),

— i1, . . . , in are integers, and

— ζ1, . . . , ζn are distinct general recipes (resp. ground recipes).

The domain of the extended frame Φ is dom(Φ) = AX ∩ {ζ1, . . . , ζn}. It must be equal to
{ax 1, . . . , axm} for some m. m is called the size of Φ. Moreover, an extended frame Φ must
satisfy that for all (ζ, i ⊲ u) ∈ Φ, if ζ = ax j for some j, then i = j.

The indices i1, . . . , in represent the stages at which a message is known. An attacker could
indeed distinguish two processes, simply because some message can be computed earlier in one of
the process than in the other: the stage at which messages are available is a relevant information.

For a constructor frame Φ = {ax 1 ⊲ u1; . . . ; axm ⊲ um}, the stage is represented by the
index of the parameter in AX . Hence, the extended frame obtained from Φ is the following:
{ax 1, 1 ⊲ u1; . . . ; axm,m ⊲ um}. Conversely, for an extended frame Φ of size m, We denote Init(Φ)
the constructor frame {ax 1 ⊲ u1; . . . ; axm ⊲ um} where for all i ∈ {1, . . . ,m}, (ax i, i ⊲ ui) ∈ Φ.

An extended frame Φ of size m defines a substitution on dom(Φ): if dom(Φ) = {ax 1, . . . , axm}
and, for i = 1, . . . ,m, ax i, ji ⊲ vi, then we write again Φ the substitution {ax 1 7→ v1, . . . , axm 7→
vm}. Note that the substitution Φ and Init(Φ) are the same. A closed extended frame Φ is
consistent if, for every (ζ, i ⊲ u) ∈ Φ, (ζΦ)↓ = u.

Example 7.1. Φ = {ax 1, 1 ⊲ senc(a, b); ax 2, 2 ⊲ b; sdec(ax 1, ax 2), 2 ⊲ a; ax 3, 3 ⊲ a} is a
closed extended frame; the intermediate component records the deduction of a using the recipe
sdec(ax 1, ax 2) as early as stage 2. Moreover, Init(Φ) = {ax 1 ⊲ senc(a, b); ax 2 ⊲ b; ax 3 ⊲ a}.

Given two extended frames Φ and Φ′, we say that Φ and Φ′ are statically equivalent, de-
noted Φ ∼ Φ′, if and only if their associated constructor frames Init(Φ) and Init(Φ′) are statically
equivalent, i.e. Init(Φ) ∼ Init(Φ′).

From now on, we will always work on extended frames, and call them simplify "frame".

7.1.2 Extended constraint systems

As explained in Chapter 6, our constraint systems need not only to represent sets of traces, but
also record some information on the attacker’s actions that led to these traces. That is why we
also include equations between recipes and a set NoUse of obsolete elements in the frame; roughly,
a component of the frame is obsolete when the attacker used another recipe to get the message,
at an earlier stage (as in the example 7.1). Finally, we also consider negated constraints, in order
to enable splitting the set of traces into disjoint sets.

Definition 7.2 (extended constraint system). An extended constraint system is either ⊥ or a
tuple (S1;S2; Φ;D;Eq;Er;ND ;NoUse) where:

— S1 (resp. S2) is a set of variables in X 1 (resp. X 2);

— Φ is a frame, whose size is some n and NoUse is a subset of Φ;

— D is a set of deducible constraints of the form X, i
?

⊢ u with 1 ≤ i ≤ n, X ∈ X 2 and u is a
constructor term.

— Eq is a conjunction of formulas of the form u
?
= v or ∀ỹ · [

∨m
j=1 uj

?

6= vj] where u, v, uj , vj
are constructor terms.

— Er is a conjunction of formulas of the form ζ
?
= ζ ′, or ξ

?

6= ξ′ or root(β)
?

6= f where ζ, ζ ′, ξ,
ξ′ and β are recipe in Πn, and f is a constructor symbol.

— ND is a conjunction of formulas of the form ∀x̃.[u
?

6= v ∨
∨

j k 6
?

⊢ wj] where u, v, wj are
constructor terms and k ∈ N.

We say that an extended constraint system is initial if NoUse = ∅, ND = ⊤, Er = ⊤, S2 =
vars2(D), S1 = vars1(D), vars1(Eq) ⊆ vars1(D) and for all (ξ, i ⊲ u) ∈ Φ, ξ = ax i.

Intuitively, S1 is the set of free variables in X 1; we may have to introduce auxiliary variables,
that will be (implicitly) existentially quantified, as well as (explicitly) universally quantified vari-
ables. Similarly, S2 is a set of principal recipe variables (in X 2) of the constraint. For readability,
we will sometimes omit some of the components of the constraint system, because they are either
straightforward from the context or empty.

We also assume the following conditions are satisfied on an extended constraint system:

1. each variable X ∈ vars2(D) occurs at most once in D;

2. for every (ξ, i ⊲ u) ∈ Φ, for every x ∈ vars1(u), there exists (X, j
?

⊢ v) ∈ D such that
x ∈ vars1(v) and j < i;

3. for every (ξ, i ⊲ u) ∈ Φ, param(ξ) ⊆ {ax 1, . . . , ax i} and for all X ∈ vars2(ξ), there exists

(X, j
?

⊢ v) ∈ D such that j ≤ i.

The second property corresponds to the origination property on first order variable whereas the
third property represents the origination property for second order variables. Note that an initial
extended constraint systems corresponds in fact to a constructor constraint system where S1 and
S2 represent all the variables in the constraint systems.

The structure of an extended constraint system C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) is given

by S2, Er, {(X, i) | X, i
?

⊢ u ∈ D}, {(ξ, i) | ξ, i ⊲ u ∈ Φ} and {(ξ, i) | ξ, i ⊲ u ∈ NoUse}. Similarly
to the structure of constructor constraint system, the structure of an extended constraint system
indicates from which symbolic trace the constraint system is coming from but also indicates the
guesses on the attacker’s actions.

Example 7.2. Coming back to Example 6.12, the extended constraint system C′′ corresponding
to the constructor constraint system C′ is the tuple (S1;S2; Φ;D;Eq;Er;ND ;NoUse) where

— Φ = {ax 1, 1 ⊲ c, ax 2, 2 ⊲ pk(ska), ax 3, 3 ⊲ pk(ska′), ax 4, 4 ⊲ pk(sk b); ax 5, 5 ⊲ t}

— D = {Z1, 4
?

⊢ c; Y, 4
?

⊢ aenc(〈y′, pk(ska)〉, pk(sk b)); Z2, 4
?

⊢ c}

— t = aenc(〈y′, 〈nb, pk(sk b)〉〉, pk(ska))

with S1 = {y′}, S2 = {Z1, Y, Z2}, Eq = Er = ND = ⊤ and NoUse = ∅.

More examples will be given later.

In order to define what is a solution for such extended constraint systems, we have to give
the semantics of the formulas ND , Eq and Er, and also to introduce the notion of path in order
to cope with our generalised notion of frame. The formulas ND , Er, Eq are logic formulas built
upon elementary formulas using classical connectives. The semantics for the elementary formulas
are given below and is extended as expected to general formulas.

Definition 7.3 (solutions of side constraints). Let C an extended constraint system with Φ its as-
sociated frame. Let θ be a substitution mapping vars2(C) to ground recipes, and σ be a substitution
mapping vars1(C) to ground constructor terms.

— σ � (i 6
?

⊢ u) if and only if ξ(Φσ)↓ 6= uσ↓ for any ground recipe ξ ∈ Πn with param(ξ) ⊆
{ax 1, . . . , ax i}.

— σ � u
?
= v (resp. u

?

6= v), if and only if uσ = vσ (resp. uσ 6= vσ).

— θ � ξ1
?
= ξ2 (resp. θ � ξ1

?

6= ξ2) if and only if ξ1θ = ξ2θ (resp. ξ1θ 6= ξ2θ) .

— θ � root(ξ)
?

6= f if and only if root(ξθ) 6= f

Note that the semantics of the formulas Eq are identical to the ones used for constructor
constraint system.

Example 7.3. Let Φ = {ax 1, 1 ⊲ senc(a, x), ax 2, 2 ⊲ b} and σ = {x 7→ b}. Then σ � (1 6
?

⊢ a) and

σ 6� (2 6
?

⊢ a).

There are possibly several ways to compute the same message, given a frame. All possibles ways
of computing such a message are the observable identities that are used in the static equivalence.
We need only to consider an arbitrary (but fixed) way of computing a message, as early as possible,
the other possible computations being captured by the static equivalence. In other words, if we
want to check the symbolic trace equivalence, we need only to consider on the one hand the
“canonical” recipes that are used by the attacker, and, on the other hand, the static equivalence
of the frames. Assuming such a “canonical” recipe that computes a given message simplifies our
proofs.

Now, we can choose our recipe according to its path, which is the sequence of destructors applied
on the leftmost arguments. This sequence determines the result, regardless of other arguments.
Let us precise this point.

Definition 7.4 (path). Let ξ ∈ Πn be such that root(ξ) 6∈ Fc. The path of ξ, denoted path(ξ), is
a word in F∗

d · (AX + X 2) that is recursively defined as follows:

— path(ax) = ax when ax ∈ AX ,

— path(X) = X when X ∈ X 2, and

— path(f(ξ1, . . . , ξn)) = f · path(ξ1).

Example 7.4. Let ξ = sdec(sdec(ax 2, ax 1), sdec(ax 1, ax 2)) and ξ′ = sdec(sdec(ax 2, sdec(ax 3,
ax 4)), ax 4). path(ξ) = path(ξ′) = sdec · sdec · ax 2.

NoUse is a subset of the frame whose use is forbidden, because we changed the canonical recipe.
This happens only in the course of our algorithm when we discover that a message can actually
be computed at an earlier stage. The following defines the restrictions on the recipes that we
consider.

Definition 7.5 (ξ conforms to Φ). Let Φ be a closed frame, NoUse be a subset of Φ, and ξ be a
ground recipe in Πn. We say that ξ conforms to the frame Φ w.r.t. NoUse if :

— ∀ζ ∈ st(ξ), ∀(ζ ′, i ⊲ u) ∈ Φ, path(ζ) = path(ζ ′) ⇒ ζ = ζ ′.

— ∀(ζ, i ⊲ u) ∈ NoUse, ζ 6∈ st(ξ)

Example 7.5. Let Φ = {ax 1, 1 ⊲ 〈a, b〉; ax 2, 1 ⊲ senc(a, b); sdec(ax 2, proj2(ax 1)), 1 ⊲ a; ax 3, 2 ⊲
b; ax 4, 2 ⊲ a; ax 5, 3 ⊲ senc(c, a)} and NoUse = {ax 4, 2 ⊲ a}.

Implicitly here, we chose a canonical way to compute a, that is recorded in the frame: it
consists in decrypting the second message with the second component of the first one. There are
other ways of computing a, for instance using the first projection on the first message or using the
fourth message. NoUse forbids however this last use (ax 4 is not a recipe that conforms to Φ w.r.t.
NoUse). This can be generated when an earlier (at stage 1 instead of stage 2) computation of a is
detected and recorded in the frame.

Furthermore, the recipe ξ = sdec(ax 2, ax 3) does not conform to Φ, while the recipe sdec(ax 5,
sdec(ax 2, proj2(ax 1))) conforms to Φ w.r.t. NoUse.

Note that given an initial frame Φ, i.e. Init(Φ) = Φ and the set NoUse =, every ground recipe
in Πn conforms to Φ w.r.t. NoUse.

Definition 7.6 (context w.r.t. Φ). Let Φ be a frame and ξ be a recipe in Πn. The context of ξ
w.r.t. Φ, denoted C⌊ξ⌋Φ, is a term in T (F ,F∗

d · AX ∪ X 2) and is defined recursively as follows:

— C⌊ξ⌋Φ = path(ξ) if there exists (ξ′, i ⊲ u) ∈ Φ such that path(ξ) = path(ξ′);

— C⌊ξ⌋Φ = ξ if ξ ∈ X 2;

— C⌊ξ⌋Φ = f(C⌊ξ1⌋Φ, . . . ,C⌊ξn⌋Φ) if ξ = f(ξ1, . . . , ξn).

For sake of clarity, when Φ is clear from the context, we denote it by C⌊ξ⌋.

The context of a recipe w.r.t. a frame represents part of the recipe that are not directly defined
by the frame.

Definition 7.7 (direct access mappings). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a con-
straint system. We define the direct access mapping of C, denoted acc1(C) (resp. acc2(C)), to be
a mapping from (F∗

d · AX) ∪ X 2 to constructor terms (resp. recipe in Πn) where:

— for all (X, i
?

⊢ u) ∈ D, we have that Xacc1(C) = u (resp. Xacc2(C) = X)

— for all (ξ, i ⊲ u) ∈ Φ, we have that path(ξ)acc1(C) = u (resp. path(ξ)acc2(C) = ξ).

Example 7.6. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system where NoUse = ∅,

D = {X, 1
?

⊢ 〈x, a〉 ; Y, 2
?

⊢ b}, Φ = {ax 1, 1 ⊲ senc(a, b) ; ax 2, 2 ⊲ b ; sdec(ax 1, Y), 2 ⊲ a}. Let
ξ1, ξ2 and ξ3 three recipes such that ξ1 = 〈X,Y 〉, ξ2 = sdec(ax 1, Y) and ξ3 = senc(X, sdec(ax 1,
ax 2)). We have :

— C⌊ξ1⌋ = 〈X,Y 〉 and C⌊ξ1⌋acc
1(C) = 〈〈x, a〉, b〉

— C⌊ξ2⌋ = sdec · ax 1 and C⌊ξ2⌋acc
1(C) = a

— C⌊ξ3⌋ = senc(X, sdec · ax 1) and C⌊ξ3⌋acc1(C) = senc(〈x, a〉, a)

Note that for all ground recipe ξ conforms to a ground frame Φ, C⌊ξ⌋Φacc
2(C) = ξ. This

illustrates the fact that the context of a recipe represents the canonical way to represent a recipe.
Moreover, if Φ is consistent then C⌊ξ⌋Φacc1(C)↓ = ξΦ↓.

Definition 7.8 ((pre-)solution). A solution of C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) consists of
a substitution σ mapping vars1(C) to ground constructor terms and a substitution θ mapping
vars2(C) to ground recipes in Πn, such that:

1. for every X ∈ vars2(C), Xθ conforms to Φθ w.r.t. NoUse;

2. for every (X, i
?

⊢ u) ∈ D, Xθ(Φσ)↓ = uσ↓ and param(Xθ) ⊆ {ax 1, . . . , ax i};

3. σ � ND ∧ Eq and θ � Er.

We denote by Sol(C) the set of solutions of C. By convention, Sol(⊥) = ∅. A pair (σ, θ) of
substitutions that only satisfy the two first items is a pre-solution of C.

From the definition of solutions of a constructor constraint system (Definition 6.8), we added
the conditions on the conformity of the Xθ w.r.t. the frame and the satisfiability of ND and Er.

Example 7.7. Consider the constraint of the example 7.2. (σ, θ) ∈ Sol(C′) where:

— σ = {y′ 7→ h(c)}

— θ = {Z1 7→ ax 1, Y 7→ aenc(〈h(ax 1), ax 2〉, ax 4), Z2 7→ ax 1}

Example 7.8. Consider the frame of the example 7.5, together with D = {X, 3
?

⊢ senc(x, a)},

Eq = x
?

6= a ∧ x
?

6= b ∧ ∀y1, y2.(x
?

6= 〈y1, y2〉) ∧ ∀y1, y2.(x
?

6= senc(y1, y2)) and ND = Er = ⊥. One
possible solution is σ = {x 7→ c}, θ = {X 7→ sdec(ax 5, sdec(ax 2, proj2(ax 1)))}

From now on, we will only work with extended constraint system. Thus, similarly to frames,
we will call constraint system an extended constraint system. Given a constraint system C, we
will sometimes denote S2(C), S1(C), Φ(C), D(C), . . . , NoUse(C) the different components of C.

7.2 Simplifying a constraint system

As explained in the introduction, our algorithm that decides the equivalence of sets of constraint
systems is based on tranformations of such systems until a solved formed is reached. We start
by defining and explaining these rules on a single constraint system and then explain how it is
extended to pairs of sets of constraint systems (see Section 7.3.1) and later to pairs of matrices of
constraint systems (see Section 7.3.2).

The transformation rules are displayed in Figure 7.1 and Figure 7.2 for a single constraint
system.

7.2.1 The transformation rules

A simple idea would be to guess the top function symbol of a recipe and replace the recipe
variable with the corresponding instance. When the head symbol of a recipe is a constructor and
the corresponding term is not a variable, this is nice, since the constraint becomes simpler. This
is the purpose of the rule Cons. When the top symbol of a recipe is a destructor, the constraint
becomes more complex, introducing new terms, which yields non-termination. Our strategy is
different. We do guess the top symbol of a recipe, when it is a constructor (or a parameter ax i).
Otherwise, we switch from the top position of the recipe to the redex position. Typically, in case
of symmetric encryption, if a ciphertext is in the frame, we will guess whether the decryption key
is deducible, and at which stage.

In the transformation rules described below, we only write the components of the constraint
systems that are modified during an application of an instance of a rule.

The Cons rule simply guesses whether the top symbol of the recipe is a constructor f. Either
it is, and then we can split the constraint, or it is not and we add a insequation on the recipe
forbidding it to start with f.

In all the following examples, we apply eagerly some simplifications (such simplifications are
formalised and explained in the section 7.2.2), and omit irrelevant parts of the constraint, in order
to improve the readability.

Cons(X, f) : S2;X, i
?

⊢ t;Eq;Er
✘
✘

✘
✘✿

❳
❳

❳
❳③

S′
2;X1, i

?

⊢ x1; · · · ;Xn, i
?

⊢ xn;

Eq ∧ t
?
= f(x1, . . . , xn);Er ∧X

?
= f(X1, . . . , Xn)

X, i
?

⊢ t ; Eq; Er ∧ root(X) 6= f

where x1, . . . , xn, X1, . . . Xn are fresh variables, and
S′
2 = S2 ∪ {X1, . . . , Xn} if X ∈ S2 and S′

2 = S2 otherwise.

Axiom(X, path) : Φ; X, i
?

⊢ u; Eq; Er
✘
✘

✘
✘✿

❳
❳

❳
❳③

Φ; Eq ∧ u
?
= v; Er ∧X

?
= ξ

Φ; X, i
?

⊢ u; Eq; Er ∧X
?

6= ξ

If Φ contains ξ, j ⊲ v with i ≥ j, path(ξ) = path and (ξ, j ⊲ v) 6∈ NoUse.

Dest(ξ, l → r, i) : Φ;Eq;ND ✘
✘
✘
✘✿

❳
❳
❳
❳③

Φ, f(ξ,X2, . . . , Xn), i ⊲ w; Eq ∧ v
?
= u1

X2, i
?

⊢ u2; . . . Xn, i
?

⊢ un;ND

Φ;Eq;ND ∧ ∀x̃ · [v 6= u1 ∨ i 6
?

⊢ u2 ∨ . . . ∨ i 6
?

⊢ un]

If Φ contains ξ, j ⊲ v with j ≤ i and (ξ, j ⊲ v) 6∈ NoUse. We denote by x̃ the set of variables that
occur in f(u1, . . . , un) → w, a fresh renaming of l → r.

Figure 7.1: Transformation rules for satisfiability

Example 7.9. Consider the constraint system C′′ = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) of Exam-

ple 7.2. Since
(
Y, 4

?

⊢ aenc(〈y′, pk(ska)〉, pk(sk b))
)
∈ D, the rule Cons(Y, aenc) can be applied

to C′′, guessing whether or not the attacker obtained the message aenc(〈x, y〉, pk(sk b)) applying a
public-key encryption on two previously computed messages. This yields the two constraints C1
and C2 where

C1 =





S2(C1) : {Z1, X1, X2, Y, Z2}

D(C1) : {Z1, 4
?

⊢ c; X1, 4
?

⊢ x1; X2, 4
?

⊢ x2;Z2, 4
?

⊢ c}

Eq(C1) : aenc(x1, x2)
?
= aenc(〈y′, pk(ska)〉, pk(sk b))

Er(C1) : Y
?
= aenc(X1, X2)

and

C2 =





D(C2) : {Z1, 4
?

⊢ c; Y, 4
?

⊢ aenc(〈y′, pk(ska)〉, pk(sk b)); Z2, 4
?

⊢ c}

Er(C2) : root(Y)
?

6= aenc

The first constraint can be simplified, solving equations and performing replacements, which yields:

C′
1 =





S2(C1) : {Z1, X1, X2, Y, Z2}

D(C1) : {Z1, 4
?

⊢ c; X1, 4
?

⊢ 〈y′, pk(sk1)〉; X2, 4
?

⊢ pk(sk b);Z2, 4
?

⊢ c}

Er(C1) : Y
?
= aenc(X1, X2)

The rule Axiom also guesses whether a trivial recipe (a left member of the frame, typically an
axiom ax i) can be applied. If so, the constraint can simply be removed. Otherwise, we also add
an inequation on recipe forbidding it.

Example 7.10. Continuing with the two constraints (respectively named C ′
1 and C2), obtained

in the previous example, C ′
1 yields, by application of Axiom(X2, ax 4) two constraints systems C11

and C22.

C11 =





D(C11) : {Z1, 4
?

⊢ c; X1, 4
?

⊢ 〈y′, pk(sk1)〉; Z2, 4
?

⊢ c}

Eq(C11) : pk(sk b)
?
= pk(sk b)

Er(C11) : Y
?
= aenc(X1, X2) ∧X2

?
= ax 4

and

C12 =





D(C12) : {Z1, 4
?

⊢ c; X1, 4
?

⊢ 〈y′, pk(sk1)〉; X2, 4
?

⊢ pk(sk b);Z2, 4
?

⊢ c}

Er(C12) : Y
?
= aenc(X1, X2) ∧X2

?

6= ax 4

Again, the first constraint can be simplified into the constraint system C ′
11:

C11 =





D(C11) : {Z1, 4
?

⊢ c; X1, 4
?

⊢ 〈y′, pk(sk1)〉; Z2, 4
?

⊢ c}

Er(C11) : Y
?
= aenc(X1, X2) ∧X2

?
= ax 4

As already explained, the Dest rule is more tricky. If v is term of the frame, that can be unified
with a non variable subterm of a left-hand side of a rewrite rule (for instance v is a ciphertext), we

guess whether the rule can be applied to v. This corresponds to the equation u1
?
= v, that yields

an instance of w, the right member of the rewrite rule, provided that the rest of the left member

is also deducible: in case of symmetric encryption, we get a constraint X2, i
?

⊢ u2.

Example 7.11. Consider the constraint system C, that includes the frame Φ = {ax 1, 1 ⊲ senc(〈a,

b〉, c), ax 2, 2 ⊲ cax 3, 3 ⊲ senc(c, a)} and the deducible constraints D = {X, 3
?

⊢ b} (the other
component being empty) Applying Dest(ax 1, sdec(senc(x, y), y) → x, 2), we get two constraint
systems C1 and C2:

C1 =





Φ(C1) : Φ ∪ {sdec(ax 1, X1), 2 ⊲ x}

D(C1) : {X2, 2
?

⊢ y; X, 3
?

⊢ b}

Eq(C1) : senc(x, y)
?
= senc(〈a, b〉, c)

and

C2 =





D(C2) : {X, 3
?

⊢ b}

ND(C2) : ∀x, y.(senc(x, y)
?

6= senc(〈a, b〉, c) ∨ 2 6
?

⊢ y)

Basically, we guess here whether the key c can be deduced at step 2. The second constraint is
unsatisfiable, while the first one can be simplified to:

{
Φ(C1) = Φ ∪ {sdec(ax 1, X1), 2 ⊲ 〈a, b〉}

D(C1) = {X2, 2
?

⊢ c; X, 3
?

⊢ b}

Of course, these rules will not be applied without restriction, otherwise we would roughly
enumerate all possible attackers recipes and, though this would be complete, this would certainly

not terminate. For instance, we are not going to apply Cons(X, f) to X, i
?

⊢ x when x is a variable
(assuming x does not appear in another constraint), since the very same rule would apply to one
of the resulting constraints.

Another set of rules, the equality rules of the figure 7.2, guess equalities between right-hand
sides of deducibility constraints and/or members of the frame. These rules do not correspond to
attacker’s actions and they are not necessary if we are only interested in reachability properties.
For equivalence properties, it is however necessary to ensure that the observable identities are the
same on both systems.

Example 7.12. Φ1 = {ax 1, 1 ⊲ a; ax 2, 1 ⊲ k1; ax 3, 2 ⊲ senc(x, k); ax 4, 3 ⊲ senc(senc(a, k1), k)}
and Φ2 = {ax 1, 1 ⊲ a; ax 2, 1 ⊲ k1; ax 3, 2 ⊲ senc(x, k); ax 4, 3 ⊲ senc(b, k)}. If x = senc(a, k1),

then the two frames are not statically equivalent since ax 2 = ax 3 is an equality satisfied on the
first frame and not on the second. If x 6= senc(a, k1), then the two frames are statically equivalent.

If, for instance, the deducible constraint associated with both frames is X, 1
?

⊢ x, then the rules of
the figure 7.1 will not help in finding the witness of non-equivalence.

Finally, the last transformation rule of figure 7.2 guesses the deducible subterms of the frame,
which allows to capture a static equivalence algorithm (such as in [AC06] as a particular case).

Eq-left-left(ξ1, ξ2) : Eq ✘
✘

✘
✘✿

❳
❳

❳
❳③

Eq ∧ u1
?
= u2

Eq ∧ u1

?

6= u2

where ξ1, i1 ⊲ u1, ξ2, i2 ⊲ u2 ∈ Φ for some ξ1, ξ2, i1, i2

Eq-left-right(ξ1, X2) : Eq,NoUse ✘
✘

✘
✘✿

❳
❳

❳
❳③

Eq ∧ u1
?
= u2,NoUse ∪ (ξ1, i1 ⊲ u1)

Eq ∧ u1

?

6= u2,NoUse

where ξ1, i1 ⊲ u1 ∈ Φ and X2, i2
?

⊢ u2 ∈ D, with i2 < i1 and X2 ∈ S2 for some ξ1, ξ2, u1, u2

Eq-right-right(X, ξ) : X, i
?

⊢ u; Eq; Er
✘
✘
✘
✘✿

❳
❳
❳
❳③

Eq ∧ u
?
= v; Er ∧X

?
= ξ

X, i
?

⊢ u; Eq ∧ u
?

6= v; Er

where ξ ∈ T (Fc, dom(α)) and v = ξα with α = {Y → w | (Y, j
?

⊢ w) ∈ D ∧ j ≤ i ∧ Y ∈ S2}
Moreover, we assume that:

— if root(ξ) = f then Er 6� root(X)
?

6= f

— if ξ = Y then for all f ∈ Fc, Er � root(X)
?

6= f is equivalent to Er � root(Y)
?

6= f.

Ded-st(ξ, f) : Φ;Eq;ND ✘
✘
✘
✘✿

❳
❳
❳
❳③

Φ; X1,m
?

⊢ x1; · · · ; Xn,m
?

⊢ xn; Eq ∧ u
?
= f(x1, . . . , xn); ND

Φ; Eq;

ND ∧ ∀x̃ · [u 6= f(x1, . . . , xn) ∨m 6
?

⊢ x1 ∨ . . . ∨m 6
?

⊢ xn]

If Φ contains ξ, i ⊲ u and (ξ, i ⊲ u) 6∈ NoUse. The sequences x̃ = x1, . . . , xn, and X1, . . . , Xn are
sequences of fresh variables and m represents the maximal index that occurs in C.

Figure 7.2: Additional transformation rules for static equivalence

Example 7.13. Let us come back to the example 7.12. Applying Eq-left-left(ax 2, ax 3) to the
constraint system whose frame is Φ1, we get two constraint systems:





Φ(C1) = Φ1

D(C1) = {X, 1
?

⊢ x}

Eq(C1) = senc(x, k)
?
= senc(senc(a, k1), k)





Φ(C2) = Φ1

D(C2) = {X, 1
?

⊢ x}

Eq(C2) = senc(x, k)
?

6= senc(senc(a, k1), k)

And the case x = senc(a, k1) is now distinguished from the case x 6= senc(a, k1). We will see later
how and why this is sufficient.

Example 7.14. Consider the two constraint systems

Φ1 = {X, 1ax 1, 1 ⊲ a, ax 2, 2 ⊲ bax 3, 3 ⊲ x1}, D1 = {X, 1
?

⊢ x1, Y, 2
?

⊢ x1, Z, 3
?

⊢ y1}

Φ2 = {X, 1ax 1, 1 ⊲ a, ax 2, 2 ⊲ bax 3, 3 ⊲ x2}, D2 = {X, 1
?

⊢ x2, Y, 2
?

⊢ y2, Z, 3
?

⊢ y2}

There are redundant constraints in each individual system. However, we need x1 = y1 and x2 = y2
in order to get equivalent systems, since the recipes X,Y must yield the same value, according to
the first system (hence x2 = y2) and the recipes Y,Z yield the same value, according to the second
system (hence x1 = y1). The rule Eq-right-right takes care of such situations: we guess whether
different recipes yield the same value and record the result of the guess in the constraint.

Example 7.15. Consider the two constraint systems Φ1 = {ax 1, 1 ⊲ pk(ska), ax 2, 2 ⊲ aenc(x,

pk(ska))} and D1 = {X, 1
?

⊢ x} on the one hand and Φ2 = {ax 1, 1 ⊲ pk(ska), ax 2, 2 ⊲ aenc(b,

pk(ska)} and D2 = {X, 1
?

⊢ x} on the other hand.
Intuitively, the rules do not help in simplifying any further one of the two constraints. The

only relevant possibility would be to try decrypting aenc(x, pk(ska)), but the private key ska is not
deducible. Though, the two constraint systems are not equivalent since the attacker can construct
aenc(x, pk(ska)) (using the recipe aenc(X, ax 1)) and therefore observe the identity aenc(X, ax 1) =
ax 2 on Φ1, which is not possible on Φ2.

This is the reason of the rule Ded-st, that guesses the subterms of the frame that can be
constructed by the attacker. In the above example, the first constraint system would become

Φ1, {X, 1
?

⊢ x;X1, 2
?

⊢ x;X2, 2
?

⊢ pk(ska)}

(the other branch is unsatisfiable), while on the second constraint we get

Φ2, {X, 1
?

⊢ x; X1, 2
?

⊢ b; X2, 2
?

⊢ pk(ska)}

Eventually, this last constraint will be proven unsatisfiable, witnessing the non-equivalence of the
constraint systems.

Now, before explaining how to apply the rules on pairs of sets of constraint systems, we
formalise what we used implicitly in our examples: the constraints are normalised after each
transformation step. Next, we define a simple strategy called strong strategy, which is sufficient
for trace properties, but has to be slightly relaxed for equivalence properties, as we will see in the
section 7.4.

7.2.2 Normalisation

The normalisation consists mainly in simplifying the equations and inequations and performing
the replacements when relevant.

The normalisation rules are displayed in the figure 7.3. As usual, substitutions are confused
with solved conjunctions of equations. We also switch sometimes the order of the components of
a constraint, in order to ease the display and omit irrelevant parts of the constraint.

If we do not apply repeatedly the same rule in the same way, the rules of the figure 7.3 terminate
on any constraint system.

Now, there are situations in which is clearly not necessary to apply some rules. We say that
Cons(X, f) (resp. Axiom(X, path)) is useless on a constraint C if it is not applicable or its
application results in two constraints C1 and C2 such that C1 simplifies to ⊥ using the rules of
the figure 7.3 and C2 simplifies to C using these rules. Similarly, Dest(ξ, l → r, i) is useless on a
constraint C if it has been already applied with the same instance:

— either the frame Φ(C) contains f(ξ, ζ2, . . . , ζn), j ⊲ w and j ≤ i and root(l) = f

Φ;D;Er;ND ;NoUse;Eq ∧
∧n

i=1 ui
?
= vi Φσ;Dσ;Er;NDσ;NoUseσ;Eqσ ∧ σ (Nuni1)

if σ = mgu(
∧n

i=1 ui
?
= vi)

Φ;D;Er;ND ;NoUse;Eq ∧
∧n

i=1 ui
?
= vi ⊥ if mgu(

∧n
i=1 ui

?
= vi) = ⊥ (Nins1)

Φ;D;Eq;ND ;NoUse;Er ∧
∧n

i=1 ζi
?
= ξi Φθ;D;Eq;ND ;NoUseθ;Erθ ∧ θ (Nuni2)

if θ = mgu(
∧n

i=1 ζi
?
= ξi)

Φ;D;Eq;ND ;NoUse;Er ∧
∧n

i=1 ζi
?
= ξi ⊥ if mgu(

∧n
i=1 ζi

?
= ξi) = ⊥ (Nins2)

Eq ∧ ∀x̃.[
∨n

i=1 ui

?

6= vi] Eq if mgu(
∨n

i=1 ui

?

6= vi) = ⊥ (Nneq1)

Eq ∧ ∀x̃.[Eq′ ∨ u
?

6= u] Eq ∧ ∀x̃.Eq′ (Nt1)

Eq ∧ ∀x̃.[Eq′ ∨ x
?

6= u] Eq ∧ ∀x̃r {x}.Eq′σ (Nelim1)
if x ∈ x̃ \ vars(u) and σ = {x → u}

Eq ∧ ∀x̃.∀x.Eq′ Eq ∧ ∀x̃.Eq where x 6∈ vars1(Eq) (Nelim2)

Eq ∧ ∀x̃.[Eq′ ∨ f(u1, . . . , un)
?

6= f(v1, . . . vn)] Eq ∧ ∀x̃.[Eq′ ∨
∨n

i=1 ui

?

6= vi] (Nsplit)

Eq ∧ u
?

6= v ∧ ∀x̃.[Eq′ ∨ u
?

6= v] Eq ∧ u
?

6= v (Nd)

Er ∧ ζ
?

6= ξ Er if mgu(ζ, ξ) = ⊥ (Nneq2)

Er ∧ ζ
?

6= ζ ⊥ (Nt2)

Er ∧ root(f(ξ1, . . . , ξn)) 6= f ⊥ (Ntop1)

Er ∧ root(f(ξ1, . . . , ξn)) 6= g Er if f 6= g (Ntop2)

Figure 7.3: Simplification rules for formula on terms

Eq ∧ ∀x̃.[Eq′ ∨ x
?

6= a] Eq (Nname)

if a ∈ N , (X, i
?

⊢ x) ∈ D, Axiom(X, path) is useless for any path and
Dest(ξ, l → r, i) is useless for any ξ, l → r, and
for all (ζ, j ⊲ v) ∈ Φ, j ≤ i and v ∈ X 1 implies (ζ, j ⊲ v) ∈ NoUse

D ∧X, i
?

⊢ u ⊥ (Nnosol)
if Cons(X, f) is useless for all f ∈ Fc; and Axiom(X, path) is useless for any path; and
Dest(ξ, l → r, i) is useless for all ξ, l → r; and
for all (ζ, j ⊲ v) ∈ Φ, j ≤ i and v ∈ X 1 implies (ζ, j ⊲ v) ∈ NoUse

Figure 7.4: Two additional simplification rules

— or ND contains ∀~x.(v 6= u1 ∨ i 6
?

⊢ u2 ∨ · · · ∨ i 6
?

⊢ un), (ξ, j ⊲ v) is in Φ and f(u1, . . . , un) → w
is a renaming of l → r.

— or Φ does not contain any ξ, j ⊲ v with j ≤ i and (ξ, j ⊲ v) /∈ NoUse

We further apply two simplification rules, that are displayed in the figure 7.4
Intuitively, the first rule states that x cannot be a name, if it has to be deducible and cannot be

obtained from the frame. Indeed, we have assumed that all public names are explicitly disclosed
in the frame (see Chapter 6)

Intuitively, the second rule states that, in order to deduce a message, the attacker has either
to construct it from deducible messages, or retrieve it from the frame and deducible messages. In
other words, any attacker’s ground recipe is built on Fc,Fd and the ax i.

Definition 7.9 (normalization). If C is a constraint system, we let C↓ be an irreducible form of
C, w.r.t. the rules of the figures 7.3 and 7.4.

In what follows we will therefore assume that every constraint system is eagerly normalised.

7.2.3 A strong strategy

In the previous subsection, we described that sometimes, it is not necessary to applied the
rules Dest, Axiom and Cons, thus we defined the notion of a rule being useless for a constraint
system. In fact, in order to ensure termination, we have to define the condition of uselessness for
all the rules in Figure 7.2.

Example 7.16. Consider the constraint system C composed of the deducible constraint D =

{X, 2
?

⊢ x} and the frame Φ = {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(a, b); ax 3, 3 ⊲ senc(x, b)}. The
application of the rule Eq-left-left(ax 2, ax 3) on C yields two constraint system C1 and C2 such
that:

C1 =





D(C1) : {X, 1
?

⊢ a}
Φ(C1) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(a, b); ax 3, 3 ⊲ senc(a, b)}

Eq(C1) : x
?
= a

and

C2 =





D(C1) : {X, 1
?

⊢ x}
Φ(C1) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(a, b); ax 3, 3 ⊲ senc(x, b)}

Eq(C1) : x
?

6= a

However, the rule Eq-left-left(ax 2, ax 3), as described in Figure 7.2, can still be applicable
on both constraint systems C1 and C2. However, the application of Eq-left-left(ax 2, ax 3) on
C1 yields, after normalisation, the constraint systems C1 and ⊥. Similarly, the application of
Eq-left-left(ax 2, ax 3) on C2 yields, after normalisation the constraint systems ⊥ and C2. Hence,
to ensure the termination, we have to discard this kind of rule application.

Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system. We say that the rules
Eq-left-left(ξ1, ξ2), Eq-left-right(ξ1, X2) and Eq-right-right(X, ξ) are useless on the con-
straint system C if their application on C yields, after normalisation, the constraint systems C and
⊥. Moreover, we say that the rule Ded-st(ξ, f) is useless on the constraint system C if:

— either there exists X1, . . . , Xn ∈ vars2(C) such that C⌊f(X1, . . . , Xn)θ⌋Φacc
1(C) = u with

(ξ, j ⊲ u) is in Φ, θ is the most general unifier of the equation in Er.

— or ND contains ∀x̃.(u
?

6= f(x1, . . . , xn) ∨m 6
?

⊢ x1 ∨ · · · ∨ i 6
?

⊢ xn), (ξ, j ⊲ u) is in Φ, x1, . . . , xn

are fresh variables and m = |Φ|.

— or Φ does not contain any ξ, j ⊲ u and (ξ, j ⊲ u) /∈ NoUse

Intuitively, the condition of uselessness of the rule Ded-st(ξ, f) describe the fact that this rule
was already applied or does not need to be applied. The complexity of the first condition comes
from the fact that while the rule Ded-st creates new deducible constraints, these same deducible
constraints might be instantiated later on by other rules such as Cons or Axiom.

Example 7.17. Consider the constraint system C in Example 7.16. The application of the rule
Ded-st(ax 3, senc) on C yields, after normalisation, two constraint systems C1 and C2 such that:

C1 =

{
D(C1) : {X, 1

?

⊢ a; X1, 3
?

⊢ x; X2, 3
?

⊢ b}
Φ(C1) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(a, b); ax 3, 3 ⊲ senc(x, b)}

and

C2 =





D(C1) : {X, 1
?

⊢ x}
Φ(C1) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(a, b); ax 3, 3 ⊲ senc(x, b)}

ND(C1) : ∀x1.∀x2.senc(x1, x2)
?

6= senc(x, b) ∨ 3 6
?

⊢ x ∨ 3 6
?

⊢ b

The rule Ded-st(ax 3, senc) is useless on C2 due to the non deducible constraint, and is useless on
C1 since C⌊senc(X1, X2)⌋Φ(C1)acc

1(C1) = senc(x, b). Now, if we apply the rule Axiom(X1, ax 2) on
C2, we obtain two new constraint systems where one of these is the following:

C3 =





D(C3) : {X, 1
?

⊢ a; X2, 3
?

⊢ b}
Φ(C3) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(a, b); ax 3, 3 ⊲ senc(senc(a, b), b)}

Er(C3) : X1
?
= ax 2

Eq(C3) : x
?
= senc(a, b)

Ded-st(ax 3, senc) is useless on C3 since C⌊senc(X1, X2)θ3⌋Φ(C3)acc
1(C3) = senc(senc(a, b), b) with

θ3 = {X1 7→ ax 2}.

Discarding the useless application of a rule allows us to avoid some of the trivial termination
problem (such as infinite application of Eq-left-left). However, some of the rules, even without
being useless on a constraint system, may yield some simple termination problems.

Example 7.18. Consider the constraint system C composed of the deducible constraint D =

{X, 1
?

⊢ x} and the frame Φ = {ax 1, 1 ⊲ a; ax 2, 2 ⊲ x}. The application of the rule Cons(X, senc)
yields the following constraint system C1:

C1 =





D(C1) : {X1, 1
?

⊢ x1; X2, 1
?

⊢ x2}
Φ(C1) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(x1, x2)}

Er(C1) : X
?
= senc(X1, X2)

Eq(C1) : x
?
= senc(x1, x2)

Since we obtained once again a constraint system which a deducible constraint with a variable as
right hand term, we can apply the rule Cons once again, thus leads to a termination problem.
Similarly, the application of the rule Dest(ax 2, adec(aenc(x, pk(y)), y) → x, 2) yields the following
constraint system C2:

C2 =





D(C2) : {X, 1
?

⊢ x; X2, 1
?

⊢ x2}
Φ(C2) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ aenc(x1, pk(x2)); adec(ax 2, Y2), 2 ⊲ x1}

Eq(C2) : x
?
= aenc(x1, pk(x2))

Hence the rule Dest can be applied once again on adec(ax 2, Y2) which leads to a termination
problem.

Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system. We say that a rule is appli-
cable on C when all the conditions needed to apply the rule are fulfilled (see Figure 7.1 and 7.2).
To avoid the termination issues illustrated in Example 7.18, we need to consider some additional
requirements. We say that a rule can be strongly applied, or is strongly applicable, when it is not
useless on C and when:

— the rule is Cons(X, f) and either the term t is not a variable, or there exists an atomic

statement (root(X)
?

6= g) in Er such that g ∈ Fc and g 6= f ;

— the rule is Axiom(X, path) and the term v is not a variable or there exists f ∈ Fc such that

(root(X)
?

6= f) in Er;

— the rule is Dest and the term v is not a variable;

— the rule is Ded-st and the term u is not a variable;

— the rule is Eq-left-left (with no additional condition);

— the rule is Eq-left-right and the terms u1, u2 are the same variable.

— the rule is Eq-right-right and ξ ∈ vars2(D) and u = v, i.e. u and v are the same variable;

We will see in the next subsection that our strategy will require to weakened at some point
the conditions of strong application of some rules, i.e. Cons, Axiom and Eq-right-right.

7.3 Simplifying sets of constraint systems

In the previous subsection, we describe how our transformation rules can be used to transform
a single constraint system into two constraint systems. However, since we want to decide the
symbolic equivalence of sets of constraint systems, we have to describe how to apply our rules on
such sets.

7.3.1 From constraint system to vectors

In fact, for our algorithm, it is crucial to order the constraint systems in a set and to preserve
this order. Hence instead of working with sets of constraint system, we will work with vectors of
constraint systems. We explain here how our rules can be used on a (pair of) vector of constraint
systems (more precisely on a row matrix of constraint systems), assuming that the constraint
systems of the vector have the same structure.

Actually, the basic idea is to apply the same transformation rule (with the same parameters)
on each constraint system of the vector. Note that, the parameters of a transformation rule only
depend on the structure of the underlying constraint system. Thanks to this, the simultaneous
application of a transformation rule can be defined in a natural way.

Definition 7.10 (application of a rule on a pair of row matrices). Let M = [C1, . . . , Cn] and
M ′ = [C′

1, . . . , C
′
n′] be two row matrices having n (resp. n′) columns and having the same structure.

Let Rule(p̃) be an instance of a transformation rule. The application of Rule(p̃) on the pair
(M,M ′) yields two pairs of row matrices (M1,M

′
1) and (M2,M

′
2) such that :

— M1 = [C1,1, . . . , C1,n] and M2 = [C2,1, . . . , C2,n]; whereas M ′
1 = [C′

1,1, . . . , C
′
1,n′] and M ′

2 =
[C′

2,1, . . . , C
′
2,n′];

— for all i ∈ {1 . . . n}, C1,i and C2,i are the constraint systems obtained by application of
Rule(p̃) on Ci;

— for all i ∈ {1 . . . n′}, C′
1,i and C′

2,i are the constraint systems obtained by application of
Rule(p̃) on C′

i.

7.3.2 Matrices of constraint systems

The non-deducible constraints introduced by the rules Dest and Ded-st are formally inter-
esting since they allow us to properly divide the solutions of a constraint system. However, note
that in Figures 7.1, 7.2 and 7.3, no rule focuses on solving these non-deducible constraints. We
illustrate in the next example how we solve them.

Example 7.19. Consider the constraint system C composed of the deducible constraints D =

{X, 2
?

⊢ senc(a, a)}, the frame Φ = {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(b, a)}, S2 = {X} and S1 = {x}.
The application of the rule Dest(ax 2, sdec(senc(x, y), y) → x, 2) on C yields two constraint systems
C1 and C2 such that:

C1 =

{
D(C1) : {X, 2

?

⊢ senc(a, a); Y, 2
?

⊢ a}
Φ(C1) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(b, a); sdec(ax 2, Y), 2 ⊲ b}

and

C2 =





D(C2) : {X, 2
?

⊢ senc(a, a)}
Φ(C2) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(b, a)}

ND(C2) : ∀x1.∀x2.senc(x1, x2)
?

6= senc(b, a) ∨ 2 6
?

⊢ a

To solve the non-deducible constraint in C2, we will use the informations we get from the resolution
of C1. Note that the rule Axiom(Y, ax 1) is applicable on C1 and yields two constraint systems C3
and C4 such that

C3 =





D(C3) : {X, 2
?

⊢ senc(a, a)}
Φ(C3) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(b, a); sdec(ax 2, Y), 2 ⊲ b}

Er(C3) : Y
?
= ax 1

and

C4 =





D(C3) : {X, 2
?

⊢ senc(a, a); Y, 2
?

⊢ a}
Φ(C3) : {ax 1, 1 ⊲ a; ax 2, 2 ⊲ senc(b, a); sdec(ax 2, Y), 2 ⊲ b}

Er(C3) : Y
?

6= ax 1

But on C4, the successive applications of Cons(Y, f) and Axiom(Y, path) for any f and path will
yields after normalisation the constraint system ⊥. Hence, when we compare C3 and C2, we can see
that the non-deducible constraint in C2 will never be satisfiable and so C2 does not have a solution.

As illustrated in Example 7.19, to solve the non-deducible constraints of a constraint system, we
will use the informations we obtain from the application of the rules on other constraint systems.
To keep track of these informations, we regroup the vectors of constraint systems into matrices of
constraint systems.

Example 7.20. Consider the constraint system C of Example 7.19 and consider the vector of
constraint systems [C, C′] where C′ is some constraint system with the same structure as C. By
applying Dest(ax 2, sdec(senc(x, y), y) → x, 2) on [C, C′], instead of obtaining two vectors [C1, C

′
1]

and [C2, C′
2] where C1, C2 are the constraint system of Example 7.19, we obtain the following matrix

of constraint system: [
C1, C

′
1

C2, C
′
2

]

Then when we applied the rule Axiom(Y, ax 1) on [C2, C
′
2], we obtained the following matrix of

constraint systems: 


C3, C
′
3

C4, C
′
4

C2, C′
2




At this point, to check the non-deducible constraint in C2, we only have to check the informations
we have on the constraint systems in the same column as C2.

7.3.2.1 Symbolic equivalence of matrices of constraint systems

Note that in Example 7.20, the constraint system C1, . . . , C4 has the same sets S2, S1 and also
contains the same subset of deducible constraints whose second order variable is in S2. This is
formalised in the following definition.

Definition 7.11 (shape). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system. The

shape of C is given by S2, and {(X, i) | X, i
?

⊢ u ∈ D and X ∈ S2}.

Intuitively, the shape of a constraint system only represents the "actions" of the intruder.
We extend the notion of same structure between matrices of constraint systems in the following

way. Two matrices M and M ′ of constraint systems having n (resp. n′) lines and m (resp. m′)
columns have the same structure if:

— all the constraint systems stored in M and M ′ have the same shape;

— n = n′, i.e. M and M ′ have the same number of lines; and

— for all i ∈ {1 . . . n}, the constraint systems stored in the ith line of the matrices M and M ′

have the same structure.

Since our algorithm considers matrices of constraint system, we extend the notion of symbolic
equivalence to pairs of matrices of constraint systems.

Definition 7.12 (symbolic equivalence ≈s). Let M,M ′ be two matrices of symbolic constraint
systems having the same structure. We have that M ⊆s M

′ if for all 1 ≤ i ≤ n, for all 1 ≤ j ≤ m,
for all (σ, θ) ∈ Sol(Mi,j), there exists 1 ≤ k ≤ m′ and a substitution σ′ such that (σ′, θ) ∈ Sol(M ′

i,k)
and Φi,jσ ∼ Φ′

i,kσ
′.

If M ⊆s M ′ and M ′ ⊆s M , then we say that M and M ′ are in symbolic equivalence, denoted
by M ≈s M

′.

7.3.2.2 Application of the rules on matrices of constraint systems

In fact, introducing the matrices of constraint systems serves a greater purpose than just solving
the non-deducible constraints. Indeed, deciding the symbolic equivalence of two row matrices
contains two main issues:

— matching an existing solution from one matrix to the other;

— and deciding whether the two resulting frames are statically equivalence or not.

The idea behind matrices with several lines is to keep all the guesses on static equivalence into a
single matrix. Intuitively, when we guess the form of the solutions, we split the matrix into two
matrices. However, when we guess an equality between terms or a property on static equivalence,
we gather the informations in the same matrix. This leads us to consider two kinds of application:
internal and external. The transformation rules Ded-st, Eq-left-left, Eq-left-right and

Dest will be applied internally whereas Cons(X, f), Axiom(X, path) and Eq-right-right(X, ξ)
will be applied externally when X ∈ S2 and internally otherwise (i.e. X 6∈ S2).

Let (M,M ′) be a pair of matrices of constraint systems having the same structure. In particu-
lar, M and M ′ have the same number of lines, say n. Let M = [V1, . . . , Vn] and M ′ = [V ′

1 , . . . , V
′
n].

Let Rule(p̃) be an instance of a transformation rule and i be an integer representing a line, i.e.
1 ≤ i ≤ n.

An internal application of Rule(p̃) on the ith line of the pair (M,M ′) yields a pair of matrices
(M̃, M̃ ′) such that:

M̃ = [V1, . . . , Vi−1,Wi,1,Wi,2, Vi+1, Vn] [V ′
1 , . . . , V

′
i−1,W

′
i,1,W

′
i,2, V

′
i+1, V

′
n] = M̃ ′

where (Wi,1,W
′
i,1) and (Wi,2,W

′
i,2) are the pair of row matrices obtained by applying Rule(p̃)

on (Vi, V
′
i). Note that, since the two matrices M and M ′ have the same structure, the two row

matrices Vi and V ′
i have also the same structure and we can rely on Definition 7.10. We say that

an instance Rule(p̃) of a rule is internally applicable on (M,M ′) on line i if Rule(p̃) is applicable
on (Vi, V

′
i).

An external application of Rule(p̃) on (M,M ′) yields two pairs of matrices (M̃1, M̃
′
1) and

(M̃2, M̃
′
2) such that:

M̃1 = [W1,1, . . . ,Wn,1] [W ′
1,1, . . . ,W

′
n,1] = M̃ ′

1

M̃2 = [W1,2, . . . ,Wn,2] [W ′
1,2, . . . ,W

′
n,2] = M̃ ′

2

where (Wi,1,W
′
i,1) and (Wi,2,W

′
i,2) are the pair of row matrices obtained by applying Rule(p̃) on

(Vi, V
′
i) for each i ∈ {1, . . . , n}.

Remark. Unfortunately, all the constraint systems in M and M ′ do not have necessarily the
same structure, but only the same shape. When the external application involved is an instance of
a rule Cons, it is easy to see that having the same shape will ensure that the rule can be applied on
each row of the matrices. Regarding an external application of the rule Axiom(X, path), we have
to be a little more specific. Since the constraint systems have the same shape and we know that
X ∈ S2, we can ensure that X occurs in each constraint system. However, it could happen that
some rows do not contain the required frame element. By convention, in such a pair (Vi, V

′
i) of row

matrices, the resulting pairs of row matrices are (Wi,1,W
′
i,1)

def
= (⊥,⊥) and (Wi,2,W

′
i,2)

def
= (V, V ′).

Example 7.21. All the rules applied in Example 7.20 are internal rules.

7.4 Our strategy

In the previous sections, we defined the conditions of application of all the rules described in
Figure 7.1 and 7.2. Furthermore, we also introduced the notion of strong application in order to
solve some basic termination problem. Nevertheless, this strong application is not sufficient to
ensure termination and soundness. Thus, we describe a strategy on the application of the rule.

By applying the rules described in Figure 7.1 and 7.2, we want to transform the constraint
systems into solved constraint system, i.e. either ⊥ or constraint system such that:

1. For all X, i
?

⊢ u ∈ D, X ∈ S2 and u is a variable distinct from the right hand side of any
other deducible constraint.

2. Eq does not contain variable that are universally quantified, and for all u
?

6= v in Eq, we
have that u, v do not contain any names.

The first phase of our strategy consists of applying rules to satisfy the first property, without
taking care of the inequations. Then, the second phase of our strategy will reduce the constraint

systems into solved ones. Both phases will be described as a succession of different steps (see
below).

The description of the strategy is always local to the pair of matrices of constraint systems we
consider. Consider for example an pair of matrices (M0,M

′
0) of initial constraint systems. The

strategy starts with the first phase. If a rule of the first phase is applicable on (M0,M
′
0), e.g. an

internal rule, we apply this rule on (M0,M
′
0) which yields a pair of matrices of constraint systems

(M1,M
′
1). Then, if a rule of Phase 1 is applicable on (M1,M

′
1), e.g. an external rule, we apply

this rule on (M1,M
′
1) which yields two pair of matrices of constraint systems (M12,M

′
12) and

(M22,M
′
22). The strategy continues independently on (M12,M

′
12) and (M22,M

′
22). Typically, if a

rule of Phase 1 is applicable on (M12,M
′
12) then we apply this rule on (M12,M

′
12) and so on. In

parallel, if no rule of Phase 1 is applicable on (M22,M
′
22) then we go into Phase 2 and check if one

of the rules of Phase 2 is applicable on (M22,M
′
22) and so on.

To summarise, the application of our strategy on a pair of matrices of initial constraint systems
yields a binary tree (not necessary full) where each node of this tree is a pair of matrices of
constraint systems, and two nodes of same height in the binary tree are not necessary in the same
phase / step of the strategy.

When describing the phase and strategy, we denote (M,M ′) the pair of matrices of constraint
system on which we wish to apply a rule.

7.4.1 First phase of the strategy

Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse). We associate, to each instance of a rule applied on
a constraint system C, an integer, namely its support, as follows:

— support of Cons(X, f) is i where X, i
?

⊢ u ∈ D

— support of Dest(ξ, ℓ → r, i) is i

— support of Axiom(X, path) is i where X, i
?

⊢ u ∈ D

— support of Eq-left-left(ξ1, ξ2) is i = max(i1, i2) when ξ1, i1 ⊲ u1 ∈ Φ and ξ2, i2 ⊲ u2 ∈ Φ

— support of Eq-left-right(ξ1, X2) is i1 when ξ1, i1 ⊲ u1 ∈ Φ

— support of Eq-right-right(X, ξ) is i when X, i
?

⊢ u ∈ vars2(D)

— support of Ded-st(X, ξ), is m (i.e. the maximal index that occurs in C)

The first phase is a cycle of five steps. Each cycle is characterised by one parameter: the
support s of the rules we will apply during this cycle. The first cycle will consider rules having
support 1, then the second cycle will take care of the rules of support 2, and so on. Figure 7.5
represents the evolution between the different steps. The exact description of each step is given
below.

7.4.1.1 Step a

We apply the rules Dest and Eq-left-right, with support equal to s, as long as possible with
priority on the rule Eq-left-right. The application of those rules has to be a strong application
for at least one constraint system in the line of the pair of matrices on which we apply the rule.

In order to obtain some necessary properties on the matrices of constraint system, when a rule
Dest(p̃) or Eq-left-right(p̃) is applied on one line of the matrix, we will apply the same rule
with similar parameter on each line of the matrix.

More specifically,

— if Dest(ξ, ℓ → r, s) is applied on a line of (M,M ′) where (ξ, i) belongs to the structure of
a constraint systems of this line, then for all line L′ of (M,M ′) where there exists ξ′ such
that (ξ′, i) belongs to the structure of the constraint systems in L′ and path(ξ′) = path(ξ),
we apply Dest(ξ′, ℓ → r, s) on L′.

Step a Step b Step c Step d Step e
s := 1 k := 1

if no rule of Step b
applicable if k = n

k := k + 1

s := s+ 1

if s = m

where s is the parameter corresponding to the support, k is the parameter corresponding to the
index of the column, n is the number of column in the pair of matrices and m is the size of the
frame of one of the constraint systems in the pair of matrices.

Figure 7.5: Representation of the first phase of the strategy

— if Eq-left-right(ξ,X) is applied on a line of (M,M ′) where (ξ, i) belongs to the structure
of the constraint systems of this line, then for all line L′ of (M,M ′) where there exist ξ′ such
that (ξ′, i) belongs to the structure of the constraint systems in L′ and path(ξ′) = path(ξ),
we apply Eq-left-right(ξ′, X) on L′.

At the end of this step, the frame of any constraint system in the matrices is fixed for the
support s, i.e. there will be no new frame element added on the frame with a support equal to s.

7.4.1.2 Cycle of steps b, c, d (solving the deducible constraints)

After this first step, the strategy is once again a cycle of three different steps, denoted b, c,
d. This time, the parameter of each cycle is the index of the column on which we will apply the
rule. Hence at this point, s is the parameter of the main cycle and k is the index of the working
column. Each of this cycle alternates steps b and c, and then ends with step d (see Figure 7.5).

Given a pair of matrices (M,M ′) such that M (resp. M ′) has n columns (resp. n′), we say
that the kth column of (M,M ′) is either the kth column of M if k ≤ n; or else the (k−n)th column
of M ′ if k > n. If n+ n′ < k then the kth column of (M,M ′) is not defined.

7.4.1.3 Step b

We apply the internal applications of the rules Eq-right-right, Eq-left-left, Cons and
Axiom with support less than s, as long as possible. In case s = |Φ| where Φ is a frame of one of
the constraint system in the pair of matrices, we also apply the internal applications of Ded-st.
Moreover, the instance of the rule must be strongly applicable on the constraint system in the ith

line and kth column of the pair of matrices, where i is the index of the line on which the rule is
applied.

7.4.1.4 Step c

For this step, we need to consider the following set: For a constraint system C, we defined
X1(C) as a subset of X 1 such that:

X1(C) = {x ∈ X 1 | (Y, j
?

⊢ x) ∈ D(C), Y 6∈ S2(C)}

Furthermore, we define a lexical measure on deducible constraints of a constraint system C,

denoted L1
C(), such that : for all (X, j

?

⊢ u) ∈ D(C) such that vars(u) ∩ X1(C) 6= ∅ and X ∈ S2:

L1
C(X, j

?

⊢ u) = (j,min{p | u|p ∈ X1(C)})

If for all constraint system C in the kth column of (M,M ′), X1(C) is empty then no rule is
applicable for this step. Else, let i0 be an index of the line of (M,M ′), let C0 be the constraint

system in the ith0 line and kth column of (M,M ′), and let (X0, j0
?

⊢ u0) ∈ D(C0) such that
vars(u0) ∩ X1(C0) 6= ∅, X ∈ S2(C0), and:

L1
C0
(X0, j0

?

⊢ u0) = min




L1
C(Z, ℓ

?

⊢ v)

∣∣∣∣∣∣∣

C is on the ith line and kth column of (M,M ′),

i ∈ N, (Z, ℓ
?

⊢ v) ∈ D(C),
vars(v) ∩ X1(C) 6= ∅, Z ∈ S2(C)





We apply by order of preference:

1. the internal rule Eq-right-right(Y,X0) on the ith0 line for any Y such that (Y, j
?

⊢ w) ∈
D(C0), j ≤ s, Y 6∈ S2(C0) and Eq-right-right(Y,X0) is strongly applicable on C0;

2. the external rule Cons(X0, f), for any f ∈ Fc such that Cons(X0, f) is strongly applicable
on C0;

3. the external rule Axiom(X0, path), for any path such that Axiom(X0, path) is strongly
applicable on C0

Intuitively, the choice of X0, j0
?

⊢ u0 is done over all the constraint systems in the kth column
such that one of the variables appearing in the internal deducible constraint of C0 is the closest to
the root of u0. This choice is made for the sole purpose that only the application of the external
rule Axiom(X0, f) can instantiate the internal deducible constraints of the constraint systems in
the kth column.

7.4.1.5 Step d

We apply the external application of the rules Eq-right-right, Cons and Axiom as long as
they are strongly applicable on Mi,k by increasing order on the index of the line i (if we assume
that k corresponds to an index of the matrix M in the pair (M,M ′)).

To be more specific, if an instance R1(p̃1) is strongly applicable on Mi1,k, R2(p̃2) is strongly
applicable on Mi2,k, and i1 ≤ i2 then we apply the rule R1(p̃1) on (M,M ′).

7.4.1.6 Step e (solving the non-deducible constraints)

This last step consists of solving the non-deducible constraints in the matrices. This step will
not consist of applying some rules but replacing some constraint systems in the matrices by ⊥.

Formally, for each constraint system C in the matrix, if there exists a constraint system C′ in
the same column as C, a recipe ξ, such that:

— (ξ, s ⊲ u) ∈ Φ(C′) for some i and u; and

— for all (ξ′, s ⊲ v) ∈ Φ(C), path(ξ) 6= path(ξ′)

then we replace the constraint system C in the matrix by ⊥. This corresponds to solving the
non-deducible constraints introduced by the rule Dest.

Furthermore, when s is equal to the size of the frames in (M,M ′) then for each constraint
system C in (M,M ′), if there exists a constraint system C′ in the same column as C such that for
all (ξ, i ⊲ u) ∈ Φ(C), for all (ξ′, i′ ⊲ u′) ∈ Φ(C′), for all f ∈ Fc,

— path(ξ) = path(ξ′) and i = i′; and

— ND(C) � ∀x̃u 6= f(x1, . . . , xn) ∨ s 6
?

⊢ x1 ∨ . . . ∨ s 6
?

⊢ xn where x̃ = x1 . . . xn are variables; and

— there exists X1, . . . , Xn ∈ vars2(C′) such that C⌊f(X1, . . . , Xn)θ⌋Φ(C′)acc
1(C′) = u′, θ is the

most general unifier of the equation in Er(C′)

then we replace the constraint system C in the matrix by ⊥. This corresponds to solving the
non-deducible constraints introduced by the rule Ded-st.

Typically, each constraint system that is replaced by ⊥ does not have a solution due to the
non-deducible constraint.

7.4.2 Second phase of the strategy

As stated at the beginning of this section, this second phase will take care of the inequations.
First of all, after the first phase of the strategy, the rules Dest, Eq-left-right, Eq-left-left
and Ded-st will never be applicable anymore for any parameters; thus the only rules that will be
applied are Cons, Axiom and Eq-right-right. Furthermore these rules will always be applied
as external rules.

The second phase of the strategy is composed of three steps that we denote a,b,c. Figure 7.6
represents the evolution between the different steps.

Step a Step b Step c

if no rule of Step b
applicable

Figure 7.6: Representation of the second phase of the strategy

7.4.2.1 Step a (Getting rid of the universal variables)

We apply the rules Cons(p̃) and Axiom(p̃) as long as they satisfy the following conditions on
at least one constraint system of the matrices:

— Cons(X, f): either Cons(X, f) is strongly applicable or there exists an atomic statement

t
?

6= w in Eq (actually at this stage t will be a variable) for which there exists a universal
variable y ∈ vars1(w).

— Axiom(X, path): either Axiom(X, path) is strongly applicable or there exists an atomic

statement u
?

6= w in Eq (actually at this stage u will be a variable) for which there exists a
universal variable y ∈ vars1(w).

We show that at the end of this step, all the universal variables are removed (see Appendix C.4.3.9)

7.4.2.2 The association tables

After Step a, the strategy is once again a cycle of the two last steps, i.e. Steps b and c. Step b
consists of matching the inequations on every constraint systems on the matrices using the rules
Cons and Eq-right-right, while step b instantiates variables using the rule Axiom. However,
for the strategy to terminate, we have to keep track of which inequations were matched using
the rule Eq-right-right. Hence we introduce the notion of association table for disjunction of
first order inequations. Intuitively, for each constraint system C in the matrices, we associate an
association table where the index are the disjunctions of inequation between first order terms in C
that comes from an application of the rule Eq-right-right. At last, the disjunction of inequation
will always be associated to a disjunction of inequation between terms in T (Fc ∪ (F∗

d · AX),X 2),
i.e. between contexts of recipes.

Normalisation of a disjunction of inequation between contexts of recipe: We define a transformation
on formulas of context of recipe, denote ·

, by the following reductions: For all E disjunction of
inequations of contexts of recipes, f ∈ Fc, and ξi, ζi ∈ T (Fc ∪ (F∗

d · AX),X 2),

E ∨ f(ξ1, . . . , ξn)
?

6= f(ζ1, . . . ζn)] E ∨ ξ1
?

6= ζ1 ∨ . . . ∨ ξn
?

6= ζn

E ∨ β
?

6= β E

Comparing to the normalisation on formulas of first order term, this normalisation is very simple
and slightly reduces formulas. Indeed, we will use these formula only as a way to rebuilt formulas

on first order term. Hence, we don’t want the formula g ·ax 1

?

6= ax 2 to be reduced to false because
even if the path are different, it is possible that the associated term aren’t, i.e. (g · ax 1)acc

1(C)
and ax 2acc

1(C).
At last, we define the maximal parameter for a context of a recipe, denoted paramCC

max(β),
such that:

paramCC
max(β) = max{i | (w · ax i) ∈ st(β) with w ∈ F∗

d or (Y, i
?

⊢ v) ∈ D with Y ∈ st(β)}

Evolution of an association table: Let C be a constraint system an T its association table. Let
C1, C2 and T1, T2 their respective association table such that C1 and C2 are the two constraint
system produced by the application of a rule on C. We show here how T1 and T2 evolved by
default: For all i ∈ {1, 2}, for all disjunction D of inequations of first order terms, if T [D] exists
and there exists E′ and D′ such that Eq(Ci) = E′ ∧D′ with D′ = Dmgu(Eq(Ci))↓ then we have
that Ti[D

′] := T [D]{X 7→ C⌊Xθ⌋Φ(Ci) | X ∈ dom(θ)}

where θ = mgu(Er(Ci)).
When describing the Step b and c of the strategy, the additional operations on the association

tables we may apply will always be done after the default transformation described above. At
last, the associations table of each constraint systems in the matrices is empty at the end of Step
a.

7.4.2.3 Step b (Splitting the inequations)

In this step, we apply as long as we can the rules Cons and Eq-right-right, then we go to
the step c. However, their application depends on the association table of the constraint systems.

We say that Eq-right-right(X, ξ) is applicable for Step b if there exists a constraint system
C in the matrices with its association table T such that Eq-right-right(X, ξ) is not useless on

on C, Eq(C) = E′ ∧ (E′′ ∨ u
?

6= v) for some E′, E′′ and u, v are the terms described in Figure 7.2,
and

— either T [E′′ ∨ u
?

6= v] = ⊥ .

— or else T [E′′ ∨ u
?

6= v] = D ∨X
?

6= ξ with (F∗
d · AX) ∩ st(D) 6= ∅ for some D.

After application of Eq-right-right(X, ξ), if we guessed that the inequation holds, then we
add in each association table T ′ of each constraint system C′ of the matrices the following entry:

T [u′
?

6= v′] := X ∨ ξ where u′ = Xacc1(C′) and v′ = ξacc1(C′).

We say that Cons(X, f) is applicable for Step b if there exists a constraint system C in the
matrices with its association table T such that Cons(X, f) is not useless on C, Eq(C) = E′∧ (E′′∨
t 6= u) for some E′, E′′ and t is the term described in Figure 7.1 (actually t is a variable at this
stage), and

— either Cons(X, f) is strongly applicable on C;

— or T [E′′ ∨ t
?

6= u] = ⊥ with root(u) = f and either st(u) ∩ N 6= ∅ or indC(t) < indC(u)

— or T [E′′] = D∨X
?

6= ξ with root(ξ) = f and either (F∗
d ·AX)∩ st(ξ) 6= ∅ or paramCC

max(X) <
paramCC

max(ξ).

7.4.2.4 Step c (Instantiating the variables)

In this last step, we apply the rule Axiom(X, path) as long as there is at least one constraint
system C in the matrices satisfying the following conditions:

— either Axiom(X, path) is strongly applicable on C;

— or Eq(C) = E ∧ (D ∨ u
?

6= a) and T [D ∨ u
?

6= a] = ⊥ for some E,D, for some a ∈ N and u is
the term described in Figure 7.1

7.4.2.5 Removal transformation

During Step b and Step c, for any association table T , if there exists an entry T [
∨

i ui

?

6=

vi] =
∨

i ξi
?

6= ξ′i such that ξi or ξ′i is in (F∗
d · AX) for all i, then we remove this entry, i.e.

T [
∨

i ui

?

6= vi] := ⊥.

Example 7.22. Consider the frames Φ1 and Φ2 of Example 7.12. Moreover consider the matrix
M = [C; C′] such that:

M =








{X, 1
?

⊢ x; Y, 3
?

⊢ y}
Φ1

x
?

6= senc(a, k1) ∧ x
?

6= y

;





{X, 1
?

⊢ x′; Y, 3
?

⊢ y′}
Φ2

x′
?

6= b




Assume that their respective association tables, denoted T and T ′ are empty. We can apply the

rule Eq-right-right(X,Y) since T1[x
?

6= y] = ⊥. Thus, we obtain two matrices of constraint
systems M1 = [C1; C

′
1] and M2 = [C2; C

′
2] such that:

M1 =


 ⊥ ;





{X, 1
?

⊢ x′; }
Φ2

y′
?
= x′ ∧ x′

?

6= b∧




and

M2 =








{X, 1
?

⊢ x; Y, 3
?

⊢ y}
Φ1

x
?

6= senc(a, k1) ∧ x
?

6= y

;





{X, 1
?

⊢ x′; Y, 3
?

⊢ y′}
Φ2

x′
?

6= b ∧ x′
?

6= y′




Moreover, if we denote T1, T
′
1, T2, T

′
2 the respective association tables of C1, C′

1, C2, C
′
2, then T1 and

T ′
1 are empty, T2[x

?

6= y] = X
?

6= Y and T ′
2[x

′
?

6= y′] = X
?

6= Y . We now focuses on M2. We can

apply Cons(X, senc) since x
?

6= senc(a, k1) is in Eq(C2) and T2[x
?

6= senc(a, k1)] = ⊥. Thus it yields
once again two matrices M21 = [C21; C22] and M22 such that:

C21 =





{X1, 1
?

⊢ x1; X2, 1
?

⊢ x2; Y, 3
?

⊢ y}
Φ1

x
?
= senc(x1, x2) ∧

(
x1

?

6= a ∨ x2

?

6= k1
)
∧ senc(x1, x2)

?

6= y

X
?
= senc(X1, X2)

and

C′
21 =





{X, 1
?

⊢ x′
1; X2, 1

?

⊢ x′
2; Y, 3

?

⊢ y′}
Φ2

x′ ?
= senc(x′

1, x
′
2) ∧ senc(x′

1, x
′
2)

?

6= y′

X
?
= senc(X1, X2)

If we denote T21 and T ′
21 their association tables, then T21[senc(x1, x2)

?

6= y] = senc(X1, X2)
?

6= Y

and T ′
21[senc(x

′
1, x

′
2)

?

6= y′] = senc(X1, X2)
?

6= Y . At this point, no rule of Step b is applicable thus

we go into Step c and try to apply the rule Axiom. Note that T21[x1

?

6= a∨x2

?

6= k1] = ⊥ hence we
apply Axiom(X1, ax 1) on M21. It yields once again two matrices M211 = [C211; C

′
211] and M212

such that:

C211 =





{X2, 2
?

⊢ x2; Y, 3
?

⊢ y}
Φ1

x1
?
= a ∧ x

?
= senc(a, x2) ∧ x2

?

6= k1 ∧ senc(a, x2)
?

6= y

X1
?
= ax 1 ∧X

?
= senc(ax 1, X2)

and

C′
211 =





{X, 1
?

⊢ x′
1; X2, 2

?

⊢ x′
2; Y, 3

?

⊢ y′}
Φ2

x′
1

?
= a ∧ x′ = senc(a, x′

2) ∧ senc(a, x′
2)

?

6= y′

X1
?
= ax 1 ∧X

?
= senc(ax 1, X2)

If we denote T211 and T ′
211 their association tables, then T211[senc(a, x2)

?

6= y] = senc(ax 1, X2)
?

6= Y

and T ′
211[senc(a, x

′
2)

?

6= y′] = senc(ax 1, X2)
?

6= Y .

We will show that this strategy always terminates on row matrices of initial constraint systems.
Section 8.4 describes the essential steps of the proof of this theorem.

Theorem 7.1. Given a pair of row matrices of initial constraint system (M,M ′), the application
of the strategy described in Subsection 7.4 on (M,M ′) terminates.

7.4.3 The final test

In this section and the previous one, we described how to apply the rules on a pair of matrices
of initial constraint systems and also a strategy that terminates. Thus the last thing we need to
define is the final test such that this test succeeds if, and only if, the pair of matrices of constraint
systems are symbolically equivalent.

By applying the rules on a initial pair of row matrices, we obtain a tree where every nodes
(including the leaves) is a pair of matrices. Thus the final test focuses on the leaves of this tree.

Definition 7.13 (test on the leaves). Let (M,M ′) be a pair of matrices of constraint systems
with n lines and m (resp. m′) columns. We define a predicate on a pair of matrices of constraint
systems, denoted LeafTest, such that LeafTest(M,M ′) = true if, and only if : for all i ∈ {1 . . . n},

∃j ∈ {1, . . . ,m}.Mi,j 6=⊥ is equivalent to ∃j′ ∈ {1, . . . ,m′}.M ′
i,j′ 6=⊥

With the predicate defined in Definition 7.13, we can finally give one of the main theorem of
this paper :

Theorem 7.2. Let (M0,M
′
0) be an initial pair of row matrices of constraint systems. We have

that M0 ≈s M
′
0 if, and only if, all leaves of a tree, whose root is labeled with (M0,M

′
0) and which

followed the strategy given in Subsection 7.4, satisfy the predicate LeafTest.

The next chapter is dedicated to the proof of Theorem 7.1 and 7.2.

Chapter 8

Proof of the decision procedure

Contents

8.1 Invariants . 132

8.1.1 Invariants independent from the strategy 132

8.1.2 Strategy invariants . 133

8.2 Soundness and completeness . 135

8.2.1 Preliminaries . 135

8.2.2 Core lemmas . 136

8.2.3 Application to matrices of constraint systems 137

8.3 Leaves . 139

8.3.1 Shape of the leaves . 139

8.3.2 Proving the symbolic equivalence . 140

8.4 Termination . 141

8.4.1 Termination of all steps of Phase 1 of the strategy 141

8.4.2 Association table . 144

8.4.3 Termination of all steps of Phase 2 of the strategy 146

8.5 Toward a more powerful attacker . 148

8.5.1 Semantic with predicate . 148

8.5.2 Toward deciding the trace equivalence w.r.t. a predicate 149

8.5.3 Toward deciding the symbolic equivalence w.r.t. a predicate 149

Proving Theorems 7.1 and 7.2 is difficult and highly technical. This is for various reasons. First
of all, the large number of transformation rules used in the algorithm usually tends to lengthen
the proofs. Indeed, in most of the proofs, we have to do a case analysis on the rules. This is
even more true for the termination proof since we have to consider the different rules but also the
different phases and steps of the strategy. Second of all, the constraint systems are are composed
of several elements which make them difficult to manipulate in the proofs. But most of all, the
technicality of the proofs comes from the fact that the soundness and termination proofs overlap.
A good example is the Step e of the first phase of the strategy. Without this step, our algorithm
is not sound anymore.

This chapter is dedicated to the proofs of Theorem 7.1 and 7.2. More specifically, we provide
in Section 8.1 the different properties that the matrices of constraint systems satisfy during the
execution of the algorithm. In Section 8.2, we explain the main steps of the proofs of soundness
and completeness of our transformation rules but also of our final test on a pair of matrices of
constraint systems (see Section 8.3). At last, in Section 8.4, we provide all the necessary measures
to prove termination. However, most of the actual proofs are in Appendix C.

131

8.1 Invariants

8.1.1 Invariants independent from the strategy

First it is easy to see that applying our transformation rules preserves the fact that matrices
share the same structure. This is stated in the following lemma (Proof in Appendix C.2.1).

Lemma 8.1. Let (M,M ′) be a pair of matrices of constraint systems such that M and M ′ have the
same structure. Any internal (resp. external) application of a rule in Figure 7.1 and/or Figure 7.2
transforms the pair (M,M ′) on a pair (M1,M

′
1) (resp. two pairs (M1,M

′
1) and (M2,M

′
2)) of

matrices having the same structure.

Initially, we consider two row matrices of initial constraint systems. By applying our rules,
the constraint systems we consider become more and more complex. Nevertheless, we will show
that the strategy and the rules ensure several invariants on constraint systems that will be used
in the proof of completeness, soundness and termination. A constraint system satisfying all the
invariants will be called well-formed (see Definition 8.2).

Most of the invariants focus are about structural properties of the frame. Those are usually
direct consequences of the application of the rules Dest,Axiom and Cons. For example, we will
state that for any frame element (ξ, i ⊲ u), the path of the recipe ξ is defined and closed. Looking
at the rules, this invariant seems almost trivial since the only rule that generates a new frame
element is Dest which apply a destructor on a recipe.

Other invariants focus on the formula Er. One of these invariants illustrates the instantiation
of a recipe variable X given the equations in Er. Moreover, since some recipes of the frames are
not always ground, the invariants of a well-formed constraint system detail by which parameters
such recipe can be instantiated. To describe this, we introduce the notion of maximal parameter
of a recipe.

Definition 8.1 (maximal parameter of a recipe). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a
constraint system and let ξ ∈ Πn such that vars(ξ) ⊆ vars2(D). We define the maximal parameter
of ξ in C, denoted paramC

max(ξ), such that:

paramC
max(ξ) = max{i | ax i ∈ st(ξ) or (Y, i,

?

⊢ v) ∈ D with Y ∈ st(ξ)}

For all constraint systems C, we denote by mgu(Eq(C)) (resp. mgu(Er(C)))the most general
unifier of all the equations in Eq(C) (resp. mgu(Er(C))).

Our invariants are not independent. For example, we state that for any frame element (ξ, i ⊲ u),
the path of the recipe ξ is defined and closed (item 1 Definition 8.2). From this, we can deduce
that, given θ and θ′ two substitutions and ζ a recipe in Πn, we have that C⌊ζ⌋Φθ = C⌊ζ⌋Φθ′ . This
comes from the fact that the path path(ξ) of any frame element (ξ, i ⊲ u) in Φθ is closed and so
do not depend on the substitution θ or θ′.

Definition 8.2 (well-formed). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system.
We say that C is well-formed if it satisfies the following properties:

Invariants on the frame Φ: for all (ξ, i ⊲ u) ∈ Φ,

1. path(ξ) exists and is closed. Moreover, for all distinct frame elements (ξ1, i1 ⊲ u1) and
(ξ2, i2 ⊲ u2) in Φ, we have that path(ξ1) 6= path(ξ2).

2. if path(ξ) = f · w then there exists (ξ′, j ⊲ v) ∈ Φ such that j ≤ i, path(ξ′) = w, ξ′ ∈ st(ξ)
and u ∈ st(v).

3. paramC
max(ξ) ≤ i

4. for all X ∈ vars2(ξ), for all x ∈ vars1(Xacc1(C)), there exists (ζ, k ⊲ w) ∈ Φ such that
k ≤ i and x ∈ vars1(w).

5. for all ground substitution λ, if for all X ∈ vars2(ξ), we have that (Xλ)Φλ↓ = vλ where

(X, j
?

⊢ v) ∈ D, then (ξλ)(Φλ)↓ = uλ.

Other invariants: let θ = mgu(Er)

6. any inequation in Er are:

— either of the form X 6= ξ and there exists i ∈ N and a term u such that (ξ, i ⊲ u) ∈ Φ;

— or of the form root(X) 6= f with f ∈ Fc.

7. for all X ∈ vars2(C), C⌊Xθ⌋Φ ∈ T (Fc,F
∗
d · AX ∪ X 2) and for all ζ ∈ st(Xθ), path(ζ) ∈

F∗
d · AX implies that there exists j and v such that (ζ, j ⊲ v) ∈ Φ

8. For all (ζ, i ⊲ u) ∈ NoUse, there exists X ∈ vars2(C) such that C⌊Xθ⌋Φacc
1(C) = u and

paramC
max(Xθ) < i

9. for all (ξ, i ⊲ u) ∈ Φ, for all ξ′ ∈ st(ξ), C⌊ξ′⌋Φ ∈ T (Fc,F
∗
d · AX ∪ X 2) and if path(ξ′) ∈

F∗
d · AX then there exists j and v such that (ξ′, j ⊲ v) ∈ Φ

10. for all (X, i
?

⊢ u) ∈ D, X 6∈ S2(C) implies that for all x ∈ vars1(u), there exists (Z, j
?

⊢ v) ∈ D
such that i < j and x ∈ vars1(v).

The next lemma indicates that our transformation rules transform a well-formed constraint
system into a pair of constraint systems that are also well-formed (Proof in Appendix C.2.2).

Lemma 8.2. Any rule in Figure 7.1 and Figure 7.2 transforms a normalised well-formed con-
straint system into a pair of constraint systems that are also well-formed after normalisation. For
the rule Dest, we assume that its application is not useless.

8.1.2 Strategy invariants

In the previous subsection, we described some invariants that are independent of the strategy.
Typically, they are very useful to prove some general properties on constraint systems. However,
they are not sufficient to establish soundness of our rules or even the termination. The strategy we
described in Subsection 7.4 has been essentially designed to ensure termination of our algorithm.
However, this strategy also allows us to extract some new invariants that will help us to prove
soundness.

Among the invariants, some of them are specific to some steps of the strategy, but we first
describe the invariants that are satisfied at any step of the strategy.

Invariant 8.1 (InvGeneral). Let M be a matrix of constraint systems. We say that M satisfies
the invariant InvGeneral, if and only if:

For all constraint system C in M , if C 6=⊥ then for all (σ, θ) ∈ Sol(C), for all (ξ, i ⊲ u) ∈ Φ(C),

1. ax i ∈ st(ξθ).

2. for all ξ′ ∈ Πn with root(ξ′) 6∈ Fc, if path(ξ′) = path(ξθ) and ξ′(Φσ)↓ ∈ T (Fc,N), then
param(ξ′) 6⊆ {ax 1, . . . , ax i−1}.

3. for all X ∈ vars2(C), if path(ξ) ∈ st(C⌊Xmgu(Er)⌋Φ) then (ξ, i ⊲ u) 6∈ NoUse.

4. if (ξ, i ⊲ u) 6∈ NoUse then for all ξ′ ∈ st(ξ), if there exists j and v such that (ξ′, j ⊲ v) ∈ Φ
then (ξ′, j ⊲ v) 6∈ NoUse.

For all constraint systems C, C′ in a same column of M , if we denote θ = mgu(Er(C)) and
θ′ = mgu(Er(C′)), then

5. ∀X ∈ S2(C),C⌊Xθ⌋Φ(C) = C⌊Xθ⌋Φ(C′)

6. ∀X ∈ S2(C), ∀f ∈ Fc, Er(C) � root(X)
?

6= f implies that Er(C′) � root(X)
?

6= f

7. ∀X ∈ S2(C), for all (ξ, i ⊲ u) ∈ Φ(C), for all (ξ′, i′ ⊲ u′) ∈ Φ(C′), if path(ξ) = path(ξ′) then

Er(C) � X
?

6= ξ is equivalent to Er(C′) � X
?

6= ξ′.

Typically, Properties 1 and 2 ensures that we use in the frame the minimal recipes w.r.t.
the parameters to deduce the key of a cypher or the verification key of a signature. These two
properties are given by the application of the rule Dest (Step a of Phase 1) and more specifically
by the fact that the cycle of steps in Phase 1 is applied by increasing support.

Property 3 and 4 indicates that during Step a, we always prioritised the application of the rule
Eq-left-right over Dest.

The last three properties established similitudes between constraint systems of a same column.
We already know that the shape of the constraint systems are the same but the strategy allows us
to be even more specific. Indeed, Property 5 indicates that the actions of the attacker are the same
in each constraint system of the column (up to the context) but Property 6 and 7 also indicate
that the inequalities corresponding the attacker’s actions are the same. These three properties
are in fact due to the application on the external rules on the matrices of constraint system. The
proof of the following lemma can be found in Appendix C.4.3.8

Lemma 8.3. Let (M,M ′) be a pair of row matrices of initial constraint systems having the same
structure. Let (M1,M

′
1) be a pair of matrices of constraint systems obtained by following the

strategy on (M,M ′). (M1,M
′
1) satisfies InvGeneral.

The next invariants are more specific to the different steps and phase of the strategy. Thus,
they depend on a parameter, i.e. the support of the rules.

Invariant 8.2 (InvVarConstraint(s)). Let C be a constraint system. We say that C satisfies
InvVarConstraint(s) if C =⊥ or

1. for all (X, i
?

⊢ u) ∈ D(C), if i ≤ s then u ∈ X 1 and X ∈ S2(C); and

2. for all (X, i
?

⊢ x), (Y, j
?

⊢ y) ∈ D(C), if i ≤ s, j ≤ s and X 6= Y then x 6= y.

Invariant 8.3 (InvVarFrame(s)). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint sys-
tem. We say that C satisfies InvVarFrame(s) if and only if for all (ξ, p ⊲ v) ∈ Φ, p ≤ s implies for

all X ∈ vars2(ξ), there exists q < p and u ∈ T (Fc,N ∪ X 1) such that (X, q
?

⊢ u) ∈ D.

Intuitively, InvVarConstraint(s) corresponds to the purpose of the first phase of the strategy,
i.e. modifying the constraint systems such that all right hand term of deducible constraints are
distinct variables. Thus, all constraint systems during Phase 2 will satisfy this invariant.

Invariant 8.4 (InvNoUse(s)). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system.
We say that C satisfies InvNoUse(s) if and only if for all (ξ, p ⊲ v) ∈ Φ, p ≤ s and v ∈ X 1 implies

(ξ, p
?

⊢ v) ∈ NoUse.

Invariant 8.5 (InvDest(s)). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system. We
say that C satisfies InvDest(s) if and only if for all (ξ, p ⊲ v) ∈ Φ, for all f ∈ Fd, (ξ, p ⊲ v) 6∈ NoUse

and p ≤ s implies:

— either there exists p′ ∈ N such that

— s ≥ p′ ≥ p; and

— (ξ′, p′ ⊲ v′) ∈ Φ for some ξ′ such that path(ξ′) = f · path(ξ); and

— for every p ≤ k < p′, for all σ, σ � ND implies that σ � ∀x̃, v 6= u1∨k 6
?

⊢ u2∨. . .∨k 6
?

⊢ un

where f(u1, . . . , un) → w is a fresh rewriting rule with vars1(u1, . . . , un, w) = x̃.

— or else for every p ≤ k ≤ s, we have that ND � ∀x̃, v 6= u1 ∨ k 6
?

⊢ u2 ∨ . . . ∨ k 6
?

⊢ un where
f(u1, . . . , un) → w is a fresh rewriting rule with vars1(u1, . . . , un, w) = x̃.

Invariant 8.6 (InvDedsub). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system. Let
θ = mgu(Er) and m = |Φ|. We say that C satisfies InvDedsub if and only if, for all (ξ, p ⊲ v) ∈ Φ,
for all f ∈ Fc, (ξ, p ⊲ v) 6∈ NoUse and p ≤ s implies:

— either there exists X1, . . . , Xn ∈ vars2(C) such that for all i ∈ {1, . . . , n}, paramC
max(Xiθ) ≤ s

and

C⌊f(X1, . . . , Xn)θ⌋Φacc
1(C) = v

— or else ND � ∀x̃, v 6= f(x1, . . . , xn) ∨m 6
?

⊢ x1 ∨ . . . ∨m 6
?

⊢ xn where x̃ = x1 . . . xn are fresh.

Typically, InvDest(s) ensures that no new subterm can be obtained by applying a destructor
while InvDedsub ensures that no new subterm can be obtained by applying a constructor. The
invariants InvDest(s) and InvNoUse(s) will be satisfied by any constraint system after Step a of
Phase 1 with support s.

The next invariant indicates that no rule was applied with support strictly greater than s.
Typically, it is satisfied by all constraint systems during Phase 1 with support smaller than s.

Invariant 8.7 (InvUntouched(s)). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint sys-
tem. We say that C satisfies InvUntouched(s) if and only if

1. for all (ξ, k ⊲ u) ∈ Φ, if s < k then ξ = axk; and

2. for all (X, k
?

⊢ u) ∈ D, if s < k then X ∈ S2 and X 6∈ vars2(Er).

Lastly, we define an invariant that impact on several constraint systems in the matrices.

Invariant 8.8 (InvMatrix(s)). Let M be a matrix of constraint systems. We say that M satisfies
InvMatrix(s) if and only if for all C, C′ two constraint systems in the same column of M ,

— {path(ξ), i | (ξ, i ⊲ u) ∈ Φ(C) ∧ i ≤ s} = {path(ξ), i | (ξ, i ⊲ u) ∈ Φ(C′) ∧ i ≤ s}

— {path(ξ), i | (ξ, i ⊲ u) ∈ NoUse(C) ∧ i ≤ s} = {path(ξ), i | (ξ, i ⊲ u) ∈ NoUse(C′) ∧ i ≤ s}

8.2 Soundness and completeness

This section is dedicated to the proofs the soundness and completeness of our transformation
rules.

8.2.1 Preliminaries

In our main proof of completeness and soundness, we usually assume an existing solution in a
well-formed constraint system and then we transform this solution such that it become a solution
of an another constraint system. In most cases, the transformation consists of replacing a recipe
by an other one which deduces the same message. The main issue of this replacement is that the
new recipe has to satisfy several properties such that the conformity to the frame, its belonging
to Πn,

Example 8.1. Let a constraint system with a the following frame :

{ax 1, 1 ⊲ senc(a, b); ax 2, 2 ⊲ senc(b, a); ax 3, 3 ⊲ a}

A possible and natural execution of the rules would be to guess that the messages senc(a, b) and
senc(b, a) are reducible and so by application of the rule Dest, we would have a constraint system
such that:

— Φ = {ax 1, 1 ⊲ senc(a, b); ax 2, 2 ⊲ senc(b, a); ax 3, 3 ⊲ a; sdec(ax 1, X) ⊲ a; sdec(ax 2, Y) ⊲
b}

— D = {X, 3
?

⊢ b ;Y, 3
?

⊢ a}

Thus one possible solution for this constraint system would be θ with Xθ = sdec(ax 2, ax 3) and
Y θ = ax 3. We can see that θ belongs to Πn and also conforms to the frame Φ.

Since the two recipes ax 3 and sdec(ax 2, Y) both deduce the same message, we could replace any
instance of ax 3 by sdec(ax 1, X) and then forbid the use of the recipe ax 3 (equivalent to adding the
frame element (ax 3, 3 ⊲ a) into the set NoUse).

Thus to ensure the soundness of this transformation, we need to ensure that we can transform
θ in θ′ such that θ′ is a solution of the constraint system and such that it satisfies the belonging
to Πn and the conformity to the frame. But on this example, the only way to deduce a (for the

constraint Y, 3
?

⊢ a) without using ax 3 is to use the recipe sdec(ax 1, X) and the only way to deduce

b (for the constraint X, 3
?

⊢ b) is to use sdec(ax 2, Y) which produces a loop. Therefore, on this
example, the replacement of the recipe ax 3 by sdec(ax 1, X), that deduces the same message, does
not lead to a solution.

To formalise this, we introduce the following order.

Definition 8.3 (relation <θ). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-formed con-
straint system, and θ be a mapping from vars2(C) to ground recipes such that for all (X, i ⊲ u) ∈ D,
we have that param(Xθ) ⊆ {ax 1, . . . , ax i}.

We define a relation on vars2(D), denoted <θ, as the smallest relation that is closed by tran-
sitivity and such that: X <θ Y if X ∈ vars2(C⌊Y θ⌋acc2(C)) and X 6= Y .

Intuitively, X <θ Y represents the fact that in the solution θ, Xθ is used in Y θ. Thus, if you
replace Xθ by an other recipe, the recipe Y θ will also need to be changed accordingly in order to
conform to the frame.

Example 8.2. Going back to our previous example, we have that Y <θ X since C⌊Y θ⌋acc2(C)) =
sdec(ax 2, Y).

We stated at the beginning of this subsection that the replacement has to preserve the belonging
to Πn. But a simple example with the application of the rule Eq-left-right shows that it is
generally not true.

Example 8.3. Let C be a constraint system with the following frame:

Φ = {ax 1, 1 ⊲ a ; ax 2, 2 ⊲ senc(a, a) ; ax 3, 3 ⊲ a}

and the following set of deducibility constraints:

D = {X, 1
?

⊢ senc(a, a) ;Y, 3
?

⊢ a}

One possible solution for this constraint system would be θ with Xθ = senc(ax 1, ax 1) and Y θ =
sdec(ax 2, ax 3). We can see that θ belongs to Πn and also conforms to the frame Φ. By applying the

rule Eq-left-right on (ax 2, 2 ⊲ senc(a, a)) and (X, 1
?

⊢ senc(a, a)), the frame element (ax 2, 2 ⊲
senc(a, a)) will be added in the set NoUse and thus, we now have to replace each instance of ax 2

with Xθ. But in such a case, Y θ will become the recipe sdec(senc(ax 1, ax 1), ax 3) which does not
belong to Πn. Thus, instead of just replacing ax 2 by senc(ax 1, ax 2), we will replace Y θ with ax 1.

8.2.2 Core lemmas

Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system. We denote by C the con-
straint system (S1;S2; Φ;D;Eq;Er; ∅;NoUse), i.e. the constraint system obtained from C by
removing the non-deducible constraints. This notation is extended as expected to matrices of
constraint systems. We first show the soundness of the normalisation of constraint system (Proof
in Appendix C.5)

Lemma 8.4. Let C be a constraint system obtained by following the strategy. Sol(C) = Sol(C↓).

As explained in Section 7.2, our algorithm transforms a pair of matrices of constraint systems
into one or two pairs of matrices of constraint systems. The main idea behind the soundness
and completeness is to locally prove that our transformation preserves the symbolic equivalence
between matrices of constraint systems. Since we have several rules, we will need to prove the
local preservation of the symbolic equivalence for each rule.

Lemma 8.5 (completeness). Let C be a normalised constraint system obtained by following the
strategy and Rule(p̃) be a transformation rule applicable on C. Let C1 and C2 be the two resulting
constraint systems obtained by applying Rule(p̃) on C. We denote by Φ, Φ1 and Φ2 the respective
frames of C, C1 and C2 and we denote by S1 the set of free variable of C.

For all i ∈ {1, 2}, for all (σi, θi) ∈ Sol(Ci), (σ, θ) ∈ Sol(C) and Init(Φ)σ = Init(Φi)σi where
σ = σi|vars1(C) and θ = θi|vars2(C)

Variation: For all i ∈ {1, 2}, for all (σi, θi) ∈ Sol(Ci), (σ, θ) ∈ Sol(C) and Init(Φ)σ = Init(Φi)σi

where σ = σi|vars1(C) and θ = θi|vars2(C).

Lemma 8.6 (soundness). Let C be a normalised constraint system obtained by following the
strategy and Rule(p̃) be a transformation rule applicable on C. Let C1 and C2 be the two resulting
constraint systems obtained by applying Rule(p̃) on C. We denote by Φ, Φ1 and Φ2 the respective
frames of C, C1 and C2 and we denote by S1 the set of free variables of C.

Let (σ, θ) ∈ Sol(C). There exist σ′, θ′, and i0 ∈ {1, 2} such that (σ′, θ′) ∈ Sol(Ci0), σ =
σ′|vars1(C) and Init(Φ)σ = Init(Φi0)σ

′.

The proofs of Lemma 8.5 and 8.6 can be respectively found in Appendix C.3 and C.5. With
the two previous lemmas (Lemma 8.5 and Lemma 8.6), we can see that our rules preserve the
set of first-order solution of a constraint system. On the other hand, Lemma 8.6 indicates that it
is possible that some second-order solutions are not preserves, for example the solution that use
several recipe to deduce the same key. Even if the non-preservation of the whole set of second-order
solutions could be surprising at first sight, the idea is to preserve enough second-order solutions
to be able to establish symbolic equivalence (Lemma 8.7).

Lemma 8.7. Let (C, C′) be a pair of normalised constraint systems having the same structure and
obtained by following the strategy. We denote by Φ and Φ′ their associated frame. We denote by
S1, S

′
1 their associated set of free variables. Let Rule(p̃) be a transformation rule applicable on

(C, C′). Let (C1, C
′
1) and (C2, C

′
2) the two resulting pairs of constraint systems obtained by applying

Rule(p̃) on (C, C′), and we denote by Φ1, Φ
′
1, Φ2, and Φ′

2 their associated frame.
Let σ, θ and σ′ be three substitutions such that (σ, θ) ∈ Sol(C), (σ′, θ) ∈ Sol(C′), and Φσ ∼ Φ′σ′.

For all substitution θ′,

1. (σ, θ′) ∈ Sol(C) if, and only, if (σ′, θ′) ∈ Sol(C′).

2. Let i ∈ {1, 2}, and σi be a substitution such that σ|S1
= σi|S1

and (σi, θ
′) ∈ Sol(Ci). Then,

(σ′
i, θ

′) ∈ Sol(C′
i) for some substitution σ′

i such that σ′|S′

1
= σ′

i|S′

1
. Moreover, we have that

Init(Φi)σi = Init(Φ)σ and Init(Φ′
i)σ

′
i = Init(Φ′)σ′.

The proof of Lemma 8.7 can be found in Appendix C.5.

8.2.3 Application to matrices of constraint systems

Using the lemmas 8.5, 8.6 and 8.7, we now establish completeness and soundness for pairs of
linear matrices and for pairs of matrices.

Proposition 8.1. Let V , V ′ be two row matrices of constraint systems obtained by following the
strategy. Let Rule(p̃) be a transformation rule applicable on (V, V ′). Let (W1,W

′
1) and (W2,W

′
2)

be the two resulting pairs of row matrices of constraints systems obtained by the application of
Rule(p̃).

W1 ≈s W
′
1 and W2 ≈s W

′
2 is equivalent to V ≈s V

′

Proof. We prove the two directions of the equivalence separately. We assume w.l.o.g. that V (resp.
V ′) is a row matrix of size n (resp. n′). Let V = [C1, . . . , Cn] and V ′ = [C′

1. . . . , C
′
n′]. We know that

W1 and W2 (resp. W ′
1 and W ′

2) are row matrices of size n (resp. n′). Let Wi = [Ci
1, . . . , C

i
n] and

W ′
i = [C′i

1 , . . . , C
′i
n′] for i = 1, 2.

Let 1 ≤ j ≤ n and 1 ≤ k ≤ n′. We denote by Φj the frame associated to Cj and by Φ′
k the

frame associated to C′
k. Let i ∈ {1, 2}. Similarly, we denote by Φi

j the frame associated to Ci
j and

by Φ′i
k the frame associated to C′i

k .

Right implication: Let 1 ≤ j ≤ n and let (σ, θ) ∈ Sol(Cj). By Lemma 8.6, we know that there exists
θ′, i ∈ {1, 2} and σi such that (σi, θ

′) ∈ Sol(Ci
j) and σ|S1(Cj) = σi|S1(Cj). By hypothesis, we have

that Wi ≈s W ′
i . Hence, there exist 1 ≤ k ≤ n′ and a substitution σ′

i such that (σ′
i, θ

′) ∈ Sol(C′i
k)

and Φi
jσi ∼ Φ′i

kσ
′
i. Thanks to Lemma 8.5, we deduce that:

(σi|vars1(Cj), θ
′|vars2(Cj)) ∈ Sol(Cj) and (σ′

i|vars1(C′

k
), θ

′|vars2(C′

k
)) ∈ Sol(C′

k).

with Init(Φi
j)σi = Init(Φj)σi|vars1(Cj) and Init(Φ′i

k)σ
′
i = Init(Φ′

k)σ
′
i|vars1(C′

k
). Note that θ′|vars2(C′

k
) =

θ′|vars2(Cj) since C′
k and Cj have the same structure. Moreover, by hypothesis, we have that

σ = σi|vars1(Cj). Thus, we can apply Lemma 8.7 on Cj and C′
k. Since (σ, θ) ∈ Sol(Cj), we deduce

that (σ′, θ) ∈ Sol(C′
k) where σ′ = σ′

i|vars1(C′

k
). Lastly, since Φi

jσi ∼ Φ′i
kσ

′
i, Init(Φ

i
j)σi = Init(Φj)σ

and Init(Φ′i
k)σ

′
i = Init(Φ′

k)σ
′, we easily deduce that Φjσ ∼ Φ′

kσ
′. The other implication can be

done in a similar way.

Left implication: Let 1 ≤ j ≤ n, i ∈ {1, 2} and let (σi, θ
′) ∈ Sol(Ci

j). By Lemma 8.5, we know
that there exists σ and θ such that (σ, θ) ∈ Sol(Cj) with σ = σi|vars1(Cj) and θ = θ′|vars2(Cj). By
hypothesis, we have that V ≈s V ′. Hence, there exists 1 ≤ k ≤ n′ and a substitution σ′ such
that (σ′, θ) ∈ Sol(C′

k) and Φjσ ∼ Φ′
kσ

′. Thus, we can apply Lemma 8.7 (second item) on Cj
and C′

k. Since (σi, θ
′) ∈ Sol(Ci

j), we deduce that (σ′
i, θ

′) ∈ Sol(C′i
k) for some substitution σ′

i such
that σ′ = σ′

i|vars1(C′

k
). Moreover, we have that Init(Φi

j)σi = Init(Φj)σ and Init(Φ′i
k)σ

′
i = Init(Φ′

k)σ
′.

Since Φjσ ∼ Φ′
kσ

′, we easily deduce that Φi
jσi ∼ Φ′i

kσ
′
i. The other implication can be done in a

similar way.

Theorem 8.1 (soundness and completeness for internal rules). Let M1, M ′
1 be two matrices of

constraint systems obtained by following the strategy. Let Rule(p̃) be an internal transformation
rule applicable on (M1,M

′
1) on the ith. Let (M2,M

′
2) be the resulting pair of matrices of constraint

systems obtained by the application of Rule(p̃). We have that:

M2 ≈s M
′
2 is equivalent to M1 ≈s M

′
1

Proof. Since M1 and M ′
1 have the same structure, we know that they have the same number of

lines, say m. Let M1 = [V1, . . . , Vm] and M ′
1 = [V ′

1 , . . . , V
′
m]. Let (W1,W

′
1) and (W2,W

′
2) be the

two resulting pairs of row matrices of constraint systems obtained by applying Rule(p̃) on (Vi, V
′
i).

Hence M2 = [V1, . . . , Vi−1,W1,W2, Vi+1, . . . , Vm], and M ′
2 = [V ′

1 , . . . , V
′
i−1,W

′
1,W

′
2, V

′
i+1, . . . , V

′
m].

By Definition 7.12 of the symbolic equivalence of matrices of constraint systems, M1 ≈s M
′
1 is

equivalent to Vj ≈s V
′
j for every j ∈ {1, . . . ,m}. Thanks to Proposition 8.1, we easily deduce that

Vi ≈s V
′
i is equivalent to W1 ≈s W

′
1 and W2 ≈s W

′
2. This allows us to conclude.

Theorem 8.2 (soundness and completeness for external rules). Let M , M ′ be two matrices of well-
formed constraint systems that have the same structure. Let Rule(p̃) be an external transformation
rule applicable on (M,M ′). Let (M1,M

′
1) and (M2,M

′
2) be the two resulting pairs of matrices of

constraint systems obtained by the application of Rule(p̃). We have that:

M1 ≈s M
′
1 and M2 ≈s M

′
2 is equivalent to M ≈s M

′

Proof. Since M and M ′ have the same structure, we know that they have the same number of
lines, say m. Let M = [V1, . . . , Vm] and M ′ = [V ′

1 , . . . , V
′
m]. When Rule(p̃) is applicable on

(Vi, V
′
i), let (Wi,1,W

′
i,1) and (Wi,2,W

′
i,2) be the two resulting pairs of row matrices of constraint

system. Otherwise, let (Wi,1,W
′
i,1) = (⊥,⊥) and (Wi,2,W

′
i,2) = (Vi, V

′
i). We have that:

— M1 = [W1,1, . . . ,Wm,1], M ′
1 = [W ′

1,1, . . . ,W
′
m,1], and

— M2 = [W1,2, . . . ,Wm,2], M ′
2 = [W ′

1,2, . . . ,W
′
m,2].

By Definition 7.12 of the symbolic equivalence of matrices of constraint systems, M ≈s M ′

is equivalent to Vi ≈s V ′
i for every i ∈ {1, . . . ,m}. Relying on Proposition 8.1 when the rule is

effectively applied on (Vi, V
′
i) (when the rule is not applicable, the result trivially holds), we deduce

that for every i, Vi ≈s V ′
i is equivalent to Wi,1 ≈s W ′

i,1 and Wi,2 ≈s W ′
i,2 which is equivalent to

M1 ≈s M
′
1 and M2 ≈s M

′
2. This allows us to conclude.

8.3 Leaves

In Section 8.2 we proved that all of our rules preserve the symbolic equivalence of matrices of
constraint systems. Thus, since our strategy terminates (see Section 8.4), we know that for any
initial pair of row matrices of constraint systems (M0,M

′
0), we have that M0 ≈s M ′

0 if, and only
if, all leaves of a tree, whose root is labeled with (M0,M

′
0), are symbolically equivalent. Thus to

prove Theorem 7.2, we will have to prove that the predicate LeafTest is equivalent to the symbolic
equivalence of a leaf.

The proofs of all the lemmas in this section can be found in Appendix C.6.

8.3.1 Shape of the leaves

The purpose of our rules is to transform the constraint systems in the matrices into simpler
constraint systems. The idea of simple constraint systems is not new, and was for example use in
[CLCZ10] for their reachability algorithm. They introduce the notion of solved constraint system
where a constraint system was in solved form if each right hand term of the constraints were a
variable. In their algorithm, it was sufficient to prove the existence of at least one solution in
a constraint system. But in our case, the right hand term variable condition is not sufficient to
prove the symbolic equivalence between matrices. Thus, we introduce a new definition of solved
constraint systems.

Definition 8.4 (solved constraint system). Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-
formed constraint system. We say that C is a solved constraint system (or is in solved form) if C
satisfies InvVarConstraint(∞), InvNoUse(∞), InvVarFrame(∞), InvDest(∞), InvDedsub and:

1. Eq is a formula of the form
∧

k uk
?
= vk

∧
i[
∨

j xi,j

?

6= wi,j] where wi,j ∈ T (Fc,X
1), xi,j ∈ X 1,

uk, vk ∈ T (Fc,N ∪ X 1).

2. for all X ∈ vars2(D), for all f ∈ Fc, for all ξ recipe of Φ, Er 6� X
?

6= ξ and Er 6� root(X)
?

6= f.

We say that a constraint system ⊥ is always in solved formed.

The definition of a solved constraint relies mainly on the invariant that we used for the termi-
nation proof. The last property ensure that no inequations on message contains any name. Thus
we will be able to easily match those inequations with inequations on other constraint system.
It comes directly from the fact that at the end of the strategy, all inequations in the constraint
system have an entry in their association table.

Typically, all those properties correspond to the usual properties needed for deciding the sym-
bolic equivalence :

— existence of a solution

— matching the solutions

— deciding the static equivalence

As we said previously, having the constraint systems in solved form on the leaves will help
us deciding the symbolic equivalence. But Definition 8.4 only focuses on one constraint system

and does not give any information on the link between constraint systems of the same pair of
matrices on a leaf. We already know from Lemma 8.1 that all constraint systems on the matrices
have the same shape and furthermore that all constraint systems on the same line have the same
structure. But it is not sufficient to show that the predicate LeafTest is equivalent to the symbolic
equivalence. In fact, we need to simplify the matrices the same way we simplified the constraint
systems. Thus, we define a notion of solved matrix of constraint systems which will describe all
the links between constraint systems in the matrices.

Definition 8.5 (solved matrix of constraint systems). Let (M,M ′) be a pair of matrices of con-
straint systems. We say that (M,M ′) is in solved-form if (M,M ′) satisfies InvMatrix(∞) and
InvGeneral, all constraint systems in (M,M ′) are in solved-form, and

First order term properties on same column : for all C, C′ constraint system on the same column,
there exists a variable renaming ρ : X 1

r S1(C) → X 1
r S1(C′) such that:

1. mgu(Eq(C))|S1(C)ρ = mgu(Eq(C′))|S1(C′), and D(C)ρ = D(C′);

2. {(uρ, u′) | (ξ, i ⊲ u) ∈ Φ ∧ (ξ′, i′ ⊲ u′) ∈ Φ′ ∧ path(ξ) = path(ξ′)} is include in {(u, u) | u ∈
T (Fc,N ∪ X 1)};

First order term property : for all C, C′ constraint system in (M,M ′), there exists a variable
renaming ρ : X 1 → X 1 such that:

3. Eq(Mi,j)ρ restricted to inequation and D(Mi,j)ρ are equal to Eq(Mi,j′) restricted to inequa-
tion and D(Mi,j′).

The first properties of Definition 8.5 focus on the messages inside the constraint systems.
Intuitively, Property 1 and 2 will help us to prove that all the constraint systems have the same
set of first order solutions. To understand why this property holds, we need to come back to the
creation of new lines in a matrix of constraint systems, and so to the application of internal rules.
In Subsection 7.3.2, we describe the application of internal rules as a way to keep the result of
the guesses on static equivalence inside a single matrix. Thus, it is natural that the first order
solutions of different constraint systems in a same column are the same.

Property 3 indicates that there exists a matching on the inequations of message for all con-
straint systems in a same line. The purpose of this property is for us to prove that any substitution
satisfying the inequations in one constraint systems will be match by an other first order substi-
tution that satisfies the inequations in an other constraint systems.

Lemma 8.8. Let (M,M ′) be a pair of matrix obtained at the end strategy. (M,M ′) is in solved
form.

8.3.2 Proving the symbolic equivalence

This last subsection focuses on the proof of that a pair of matrices of constraint system in
solved form are symbolically equivalent if, and only if, they satisfy LeafTest.

First of all, its is not trivial to check if a constraint system in solved form has a solution.
Intuitively, this is due to the presence of non deducible constraint in our constraint system, even
in solved form. On the other hand, if the non-deducible constraints were to be removed, one
can easily show that any solved constraint system would have at least one solution. However,
as explain in Section 7.4, Step e of Phase 1 of the strategy were specifically designed to solve
the non-deducibility constraints. Indeed, in step e, we only kept the constraint systems whose
non-deducible constraints could be satisfied. Hence, on a constraint system on a leaf, we show
that any solution that does not consider the non-deducible constraints still satisfies them.

Lemma 8.9. Let (M,M ′) be a pair of matrix obtained at the end strategy. For all constraint
system C in M or M ′, Sol(C) = Sol(C).

Using this lemma, we can now show that any constraint system on a leaf that is different from
⊥ has at least one solution.

Lemma 8.10. Let (M,M ′) be a pair of matrix obtained at the end strategy. Let C be a constraint
system in M or M ′ different from ⊥. There exists (σ, θ) ∈ Sol(C).

In this section, we are interested in the symbolic equivalence of matrices of constraint systems.
But in fact, when the matrices are in solved one, we can show that any constraint system in the
same line of the matrices are symbolically equivalent.

Lemma 8.11. Let (M,M ′) be a pair of matrix obtained at the end strategy. Let C, C′ be two
constraint system in the same line in (M,M ′) (C and C′ may be contained in the same matrix).
If C 6=⊥ and C′ 6=⊥ then C ≈s C

′.

Using the previous lemma, we can finally prove that the pair of matrices on the leaves are
symbolically equivalence if and only if they satisfy the final test.

Theorem 8.3. Let (M,M ′) be a pair of matrix obtained at the end strategy. M ≈s M ′ if, and
only if, LeafTest(M,M ′) = true.

Proof. Assume that M (resp. M ′) has n lines and m (resp. m′) columns. We prove the two
implications separately.

Left implication (⇐): Assume that LeafTest(M,M ′) = true. Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
Let (σ, θ) ∈ Sol(Mi,j). Since Mi,j contain a solution, we deduce that Mi,j 6=⊥. Hence, thanks to
LeafTest(M,M ′) = true, there exists j′ ∈ {1, . . . ,m′} such that M ′

i,j′ 6=⊥. By Lemma 8.11, we
deduce that Mi,j ≈s M ′

i,j′ . Thus, (σ, θ) ∈ Mi,j implies that there exists σ′ such that (σ′, θ) ∈
Sol(M ′

i,j′) and Φ(Mi,j)σ ∼ Φ(M ′
i,j′)σ

′. The other side of the equivalence is proved symmetrically.
Therefore we deduce that M ≈s M

′.

Right implication (⇒): Assume that M ≈s M ′. We have to show that LeafTest(M,M ′) = true.
Let i ∈ {1, . . . , n} and let j ∈ {1, . . . ,m}. Assume that Mi,j 6=⊥. Thanks to Lemma 8.10, we
deduce that there exists (σ, θ) ∈ Sol(Mi,j). But M ≈s M ′, thus there exists j′ ∈ {1, . . . ,m′}
and σ′ such that (σ′, θ) ∈ Sol(M ′

i,j′) and Φ(Mi,j)σ ∼ Φ(M ′
i,j′)σ

′. Since M ′
i,j′ contain at least a

solution, we deduce that M ′
i,j′ 6=⊥. The other side of the equivalence is proved symmetrically.

Therefore, we deduce that LeafTest(M,M ′) = true.

8.4 Termination

In this section, we show how we prove that the strategy explained in Subsection 7.4 terminates.
The proofs of all the lemmas in this section can be found in Appendix C.7.

8.4.1 Termination of all steps of Phase 1 of the strategy

In this subsection, we describe all the measures that we use to show the termination of each
step of phase 1 of the strategy.

8.4.1.1 Termination of Phase 1, Step a

Step a of the strategy only consists of applying the rules Dest and Eq-left-right. We first
define a lexical measure on a constraint system C, denote µ1.a(C), as follow: µ1.a(⊥) = (0, ∅, 0, 0),
otherwise µ1.a(C) is the following quadruple.

1. |vars1(D(C))|

2. the multiset {{n | (ξ, i ⊲ u) ∈ Φ(C) ∧ n = |{v ∈ st(u) | root(v) ∈ {aenc, senc, 〈〉, sign}}| ∧
Dest(ξ, ℓ → r, s) not useless}}

3. |Φ(C)| − |NoUse(C)|

4. |{(X, ξ) | (X, i ⊲ u) ∈ D(C) ∧ (ξ, j ⊲ v) ∈ Φ(C)r NoUse(C) ∧ Eq(C) 6� u
?

6= v}|

Moreover, we define a measure on pair of matrices of constraint system, denoted µm
1.a(M,M ′),

such that such that µm
1.a(M,M ′) = {{µ1.a(C)|C ∈ M or C ∈ M ′}}.

Intuitively, the first item represents the number of first order variable in the deducible constraint
of C. An application of Dest during step a always preserves this number while an application of
Eq-left-right may decrease it strictly. The second item of this measure represents the subterms
of the frame that may be deducible thanks to the applicable of the rule Dest. Typically when
the application of Dest(ξ, ℓ → r, s) is useless, then no new subterm u in (ξ,⊲ u) can be deduces
thanks to Dest. The third item of the measure represents the number of frame elements that are
not considered as useless. Lastly, the fourth item represents the possible parameters for which an
application of Eq-left-right is not useless.

Lemma 8.12. Let (M0,M
′
0) be a pair of matrices obtained during Step a of Phase 1 of the strategy.

Let R(p̃) one of the possible instances of Dest and Eq-left-right applicable on (M0,M
′
0). If we

denote (M1,M
′
1) the pair of matrices of constraint systems obtained by applying R(p̃) on (M0,M

′
0),

then µm
1.a(M1,M

′
1) < µm

1.a(M0,M
′
0).

8.4.1.2 Termination of Phase 1, Step b

As stated in Subsection 7.4, after step a, the strategy alternates between step b and step c.
Thus, we have to show first that both steps terminates independently and then we have to show
that the alternation of both steps terminates too. We remind the steps b and c have two parameter,
i.e. the support of the rules s and also the current column k of the matrices.

We define a lexical measure on constraint system. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse)
be a constraint system, we define a lexical measure on C, denoted µ1.b(C), which is composed of :

1. The multiset {{(X, f) | Er 6� root(X)
?

6= f, (X, i
?

⊢ u) ∈ D,u ∈ X 1, f ∈ Fc and there exists

g ∈ Fc such that Er � root(X)
?

6= g}}.

2. The number of variables in the deducible constraints, i.e. |vars1(D)|.

3. The number of frame elements on which Ded-st is not useless

4. The number of pair of frame elements on which Eq-left-left is not useless

5. The number of function symbols and names in the right term of deducible constraints.

6. The number of (X, f) such that root(X)
?

6= f not in Er, (X, i
?

⊢ u) ∈ D and f ∈ Fc.

7. The number of (X, ξ) such that (X, i
?

⊢ u) ∈ D, (ξ, j
?

⊢ v) ∈ Φ, j ≤ i and X 6= ξ is not in Er.

8. The number of deducible constraints, i.e. |D|.

By definition, if C =⊥, we say that µ1.b(C) = (∅, 0, 0, 0, 0, 0, 0, 0).

Lemma 8.13. Let C be a well-formed constraint system satisfying the invariant InvVarFrame(s).
Let R(p̃) be any instance of any rules except Dest and Eq-left-right with support inferior to
s. Assume that R(p̃) is strongly applicable on C. Denote C1 and C2 the two constraint systems
obtained by application of R(p̃) on C. The following property holds :

µ1.b(C1) < µ1.b(C) ∧ µ1.b(C2) < µ1.b(C)

We recall that during Step b with parameter s and k where k is the index of the column of
(M,M ′), an internal rule is applied on the ith line of the matrices (M,M ′) only if this rule is
strongly applicable on constraint system on the ith line and kth column of (M,M ′). Hence, for a
pair of matrices of constraint system, we define a measure from µ1.b(·), denoted µk

1.b(), which is
the following multiset:

µk
1.b(M,M ′) = {{µ1.b(C) | i ∈ N and C is on the ith line and kth column of (M,M ′)}}

Hence thanks to Lemma 8.13, we can deduce the following corollary.

Corollary 8.1. Let (M0,M
′
0) be a matrix of constraint obtain during Step b of Phase 1 of the

strategy with parameter s and k. Let R(p̃) be one of the possible instance of an internal rule of
Step b with parameter s and k. If we denote (M1,M

′
1) the pair of matrices of constraint systems

obtained by applying R(p̃) on (M0,M
′
0), then µk

1.b(M1,M
′
1) < µk

1.b(M0,M
′
0)

8.4.1.3 Termination of Phase 1, Step c

As explained in Section 7.4, the purpose of Step c is to definitely remove the internal deducible
constraints in the matrices of constraint systems. Whereas the rules applied in Step b are internal,
the rules applied in step c are mainly external which lead to more difficulties since an external
rule modifies the all matrix. The application condition of a rule during this step of the strategy
heavily depend on the subset X1(C) which stock the right hand term variable of the deducible
constraint whose second order variable are not in S2(C). Hence the measure that we use to show
the termination of this step also depend on it.

Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a constraint system, we define a lexical measure
on C, denoted µ1.c(C), which is composed by :

1. The multiset {{(j, p) | (X, i
?

⊢ u) ∈ D(C), u|p ∈ X1(C), indC(u|p) = j and X ∈ S2}}.

2. The multiset {{X,Y | (X, s
?

⊢ u) ∈ D(C), (Y, s
?

⊢ v) ∈ D(C), X, Y 6∈ S2(C) and u = v ∈ X 1}}.

3. The number of (X, f) such that Er 6� root(X)
?

6= f, (X, i
?

⊢ u) ∈ D, X ∈ S2, f ∈ Fc and
vars(u) ∩ X1(C) 6= ∅.

4. The number of (X, ξ) such that (X, i
?

⊢ u) ∈ D, (ξ, j ⊲ v) ∈ Φ, j ≤ i, Er 6� X
?

6= ξ, X ∈ S2

and vars(u) ∩ X1(C) 6= ∅.

By definition, if C =⊥, we say that µ1.c(C) = (∅, ∅, 0, 0).
Furthermore, we define the following measure for matrices of constraint systems: Let (M,M ′)

be a pair of matrices of constraint systems. We define a measure from µ1.c(·), denoted µk
1.c(M,M ′),

which is the following multiset:

µk
1.c(M,M ′) = {{µ1.c(C) | i ∈ N and C is on the ith line and kth column of (M,M ′)}}

Thanks to this measure, we are now able to show that the Step c of Phase 1 of the strategy
terminates with parameter s and k.

Lemma 8.14. Let (M,M ′) be a pair of matrices of constraint systems obtained during the Step c
of Phase 1 of the strategy with parameter s and k respectively for support and column. Let R(p̃) be
the next possible rule applicable according to step c of the strategy and let (M1,M

′
1) and (M2,M

′
2)

be the two pairs of matrices of constraint systems obtained by application of R(p̃) on (M,M ′) (in
the case of R(p̃) being the rule Eq-right-right, there is only one pair of constraint system since
Eq-right-right is applied internally). We have that:

µk
1.c(M1,M

′
1) < µk

1.c(M,M ′) ∧ µk
1.c(M2,M

′
2) < µk

1.c(M,M ′)

8.4.1.4 Termination of Phase 1, Cycle of steps b and c

We previously showed that the Step b and c terminates. However, since after Step c, we apply
once again Step b as part of a cycle, it remains to prove that the cycle Step b + Step c terminates.
For this purpose, we define a measure on pair of matrices using indC(·). Let (M,M ′) be a pair of
matrices of constraint systems. Assume w.l.o.g. that the parameter k corresponds to a column of
M . We define a measure, denoted µk

1.b+c(M,M ′), such that:

µk
1.b+c(M,M ′) = max

{
indC(u) i ∈ N, X 6∈ S2, (X, j

?

⊢ u) ∈ D(C) and C is
on the ith line and kth column of (M,M ′)

}

We will first show that µk
1.b+c(M,M ′) can not increase for any application of rule during step

b and c. However, the strategy of Step c will allow us to show that between the beginning of
Step c and the end of Step c, the measure strictly decreases. Indeed, at the beginning of Step c,
every internal deducible constraints contain only variable as right hand term. Furthermore, we
know that these deducible constraints can either be removed thanks to Eq-right-right or either
be instantiated by the application of Axiom. But the choice of the rule and its parameters are
determined according to the minimal for L1

· (·). Hence, in the case of the rule Axiom, we always
instantiate a variable x by a term that can only contains variables appearing strictly at a earlier
stage in the constraint system.

Lemma 8.15. Let (M,M ′) be a pair of matrices of constraint systems obtained at the end of the
Step c of Phase 1 of the strategy with parameter s and k respectively for support and column. Let
(M1,M

′
1) be a pair of matrices of constraint systems obtained by application on (M,M ′) of Steps

b and c with the same parameters. µk
1.b+c(M1,M

′
1) < µk

1.b+c(M,M ′).

8.4.1.5 Termination of Phase 1, Step d

As explained in Subsection 7.4, after the cycle of steps b+c, it remains to simplify the external
deducible constraints such that they only have variables as right hand terms. To do so, we apply
the external rules Eq-right-right, Cons and Axiom as long as they are strongly applicable on
Mi,k by increasing order on the index of the line i (if we assume that k corresponds to an index
of the matrix M in the pair (M,M ′)).

To prove the termination of this cycle, we will use the measure µ1.b() on constraint system that
was used in Step b. Thanks to Lemma 8.13, we know that the measure µ1.b() strictly decrease for
a rule strongly applicable on a constraint system. Assume that n is the number of line in M and
M ′, we define a lexical measure on (M,M ′), denoted µk

1.d(M,M ′), as follows:

1. The number n−i0 where i0 is the maximal index of the line such that for all i ≤ i0, Mi0,k = ⊥
or Mi,k satisfies the invariant InvVarConstraint(s)

2. µ1.b(Mi0+1,k)

3. The number of (X, path) such that (X, i
?

⊢ u) ∈ D(Mℓ,k), (ξ, j ⊲ v) ∈ Φ(Mℓ,k), j ≤ i, X
?

6= ξ
is not in Er(Mℓ,k), X ∈ S2, path(ξ) = path, ℓ ∈ {1, . . . , n} and there exist f ∈ Fc such that

root(X)
?

6= f in Er(Mℓ,k)

We will assume for this measure that Mn′,k = ⊥ where for all n′ > n.

Lemma 8.16. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step d of
Phase 1 of the strategy with parameter s and k respectively for support and column. Furthermore,
let R(p̃) be the next possible rule applicable according to step d of the strategy and let (M1,M

′
1)

and (M2,M
′
2) be the two pairs of matrices of constraint systems obtained by application of R(p̃)

on (M,M ′). We have that:

µk
1.d(M1,M

′
1) < µk

1.d(M,M ′) ∧ µk
1.d(M2,M

′
2) < µk

1.d(M,M ′)

8.4.1.6 Termination of Phase 1, Step e

This phase does not need a termination proof since it only consists of modifying the constraint
systems in the matrices, i.e. no rules are applied during Step e.

8.4.2 Association table

We introduced in Subsection 7.4 the notion of association table. We described how they evolved
during Step b and c of Phase 2. Hence, we will now show how the association tables are used for
the termination proof of the cycles Step b+ c of Phase 2.

First of all, we need to show some properties on association tables that are satisfied for each
pair of matrices during Step b and c.

Lemma 8.17. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step b or
Step c of Phase 2 of the strategy. For all constraint systems C, C′ in (M,M ′) and their respective

association tables T , T ′, for all
∨n

i xi

?

6= vi, for all
∨m

j βj

?

6= β′
j, if T [

∨n
i xi

?

6= vi] =
∨m

j βj

?

6= β′
j,

then we have that: 


m∨

j

βjacc
1(C)

?

6= β′
jacc

1(C)


 ↓ =

n∨

i

xi

?

6= vi

Moreover, if T [
∨n

i xi

?

6= vi] =
∨m

j βj

?

6= β′
j and for all k ∈ {1, . . . ,m}, st(βj , β

′
j) ∩ (F∗

d · AX) = ∅

then there exists
∨n′

i x′
i

?

6= v′i such that T ′[
∨n′

i x′
i

?

6= v′i] =
∨m

j βj

?

6= β′
j.

We now describe the main measure that will never increase during Step b and c of Phase 2.
In the next paragraphs, we will show that this measure necessary decrease after one cycle Step

b + c. For a inequation u
?

6= v in Eq(C), we define a measure, denoted L1
C(u

?

6= v) such that

L1
C(u

?

6= v) = {{indC(u); indC(v)}}. We extend this measure to disjunction of inequations such
that:

L1
C(

n∨

i

ui

?

6= vi) = max{L1
C(ui

?

6= vi) | i = 1 . . . n}

We defined a similar measure for inequation of context of recipe, denoted L2
C(), such that

L2
C(β

?

6= β′) = {{paramCC
max(β); paramCC

max(β
′)}}. Furthermore, we also extend this notion to

disjunction of inequations such that:

L2
C(

n∨

i

βi

?

6= β′
i) = max{L2

C(βi

?

6= β′
i) | i = 1 . . . n}

The two measures L1
C() and L2

C() are related as shown in the next lemma.

Lemma 8.18. Let C be a well-formed constraint system satisfying InvVarConstraint(∞). Let β, β′

be two contexts of recipes such that β, β′ ∈ T (Fc ∪ (F∗
d · AX),X 2). We have that L1

C(βacc
1(C)

?

6=

β′acc1(C)) ≤ L2
C(β

?

6= β′). Furthermore, if β ∈ (F∗
d · AX) or β′ ∈ (F∗

d · AX), then we have that

L1
C(βacc

1(C)
?

6= β′acc1(C)) < L2
C(β

?

6= β′).

We define the general measure on matrices, denote µgen(), such that: Let (M,M ′) be a pair
of matrices of constraint systems, having the same structure and satisfying InvVarConstraint(∞).
Let S be the set defined such that

S = {D | T [E] = D for some association table T in (M,M ′) and some E}

In a pair (M,M ′), a same formula on context of recipes may appear several times in the association
tables of (M,M ′). The set S represents the set of all these different formulas on contexs of recipes.
Let C0 be a constraint system in (M,M ′) such that C0 6= ⊥. We have:

µ1
gen(M,M ′) =







 L1

C(D)
C are its association table T are in M or M ′

Eq(C) = E ∧D, for some E and some disjunction D
T [D] = ⊥









µ2
gen(M,M ′) =

{{
L2
C0
(D′) D′ ∈ S

}}

µgen(M,M ′) = µ1
gen(M,M ′) ∪ µ2

gen(M,M ′)

Intuitively, µ1
gen(M,M ′) represents the measure for the inequation that are not matched by

the Eq-right-right rule yet. On the other hand, µ2
gen(M,M ′) represents the measure for the

inequation that were matched at one point in the strategy by the rule Eq-right-right.

Lemma 8.19. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step b
or Step c of Phase 2 of the strategy. Let R(p̃) be one of the following external rules: Axiom,
Cons, Eq-right-right. Let (M1,M

′
1) and (M2,M

′
2) be the results of the application of R(p̃) on

(M,M ′). We have that:

µgen(M1,M
′
1) ≤ µgen(M,M ′) and µgen(M2,M

′
2) ≤ µgen(M,M ′)

Furthermore, for i = 1, 2, if a removal transformation was applied on the association table of
(Mi,M

′
i) then µgen(Mi,M

′
i) < µgen(M,M ′).

8.4.3 Termination of all steps of Phase 2 of the strategy

In this subsection, we describe all the measures that we use to show the termination of each
step of phase 2 of the strategy.

8.4.3.1 Termination of Phase 2, Step a

This step of the strategy consists of getting rid of the universal variable. Thus, to show that
this step terminate, we introduce a measure on the formulas Eq of the constraint systems that
checks the positions of all the universal variables in Eq. Let (M,M ′) be a pair of matrices of
constraint systems, we define a lexical measure, denoted µ2.a(M,M ′), which is composed of :

1. The multiset of the position of any occurrence of universal variables in Eq(C), for any

constraint system C in M and M ′, i.e. {{p | Eq(C) = E′ ∧ [∀ỹ.∀x.E′′ ∨ u
?

6= v] and u|p =
x and C in (M,M ′)}}

2. The number of (X, f) such that root(X) 6= f not in Er, X, i
?

⊢ u ∈ D(C), f ∈ Fc and C in
(M,M ′).

3. The number of (X, ξ) such that X, i
?

⊢ u ∈ D, ξ, j
?

⊢ v ∈ Φ, j ≤ i, X 6= ξ is not in Er(C) and
C in (M,M ′).

Thanks to this measure we are now able to prove the termination of Step a of Phase 2.

Lemma 8.20. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step a
of Phase 2 of the strategy. Let R(p̃) be one instance of the rule Axiom or Cons such that R(p̃)
is strongly applicable on at least one constraint system in M or M ′. At last, let (M1,M

′
1) and

(M2,M
′
2) be the two pairs of matrices of constraint systems obtained by application of R(p̃) on

(M,M ′). We have that:

µ2.a(M1,M
′
1) < µ2.a(M,M ′) ∧ µ2.a(M2,M

′
2) < µ2.a(M,M ′)

8.4.3.2 Termination of Phase 2, Step b

This step consists of applying the rules Cons and Eq-right-right as long as we can by
decreasing support. The main difficulty of the termination of this step is the fact that Cons intro-
duces new variables while Eq-right-right removes variables but also introduces new inequations
in each constraint systems.

In order to prove the termination of this step, we have to introduce a new measure on a pair
of matrices (M,M ′), denoted µ2.b(M,M ′), defined such that if n is the maximal size of the frame
in M,M ′, then µ2.b(M,M ′) is the tuple composed of:

— µgen(M,M ′)

— The number of disjunctions D such that Eq(C) = D ∧E and T [D] = ⊥, for some constraint
system C and its associative table T in M or M ′.

— The number of disjunctions D such that Eq(C) = D∧E, T [D] = D′ and st(D′)∩(F∗
d ·AX) 6=

∅, for some constraint system C and its associative table T in M or M ′.

— (µn
cons(M,M ′), µn

var(M,M ′), . . . , µ1
cons(M,M ′), µ1

var(M,M ′))

— The multiset of (X, f) such that C is in M or M ′, (X, i
?

⊢ x) ∈ D(C), Er(C) 6� root(X)
?

6= f

and there exists g ∈ Fc such that Er(C) � root(X)
?

6= g.

where for all i ∈ {1, . . . , n}, µi
var(M,M ′) and µi

cons(M,M ′) are defined as follows:

µi
var(M,M ′) = |{x ∈ vars1(C) | C in M or M ′, and indC(x) = i}|

µi
cons(M,M ′) = µi

cons,1(M,M ′) ∪ µi
cons,2(M,M ′)

µi
cons,1(M,M ′) =









(ha, hb)

C is in M or M ′ with T its association table,

Eq(C) = E ∧ (D ∨ x
?

6= v) and T [D ∨ u 6= v] = ⊥,

(X, i
?

⊢ x) ∈ D(C), root(v) ∈ Fc,

Er(C) 6� root(X)
?

6= root(v),
either st(v) ∩ N 6= ∅ or i < indC(v),
ha = max{h(p) | v|p ∈ N},
hb = max{h(p) | v|p ∈ X 1 ∧ i < indC(v|p)}









µi
cons,2(M,M ′) =









(ha, hb)

C is in M or M ′ with T its association table,
Eq(C) = E ∧ (D) and T [D] = D′ ∨X 6= ξ,

(X, i
?

⊢ x) ∈ D(C), root(ξ) ∈ Fc,

Er(C) 6� X
?

6= root(ξ),
either st(ξ) ∩ (F∗

d · AX) 6= ∅ or i < paramCC
max(ξ),

ha = max{h(p) | ξ|p ∈ F∗
d · AX},

hb = max{h(p) | ξ|p ∈ X 2 ∧ i < paramCC
max(ξ|p)}









Intuitively, µi
cons(M,M ′) represents the number of possible applications of the rule Cons that

a inequation can trigger. For example, assume that we consider the inequation x 6= f(g(a), y). ha

represents the maximal height of a name in the inequation, hence ha = 2. Indeed, as long as the
name a is not on the root of the inequation, then an application of the rule Cons will be possible:

x 6= f(g(a), y)
↓ Cons on x

x1 6= g(a) ∨ x2

?

6= y
↓ Cons on x1

x3 6= a ∨ x2

?

6= y No more Cons

Similarly, hb represents the number of possible applications of the rule Cons that an inequation
can trigger due to a variable with higher index.

Lemma 8.21. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step b
of the second phase. Let R(p̃) be an applicable rule and (M1,M

′
1) and (M2,M

′
2) the two pairs of

matrices of constraint systems obtained by application of R(p̃) on (M,M ′). We have that:

µ2.b(M1,M
′
1) < µ2.b(M,M ′) and µ2.b(M2,M

′
2) < µ2.b(M,M ′)

8.4.3.3 Step c: Instantiating the variables

In this paragraph, we show that Step c terminates and we also shows that the general measure,
i.e µgen(), strictly decrease at some point..

The measure used to prove termination of Step c is very simple. Indeed, during Step c, we
only apply the rule Axiom which either decrease the number of deducible constraint or add a

disequation on recipe. Let (M,M ′) be a pair of matrices of constraint systems, let C0 a constraint
system in M or M ′ such that C0 6= ⊥, we define a lexical measure µ2.c(M,M ′), as follows:

1. The number of deducible constraints, i.e. |D(C0)|

2. The number of couple (X, ξ) such that (X, i
?

⊢ x) ∈ D(C0), (ξ, j ⊲ u) ∈ Φ(C0) and Er(C0) 6�

X
?

6= ξ.

Thanks to this measure, we can now state the termination lemma.

Lemma 8.22. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step c of
the second phase. Let Axiom(p̃) be an applicable rule and (M1,M

′
1) and (M2,M

′
2) the two pairs

of matrices of constraint systems obtained by application of Axiom(p̃) on (M,M ′). We have that:

µ2.c(M1,M
′
1) < µ2.c(M,M ′) and µ2.c(M2,M

′
2) < µ2.c(M,M ′)

It remains to show that the measure µgen() strictly decrease at some point.

Lemma 8.23. Let (M,M ′) be a pair of matrices of constraint systems obtained at the end of Step
b of the second phase. Assume that there exists (M1,M

′
1) obtained at the end of the next Step b

of the second phase such that (M,M ′) →∗ (M1,M
′
1). At last, assume that there exists (M0,M

′
0)

obtained at the end of step c of the second phase such that (M1,M
′
1) →

∗ (M0,M
′
0). In such a case,

µgen(M0,M
′
0) < µgen(M,M ′).

8.5 Toward a more powerful attacker

In this section, we explore the possibility of extending the power of the attacker to not only
equality test between two messages. Indeed, an attacker may in fact have other ways to compare
two messages such as comparing the size of messages. Some encryption scheme also allow one
to check if two cypher were encrypted under the same key, without necessarily know the key or
plain text themselves. In this section, we do not pretend to solve the trace equivalence with such
attacker but we show a reduction result that simplify such problem.

8.5.1 Semantic with predicate

To model the new capabilities of the attacker, we will consider a predicate P of on ground
first order terms. For example, in the case of cyphers encrypted with the same key, we would
consider that P(u, v) is true if and only if u = senc(u′, k) and v = senc(v′, k) for some u′, v′, k. For
a substitution σ, and two term u, v, we say P(u, v) is satisfied, denoted σ � P(u, v) if and only if
P(uσ, vσ) is true.

With this new predicate available for the intruder, we have to redefine the notion of static
equivalence, trace equivalence and so on:

Definition 8.6 (static equivalence w.r.t. P). Let E a set of private names. Let Φ and Φ′ two
frames. We say that νE .Φ and νE .Φ′ are statically equivalent w.r.t. the predicate P, written
νE .Φ ∼P

c νE .Φ′, when dom(Φ) = dom(Φ′), when νE .Φ ∼c νE .Φ′ and when for all terms M,N
such that fvars(M,N) ⊆ dom(Φ) and fnames(M,N) ∩ E = ∅, if Message(MΦ) and Message(NΦ)
then P(MΦ↓, NΦ↓) is true if and only if P(MΦ′↓, NΦ′↓) is true.

As expected, the static equivalence w.r.t. P implies the static equivalence while the other
implication is not true.

Definition 8.7 (trace equivalence w.r.t. P). Let A and B be processes with the same set of private
names E. A ⊑P

t B if for every (s, νE .Φ) ∈ tracec(A), there exists (s, νE .Φ′) ∈ trace(B) such that
νE .Φ ∼P

c νE .Φ′.
Two closed processes A and B are trace equivalent w.r.t. the predicate P, denoted by A ≈P

t B,
if A ⊑P

t B and B ⊑P
t A.

8.5.2 Toward deciding the trace equivalence w.r.t. a predicate

Intuitively, to decide the trace equivalence w.r.t. P, we would have to go through all the lemma
and theorem of this part. Hopefully, some of these lemma either does not depend on the static
equivalence or only consider the static equivalence as hypothesis. Since the static equivalence
w.r.t. P implies the static equivalence, most of the lemma are easily adaptable.

In particular, we first reduce the problem of trace equivalence w.r.t. the predicate P, to the
problem of deciding the symbolic equivalence between set of constructor constraint system. In
order to do that, we first have to define again the static equivalence for constructor frame and the
symbolic equivalence between set of constraint system.

Definition 8.8 (static equivalence w.r.t. P). Two ground constructor frames Φ and Φ′ are
statically equivalent w.r.t. the predicate P, denoted Φ ∼P Φ′, if and only if dom(Φ) = dom(Φ′),
Φ ∼ Φ′ and for all ξ, ξ ∈ Πn, if param({ξ, ξ′}) ⊆ dom(Φ) and ξΦ↓, ξ′Φ↓ ∈ T (Fc,N), then
P(ξΦ↓, ξ′Φ↓) is equivalent to P(ξΦ′↓, ξ′Φ′↓).

Definition 8.9 (symbolic equivalence w.r.t. P). Two sets Σ and Σ′ of constructor constraint
systems having the same structure are symbolically equivalent w.r.t. predicate P denoted Σ ≈P

s Σ′,
if and only if for all C ∈ Σ, for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ and a substitution σ′ such
that (σ′, θ) ∈ Sol(C′) and Φσ ∼P Φ′σ′ (and conversely) where Φ and Φ′ are the respective frames
of C and C′.

As mentioned, to show that deciding trace equivalence w.r.t. the predicate P can be reduced
to the problem of deciding symbolic equivalence w.r.t. the predicate P, we follow the same step as
for the proof of Theorem 6.2. In particular, we show in Section 6.3.1.2 how it is possible to consider
that the attacker does not have access to public name. This is possible thanks to a mobilisation
of infinite names. To follow this modelisation, we ask that the predicate we consider satisfy the
following property:

Property 8.1. Let E be a finite set of names. For all u, v closed constructor terms, there exists
N ∈ N such that for all N ′ > N , P(u, v) if and only if P(uσE,N,a, vσE,N,a).

Intuitively, this property ensures that the terms that model our infinite names cannot be
distinguish by the predicate. We can than state the first reduction result:

Lemma 8.24. Let P be a predicate on first order term satisfying Property 8.1. Given a decision
procedure for the symbolic equivalence w.r.t. P of sets of constructor constraint systems, the
problem of trace equivalence w.r.t. P between two concrete processes is decidable.

8.5.3 Toward deciding the symbolic equivalence w.r.t. a predicate

As in the previous section, the idea for deciding the symbolic equivalence w.r.t. a predicate is to
use our decision procedure. In particular, we can easily show that the soundness and completeness
of our algorithm holds for the symbolic equivalence w.r.t. a predicate P. Indeed, one can note
that the core lemmas 8.4, 8.5, 8.6 and 8.7 still hold. Moreover, one can easily adapt the proof of
Proposition 8.1 and Theorems 8.1 and 8.2, by replacing the static equivalence ∼ by ∼P and the
symbolic equivalence ≈s by ≈P

s .
Hence, since the soundness and completeness hold even for the symbolic equivalence w.r.t. a

predicate, we reduced the problem to the problem of deciding the symbolic equivalence w.r.t. a
predicate on the leaves of our algorithm. Although the properties of such leaves are described in
detail in Section 8.3, we simplify in this section the formalism of such leaves and extract our main
reduction result.

Consider the definition of a solved constraint system (Definition 8.4). We know thanks to
Lemma 8.8 that every constraint system in a leaf satisfies this definition. But item 2 indicates
that no deductibility constraint is restricted by an equation on second order solution. Moreover,
we know that all constraint system in a line of the matrix have same set Er. Hence, the sets
Ers of the constraint systems on the leaves does not have any impact on the decidability of

symbolic equivalence w.r.t. P of two sets on a leaf. Similarly, we know that all equation in Eq is
automatically satisfied once the variable in D are instantiate. By extending this reasoning to all
the invariant satisfied by the constraint system on a leaf, we can define the notion of simplified
constraint system and the notion of solution of simplified constraint system

Definition 8.10. A simplified constraint system is a triple (Φ;D;Eq):

— Φ is a simplified frame {ξ1 ⊲ u1, . . . , ξn ⊲ un} where ui are constructor terms and ξi are
recipes.

— D is a set of deducible constraints of the form X, i
?

⊢ x with i ∈ N, X ∈ X 2, x ∈ X 1.

— Eq is a set of inequations of the form t
?

6= t′ where t, t′ are constructors terms that do not
contain names.

We also assume the following conditions are satisfied on a constraint system:

1. for every x ∈ vars1(D), there exists a unique X such that (X, i
?

⊢ x) ∈ D, and each variable X
occurs at most once in D.

2. vars1(C) ⊆ vars1(D)

3. for every 1 ≤ k ≤ n, for every x ∈ vars1(tk), if ax j ∈ vars2ξk then there exists (X, i
?

⊢ x) ∈ D
such that i < j.

Given a simplified frame Φ = {ξ1 ⊲ t1, . . . , ξn ⊲ tn} and a recipe ξ, we say that ξ is
build from Φ if there exists a context C[_1, . . . ,_m] containing only constructor function sym-
bol and j1, . . . , jm ∈ {1, . . . , n} such that ξ = C[ξj1 , . . . , ξjm]. Moreover, we denote ξΦ the term
C[tj1 , . . . , tjm].

Definition 8.11 (solution). A solution of a simplified constraint system C = (Φ;D;Eq) is a pair
of substitutions (σ, θ) such that σ is a mapping from vars1(C) to T (Fc,N), θ is a mapping from
vars2(C) to T (F ,AX), and:

1. for all (X, k
?

⊢ x) ∈ D, Xθ is built from Φθ, (Xθ)(Φθσ) = xσ, and param(Xθ) ⊆ {ax 1, . . . ,
axk};

2. for all t
?

6= t′, tσ 6= t′σ

The substitution σ is called the first-order solution of C associated to θ, called second-order solution
of C. The set of solutions of a constraint system C is denoted Sol(C).

Note that in the solution of a constraint system, we only consider the recipe that are built
from Φ, i.e. that are built from a constructor context over Φ. In fact in the constraint system on
a leave, it is also the case due to the invariant InvDest(∞). Similarly, in the definition of simplified
constraint system, we only considered distinct variables as right hand term for variables thanks
to the invariant InvVarConstraint(∞).

Definition 8.12 (simplified static equivalence). Let Φ and Φ′ two closed simplified frames having
the same structure. We say that Φ and Φ′ are in simplified static equivalence if for all ξ, ξ′ built
from Φ (thus also built from Φ′), ξΦ = ξ′Φ if and only if ξΦ′ = ξ′Φ′. Moreover, we say that Φ and
Φ′ are in simplified static equivalent w.r.t. the predicate P, denoted Φ ∼P Φ′ if Φ and Φ′ are in
simplified static equivalence and for all ξ, ξ′ built from Φ, P(ξΦ, ξ′Φ) if and only if P(ξΦ′, ξ′Φ′).

Definition 8.13 (simplified symbolic equivalence). Let Σ and Σ′ be two sets of simplified con-
straint systems that contain constraint systems having the same structure. We say that Σ and Σ′

are in simplified symbolic equivalence, denoted by Σ ≈s Σ
′, if for all C ∈ Σ, for all (σ, θ) ∈ Sol(C),

there exists C′ ∈ Σ′ and a substitution σ′ such that (σ′, θ) ∈ Sol(C′) and Φθσ ∼ Φ′θσ′ (and
conversely) where C = (Φ;D;Eq) and C′ = (Φ′;D′;Eq′).

We say that Σ and Σ′ are in simplified symbolic equivalence w.r.t. the predicate P, denoted by
Σ ≈P

s Σ′, if for all C ∈ Σ, for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ and a substitution σ′ such that
(σ′, θ) ∈ Sol(C′) and Φθσ ∼P Φ′θσ′ (and conversely) where C = (Φ;D;Eq) and C′ = (Φ′;D′;Eq′).

With this simpler formalism, we can establish our main reduction result:

Theorem 8.4. Consider a predicate P that satisfies Property 8.1. Given an algorithm for deciding
the simplified symbolic equivalence w.r.t. P between two sets of simplified constraint systems Σ and
Σ′ that contain constraint systems having the same structure and such that there exists a ∈ N such
that for all (Φ;D;Eq) ∈ Σ ∪ Σ′, (ax 1 ⊲ a) ∈ Φ, and for all C, C′ ∈ Σ ∪ Σ′, C ≈s C′, D = D′ and
Eq = Eq′ where C = (Φ;D;Eq) and C′ = (Φ′;D′;Eq′), we can derive an algorithm for deciding
trace equivalence w.r.t. P between two bounded processes.

Part III

ProVerif

153

Chapter 9

Proving more observational

equivalences with ProVerif

Contents

9.1 Model . 157

9.1.1 Syntax . 157

9.1.2 Semantics . 161

9.2 Using biprocesses to prove observational equivalence 163

9.2.1 Biprocesses . 164

9.2.2 From equational theories to rewrite rules 165

9.3 Clause generation . 167

9.3.1 Patterns and facts . 167

9.3.2 Clauses for the attacker . 168

9.3.3 Clauses for the protocol . 169

9.3.4 Proving equivalences . 171

9.3.5 Proving Properties P1 and P2 . 171

9.4 Automatic modification of the protocol . 172

9.4.1 Targeted false attack . 173

9.4.2 Merging and simplifying biprocesses 174

9.5 Applications . 177

9.5.1 Successful case study: the private authentication protocol 177

9.5.2 Limitations: the Basic Access Control protocol 178

ProVerif was first a protocol analyser for trace properties. It implements an algorithm,
based on Horn clauses, that accepts protocols written in the applied pi-calculus. The behaviour
of the cryptographic primitives is represented by an equational theory and/or rewrite rules. One
reason for the success of this tool may come from the fact that ProVerif does not depend on a
specific equational theory and allows the user to describe himself the behaviour of his cryptographic
primitives.

Since [BAF08], ProVerif can also prove equivalence properties. It focuses on proving equiv-
alences P ≈ Q in which P and Q are two variants of the same process obtained by selecting
different terms for P and Q. Hence, [BAF08] introduced the notion of biprocess and the operator
diff where P (diff[M1,M2]) represents the two variants P (M1) and P (M2), obtained by giving dif-
ferent interpretations to diff([M1,M2]), i.e. either selecting M1 or M2. In [BAF08], the authors
also introduce an operational semantics for biprocesses where P (diff(M1,M2]) behaves the same
way as P (M1) and P (M2) if the intruder cannot distinguish P (M1) from P (M2). Furthermore,
a reduction of P (diff(M1,M2]) necessary becomes a biprocess. On the other hand, if an intruder
can distinguish P (M1) from P (M2), then the operational semantics specifies that P (diff(M1,M2])

155

gets stuck. Hence, to prove the equivalence between P (M1) and P (M2), it is sufficient to prove
that P (diff[M1,M2]) never gets stuck.

However, the notion of equivalence used by ProVerif is stronger than the usual trace equiv-
alence or observational equivalence. As we described earlier, ProVerif requires that the two
processes have the same control structure and that all tests yield the same result in both pro-
cesses. Thus, for a protocol that does not satisfy this condition, ProVerif will fail to prove
equivalence, i.e. it will yield a false attack.

Example 9.1. Consider for example the two naives protocols:

P : in(c, x).if x = pk(skA) then out(c, {s}pk(skA)) else out(c, {Np}pk(skA))
Q : in(c, x).if x = pk(skB) then out(c, {s}pk(skB)) else out(c, {Nq}pk(skB))

For simplicity, we omitted the name restriction but we assume that all names but c are private.
However, the we assume that the intruder knows the public keys of A and B, i.e. pk(skA) and
pk(skB) respectively. The protocol P is simply waiting for the public key of the agent A (pk(skA))
on a channel c, and if he receives it then sends some secret s encrypted with A’s public key else
a fresh nonce Np encrypted with A’s public key is sent on the channel c. On the other hand, the
protocol Q does similar actions but is waiting for the public key of the agent B (pk(skB)) instead
of A. Assuming that the attacker does not have access to the private keys skA and skB, then
the two protocols are equivalent since the attacker cannot differentiate {s}pk(skA) and {Nq}pk(skA)

(resp. {s}pk(skB) and {Nq}pk(skB)).
However, even if those two protocols can be transformed into a biprocess, i.e.

in(c, x).if x = diff[pk(skA), pk(skB)] then out(c, diff[{s}pk(skA), {s}pk(skB)])
else out(c, diff[{Np}pk(skA), {Nq}pk(skB)])

ProVerif will yield a false negative due to the conditional. Indeed, if the attacker sends the public
key of A, then the left part of the test x = diff[pk(skA), pk(skB)] will succeed when the right part will
fail. Since the test does not behave the same way on the right and left side, the biprocess gets stuck
and so ProVerif will be unable to prove the equivalence. More realistic examples illustrating this
false attack can be found in several cases studies, e.g. anonymity of the private authentication
protocol [AF04] and unlinkability of the Basic Access Control protocol of the e-passport protocols
(see Chapter 3).

This chapter address the issue of such false attacks. Our main idea is to extend the behaviour
of destructor function symbols, so that we can perform tests directly inside terms. Initially,
destructors could only be declared using rewrite rules, such as dec(enc(x, y), y) → x, which allowed
to perform pattern-matching on terms but no inequality test. We have extended ProVerif with
inequalities in the definition of destructors. For instance, we can now define a destructor test as
follows:

test(x, x, z, t) → z
test(x, y, z, t) → t if x 6= y

With this definition, a term test(M1,M2,M3,M4) reduces into M3 if M1 and M2 are equal under
the equational theory, and into M4 if M1 and M2 are different under the equational theory. This
extension allows us, for example, to replace conditional branching in the processes by test(. . .).
Coming back to our previous biprocess, we can now write a similar biprocess which has the same
control behaviuor for both the left and the right side:

in(c, x).
let y = test(x, diff[pk(skA), pk(skB)], diff[{s}pk(A), {s}pk(skB)], diff[{Np}pk(skA), {Nq}pk(skB)])
in out(c, y)

Since the conditional process is removed, ProVerif will be able to prove the equivalence of such a
biprocess. Although the transformation was done on a naive protocol, we show that it also can be
done on more realistic examples. Moreover, since such transformations may not be very natural,
we provide an implementation that will automatically detect and perform these transformations
when possible.

9.1 Model

This section introduces our process calculus, by giving its syntax and its operational semantics.
As mentioned above, our work extends the behaviour of destructor symbols our syntax and se-
mantics of terms evaluations change in comparison to the original calculus of ProVerif [BAF08].
However, we did not modify the syntax of processes thus the semantics for processes only differ
from the changes led by the modifications in the semantics for term evaluation.

9.1.1 Syntax

Similarly to all our previous works, the messages sent on the network by some agents in a
protocol are modelled using an abstract term algebra. We assume an infinite set of names N and
an infinite set of variables X . We also consider a signature F consisting of a finite set of function
symbols with their arity.

We saw that the behaviour of cryptographic primitives could be represented by an equational
theory (see Part I), or by a rewriting system (see Part II). However, in ProVerif, both represen-
tations are used to describe the behaviour of cryptographic primitives. Hence, as in the calculus
of ProVerif [BAF08], we distinguish two categories of function symbols: constructors f and
destructors g. Constructors build terms; destructors, defined by rewrite rules, manipulate terms,
as detailed below. We denote by Fc and Fd the set of constructors and destructors, respectively.

Messages M are terms built from variables, names, and constructors applied to terms. The
tool ProVerif being more focused on a practical syntax and semantics, an equational theory E
can only be described by a finite set of equations M = N , where M,N are terms without names.

9.1.1.1 Destructors

In [BAF08], the rewrite rules describing the behaviour of destructors follow the usual definition
of a rewrite rule, i.e. g(M1, . . . ,Mn) → M where M1, . . . ,Mn,M are terms built on T (Fc,X).
However, as mentioned in the introduction, we want to introduce tests directly into terms and
more specifically into the definition of destructors. Hence, we introduce formulas on messages in
order to express these tests. We consider formulas φ of the form

∧n
i=1 ∀x̃i.Mi 6=E Ni, where x̃

stand for a sequence of variables x1, . . . , xk and E is the equational theory. We denote by ⊤ and
⊥ the true and false formulas, respectively corresponding to an empty conjunction (n = 0) and
to x 6=E x, for instance. Formulas will be used as side conditions for destructors.

Let σ be a substitution mapping variables to ground terms. We define σ � φ as follows:
σ �

∧n
i=1 ∀x̃i.Mi 6=E Ni if and only if for i = 1, . . . n, for all σi of domain x̃i, Miσiσ 6=E Niσiσ.

More generally, we extend σ � φ to formulas using classic logic connectors with equalities and
inequalities. Note that this definition of σ satisfying φ is similar to the one given in Part II except
that the inequalities and equalities are not syntactic anymore.

In [BAF08] and in Part II, destructors are partial functions defined by rewrite rules; when no
rewrite rule can be applied, we say that the destructor fails. However, this formalism does not
allow destructors to succeed when one of their arguments fails. We shall need this feature in order
to include as many tests as possible in terms. Therefore, we extend the definition of destructors
by defining may-fail messages, denoted by U , which can be messages M , the special value fail, or
a variable u. We separate fail from ordinary messages M so that the equational theory does not
apply to fail. May-fail messages represent the possible arguments and result of a destructor. We
differentiate variables for may-fail messages, denoted u, v, w and variables for messages, denoted
x, y, z. A may-fail variable u can be instantiated by a may-fail term while a message variable x
can only be instantiated by a message, and so cannot be instantiated by fail. The syntax of our
terms is summarised in Figure 9.1.

For two ground may-fail messages U1 and U2, we say that U1 =E U2 if and only if U1 = U2 = fail

or U1, U2 are both messages, denoted M1,M2, and M1 =E M2.

Example 9.2. Consider the signature F and the associated equational theory Eaenc of Example 2.2.
Consider U and V defined as follows:

M ::= message
x, y, z variable
a, b, c name
f(M1, . . . ,Mn) constructor application

U ::= may-fail message
M message
fail failure
u may-fail variable

Figure 9.1: Syntax of our terms

— U = proj1(adec(aenc(〈n1, n2〉, pk(sk)), sk)) and V = n1: we have U =Eaenc
V

— U = proj1(adec(aenc(〈n1, n2〉, pk(sk)), sk)), V = n2: we have U 6=Eaenc
V

— U = n2 and V = fail: we have U 6=Eaenc
V

Note that proj1(fail) is not a may-fail message nor a message.

Given a signature F and an equational theory E, a destructor g of arity n is defined by a finite
set of rewrite rules g(U1, . . . , Un) → U || φ where U1, . . . , Un, U are may-fail messages that do not
contain any name. Furthermore, φ is a formula as defined above that does not contain any name.
The variables of U and fvars(φ) are bound in U1, . . . , Un. Note that all variables in fvars(φ) are
necessarily message variables. Variables are subject to renaming. When φ is the formula ⊤, we
omit the formula.

Example 9.3. Consider a signature F and an equational theory E. A symmetric encryption
scheme where the decryption function either properly decrypts a ciphertext using the correct private
key, or fails. To model this encryption scheme, we consider, in the signature F , the constructor
senc for encryption, the destructor sdec for decryption. Decryption can be defined by the rules:

— sdec(senc(x, y), y) → x (decryption succeeds)

— sdec(x, y) → fail || ∀z.x 6=E senc(z, y) (decryption fails, because x is not a ciphertext under
the correct key)

— sdec(fail, u) → fail, sdec(u, fail) → fail (the arguments failed, the decryption also fails)

To avoid confusion, we will call equational presentation, denoted Σ, the signature F with its
associated equational theory E and the sets of rewriting rules that describe the destructors of F .
Hence, we denote defΣ(g) the set of rewrite rule describing g in the signature of Σ. Moreover, we
denote U =Σ V (resp. U 6=Σ V) the equality (resp. inequality) modulo the equational theory of
Σ.

Consider U1, . . . , Un may-fail messages and consider g a destructor of arity n. We say that g

rewrites U1, . . . , Un into U , denoted g(U1, . . . , Un) → U , if there exist g(U ′
1, . . . , U

′
n) → U ′ || φ in

defΣ(g), and a substitution σ such that U ′
iσ =Σ Ui for all i = 1 . . . n, U ′σ = U and σ � φ.

At last, we ask that given an equational presentation Σ, for all destructors g of arity n, defΣ(g)
satisfies the following properties:

P1. For all ground may-fail messages U1, . . . , Un, there exists a may-fail message U such that
g(U1, . . . , Un) → U .

P2. For all ground may-fail messages U1, . . . , Un, if g(U1, . . . , Un) → V1 and g(U1, . . . , Un) → V2

for some V1, V2 then V1 =Σ V2.

Property P1 expresses that all destructors are total while Property P2 expresses that all destructors
are deterministic (modulo the equational theory). Note that thanks to Property P2, a destructor
cannot reduce to fail and a message at the same time. We provide two algorithms that allow us
to automatically verify that a destructor satisfies Properties P1 and P2 (See Section 9.3.5).

In Example 9.3, the destructor sdec follows the classical definition of the symmetric decryption.
However, thanks to the formulas and the fact that the arguments of a destructor can fail, we can
describe the behaviour of new primitives.

Example 9.4. We define a destructor that tests equality and returns either true or false, as
follows:

eq(x, x) → true

eq(x, y) → false || x 6=Σ y

eq(fail, u) → fail eq(u, fail) → fail

This destructor fails when one of its arguments fails. We remark that such a destructor could not
be defined in ProVerif without our extension, because one could not test x 6=Σ y.

9.1.1.2 From usual destructors to our extension

More generally, from a destructor defined, as in [BAF08], by rewrite rules g(M1, . . . ,Mn) → M
without side conditions and such that the destructor is considered to fail when no rewrite rule
applies, we can build a destructor in our formalism. The algorithm is given in Lemma 9.1 below.

Lemma 9.1. Consider an equational presentation Σ. Let g be a destructor of arity n described
by the following set S of rewrite rules:

{g(M i
1, . . . ,M

i
n) → M i | i = 1, . . . ,m}

Assume that g is deterministic, i.e. S satisfies Property P2. The following set defΣ(g) satisfies
Properties P1 and P2:

defΣ(g) = S ∪ {g(x1, . . . , xn) → fail || φ}
∪{g(u1, . . . , uk−1, fail, uk+1, . . . , un) → fail | k = 1, . . . , n}

where φ =
∧m

i=1 ∀ỹi.(x1, . . . , xn) 6=Σ (M i
1, . . . ,M

i
n) and ỹi are the variables of (M i

1, . . . ,M
i
n), and

x1, . . . , xn are message variables.

Proof. Let U1, . . . , Un be ground may-fail messages. Consider first the case where there ex-
ists i ∈ {1, . . . , n} such that Ui =Σ fail. Since x1, . . . , xn are message variables and for all
i ∈ {1, . . . ,m}, for all j ∈ {1, . . . , n}, M i

j is a message, the only rules that can rewrite U1, . . . , Un

are {g(u1, . . . , uk−1, fail, uk+1, . . . , un) → fail | k = 1, . . . , n}. Moreover, let σ be the substitution
such that ujσ = Uj for all j 6= i. We trivially have that ujσ =Σ Uj and by hypothesis Ui =Σ fail.
Thus, g(U1, . . . , Un) → fail and there is no message M such that g(U1, . . . , Un) → M .

Consider now the case where U1, . . . , Un are all messages, that we rename M1, . . . ,Mn. Thus,
M1, . . . ,Mn can only be rewriten by the rules in S∪{g(x1, . . . , xn) → fail || φ}. Let i ∈ {1, . . . ,m}.
By definition, we have that M1, . . . ,Mn is rewritten by the rule g(M i

1, . . . ,M
i
n) → M i if, and only

if, there exists a substitution σ such that σ � ∃ỹi.(x1, . . . , xn) =Σ (M i
1, . . . ,M

i
n) and xjσ = Mj

for j = 1 . . . n where ỹi = fvars(M i
1, . . . ,M

i
n). Hence, M1, . . . ,Mn can be rewritten by one of the

rules in S if, and only if, there exists a substitution σ such that σ � ¬φ. On the other hand,
M1, . . . ,Mn can be rewritten by g(x1, . . . , xn) → fail || φ if, and only if, σ � φ. Hence we deduce
that defΣ(g) satisfies Property P1. Moreover, since M i is a message for all i = 1 . . .m, and there
is no substitution σ such that σ � φ ∧ ¬φ, we deduce that defΣ(g) satisfies Property P2.

The users can therefore continue defining destructors as before in ProVerif; the tool au-
tomatically completes the definition following Lemma 9.1. The users will also be able to define
destructors using the new formalism, i.e. with side conditions and may-fail messages. However, in
this case, it is up to the user to provide a set of rewrite rules that satisfies Properties P1 and P2.
Indeed, the algorithms described in Section 9.3.5 only check if a set S of rewrite rules satisfies
both properties but these algorithms do not complete S if it fails to satisfy the desired properties.

D ::= term evaluations
U may-fail message
eval h(D1, . . . , Dn) function evaluation

Figure 9.2: Syntax of term evaluation

9.1.1.3 Term Evaluation

A term evaluation, denoted by D and defined in Figure 9.2, represents the evaluation of a series
of constructors and destructors.

eval h(D1, . . . , Dn) indicates that the function symbol will be evaluated. While all destructor
must be preceded by eval , some constructors might also be preceded by eval in a term evaluation.
In fact, the reader may ignore the prefix eval since eval h and h have the same semantics. However,
eval becomes useful when we convert equations into rewrite rules (see. Section 9.2.2). Typically,
eval is used to indicate when a term has been evaluated or not.

In order to avoid distinguishing constructors and destructors in the definition of term evalua-
tion, for f a constructor of arity n, we let defΣ(f) = {f(x1, . . . , xn) → f(x1, . . . , xn)} ∪ {f(u1, . . . ,
ui−1, fail, ui+1, . . . , un) → fail | i = 1, . . . , n}. The second part of the union corresponds to the
failure cases: the constructor fails if and only if one of its arguments fails. We allow may-fail mes-
sages in term evaluations. Since no construct will allow us to bind may-fail variables in processes,
only messages M and fail may in fact occur.

9.1.1.4 Processes

At last, processes P , Q, R represent protocols and are defined in Figure 9.3. This syntax
corresponds exactly to [BAF08] and is very similar to the syntax of the applied pi calculus.
However, note that the condition if M = N then P else Q is not included in our calculus. Indeed,
it was replaced by the term evaluation let x = D in P else Q that evaluates the term evaluation
D. If D reduces to a message, it stores the result in x and executes P . Otherwise, D reduces to
fail, and Q is executed. A trailing 0 can be omitted after an input or an output. An else branch
can be omitted when it is else 0.

P,Q,R ::= processes
0 nil
in(M,x).P input
out(M,N).P output
P | Q parallel composition
!P replication
νa.P restriction
let x = D in P else Q term evaluation

Figure 9.3: Syntax of our processes

Note that even if the condition if M = N then P else Q is not included in our calculus, it can
now be defined as let x = equals(M,N) in P else Q, where x is a fresh variable and equals is a binary
destructor with the rewrite rules {equals(x, x) → x, equals(x, y) → fail || x 6=Σ y, equals(fail, u) →
fail, equals(u, fail) → fail}. The destructor equals succeeds if and only if its two arguments are equal
messages modulo the equational theory and different from fail. We always include this destructor
in the signature F .

Example 9.5. The private authentication protocol described in Example 3.10 can be expressed

in the ProVerif syntax as follows:

A(ska, sk b)
def
= νna.out(c, aenc(〈na, pk(ska)〉, pk(sk b))).in(c, z).0

B(sk b, ska)
def
= νnb.in(c, y).let x = adec(y, sk b) in

let xna = proj1(x) in
let z = equals(proj2(x), pk(ska)) in

out(c, aenc(〈xna, 〈nb, pk(sk b)〉〉, pk(ska)))
else out(c, aenc(nb, pk(sk b)))

else out(c, aenc(nb, pk(sk b)))
else out(c, aenc(nb, pk(skb)))

System(ska, sk b)
def
= A(ska, sk b) | B(sk b, ska)

9.1.2 Semantics

We define in this subsection the semantics for term evaluation and processes.

9.1.2.1 Term evaluation

Given an equational presentation Σ, given a term evaluation D, a term U is the result of an
evaluation of D, denoted D ↓Σ U , and defined as follows:

U ↓Σ U
eval g(D1, . . . , Dn) ↓Σ Uσ

if g(U1, . . . , Un) → U || φ ∈ defΣ(g), and σ is such
that for all i, Di ↓Σ Vi, Vi =Σ Uiσ and σ � φ

Note that this semantics differs from [BAF08] by the addition of formulas in the destructor
definitions and the fact that messages are replaced by may-fail messages.

Thanks to the properties P1 and P2 satisfied by the destructors, we establish the following
result:

Lemma 9.2. Consider an equational presentation Σ. For all ground term evaluations D,

— there exists a ground may-fail message U such that D ↓Σ U .

— for all ground may-fail messages U1, U2, if D ↓Σ U1 and D ↓Σ U2 then U1 =Σ U2.

Proof. We prove this result by induction on D:

Case D = U : In such a case, we have that D ↓Σ U hence the result trivially holds.

Case D = eval g(D1, . . . , Dn): By inductive hypothesis, there exist U1, . . . , Un ground may-fail
messages such that Di ↓Σ Ui for all i = 1 . . . n. By Property P1, we know that there exists
g(U ′

1, . . . , U
′
n) → U ′ || φ in defΣ(g) and a substitution σ such that U ′

iσ =Σ Ui for i = 1 . . . n and
σ � φ hence D ↓Σ U ′σ. Moreover, since fvars(U ′) ⊆ fvars(U ′

1, . . . , U
′
n), we deduce that U ′σ is

ground. Thus the first item is satisfied.
Let V1, V2 two may-fail messages such that D ↓Σ V1 and D ↓Σ V2. D ↓Σ V1 implies that there

exist U1, . . . , Un ground may-fail messages such that Di ↓Σ Ui for all i = 1 . . . n and g(U1, . . . , Un) →
V1. Similarly, D ↓Σ V2 implies that there exist W1, . . . ,Wn ground fail-messages such that Di ↓Σ Wi

for all i = 1 . . . n and g(W1, . . . ,Wn) → V2. By our inductive hypothesis, we deduce that Wi =Σ Ui

for all i = 1 . . . n. Hence, by definition of the reduction of may-fail messages by a destructor,
we deduce that g(U1, . . . , Un) → V2. But defΣ(g) satisfies Property P2, thus we conclude that
V1 =Σ V2.

In fact, given an equational presentation Σ′ defined as in the original ProVerif, i.e. with
partial destructors and no side condition, and given Σ the equational presentation adapted to
our semantics thanks to Lemma 9.1, we would have: For all ground term evaluations D, for all
messages M , D ↓Σ′ M if, and only if, D ↓Σ M .

Example 9.6. Consider an equational presentation Σ with the equational theory Eaenc and the
destructor sdec described in Example 9.3. We have:

— eval sdec(senc(n, sk), sk) ↓Σ n

— eval sdec(senc(n, sk ′), sk) ↓Σ fail.

— eval sdec(senc(n, proj1(〈sk , sk
′〉)), sk) ↓Σ n

9.1.2.2 Processes

Similarly to the applied pi calculus, the semantics for processes in ProVerif is defined by a
structural equivalence, denoted ≡ and some internal reductions. However, both relations slightly
differ from the applied pi calculus. The structural equivalence in ProVerif is the smallest
equivalence relation on processes that is closed under α-conversion of bounded names and variables
and that includes the following relations:

P | 0 ≡ P
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
νa.νb.P ≡ νb.νa.P
νa.(P | Q) ≡ P | νa.Q

if a /∈ fnames(P)

P ≡ P
Q ≡ P ⇒ P ≡ Q
P ≡ Q, Q ≡ R ⇒ P ≡ R
P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ νa.P ≡ νa.Q

Note that similarly to the applied pi calculus, the structural equivalence is closed by application
of evaluation contexts, and basic structural rules such as A | 0 ≡ A, associativity and commu-
tativity of |, binding-operator-like behaviour of ν. However, this structural equivalence does not
substitute equal terms modulo the equational theory and do not model the replication. Both
properties are in fact modelled as internal reduction rules for processes (see below). In [BAF08],
they indicate that this weakening of the structural equivalence was designed to simplify the proofs.

Figure 9.4 describes the internal reductions for processes (→Σ). This semantics is different
from [BAF08] by the semantics of the rule (Red Fun 2) which previously corresponded to the case
where the evaluation term D could not be reduced.

out(N,M).Q | in(N ′, x).P →Σ Q | P{M/x}
if N =Σ N ′ (Red I/O)

let x = D in P else Q →Σ P{M/x}
if D ↓Σ M (Red Fun 1)

let x = D in P else Q →Σ Q
if D ↓Σ fail (Red Fun 2)

!P →Σ P |!P (Red Repl)
P →Σ Q ⇒ P | R →Σ Q | R (Red Par)
P →Σ Q ⇒ νa.P →Σ νa.Q (Red Res)
P ′ ≡ P, P →Σ Q, Q ≡ Q′ ⇒ P ′ →Σ Q′ (Red ≡)

Figure 9.4: Semantics for processes

Both relations ≡ and →Σ are defined only on closed processes. Furthermore, we denote →∗
Σ

the reflexive and transitive closure of →Σ. At last, we denote →∗
Σ≡ for its union with ≡. When

Σ is clear from the context, we abbreviate →Σ and ↓Σ to → and ↓, respectively.

Example 9.7. Coming back to Example 9.5, consider the process P
def
= out(c, n).in(c, z) |

νska.νsk b.B(sk b, ska) and the equational presentation Σ with the equational theory Eaenc of Exam-
ple 2.2. A possible reduction of P would be the following:

P →Σ νska.νsk b.νnb.
(
out(c, n).in(c, z) | in(c, y).B′

)
(Red ≡)

→Σ νska.νsk b.νnb.
(
in(c, z) | B′{n/y}

)
(Red I/O and Res)

→Σ νska.νsk b.νnb.
(
in(c, z) | B′′{n/y}{

u/x}
)

(Red Fun 1 and Res)
→Σ νska.νsk b.νnb.

(
in(c, z) | B′′′{n/y}{

u/x}{
v/xna

}
)

(Red Fun 1 and Res)
→Σ νska.νsk b.νnb.

(
in(c, z) | out(c, aenc(nb, pk(sk b)))

)
(Red Fun 2 and Res)

→Σ νska.νsk b.νnb.
(
0 | 0) (Red I/O and Res)

where u = adec(n, sk b), v = proj1(adec(n, sk b)) and B′, B′′ and B′′′ are defined as follows:

B′ def
= let x = adec(y, sk b) in B′′ else out(c, aenc(nb, pk(skb)))

B′′ def
= let xna = proj1(x) in B′′′ else out(c, aenc(nb, pk(skb)))

B′′′ def
= let z = equals(proj2(x), pk(ska)) in

out(c, aenc(〈xna, 〈nb, pk(sk b)〉〉, pk(ska)))
else out(c, aenc(nb, pk(sk b)))

However, if we now consider Σ′ as the equational presentation where adec is a destructor and
defΣ′(adec) is described by the following rules:

— adec(aenc(x, pk(y)), y) → x (decryption succeeds)

— adec(x, y) → fail || ∀z.x 6=E aenc(z, pk(y)) (decryption fails, because x is not a ciphertext
under the correct public key)

— adec(fail, u) → fail, adec(u, fail) → fail (the arguments failed, the decryption also fails)

then a possible reduction of P (we omit the eval adec) would be the following:

P →Σ′ νska.νsk b.νnb.
(
out(c, n).in(c, z) | in(c, y).B′

)
(Red ≡)

→Σ′ νska.νsk b.νnb.
(
in(c, z) | B′{n/y}

)
(Red I/O and Res)

→Σ′ νska.νsk b.νnb.
(
in(c, z) | out(c, aenc(nb, pk(sk b)))

)
(Red Fun 2 and Res)

→Σ′ νska.νsk b.νnb.
(
0 | 0) (Red I/O and Res)

Note that while in the first case, we have adec(n, sk b) ↓Σ adec(n, sk b) since adec is a constructor
in Σ, we have in the second case adec(n, sk b) ↓Σ′ fail due to the definition of defΣ′(adec). Hence
the application of the internal reduction rule (Red Fun 2). In the first case, the application of the
internal reduction rule (Ref Fun 2) is due to the destructor equals and more specifically to the fact
that equals(proj2(adec(n, sk b)), pk(ska)) ↓Σ fail.

9.2 Using biprocesses to prove observational equivalence

One of the purposes of ProVerif is to prove the observational equivalence between processes.
In Chapter 3, we provide a definition for such equivalence (see Definition 3.5) in the applied pi
calculus. While the syntax and semantic of ProVerif are different from the applied pi calculus,
the definition of observational equivalence for ProVerif is almost identical to Definition 3.5:

Definition 9.1. Given an equational presentation Σ, the process P , built on Σ, emits on M
(P ⇓ M) if and only if P →∗

Σ≡ C[out(M ′, N).R] for some evaluation context C that does not bind
fnames(M) and M =Σ M ′.

The observational equivalence, denoted ≈ is the largest symmetric relation R between closed
processes with the same domain such that P R Q implies:

1. if P ⇓ M , then Q ⇓ M ;

out(N,M).Q | in(N ′, x).P → Q | P{x 7→ M} (Red I/O)
if fst(N) =Σ fst(N ′) and snd(N) =Σ snd(N ′)

let x = D in P else Q → P{x 7→ diff[M1,M2]} (Red Fun 1)
if fst(D) ↓Σ M1, snd(D) ↓Σ M2

let x = D in P else Q → Q (Red Fun 2)
if fst(D) ↓Σ fail and snd(D) ↓Σ fail

Figure 9.5: Generalized rules for biprocesses

2. if P →∗
Σ P ′, then Q →∗

Σ Q′ and P ′ R Q′ for some Q′;

3. C[P] R C[Q] for all closing evaluation contexts C.

As in the applied pi calculus, the same difficulties arise when deciding the observational equiv-
alence between two processes. One of the most difficult parts directly comes from the second
item of Definition 9.1. Indeed, this condition indicates that each reduction of a process has to be
matched in the second process. However, we consider a process algebra with replication, hence
there are usually an infinite number of candidates for this mapping.

9.2.1 Biprocesses

To solve this problem, [BAF08] introduces a calculus that represents pairs of processes, called
biprocesses, that have the same structure and differ only by the terms and term evaluations that
they contain. The grammar for the calculus is a simple extension of the grammar of Figures 9.1, 9.2
and 9.3, with additional cases so that diff[M,M ′] is a term and diff[D,D′] is a term evaluation.

Given a biprocess P , we define two processes fst(P) and snd(P), as follows: fst(P) is obtained
by replacing all occurrences of diff[M,M ′] with M and diff[D,D′] with D in P , and similarly,
snd(P) is obtained by replacing diff[M,M ′] with M ′ and diff[D,D′] with D′ in P . We define
fst(D), fst(M), snd(D), and snd(M) similarly. A process or context is said to be plain when it
does not contain diff.

Definition 9.2. Let P be a closed biprocess. We say that P satisfies observational equivalence
when fst(P) ≈ snd(P).

Example 9.8. Coming back to the private authentication protocol detailed in Example 9.5, we
want to verify the anonymity of the participant A. In Section 3.3, we saw that the anonymity
property is modelled by an observational equivalence between two instances of the protocol: one
where B is talking to A and the other where B is talking to A′, which is modelled, in the ProVerif
calculus, as follows:

νska.νska′ .νsk b.out(c, pk(ska)).out(c, pk(ska′)), out(c, pk(sk b)).System(ska, sk b)
≈

νska.νska′ .νsk b.out(c, pk(ska)).out(c, pk(ska′)), out(c, pk(sk b)).System(ska′ , sk b)

We already know that this equivalence holds for the trace equivalence, but in fact it also holds
for the observational equivalence. To prove this equivalence using ProVerif, we first have to
transform this equivalence into a biprocess. This is easily done since only the private keys ska and
ska′ change between the two processes. Hence, we define the biprocess P0 as follows:

νska.νska′ .νsk b.out(c, pk(ska)).out(c, pk(ska′)).out(c, pk(sk b)).System(diff[ska, ska′], sk b)

Note that fst(P0) and snd(P0) correspond to the two protocols of the equivalence.

The semantics for biprocesses is defined as in Figure 9.4 with generalized rules (Red I/O), (Red
Fun 1), and (Red Fun 2) given in Figure 9.5. Once again, the difference with [BAF08] is that, in
rule (Red Fun 1), we require that fst(D) and snd(D) reduce to a message and, in rule (Red Fun

2), fst(D) and snd(D) both reduce to fail. In contrast, in [BAF08], in rule (Red Fun 1), fst(D)
and snd(D) reduced to any message and, in rule (Red Fun 2), fst(D) and snd(D) failed to reduce.

The semantics of biprocesses is such that a biprocess reduces if and only if both sides of the
biprocess reduce in the same way: a communication succeeds on both sides; a term evaluation
succeeds on both sides or fails on both sides. When the two sides of the biprocess reduce in different
ways, the biprocess blocks. The following lemma shows that, when both sides of a biprocess always
reduce in the same way, then that biprocess satisfies observational equivalence. Its proof can be
found in Appendix D.1).

Lemma 9.3. Let P0 be a closed biprocess. Suppose that, for all plain evaluation contexts C, all
evaluation contexts C ′, and all reductions C[P0] →

∗ P ,

1. if P ≡ C ′[out(N,M).Q | in(N ′, x).R], then fst(N) =Σ fst(N ′) if, and only if, snd(N) =Σ

snd(N ′); and

2. if P ≡ C ′[let x = D in Q else R], then fst(D) ↓Σ fail if, and only if, snd(D) ↓Σ fail.

Then P0 satisfies observational equivalence.

Intuitively, the semantics for biprocesses forces that each reduction of a process has to be
matched by the same reduction in the second process. Hence, verifying the second item of Defini-
tion 9.1 becomes less problematic since we reduce to one the number of possible candidates.

9.2.2 From equational theories to rewrite rules

Equational theories are very useful when it comes to theoretical results. However, for a practical
algorithm, it is easier to work with rewrite rules rather than with equational theories. Hence
in [BAF08], the equational theory is transformed into a set of rewrite rules. Typically, for an
equational presentation Σ with its associated equational theory, a new equational presentation
Σ′ with the same function symbols and the empty equational theory is generated. Moreover, Σ′

models Σ. In this section, we adapt the definitions used in [BAF08] to our formalism.

9.2.2.1 Generation of Σ′

For an equational presentation Σ′ (with the empty equational theory), we define evaluation
on open terms as a relation D ↓′Σ′ (U, σ, φ), where σ collects instantiations of D obtained by
unification and φ collects the side conditions of destructor applications:

U ↓′Σ′ (U, ∅,⊤)

eval h(D1, . . . , Dn) ↓
′
Σ′ (V σu, σ

′σu, φ
′σu ∧ φσu)

if (D1, . . . , Dn) ↓
′
Σ′ ((U1, . . . , Un), σ

′, φ′),
h(V1, . . . , Vn) → V || φ ∈ defΣ′(h) and
σu is a most general unifier of (U1, V1), . . . , (Un, Vn)

(D1, . . . , Dn) ↓′Σ′ ((U1σn, . . . , Un−1σn, Un), σσn, φσn ∧ φn)
if (D1, . . . , Dn−1) ↓

′
Σ′ ((U1, . . . , Un−1), σ, φ) and Dnσ ↓′ (Un, σn, φn)

The most general unifier of may-fail messages is computed similarly to the most general unifier of
messages, even though specific cases hold due to may-fail variables and message variables: there is
no unifier of M and fail, for any message M (including variables x, because these variables can be
instantiated only by messages); the most general unifier of u and U is {u 7→ U}; the most general
unifier of fail and fail is the identity; finally, the most general unifier of M and M ′ is computed as
usual.

Example 9.9. Consider Σ′ the equational presentation with the empty equational theory and
containing the destructor sdec defined in Example 9.3. Let D and D′ be two term evaluations such
that D′ = eval sdec(x, sk) and D = eval sdec(D′, sk ′). We have:

1. D′ ↓′Σ′ (y, {x 7→ senc(y, sk)},⊤)

2. D′ ↓′Σ′ (fail, ∅, ∀y.x 6=Σ senc(y, sk))

3. D ↓′Σ′ (z, {x 7→ senc(senc(z, sk ′), sk)},⊤)

4. D ↓′Σ′ (fail, {x 7→ senc(y, sk)}, ∀z.y 6=Σ senc(z, sk ′)).

5. D ↓′Σ′ (fail, ∅, ∀y.x 6=Σ senc(y, sk))

Note that the evaluations 3 and 4 of D are obtained from the evaluation 1 of D′. On the other
hand, the evaluation 5 of D is obtained by the evaluation 2 of D′.

We let addeval(U1, . . . , Un) be the tuple of term evaluations obtained by adding eval before each
function symbol of U1, . . . , Un. Using these definitions, we recall the definition of an equational
presentation Σ′ with an empty equational theory modelling another equational presentation Σ
with equations:

We consider an auxiliary rewriting system on terms, S, that defines partial normal forms. The
rules of S do not contain names and do not have a single variable on the left-hand side. We say
that a term is irreducible by S when none of the rewrite rules of S applies to it; we say that the
set of terms M is in normal form relatively to S and Σ, and write nfS,Σ(M), if and only if all
terms of M are irreducible by S and, for all subterms N1 and N2 of terms of M, if N1 =Σ N2 then
N1 = N2. Typically, while a term might have several partial normal forms, any equal (sub)terms
in M modulo the equational theory are in the same normal form in nfS,Σ(M). We extend the
definition of nfS,Σ(·) to sets of processes: nfS,Σ(P) if and only if the set of terms that appear in
processes in P is in normal form.

Definition 9.3. Let Σ and Σ′ be two equational presentations on the same function symbols. We
say that Σ′ models Σ if and only if

1. The equational theory of Σ′ is syntactic equality: M =Σ′ N if and only if M = N .

2. The constructors of Σ′ are the constructors of Σ; their definition defΣ′(f) contains the rule
f(x1, . . . , xn) → f(x1, . . . , xn), the rewrite rules corresponding to possible failure, i.e. for all
i ∈ {1 . . . n}, f(u1, . . . , ui−1, fail, ui+1, . . . , un) → fail, and perhaps other rules such that there
exists a rewriting system S on terms that satisfies the following properties:

S1. If M → N is in S, then M =Σ N .

S2. If nfS,Σ(M), then for any term M there exists M ′ such that M ′ =Σ M and nfS,Σ(M∪
{M ′}).

S3. If f(N1, . . . , Nn) → N || φ is in defΣ′(f), then f(N1, . . . , Nn) =Σ N and φ = ⊤

S4. If f(M1, . . . ,Mn) =Σ M and nfS,Σ({M1, . . . ,Mn,M}), then there exist σ and f(N1,
. . . , Nn) → N in defΣ′(f) such that M = Nσ and Mi = Niσ for all i ∈ {1, . . . , n}.

3. The destructors of Σ′ are the destructors of Σ, with a rule g(U ′
1, . . . , U

′
n) → U ′ || φσ ∧ φ′ in

defΣ′(g) for each g(U1, . . . , Un) → U || φ in defΣ(g) and each addeval(U1, . . . , Un, U) ↓′Σ′

((U ′
1, . . . , U

′
n, U

′), σ, φ′).

Stress that, in Item 3, since U1, . . . , Un do not contain any destructor and the side conditions
of constructors are always ⊤, φ′ is necessarily ⊤ . The main difference between this definition
and the definition of [BAF08] is in Condition 3, since our destructors can now have a formula as
side condition. The constructors of Σ′ can be computed by the algorithms given in [BAF08], and
Item 3 shows how to compute the destructors of Σ′.

Note that, in Σ′, the side conditions of destructors still rely on the equational theory of Σ.
Moreover, even if the semantics of the function symbols of Σ′ are all defined by rewrite rules, we
still consider the constructors of Σ as the constructors in Σ′.

Example 9.10. Consider the equational presentation Σ that has the constructors senc and sdec

with the equations

sdec(senc(x, y), y) = x senc(sdec(x, y), y) = x

In Σ′, we adopt the rewrite rules:

sdec(x, y) → sdec(x, y) senc(x, y) → senc(x, y)
sdec(senc(x, y), y) → x senc(sdec(x, y), y) → x
sdec(fail, u) → fail senc(fail, u) → fail

sdec(u, fail) → fail senc(u, fail) → fail

We have that Σ′ models Σ for the rewriting system S with rules sdec(senc(x, y), y) → x and
senc(sdec(x, y), y) → x, and a single normal form for every term.

9.2.2.2 Observation equivalence w.r.t. Σ′

From this point on, we assume that Σ′ models Σ. We say that a biprocess P0 is unevaluated
when every term in P0 is either a message variable or diff[a, a] for some name a. Hence, every
function symbol in P0 must be in a term evaluation and prefixed by eval. Moreover, we extend
equality modulo the equational theory in Σ from terms to biprocesses and term evaluations:
P =Σ P ′ if, and only if, P ′ can be obtained from P by replacing some of its subterms M (not
containing diff or eval) with subterms equal modulo Σ. We define D =Σ D′ similarly. We can give
two results that show the correspondence between Σ and Σ′ in the derivation of biprocesses. The
proofs of these results are adapted from [BAF08, Lemmas 1,2].

Lemma 9.4. Let P0 be a closed, unevaluated biprocess. If P0 →∗
Σ P ′

0, P
′
0 =Σ P ′, and nfS,Σ({P ′}),

then P0 →∗
Σ′ P ′. Conversely, if P0 →∗

Σ′ P ′ then there exists P ′
0 such that P ′

0 =Σ P ′ and P0 →∗
Σ P ′

0.

This lemma gives an operational correspondence between →Σ and →Σ′ . Using Lemma 9.4, we
obtain:

Lemma 9.5. A closed biprocess P0 satisfies the conditions of Lemma 9.3 if and only if, for all plain
evaluation contexts C, all evaluation contexts C ′, and all reductions unevaluated(C[P0]) →

∗
Σ′ P ,

we have

1. if P ≡ C ′[out(N,M).Q | in(N ′, x).R] and fst(N) = fst(N ′), then snd(N) =Σ snd(N ′),

2. if P ≡ C ′[let x = D in Q else R] and fst(D) ↓Σ′ M1 for some M1, then snd(D) ↓Σ M2 for
some M2,

as well as the symmetric properties where we swap fst and snd.

In [BAF08], a special transition P →Σ′,Σ P ′ was defined as P →Σ P ′ except that signature
Σ′ was used for reduction rules (Red I/O) and (Red Fun 1)—signature Σ was still used for (Red
Fun 2). In our case, we always use the signature Σ′. The difference is due to the fact that the
reference to Σ is now included in the side conditions of the definition of destructors in Σ′.

9.3 Clause generation

In [BAF08], observational equivalence is verified by translating the considered biprocess into
a set of Horn clauses, and using a resolution algorithm on these clauses. In this section, we show
how we adapt the generation of the clauses to our new formalism.

9.3.1 Patterns and facts

In the clauses, the messages are represented by patterns, with the following grammar:

p ::= patterns
x, y, z, i variable
f(p1, . . . , pn) constructor application
a[p1, . . . , pn] name

mp ::= may-fail patterns
p patterns
u, v may-fail variable
fail failure

The patterns p are the same as in [BAF08]. The variable i represents a session identifier for each
replication of a process. A pattern a[p1, . . . , pn] is assigned to each name of a process P . The
arguments p1, . . . , pn allow one to model that a fresh name a is created at execution of ! a. For
example, in the process ! in(c′, x).νa.P , each name created by νa is represented by a[i, x] where
i is the session identifier for the replication and x is the message received as input in in(c′, x).
Hence, the name a is represented as a function of i and x. In two different sessions, (i, x) takes
two different values, so the two created instances of a (a[i, x]) are different.

Since our formalism introduced may-fail messages to describe possible failure of a destructor,
we also define may-fail patterns to represent the failure in clauses. Similarly to messages and may-
fail messages, a may-fail variable u can be instantiated by a pattern or fail, whereas a variable x
cannot be instantiated by fail.

Clauses are built from the following predicates:

F ::= facts
att′(mp,mp′) attacker knowledge
msg′(p1, p2, p

′
1, p

′
2) output message p2 on p1 (resp. p′2 on p′1)

input′(p, p′) input on p (resp. p′)
formula(

∧
i ∀z̃i.pi 6=Σ p′i) formula

bad bad

Once again, the facts are similar to the ones defined in [BAF08]. Intuitively, att′(mp,mp′) means
that the attacker may obtain up in fst(P) and up′ in snd(P) by the same operations; the fact
msg′(p1, p2, p

′
1, p

′
2) means that message p2 may be output on channel p1 by the process fst(P)

while p′2 may be output on channel p′1 by the process snd(P) after the same reductions; input′(p, p′)
means that an input is possible on channel p in fst(P) and on channel p′ in snd(P). Note that
both facts msg′ and input′ contain only patterns and not may-fail patterns. Hence channels and
terms sent are necessarily messages and so cannot be fail.

The fact formula(φ) means that φ has to be satisfied. In [BAF08], a fact nounif(p, p′) was
used instead: nounif(p, p′) is equivalent to formula(∀z̃.p 6=Σ p′) where z̃ are symbols in p and p′

that belong to a special set of “general variables”. Hence, our formulas can also be encoded as
conjunctions of nounif facts. We prefer using formulas, because their meaning is clearer from just
reading the formula.

At last, bad serves in detecting violations of observational equivalence: when bad is not deriv-
able, we have observational equivalence.

9.3.2 Clauses for the attacker

The following clauses represent the capabilities of the attacker:

For each a ∈ fnames(P0), att
′(a[], a[]) (Rinit)

For some b that does not occur in P0, att
′(b[x], b[x]) (Rn)

att′(fail, fail) (Rfail)

For each function h, for each pair of rewrite rules

h(U1, . . . , Un) → U || φ and h(U ′
1, . . . , U

′
n) → U ′ || φ′

in defΣ′(h) (after renaming of variables),

att′(U1, U
′
1) ∧ . . . ∧ att′(Un, U

′
n) ∧ formula(φ ∧ φ′) → att′(U,U ′)

(Rf)

msg′(x, y, x′, y′) ∧ att′(x, x′) → att′(y, y′) (Rl)

att′(x, x′) ∧ att′(y, y′) → msg′(x, y, x′, y′) (Rs)

att′(x, x′)∧ → input′(x, x′) (Ri)

input′(x, x′) ∧msg′(x, z, y′, z′) ∧ formula(x′ 6=Σ y′) → bad (Rcom)

att′(x, fail) → bad (Rfailure)

plus symmetric clauses (Rcom′) and (Rfailure′) obtained from (Rcom) and (Rfailure) by swapping
the first and second arguments of att′ and input′, and the first and third arguments of msg′.

The previous clauses are directly inspired from the ones in [BAF08] and correspond to the same
semantics adapted to our formalism. Clauses (Rcom) and (Rcom′) detect when a communication
can occur in one variant of the biprocess and not in the other which yields the non-equivalence
due to Condition 1 of Lemma 9.5.

Clause (Rfail) indicates that the attacker knows fail. Clauses (Rf) apply a constructor or a
destructor on the attacker’s knowledge, given the definition of the destructor in defΣ′(h). Since
our destructors may return fail, these clauses and clauses (Rfailure), (Rfailure′) detect when a
destructor succeeds in one variant of the biprocess and not in the other. In [BAF08], since the
destructors were partial, the checking of success or failure of a destructor was written directly
into clauses which correspond to the composition of our clauses (Rfailure) and (Rf) (respectively,
(Rfailure′) and (Rf)).

Stress that, in clause (Rfailure), x is a message variable and so x cannot be instantiated by
fail. Similarly, in (Rcom), Rs, Rl and Rf, x, x′, y, y′ are message variables and so they cannot be
instantiated by fail.

9.3.3 Clauses for the protocol

The translation [[P]]ρsH of a biprocess P is a set of clauses, where ρ is an environment that
associates a pair of patterns with each name and variable, s is a sequence of patterns, and H is
a sequence of facts. The empty sequence is written ∅; the concatenation of a pattern p to the
sequence s is written s, p; the concatenation of a fact F to the sequence H is written H ∧ F .

Intuitively, H represents the hypothesis of the clauses, ρ represents the names and variables
that are already associated with a pattern, and s represents the current values of session identifiers
and inputs.

When ρ associates a pair of patterns with each name and variable, and f is a constructor,
we extend ρ as a substitution by ρ(f(M1, . . . ,Mn)) = (f(p1, . . . , pn), f(p

′
1, . . . , p

′
n)) where ρ(Mi) =

(pi, p
′
i) for all i ∈ {1, . . . , n}. We denote by ρ(M)1 and ρ(M)2 the components of the pair ρ(M).

We let ρ(diff[M,M ′]) = (ρ(M)1, ρ(M
′)2).

We define [[P]]ρsH as follows:

[[0]]ρsH = ∅

[[!P]]ρsH = [[P]]ρ(s, i)H,where i is a fresh variable

[[P | Q]]ρsH = [[P]]ρsH ∪ [[Q]]ρsH

[[νa.P]]ρsH = [[P]](ρ[a 7→ (a[s], a[s])])sH

[[in(M,x).P]]ρsH =

[[P]](ρ[x 7→ (x′, x′′)])(s, x′, x′′)(H ∧msg′(ρ(M)1, x
′, ρ(M)2, x

′′))

∪ {H → input′(ρ(M)1, ρ(M)2)}

where x′ and x′′ are fresh variables

[[out(M,N).P]]ρsH = [[P]]ρsH ∪ {H → msg′(ρ(M)1, ρ(N)1, ρ(M)2, ρ(N)2)}

[[let x = D in P else Q]]ρsH =
⋃

{[[P]]((ρσ)[x 7→ (p, p′)])(sσ, p, p′)(Hσ ∧ formula(φ))

| (ρ(D)1, ρ(D)2) ↓
′ ((p, p′), σ, φ)}

∪
⋃

{[[Q]](ρσ)(sσ)(Hσ ∧ formula(φ)) | (ρ(D)1, ρ(D)2) ↓
′ ((fail, fail), σ, φ)}

∪ {Hσ ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ↓
′ ((p, fail), σ, φ)}

∪ {Hσ ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ↓
′ ((fail, p′), σ, φ)}

Comparing with the clauses described in [BAF08], we can recognise the same kind of generated
clauses: The process P is translated when both ρ(D)1 and ρ(D)2 succeed; the process Q is
translated when both fail; and at last clauses deriving bad are generated when one of ρ(D)1, ρ(D)2
succeeds and the other fails. Since may-fail variables do not occur in D, we can show by induction
on the computation of ↓′ that, when (ρ(D)1, ρ(D)2) ↓

′ ((mp1,mp2), σ, φ), mp1 and mp2 are either
fail or a pattern, but cannot be an may-fail variable, so our definition of [[let x = D in P else Q]]ρsH
handles all cases.

However, one of the differences occurs for the translation of [[let x = D in P else Q]]ρsH. It is
once again due to the fact that in our formalism, in case of failure, term evaluations reduce into
fail, whereas in [BAF08], they did not reduce at all. For example, the clauses representing the
cases where a term evaluation D fails on the left side and succeeds on the right side was generated
by considering a formula representing the negation of all possible terms reduced by the term
evaluation on the left side. In our semantics, this formula is generated thanks to (ρ(D)1, ρ(D)2) ↓′

((fail, p), σ, φ).
A more meaningful difference is the presence of only one sequence of patterns s. Indeed,

in [BAF08], the translation of a process was written [[P]]ρss′H where s and s′ were sequences of
patterns. Typically, s was reserved for the part of the clauses translating fst(P) whereas s′ was
reserved for the part of the clauses translating snd(P). For instance, in [BAF08], we have:

[[νa.P]]ρss′H = [[P]](ρ[a 7→ (a[s], a[s′])])ss′H

[[in(M,x).P]]ρss′H =

[[P]](ρ[x 7→ (x′, x′′)])(s, x′)(s, x′′)(H ∧msg′(ρ(M)1, x
′, ρ(M)2, x

′′))

∪ {H → input′(ρ(M)1, ρ(M)2)}

where x′ and x′′ are fresh variables

As a result, in [BAF08], the arguments of the name a in the first component were only the argu-
ments coming from fst(P) and the arguments of a in the second component were the arguments
coming from snd(P). In this paper, the arguments of a are the same in both components, and
include the arguments coming from both fst(P) and snd(P). The difference is subtle, but Exam-
ple 9.11 below gives an example of a biprocess that satisfies equivalence, and such that the clauses
generated in [BAF08] yield a false attack which is avoided by our new clauses.

Example 9.11. Consider the signature Σ = {mac} consisting of a MAC of arity 2 with the empty
equational theory and the following biprocess:

P = νd.! νk.! νk′.out(d, diff[k, k′]) |! in(d, x).νa.out(c,mac(a, x))

In this biprocess, the keys k and k′ are generated and sent over a private channel d. After receiving
these keys on d, they are used to mac a fresh nonce a which is send on a public channel c. The
main difference between fst(P) and snd(P) is that in fst(P), an instance of the key k can be sent
several times on d whereas in snd(P), an instance of the key k′ is sent only once. However, since
the instances of keys k and k′ are never revealed to the attacker and the nonces a are freshly
generated for each MAC sent on the public channel c, the biprocess P satisfies equivalence.

According to [BAF08], the translation of P will generate the following clauses:

1. msg′(d[], k[i], d[], k′[i, j]),

2. input′(d[], d[]), and

3. msg′(d[], x′, d[], x′′) → msg′(c[],mac(a[ℓ, x′], x′), c[],mac(a[ℓ, x′′], x′′))

where i, j, ℓ correspond to the session identifiers of replications.
But using two instances of j, denoted j1 and j2, we obtain from Clause 1 the two following

facts msg′(d[], k[i], d[], k′[i, j1]) and msg′(d[], k[i], d[], k′[i, j2]). Hence, using Clause 3, we derive

— msg′(c[],mac(a[ℓ, k[i]], k[i]), c[],mac(a[ℓ, k′[i, j1]], k
′[i, j1])); and

— msg′(c[],mac(a[ℓ, k[i]], k[i]), c[],mac(a[ℓ, k′[i, j2]], k
′[i, j2])).

Thus, we obtain two facts msg′ where the second arguments are equal whereas the fourth arguments
are different (since j1 6= j2). Using the Clause (Rl) and the clause corresponding to the test of
failure of destructor equals, bad will be derivable.

This false attack is due to the fact that a[ℓ, k[i]] and a[ℓ, k′[i, j]] do not have the same level
of freshness that is, the same arguments. This is why, to ensure that a name generated have the
same level of freshness in fst(P) and snd(P), both x and x′ are put as argument of a in fst(P) and
snd(P). For instance, with our formalism, instead of Clause 3, we obtain from P the clause:

msg′(d[], x′, d[], x′′) → msg′(c[],mac(a[ℓ, x′, x′′], x′), c[],mac(a[ℓ, x′, x′′], x′′))

By applying this clause on msg′(d[], k[i], d[], k′[i, j1]) and msg′(d[], k[i], d[], k′[i, j2]), we obtain:

— msg′(c[],mac(a[ℓ, k[i], k′[i, j1]], k[i]), c[],mac(a[ℓ, k[i], k′[i, j1]], k
′[i, j1])); and

— msg′(c[],mac(a[ℓ, k[i], k′[i, j2]], k[i]), c[],mac(a[ℓ, k[i], k′[i, j2]], k
′[i, j2])).

In such a case, mac(a[ℓ, k[i], k′[i, j1]], k[i]) 6= mac(a[ℓ, k[i], k′[i, j2]], k[i]) and so the previous false
attack is avoided.

This example is a toy example but this kind of false attack can be found when checking the
unlinkability of the e-passport protocol (see Section 3.3).

9.3.4 Proving equivalences

Let ρ0 = {a 7→ (a[], a[]) | a ∈ fnames(P0)}. We define the set of clauses that corresponds to
biprocess P0 as:

RP0
= [[unevaluated(P0)]]ρ0∅∅ ∪ {(Rinit), (Rn), . . . , (Rfailure), (Rfailure′)}

The following theorem enables us to prove equivalences from these clauses.

Theorem 9.1. If bad is not a logical consequence of RP0
, then P0 satisfies observational equiva-

lence.

This theorem shows the soundness of the translation. The proof of this theorem is adapted
from the proof of Theorem 3 of [BAF08]. Furthermore, since we use almost the same patterns
and facts as in [BAF08], we also use the algorithm proposed in [BAF08] to automatically check if
bad is a logical consequence of RP0

, with the only change that we use the unification algorithm
for may-fail patterns.

9.3.5 Proving Properties P1 and P2

In this section, we propose two algorithms that respectively verify Properties P1 and P2 of the
destructors of Σ. We already know that all deterministic destructors obtained from Lemma 9.1
satisfy both properties. However, since our extension allows a user to define his own destructor
with side conditions, it is important to ensure that such destructors satisfy the desired properties.

Consider an equational presentation Σ and assume that Σ′ models Σ. Consider the fact att(mp)
where mp is a may-fail pattern. In order to verify that the destructors of Σ satisfy Properties P1
and P2, we generate a new set of clauses defined as follows:

For some a, att(a[x]) (Rname)

att(fail) (Rfail)

For each constructor f or arity n

att(x1) ∧ . . . ∧ att(xn) → att(f(x1, . . . , xn))
(Rcons)

For each destructor g, for each pair of rewrite rules

g(U1, . . . , Un) → U || φ and g(U ′
1, . . . , U

′
n) → U ′ || φ′

in defΣ′(g) (after renaming of variables),

σ is the most general unifier of
{
(U, x), (U ′, y),

(
(U1, . . . , Un), (U

′
1, . . . , U

′
n)
)}

and x, y fresh,

att(U1σ) ∧ . . . ∧ att(Unσ) ∧ formula(φσ ∧ φ′σ ∧ xσ 6=Σ yσ) → bad

(Rdeter)

For each destructor g, for each pair of rewrite rules

g(U1, . . . , Un) → U || φ and g(U ′
1, . . . , U

′
n) → U ′ || φ′

in defΣ′(g) (after renaming of variables),

σ is the most general unifier of
{
(U, x), (U ′, fail),

(
(U1, . . . , Un), (U

′
1, . . . , U

′
n)
)}

and x fresh,

att(U1σ) ∧ . . . ∧ att(Unσ) ∧ formula(φσ ∧ φ′σ) → bad

(Rdeter2)

For each destructor g, for each I ⊆ {1, . . . , n}

∀i ∈ I, Ui = xi, and ∀i 6∈ I, Ui = fail

x1, . . . , xn fresh variables

att(x1) ∧ . . . ∧ att(xn) ∧ fails(U1, . . . , Un) → bad

(Rtotal)

where fails(U1, . . . , Un) =
∧

g(V1,...,Vn)→V || φ in defΣ(g)
σu mgu of (V1,...,Vn) and (U1,...,Un)

formula(∀z̃.
[∨

i∈I xi 6=Σ Viσu∨¬φσu

]
)

where z̃ are the variables of V1σu, . . . , Vnσu.
Intuitively, the purpose of the clauses (Rcons) and (Rname) is to generate constructor terms.

Clauses (Rdeter) and (Rdeter2) check that the destructors satisfy Property P2. Clauses (Rtotal)
check that the destructors satisfy Property P1.

Note that in Clauses (Rtotal), the formulas φ included in the predicate formula(φ) are more
complex than the usual conjunction of inequalities. In [BAF08], the solving algorithm applies
several simplifications on predicates formula(φ) that preserve the solutions of φ. However, only the
formulas

∧
i ∀z̃i.pi 6=Σ p′i, for some z̃i, pi, p′i, are handled in this algorithm. Hence, we added some

simplifications (see Appendix D.1.3) on first order logic such that our extension of ProVerif can now
handle predicates formula(φ) with a formula φ of the form

∧
i ∀x̃i.

[
Mi 6=Σ Ni∨

∨
j ∃ỹ

i
j .L

i
j =Σ Oi

j

]
.

The algorithms that check Properties P1 and P2 follow the next two lemmas (proofs in Ap-
pendix D.1.2):

Lemma 9.6. We consider RP1 = {(Rname), (Rfail), (Rcons), (Rtotal)}. bad is not a logical
consequence of RP1 if, and only if, for all g destructors of Σ, g satisfies Property P1.

Lemma 9.7. We consider R(P2) = {(Rname), (Rfail), (Rcons), (Rdeter), (Rdeter2)}. bad is not
a logical consequence of RP2 if, and only if, for all g destructors of Σ, g satisfies Property P2.

Note that we do not provide guarantees on the termination of the two algorithms but we rely
on the algorithm of [BAF08] to check if bad is derivable or not.

9.4 Automatic modification of the protocol

In this section, we first present the false attack that we want to avoid and then propose
an algorithm to automatically generate, from a biprocess P , equivalent biprocesses on which

ProVerif will avoid this kind of false attack.

9.4.1 Targeted false attack

We present a false attack on the anonymity of the private authentication protocol due to
structural conditional branching, but similar false attack exists on the unlinkability of the Basic
Access Control protocol.

Example 9.12. Coming back to the private authentication protocol (see Example 9.8), we ob-
tained a biprocess P0 on which we would ask ProVerif to check the equivalence. Unfortunately,
ProVerif is unable to prove the equivalence of P0 and yields a false attack. Indeed, consider the
evaluation context C defined as follows:

C
def
= _ | νni.in(c, xska

).in(c, xska′
).in(c, xskb

).out(c, aenc(〈ni, xska
〉, xskb

))

The process C[P0] can be derived as follows:

C[P0]→
∗
Σ νni.νska.νska′ .νsk b.

(
out(c, aenc(〈ni, pk(ska)〉, pk(sk b))) | System(diff[ska, ska′], sk b)

)

→∗
Σ νni.νska.νska′ .let z = equals(proj2(〈ni, pk(ska)〉)), pk(diff[ska, ska′])) in

out(c, aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′])))
else out(c, aenc(nb, pk(sk b)))

However from this point, the biprocess gets stucked, i.e. no internal reduction rule is appli-
cable. More specifically, neither the internal rule (Red Fun 1) nor (Red Fun 2) is applicable.
Indeed, if we denote D = equals(proj2(〈ni, ska〉)), pk(diff[ska, ska′])), we have that snd(D) ↓Σ fail

and fst(D) ↓Σ pk(ska), which contradicts the item 2 of Lemma 9.3. So ProVerif cannot prove
the equivalence.

On the other hand, even though a different branch of the let is taken, the process outputs the
message aenc(〈nb, 〈na, pk(sk b)〉〉, pk(ska)) in the first variant (in branch of the let) and the message
aenc(nb, pk(sk b)) in the second variant (else branch of the let). Intuitively, these two messages
are indistinguishable, so in fact the attacker will not be able to determine which branch of the let

is taken, and observational equivalence still holds.

As shown in the previous example, ProVerif may return a false attack against the observa-
tional equivalence, when a different branch of let is taken, but these branches are in fact indis-
tinguishable. In this section, we will show how to use destructors with side conditions in order
to avoid such false attacks. Moreover, we will propose an algorithm to automatically transform a
biprocess into biprocesses that will avoid such false attacks when such a transformation is possible.

The key idea is to transform term evaluations such as let x = D in out(c,M1) else out(c,M2)
into a computation that always succeeds let x = D′ in letm = D′′ in out(c,m). The term evaluation
D′ will correspond to the value of the evaluation of D when the latter succeeds and a new constant
when D fails. Thus we ensure that D′ never fails. Moreover, the term evaluation D′′ computes
either M1 or M2 depending on the value of D′, i.e. depending on whether D succeeds or not. The
omitted else 0 branches are never taken. Since the same branch is always taken, the false attack
disappears. To do that, we introduce three new destructors glet, gletin, notfail and a constant co,
which rely on the side conditions that we have added to destructors. These new destructors are
defined as follows:

defΣ(glet) = defΣ(gletin) = defΣ(notfail) =
glet(x) → x gletin(x, u, v) → u || x 6=Σ co notfail(x) → fail

glet(fail) → co gletin(co, u, v) → v notfail(fail) → co
gletin(fail, u, v) → fail

One can easily check that defΣ(glet), defΣ(gletin) and defΣ(notfail) satisfy Properties P1 and P2.
Intuitively, the destructor glet evaluates its argument and returns either the result of this evaluation
when it did not fail or else returns the new constant co instead of the failure constant fail. The

destructor gletin will get the result of glet as first argument and return its third argument if
glet returned co, and its second argument otherwise. Importantly, glet never fails: it returns co
instead of fail. Hence, let x = D in out(c,M1) else out(c,M2) can be transformed into let x =
eval glet(D) in let m = eval gletin(x,M1,M2) in out(c,m): if D succeeds, x has the same value
as before, and x 6= co, so gletin(x,M1,M2) returns M1; if D fails, x = co and gletin(x,M1,M2)
returns M2. The destructor notfail inverses the status of a term evaluation: it fails if and only if
its argument does not fail. These destructors will be used in the next section.

Example 9.13. Coming back to Example 9.12, the false attack occurs due to the following term
evaluation:

let z = equals(proj2(x), pk(diff[ska, ska
′])) in

out(c, aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′])))
else out(c, aenc(nb, pk(sk b)))

We transform this term evaluation as explained above:

let z = gletin(glet(equals(proj2(x), pk(diff[ska, ska
′]))),M,M ′) in out(c, z)

where M = aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′])) and M ′ = aenc(nb, pk(sk b)). Note that with
x = 〈ni, pk(ska)〉 (see Example 9.12), if D is the term evaluation D = gletin(glet(equals(proj2(x)
, pk(diff[ska, ska′]))),M,M ′), we obtain that:

— fst(D) ↓ aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(ska))

— snd(D) ↓ aenc(nb, pk(sk b))

which corresponds to what fst(P0) and snd(P0) respectively output. Thanks to this, if we denote
by P ′

0 our new biprocess, we obtain that fst(P0) ≈ fst(P ′
0) and snd(P0) ≈ snd(P ′

0). Furthermore,
ProVerif will be able to prove that the biprocess P ′

0 satisfies equivalence, i.e. fst(P ′
0) ≈ snd(P ′

0)
and so fst(P0) ≈ snd(P0).

The transformation proposed in the previous example can be generalised to term evaluations
that perform other actions than just a single output. However, it is possible only if the success
branch and the failure branch of the term evaluation both input and output the same number of
terms. For example, the biprocess P = let x = D in out(c,M).out(c,M ′) else out(c,N) cannot
be modified into one without else branch even with our new destructors. On the other hand, the
success or failure of D can really be observed by adversary, by tracking the number of outputs on
channel c, so the failure of the proof of equivalence corresponds to a real attack in this case.

9.4.2 Merging and simplifying biprocesses

To automatically detect and apply this transformation, we define two functions, denoted merge

and simpl . The function simpl takes one biprocess as argument and applies the transformation
when possible. The function merge takes two biprocesses as arguments and detects if those two
biprocesses can be merged into one biprocess. Furthermore, if the merging is possible, it returns
the merged biprocess. This merged biprocess is expressed using a new operator diff ′, similar to diff,
in such a way that diff ′[D,D′] is a term evaluation. Furthermore, we introduce the functions fst′

and snd′: fst′(P) replaces each diff ′[D,D′] with D in P ; similarly, snd′(P) replaces each diff ′[D,D′]
with D′ in P .

Figures 9.6 and 9.7 define the functions merge and simpl . The function merge is partial whereas
simpl is total. Both functions are non-deterministic; the implementation may try all possibilities.
In the current implementation of ProVerif, we apply the rules (Mlet3) and (Mlet4) only if
the rules (Mlet1) and (Mlet2) are not applicable. Moreover, we never merge 0 with a process
different from 0. This last restriction is crucial to reduce the number of biprocesses returned by
the functions merge and simpl . Typically, we avoid 0 and let x = M in P else 0 to be merged by
the rule (Mlet4).

Case (Mout) detects that both biprocesses output a message while case (Min) detects that
both biprocesses input a message. We introduce a let for the channels and messages so that they

merge(0, 0)
def
= 0 (Mnil)

merge(out(M,N).P, out(M ′, N ′).P ′)
def
=

let x = diff ′[M,M ′] in let x′ = diff ′[N,N ′] in out(x, x′).merge(P, P ′)

where x and x′ are fresh variables

(Mout)

merge(in(M,x).P, in(M ′, x′).P ′)
def
=

let y = diff ′[M,M ′] in in(y, y′).merge(P{y
′

/x}, P
′{y

′

/x′})

where y and y′ are fresh variables

(Min)

merge(P1 | . . . | Pn, P
′
1, | . . . | P

′
n)

def
= Q1 | . . . | Q′

n

if (i1, . . . , in) is a permutation of (1, . . . , n)

and for all k ∈ {1, . . . , n}, Qk = merge(Pk, P
′
ik
)

(Mpar)

merge(νa.P,Q)
def
= νa.merge(P,Q)

after renaming a such that a 6∈ fnames(Q)
(Mres)

merge(! νa1 . . . νan.!P, !P
′)

def
= ! νa1 . . . νan.merge(!P, !P ′)

after renaming a1, . . . , an such that a1, . . . , an 6∈ fnames(P ′)
(Mrepl1)

merge(!P, !P ′)
def
= !merge(P, P ′)

if there is no P1 such that P = !P1 and no P ′
1 such that P ′ = !P ′

1

(Mrepl2)

merge(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2)

def
=

let y = diff ′[D,D′] in Q1 else Q2 if y is a fresh variable,

Q1 = merge(P1{
y/x}, P

′
1{

y/x′}), and Q2 = merge(P2, P
′
2)

(Mlet1)

merge(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2)

def
=

let y = diff ′[D, notfail(D′)] in Q1 else Q2 if y is a fresh variable,

x′ 6∈ fvars(P ′
1), Q1 = merge(P1{

y/x}, P
′
2), and Q2 = merge(P2, P

′
1)

(Mlet2)

merge(let x = D in P1 else P2, P
′)

def
= let y = diff ′[D, co] in Q else P2

if y is a fresh variable and Q = merge(P1{
y/x}, P

′)
(Mlet3)

merge(let x = D in P1 else P2, P
′)

def
= let y = diff ′[D, fail] in P1{

y/x} else Q

if y is a fresh variable and Q = merge(P2, P
′)

(Mlet4)

plus symmetric cases (Mres′), (Mrepl1′), (Mlet2′), (Mlet3′), and (Mlet4′) obtained from (Mres),
(Mrepl1), (Mlet2), (Mlet3), and (Mlet4) by swapping the first and second arguments of merge and
diff ′.

Figure 9.6: Definition of the function merge

can later be replaced by a term evaluation. Case (Mpar) uses the commutativity and associativity
of parallel composition to increase the chances of success of merge. Cases (Mres) and (Mres′)
use Q ≈ νa.Q when a /∈ fnames(Q) to allow merging processes even when a restriction occurs
only on one side. Case (Mrepl2) is the basic merging of replicated processes, while Case (Mrepl1)
allows merging ! !P with !P ′ (case n = 0) because !P ≈ ! !P , and furthermore allows restrictions
between the two replications, using Q ≈ νa.Q.

Case (Mlet1) merges two processes that both contain term evaluations, by merging their success
branches together and their failure branches together. On the other hand, Case (Mlet2), (Mlet2′)
also merge two processes that contain term evaluations, by merging the success branches with the
other failure branches.

Cases (Mlet3), (Mlet3′), (Mlet4), (Mlet4′) allow merging a term evaluation with another pro-
cess P ′, by merging P ′ with either the success branch or the failure branch of the term evaluation.
(The evaluation of co always succeeds since it is a message.) This merging is useful when ProVerif
can prove that the resulting process satisfies equivalence, hence when both sides of the obtained
let succeed simultaneously. Therefore, rule (Mlet3) is helpful when the term evaluation D always
succeeds, and rule (Mlet4) when D always fails. When no such case applies, merging fails.

simpl(0)
def
= 0 (Snil)

simpl(out(M,N).P)
def
= out(M,N).simpl(P) (Sout)

simpl(in(M,x).P)
def
= in(M,x).simpl(P) (Sin)

simpl(P | Q)
def
= simpl(P) | simpl(Q) (Smid)

simpl(νa.P)
def
= νa.simpl(P) (Sres)

simpl(!P)
def
= ! simpl(P) (Srepl)

simpl(let x = D in P else P ′)
def
= let x = eval glet(D) in Q else 0

if Q′ = merge(simpl(P), simpl(P ′)) and

Q = Q′{eval gletin(x,D1,D2)/diff′[D1,D2]}

(Smerge)

simpl(let x = D in P else P ′)
def
= let x = D in simpl(P) else simpl(P ′)

if there is no Q such that Q = merge(simpl(P), simpl(P ′))
(Slet)

Figure 9.7: Definition of the function simpl

The function simpl proceeds by induction on the process. The only interesting case is (Smerge),
which performs the transformation of term evaluations outlined above, when we can merge the
success and failure branches. Q′{eval gletin(x,D1,D2)/diff′[D1,D2]} means that we replace in Q′ every
instance of diff ′[D1, D2], for some D1, D2, with eval gletin(x,D1, D2).

Lemmas 9.8 and 9.9 below show that the functions merge and simpl preserve observational
equivalence. In these two lemmas, we consider processes P and P ′ that are not necessarily closed.
We say that a context C is closing for P when C[P] is closed. Moreover, given two biprocesses P
and Q, we say that P ≈ Q if, and only if, fst(P) ≈ fst(Q) and snd(P) ≈ snd(Q). All results of this
section are proved in Appendix D.2.

Lemma 9.8. Let P and P ′ be two biprocesses. If merge(P, P ′) = Q, then:

— for all contexts C closing for P , C[P] ≈ C[fst′(Q)];

— for all contexts C closing for P ′, C[P ′] ≈ C[snd′(Q)].

Lemma 9.9. Let P be a biprocess. For all contexts C closing for P , C[P] ≈ C[simpl(P)].

Corollary 9.1. Let P be a closed biprocess. If simpl(P) satisfies observational equivalence then
fst(P) ≈ snd(P).

Proof. simpl(P) satisfies observational equivalence implies fst(simpl(P)) ≈ snd(simpl(P)). Since
P is closed, we can apply Lemma 9.9 with the empty context, so simpl(P) ≈ P . Hence by
definition of the observation equivalence on biprocesses, we obtain that fst(simpl(P)) ≈ fst(P)
and snd(P) ≈ snd(simpl(P)). We conclude that fst(P) ≈ snd(P).

From Corollary 9.1, we can extract our new algorithm. Given a biprocess P as input, we first
apply the function simpl on P . Since the function simpl is total but non-deterministic, we may
have several biprocesses as result for simpl(P). If ProVerif is able to prove equivalence on at
least one of them, then we conclude that fst(P) ≈ snd(P).

Corollary 9.2. Let P and P ′ be two closed processes. Let Q = merge(simpl(P), simpl(P ′)). If
the biprocess Q′ = Q{diff[D,D′]/diff′[D,D′]} satisfies observational equivalence, then we have P ≈ P ′.

Proof. According to Figures 9.6 and 9.7, if P and P ′ do not contain any diff then so do simpl(P),
simpl(P ′), and merge(P, P ′). Hence, Q does not contain any diff. Hence, the biprocess Q′ =
Q{diff[D,D′]/diff′[D,D′]} satisfies fst(Q′) = fst′(Q) and snd(Q′) = snd′(Q). Since Q′ satisfies obser-
vational equivalence, we have that fst(Q′) ≈ snd(Q′) thus fst′(Q) ≈ snd′(Q). Since P and P ′

are closed processes, by Lemma 9.9, we have P ≈ simpl(P) and P ′ ≈ simpl(P ′). Furthermore,
by Lemma 9.8, we deduce that simpl(P) ≈ fst′(Q) and simpl(P ′) ≈ snd′(Q). We conclude that
P ≈ P ′.

Currently, ProVerif can only take a biprocess as input. But thanks to Corollary 9.2, we will
be able to loosen this condition. Indeed, consider P and P ′ two processes (without diff). If we
manage to merge them into the biprocess Q′ as in Corollary 9.2 and to prove that Q′ satisfies
equivalence by ProVerif, then we obtain that P ≈ P ′.

9.5 Applications

Currently, we implemented our extension in a development version of ProVerif for typed
processes. However, some features still need be adapted to the new formalism before the next stable
release, such as the front-end for untyped processes. In any case, we present in this subsection the
application of our extension on the private authentication protocol and the e-passport protocol
(see Section 3.3).

9.5.1 Successful case study: the private authentication protocol

The simplification of processes described in this section was implemented in such a way that
the transformation stays hidden from the users. However, since the function simpl may return
several biprocesses, we do not automatically test the equivalence of all the biprocesses given by the
function simpl . Furthermore, proving the equivalence requires a lot of times on some biprocesses
and might even not terminate. Hence allowing the user to choose whether or not ProVerif has
to prove equivalence on the biprocesses returned by the function simpl seemed more user-friendly.

By default, ProVerif first tries to prove the equivalence that was provided in the input file
without modifying it. Figure 9.8 is a possible input file for the private authentication protocol.
In case of non-equivalence, it will compute the function simpl on the input biprocess and propose
to prove the equivalence on the simplified biprocesses. In the case of the private authentication
protocol, ProVerif first states the non-equivalence due to a false attack (see Example 9.12), but
then succeeds to prove the observational equivalence on the only biprocess obtained by application
of the function simpl . Note that ProVerif also proposes to display the biprocesses obtained by
application of simpl but they are usually difficult to parse due to the variable renaming and the
extensive use of the destructors glet and gletin.

1 (∗ shared−key encrypt ion as equat ion ∗)
2
3 fun aenc (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
4 fun pk (b i t s t r i n g) : b i t s t r i n g .
5
6 reduc fora l l x : b i t s t r i n g , y : b i t s t r i n g ; adec (aenc (x , pk (y)) , y) = x .
7
8 (∗ dec l a r a t i on o f pu b l i c name ∗)
9

10 free c : channel .
11
12 (∗ dec l a r a t i on o f b i p ro c e s s ∗)
13
14 let processA (sk_a : b i t s t r i n g , sk_b : b i t s t r i n g) =
15 new n_a : b i t s t r i n g ;
16 out (c , aenc ((n_a , pk (sk_a)) , pk (sk_b))) ;
17 in (c , x : b i t s t r i n g) ;
18 0 .
19
20 let processB (sk_b : b i t s t r i n g , sk_a : b i t s t r i n g) =
21 in (c , x : b i t s t r i n g) ;
22 new n_b : b i t s t r i n g ;
23
24 let (n_a : b i t s t r i n g , pub_a : b i t s t r i n g) = adec (x , sk_b) in

25 i f pub_a = pk(sk_a)
26 then

27 out (c , aenc ((n_a ,n_b, pk (sk_b)) , pk (sk_a)))
28 else

29 out (c , aenc (n_b, pk (sk_b)))
30 else

31 out (c , aenc (n_b, pk (sk_b))) .
32
33 let system (sk_a : b i t s t r i n g , sk_b : b i t s t r i n g) =
34 ! processA (sk_a , sk_b) | ! processB (sk_b , sk_a) .
35
36 process

37 new sk_a : b i t s t r i n g ; new sk_b : b i t s t r i n g ; new sk_c : b i t s t r i n g ;
38 out (c , pk (sk_a)) ; out (c , pk (sk_b)) ; out (c , pk (sk_c)) ;
39 system (cho i c e [sk_a , sk_c] , sk_b)

Figure 9.8: Input file for the anonymity of the private authentication protocol

9.5.2 Limitations: the Basic Access Control protocol

We consider here the unlinkability of the BAC protocol. As mentioned in Section 3.4, this
security property can be expressed by the following equivalence:

!νke. νkm. !BAC(ke, km) ≈ !νke. νkm.BAC(ke, km)

In contrast to the equivalence given in Section 3.3, we explicitly denote the keys whom BAC
depends on and we rely on the observational equivalence and not the trace equivalence. Moreover,
BAC(ke, km) is in fact the parallel composition of two processes, one for the passport and one for
the reader, each of them depending on the keys ke and km.

Note that the two parts of this equivalence cannot be directly transformed into a biprocess
due to the second replication on the left part of the process. However, we can modify slightly the
two parts of the equivalence so that they can define a biprocess. Indeed, the following equivalence
holds:

! νke. νkm.BAC(ke, km) ≈ ! νke ′.νkm ′.! νke.νkm.BAC(ke, km)

Intuitively, this non-trivial equivalence holds due to the fact that the keys ke ′,km ′ are not used in
BAC(ke, km) and that ! !P ≈!P . Similarly, we have that:

!νke. νkm. !BAC(ke, km) ≈ ! νke.νkm.! νke ′.νkm ′.BAC(ke, km)

Hence, after renaming of the keys ke, km, ke ′, km ′, the unlinkability of the BAC protocol can be
expressed by the following equivalence:

! νke.νkm.! νke ′.νkm ′.BAC(ke, km) ≈ ! νke.νkm.! νke ′.νkm ′.BAC(ke ′, km ′)

which is represented by the biprocess ! νke.νkm.! νke ′.νkm ′.BAC(diff[ke, ke ′], diff[km, km ′]). Fig-
ure 9.9 is a possible input file for the unlinkability of the BAC protocol.

Thanks to our extension, the false attack described in Example 9.11 is now avoided. Moreover,
after application of the function simpl , ProVerif also avoids a false attack similar to the false
attack on the anonymity of the private authentication protocol (due to the test mac(me, km) = mm

in the process representing the passport). Hence, in both case studies, ProVerif avoids the false
attacks that are due to conditional branching. Unfortunately, even with our extension, ProVerif
is still not able to prove unlinkability of the BAC protocol and returns a false attack. This false
attack, described below, is caused by the fact that ProVerif necessarily matches an interleaving
of actions of one part of a biprocess with exactly the same interleaving of actions of the other part
of this biprocess (see semantics of biprocesses).

We denote P (ke, km) the process representing the passport and R(ke, km) the one representing
the reader. The intruder proceeds as follows: He starts by engaging the communication with two
sessions of the same passport on the one hand, and so necessarily one session of two different
passports on the other hand. Hence, it is similar to a biprocess where the left and right parts are
represented as follows:

— Left: P (ke1, km1) | R(ke1, km1) | P (ke1, km1) | R(ke1, km1)

— Right: P (ke1, km1) | R(ke1, km1) | P (ke2, km2) | R(ke2, km2)

In the right part of the biprocess, the intruder receives the nonce nt1 that P (ke1, km1) output
and sends it to the reader R(ke2, km2). Similarly, he sends the nonce nt2 that P (ke2, km2)
output and sends it to the reader R(ke1, km1). Hence, the readers R(ke1, km1) and R(ke2, km2)
will output respectively the messages (m1,mac(m1, km1)) and (m2,mac(m2, km2) where m1 =
senc(〈nr1, 〈nt2, kr1〉〉, ke1) and m2 = senc(〈nr2, 〈nt1, kr2〉〉, ke2). Note that since the intruder
swaps the nonces nt1, nt2 that was intended to the readers, they are also swapped in m1,m2.

Then, the intruder swaps again the messages (m1,mac(m1, km1)) and (m2,mac(m2, km2)) and
sends them to P (ke2, km2) and P (ke1, km1) respectively. Since P (ke1, km1) receives m2 which is
encrypted with ke2, the decryption sdec(m2, ke1) will fail and so P (ke1, km1) will output the error
error6A80. Similarly, P (ke2, km2) will also output the error error6A80.

On the other hand, in the left part of the biprocess, since the intruder communicates with two
sessions of the same passport, there is only one set of keys (ke1, km1) and so both decryptions
will succeed. Moreover, since the intruder swaps the messages twice, both passports will be able
to check that the nonce nt encrypted in the message they received corresponds to the nonce they
previously sent. Hence, both passports will output a message of the form senc(m′,mac(m′, km1)).
Since error6A80 is public, the intruder is able to distinguish error6A80 from senc(m′,mac(m′, km1))
and so ProVerif returns that the equivalence does not hold.

Intuitively, this false attack is due to the fact that the swaps done in the right part of the
biprocess have to be executed in the left part of the biprocess with the two sessions of the same
passport. However, when considering the observational equivalence, the actions of the right part
of the equivalence could have been matched in the left part of the equivalence by considering a
session of a third passport and reader (available thanks to the replication) and then swapping the
messages between the first and third passport.

1 (∗ ePassport Protoco l Taken from Arapinis , Ryan , CSF’10 ∗)
2
3 fun enc (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
4 fun mac(b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
5 fun dec (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
6
7 (∗ Symetric decryp t ion ∗)
8
9 equat ion f o ra l l x : b i t s t r i n g , y : b i t s t r i n g ; dec (enc (x , y) , y) = x .

10
11 (∗ add i t i on o f one ∗)
12
13 free c : channel .
14 free get_cha l l enge : b i t s t r i n g .
15 free error_6A80 : b i t s t r i n g .
16
17 let r eader (ke : b i t s t r i n g ,km: b i t s t r i n g) =
18 out (c , get_cha l l enge) ;
19 in (c , nt : b i t s t r i n g) ;
20 new nr : b i t s t r i n g ;
21 new kr : b i t s t r i n g ;
22 let m: b i t s t r i n g = enc ((nr , nt , kr) , ke) in

23 out (c , (m,mac(m,km))) ;
24 in (c , y : b i t s t r i n g) .
25
26 let passpor t (ke : b i t s t r i n g , km: b i t s t r i n g) =
27 in (c , x : b i t s t r i n g) ;
28 i f x = get_chal l enge
29 then

30 new nt : b i t s t r i n g ;
31 out (c , nt) ;
32 in (c , y : b i t s t r i n g) ;
33
34 let (m_e: b i t s t r i n g ,m_m: b i t s t r i n g) = y in

35 i f mac(m_e,km) = m_m
36 then

37 let (nr : b i t s t r i n g , nt ’ : b i t s t r i n g , kr : b i t s t r i n g) = dec (m_e, ke) in

38 i f nt = nt ’
39 then

40 new kt : b i t s t r i n g ;
41 out (c , (enc ((nt , nr , kt) , ke) ,mac(enc ((nt , nr , kt) , ke) ,km)))
42 else

43 out (c , error_6A80)
44 else

45 out (c , error_6A80)
46 else

47 out (c , error_6A80)
48 else

49 out (c , error_6A80) .
50
51 process

52 !new ke1 : b i t s t r i n g ; new km1 : b i t s t r i n g ;
53 !new ke2 : b i t s t r i n g ; new km2 : b i t s t r i n g ;
54 reader (cho i c e [ke1 , ke2] , cho i c e [km1 , km2])
55 |
56 passpor t (cho i c e [ke1 , ke2] , cho i c e [km1 , km2])

Figure 9.9: Input file for the unlinkability of the BAC protocol

Chapter 10

Conclusion and perpectives

This thesis reports our contributions to the automatic verification of cryptographic protocols.
In particular, we focused our attention to privacy-type security properties that play an important
role in many modern applications. Some further developments have already been proposed at the
end of chapters. We recall the important ones and propose further perspectives.

Algorithms for deciding trace equivalence

In Part II, we designed a new decision procedure for the trace equivalence between bounded
processes with possible non-trivial else branches and non-deterministic choices. This procedure
is sound, complete and terminates but only accepts a fixed set of cryptographic primitives whose
behaviour is expressed by a rewriting system.

The cryptographic primitives are idealised which is sometimes not accurate enough. For ex-
ample, we do not model the length of messages. However, depending on the padding scheme,
encryption scheme may disclose the length of the plaintext and therefore allow to distinguish two
ciphers. Hence we would like to add new predicates, e.g. a predicate that compares the lengths of
terms, in our decision procedure. In fact, such a research track would allow us to use our procedure
along with [CC08] for proving computational indistinguishability for a certain class of protocols.
Since these predicates would only intervene in the static equivalence, we would like to use the
properties of the constraint systems that we obtain at the end of our current procedure, in order
to facilitate the development of a decision procedure for trace equivalence with these predicates.

We cannot not currently handle some very interesting cryptographic protocols, such as e-
voting protocols, that rely on different cryptographic primitives that the ones we fixed. Hence
a natural direction of work would be to allow more cryptographic primitives. In particular, we
are interested in the cryptographic primitives with algebraic properties such as exclusive-or or the
blind signature. However, compared to adding predicates for the static equivalence, adding these
cryptographic primitives will most certainly be a huge challenge, especially if we want to ensure
the termination of our procedure.

Tool optimisations

Although the procedure described in Part II terminates, an early implementation showed that
the computation of all interleavings of actions results in a significant increase of the execution time
of the procedure, even for few sessions of small protocols such as the Basic Access Control protocol.
We would like to optimise the algorithm such that the execution time remains reasonable, at least
for few sessions of any standard protocol. There are two possible directions.

We could apply a partial order reduction on the symbolic traces of the processes [CJM00].
This area seems very promising since the experiments show that there are many interleavings
that yield the same state. This is not straightforward, however, when considering equivalence

181

properties, since we have to match traces from a process to the other process. The reductions
have to match on both processes.

An implementation of our algorithm on a parallel machine should be possible. Indeed, the two
matrices resulting from an application of a constraint solving rule can be processed independently.
Ideally, it should be possible to combine these two optimisations. However, this seems only possible
with small enough reductions that do not break the parallelism. Nevertheless, both optimisations
would still be implemented since they are both worthy depending on the user’s hardware.

Proving more equivalences with ProVerif

In Part III, we proposed an extension of the tool ProVerif that proves more observational
equivalences. In particular, we were able to automatically prove the anonymity property on the
private authentication protocol for an unbounded number of sessions. However, as mentioned in
Chapter 9, we are still unable to prove the unlinkability property for the Basic Access Control
protocol even though we managed to avoid some previously existing false attacks. This a conse-
quence of the matching by ProVerif of traces with the same scheduling in the two variants of
the biprocesses. On the one hand, this is probably one of the most frequent cause of false attacks
yield by ProVerif, and on the other hand, this is also one of the main reason why ProVerif
is very efficient in practice for proving equivalence. To prove even more observational (or trace)
equivalence with ProVerif, some approaches could be investigated.

This first approach would consist of applying some small transformations on the processes
beforehand that are sound for observational (or trace) equivalence. However, our first tries on the
BAC protocol seem to show that while such small transformations might exist, they would be very
specific to the processes and therefore very hard to automate.

A second direction consists of relaxing a bit the matching of traces e.g. by modifying the
replication identifiers on the left and right parts of biprocesses. Even if we manage to propose a
transformation that is still sound for the observational equivalence, we also would have to preserve
the termination “in practice" of ProVerif.

Although ProVerif and our decision procedure for trace equivalence are very different,
it would be interesting to study the possible interactions between them. For example, when
ProVerif yields a false attack, a possible idea would be to check the possible matched traces
for the false attack in a our decision procedure and then inject the result in ProVerif so that it
could prove the security properties by relying our the result of the procedure.

Composition results

In Chapter 5, we have shown that protocols can be securely composed w.r.t. privacy-type
properties if they are tagged and do not reveal any shared secret. Moreover, we allow a finite
number of public or verification keys associated to shared secret keys to be known by the intruder,
provided that they were known at the beginning of the protocol. We also showed in this chapter
how to apply our composition result to the parallel composition of the Active Authentication and
Passive Authentication protocols from the e-passport protocols. However, we had to abstract the
symmetric session keys that were generated by the Basic Access Control protocol beforehand.
Thus, a possible extension of this work will consist of generalising our composition result in order
to allow the sequential composition of processes.

In [ADK08], the authors characterise a class of protocols for which secrecy is decidable for
an unbounded number of sessions. Typically, they showed how to transform a protocol that is
secure for one session, in a protocol that is secure for an unbounded number of sessions. This
transformation also relies on tagging of terms but the tags are not constant and are generated
by the sessions. Thus, a possible direction of research is to extend their result to privacy-type
properties.

All these possible extensions of our work heavily rely on tagged processes. However, most of
existing real protocols are not tagged and tagging a process increases the payloads of messages
that are sent over the network. Hence following the idea of [KT11], we would like to define an ideal

property that, if shown on each process individually, would ensure the secure composition of these
processes. One of the difficulty of this approach would probably be to find the correct balance
between the generality of such an ideal property and the difficulty of automatically verifying it.

Bibliography

[3GP10a] 3GPP. Technical specification group core network and terminals; mobile radio interface
layer 3 specification; core network protocols; stage 3 (release 9). Technical report, 3rd
Generation Partnership Project, 2010. 3GPP TS 24.008 V9.4.0.

[3GP10b] 3GPP. Technical specification group services and system aspects; 3G security; security
architecture (release 9). Technical report, 3rd Generation Partnership Project, 2010.
3GPP TS 33.102 V9.3.0.

[3GP11] 3GPP. Technical specification group services and system aspects; 3G security; cryp-
tographic algorithm requirements (release 10). Technical report, 3rd Generation Part-
nership Project, 2011. 3GPP TS 33.105 V10.0.0.

[ABF04] Martín Abadi, Bruno Blanchet, and Cédric Fournet. Just Fast Keying in the pi calcu-
lus. In David Schmidt, editor, Programming Languages and Systems: 13th European
Symposium on Programming (ESOP’04), volume 2986 of LNCS, pages 340–354, Hei-
delberg, 2004. Springer.

[AC02] R. Amadio and W. Charatonik. On name generation and set-based analysis in the
Dolev-Yao model. In Proc. of the 13th International Conference on Concurrency The-
ory (CONCUR’02), LNCS, pages 499–514, Brno, Czech Republic, 2002. Springer Ver-
lag.

[AC06] M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkability
and anonymity using the applied pi calculus. In Proc. 23rd IEEE Computer Security
Foundations Symposium (CSF’10), pages 107–121. IEEE Computer Society Press,
2010.

[ACS+08] S. Andova, C. Cremers, K. GjøSteen, S. Mauw, S. Mjølsnes, and S. Radomirović.
A framework for compositional verification of security protocols. Information and
Computation, 206(2-4):425–459, 2008.

[ADK08] Myrto Arapinis, Stéphanie Delaune, and Steve Kremer. From one session to many:
Dynamic tags for security protocols. In Iliano Cervesato, Helmut Veith, and Andrei
Voronkov, editors, Proceedings of the 15th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR’08), volume 5330 of Lecture
Notes in Artificial Intelligence, pages 128–142, Doha, Qatar, November 2008. Springer.

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th Symposium on Principles of Programming Languages (POPL’01), pages
104–115. ACM Press, 2001.

[AF04] Martín Abadi and Cédric Fournet. Private authentication. Theoretical Computer
Science, 322(3):427–476, 2004.

[AG99] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148(1):1–70, 1999.

[AMR+12] M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, and R. Borgaonkar.
New privacy issues in mobile telephony: fix and verification. In Proc. 19th ACM

185

Conference on Computer and Communications Security (CCS’12). ACM Press, 2012.
To appear.

[AR00] M. Abadi and P. Rogaway. Reconciling two views of cryptography: the computational
soundness of formal encryption. In Proc. 1rst IFIP International Conference on Theo-
retical Computer Science, volume 1872 of Lecture Notes in Computer Science, Sendai,
Japan, 2000.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of se-
lected equivalences for security protocols. Journal of Logic and Algebraic Programming,
75(1):3–51, 2008.

[Bau05] Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In
Proc. 12th Conference on Computer and Communications Security (CCS’05), pages
16–25. ACM Press, 2005.

[Bau07] Mathieu Baudet. Sécurité des protocoles cryptographiques : aspects logiques et calcu-
latoires. Phd thesis, École Normale Supérieure de Cachan, France, 2007.

[BCdH10] Mayla Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy
for RFID systems. In Proc. 23rd IEEE Computer Security Foundations Symposium
(CSF’10). IEEE Computer Society Press, 2010.

[BCNP04] B. Barak, R. Canetti, J. Nielsen, and R. Pass. Universally composable protocols with
relaxed set-up assumptions. In Proc. 45th Symposium on Foundations of Computer
Science (FOCS’04), pages 186–195. IEEE Computer Society Press, 2004.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In 14th IEEE Computer Security Foundations Workshop (CSFW-14), pages 82–96,
Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society.

[Bla04] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In Proc.
Symposium on Security and Privacy, pages 86–100. IEEE Comp. Soc. Press, 2004.

[BMU08] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the applied
pi-calculus and automated verification of the direct anonymous attestation protocol.
In IEEE Symposium on Security and Privacy, pages 202–215, Los Alamitos, 2008.
IEEE.

[BS96] F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. Journal of Symbolic Computation, 21(2):211–243,
1996.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd Annual Symposium on Foundations of Computer Science
(FOCS’01), pages 136–145, Las Vegas (Nevada, USA), 2001. IEEE Computer Society
Press.

[CC08] Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observa-
tional equivalence. In Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS’08), pages 109–118, Alexandria, Virginia, USA, Oc-
tober 2008. ACM Press.

[CC10] Ştefan Ciobâcă and Véronique Cortier. Protocol composition for arbitrary primitives.
In Proc. of the 23rd IEEE Computer Security Foundations Symposium (CSF’10), pages
322–336. IEEE Computer Society Press, 2010.

[CD94] Hubert Comon and Catherine Delor. Equational formulae with membership con-
straints. Information and Computation, 112(2):167–216, August 1994.

[CD09a] Véronique Cortier and Stéphanie Delaune. A method for proving observational equiv-
alence. In Proceedings of the 22nd IEEE Computer Security Foundations Symposium
(CSF’09), pages 266–276, Port Jefferson, NY, USA, July 2009. IEEE Computer Soci-
ety Press.

[CD09b] Véronique Cortier and Stéphanie Delaune. Safely composing security protocols. Formal
Methods in System Design, 34(1):1–36, February 2009.

[CD12] Véronique Cortier and Stéphanie Delaune. Decidability and combination results for
two notions of knowledge in security protocols. Journal of Automated Reasoning,
48(4):441–487, April 2012.

[CDK11] Céline Chevalier, Stéphanie Delaune, and Steve Kremer. Transforming password pro-
tocols to compose. In Proc. 31st Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’11), Leibniz International Proceedings
in Informatics, pages 204–216. Leibniz-Zentrum für Informatik, 2011.

[CDM11] Hubert Comon-Lundh, Stéphanie Delaune, and Jonathan Millen. Constraint solving
techniques and enriching the model with equational theories. In Véronique Cortier and
Steve Kremer, editors, Formal Models and Techniques for Analyzing Security Protocols,
volume 5 of Cryptology and Information Security Series, pages 35–61. IOS Press, 2011.

[Cio11] Ştefan Ciobâcă. Automated Verification of Security Protocols with Applications to
Electronic Voting. Thèse de doctorat, Laboratoire Spécification et Vérification, ENS
Cachan, France, December 2011.

[CJM00] Edmund M. Clarke, Somesh Jha, and Wilfredo R. Marrero. Partial order reductions
for security protocol verification. In Proceedings of the 6th International Conference
on Tools and Algorithms for Construction and Analysis of Systems: Held as Part of
the European Joint Conferences on the Theory and Practice of Software, ETAPS 2000,
TACAS ’00, pages 503–518, London, UK, UK, 2000. Springer-Verlag.

[CKRT03] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure
for protocol insecurity with XOR. In Proceedings of the 18th Annual IEEE Symposium
on Logic in Computer Science (LICS’03), pages 261–270, Ottawa (Canada), 2003.
IEEE Computer Society Press.

[CLC03] Hubert Comon-Lundh and Véronique Cortier. New decidability results for fragments
of first-order logic and application to cryptographic protocols. In Robert Nieuwenhuis,
editor, RTA’03, volume 2706 of LNCS, pages 148–164, Heidelberg, 2003. Springer.

[CLCZ10] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zalinescu. Deciding security
properties of cryptographic protocols. application to key cycles. Transaction on Com-
putational Logic, 11(2), 2010.

[CLS03] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in presence of Exclusive Or. In Proc. 18th Annual IEEE Symposium
on Logic in Computer Science (LICS ’03), pages 271–280, Los Alamitos, CA, 2003.
IEEE Computer Society.

[CR05] Y. Chevalier and M. Rusinowitch. Combining intruder theories. In Proc. 32nd Inter-
national Colloquium on Automata, Languages and Programming (ICALP’05), volume
3580 of LNCS, pages 639–651. Springer, 2005.

[CR12] Yannick Chevalier and Michaël Rusinowitch. Decidability of equivalence of symbolic
derivations. J. Autom. Reasoning, 48(2):263–292, 2012.

[Cre08] Cas J.F. Cremers. Unbounded verification, falsification, and characterization of se-
curity protocols by pattern refinement. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security, pages 119–128, New York, NY,
USA, 2008. ACM.

[CZ06] Véronique Cortier and Eugen Zalinescu. Deciding key cycles for security protocols.
In Proc. 13th Inter. Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’06), volume 4246 of LNCS, pages 317–331. Springer, 2006.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theoretical
Computer Science, volume B, chapter 6. Elsevier, 1990.

[DJ06] Stéphanie Delaune and Florent Jacquemard. Decision procedures for the security of
protocols with probabilistic encryption against offline dictionary attacks. Journal of
Automated Reasoning, 36(1-2):85–124, January 2006.

[DKR07] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied pi-
calculus. In Proc. 27th Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS’07), pages 133–145, 2007.

[DKR08] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Composition of password-based
protocols. In Proc. 21st IEEE Computer Security Foundations Symposium (CSF’08),
pages 239–251. IEEE Computer Society Press, 2008.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type proper-
ties of electronic voting protocols. Journal of Computer Security, 17(4):435–487, July
2009.

[DLMS99] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In Workshop on Formal Methods and Security Protocols, 1999.

[DSV03] Luca Durante, Riccardo Sisto, and Adriano Valenzano. Automatic testing equivalence
verification of spi calculus specifications. ACM Transactions on Software Engineering
and Methodology, 12(2):222–284, 2003.

[Eng85] Joost Engelfriet. Determinacy implies (observation equivalence = trace equivalence).
Theoretical Computer Science, 36:21–25, 1985.

[FHG99] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Security, 7(2/3):191–
230, 1999.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[GML+93] Li Gong, T. Mark, T. Mark A. Lomas, Roger M. Needham, and Jerome H. Saltzer.
Protecting poorly chosen secrets from guessing attacks. IEEE Journal on Selected
Areas in Communications, 11:648–656, 1993.

[GT00] Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint en-
cryption. In Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages
24–34. IEEE Comp. Soc. Press, 2000.

[Hut02] H. Huttel. Deciding framed bisimulation. In 4th International Workshop on Verifica-
tion of Infinite State Systems INFINITY’02, pages 1–20, 2002.

[ICA04] PKI for machine readable travel documents offering ICC read-only access. Technical
report, International Civil Aviation Organization, 2004.

[ISO09] ISO 15408-2: Common Criteria for Information Technology Security Evaluation - Part
2: Security functional components. Final draft, ISO/IEC, July 2009.

[JK91] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras:
A rule-based survey of unification. In Computational Logic - Essays in Honor of Alan
Robinson, pages 257–321, 1991.

[KT11] Ralf Küsters and Max Tuengerthal. Composition Theorems Without Pre-Established
Session Identifiers. In Proc. 18th Conference on Computer and Communications Se-
curity (CCS 2011), pages 41–50. ACM Press, 2011.

[Liu11] Jia Liu. A proof of coincidence of labeled bisimilarity and observational equivalence
in applied pi calculus. Technical report, Institute of Software Chinese Academy of
Sciences, State Key Laboratory of Computer Science, april 2011.

[MNP02] M.Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic pro-
cesses. SIAM Journal on Computing, 31(3):947–986, 2002.

[MS01] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In ACM Conference on Computer and Communica-
tions Security, pages 166–175, 2001.

[MV09] Sebastian Mödersheim and Luca Viganò. Secure pseudonymous channels. In Proc.
14th European Symposium on Research in Computer Security (ESORICS’09), volume
5789 of LNCS, pages 337–354. Springer, 2009.

[NH84] Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoret-
ical Computer Science, 34:83–133, 1984.

[RSG+00] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe. The
Modelling and Analysis of Security Protocols. Addison Wesley, 2000.

[RT01] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is
NP-complete. In Proc. 14th Computer Security Foundations Workshop (CSFW’01),
pages 174–190. IEEE Comp. Soc. Press, 2001.

[TD10] Alwen Tiu and Jeremy E. Dawson. Automating open bisimulation checking for the spi
calculus. In Proc. 23rd IEEE Computer Security Foundations Symposium (CSF’10),
pages 307–321. IEEE Computer Society Press, 2010.

[Vig06] L. Viganò. Automated security protocol analysis with the avispa tool. In Proceedings
of the XXI Mathematical Foundations of Programming Semantics (MFPS’05), volume
155 of ENTCS, pages 61–86. Elsevier, 2006.

[Wei99] Christoph Weidenbach. Towards an automatic analysis of security protocols in first-
order logic. In Harald Ganzinger, editor, CADE’99, volume 1632 of LNAI, pages
314–328, Heidelberg, 1999. Springer.

Appendices

191

Appendix A

From the applied pi calculus to

symbolics semantics

A.1 Proofs on relating equivalence

Proposition 3.1. Let A and B be two closed extended process with dom(A) = dom(B), and

C[_] = νñ.(D | _) be an evaluation context closing for A. If C[A]
ǫ

Z⇒ A′′ for some process A′′,
then there exist a closed extended process A′, an evaluation context C ′ = νñ′.(D′ | _) closing for

A′, and a trace tr ∈ (Ar{τ})∗ such that A′′ ≡ C ′[A′], A
tr
Z⇒ A′, and for all closed extended process

B′,

B
tr
Z⇒ B′ and Φ(B′) ∼ Φ(A′) imply that C[B]

ǫ
Z⇒ C ′[B′].

Proof. Let A and B be two closed extended processes with dom(A) = dom(B) and C be an
evaluation context closing for A. Let A′′ be such that C[A]

ǫ
Z⇒ A′′. We prove the result by

induction on the length ℓ of the derivation.

Base case ℓ = 0: In such a case, we have that A′′ ≡ C[A]. Let A′ = A, C ′ = C and tr = ǫ, we
have that A′′ ≡ C ′[A′], and A

ǫ
Z⇒ A′. Let B′ be a closed extended process such that B

ǫ
Z⇒ B′ and

Φ(B′) ∼ Φ(A′) for some B′. Clearly, we have that C[B]
ǫ

Z⇒ C ′[B′] since C ′ = C and B
ǫ

Z⇒ B′.

Inductive case ℓ > 0: In such a case, we have that there exists a closed extended process A1 such
that C[A]

ǫ
Z⇒ A1 with a derivation whose length is smaller than ℓ, and A1

τ
7−→ A′′. Thus, we can

apply our induction hypothesis allowing us to conclude that there exist an extended process A′
1,

an evaluation context C ′
1[_] = νñ′

1.(D
′
1 | _) closing for A′

1, and a trace tr1 ∈ (Ar {τ})∗ such that

A1 ≡ C ′
1[A

′
1], A

tr1
Z⇒ A′

1, and for all closed extended processes B′
1, we have that:

B
tr1
Z⇒ B′

1 and Φ(B′
1) ∼ Φ(A′

1) implies that C[B]
ǫ

Z⇒ C ′
1[B

′
1].

Since A1 ≡ C ′
1[A

′
1] and A1

τ
7−→ A′′, we have that C ′

1[A
′
1]

τ
7−→ A′′ (internal reduction is closed

under structural equivalence). We do a case analysis on the rule involved in this reduction.

Case of an internal reduction in A′
1, i.e. there exists A′ such that A′

1
τ
7−→ A′ and A′′ ≡ C ′

1[A
′].

In such a case, we have that C ′
1[A

′
1]

τ
−→ C ′

1[A
′]. Let C ′ = C ′

1 and tr = tr1. We have that

A′′ ≡ C ′
1[A

′] = C ′[A′] and A
tr1
Z⇒ A′

1
τ
7−→ A′, i.e. A

tr
Z⇒ A′. Lastly, let B′ be a closed extended process

such that B
tr
Z⇒ B′ and Φ(B′) ∼ Φ(A′). We have that B

tr1
Z⇒ B′ and Φ(B′) ∼ Φ(A′

1) ≡ Φ(A′), and
thus relying on our induction hypothesis, we conclude that C[B]

ǫ
Z⇒ C ′

1[B
′] = C ′[B′]. This allows

us to conclude.

Case of an internal reduction in C ′
1, i.e. there exists D′

2 such that νñ′
1(D

′
1 | B)

τ
−→ νñ′

1.(D
′
2 | B)

for any process B such that Φ(B) ∼ Φ(A′
1), and A′′ ≡ νñ′

1.(D
′
2 | A′

1). In such a case, we have

193

that C ′
1[A

′
1]

τ
7−→ νñ′

1.(D
′
2 | A′

1). Let A′ = A′
1, C

′[_] = νñ′
1.(D

′
2 | _) and tr = tr1. We have that

A′′ ≡ νñ′
1.(D

′
2 | A′

1) = C ′[A′] and A
tr1
Z⇒ A′

1 = A′, i.e. A
tr
Z⇒ A′. Lastly, let B′ be a closed extended

process such that B
tr
Z⇒ B′ and Φ(B′) ∼ Φ(A′). We have that B

tr1
Z⇒ B′ and Φ(B′) ∼ Φ(A′

1) ≡ Φ(A′),
and thus relying on our induction hypothesis, we have that C[B]

ǫ
Z⇒ C ′

1[B
′]. But by our hypothesis

on the internal reduction, Φ(B′) ∼ Φ(A′
1) implies that C ′

1[B
′]

τ
7−→ νñ′

1.(D
′
2 | B′) = C ′[B′] and so

C[B]
ǫ

Z⇒ C ′[B′]. This allows us to conclude.

Case of a rule (Comm) between C ′
1 (output) and A′

1 (input), i.e. D′
1 ≡ νñ.(out(c,M).P | D), A′

1 ≡
A′

2 = νr̃.(in(c, z).Q | A2) for some c, M , P , D, A′
2, r̃, z, Q, and A2 such that z is a fresh variable,

fvars(M) ⊆ dom(A′
2), r̃ ∩ (fnames(M) ∪ fvars(M)) = ∅, and ñ ∩ (fnames(A′

2) ∪ fvars(A′
2)) = ∅.

We assume in addition that names and variables in ñ do not occur in fnames(B), fvars(B), and
tr. In such a case, we have that

C ′
1[A

′
1] ≡ νñ′

1.[νñ.(out(c,M).P | D) | A′
2)

≡ νñ′
1.νñ.[out(c,M).P | D | νr̃.(in(c, z).Q | A2)]

τ
7−→ νñ′

1.νñ.[P | D | νr̃.(Q{M/z} | A2)]

and A′′ ≡ νñ′
1, ñ.[P | D | νr̃.(Q{M/z} | A2)].

Let A′ = νr̃.(Q{M/z} | A2), C ′[_] = νñ′
1.νñ.(P | D | _), and tr = tr1 · in(c,M). We have that

A′′ ≡ C ′[A′]. By induction hypothesis, we have that A
tr1
Z⇒ A′

1 and A′
1

in(c,M)
7−−−−−→ A′. This allows

us to conclude that A
tr
Z⇒ A′. Note that A′ is a closed extended process (fvars(M) ⊆ dom(A′

2) =
dom(A′

1)).

Lastly, let B′ be a closed extended processes such that B
tr
Z⇒ B′ and Φ(B′) ∼ Φ(A′). We have

that there exists B′
1 such that B

tr1
Z⇒ B′

1

in(c,M)
7−−−−−→ B′. Moreover, we can assume w.l.o.g. that ñ do

not occur in fnames(B′
1) and fvars(B′

1) since ñ do not occur in fnames(B), fvars(B) and tr1. Since
Φ(B′) ∼ Φ(A′), we have also that Φ(B′

1) ∼ Φ(A′
1). Thus, we can apply our induction hypothesis

on B′
1. This allows us to deduce that C[B]

ǫ
Z⇒ C ′

1[B
′
1] . In order to conclude, it remains to show

that C ′
1[B

′
1]

τ
7−→ C ′[B′].

We have seen that B′
1

in(c,M)
7−−−−−→ B′. Hence, we know that there exists m̃, P2, B2 such that

B′
1 ≡ νm̃.(in(c, z).P2 | B2), B′ ≡ νm̃.(P2{

M/z} | B2), and m̃ ∩ (fvars(M) ∪ fnames(M)) = ∅.
Moreover, we have already seen that ñ ∩ (fnames(B′

1) ∪ fvars(B′
1)) = ∅. Hence, we have that:

C ′
1[B

′
1] ≡ νñ′

1.[νñ.(out(c,M).P | D) | B′
1]

≡ νñ′
1.νñ.[out(c,M).P | D | B′

1]
≡ νñ′

1.νñ.[out(c,M).P | D | νm̃.(in(c, z).P2 | B2)]
−→ νñ′

1.νñ.(P | D | νm̃.(P2{
M/z} | B2))

≡ C ′[B′]

Case of a rule (Comm) between C ′
1 (input) and A′

1 (output), i.e. D′
1 ≡ νñ.(in(c, z).P | D),

A′
1 ≡ A′

2 = νr̃.(out(c,M).Q | A2) for some c, M , P , Q, D, A′
2, r̃, z, and A2 such that z is

a fresh variable, fvars(M) = ∅, ñ ∩ (fnames(A′
2) ∪ fvars(A′

2)) = ∅, r̃ ∩ (fnames(in(c, z).P) ∪
fvars(in(c, z).P)) = ∅. We assume in addition that names and variables in ñ do not occur in
fnames(B), fvars(B), and tr. In such a case, we have that :

C ′
1[A

′
1] ≡ νñ′

1.[νñ.(in(c, z).P | D) | A′
2]

≡ νñ′
1.νñ.(in(c, z).P | D | A′

2)
≡ νñ′

1.νñ.[in(c, z).P | D | νr̃.(out(c,M).Q | A2)]
≡ νñ′

1.νñ.[νr̃.(P{M/z} | Q | A2) | D]

and A′′ ≡ νñ′
1.νñ.[νr̃.(P{M/z} | Q | A2) | D].

To determine C ′, A′ and tr, we distinguish several cases depending on the term M :

— M is a name of channel type and M 6∈ r̃. In such a case, we have that A′′ ≡ νñ′
1.νñ.[P{M/z} |

D | νr̃.(Q | A2)]. Thus, let C ′[_] = νñ′
1.νñ.[P{M/z} | D | _], A′ = νr̃.(Q | A2) and

tr = tr1 · out(c,M). Clearly, we have that A′′ ≡ C ′[A′] and A′
1

out(c,M)
7−−−−−→ A′.

Lastly, let B′ be a closed process such that B
tr
Z⇒ B′ and Φ(B′) ∼ Φ(A′). We have that

there exists B′
1 such that B

tr1
Z⇒ B′

1

out(c,M)
7−−−−−→ B′. Moreover, we can assume w.l.o.g. that ñ do

not occur in fnames(B′
1), fvars(B

′
1), and tr1. We have also that Φ(A′

1) ∼ Φ(B′
1). Thus, we

can apply our inductive hypothesis on B′
1 which means that C[B] 7−→∗ C ′

1[B
′
1]. In order to

conclude, it remains to show that C ′
1[B

′
1] −→ C ′[B′].

We have seen that B′
1

out(c,M)
7−−−−−→ B′. Hence, we know that there exists m̃,Q2, B2 such

that B′
1 ≡ νm̃.(out(c,M).Q2 | B2), B′ ≡ νm̃.(Q2 | B2), M 6∈ m̃ and m̃ ∩ (fvars(D′

1) ∪
fnames(D′

1) = ∅. Therefore, we have that:

C ′
1[B

′
1] ≡ νñ′

1.[νñ.(in(c, z).P | D) | B′
1)

≡ νñ′
1.νñ.[in(c, z).P | D | B′

1]
≡ νñ′

1.νñ.[in(c, z).P | D | νm̃.(out(c,M).Q2 | B2)]
τ
7−→ νñ′

1.νñ.[P{M/z} | D | νm̃.(Q2 | B2)]
≡ C ′[B′]

— M is a name of channel type that occurs in r̃. Let r̃′ be a sequence such that r̃ = r̃′ ⊎M .
In such a case, we have that A′′ ≡ νñ′

1.νñ.νM
′.[P{M

′

/z} | D | νr̃′.(Q{M
′

/M} | A2{
M ′

/M})]
where M̃ ′ is a fresh name of channel type. Let C ′[_] = νñ′

1.νñ.νM
′.[P{M

′

/z} | D | _],
A′ = νr̃′.(Q{M

′

/M} | A2{
M ′

/M}) and tr = tr1 · νM ′.out(c,M ′). Clearly, we have that

A′
1 ≡ νr̃′.νM.(out(c,M).Q | A2)

νM ′.out(c,M ′)
7−−−−−−−−−→ νr̃′.(Q{M

′

/M} | A2{
M ′

/M}) ≡ A′ and A′′ ≡
C ′[A′].

Lastly, let B′ be a closed process such that B
tr
Z⇒ B′ and Φ(B′) ∼ Φ(A′). We have that there

exists B′
1 such that B

tr1
Z⇒ B′

1

νM ′.out(c,M ′)
7−−−−−−−−−→ B′. Moreover, we can assume w.l.o.g. that ñ do

not occur in fnames(B′
1), fvars(B

′
1), and tr1. We also have that Φ(A′

1) ∼ Φ(B′
1). Thus, we

can apply our induction hypothesis on B′
1 which means that C[B]

ǫ
7−→ C ′

1[B
′
1]. In order to

conclude, it remains to show that C ′
1[B

′
1]

τ
7−→ C ′[B′].

We have seen that B′
1

νM ′.out(c,M ′)
7−−−−−−−−−→ B′. Hence, we know that there exists m̃,Q2, B2 such

that B′
1 ≡ νM ′.νm̃.(out(c,M ′).Q2 | B2), B′ ≡ νm̃.(Q2 | B2), M ′ 6∈ m̃ and m̃ ∩ (fvars(D′

1) ∪
fnames(D′

1) = ∅. Therefore, we have that (where M ′′ is a fresh channel name):

C ′
1[B

′
1] ≡ νñ′

1.[νñ.(in(c, z).P | D) | B′
1)

≡ νñ′
1.νñ.[in(c, z).P | D | B′

1]
≡ νñ′

1.νñ.[in(c, z).P | D | νM ′.νm̃.(out(c,M ′).Q2 | B2)]
τ
7−→ νñ′

1.νñ.νM
′′.[P{M

′′

/z} | D | νm̃.(Q2{
M ′′

/M ′} | B2{
M ′′

/M ′})]
≡ C ′[B′]

— M is a term of base type. In such a case, we have that A′′ ≡ νñ′
1.νñ.νz.[P | D | νr̃.(Q |

A2 | {M/z})]. Let C ′[_] = νñ′
1.νñ.νz.[P | D | _], A′ = νr̃.(Q | A2 | {M/z}) and tr =

tr1 · νz.out(c, z). Clearly, we have that A′
1 ≡ νr̃.(out(c,M).Q | A2)

νz.out(c,z)
−−−−−−−→ νr̃.(Q | A2 |

{M/z}) ≡ A′ and A′′ ≡ C ′[A′].

Lastly, let B′ be a closed process such that B
tr
Z⇒ B′ and Φ(B′) ∼ Φ(A′). We have that there

exists B′
1 such that B

tr1
Z⇒ B′

1

νz.out(c,z)
7−−−−−−−→ B′. Moreover, we can assume w.l.o.g. that ñ do

not occur in fnames(B′
1), fvars(B

′
1), and tr1. We also have that Φ(A′

1) ∼ Φ(B′
1). Thus, we

can apply our induction hypothesis on B′
1 which means that C[B]

τ
7−→ C ′

1[B
′
1]. In order to

conclude, it remains to show that C ′
1[B

′
1]

τ
7−→ C ′[B′].

We have seen that B′
1

νz.out(c,z)
7−−−−−−−→ B′. Hence, we know that there exists m̃,Q2, B2 such

that B′
1 ≡ νm̃.(out(c,M).Q2 | B2), B′ ≡ νm̃.(Q2 | B2 | {M/z}) and m̃ ∩ (fvars(D′

1) ∪

fnames(D′
1) = ∅. Therefore, we have that:

C ′
1[B

′
1] ≡ νñ′

1.[νñ.(in(c, z).P | D) | B′
1)

≡ νñ′
1.νñ.[in(c, z).P | D | B′

1]
≡ νñ′

1.νñ.[in(c, z).P | D | νm̃.(out(c,M).Q2 | B2)]
τ
7−→ νñ′

1.νñ.νz.[P | D | νm̃.(Q2 | B2 | {M/z})]
≡ C ′[B′]

A.2 Proofs on symbolic semantics

In this appendix, we provide the complete proof of Proposition 4.2 and 4.3.

Proposition 4.2 (soundness). Let (E1;P1; Φ1;D1;Eq1), and (E2;P2; Φ2;D2;Eq2) be two symbolic
processes such that

— (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2), and

— (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)).

Let θ1 = θ2|vars2(D1) and σ1 = σ2|vars1(D1). We have that:

1. (σ1, θ1) ∈ Sol((E1; Φ1;D1;Eq1)), and

2. (E1;P1σ1; Φ1σ1)
αsθ2−−−→i (E2;P2σ2; Φ2σ2)

Proof. The proof consists of a case analysis on the rule involved in the reduction step of:

(E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2)

Case Thens: In such a case there exist u, v, Q1, and Q2 such that D2 = D1, Eq2 = Eq1∪{u
?
= v},

P1 = {if u = v then Q1 else Q2} ⊎ P, P2 = {Q1} ⊎ P, E1 = E2, Φ1 = Φ2, and αs = τ

1. Since vars2(D1) = vars2(D2) and vars1(D1) = vars1(D2), we have θ1 = θ2 and σ1 = σ2.
Furthermore, (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)) and Φ1 = Φ2 implies that (σ2, θ2) satisfies the

constraints of D2 = D1 and the (in)equalities of Eq2 = Eq1 ∪ {u
?
= v}, and so satisfies Eq1.

At last, with E1 = E2, we conclude that (σ1, θ1) ∈ Sol((E1; Φ1;D1;Eq1)).

2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq1 ∪ {u
?
= v})), we have that uσ2 =E vσ2. With σ1 = σ2,

we deduce that uσ1 =E vσ1 and so:

(E1; {if uσ1 = vσ1 then Q1σ1 else Q2σ1} ⊎ Pσ1; Φ1σ1)
τ
−→i (E1; {Q1σ1} ⊎ Pσ1; Φ1σ1),

i.e. (E1;P1σ1; Φ1σ1)
αsθ2−−−→i (E2;P2σ2; Φ2σ2).

The case of the rule Elses can be done in a similar way.

Case Comms: In such a case, there exist p, q, u, x, Q1, Q2, and P such that D2 = D1, Eq2 =

Eq1∪{p
?
= q}, Φ2 = Φ1, E2 = E1, P1 = {out(p, u).Q1; in(q.x).Q2}⊎P, P2 = {Q1;Q2{x 7→ u}}⊎P,

and αs = τ .

1. Since vars2(D1) = vars2(D2) and vars1(D1) = vars1(D2), we have θ1 = θ2 and σ1 = σ2.
Furthermore, (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)), and Φ1 = Φ2 implies that (σ2, θ2) satisfies

the constraints of D2 = D1 and the (in)equalities of Eq2 = Eq1 ∪ {p
?
= q}, and so satisfies

Eq1. At last, with E1 = E2, we conclude that (σ1, θ1) ∈ Sol((E1; Φ1;D1;Eq1)).

2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq1 ∪ {p
?
= q})), we have that pσ2 =E qσ2. With σ1 = σ2,

we deduce that pσ1 =E qσ1. But p and q are of channel type, then so does pσ1 and qσ1

which means that pσ1 = qσ1. Hence, we have that:

(E1; {out(pσ1, uσ1).Q1σ1; in(pσ1.x).Q2σ1} ⊎ Pσ1; Φ1σ1)
τ
−→i (E1; {Q1σ1;Q2σ1{x 7→ uσ1}} ⊎ Pσ1; Φ1σ1).

Since σ1 = σ2, Φ1 = Φ2 and Q2σ2{x 7→ uσ2} = (Q2{x 7→ u})σ2, we can deduce that

(E1;P1σ1; Φ1σ1)
αsθ2−−−→i (E2;P2σ2; Φ2σ2).

Case Pars: In such a case, there exist P , Q, and P such that D2 = D1, Eq2 = Eq1, Φ2 = Φ1,
E2 = E1, P1 = {P | Q} ⊎ P, P2 = {P ;Q} ⊎ P, and αs = τ .

1. Since vars2(D1) = vars2(D2) and vars1(D1) = vars1(D2), we have θ1 = θ2 and σ1 = σ2.
Furthermore, we have that (E1; Φ1;D1;Eq1) = (E2; Φ2;D2;Eq2) hence we trivially have that
(σ1, θ1) ∈ Sol((E1; Φ1;D1;Eq1)).

2. We have that:

(E1; {Pσ1 | Qσ1} ⊎ Pσ1; Φ1σ1)
τ
−→i (E1; {Pσ1;Qσ1} ⊎ Pσ1; Φ1σ1)

Since σ1 = σ2, we can deduce that (E1;P1σ1; Φ1σ1)
αsθ2−−−→i (E2;P2σ2; Φ2σ2).

Case Ins. In such a case, there exist p, x, Q, P and fresh variables y, z and Y,Z and such that

αs = in(Z, Y), P1 = {in(p, x).Q} ⊎ P, P2 = {Q{x 7→ y}} ⊎ P, D2 = D1 ∪ {Y, n
?

⊢ y ;Z, n
?

⊢ z},

Eq2 = Eq1 ∪ {z
?
= p}, E1 = E2 and Φ1 = Φ2 where n = |Φ1|.

1. We have that vars2(D1) = vars2(D2) r {Y ;Z}, vars1(D1) = vars1(D2) r {y ; z} and
Φ1 = Φ2. But (E ; Φ1;D1;Eq1) is a constraint system hence vars1(Φ1) ⊆ vars1(D1) which
implies that Φ1σ1 = Φ2σ2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)) and D1 ⊆ D2, we have

that for all (X, i
?

⊢ x) ∈ D1, (Xθ2)(Φ2σ2) = xσ2. With Φ1σ1 = Φ2σ2, we deduce that
(Xθ1)(Φ1σ1) = xσ1. Furthermore, we know that σ2 satisfies the (in)equalities of Eq2 =

Eq1 ∪ {z
?
= p} and so satisfies also the (in)equalities of Eq1. Since (E ; Φ1;D1;Eq1) being

a constraint system also implies vars1(Eq1) ⊆ vars1(D1), we deduce that σ1 satisfies the
(in)equalities of Eq1 and so we conclude that (σ1, θ1) ∈ Sol((E1; Φ1;D1;Eq1)).

2. Let M = Y θ2 and u = yσ2. Thanks to (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)) and E2 = E1, we have
that fnames(M) ∩ E1 = ∅. We have also that u = yσ2 = M(Φ2σ2). We already know that
Φ1σ1 = Φ2σ2, thus we have that u = M(Φ2σ2) = M(Φ1σ1). Futhermore, by definition of a
solution, we have that fvars(M) ⊆ dom(Φ1). Lastly, since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)),
we have that (Zθ2)(Φ2σ2) = zσ2, zσ2 =E pσ2 and Zθ2 ∈ T (N r {E2}, dom(Φ2)). But p
is a term of type channel, thus so does pσ2. Since all the function symbol operate on and
return term of base type and since all terms in Φ2 are base type, we can deduce that (Zθ2) ∈
N r {E2} and so Zθ2 = pσ2 with pσ2 6∈ E1 (E1 = E2). Furthermore, since σ1 = σ2|vars1(D1)

and vars1(D1) = vars1(D2)r {y ; z} where y, z are fresh variables, then p is either a name
or a variable in vars1(D1) and we have that pσ2 = pσ1. Hence, we have that

(E1; {in(pσ1, x).Qσ1} ⊎ Pσ1; Φ1σ1)
in(Zθ2,M)
−−−−−−−→i (E1; {Qσ1{x 7→ u}} ⊎ Pσ1; Φ1σ1),

i.e. (E1;P1σ1; Φ1σ1)
αsθ2−−−→i (E2; {Q{x 7→ y})σ2} ⊎ Pσ2; Φ2σ2) since E2 = E1, Φ2σ2 =

Φ1σ1 and σ2 = σ1 ∪ {y 7→ u ; z 7→ pσ1}. Hence, we have that (E1;P1σ1; Φ1σ1)
αsθ2−−−→i

(E2;P2σ2; Φ2σ2).

Case Out-Ts. In such a case, there exist p, u, Q, P, fresh variables Z, z and axn+1 ∈ AX such

that n = |Φ1|, αs = νaxn.out(Z, axn), P1 = {out(p, u).Q}⊎P, P2 = {Q}⊎P, D2 = D1∪{Z, n
?

⊢ z},

Eq2 = Eq1 ∪ {z
?
= p}, E2 = E1, and Φ2 = Φ1 ∪ {axn ⊲ u}.

1. We know that Z and z are fresh variables. Hence we have that vars2(D1) = vars2(D2)r{Z},
vars1(D1) = vars1(D2) r {z} and z 6∈ vars1(Φ1). Thus thanks to σ1 = σ2|vars1(D1), we
deduce that Φ1σ1 = Φ1σ2.
Furthermore, we know that (E1; Φ1;D1;Eq1) is a constraint system. Hence, with D2 =

D1 ∪ {Z, n
?

⊢ z} and (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)), we have that for all (X, i
?

⊢ x) ∈ D1,
i ≤ n and param(Xθ2) ⊆ {ax 1, . . . , axn}. Thus thanks to E1 = E2 and θ1 = θ2|vars2D2

, we

deduce that for all (X, i
?

⊢ x) ∈ D1, xσ1 = xσ2 = Xθ2(Φ2σ2) = Xθ1(Φ1σ2) = Xθ1(Φ1σ1)
and Xθ1 ∈ T (F ,N r {ξ},AX).

At last, z being fresh also implies that z 6∈ vars1(Eq1). Hence, for all (s
?
= s′) ∈ Eq1 (resp.

s
?

6= s′), we have that sσ2 = sσ1 and sσ1 = sσ2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)),
we deduce that sσ2 =E s′σ2 which implies sσ1 =E s′σ1. We can conclude that (σ1, θ1) ∈
Sol((E1; Φ1;D1;Eq1)).

2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)), we have that (Zθ2)(Φσ2) = zσ2, zσ2 =E pσ2 and
(Zθ2) ∈ T (F ,Nr{E2}∪dom(Φ2)). Since all the function symbol operate on and return term
of base type and since all terms of Φ2 are base type, we can deduce that (Zθ2) ∈ N r {E2}
and so Zθ2 = pσ2 with pσ2 6∈ E1 (E1 = E2). Furthermore, since σ1 = σ1|vars1(D1) and
vars1(D1) = vars1(D2)r {z} where z is a fresh variable, we have that p is either a name or
a variable in vars1(D1) and we have that pσ1 = pσ2.
We have that:

(E1; {out(pσ1, uσ1).Qσ1} ⊎ Pσ1; Φ1σ1)
νaxn+1.out(Zθ2,axn+1)
−−−−−−−−−−−−−−−→i

(E1; {Qσ1} ⊎ Pσ1; Φ1σ1 ∪ {axn+1 ⊲ uσ1}),

i.e. (E1;P1σ1; Φ1σ1)
νaxn+1.out(Zθ2,axn+1)
−−−−−−−−−−−−−−−→i (E2;P2σ2; Φ2σ2) since σ2 = σ1 ∪ {z 7→ pσ1}.

Case Out-Chs. In such a case, there exist p, c, Q, P, fresh variables Z, Y, z, y and P1 =

{out(p, c).Q} ⊎ P, P2 = {Q} ⊎ P, E2 = E1, Φ2 = Φ1, D2 = D1 ∪ {Z, n
?

⊢ z ;Y, n
?

⊢ y}, Eq2 =

Eq1 ∪ {z
?
= p ; y

?
= c}, αs = out(Z, Y) and c 6∈ E1 with n = |Φ1|.

1. We have that vars2(D1) = vars2(D2) r {Z ;Y }, vars1(D1) = vars1(D2) r {z ; y} and
Φ1 = Φ2. But (E ; Φ1;D1;Eq1) is a constraint system hence vars1(Φ1) ⊆ vars1(D1) which
implies that Φ1σ1 = Φ2σ2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)) and D1 ⊆ D2, we have

that for all (X, i
?

⊢ x) ∈ D1, (Xθ2)(Φ2σ2) = xσ2. With Φ1σ1 = Φ2σ2, we deduce that
(Xθ1)(Φ1σ1) = xσ1. Furthermore, we know that σ2 satisfies the (in)equalities of Eq2 =

Eq1 ∪ {z
?
= p ; y

?
= c} and so satisfies also the (in)equalities of Eq1. Since (E ; Φ1;D1;Eq1)

being a constraint system also implies vars1(Eq1) ⊆ vars1(D1), we deduce that σ1 satisfies
the (in)equalities of Eq1 and so we conclude that (σ1, θ1) ∈ Sol((E1; Φ1;D1;Eq1)).

2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)), we have that (Y θ2)(Φ2σ2) = yσ2, yσ2 = cσ2 and
(Y θ2) ∈ T (F ,N r {E2} ∪ dom(Φ2)). Since all the function symbols operate on and return
terms of base type and since all terms of Φ2 are base type, we can deduce that (Y θ2) ∈
N r {E2} and so Y θ2 = cσ2 with cσ2 6∈ E1 (E1 = E2). Furthermore, since σ1 = σ2|vars1(D1)

and vars1(D1) = vars1(D2)r {z ; y} where z, y are fresh variables, we have that c is either
a name or a variable in vars1(D1) and we have that cσ2 = cσ1.
Lastly, (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)) also implies that (Zθ2)(Φ2σ2) = zσ2 and zσ2 =E pσ2.
We apply the same reasoning we used with Y θ2 to prove that Zθ2 = pσ1 with pσ1 6∈ E1.
Hence, we have that:

(E1; {out(pσ1, c).Qσ1} ⊎ Pσ1; Φ1σ1)
out(Zθ2,Y θ2)
−−−−−−−−→i (E1; {Qσ1} ⊎ Pσ1; Φ1σ1).

Hence, we have that (E1;P1σ1; Φ1σ1)
αsθ2−−−→i (E2;P2σ2; Φ2σ2).

Case Open-Chs. In such a case, there exist p, c, Q, P and fresh variables Z, z such that p 6∈ E1,

c ∈ E1, P1 = {out(p, c).Q}⊎P, P2 = ({Q}⊎P){c 7→ ch}, E2 = E1, Φ2 = Φ1, D2 = D1∪{Z, n
?

⊢ z},

Eq2 = Eq1 ∪ {z
?
= p}, and αs = νchm.out(Z, chm) with n = |Φ1|.

1. We have that vars2(D1) = vars2(D2) r {Z}, vars1(D1) = vars1(D2) r {z} and Φ1 = Φ2.
But (E ; Φ1;D1;Eq1) is a constraint system hence vars1(Φ1) ⊆ vars1(D1) which implies that
Φ1σ1 = Φ2σ2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)) and D1 ⊆ D2, we have that for all

(X, i
?

⊢ x) ∈ D1, (Xθ2)(Φ2σ2) = xσ2. With Φ1σ1 = Φ2σ2, we deduce that (Xθ1)(Φ1σ1) =

xσ1. Furthermore, we know that σ2 satisfies the (in)equalities of Eq2 = Eq1 ∪ {z
?
= p} and

so satisfies also the (in)equalities of Eq1. Since (E ; Φ1;D1;Eq1) being a constraint system
also implies vars1(Eq1) ⊆ vars1(D1), we deduce that σ1 satisfies the (in)equalities of Eq1
and so we conclude that (σ1, θ1) ∈ Sol((E1; Φ1;D1;Eq1)).

2. Since (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)), we have that (Zθ2)(Φ2σ2) = zσ2, zσ2 = pσ2 and
(Zθ2) ∈ T (N r {E2}, dom(Φ2)). Since all the function symbols operate on and return terms
of base type and since all terms of Φ2 are base type, we can deduce that (Zθ2) ∈ N r {E2}
and so Zθ2 = pσ2 with pσ2 6∈ E1 (E1 = E2). Furthermore, since σ1 = σ2|vars1(D1) and
vars1(D1) = vars1(D2) r {z} where z is a fresh variable, then p is either a name or a
variable and we have that pσ2 = pσ1. Hence, we have that:

(E1; {out(pσ1, c).Qσ1} ⊎ Pσ1; Φ1σ1)
νchm.out(Zθ2,chm)
−−−−−−−−−−−−−→i

(E1; ({Qσ1} ⊎ Pσ1){c 7→ chm}; Φ1σ1).

Since chm is fresh name, we have that ({Qσ1}⊎Pσ1){c 7→ chm} =
(
({Q}⊎p){c 7→ chm}

)
σ1.

Hence, we have that (E1;P1σ1; Φ1σ1)
αsθ2−−−→i (E2;P2σ2; Φ2σ2)

Proposition 4.3 (completeness). Let (E1;P1; Φ1;D1;Eq1) be a symbolic process. Let (σ1, θ1) ∈

Sol((E1; Φ1;D1;Eq1)). Let (E ;P; Φ) be an intermediate process such that (E1;P1σ1; Φ1σ1)
α
−→i

(E ;P; Φ). There exist a symbolic process (E2;P2; Φ2;D2;Eq2), a pair of substitutions (σ2, θ2), and
a symbolic action αs such that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2);

2. (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2));

3. (E ;P; Φ) = (E2;P2σ2; Φ2σ2); and

4. αsθ2 = α.

Proof. The proof consists of a case analysis on the rule involved in the reduction step of:

(E1;P1σ1; Φ1σ1)
α
−→i (E ;P; Φ).

Case Theni: In such a case we have that E = E1 and there exist u′, v′, Q′
1, Q

′
2, and P ′ such that

u′ =E v′, P1σ1 = {if u′ = v′ then Q′
1 else Q

′
2}⊎P

′, P = {Q′
1}⊎P

′, Φ = Φ1σ1, and α = τ . Hence we
deduce that that there exist u, v, Q1, Q2, and P0 such that P1 = {if u = v then Q1 else Q2}⊎P0,
and thus we have that uσ1 = u′, vσ1 = v′, Q1σ1 = Q′

1, Q2σ1 = Q′
2, and P0σ1 = P ′. Let E2 = E1,

P2 = Q1 ⊎ P0, Φ2 = Φ1, D2 = D1, Eq2 = Eq1 ∪ {u
?
= v}, αs = τ , θ2 = θ1 and σ2 = σ1. We have

that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2). Indeed, we have that

(E1; {if u = v then Q1 else Q2}⊎P0; Φ1;D1;Eq1)
αs−→s (E1; {Q1}⊎P0; Φ1;D1;Eq1∪{u

?
= v}).

2. We have that vars2(D2) = vars2(D1), E2 = E1, D2 = D1 and Φ2 = Φ1. To check that (σ2, θ2)

is a solution, it remains to show that σ2 satisfies the (in)equalities in Eq2 = Eq1 ∪ {u
?
= v}.

But, we have that u′ =E v′ and souσ1 =E vσ1. With σ1 = σ2, we deduce that uσ2 =E vσ2

and so (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)).

3. We have that
(E2;P2σ2; Φ2σ2) = (E1; ({Q1} ⊎ P0)σ1; Φ1σ1)

= (E ; {Q′
1} ⊎ P ′; Φ)

= (E ;P; Φ).

4. We have that αsθ2 = αs = α.

The case of the rule Elsei can be done in a similar way.

Case Commi: In such a case we have that E = E1 and there exist p′, u′, x, Q′
1, Q′

2, and P ′

such that P1σ1 = {out(p′, u′).Q′
1; in(p

′, x).Q′
2} ⊎ P ′, P = {Q′

1;Q
′
2{x 7→ u′}} ⊎ P ′, Φ = Φ1σ1,

and α = τ . Hence we deduce that that there exist u, p, q, Q1, Q2, and P0 such that P1 =
{out(p, u).Q1; in(q, x).Q2} ⊎ P0, and thus we have that uσ1 = u′, qσ1 = pσ1 = p′, Q1σ1 = Q′

1,
Q2σ1 = Q′

2, and P0σ1 = P ′. Let E2 = E1, P2 = {Q1;Q2{x 7→ u}} ⊎ P0, Φ2 = Φ1, D2 = D1,

Eq2 = Eq1 ∪ {p
?
= q}, αs = τ , θ2 = θ1 and σ2 = σ1. We have that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2). Indeed, we have that

(E1; {out(p, u).Q1; in(q, x).Q2} ⊎ P0; Φ1;D1;Eq1)
αs−→s

(E1; {Q1;Q2{x 7→ u}} ⊎ P0; Φ1;D1;Eq1 ∪ {p
?
= q})

2. We have E2 = E1, D2 = D1, Eq2 = Eq1 ∪ {p
?
= q} and Φ2 = Φ1. To check that (σ2, θ2) is a

solution, it remains to show that σ2 satisfies the (in)equalities in Eq2 = Eq1 ∪ {p
?
= q}. But

we know that pσ2 = qσ2 hence pσ2 =E qσ2 and so (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)).

3. Since x is fresh and x 6∈ dom(σ1), we have Q2{x 7→ u}σ1 = (Q2σ1){x 7→ uσ1} and so:

(E2;P2σ2; Φ2σ2) = (E1; {Q1;Q2{x 7→ u}} ⊎ P0)σ1; Φ1σ1)
= (E ; {Q′

1;Q
′
2{x 7→ u′}} ⊎ P ′; Φ′

1)
= (E ;P; Φ).

4. We have that αsθ2 = αs = α.

Case Ini: In such a case we have that E = E1, Φ = Φ1σ1 and there exist p′, x, Q′, P ′, M
and u such that p′ 6∈ E1, P1σ1 = {in(p′, x).Q′} ⊎ P ′, P = {Q′{x 7→ u}} ⊎ P ′, MΦ1σ1 = u,
fvars(M) ⊆ dom(Φ1σ1), fnames(M) ∩ E1 = ∅, and α = in(p′,M). Hence, we deduce that there
exist p, Q, P0 such that P1 = {in(p, x).Q} ⊎ P0 with pσ1 = p′, Qσ1 = Q′ and P0σ1 = P ′.

Let Y and Z be two second order variables and y, z be two fresh first order variables. Let

E2 = E1, P2 = {Q{x 7→ y}}⊎P0, Φ2 = Φ1, D2 = D1∪{Y, n
?

⊢ y ;Z, n
?

⊢ z}, Eq2 = Eq1∪{z
?
= p} and

αs = in(Z, Y) with n = |Φ1σ1|. Let θ2 be the substitution such that θ2 = θ1 ∪ {Y 7→ M ;Z 7→ p′}
and let σ2 be the substitution such that σ2 = σ1 ∪ {y 7→ u ; z 7→ p′}. We have that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2). Indeed, we have that

(E1; {in(p, x).Q} ⊎ P0; Φ1;D1;Eq1)
in(Z,Y)
−−−−−→s

(E1; {Q{x 7→ y}} ⊎ P0; Φ1;D1 ∪ {Y, n
?

⊢ y ;Z, n
?

⊢ z};Eq1 ∪ {z
?
= p}).

2. Thanks to fnames(θ1) ∩ E1 = ∅, fnames(M) ∩ E1 = ∅ and p′ 6∈ E1, we have dom(θ2) =
vars2(D2) and fnames(θ2) ∩ E2 = ∅. Hence we have that Zθ2, Y θ2 ∈ T (N r E2,AX). Fur-
thermore, since n = |Φ1σ| = |Φ1|, fvars(M) ⊂ dom(Φ1) and p′ is a channel name we deduce
that param(Zθ2) ⊆ {ax 1, . . . , axn} and param(Y θ2) ⊆ {ax 1, . . . , axn}.
Now, it remains to show that σ2 satisfies the constraints in D2 and the (in)equalities in Eq2.
Since σ2 = σ1 ∪ {y 7→ u ; z 7→ p′} where y, z are fresh variables, it implies that Φ2σ2 =
Φ1σ1, pσ2 = pσ1 which allows us to conclude since (Y θ2)(Φ2σ2) = M(Φ1σ1) = u = yσ2,
(Zθ2)(Φ2σ2) = p′(Φ2σ2) = p′ = zσ2 = pσ2 and zσ2 = pσ2 implies zσ2 =E pσ2.

3. We have that

(E2;P2σ2; Φ2σ2) = (E1; {Q{x 7→ y}σ2} ⊎ P0σ2; Φ1σ1)
= (E1; {Qσ1{x 7→ u}} ⊎ P0σ1; Φ1σ1)
= (E ; {Q′{x 7→ u}} ⊎ P ′; Φ)
= (E ;P; Φ).

4. We have that αsθ2 = In(Z, Y)θ2 = In(p′,M) = α.

Case Out-Ti: In such a case we have that E = E1 and there exist p′, u′, Q′, and P ′ such that
p′ 6∈ E1, P1σ1 = {out(p′, u′).Q′} ⊎P ′, Φ = Φ1σ1 ∪ {axn+1 ⊲ u′} where n = |Φ1σ1|, P = {Q′} ⊎P ′,
and α = νaxn+1.out(p

′, axn+1). Since P1σ1 = {out(p′, u′).Q′} ⊎ P ′, we deduce that there exist
u, p, Q and P0 such that P1 = {out(p, u).Q} ⊎ P0, with uσ1 = u′, pσ1 = p′, Qσ1 = Q′, and
P0σ1 = P ′.

Let Z be a second order variable and z be a fresh first order variable. Let E2 = E1, P2 =

Q ⊎ P0, Φ2 = Φ1 ∪ {axn+1 ⊲ u}, D2 = D1 ∪ {Z, n − 1
?

⊢ z}, Eq2 = Eq1 ∪ {z
?
= p}, αs =

νaxn+1.out(Z, axn+1), θ2 = θ1 ∪ {Z 7→ p′} and σ2 = σ1 ∪ {z 7→ p′}. We have that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2). Indeed, we have that

(E1; {out(p, u).Q} ⊎ P0; Φ1;D1;Eq1)
νaxn+1.out(Z,axn+1)
−−−−−−−−−−−−−−→s

(E1; {Q} ⊎ P0; Φ1 ∪ {axn+1 ⊲ u};D1 ∪ {Z, n
?

⊢ z};Eq1 ∪ {z
?
= p}).

2. We have dom(θ2) = vars2(D2) and fnames(θ2) ∩ E2 = ∅ since fnames(θ1) ∩ E1 = ∅ and

p′ 6∈ E1. Furthermore, for all (X, i
?

⊢ x) ∈ D1, we have that i ≤ n, Xθ2 = Xθ1, xσ1 = xσ2

and Φ1σ1 = Φ1σ2 thus we deduce that param(Xθ2) ⊆ {ax 1, . . . , ax i} and (Xθ1)(Φ1σ1) = xσ1

implies (Xθ2)(Φ2σ2) = xσ2. Moreover, we know have that Zθ2 = p′ = zσ2 thus we deduce
that (Zθ2)(Φ2σ2) = zσ2. At last, we know that pσ1 = p′ hence pσ2 = p′ = zσ2, thus we
deduce that pσ2 =E zσ2. We can conclude that (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)).

3. We have that

(E2;P2σ2; Φ2σ2) = (E1; {Qσ1} ⊎ P0σ1; Φ1σ1 ∪ {axn+1 ⊲ uσ1})
= (E ; {Q′} ⊎ P ′; Φ1σ1 ∪ {axn+1 ⊲ u′})
= (E ;P; Φ)

4. We have that αsθ2 = νaxn+1.out(Z, axn+1)θ2 = νaxn+1.out(p
′, axn+1) = α.

Case Out-Chi. In such a case we have that E = E1, Φ = Φ1σ1 and there exist p′, c′, Q′, and P ′

such that P ′
1 = {out(p′, c′).Q′} ⊎ P ′, P = {Q′} ⊎ P ′, p′, c′ 6∈ E1, and α = out(p′, c′). Hence, we

deduce that there exist p, c, Q and P0 such that P1 = {out(p, c).Q} ⊎ P0 with cσ1 = c′, pσ1 = p′,
P0σ1 = P ′ and Qσ1 = Q′.

Let Z and Y be second order variables and z, y be fresh first order variables. Let E2 = E1,

P2 = Q ⊎ P0, Φ2 = Φ1, D2 = D1 ∪ {Z, n
?

⊢ z ;Y, n
?

⊢ y}, Eq2 = Eq1 ∪ {z
?
= p ; y

?
= c},

αs = out(Z, Y), θ2 = θ1 ∪ {Z 7→ p′ ;Y 7→ c′} and σ2 = {z 7→ p′ ; y 7→ c′} with n = |Φ1σ1|. We
have that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2). Indeed, we have that

(E1; {out(p, c).Q} ⊎ P0; Φ1;D1;Eq1)
out(Z,Y)
−−−−−→s

(E2; {Q} ⊎ P0; Φ1;D1 ∪ {Z, n
?

⊢ z ;Y
?

⊢ y};Eq1 ∪ {z
?
= p ; y

?
= c}).

2. First of all, we have dom(θ2) = vars2(D2). Second, we know that p′ and c′ are both channel
names such that p′, c′ 6∈ E2 (E1 = E2). Thus, it implies that Zθ2, Y θ2 ∈ T (N r E2,AX).
Furthermore, we trivially have that param(Zθ2) = param(Y θ2) = ∅ ⊆ {ax 1, . . . , axn}.

Now, it remains to show that σ2 satisfies the constraints in D2 and the (in)equalities in
Eq2. Since σ2 = {z 7→ p′ ; y 7→ c′} with z, y fresh variables, it implies that Φ2σ2 = Φ1σ1,
pσ2 = pσ1 and cσ2 = cσ1 which allows us to conclude since

— (Y θ2)(Φ2σ2) = c′(Φ2σ2) = c′ = yσ2;

— (Zθ2)(Φ2σ2) = p′(Φ2σ2) = p′ = zσ2;

— yσ2 =E cσ2 and zσ2 =E pσ2 since c′ = cσ1 = cσ2 and p′ = pσ1 = pσ2.

3. We have that
(E2;P2σ2; Φ2σ2) = (E1; {Qσ1} ⊎ P0σ1; Φ1σ1)

= (E ; {Q′} ⊎ P ′; Φ)
= (E ;P; Φ)

4. We have that αsθ2 = out(Z, Y)θ2 = out(p′, c′) = α.

Case Open-Chi: In such a case we have that E = E1, Φ = Φ1σ1 and there exist p′, c, Q′, P ′

and a fresh channel name chn such that P1σ1 = {out(p′, c).Q′} ⊎ P ′, P = ({Q′} ⊎ P ′){c 7→ chm},
p′ 6∈ E1, c ∈ E1, and α = νchm.out(p, chm). Hence, we deduce that there exist p, Q and P0 such
that P1 = {out(p, c).Q} ⊎ P0 with pσ1 = p′, P0σ1 = P ′ and Qσ1 = Q′.

Let Z be a second order variable and z be a fresh first order variable. Let E2 = E1, P2 = ({Q}⊎

P0){c 7→ chm}, Φ2 = Φ1, D2 = D1 ∪ {Z, n
?

⊢ z}, Eq2 = Eq1 ∪ {z
?
= p}, αs = νchm.out(Z, chm),

θ2 = θ1 ∪ {Z 7→ p′}, σ2 = σ1 ∪ {z 7→ p′} with n = |Φ1σ1|. We have that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2). Indeed, we have that

(E1; {out(p, c).Q} ⊎ P0; Φ1;D1;Eq1)
νchm.out(Z,chm)
−−−−−−−−−−−→s

(E2; ({Q} ⊎ P0){c 7→ chm}; Φ1;D1 ∪ {Z, n
?

⊢ z};Eq1 ∪ {z
?
= p}).

2. First of all, we have dom(θ2) = vars2(D2). Second, we know that p′ is a channel name
such that p′ 6∈ E2 (E1 = E2). Thus, it implies that Zθ2 ∈ T (N r E2,AX). Furthermore, we
trivially have that param(Zθ2) = ∅ ⊆ {ax 1, . . . , axn}.
Now, it remains to show that σ2 satisfies the constraints in D2 and the (in)equalities in Eq2.
Since σ2 = {z 7→ p′} with z fresh variables, it implies that Φ2σ2 = Φ1σ1 and pσ2 = pσ1

which allows us to conclude since (Zθ2)(Φ2σ2) = p′(Φ2σ2) = p′ = zσ2 and p′ = pσ1 = pσ2

implies zσ2 =E pσ2.

3. We have that

(E2;P2σ2; Φ2σ2) = (E1; ({Q} ⊎ P0){c 7→ chm}σ2; Φ1σ1)
= (E ; ({Q}σ1 ⊎ P0σ1){c 7→ chm}; Φ′

1)
= (E ; ({Q′} ⊎ P ′){c 7→ chm}; Φ)
= (E ;P; Φ)

4. We have that αsθ2 = νchm.out(Z, chm)θ2 = νchm.out(p′, chm) = α.

Case Pari: In such a case we have that E = E1 and there exist P ′, Q′, and P ′ such that
P1σ1 = {P ′ | Q′}⊎P ′, P = {P ′;Q′}⊎P ′, Φ = Φ1σ1, and α = τ . Hence we deduce that that there
exist P , Q, and P0 such that P1 = {P | Q} ⊎ P0, and thus we have that Qσ1 = Q′, Pσ1 = P ′,
and P0σ1 = P ′. Let E2 = E1, P2 = {P ;Q} ⊎ P0, Φ2 = Φ1, D2 = D1, Eq2 = Eq1, αs = τ , θ2 = θ1
and σ2 = σ1. We have that:

1. (E1;P1; Φ1;D1;Eq1)
αs−→s (E2;P2; Φ2;D2;Eq2). Indeed, we have that

(E1; {P | Q} ⊎ P0; Φ1;D1;Eq1)
αs−→s (E1; {P ;Q} ⊎ P0; Φ1;D1;Eq1).

2. We have that (E2; Φ2;D2;Eq2) = (E1; Φ1;D1;Eq1), θ2 = θ1 and σ2 = σ1 and we trivially
have that (σ2, θ2) ∈ Sol((E2; Φ2;D2;Eq2)).

3. We have that

(E2;P2σ2; Φ2σ2) = (E1; ({Pσ2;Qσ2} ⊎ P0σ2); Φ2σ2)
= (E ; ({Pσ1;Qσ1} ⊎ P0σ1); Φ1σ1)

(E ; ({P ′;Q′} ⊎ P ′); Φ)
= (E ;P; Φ).

4. We have that αsθ2 = αs = α.

Appendix B

Composition of trace equivalence

B.1 Preliminaries

Lemma 5.4. If t1, t2 are terms (that do not use dom(ρ)) in normal form then for all i ∈ {a, b},
t1 = t2 is equivalent to δρi (t1) = δρi (t2).

Proof. The right implication of the lemma is trivial thus, we focus on the left implication: for all
i ∈ {a, b},δρi (t1) = δρi (t2) implies t1 = t2. We prove this result by induction on max(|t1|, |t2|).

Base case max(|t1|, |t2|) = 1: In such a case, we have that t1, t2 ∈ X ∪N . By definition of δρa, we
know that δρa(t1) = t1 and δρa(t2) = t2. Thus, we can conclude that δρa(t1) = δρa(t2) implies t1 = t2.
For the case i = b, we do a case analysis on whether δρb (t1) = δρb (t2) = k for some k ∈ dom(ρ) or
not.

Case δρb (t1) = k ∈ dom(ρ): By hypothesis, we know that t2 and t1 do not use dom(ρ).
Therefore, by definition of δρb , we can deduce that, t2↓ = kρ and t1↓ = kρ. Since t1 and t2 are in
normal form, we can conclude that t1 = t2 = kρ.

Case δρb (t1) 6= k for every k ∈ dom(ρ): By definition of δρb , we have that δρb (t1) = t1 and
δρb (t2) = t2, and thus t1 = t2.

Inductive step max(|t1|, |t2|) > 1: Assume w.l.o.g. that |t1| > 1. Thus, there exists a function
symbol f and terms u1, . . . un such that t1 = f(u1, . . . un). Since t1 is in normal form, we can
deduce that t1↓ 6= kρ, for every k ∈ dom(ρ). We do a case analysis on t1 :

Case f ∈ Fd∪Ftagd
and d ∈ {a, b}: In such a case, we have that δρi (t1) = f(δρd(u1), . . . , δ

ρ
d(un)).

But δρi (t2) = δρi (t1) and by definition of δρi , we know that it implies that there exists v1, . . . , vn such
that t2 = f(v1, . . . , vn) and δρi (t2) = f(δρd(v1), . . . , δ

ρ
d(vn)). Thus we have that δρd(vj) = δρd(uj) for

all j ∈ {1, . . . , n}. Furthermore, since t1 and t2 are in normal form, we also know that uj and vj are
in normal form, for every j. But, max(|t1|, |t2|) > max(|uj |, |vj |), for any j, thus by our inductive
hypothesis, we can deduce that uj = vj , for all j and so t1 = f(u1, . . . , un) = f(v1, . . . , vn) = t2.

Case t1 = f(tagd(w1), w2), d ∈ {a, b} and f ∈ {senc, aenc, sign}: In this case, we know that
δρi (t1) = f(tagd(δ

ρ
d(w1)), δ

ρ
d(w2)). But we know that δρi (t2) = δρi (t1) = f(tagd(δ

ρ
d(w1)), δ

ρ
d(w2)).

Thus thanks to t2 being in normal form and by definition of δρi , it implies that there exists v1
and v2 such that t2 = f(tagd(v1), v2) and so δρi (t2) = f(tagd(δ

ρ
d(v1)), δ

ρ
d(v2)). Thus, we have that

δρd(v1) = δρd(u1) and δρd(v2) = δρd(u2). Moreover, t1 and t2 being in normal form and not using
dom(ρ), so are uj and vj for j ∈ {1, 2}, so we can apply our inductive hypothesis and conclude
that v1 = u1 and v2 = u2 and so t1 = t2.

Case t1 = h(tagd(w1)) and d ∈ {a, b}: This case is analogous to the previous one and can be
handled in a similar way.

Else case: Otherwise, we have that f ∈ F0 but the root symbol of u1 is not taga or tagb. By
definition of δρi , we can deduce that δρi (t1) = f(δρi (u1), . . . , δ

ρ
i (un)). Since δρi (t1) = δρi (t2), we can

deduce that the top symbol of t2 is also f and so there exists v1, . . . , vn such that t2 = f(v1, . . . , vn).
In the previous cases, we showed that if f ∈ {senc, aenc, sign, h} and the top symbol of v1 is taga or

205

tagb, then δρi (t1) = δρi (t2) implies that the top symbol of u1 is also taga or tagb. Thus, thanks to our
hypothesis, we can deduce that either f 6∈ {senc, aenc, sign, h} or the top symbol of v1 is different
from taga and tagb. Hence by definition of δρi , we can deduce that δρi (t2) = f(δρi (v1), . . . , δ

ρ
i (vn))

and so δρi (vj) = δρi (uj) for all j ∈ {1, . . . , n}. Moreover, t1 and t2 being in normal form and not
using names in dom(ρ), implies that so are uj and vj for all j ∈ {1, . . . , n}. We can thus invoke
our inductive hypothesis and conclude that uj = vj for all j ∈ {1, . . . , n} and so t1 = t2.

Lemma 5.5. Let t1, t2 two terms (that do not use dom(ρ)) in normal form. If δρa(t1) = δρb (t2)
then t1 = t2.

Proof. We prove the result by induction on |δρa(t1)|.

Base case |δρa(t1)| = 1: In such a case, we have that δρa(t1) ∈ N ∪X . Assume first that δρa(t1) ∈ X
and so δρb (t2) ∈ X : By definition of δρa and δρb , we can deduce that δρa(t1) = t1 and δρb (t2) = t2.
Thus we conclude that t1 = t2. Assume now that δρa(t1) ∈ N . We need to distinguish two cases :

Case δρa(t1) ∈ dom(ρ): By definition of δρa, δρa(t1) ∈ N implies that δρa(t1) = t1. But we
assumed that t1, t2 do not use dom(ρ). Thus this case is impossible.

Case δρa(t1) 6∈ dom(ρ): Once again by definition of δρa, we have δρa(t1) = t1. Furthermore, since
t2 do not use dom(ρ) and δρb (t2) 6∈ dom(ρ), we also have that δρb (t2) = t2 by definition of δρb . Thus
we conclude that t1 = t2.

Inductive step |δρa(t1)| > 1: In that case, we have that δρa(t1) = f(u1, . . . , un) = δρb (t2). Assume
that f ∈ Fd ∪ Ftagd

with d ∈ {a, b}. By definition of δρa and δρb , we can deduce that root(t1) = f =
root(t2). Furthermore, if we assume that t1 = f(v1, . . . , vn) and t2 = f(w1, . . . , wn), we would have
δρd(vj) = δρd(wj) for all j ∈ {1, . . . , n}. By Lemma 5.4, we deduce that vj = wj for all j ∈ {1, . . . , n}.
Hence, we conclude that t1 = t2. Assume now that f ∈ F0. According to the definition of δρa and
δρb , there exists v1, . . . , vn and w1, . . . , wn such that t1 = f(v1, . . . , vn), t2 = f(w1, . . . , wn) and
δρk(vj) = δρℓ (wj), for some k, ℓ ∈ {a, b}. Moreover, t1 and t2 being in normal form and not using
names in dom(ρ) imply that so are vj and wj for all j ∈ {1, . . . , n}. Now, either k = ℓ and so by
Lemma 5.4, we have that vj = wj , else k 6= ℓ but then by our inductive hypothesis, we also have
vj = wj . Hence we conclude that t1 = t2.

Lemma 5.6. Let u be a term in normal form that do no use dom(ρ). We have that for all
i ∈ {a, b}, δρi (u) is in normal form and root(δρi (u)) = root(u).

Proof. We prove this result by induction on |u|.
Base case |u| = 1: In such a case, u ∈ X ∪N . If u ∈ X , then for all i ∈ {a, b}, δρi (u) = u. Since u
is in normal form then the result holds. If u ∈ N , by definition, we also have that δρi (u) ∈ N and
so δρi (u) is in normal form with the same root as u, namely ⊥.

Inductive |u| > 1: In this case, we have that u = C[u1, . . . , un] with u1, . . . , un factors of u.
Assume first that C is built upon Fj ∪ Ftagj

, for some j ∈ {a, b}. Since u is in normal form,
then for all position p of C, we have that u|p↓ 6∈ img(ρ) and so for all k ∈ {a, b}, δρk(u) =
C[δρj (u1), . . . , δ

ρ
j (un)]. By inductive hypothesis on u1, . . . , un. We have that δρj (u1), . . . , δ

ρ
j (un) are

in normal form and root(δρj (u1)) = root(u1), . . . , root(δρj (un)) = root(un), thus δρj (u1), . . . , δ
ρ
j (un)

are factors of δρi (u). Thus, since u is in normal form, by Lemmas 5.4 and 5.3 , we have that
δρi (u)↓ = C[δρj (u1), . . . , δ

ρ
j (un)] = δρi (u). Furthermore, we also have that root(δρi (u)) = root(u).

Assume now that C is built upon F0. Thus, assume that u = f(v1, . . . , vm). By definition of δρa
and δρb , there exists j ∈ {a, b} such that δρi (u) = f(δρj (v1), . . . , δ

ρ
j (vm)). We do a case analysis on f:

Case f ∈ {senc, aenc, pk, sign, vk, h, 〈 〉}: In this case, by the rewriting system O0, we have that
δρi (u)↓ = f(δρj (v1)↓, . . . , δ

ρ
j (vm)↓). Since by inductive hypothesis, δρj (vk) is in normal form, for all

k ∈ {1, . . . ,m}, we can deduce that δρi (u) is also in normal form and root(δρi (u)) = f = root(u).
Case f = sdec: Then by definition of δρa and δρb , we have that δρi (u) = sdec(δρj (v1), δ

ρ
j (v2)), with

j ∈ {a, b}. By inductive hypothesis, we have that δρj (v1) and δρj (v2) are both in normal form and
have the same root as v1 and v2 respectively.

Assume first that sdec can not be reduced, i.e. δρi (u)↓ = sdec(δρj (v1)↓, δ
ρ
j (v2)↓) and so δρi (u)↓ =

sdec(δρj (v1), δ
ρ
j (v2)). Thus the result holds. Otherwise, if sdec can be reduced, it implies that there

exists w1, w2 such that δρj (v1) = senc(w1, w2) and δρj (v2) = w2. But by definition of δρj , there
must exist k ∈ {a, b}, and w′

1, w
′
2 such that δρj (v1) = senc(δρk(w

′
1), δ

ρ
k(w

′
2)), v1 = senc(w′

1, w
′
2),

w1 = δρk(w
′
1) and w2 = δρk(w

′
2). Thus, we have that δρj (v2) = δρk(w

′
2). Thanks to Lemmas 5.4

and 5.5, we can conclude that v2 = w′
2 and so u = sdec(senc(w′

1, w
′
2), w

′
2). But in such a case, we

would have that u is not in normal form which contradicts our hypothesis.
Case f = check: Then by definition of δρa and δρb , we have that δρi (u) = check(δρj (v1), δ

ρ
j (v2)),

with j ∈ {a, b}. By inductive hypothesis, we have that δρj (v1) and δρj (v2) are both in normal form
and have the same root as v1 and v2 respectively.

Assume first that check can not be reduced: this case is analogous to the sdec one and can be
handled similarly. Otherwise, if check can be reduced, it implies that there exist w1, w2 such that
δρj (v1) = sign(w1, w2) and δρj (v2) = vk(w2). But by definition of δρj , there must exist k ∈ {a, b}, and
w′

1, w
′
2 such that δρj (v1) = sign(δρk(w

′
1), δ

ρ
k(w

′
2)), v1 = sign(w′

1, w
′
2), w1 = δρk(w

′
1) and w2 = δρk(w

′
2).

Thus, we have that δρj (v2) = vk(δρk(w
′
2)) = δρk(vk(w

′
2)). Thanks to Lemmas 5.4 and 5.5, we can

conclude that v2 = vk(w′
2) and so u = check(sign(w′

1, w
′
2), vk(w

′
2). But in such a case, we would

have that u is not in normal form which contradicts our hypothesis.
Case f = adec: Then by definition of δρa and δρb , we have that δρi (u) = adec(δρj (v1), δ

ρ
j (v2)),

with j ∈ {a, b}. By inductive hypothesis, we have that δρj (v1) and δρj (v2) are both in normal form
and have the same root as v1 and v2 respectively.

Assume first that adec cannot be reduced: this case is analogous to the sdec one and can be
handled similarly. Otherwise, if adec can be reduced, it implies that there exist w1, w2 such that
δρj (v1) = aenc(w1, pk(w2)) and δρj (v2) = w2. But by definition of δρj , there must exist k ∈ {a, b},
and w′

1, w
′
2 such that δρj (v1) = aenc(δρk(w

′
1), pk(δ

ρ
k(w

′
2))), v1 = aenc(w′

1, pk(w
′
2)), w1 = δρk(w

′
1) and

w2 = δρk(w
′
2). Thus, we have that δρj (v2) = δρk(w

′
2). Thanks to Lemmas 5.4 and 5.5, we can

conclude that v2 = w′
2 and so u = adec(aenc(w′

1, pk(w
′
2)), w

′
2). But in such a case, we would have

that u is not in normal form which contradicts our hypothesis.

Lemma B.1. Let ρ be a renaming of name of base type. Let u be a term, C a context (possibly
a hole) built over F0 and v1, . . . , vm terms such that u = C[v1, . . . , vm], {v1, . . . , vm} = FctF0

(u)
and dom(ρ) do not occur in u. If for all i ∈ {1, . . . ,m}, vi↓ 6= kρ for any k ∈ dom(ρ), then we
have that δρa(u) = δρb (u).

Proof. We prove this lemma by induction on the syntactic size of |C|.

Base case |C| = 0 : In this case, C is a hole which means that either root(u) 6∈ F0, or u is of the
form f(tagi(u1), u2) with f ∈ {senc, aenc, sign} and i ∈ {a, b}, or u is of the form h(tagi(u1)) with
i ∈ {a, b}. Remember that u↓ 6= kρ for any k ∈ dom(ρ). We do a case analysis on u :

Case u ∈ N ∪ X : In such a case, since we assume that u↓ 6= kρ for any k ∈ dom(ρ), then by
definition of δρa and δρb , we have that δρa(u) = u = δρb (u).

Case u = f(u1, . . . , un) with f 6∈ F0: f 6∈ F0 implies that f ∈ Fd ∪ Ftagd
with d ∈ {a, b}. Thus,

by definition of δρa and δρb , we have that δρa(u) = f(δρd(u1), . . . , δ
ρ
d(un)) = δρb (u).

Case u = f(tagd(u1), u2) with d ∈ {a, b} and f ∈ {senc, aenc, sign}: In that case, we have by
definition of δρa and δρb that δρa(u) = f(tagd(δ

ρ
d(u1)), δ

ρ
d(u2)) = δρb (u).

Case u = h(tagd(u1)) with d ∈ {a, b}: This case is analogous to the previous one and can be
handled in a similar way.

Inductive step |C| > 1 : In this case, we know that u = f(u1, . . . , un) with f ∈ F0. But |C| > 1 also
implies that for all i ∈ {1, . . . , n}, there exists a sub context Ci (possibly a hole) of C such that
ui = Ci[v

i
1, . . . , v

i
mi

] and {vi1, . . . , v
i
mi

} = FctF0
(ui). Note that FctF0

(ui) ⊆ FctF0
(u). Since Ci is

a sub context of C, then thanks to our hypothesis, we have that for all j ∈ {1, . . . ,mi}, vij↓ 6= kρ
for any k ∈ dom(ρ). Thus we can apply our inductive hypothesis and deduce that δρa(ui) = δρb (ui).
Since C 6= [_] and f ∈ F0, it must be the case that root(u1) 6= tagk for any k ∈ {a, b}, thus
by definition of δρa and δρb , since root(u) ∈ F0, we have that δρa(u) = f(δρa(u1), . . . , δ

ρ
a(un)) and

δρb (u) = f(δρb (u1), . . . , δ
ρ
b (un)). Thanks to the previously established equalities δρa(ui) = δρb (ui) for

all i ∈ {1, . . . , n}, we can conclude that δρa(u) = δρb (u).

Lemma B.2. Let i ∈ {a, b}. Let u ∈ T (Fi ∪F0,N ∪X). Let α be a ground substitution such that
fvars(u) ⊆ dom(α) and for all x ∈ dom(α), xα is in normal form. Let ρ a renaming of names of
base type such that dom(ρ) do not occur in u or α. We have that:

— δρi ([u]iα) = δρi ([u]i)δ
ρ
i (α); and

— If α � testi([u]i) then δρi ([u]iα)↓ = δρi ([u]iα↓).

Proof. We prove the two results separately. First of all, we show by induction on |u| that
δρi ([u]iα) = δρi ([u]i)δ

ρ
i (α):

Base case |u| = 1: In this case, u ∈ N ∪X . If u ∈ N then we have that [u]i = u and so [u]iα = u
and δρi (u) ∈ N . Thus, we have that δρi ([u]iα) = δρi (u) = δρi (u)δ

ρ
i (α) = δρi ([u]i)δ

ρ
i (α). Else if

u ∈ X , then we also have that [u]i = u and δρi (u) = u. Thus, δρi (u)δ
ρ
i (α) = uδρi (α). Since u ∈ X

and fvars(u) ⊆ dom(α), we have that uδρi (α) = δρi (uα), thus δρi ([u]iα) = δρi (uα) = uδρi (α) =
δρi (u)δ

ρ
i (α) = δρi ([u]i)δ

ρ
i (α).

Inductive step |u| > 1: In this case, u = f(u1, . . . , un). We do a case analysis on f.

Case f ∈ Fi: In such a case, we have that [u]i = f([u1]i, . . . , [un]i). But by definition of δρi ,
we have that δρi ([u]iα) = f(δρi ([u1]iα), . . . , δ

ρ
i ([un]iα)) and δρi ([u]i) = f(δρi ([u1]i), . . . , δ

ρ
i ([un]i)). By

our inductive hypothesis, we can deduce that for all k ∈ {1, . . . , n}, we have that δρi ([uk]iα) =
δρi ([uk]i)δ

ρ
i (α). Thus, δρi ([u]iα) = f(δρi ([u1]i), . . . , δ

ρ
i ([un]i))δ

ρ
i (α) = δρi ([u]i)δ

ρ
i (α).

Case f ∈ {aenc, sign, senc}: In this case n = 2, and by definition of [u]i, we have that [u]i =
f(tagi([u1]i), [u2]i). Thus, we have that δρi ([u]i) = f(tagi(δ

ρ
i ([u1]i)), δ

ρ
i ([u2]i)) and δρi ([u]iα) =

f(tagi(δ
ρ
i ([u1]iα)), δ

ρ
i ([u2]iα)). But by our inductive hypothesis, we can deduce that δρi ([uk]iα) =

δρi ([uk]i)δ
ρ
i (α), for all k ∈ {1, 2}. Thus, δρi ([u]iα) = f(tagi(δ

ρ
i ([u1]i)δ

ρ
i (α)), δ

ρ
i ([u2]i)δ

ρ
i (α)) and so

we conclude that δρi ([u]iα) = δρi ([u]i)δ
ρ
i (α).

Case f = h: This case is analogous to the previous one and can be handled in a similar way.

Case f ∈ {sdec, adec, check}: In this case n = 2, and by definition of [u]i, we have that
[u]i = untagi(f([u1]i, [u2]i)). Thus, we have that δρi ([u]i) = untagi(f(δ

ρ
i ([u1]i), δ

ρ
i ([u2]i))) and

δρi ([u]iα) = untagi(f(δ
ρ
i ([u1]iα), δ

ρ
i ([u2]iα))). Once again, with our inductive hypothesis, we can

deduce that δρi ([uk]iα) = δρi ([uk]i)δ
ρ
i (α), for k ∈ {1, 2}, and so we can conclude that δρi ([u]iα) =

untagi(f(δ
ρ
i ([u1]i), δ

ρ
i ([u2]i)))δ

ρ
i (α) = δρi ([u]i)δ

ρ
i (α).

Else case: In this case, by definition of [u]i, we have that [u]i = f([u1]i, . . . , [un]i) and δρi ([u]i) =
f(δρi ([u1]i), . . . , δ

ρ
i ([un]i)). Thus, this case is similar to the case f ∈ Fi. Hence the result holds.

We now prove the second property, i.e. if α � testi([u]i), then δρi ([u]iα)↓ = δρi ([u]iα↓). Once
again, we prove the results by induction on |u|:

Base case |u| = 1: In this case, u ∈ N∪X . In both cases, we have that [u]i = u and testi(u) = true.
If u ∈ N , we know that δρi (u) ∈ N and so δρi (u)↓ = δρi (u). But we also have that uα↓ = uα = u.
Thus, we conclude that δρi (uα)↓ = δρi (u)↓ = δρi (u) = δρi (uα↓). Else, if u ∈ X , by hypothesis on α,
we deduce that uα↓ = uα. Furthermore, by Lemma 5.6, we also know that δρi (uα↓)↓ = δρi (uα↓).
Thus, we conclude that δρi (uα↓) = δρi (uα↓)↓ = δρi (uα)↓.

Inductive step |u| > 1: In this case, we have u = f(u1, . . . , un). We do a case analysis on f.

Case f ∈ Fi: In such a case, we have that [u]i = f([u1]i, . . . , [un]i). Hence, we deduce that
δρi ([u]iα) = f(δρi ([u1]iα), . . . , δ

ρ
i ([un]iα)) and so δρi ([u]iα)↓ = f(δρi ([u1]iα)↓, . . . , δ

ρ
i ([un]iα)↓)↓. But

testi([u]i) =
∧n

j=1 testi([uj]i) which means that α � testi([uj]i), for all j. Thus, by our induc-
tive hypothesis on u1, . . . , un, we deduce that δρi ([u]iα)↓ = f(δρi ([u1]iα↓), . . . , δ

ρ
i ([un]iα↓))↓ =

δρi (f([u1]iα↓, . . . , [un]iα↓))↓.
Let’s denote t = f([u1]iα↓, . . . , [un]iα↓). We can assume that there exists a context C built

on Fi such that t = C[t1, . . . , tm] with Fct(t) = {t1, . . . , tm} and t1, . . . , tm are in normal form.
Thus, by Lemma 5.2, there exists a context D (possibly a hole) such that t↓ = D[tj1 , . . . , tjk]
with j1, . . . , jk ∈ {0, . . . ,m} and t0 = nmin. But since t1, . . . , tm are all in normal form and

thanks to Lemma 5.6, we know that for all k ∈ {0, . . . ,m}, δρi (tk) is also in normal form
and its root is not in Fi. Moreover, thanks to Lemma 5.4, we know that tp = tq is equiva-
lent to δρi (tp) = δρi (tq), for all p, q ∈ {0, . . . ,m}. Hence, we can apply Lemma 5.3 such that
C[δρi (t1), . . . , δ

ρ
i (tn)]↓ = D[δρi (tj1), . . . , δ

ρ
i (tjk)]. But since C and D are both built upon Fi, we have

that C[δρi (t1), . . . , δ
ρ
i (tn)]↓ = δρi (C[t1, . . . , tn])↓ and D[δρi (tj1), . . . , δ

ρ
i (tjk)] = δρi (D[tj1 , . . . , tjk]).

Hence, we can deduce that δρi (t)↓ = δρi (t↓). But we already know that t↓ = [u]iα↓ and δρi (t)↓ =
δρi ([u]iα)↓. Thus, we can conclude that δρi ([u]iα)↓ = δρi ([u]iα↓).

Case f ∈ {senc, aenc, sign}: In such a case, we have that [u]i = f(tagi([u1]i), [u2]i) and
testi([u]i) = testi([u1]i) ∧ testi([u2]i). By definition of the rewriting system O0, we have that
[u]iα↓ = f(tagi([u1]iα↓), [u2]iα↓). Moreover, δρi ([u]i) = f(tagi(δ

ρ
i ([u1]i)), δ

ρ
i ([u2]i)) and so we have

δρi ([u]iα)↓ = f(tagi(δ
ρ
i ([u1]iα)↓), δ

ρ
i ([u2]iα)↓). By our inductive hypothesis on u1 and u2, we

have that δρi ([uk]iα)↓ = δρi ([uk]iα↓), for k ∈ {1, 2}. Hence, we can deduce that δρi ([u]iα)↓ =
f(tagi(δ

ρ
i ([u1]iα↓)), δ

ρ
i ([u2]iα↓)) = δρi (f(tagi([u1]iα↓), [u2]iα↓)). Thus, δρi ([u]iα)↓ = δρi ([u]iα↓).

Case f = h: This case is analogous to the previous one and can be handled in a similar way.

Case f ∈ {pk, vk, 〈 〉}: In this case, we have that [u]i = f([u1]i, . . . , [un]i) with n ∈ {1, 2}, and
testi([u]i) = ∧n

j=1testi([uj]i). By definition of O0, we have that [u]iα↓ = f([u1]iα↓, [u2]iα↓). Thus,
this case is similar to the senc case and can be handled similarly.

Case f ∈ {sdec, adec, check}: In such a case, we have that [u]i = untagi(f([u1]i, [u2]i)) and
testi([u]i) =

(
tagi(untagi(f([u1]i, [u2]i))) = f([u1]i, [u2]i)

)
∧testi([u1]i)∧testi([u2]i). But by hypoth-

esis, we know that α � testi([u]i), thus tagi(untagi(f([u1]i, [u2]i)))α↓ = f([u1]i, [u2]i)α↓. Hence, we
deduce that the root function symbol f can be reduced and the root symbol of the plain text is
tagi, i.e. there exists v1, v2 such that

— if f = sdec then [u1]iα↓ = senc(tagi(v1), v2), [u2]iα↓ = v2 and [u]iα↓ = v1. It implies that
δρi ([u1]iα↓) = senc(tagi(δ

ρ
i (v1)), δ

ρ
i (v2)) and so we can deduce that δρi ([u]iα↓) = δρi (v1) =

untagi(sdec(δ
ρ
i ([u1]iα↓), δ

ρ
i ([u2]iα↓)))↓

— f = adec: [u1]iα↓ = aenc(tagi(v1), pk(v2)), [u2]iα↓ = v2 and [u]iα↓ = v1. It implies that
δρi ([u1]iα↓) = aenc(tagi(δ

ρ
i (v1)), pk(δ

ρ
i (v2))) and so we can deduce that δρi ([u]iα↓) = δρi (v1) =

untagi(adec(δ
ρ
i ([u1]iα↓), δ

ρ
i ([u2]iα↓)))↓

— f = check: [u1]iα↓ = sign(tagi(v1), v2), [u2]iα↓ = vk(v2) and [u]iα↓ = v1. It implies that
δρi ([u1]iα↓) = sign(tagi(δ

ρ
i (v1)), δ

ρ
i (v2)) and so we can deduce that δρi ([u]iα↓) = δρi (v1) =

untagi(check(δ
ρ
i ([u1]iα↓), δ

ρ
i ([u2]iα↓)))↓

In all cases, the following equality holds: untagi(f(δ
ρ
i ([u1]iα↓), δ

ρ
i ([u2]iα↓)))↓ = δρi ([u]iα↓). But

by inductive hypothesis, we know that δρi ([uk]iα↓) = δρi ([uk]iα)↓, for k ∈ {1, 2}. Thus, since we
also have that δρi ([u]iα)↓ = untagi(f(δ

ρ
i ([u1]iα)↓, δ

ρ
i ([u2]iα)↓))↓, we can conclude that δρi ([u]iα)↓ =

untagi(f(δ
ρ
i ([u1]iα↓), δ

ρ
i ([u2]iα↓)))↓ = δρi ([u]iα↓).

Case f = projj, j = 1, 2: In this case n = 1, and [u]i = f([u1]i). Since α � testi([u]i),
we have that there exists v1, v2 such that [u1]iα↓ = 〈v1, v2〉 and so δρi ([u]iα↓) = δρi (vj). But
by inductive hypothesis, we have that δρi ([u1]iα)↓ = δρi ([u1]iα↓) = 〈δρi (v1), δ

ρ
i (v2)〉. Hence,

δρi ([u]iα)↓ = f(δρi ([u1]iα))↓ = f(δρi ([u1]iα)↓)↓ = δρi (vj)↓. But we showed that δρi (vj) = δρi ([u]iα↓),
thus by Lemma 5.6, δρi (vj) is in normal form. Hence, we have that δρi ([u]iα)↓ = δρi (vj) = δρi ([u]iα↓)
which allows us to conclude.

Corollary B.1. Let i ∈ {a, b}. Let u, v ∈ T (Fi ∪F0,N ∪X). Let α be a ground substitution such
that fvars(u) ⊆ dom(α) and for all x ∈ dom(α), xα is in normal form. Let ρ a renaming of names
of base type such that dom(ρ) do not occur in u, v or α. We have that : If α � testi([u]i)∧testi([v]i)
then [u]iα↓ = [v]iα↓ is equivalent to δρi ([u]i)δ

ρ
i (α)↓ = δρi ([v]i)δ

ρ
i (α)↓.

Proof. Thanks to Lemma 5.4, [u]iα↓ = [v]iα↓ is equivalent to δρi ([u]iα↓) = δρi ([v]iα↓). But
thanks to Lemma B.2, we have that δρi ([u]iα↓) = δρi ([u]iα)↓ = δρi ([u]i)δ

ρ
i (α)↓ and δρi ([v]iα↓) =

δρi ([v]iα)↓ = δρi ([v]i)δ
ρ
i (α)↓. Thus, the result holds.

Lemma B.3. Let i ∈ {a, b}. Let u, v ∈ T (Fi ∪ F0,N ∪ X). Let α be a ground substitution such
that fvars(u) ⊆ dom(α) and for all x ∈ dom(α), xα is in normal form. Let ρ a renaming of names
of base type such that dom(ρ) do not occur in u, v or α. We have that :

α � testi([u]i) is equivalent to δρi (α) � testi(δ
ρ
i ([u]i))

Proof. We prove this result by induction on |u| :

Base case |u| = 1: In this case, we have that u ∈ N ∪ X , and thus [u]i, δ
ρ
i ([u]i) ∈ N ∪ X . But

then by definition, testi([u]i) = true and testi(δ
ρ
i ([u]i)) = true. Thus the result trivially holds.

Inductive step |u| > 1: Then, we have that u = f(u1, . . . , un). We do a case analysis on f:

Case f ∈ Fi ∪ {pk, vk, 〈 〉}: In this case, we have that [u]i = f([u1]i, . . . , [un]i) and δρi ([u]i) =
f(δρi ([u1]i), . . . , δ

ρ
i ([un]i)). Thus, we deduce that testi([u]i) =

∧n
j=1 testi([uj]i) and testi(δ

ρ
i ([u]i)) =∧n

j=1 testi(δ
ρ
i ([uj]i)). By inductive hypothesis on u1, . . . , un, the result holds.

Case f ∈ {senc, aenc, sign}: In this case, we have that [u]i = f(tagi([u1]i), [u2]i) and δρi ([u]i) =
f(tagi(δ

ρ
i ([u1]i)), δ

ρ
i ([u2]i)). Thus, we deduce that testi(δ

ρ
i ([u]i)) = testi(δ

ρ
i ([u1]i))∧ testi(δ

ρ
i ([u2]i))

and testi([u]i) = testi([u1]i) ∧ testi([u2]i). By inductive hypothesis on u1, u2, the result holds.

Case f = h: This case is analogous to the previous one and can be handled in a similar way.

Case f ∈ {sdec, adec, check}: In this case, we have that [u]i = untagi(f([u1]i, [u2]i)) and
δρi ([u]i) = untagi(f(δ

ρ
i ([u1]i), δ

ρ
i ([u2]i))). Thus, we deduce that:

— testi([u]i) = testi([u1]i) ∧ testi([u2]i) ∧ tagi(untagi(f([u1]i, [u2]i))) = f([u1]i, [u2]i)

— testi(δ
ρ
i ([u]i)) = testi(δ

ρ
i ([u1]i)) ∧ testi(δ

ρ
i ([u2]i))

∧ tagi(untagi(f(δ
ρ
i ([u1]i), δ

ρ
i ([u2]i)))) = f(δρi ([u1]i), δ

ρ
i ([u2]i))

Whether we assume that α � testi([u]i) or δρi (α) � testi(δ
ρ
i ([u]i)), we have by inductive hypoth-

esis that α � testi([uk]i) for k ∈ {1, 2}. Thus by Lemma B.2, it implies that δρi ([uk]iα↓) =
δρi ([uk]i)δ

ρ
i (α)↓, for k ∈ {1, 2}. We do a case analysis on f :

— f = sdec: α � tagi(untagi(f([u1]i, [u2]i))) = f([u1]i, [u2]i) is equivalent to there exists v1, v2
such that [u1]iα↓ = senc(tagi(v1), v2) and [u2]iα↓ = v2. But by Lemma 5.4, it is equivalent
to δρi ([u1]iα↓) = senc(tagi(δ

ρ
i (v1)), δ

ρ
i (v2)) and δρi ([u2]iα↓) = δρi (v2). Thus, it is equivalent

to δρi ([u1]i)δ
ρ
i (α)↓ = senc(tagi(δ

ρ
i (v1)), δ

ρ
i (v2)) and δρi ([u2]i)δ

ρ
i (α)↓ = δρi (v2). Hence it is

equivalent to δρi (α) � tagi(untagi(f(δ
ρ
i ([u1]i), δ

ρ
i ([u2]i)))) = f(δρi ([u1]i), δ

ρ
i ([u2]i))

— f = adec and f = check : Similar to case f = sdec.

Case f ∈ {proj1, proj2}: In this case, we have that [u]i = f([u1]i) and δρi ([u]i) = f(δρi ([u1]i)).
Thus, we deduce that :

— testi([u]i) = testi([u1]i) ∧ 〈proj1([u1]i), proj2([u1]i)〉 = [u1]i

— testi(δ
ρ
i ([u]i)) = testi(δ

ρ
i ([u1]i)) ∧ 〈proj1(δ

ρ
i ([u1]i)), proj2(δ

ρ
i ([u1]i))〉 = δρi ([u1]i)

Whether we assume that α � testi([u]i) or δρi (α) � testi(δ
ρ
i ([u]i)), we have by inductive hypothesis

that α � testi([u1]i). Thus by Lemma B.2, it implies that δρi ([u1]iα↓) = δρi ([u1]i)δ
ρ
i (α)↓.

But α � 〈proj1([u1]i), proj2([u1]i)〉 = [u1]i is equivalent to there exists v1, v2 such that [u1]iα↓ =
〈v1, v2〉, which is equivalent to δρi ([u1]iα↓) = 〈δρi (v1), δ

ρ
i (v2)〉 thanks to Lemma 5.4. We showed

that it is equivalent to δρi ([u1]i)δ
ρ
i (α)↓ = 〈δρi (v1), δ

ρ
i (v2)〉, which allows us to conclude that

α � 〈proj1([u1]i), proj2([u1]i)〉 = [u1]i is equivalent δρi (α) � 〈proj1(δ
ρ
i ([u1]i)), proj2(δ

ρ
i ([u1]i))〉 =

δρi ([u1]i).

We are now focus on the message that will be send the network during the execution of the
processes. For a term u that does not contain any tag, we defined in Section 5.1, a way to construct
a term that is properly tagged (i.e. [u]i). Hence, for a term properly tagged, we would never have
senc(n, k) where n and k are both nonces, for example. Instead, we would have senc(tagi(n), k).
However, even if we can force the processes to properly tag their term, we do not have any control

on what the intruder can build. Typically, if the intruder is able to deduce n and k, he is allowed to
send to a process the term senc(n, k). Similarly, while we can restrict our processes to only apply
vk and pk on a nonce, we can not restrict the intruder from using those cryptographic primitive
with terms different from a nonce.

Thus, we define the notion of flawed tagged subterm of a term.

Definition B.1. Let u be a ground term in normal form. We define the flawed tagged subterm of
u, denoted Flawed(u), is the set of subterms v ∈ st(u) such that either:

— v = f(u1, u2) with f ∈ {senc, aenc, sign} and root(u1) 6∈ {taga, tagb} for some u1, u2; or

— v = h(u) and root(u1) 6∈ {taga, tagb} for some u; or

— v = f(u) with f ∈ {pk, vk} and u 6∈ N for some u; or

— v = f(u1, . . . , un) with f ∈ {sdec, adec, check, proj1, proj2} for some u1, . . . , un.

Note that all subterm with a destructor is considered as flawed. Indeed, we saw in Section 5.1
that a process PA tagged with the tag a may output the instantiation of [u]a only if it satisfies the
the instantiation of the conditional test[u]a(a). But as already mentioned in Subsection 5.1.1.2,
test[u]a(a) verifies that the computation done by PA on [u]a succeed properly, i.e. the destructors
from sdec, adec, check, proj1, proj2, untaga, untagb are reduced before sending the instantiation of
[u]a over the network. But once again, we cannot restrict the intruder from misusing those
cryptographic primitives. Thus, he is allowed to send sdec(n, k) to a process. Hence, to sum up,
Flawed(u) represents all the subterm of u that the intruder is sure to have computed (he may have
computed more that Flawed(u) in u).

Example B.1. Consider the term u = 〈senc(taga(proj1(sdec(n, k))), k), aenc(a, pk(〈k, k
′〉)))〉. We

have that u is in normal form and

Flawed(u) = {proj1(sdec(n, k)); sdec(n, k); aenc(a, pk(〈k, k
′〉)); pk(〈k, k′〉)}

We formalise the property that any flawed subterm has to be computed by the intruder with
the following result:

Lemma B.4. Let i ∈ {a, b}. Let u ∈ T (Fi∪F0,N∪X) such that for all v ∈ st(u), root(v) = f with
f ∈ {pk, vk} implies that there exists v′ ∈ N such that v = f(v′). Let α be a ground substitution
such that fvars(u) ⊆ dom(α) and for all x ∈ dom(α), xα is in normal form. We have that if
α � testi([u]i) then for all t ∈ Flawed([u]iα↓), there exists x ∈ fvars([u]i) such that t ∈ Flawed(xα).

Proof. We prove the result by induction on |u|.

Base case |u| = 1: In this case, we have that u ∈ X ∪ N and so [u]i = u. If u ∈ N , then uα ∈ N
and [u]iα↓ ∈ N , which means that Flawed([u]iα↓) = ∅. Thus the results holds. Else u ∈ X and so
[u]i = u ∈ dom(α) which means that the result trivially holds.

Inductive step |u| > 1: Then, u = f(u1, . . . , un). We do a case analysis on f.
Case f ∈ Fi: In this case, [u]i = f([u1]i, . . . , [un]i) and [u]iα↓ = f([u1]iα↓, . . . , [un]iα↓)↓.

By definition, we know that for all t ∈ Flawed([u]iα↓), root(t) 6∈ Fa ∪ Fb. Thus, thanks to
Lemma 5.2, we can deduce that for all t ∈ Flawed([u]iα↓), there exists k ∈ {1, . . . , n} such that
t ∈ Flawed([uk]iα↓). By hypothesis, α � testi([u]i) and so α � testi([uk]i). Thus, by inductive
hypothesis, we know that there exists x ∈ fvars([uk]i) such that t ∈ st(xα). But x ∈ fvars([uk]i)
implies x ∈ fvars([u]i), thus the result holds.

Case f ∈ {senc, aenc, sign}: In this case, [u]i = f(tagi([u1]i), [u2]i). Furthermore, [u]iα↓ =
f(tagi([u1]iα↓), [u2]iα↓). At last, α � testi([u]i) implies that α � testi([uk]i), for all k = 1, 2. But,
by definition, Flawed([u]iα↓) = Flawed([u1]iα↓)∪Flawed([u]iα↓) and so by our inductive hypothesis
on u1 and u2, the result holds.

Case f = h: This case is analogous to the previous one and can be handled in a similar way.
Case f = 〈 〉: In this case, [u]i = f([u1]i, [u2]i). Furthermore, [u]iα↓ = f([u1]iα↓, [u2]iα↓).

At last, α � testi([u]i) implies that α � testi([uk]i), for all k = 1, 2. But, by definition,

Flawed([u]iα↓) = Flawed([u1]iα↓) ∪ Flawed([u]iα↓) and so by our inductive hypothesis on u1 and
u2, the result holds.

Case f = {vk, pk}: In this case, we know by hypothesis that u = f(v) with v ∈ N . Thus
[u]i = u and Flawed(u) = ∅. Thus the result trivially holds.

Case f ∈ {sdec, adec, check}: In this case, we have that [u]i = untagi(f([u1]i, [u2]i)) and
testi([u]i) = testi([u1]i) ∧ testi([u2]i) ∧ tagi(untagi([u]i)) = [u]i. But by hypothesis, we know
that α � testi([u]i) and more specifically tagi(untagi([u]i))α↓ = [u]iα↓. It implies that there exists
v1, v2 such that [u1]iα↓ = g(tagi(v1), v2) and [u]iα↓ = v1, with g ∈ {senc, aenc, sign}. Thus, for
all t ∈ Flawed([u]iα↓), t ∈ Flawed([u1]iα↓). Since α � testi([u1]i), the result holds by inductive
hypothesis.

Case f = projj, j ∈ {1, 2}: In this case, we have that [u]i = f([u1]i) and testi([u]i) =
testi([u1]i)∧ 〈proj1([u1]i), proj2([u1]i)〉 = [u1]i. Hence, α � testi([u]i) implies that there exist v1, v2
such that [u1]iα↓ = 〈v1, v2〉 and [u]iα↓ = vj . Thus, for all t ∈ Flawed([u]iα↓), t ∈ Flawed([u1]iα↓).
Since α � testi([u1]i) by hypothesis, our inductive hypothesis allows us to conclude.

Corollary B.2. Let i ∈ {a, b}. Let u ∈ T (Fi ∪F0,N ∪X) such that for all v ∈ st(u), root(v) = f

with f ∈ {pk, vk} implies that there exists v′ ∈ N such that v = f(v′). Let α be a ground substitution
such that fvars(u) ⊆ dom(α) and for all x ∈ dom(α), xα is in normal form. Let ρ a renaming of
names of base type such that dom(ρ) do not occur in u or α. We have that if δρi (α) � testi(δ

ρ
i ([u]i)),

then for all t ∈ Flawed(δρi ([u]i)δ
ρ
i (α)↓), there exists x ∈ fvars(δρi ([u]i) such that t ∈ Flawed(xδρi (α)).

Proof (sketch). This result is a corollary of Lemma B.4. Actually, this can be proved in a similar
way since the transformation δρi does not change the structure of the term.

We use the previous Lemmas to prove some properties on well-tagged frames. Let (E ;P; Φ) be
a closed intermediate process such that Φ = {ax 1 ⊲ u1, . . . , axn ⊲ un}. We define a lexicographic
measure on terms M , denoted M(M), where fvars(M) ⊆ dom(Φ) and fnames(M) ∩ E = ∅ such
that : M(M) = (max{i | ax i ∈ fvars(M)}, |M |).

Lemma B.5. Let (E ;P; Φ) be a closed intermediate process such that νE .Φ is well-tagged. Let’s
denote Φ = {ax 1 ⊲ u1; . . . ; axn ⊲ un}. We have that for all i ∈ {1, . . . , n}, for all t ∈
Flawed(ui↓), there exists M such that fvars(M) ⊆ {ax 1, . . . , ax i−1}, fnames(M) ∩ E = ∅ and
t ∈ Flawed(MΦ↓).

Proof. We prove this result for any ground term u well-tagged up to ax i, i ∈ {1, . . . , n}. By
definition, u being well-tagged up to ax i, i ∈ {1, . . . , n} implies that there exists a term v, a
substitution α and c ∈ {a, b} such that:

— for all vk(t), pk(t′) ∈ st(v), t, t′ ∈ N

— u = [v]cα; and

— α � testc([v]c); and

— for all x ∈ dom(α), either v is not a variable and xα is well-tagged up to ax i; or there exists
M such that fvars(M) ⊆ {ax 1, . . . , ax i−1}, fnames(M) ∩ E = ∅ and MΦ = xα.

The proof is done by induction |u|.

Base case |u| = 1: In this case, u ∈ N which implies u↓ = u, and thus by definition Flawed(u↓) = ∅.
Hence the result trivially holds.

Inductive step |u| > 1: Let t ∈ Flawed(u↓). Since for all vk(t), pk(t′) ∈ st(v), t, t′ ∈ N , and
u = [v]cα and α � testc([v]c), we can apply Lemma B.4 to v and α↓. Thus, we have that there
exists x ∈ fvars([v]c) such that t ∈ Flawed(xα↓). But since u is well-tagged up to ax i, we know
that either (a) there exists M such that fvars(M) ⊆ {ax 1, . . . , ax i−1}, fnames(M) ∩ E = ∅ and
MΦ = xα. Hence t ∈ Flawed(xα↓) = Flawed(MΦ↓) and so the result holds in such a case.

Or, (b) v is not a variable and thus neither is [v]c. Moreover, xα is well-tagged up to ax i. Now
because v is not a variable and x ∈ fvars([v]c), we have that |xα| < |[v]cα| = |u|, we conclude by
applying our inductive hypothesis.

Lemma B.6. Let (E ,P,Φ) be a closed intermediate process such that νE .Φ is well-tagged. We
have that for all M such that fnames(M)∩E = ∅ and fvars(M) ⊆ dom(Φ), for all f(u1, . . . , un) ∈
Flawed(MΦ↓), there exists M1, . . . ,Mn such that fvars(Mi) ⊆ dom(Φ), fnames(Mi) ∩ E = ∅,
MiΦ↓ = ui, and M(Mi) < M(M), for all i ∈ {1, . . . , n}.

Proof. We prove this result by induction on M(M).
Base case M(M) = (0, 0): A term with |M | = 0 is impossible so the result trivially holds.

Inductive step M(M) = (i, 1): In this case, either we have that M ∈ N or M = ax i. If
M ∈ N , then we have MΦ↓ = M ∈ N and Flawed(MΦ↓) = ∅. Thus the result holds. If
M = ax i, then by Lemma B.5, for all f(t1, . . . , tm) ∈ Flawed(wiΦ↓), there exists M ′ such
that fvars(M ′) ⊆ {w1, . . . , wi−1}, fnames(M) ∩ E = ∅ and f(t1, . . . , tm) ∈ Flawed(M ′Φ↓). But
M(M ′) < M(M), thus by our inductive hypothesis, we can deduce that there exists M1, . . . ,Mm

such that fvars(Mi) ⊆ dom(Φ), fnames(Mi)∩E = ∅, MiΦ↓ = ti and M(Mi) < M(M ′) < M(M),
for all i ∈ {1, . . . ,m}.

Inductive step M(M) > (i, 1): We have that M = f(M1, . . . ,Mn). Let t = g(t1, . . . , tm) ∈
Flawed(MΦ↓). We do a case analysis on f.

Case f ∈ Fℓ ∪ Ftagℓ
, ℓ ∈ {a, b}: In this case, MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓)↓. By definition

of t ∈ Flawed(MΦ↓), we know that root(t) 6∈ Fℓ ∪ Ftagℓ
. Thus, thanks to Lemma 5.2, we can

deduce that there exists k ∈ {1, . . . , n} such that t ∈ Flawed(MkΦ↓). But M(Mk) < M(M),
thus, by inductive hypothesis, we know that there exists M ′

1, . . . ,M
′
m such that fvars(M ′

j) ⊆ Φ,
fnames(M ′

j) ∩ E = ∅, M ′
jΦ↓ = ti and M(M ′

j) < M(Mk) < M(M), for all j ∈ {1, . . . ,m}. Hence
the result holds.

Case f = 〈 〉: In such a case, MΦ↓ = f(M1Φ↓,M2Φ↓). Furthermore by definition, we have
Flawed(MΦ↓) = Flawed(M1Φ↓) ∪ Flawed(M2Φ↓). Since M(M1) < M(M), M(M2) < M(M) and
t ∈ Flawed(M1Φ↓) ∪ Flawed(M2Φ↓), we conclude by applying our inductive hypothesis on M1 (or
M2).

Case f ∈ {pk, vk}: In this case, MΦ↓ = f(M1Φ↓). If M1Φ↓ ∈ N , then we have that
Flawed(MΦ↓) = ∅, else Flawed(MΦ↓) = {MΦ↓} ∪ Flawed(M1Φ↓). If t = MΦ↓, then we have
t1 = M1Φ↓. Since M(M1) < M(M), then the result holds; else we conclude by applying our
inductive hypothesis on M1.

Case f ∈ {senc, aenc, sign}: In such a case, MΦ↓ = f(M1Φ↓,M2Φ↓). We need to distinguish if
root(M1Φ↓) ∈ {taga, tagb} or not.

If root(M1Φ↓) ∈ {taga, tagb}, then there exists ℓ ∈ {a, b} and u1 such that M1Φ↓ = tagℓ(u1).
Thus, Flawed(M1Φ↓) = Flawed(u1). But by definition, we have that Flawed(MΦ↓) = Flawed(u1)∪
Flawed(M2Φ↓). Thus, t ∈ Flawed(MΦ↓) implies that t ∈ Flawed(M1Φ↓) or t ∈ Flawed(M2Φ↓).
Since M(M1) < M(M) and M(M2) < M(M), we conclude by applying our inductive hypothesis
on M1 or M2.

Else root(M1Φ↓) 6∈ {taga, tagb}. In such a case, we have that Flawed(MΦ↓) = Flawed(M1Φ↓)∪
Flawed(M2Φ↓)∪{MΦ↓}. If t = MΦ↓, we have that t1 = M1Φ↓, t2 = M2Φ↓ and M(M1) < M(M),
M(M2) < M(M). Thus the result holds. If t ∈ Flawed(M1Φ↓) ∪ Flawed(M2Φ↓), we conclude by
applying our inductive hypothesis on M1 or M2.

Case f = h: This case is analogous to the previous one and can be handled similarly.

Case f ∈ {sdec, adec, check}: For all those functions, we have to distinguish two cases: Either
f is reduced in MΦ↓, or not.

If f is not reduced, then we have that MΦ↓ = f(M1↓,M2↓). By definition we have that
Flawed(MΦ↓) = {MΦ↓} ∪ Flawed(M1Φ↓) ∪ Flawed(M2Φ↓). Thus if t = MΦ↓, we have that
t1 = M1Φ↓, t2 = M2Φ↓ and M(M1) < M(M), M(M2) < M(M). Therefore the result holds.
Else if t ∈ Flawed(M1Φ↓) or t ∈ Flawed(M2Φ↓), since M(M1) < M(M), M(M2) < M(M), we
can conclude by applying our inductive hypothesis on M1 or M2.

If f is reduced, then we have that M1Φ↓ = f ′(u1, u2) with MΦ↓ = u1 and f ′ ∈ {senc, aenc, sign}.
If root(u1) = tagℓ, with ℓ ∈ {a, b} then we have that there exists u′

1 such that u1 = tagℓ(u
′
1),

Flawed(MΦ↓) = Flawed(u′
1) and Flawed(M1Φ↓) = Flawed(u′

1)∪ Flawed(u2). Thus Flawed(MΦ↓) ⊆
Flawed(M1Φ↓). If root(u1) 6= tagℓ, for all ℓ ∈ {a, b}, then we have that Flawed(M1Φ↓) = {M1Φ↓}∪
Flawed(u1)∪Flawed(u2) and Flawed(MΦ↓) = Flawed(u1). Thus, we also have that Flawed(MΦ↓) ⊆
Flawed(M1Φ↓). Since in both cases, we have that Flawed(MΦ↓) ⊆ Flawed(M1Φ↓) and M(M1) <
M(M), we can conclude by applying our inductive hypothesis on M1.

Case f = projj, j ∈ {1, 2}: One again, we have to distinguish two cases: Either f is reduced
in MΦ↓, or not. If f is not reduced, then we have that MΦ↓ = f(M1Φ↓). By definition we have
that Flawed(MΦ↓) = {MΦ↓} ∪ Flawed(M1Φ↓). Thus if t = MΦ↓, we have that t1 = M1Φ↓ and
M(M1) < M(M). Therefore the result holds. Else if t ∈ Flawed(M1Φ↓), since M(M1) < M(M),
we can conclude by applying our inductive hypothesis on M1 or M2.

If f is reduced, then we have that M1Φ↓ = 〈u1, u2〉 with MΦ↓ = uj . Thus we have that
Flawed(M1Φ↓) = Flawed(u1) ∪ Flawed(u2) and Flawed(MΦ↓) = Flawed(uj). Hence, we have that
Flawed(MΦ↓) ⊆ Flawed(M1Φ↓). Since M(M1) < M(M), we can conclude by applying our
inductive hypothesis on M1.

Lemma B.7. Let u be a ground term in normal form. We have that there exists a context C
(possibly a hole) built on {〈 〉}, and u1, . . . , um such that u = C[u1, . . . , um], and for all i ∈
{1, . . . ,m},

— either ui ∈ Flawed(u);

— or ui ∈ FctF0
(u) and δρa(ui) = δρb (ui),

— or ui = f(n) for some f ∈ {pk, vk} and n ∈ N ,

— or ui ∈ N .

Proof. Let u a ground term in normal form and let {v1, . . . , vn} = FctF0
(u). Thus there exists

a context D (possibly a hole) built on F0 such that u = D[v1, . . . , vn]. We prove the result by
induction on |D|.

Base case |D| = 0: We show that the result holds with C = _. |D| = 0 implies that FctF0
(u) = u.

Assume first that u↓ 6∈ img(ρ). Hence by Lemma B.1, we have δρa(u) = δρb (u) and so the result
holds. Assume now that u↓ ∈ img(ρ). In such a case, since u is in normal form, we have u ∈ N
which allow us to conclude.

Inductive step |D| > 0: There exist f ∈ F0, and v1, . . . , vk such that u = f(u1, . . . , uk). We do a
case analysis on f.

Case f = 〈 〉: In such a case, there exists D1, D2 context (possibly holes) built on F0 such
that D = 〈D1, D2〉, ui = Di[v

i
1, . . . , v

i
ni
] with {vi1, . . . , v

i
ni
} = FctF0

(ui) and |Di| < |D|, for all
i ∈ {1, 2}. By inductive hypothesis on u1 and u2, we have that there exists C1 and C2 context
built on {〈 〉} such that u1 = C1[u

1
1, . . . , u

1
m1

], u2 = C2[u
2
1, . . . , u

2
m2

] and for all i, j,

— either ui
j ∈ Flawed(ui), but we have that Flawed(u) = Flawed(u1) ∪ Flawed(u2) so ui

j ∈
Flawed(u);

— or ui
j ∈ FctF0

(ui) and δρa(u
i
j) = δρb (u

i
j), but we have that FctF0

(u) = FctF0
(u1)⊎FctF0

(u2)

thus ui
j ∈ FctF0

(u)

— or ui
j = f(n) for some f ∈ {pk, vk} and n ∈ N ,

— or ui
j ∈ N .

Thus, with the context C = 〈C1, C2〉, and u = C[u1
1, . . . , u

1
m1

, u2
1, . . . , u

2
m2

], the result holds.

Case f ∈ {pk, vk} and u = f(n) for some n ∈ N : With C = _ as context, the result trivially
holds.

Otherwise: By definition, we have that Flawed(u) = {u} ∪
⋃k

i=1 Flawed(ui). Thus, since u ∈
Flawed(u), then with C = _ as context, the result trivially holds.

B.2 Proof for the first result

In this section, we will focus on the lemmas needed for the proof of Theorem 5.1. Typically,
the first section of the Appendix is useful for the proofs of both main results. Thus, this section
is independent of section B.3.

Lemma 5.9. Let E be a set of names and Φ = {ax 1 ⊲ u1, . . . , axn ⊲ un} such that νE .Φ is a
derived well-tagged frame in normal form. Let ρ be a renaming such that dom(ρ) ∪ img(ρ) ⊆ E
and dom(ρ) ∩ fnames(Φ) = ∅. If one of the two following conditions is satisfied:

(a) for all k ∈ img(ρ), νE .Φ 6⊢ k, νE .Φ 6⊢ pk(k) and νE .Φ 6⊢ vk(k)

(b) for all k ∈ img(ρ) ∪ dom(ρ), νE .δρ(Φ) 6⊢ k, νE .δρ(Φ) 6⊢ pk(k) and νE .δρ(Φ) 6⊢ vk(k);

then for all M such that fvars(M) ⊆ dom(Φ) and fnames(M)∩E = ∅, for all i ∈ {a, b}, δρi (MΦ↓) =
Mδρ(Φ)↓.

Proof. We prove this result by induction on M(M):

Base case M(M) = (0, 0): There exists no term M such that |M | = 0, thus the result holds.

Inductive step M(M) > (0, 0): We first prove there exists i ∈ {a, b} such that δρi (MΦ↓) =
Mδρ(Φ)↓ and then we show that δρa(MΦ↓) = δρb (MΦ↓)

Assume first that |M | = 1, i.e. either M ∈ N or there exists j ∈ {1, . . . , n} such that M = ax j .
Let us first suppose M ∈ N . In that case, Mβ↓ = M for any susbsitution β. Now, because by

hypotheses dom(ρ) ∪ img(ρ) ⊆ E , and fnames(M) ∩ E = ∅, we necessarily have M↓ 6= kρ for any
k ∈ dom(ρ). Thus, by definition δρj (MΦ↓) = δρj (M) = M = Mδρ(Φ)↓ for any d ∈ {a, b}.

Let’s now assume that there exists j ∈ {1, . . . , n} such that M = ax j , and suppose that
col(ax j) = i ∈ {a, b}. According to the definition of δρ(Φ), we have that ax jδ

ρ(Φ) = δρi (ax jΦ).
Since uj is in normal form, then by Lemma 5.6, we know that δρi (ax jΦ) is also in normal form.
Thus, we have that δρi (MΦ↓) = Mδρ(Φ)↓.

Otherwise, if |M | > 1, then there exists f and M1, . . . ,Mn such that M = f(M1, . . . ,Mn). We
do a case analysis on f:

Case f ∈ Fℓ ∪ Ftagℓ
, ℓ ∈ {a, b}: In this case, let t = f(M1Φ↓, . . . ,MnΦ↓). Since f ∈ Fℓ, then

there exists a context C built upon Fℓ such that t = C[u1, . . . , um] and u1, . . . , um are factor of t in
normal form. By Lemma 5.2, we know that there exists a context D (possibly a hole) over F0 such
that t↓ = D[ui1 , . . . , uik] with i1, . . . , ik ∈ {0, . . . ,m} and u0 = nmin. But thanks to Lemma 5.3,
5.4 and 5.6, we also that C[δρℓ (u1), . . . , δ

ρ
ℓ (um)]↓ = D[δρℓ (ui1), . . . , δ

ρ
ℓ (uik)]. But C and D are both

built on Fℓ ∪ Ftagℓ
, thus by definition of δρℓ , we have that δρℓ (t)↓ = C[δρℓ (u1), . . . , δ

ρ
ℓ (um)]↓ and

δρℓ (t↓) = D[δρℓ (ui1), . . . , δ
ρ
ℓ (uik)]. Hence, the equality, δρℓ (t↓) = δρℓ (t)↓, holds. But t↓ = MΦ↓ which

means that δρℓ (MΦ↓) = δρℓ (t)↓.
At last δρℓ (t)↓ = δρℓ (f(M1Φ↓, . . . ,MnΦ↓))↓ = f(δρℓ (M1Φ↓), . . . , δ

ρ
ℓ (MnΦ↓))↓. Since we have that

M(M1) < M(M), . . . , M(Mn) < M(M), we can apply our inductive hypothesis on M1, . . . ,Mn

and so δρℓ (t)↓ = f(M1δ
ρ(Φ)↓, . . . ,Mnδ

ρ(Φ)↓)↓ = f(M1, . . . ,Mn)δ
ρ(Φ)↓. Thus we can conclude that

δρℓ (MΦ↓) = δρℓ (t)↓ = Mδρ(Φ)↓.

Case f ∈ {senc, aenc, sign, 〈 〉, pk, vk, h}: In such a case, MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓). By
applying our inductive hypothesis on M1, . . . ,Mn, we have δρa(MkΦ↓) = δρb (MkΦ↓), for all k ∈
{1, . . . , n}. Thus we have that δρi (MΦ↓) = f(δρj (M1Φ↓), . . . , δ

ρ
j (MnΦ↓)) with j ∈ {a, b}, for all i ∈

{a, b}. Thus by applying again our inductive hypothesis on M1, . . . ,Mn, we have that δρi (MΦ↓) =
f(M1δ

ρ(Φ)↓, . . . ,Mnδ
ρ(Φ)↓) = Mδρ(Φ)↓.

Case f ∈ {sdec, adec, check}: If we first assume that the root symbol f is not reduced in MΦ↓
then the proof is similar to the previous case. Thus, we focus on the case where the root occurence
of f is reduced. In this case, there exists v1, v2 such that

— M1Φ↓ = senc(v1, v2), M2Φ↓ = v2 and MΦ↓ = v1. According to the definition of δρa and δρb ,
we know that there exists i ∈ {a, b} such that δρi (senc(v1, v2)) = senc(δρi (v1), δ

ρ
i (v2)). For

such i, we have that sdec(δρi (M1Φ↓), δ
ρ
i (M2Φ↓))↓ = δρi (MΦ↓). But by applying our inductive

hypothesis on M1 and M2, we obtain δρi (MΦ↓) = sdec(M1δ
ρ(Φ)↓,M2δ

ρ(Φ)↓)↓ = Mδρ(Φ)↓.

— M1Φ↓ = aenc(v1, pk(v2)), M2Φ↓ = v2 and MΦ↓ = v1: According to the definition of δρa and
δρb , there exists i ∈ {a, b} such that δρi (aenc(v1, pk(v2))) = aenc(δρi (v1), pk(δ

ρ
i (v2))). For such

i, we have that adec(δρi (M1Φ↓), δ
ρ
i (M2Φ↓))↓ = δρi (MΦ↓). But by applying our inductive

hypothesis on M1 and M2, we obtain δρi (MΦ↓) = adec(M1δ
ρ(Φ)↓,M2δ

ρ(Φ)↓)↓ = Mδρ(Φ)↓.

— M1Φ↓ = sign(v1, v2), M2Φ↓ = vk(v2) and MΦ↓ = v1: According to the definition of δρa and
δρb , there exists i ∈ {a, b} such that δρi (sign(v1, v2)) = sign(δρi (v1), δ

ρ
i (v2)). For such i, we have

that adec(δρi (M1Φ↓), δ
ρ
i (M2Φ↓))↓ = δρi (MΦ↓). But by applying our inductive hypothesis on

M1 and M2, we obtain δρi (MΦ↓) = adec(M1δ
ρ(Φ)↓,M2δ

ρ(Φ)↓)↓ = Mδρ(Φ)↓.

Case f ∈ projj, j = 1, 2: Similarly to the previous case, we only focus on the case where f is re-
duced in MΦ↓. In such a case, there exists u1, u2 such that M1Φ↓ = 〈u1, u2〉 and MΦ↓ = uj . Thus
for all i ∈ {1, 2}, we have that δρi (MΦ↓) = δρi (uj) and δρi (M1Φ↓) = 〈δρi (u1), delta

ρ
i (u2)〉. Hence

we deduce that f(δρi (M1Φ↓))↓ = δρi (uj) = δρi (MΦ↓). By inductive hypothesis on M1, there exist
i0 such that δρi0(M1Φ↓) = M1δ

ρ(Φ)↓. Therefore, we deduce that δρi0(MΦ↓) = f((M1δ
ρ(Φ)↓))↓ =

Mδρ(Φ)↓.

It remains to prove that δρa(MΦ↓) = δρb (MΦ↓). We proved that there exists i0 ∈ {a, b} such
that δρi0(MΦ↓) = Mδρ(Φ)↓. But by Lemma B.7, we know that there exists a context C built over
{〈〉}, and v1, . . . , vm terms such that MΦ↓ = C[v1, . . . , vm] and for all i ∈ {1, . . . ,m}:

— either vi ∈ Flawed(MΦ↓)

— or vi ∈ FctF0
(MΦ↓) and δρa(vi) = δρb (vi).

— or vi = f(n) for some f ∈ {pk, vk} and n ∈ N ,

— or vi ∈ N .

First of all, note that C being built upon {〈〉} means that vi is deducible in Φ, for all i ∈
{1, . . . ,m}. Furthermore, we also have that δρi0(MΦ↓) = C[δρi0(v1), . . . , δ

ρ
i0
(vm)]. But we previously

proved that δρi0(MΦ↓) = Mδρ(Φ)↓, thus δρi0(vi) is deducible from δρ(Φ), for all i ∈ {1, . . . ,m}.
Case vi ∈ Flawed(MΦ↓): There exists w1, . . . , wℓ terms and a function symbol f such that

vi = f(w1, . . . , wℓ). By Lemma B.6, there exists N1, . . . , Nℓ such that for all k ∈ {1, . . . , ℓ},
M(Nk) < M(M) and NkΦ↓ = wk. Hence, by applying inductive hypothesis on N1, . . . , Nℓ, we
obtain that δρa(NkΦ↓) = δρb (NkΦ↓), for all k ∈ {1, . . . , ℓ}. Thus, thanks to vi being in normal
form, we can conclude that δρa(vi) = δρb (vi).

Case vi ∈ FctF0
(MΦ↓): we also have δρa(vi) = δρb (vi).

Case vi = f(n) for some f ∈ {pk, vk} and n ∈ N : By hypothesis, we know that either
Φ 6⊢ f(k), for all k ∈ img(ρ); or δρ(Φ) 6⊢ f(k), for all k ∈ img(ρ)∪ dom(ρ). Since we showed that vi
is deducible from Φ and δρi0(vi) is deducible from δρ(Φ), both hypotheses imply that n 6∈ img(ρ)
and so δρa(vi) = δρb (vi).

Case vi ∈ N : By hypothesis we know that either Φ 6⊢ k, for all k ∈ img(ρ); or δρ(Φ) 6⊢ k, for
all k ∈ img(ρ)∪dom(ρ). Since we showed that vi is deducible from Φ and δρi0(vi) is deducible from
δρ(Φ), both hypotheses imply that vi 6∈ img(ρ) and so δρa(vi) = δρb (vi).

Lemma 5.10 (Soundness). Let S = (ES ;PS ; ΦS), S′ = (E ′
S ;P

′
S ; Φ

′
S) and D = (ED;PD; ΦD) be

three bounded intermediate processes. Assume that S
ℓ
−→ S′, ΦS is well-tagged and there exists a

derived well-tagged multi-set of processes (P0, α) and a renaming ρ, such that

— dom(ρ) ∪ img(ρ) ⊆ ES, dom(ρ) ∩ fnames(PS ,ΦS) = ∅; and

— ES = ED, ΦD↓ = δρ(ΦS↓); and

— PS = P0α and PD↓ = δρ(P0)δ
ρ(α↓)↓; and

— for all traces (tr,Φ) of D, for all k ∈ img(ρ) ∪ dom(ρ), Φ 6⊢ k, Φ 6⊢ pk(k) and Φ 6⊢ vk(k).

There exists a bounded intermediate process D′ = (E ′
D;P ′

D; Φ′
D), a derived well tagged multi-set of

processes (P ′
0, α

′) such that Φ′
S is well-tagged and:

— E ′
S = ES = E ′

D and Φ′
D↓ = δρ(Φ′

S↓); and

— P ′
S↓ = P ′

0α
′↓ and P ′

D↓ = δρ(P ′
0)δ

ρ(α′↓)↓; and

— D
ℓ
−→ D′.

Proof. We show this result by case-by-case analysis on the rule:

Case of the rule Then: In this case, there exists φ formula and Q1, Q2 plain processes and Q a
multi-set of processes such that PS = {if φ then Q1 else Q2} ⊎ Q, P ′

S = {Q1} ⊎ Q, ES = E ′
S and

ΦS = Φ′
S with i = col(Q1) = col(Q2) and φ is a conjunction of equation. Furthermore, we have

that for all equation u = v of φ, u =E v.
Since PS = P0α, then there exists Q0

1, Q
0
2 plain processes and Q0 a multi-set of processes such

that Q0
1α = Q1, Q0

2α = Q2 and Q0α = Q. Furthermore, either (a) there exists u such that φ is
the formula testi([u]i)α, or (b) there exists u1, u2 such that φ is the formula [u1]iα = [u2]iα and
α � testi([u1]i) ∧ testi([u2]i).

But we also have PD↓ = δρ(P0)δ
ρ(α↓)↓, which means that there exists φ′ formula and Q′

1,
Q′

2 plain processes and P ′ a multi-set of processes such that PD = {if φ′ then Q′
1 else Q′

2)} ⊎ Q′

with Q′
1↓ = δρi (Q

0
1)δ

ρ
i (α↓)↓, Q′

2↓ = δρi (Q
0
2)δ

ρ
i (α↓)↓, Q′↓ = δρ(Q0)δρ(α↓)↓ and ΦD↓ = δρ(ΦS↓).

Furthermore, in case (a) φ′↓ is the formula testi(δ
ρ
i ([u]i))δ

ρ
i (α↓)↓; and in case (b) φ′ is the formula

u′ = v′ where u↓ = δρi ([u1]i)δ
ρ
i (α↓)↓ and v′↓ = δρi ([u2]i)δ

ρ
i (α↓)↓.

In case (a), since for all equation in u = v in φ, u =E v, then u↓ = v↓. Thus it is equivalent to
(α↓) � testi([u]i). But by Lemma B.3, we know that this is equivalent to δρi (α↓) � testi(δ

ρ
i ([u]i)).

Thus we have that for all equation u = v of testi(δ
ρ
i ([u]i)), uδ

ρ
i (α↓)↓ = vδρi (α↓)↓. Since φ′↓ is the

formula testi(δ
ρ
i ([u]i))δ

ρ
i (α↓)↓, we can conclude that for all equation u = v of φ′, u↓ = v↓ and so

u =E v.
In case (b), we know that α↓ � testi([u1]i) ∧ testi([u2]i) and [u1]iα↓ = [u2]iα↓. Thus by

Corollary B.1, we can deduce that δρi ([u1]i)δ
ρ
i (α↓)↓ = δρi ([u2]i)δ

ρ
i (α↓)↓ which means that u′↓ = v′↓

and so u′ =E v′.

φ′ being satisfied allows us to deduce that D
ℓ
−→ (ED; {Q′

1} ⊎ Q′; ΦD). But we know that
on one hand Q0

1α = Q1 and Q0α = Q, and on the other hand, Q′
1↓ = δρi (Q

0
1)δ

ρ
i (α↓)↓, Q′↓ =

δρ(Q0)δρ(α↓)↓ and ΦD↓ = δρ(ΦS↓). Thus with α′ = α and P ′
0 = Q0

1 ⊎ Q0, the result holds.

Case of the rule Else: This case similar to the rule Then.

Case of the rule Comm: In this case, there exists p, u, x terms, Q1, Q2 processes, and Q multi-set
of processes such that PS = {out(p, u).Q1; in(p, x).Q2} ⊎Q, P ′

S = {Q1;Q2{x 7→ u}} ⊎Q, ES = E ′
S

and ΦS = Φ′
S . Assume that col(out(p, u).Q1) = i and col(in(p, x).Q2) = j. We distinguish two

cases:

Case p ∈ Es: Because processes of different color do not share private channel, it is necessary
the case that i = j.

Since PS = P0α, then there exists Q0
1, Q

0
2 processes, Q0 multi-set of processes, v term such

that Q0
1α = Q1, Q0

2α = Q2, Q0α = Q and u = [v]iα. Furthermore, since (P0, α) is an original well
tagged process, we have that α � testi([v]i).

But we also have that PD↓ = δρ(P0)δ
ρ(α↓)↓, which means that there exists p′′, p′, u′, x′ terms,

Q′
1, Q

′
2 processes, and Q′ multi-set of processes such that PD = {out(p′, u′).Q′

1; in(p
′′, x).Q′

2}⊎Q′,
ED = ES with Q′

1↓ = δρi (Q
0
1)δ

ρ
i (α↓)↓, Q′

2↓ = δρi (Q
0
2)δ

ρ
i (α↓)↓, Q′↓ = δρ(Q0)δρ(α↓)↓, ΦD↓ =

δρ(ΦS↓), p′′ = δρi (p) = p′ and u′↓ = δρi ([v]i)δ
ρ
i (α↓)↓.

Therefore, we have that (ED;PD; ΦD)
ℓ
−→ (ED; {Q′

1;Q
′
2{x 7→ u′}} ⊎ P ′; ΦD).

Let’s denote α′ = α ∪ {x 7→ u} with col(x) = i. Since Q2 = Q0
2α, we have that Q2{x 7→

u} = Q0
2α

′. Furthermore, Q′
2{x 7→ u′}↓ = (Q′

2↓){x 7→ (u′↓)}↓. But thanks to Lemma B.2 and
(α↓) � testi([v]i), we have δρi ([v]i)δ

ρ
i (α↓)↓ = δρi ([v]i(α↓))↓ = δρi ([v]iα↓) = δρi (u↓). Thus, we deduce

that Q′
2{x 7→ u′}↓ = δρi (Q

0
2)δ

ρ
i (α↓){x 7→ δρi (u↓)}↓ = δρi (Q

0
2)δ

ρ
i (α

′↓)↓.
Let P ′

0 = {Q0
1;Q

0
2} ⊎ Q0. Since x doesn’t appears in Q0

1 and Q0, we conclude that P ′
0α

′ = P ′
S

and δρ(P ′
0)δ

ρ(α′↓)↓ = P ′
D↓. Hence the result holds.

Case p 6∈ Es: Since PS = P0α, then there exists Q0
1, Q

0
2 processes, Q0 multi-set of processes, v

term such that Q0
1α = Q1, Q0

2α = Q2, Q0α = Q and u = [v]iα. Furthermore, since (P0, α) is an
original well tagged process, we have that α � testi([v]i).

But we also have that PD↓ = δρ(P0)δ
ρ(α↓)↓, which means that there exists p′′, p′, u′, x′ terms,

Q′
1, Q

′
2 processes and Q′ multi-set of processes such that PD = {out(p′, u′).Q′

1; in(p
′′, x).Q′

2} ⊎Q′,
ED = ES with Q′

1↓ = δρi (Q
0
1)δ

ρ
i (α↓)↓, Q′

2↓ = δρj (Q
0
2)δ

ρ
j (α↓)↓, Q′↓ = δρ(Q0)δρ(α↓)↓, ΦD↓ =

δρ(ΦS↓), p′′ = δρj (p), p
′ = δρi (p) and u′↓ = δρi ([v]i)δ

ρ
i (α↓)↓.

We assumed that all names in dom(ρ) ∪ img(ρ) are of base type. Thus, we can deduce that

δρi (p) = δρj (p) = p and so p′′ = p′. Therefore, we have that (ED;PD; ΦD)
ℓ
−→ (ED;Q′

1 ⊎ Q′
2{x 7→

u′} ⊎ P ′; ΦD).
Moreover, we have have δρa(u↓) = δρb (u↓). Indeed by hypothesis, we know that for all trace

(tr, νED.Φ) of D, νED.Φ 6⊢ k, νED.Φ 6⊢ pk(k) and νED.Φ 6⊢ vk(k), for all k ∈ img(ρ) ∪ dom(ρ).

But S
νaxn.out(p,axn)
−−−−−−−−−−→ (ES ; {Q1; in(p, x).Q2}; ΦS ∪ {axn ⊲ u}). Since u = [v]iα, we have that

ΦS∪{axn ⊲ u} is a frame well-formed. Moreover, we know that u′↓ = δρi ([v]i)δ
ρ
i (α↓)↓, thus thanks

to Lemma B.2 and (α↓) � testi([v]i), we deduce that u′↓ = δρi ([v]i(α↓))↓ = δρi ([v]iα↓) = δρi (u↓).
If we denote Φ = ΦS ∪ {axn ⊲ u}, we therefore have that δρ(Φ↓) = ΦD↓ ∪ {axn ⊲ u′↓}. On the

other hand, we also have D
νaxn.out(p,axn)
−−−−−−−−−−→ (ES ; {Q

′
1; in(p, x).Q

′
2}; ΦD ∪{axn ⊲ u′}). Thus, thanks

to Lemma 5.9 and since u↓ = axnΦ↓, we obtain that δρa(u↓) = axnδ
ρ(Φ↓)↓ = δρb (u↓).

Let’s denote α′ = α ∪ {x 7→ u}. Since Q2 = Q0
2α, we have that Q2{x 7→ u} = Q0

2α
′.

Furthermore, Q′
2{x 7→ u′}↓ = (Q′

2↓){x 7→ (u′↓)}↓. But we already showed that u′↓ = δρi (u↓),
thus, we deduce that Q′

2{x 7→ u′}↓ = δρj (Q
0
2)δ

ρ
j (α↓){x 7→ δρi (u↓)}↓. Since δρa(u↓) = δρb (u↓), we

have that Q′
2{x 7→ u′}↓ = δρj (Q

0
2)δ

ρ
j (α

′↓)↓.
Let P ′

0 = {Q0
1;Q

0
2} ⊎ Q0. Since x doesn’t appears in Q0

1 and Q0, we conclude that P ′
0α

′ = P ′
S

and δρ(P ′
0)δ

ρ(α′↓)↓ = P ′
D↓. Hence the result holds.

Case of the rule In: In this case, there exists p, x, u,M terms, Q1 a process, Q a multi-set
of processes such that p 6∈ ES , MΦS↓ = u, fvars(M) ⊆ dom(ΦS) and fnames(M) ∩ ES = ∅.
Furthermore, we have that PS = {in(p, x).Q1} ⊎ Q, P ′

S = {Q1{x 7→ u}} ⊎ Q, ΦS = Φ′
S , ES = E ′

S

and ℓ = in(p,M). Since PS = P0α, then there exists Q0
1 a process and Q0 a multi-set of processes

such that Q0
1α = Q1 and Q0α = Q. Assume that col(in(p, x).Q1) = i ∈ {a, b}.

But we also have that PD↓ = δρ(P0)δ
ρ(α↓)↓, which means that there exists p′ term, Q′

1 a
process, Q′ a multi-set of processes such that PD = {in(p′, x).Q′

1} ⊎ Q′, ED = ES with Q′
1↓ =

δρi (Q
0
1)δ

ρ
i (α↓)↓, Q

′↓ = δρ(Q0)δρ(α↓)↓, p′ = δρi (p) and ΦD↓ = δρ(ΦS↓).
p′ and p are both channel type term and we assumed that all the names in img(ρ)∪dom(ρ) are

names of base type. Thus we have that p′ = p. Furthermore, ED = ES which means that p′ 6∈ ED
and fnames(M) ∩ ED = ∅. We also have that ΦD↓ = δ(ΦS↓) which means that dom(ΦD) =

dom(ΦS) and so fvars(M) ⊆ dom(ΦD). Thus, we can deduce that (ED;PD; ΦD)
ℓ
−→ (ED; {Q′

1{x 7→
u′}} ⊎ Q′; ΦD) where u′ = MΦD.

By hypothesis, we assumed that for all k ∈ img(ρ) ∪ dom(ρ), νE .ΦD 6⊢ k, νE .Φ′
D 6⊢ pk(k),

νE .ΦD 6⊢ vk(k). Since δρ(ΦS↓) = ΦD↓, we can apply Lemma 5.9 and so δρa(M(ΦS↓)↓) =
δρb (M(ΦS↓)↓) = Mδρ(ΦS↓)↓ = MΦD↓. But M(ΦS↓)↓ = MΦS↓ = u↓ and M(ΦD↓)↓ = u′↓.
Thus, we have that δρa(u↓) = δρb (u↓) = u′↓. Since Q′

1↓ = δρi (Q
0
1)δ

ρ
i (α↓)↓, we deduce that

Q′
1{x 7→ u′}↓ = δρi (Q

0
1)δ

ρ
i (α↓){x 7→ δρi (u↓)}↓.

At last, let P ′
0 = {Q0

1} ⊎Q0 and let α′ = α∪ {x 7→ u}. We have that δρ(α′↓) = δρ(α↓)∪ {x 7→
δρi (u↓)}. Thus, we conclude that Q′

1{x 7→ u′}↓ = δρi (Q
0
1)δ

ρ
i (α

′↓)↓ and since x does not appear in
Q0, Q′↓ = δρ(Q0)δρ(α↓)↓ = δρ(Q0)δρ(α′↓)↓. Hence the result holds.

Case of the rule Out-T: In this case, there exists u, p terms, Q1 a process, and Q a multi-set of
processes such that PS = {out(p, u).Q1}⊎Q, P ′

S = {Q1}⊎Q, ES = E ′
S and Φ′

S = ΦS ∪{axn ⊲ u}.
Furthermore, we have that ℓ = νaxn.out(p, axn), p 6∈ ES and axn is a parameter such that
n− 1 = |ΦS |. Assume that col(out(p, u).Q1) = i ∈ {a, b}.

Since PS = P0α, then there exists Q0
1 a process, Q0 a multi-set of processes and v a term

such that Q0
1α = Q1, Q0α = Q and u = [v]iα where i = col(out(p, u).Q1). Furthermore, since

(P0, α) is an original well tagged process, we have that α � testi([v]i). Hence we deduce that Φ′
S

is well-formed.
But we also have that PD↓ = δρ(P0)δ

ρ(α↓)↓, which means that there exists p′, u′ terms, Q′
1 a

process and Q′ a multi-set of processes such that P ′
D = {out(p′, u′).Q′

1}⊎Q′, ED = ES with Q′
1↓ =

δρi (Q
0
1)δ

ρ
i (α↓)↓, Q

′↓ = δρ(Q0)δρ(α↓)↓, ΦD↓ = δρ(ΦS↓), p′ = δρi (p) and u′↓ = δρi ([v]i)δ
ρ
i (α↓)↓.

p′ and p are both channel type term and we assumed that dom(ρ) and img(ρ) only contains
name of base type. Thus, we have that p′ = p. Furthermore, ED = ES which means that p′ 6∈ ED.
We also have that ΦD↓ = δ(ΦS↓) which means that |ΦD| = |ΦS | = n − 1. Thus, we can deduce

that (ED;PD; ΦD)
ℓ
−→ (ED; {Q′

1} ⊎ Q′; ΦD ∪ {wn ⊲ u′}).
Thanks to Lemma B.2 and (α↓) � testi([v]i), we have δρi ([v]i)δ

ρ
i (α↓)↓ = δρi ([v]i(α↓))↓ =

δρi ([v]iα↓) = δρi (u↓). But u′↓ = δρi ([v]i)δ
ρ
i (α↓)↓, which means that u′↓ = δρi (u↓). Since col(axn) =

i, we can deduce that Φ′
D↓ = δρ(Φ′

S↓). We conclude with P ′
0 = {Q0

1} ⊎ Q0 and α′ = α. We
conclude that P ′

0α
′ = P ′

S and δρ(P ′
0)δ

ρ(α′↓)↓ = P ′
D↓. Hence the result holds.

Case of the rule Out-Ch: Obvious since dom(ρ) and img(ρ) only contains name of base type

Case of the rule Open-Ch: Obvious since dom(ρ) and img(ρ) only contains name of base type

Case of the rule Par: In this case, there exists Q1, Q2 processes and Q a multi-set of processes
such that PS = {Q1 | Q2} ⊎ Q, P ′

S = {Q1;Q2} ⊎ Q, ES = E ′
S and ΦS = Φ′

S . Assume that
col(Q1) = col(Q2) = i.

Since PS = P0α, then there exists Q0
1, Q

0
2 and Q0 processes such that Q0

1α = Q1, Q0
2α = Q2,

and Q0α = Q.
But we also have that PD↓ = δρ(P0)δ

ρ(α↓)↓, which means that there exists Q′
1, Q

′
2 processes

and Q′ multi-set of processes such that P ′
D = {Q1;Q

′
2}⊎Q′, ED = ES with Q′

1↓ = δρi (Q
0
1)δ

ρ
i (α↓)↓,

Q′
2↓ = δρi (Q

0
2)δ

ρ
i (α↓)↓, Q′↓ = δρ(Q0)δρ(α↓)↓, and ΦD↓ = δρ(ΦS↓). Therefore, we have that

(ED;PD; ΦD)
ℓ
−→ (ED; {Q′

1;Q
′
2} ⊎ P ′; ΦD).

Let α′ = α and P ′
0 = {Q0

1;Q
0
2}⊎Q0. We conclude that P ′

0α
′ = P ′

S and δρ(P ′
0)δ

ρ(α′↓)↓ = P ′
D↓.

Hence the result holds.

Lemma 5.11 (Completeness). Let S = (ES ;PS ; ΦS), D = (ED;PD; ΦD) and D′ = (E ′
D;P ′

D; Φ′
D)

and be three bounded intermediate processes. Assume that D
ℓ
−→ D′, ΦS is a derived well-tagged

frame and there exists a derived well-tagged multi-set of processes (P0, α) and a renaming ρ, such
that

— dom(ρ) ∪ img(ρ) ⊆ ES, dom(ρ) ∩ fnames(PS ,ΦS) = ∅; and

— ES = ED, ΦD↓ = δρ(ΦS↓); and

— PS = P0α and PD↓ = δρ(P0)δ
ρ(α↓)↓; and

— for all traces (tr,Φ) of D, for all k ∈ img(ρ) ∪ dom(ρ), Φ 6⊢ k, Φ 6⊢ pk(k) and Φ 6⊢ vk(k).

There exists a bounded intermediate process S′ = (E ′
S ;P

′
S ; Φ

′
S), a derived well tagged multi-set of

processes (P ′
0, α

′) such that Φ′
S is a derived well-tagged frame and:

— E ′
S = ES = E ′

D and Φ′
D↓ = δρ(Φ′

S↓); and

— P ′
S↓ = P ′

0α
′↓ and P ′

D↓ = δρ(P ′
0)δ

ρ(α′↓)↓; and

— S
ℓ
−→ S′.

Proof. The proof of this Lemma is almost identical to the proof of Lemma 5.10. Indeed, in the proof
of Lemma 5.10, we used Lemma B.2 to show that α � testi([u]i) implies that δρi (α) � testi(δ

ρ
i ([u]i)).

But Lemma B.2 shows that those two properties are equivalent. The same goes for Corollary B.1.
At last, the conditions of Lemma 5.9 are fulfilled in both lemmas thus, it can be also used in this
proof.

B.3 Proof of second result

In this section, we will focus on the proof of Theorem 5.2. We will assume, as in Section B.2,
that processes and frames are colored by a or b.

We will consider the two following frames Φa = {axa
1 ⊲ u1, . . . , ax

a
n ⊲ un} and Φb = {ax b

1 ⊲

u′
1, . . . , ax

b
n ⊲ u′

n} such that for all j ∈ {1, . . . , n}, uj = u′
j = f(k), for some f ∈ {pk, vk}.

Furthermore assume that Φa (resp. Φb) is colored by a (resp. b).

Lemma 5.13. Let Φ and Φ′ two frames in normal form such that dom(Φ) = dom(Φ′). Assume
that Φ and Φ′ have the same colors, i.e. for all (ax ⊲ u) ∈ Φ, for all (ax ′ ⊲ u′) ∈ Φ′, ax = ax ′

implies col(ax ⊲ u) = col(ax ′ ⊲ u′).
Let E be a set of names and let ρ a renaming such that dom(ρ) ∪ img(ρ) ⊆ E and dom(ρ) ∩

fnames(Φ,Φ′) = ∅. Let’s denote Φ+ = Φa ⊎ Φb ⊎ Φ and Φ′
+ = Φa ⊎ Φb ⊎ Φ′.

If the following properties are satisfied:

— νE .Φ+, νE .Φ′
+ are well-tagged

— νE .δρ(Φ+) ∼ νE .δρ(Φ′
+)

— for all u ∈ {k, pk(k), vk(k) | k ∈ img(ρ) ∪ dom(ρ)}, νE .δρ(Φ+) ⊢ u or νE .δρ(Φ′
+) ⊢ u implies

that u ∈ img(δρ(Φa ⊎ Φb))

then for all M such that fnames(M) ∩ E = ∅ and fvars(M) ⊆ dom(Φ+), there exists Ma and Mb

such that fnames(Ma,Mb) ∩ E = ∅, fvars(Ma,Mb) ⊆ dom(Φ+) and:

1. δρa(MΦ+↓) = Maδ
ρ(Φ+)↓ and δρa(MΦ′

+↓) = Maδ
ρ(Φ′

+)↓

2. δρb (MΦ+↓) = Mbδ
ρ(Φ+)↓ and δρb (MΦ′

+↓) = Mbδ
ρ(Φ′

+)↓

Proof. We prove this lemma by induction on M(M).

Base case M(M) = (0, 0): There exists no term M such that |M | = 0, thus the result holds.

Inductive step M(M) > (0, 0): The first step of the proof will be to show that there exists
c ∈ {a, b}, a terms Mc such that fnames(Mc) ∩ E = ∅, fvars(Mc) ⊆ dom(Φ+), δρc (MΦ+↓) =
Mcδ

ρ(Φ+)↓ and δρc (MΦ′
+↓) = Mcδ

ρ(Φ′
+)↓. Then the second step will consist in showing that

there exists another term Md, with d ∈ {a, b} and c 6= d that verifies the wanted properties.

First step: Assume first that |M | = 1. In such a case, we have that either M ∈ N or there exists
ax ∈ dom(Φ+) such that M = ax .

If M ∈ N , then by hypothesis, we know that M 6∈ E . Since dom(ρ) ∪ img(ρ) ⊆ E , we can
deduce that δρi (M) = M , for all i ∈ {a, b}. Furthermore, M ∈ N also implies that MΦ+↓ = M ,
MΦ′

+↓ = M , Mδρ(Φ+)↓ = M and Mδρ(Φ′
+)↓ = M . Thus, the result holds.

Else ax ∈ dom(Φ+). Since dom(Φ+) = dom(Φ′
+), we know that there exists u, u′ such that

(ax ⊲ u) ∈ Φ+ and (ax ⊲ u′) ∈ Φ′
+. Furthermore, we assumed that Φ and Φ′ have the same

colors, then so do Φ+ and Φ′
+. Hence we have that col(ax ⊲ u) = col(ax ⊲ u′). Let’s denote

i = col(ax ⊲ u). By definition of δρ(Φ+) and δρ(Φ′
+), we have that axδρ(Φ+) = δρi (axΦ+) and

axδρ(Φ′
+) = δρi (axΦ

′
+). Note that we assumed that Φ and Φ′ are both in normal form, thus so are

Φ+ and Φ′
+. Hence, we can conclude that Mδρ(Φ+)↓ = δρi (MΦ+↓) and Mδρ(Φ′

+)↓ = δρi (MΦ′
+↓).

Assume now that |M | > 1. It implies that there exists M1, . . . ,Mn term and a function symbol
f such that M = f(M1, . . . ,Mn). We do a case analysis on f.

Case f ∈ Fi ∪ Ftagi
, i ∈ {a, b}: In such a case, let t = f(M1Φ+↓, . . . ,MnΦ+↓) and t′ =

f(M1Φ
′
+↓, . . . ,MnΦ

′
+↓). Since f ∈ Fi ∪Ftagi

, we have that δρi (t) = f(δρi (M1Φ+↓), . . . , δ
ρ
i (MnΦ+↓))

and δρi (t
′) = f(δρi (M1Φ

′
+↓), . . . , δ

ρ
i (MnΦ

′
+↓)). But we have that M(M1) < M(M), . . . , M(Mn) <

M(M). Thus we can apply or inductive hypothesis on M1, . . . ,Mn and so there exists M i
1, . . . ,M

i
n

such that for all k ∈ {1, . . . , n}, fnames(M i
k) ∩ E = ∅, fvars(M i

k) ⊆ dom(Φ+), δρi (MkΦ+↓) =
M i

kδ
ρ(Φ+)↓ and δρi (MkΦ

′
+↓) = M i

kδ
ρ(Φ′

+)↓. Hence, we have that δρi (t)↓ = f(M i
1, . . . ,M

i
n)δ

ρ(Φ+)↓
and δρi (t

′)↓ = f(M i
1, . . . ,M

i
n)δ

ρ(Φ′
+)↓.

On the other hand, t = f(M1Φ+↓, . . . ,MnΦ+↓) implies that there exists C context built on
Fi∪Ftagi

and u1, . . . , um terms in normal form such that t = C[u1, . . . , um] with u1, . . . , um factors
of t. Thanks to Lemma 5.2, there exists a context D (possibly a hole) built on Fi ∪ Ftagi

such
that t↓ = D[uj1 , . . . , ujk] with j1, . . . , jk ∈ {0, . . . ,m} and u0 = nmin. But using Lemmas 5.3, 5.4
and 5.6, we can deduce that C[δρi (u1), . . . , δ

ρ
i (um)]↓ = D[δρi (uj1), . . . , δ

ρ
i (ujk)]. Since C and D are

both built upon Fi ∪ Ftagi
, we can conclude that δρi (C[u1, . . . , um])↓ = δρi (D[uj1 , . . . , ujk]) and so

δρi (t)↓ = δρi (t↓).
Similarly, we have that t′ = f(M1Φ

′
+↓, . . . ,MnΦ

′
+↓) implies that δρi (t

′)↓ = δρi (t
′↓). Since we

proved that δρi (t)↓ = f(M i
1, . . . ,M

i
n)δ

ρ(Φ+)↓ and t↓ = MΦ+↓, we can deduce that δρi (MΦ+↓) =
f(M i

1, . . . ,M
i
n)δ

ρ(Φ+)↓. Similarly, we have that f(M i
1, . . . ,M

i
n)δ

ρ(Φ′
+)↓ = δρi (MΦ′

+↓). Hence, the
result holds with Mi = f(M i

1, . . . ,M
i
n).

Case f ∈ {senc, aenc, sign, 〈〉}: By definition of F0, we know that MΦ+↓ = f(M1Φ+↓,M2Φ+↓)
and MΦ′

+↓ = f(M1Φ
′
+↓,M2Φ

′
+↓). Thanks to Lemma 5.6, we can deduce that for all i ∈ {a, b},

root(δρi (M1Φ+↓)) = root(M1Φ+↓) and root(δρi (M1Φ
′
+↓)) = root(M1Φ

′
+↓). But M(M1) < M(M),

thus by our inductive hypothesis, there exists M i
1 such that δρi (M1Φ+↓) = M i

1δ
ρ(Φ+)↓ and

δρi (M1Φ
′
+↓) = M i

1δ
ρ(Φ′

+)↓. Hence for all j ∈ {a, b}, root(M1Φ+↓) = tagj is equivalent to
root(M i

1δ
ρ(Φ+)↓) = tagj , which is also equivalent to tagj(untagj(M

i
1))δ

ρ(Φ+)↓ = M i
1δ

ρ(Φ+)↓. But
by hypothesis νE .δρ(Φ+) ∼ νE .δρ(Φ′

+), thus tagj(untagj(M
i
1))δ

ρ(Φ+)↓ = M i
1δ

ρ(Φ+)↓ is equiva-
lent to tagj(untagj(M

i
1))δ

ρ(Φ′
+)↓ = M i

1δ
ρ(Φ′

+)↓, which is equivalent to root(M i
1δ

ρ(Φ′
+)↓) = tagj .

Hence, we deduce that for all j ∈ {a, b}, root(M1Φ+↓) = tagj is equivalent to root(M1Φ
′
+↓) = tagj .

This equivalence and the definition of δρa and δρb allow us to deduce that for all i ∈ {a, b},
there exists j ∈ {a, b} such that δρi (MΦ+↓) = f(δρj (M1Φ+↓), δ

ρ
j (M2Φ+↓)) and δρi (MΦ′

+↓) =
f(δρj (M1Φ

′
+↓), δ

ρ
j (M2Φ

′
+↓)). By our inductive hypothesis on M1 and M2, we deduce that there

exists M j
1 and M j

2 such that δρj (MkΦ+↓) = M j
kδ

ρ(Φ+)↓ and δρj (MkΦ
′
+↓) = M j

kδ
ρ(Φ′

+)↓, for

k ∈ {1, 2}. Hence, we have δρi (MΦ+↓) = f(M j
1 ,M

j
2)δ

ρ(Φ+)↓ and δρi (MΦ′
+↓) = f(M j

1 ,M
j
2)δ

ρ(Φ′
+)↓.

So the result holds.

Case f ∈ {h, pk, vk}: This case is analogous to the previous one and can be handled similarly.

Case f = sdec: We have that M = f(M1,M2). Thus, we can apply our inductive hypothesis
on M1 and M2, which means that for all i ∈ {a, b}, for all k ∈ {1, 2}, there exists M i

kδ
ρ(Φ+)↓ =

δρi (MkΦ+↓) and M i
kδ

ρ(Φ′
+)↓ = δρi (MkΦ

′
+↓). Let’s first focus on MΦ+↓. We need to distinguish

several cases:
(a) If the root occurence of sdec cannot be reduced, then MΦ+↓ = sdec(M1Φ+↓,M2Φ+↓). Thus

for all i ∈ {a, b}, δρi (MΦ+↓) = sdec(δρi (M1Φ+↓), δ
ρ
i (M2Φ+↓)) = sdec(M i

1δ
ρ(Φ+)↓,M

i
2δ

ρ(Φ+)↓).
Thanks to Lemma 5.6, we know that δρi (MΦ+↓) is in normal form which means that δρi (MΦ+↓) =
f(M i

1,M
i
2)δ

ρ(Φ+)↓
(b) If the root occurence of sdec can be reduced and root(MΦ+↓) = tagj , for some j ∈ {a, b}

then there exists u1, u2 such that M1Φ+↓ = senc(tagj(u1), u2) and M2Φ+↓ = u2. Hence we
have that sdec(δρj (M1Φ+↓), δ

ρ
j (M2Φ+↓))↓ = δρj (tagj(u1)) = δρj (MΦ+↓). On the other hand, we

also have sdec(δρj (M1Φ+↓), δ
ρ
j (M2Φ+↓))↓ = sdec(M j

1δ
ρ(Φ+)↓,M

j
2 δ

ρ(Φ+)↓)↓. Hence, we have that

δρj (MΦ+↓) = sdec(M j
1 ,M

j
2)δ

ρ(Φ+)↓.
(c) Else, the root occurence of sdec can be reduced and for all j ∈ {a, b}, root(MΦ+↓) 6=

tagj . In such a case, there exist u1, u2 such that M1Φ+↓ = senc(u1, u2), M2Φ+↓ = u2. More-
over, for all i ∈ {a, b}, δρi (M1Φ+↓) = senc(δρi (u1), δ

ρ
i (u2)) and δρi (M2Φ+↓) = δρi (u2). Hence,

we have that for all i ∈ {a, b}, sdec(δρi (M1Φ+↓), δ
ρ
i (M2Φ+↓))↓ = δρi (MΦ+↓). At last, since

sdec(δρi (M1Φ+↓), δ
ρ
i (M2Φ+↓))↓ = sdec(M i

1,M
i
2)δ

ρ(Φ+)↓, we have that sdec(M i
1,M

i
2)δ

ρ(Φ+)↓ =
δρi (MΦ+↓).

We could do the same case analysis for MΦ′
+↓ and we would obtain similar results. Since

in two cases (a) and (c), the result holds for all i ∈ {a, b}, it only remains to show that for all
j ∈ {a, b}, the root occurence of sdec is reduced in MΦ+↓ and root(MΦ+↓) = tagj , if and only if,
the root occurence of sdec is reduced in MΦ′

+↓ and root(MΦ′
+↓) = tagj .

We already showed that the root occurence of sdec is reduced in MΦ+↓ and root(MΦ+↓) =
tagj imply that δρj (MΦ+↓) = sdec(M j

1 ,M
j
2)δ

ρ(Φ+)↓. Thus we have sdec(M j
1 ,M

j
2)δ

ρ(Φ+)↓ =

tagj(untagj(sdec(M
j
1 ,M

j
2)))δ

ρ(Φ+)↓. But by hypothesis, νE .δρ(Φ+) ∼ νE .δρ(Φ′
+). Hence we

have tagj(untagj(sdec(M
j
1 ,M

j
2)))δ

ρ(Φ′
+)↓ = sdec(M j

1 ,M
j
2)δ

ρ(Φ′
+)↓. Thus there exists v1, v2 such

that M j
1δ

ρ(Φ′
+)↓ = senc(tagj(v1), v2) and M j

2δ
ρ(Φ′

+)↓ = v2, which means that δρj (M1Φ
′
+↓) =

senc(tagj(v1), v2) and δρj (M2Φ
′
+↓) = v2. Thanks to Lemmas 5.4 and 5.6, we deduce that there

exists v′1 and v′2 such that M1Φ
′
+↓ = senc(tagj(v

′
1), v

′
2), M2Φ

′
+↓ = v′2, v2 = δρj (v

′
2) and v1 = δρj (v

′
1).

We can conclude that the root occurence of sdec is reduced in MΦ′
+↓ and root(MΦ′

+↓) = tagj .
The other implication is symmetrical to this one. Hence our result holds.

Case f ∈ {adec, check}: This case is similar to the case f = sdec.

Case f ∈ projk, k ∈ {1, 2}: In such a case, we have M = f(M1). Thus we can apply our inductive
hypothesis on M1 which means that for all i ∈ {a, b}, there exists M i

1δ
ρ(Φ+)↓ = δρi (M1Φ+↓) and

M i
1δ

ρ(Φ′
+)↓ = δρi (M1Φ

′
+↓). Let’s first focus on MΦ+↓. We need to distinguish two cases:

(a) If the root occurence of f cannot be reduced, then MΦ+↓ = f(M1Φ+↓). Thus for all
i ∈ {a, b}, δρi (MΦ+↓) = f(δρi (M1Φ+↓)) = f(M i

1δ
ρ(Φ+)↓). Thanks to Lemma 5.6, we know that

δρi (MΦ+↓) is in normal form which means that δρi (MΦ+↓) = sdec(M i
1)δ

ρ(Φ+)↓.
(b) Else, the root occurence of f can be reduced. In such a case there exists u1, u2 such

that M1Φ+↓ = 〈u1, u2〉. Hence for all i ∈ {a, b}, we have δρi (M1Φ+↓) = 〈δρi (u1), δ
ρ
i (u2)〉 and so

f(δρi (M1Φ+↓))↓ = δρi (uk). Thus, we conclude that f(M i
1)δ

ρ(Φ+)↓ = δρi (MΦ+↓)
We could do the same case analysis for MΦ′

+↓ and we would obtain similar results. Since the
result holds in both cases, we can conclude.

Second step: Thanks to the first step, we showed that there exists c ∈ {a, b}, and a term Mc such
that fnames(Mc) ∩ E = ∅, fvars(Mc) ⊆ dom(Φ+), δρc (MΦ+↓) = Mcδ

ρ(Φ+)↓ and δρc (MΦ′
+↓) =

Mcδ
ρ(Φ′

+)↓. Let d ∈ {a, b} such that d 6= c.
By Lemma B.7, we know that there exists two contexts C,C ′ (possibly holes) built on {〈 〉},

and u1, . . . , um, v1, . . . , vn such that MΦ+↓ = C[u1, . . . , um] and MΦ′
+↓ = C ′[v1, . . . , vn]. Hence,

we have that δρc (MΦ+↓) = C[δρc (u1), . . . , δ
ρ
c (um)] and δρc (MΦ′

+↓) = C ′[δρc (v1), . . . , δ
ρ
c (vn)]. Our

hypothesis implies Mcδ
ρ(Φ+)↓ = C[δρc (u1), . . . , δ

ρ
c (um)] and Mcδ

ρ(Φ′
+)↓ = C ′[δρc (v1), . . . , δ

ρ
c (vn)].

But νE .δρ(Φ+) ∼ νE .δρ(Φ′
+). Therefore, since C and C ′ are both built upon {〈 〉}, we deduce

that C = C ′ and n = m. Note that it also implies that there exists D1, . . . , Dn contexts built on
{proj1, proj2} such that for all k ∈ {1, . . . , n}, Dk(Mc)δ

ρ(Φ+)↓ = δρc (uk) and Dk(Mc)δ
ρ(Φ′

+)↓ =
δρc (vk).

Lemma B.7 also tells us that for all k ∈ {1, . . . , n},

— either uk ∈ Flawed(MΦ+↓);

— or uk ∈ FctF0
(MΦ+↓) and δρa(uk) = δρb (uk),

— or uk = f(n) for some f ∈ {pk, vk} and n ∈ N ,

— or uk ∈ N .

Thus, we build Md such that Md = C[N1, . . . , Nn] where, for all k ∈ {1, . . . , n},

(a) if δρa(uk) = δρb (uk) then Nk = Dk(Mc)

(b) else if uk ∈ Flawed(MΦ+↓), then by Lemma B.6, there exists f and M1, . . . ,Mℓ such that
for all i ∈ {1 . . . , ℓ}, M(Mi) < M(M) and uk = f(M1Φ+↓, . . . ,MℓΦ+↓). But by our inductive
hypothesis on M1, . . . ,Mℓ, we have that there exists Md

1 , . . . ,M
d
ℓ such that for all i ∈ {1, . . . , ℓ},

Md
i δ

ρ(Φ+)↓ = δρd(MiΦ+↓) and Md
i δ

ρ(Φ′
+)↓ = δρd(MiΦ

′
+↓). Therefore f(Md

1 , . . . ,M
d
ℓ)δ

ρ(Φ+)↓ =
δρd(f(M1Φ+↓, . . . ,MℓΦ+↓)) and f(Md

1 , . . . ,M
d
ℓ)δ

ρ(Φ′
+)↓ = δρd(f(M1Φ

′
+↓, . . . ,MℓΦ

′
+↓)).

We define Nk = f(Md
1 , . . . ,M

d
ℓ). We know that Nkδ

ρ(Φ+)↓ = δρd(uk), thus it remains to show
that Nkδ

ρ(Φ′
+)↓ = δρd(vk). Our inductive hypothesis on M1, . . . ,Mℓ allows us to show that there

exists M c
1 , . . . ,M

c
ℓ such that f(M c

1 , . . . ,M
c
ℓ)δ

ρ(Φ+)↓ = δρc (uk). But δρc (uk) = Dk(Mc)δ
ρ(Φ+)↓.

Since δρ(Φ+) ∼ δρ(Φ′
+), we deduce that Dk(Mc)δ

ρ(Φ′
+)↓ = f(M c

1 , . . . ,M
c
ℓ)δ

ρ(Φ′
+)↓. Hence

we have that δρc (vk) = δρc (f(M1Φ
′
+↓, . . . ,MℓΦ

′
+↓)). By applying Lemma 5.4, we obtain that

f(M1Φ
′
+↓, . . . ,MℓΦ

′
+↓) = vk and so Nkδ

ρ(Φ′
+)↓ = δρd(vk)

(c) else if uk ∈ f(n) for some f ∈ {pk, vk} and n ∈ N , then Dk(Mc)δ
ρ(Φ+)↓ = f(δρc (n)), i.e.

f(δρc (n)) is deducible. If n 6∈ img(ρ) then δρa(uk) = δρb (uk) and so it is the same as case (a). Else
by hypothesis on δρ(Φ+), we know that n ∈ img(ρ) implies that f(δρc (n)) ∈ img(δρ(Φa ⊎Φb)). By
construction of Φa and Φb, we know that there exist (axd

ℓ ⊲ f(δρd(n)), ax
c
ℓ ⊲ f(δρc (n))) ∈ δρ(Φa⊎Φb)

with col(axd
ℓ) = d and col(ax c

ℓ) = c and some ℓ ∈ N.

We define Nk = axd
ℓ . It remains to show that axd

ℓδ
ρ(Φ′

+)↓ = δρd(vk). But we have ax c
ℓδ

ρ(Φ+)↓ =
Dk(Mc)δ

ρ(Φ+)↓. Thanks to our hypothesis δρ(Φ+) ∼ δρ(Φ′
+), we deduce that ax c

ℓδ
ρ(Φ′

+)↓ =
Dk(Mc)δ

ρ(Φ′
+)↓. By definition of Φ′

+, we have that ax c
ℓδ

ρ(Φ′
+)↓ = f(δρc (n)) which means that

δρc (vk) = Dk(Mc)δ
ρ(Φ′

+)↓ = δρc (f(n)). By applying Lemma 5.4, we obtain that vk = f(n). At last,
by definition of Φ′

+, we have that axd
ℓδ

ρ(Φ′
+)↓ = δρd(f(n)) = δρd(vk).

(d) Else uk ∈ N . But by hypothesis on δρ(Φ+), we know that n ∈ img(ρ) implies δρc (n) is not
deducible from δρ(Φ+). Thus uk 6∈ img(ρ) and so δρa(uk) = δρb (uk), which leads to Nk = Dk(Mc),
i.e. same as case (a).

We showed that for such Md = C[N1, . . . , Nn], we have that Mdδ
ρ(Φ+)↓ = δρd(C[u1, . . . , un])

and Mdδ
ρ(Φ′

+)↓ = δρd(C[v1, . . . , vn]), which leads to Mdδ
ρ(Φ+)↓ = δρd(MΦ+↓) and Mdδ

ρ(Φ′
+)↓ =

δρd(MΦ′
+↓).

For the next two lemmas, i.e. soundness and completeness, we consider E0 a set of private
names and Pa, Pb two processes without name restriction or replication, and coloured respectively
by a and b. At last consider ρ a renaming such that:

— dom(ρ) ∪ img(ρ) ⊆ E0 and dom(ρ) do not appear in Pa, Pb, Φa or Φb.

— for all i ∈ {a, b}, there exists P ′
i built on Fi ∪ F0 such that Pi = [P ′

i]i.

— for all i ∈ {a, b}, fnames(Pi) ∩ Ch ⊆ dom(ρChi
) and img(ρChi

) does not appear in Pa or Pb.

We will denote D = (E0; {PaρCha
, Pbρ

−1ρChb
}; Φa ⊎ Φbρ

−1) and S = (E0; {Pa, Pb}; Φa ⊎ Φb). We
assume that Pa and Pb do not share any private channel name, i.e. fnames(Pa) ∩ fnames(Pb) ∩
Ch ∩ E0 = ∅, and do not use variable of channel type.

Lemma 5.14 (Soundness). If for all (tr,Φ) ∈ trace(D), for all u ∈ {vk(k), pk(k) | k ∈ img(ρ) ∪

dom(ρ)}, νE0.Φ ⊢ u implies that u ∈ img(Φa ⊎Φbρ
−1), then for all S

w
−→ (E0;PS ; ΦS) such that w

does not contain any τ action that corresponds to an internal communication between two processes

of different colours, we have that ΦS is well-tagged and there exists D
w′

−→ (E ;PD; ΦD) such that
ΦD↓ = δρ(ΦS↓).

Furthermore, if w = ℓ1.ℓn then w′ = ℓ′1.ℓ
′
n such that for all k ∈ {1, . . . , n},

— if ℓk = νaxm.out(c, axm) is an output coming from a process coloured by i ∈ {a, b}, then
ℓ′k = νaxm.out(cρChi

, axm)

— if ℓk = in(c,M) is an input coming from a process coloured by i ∈ {a, b}, then ℓ′k =
in(cρChi

,Mi) with MiΦD↓ = δρi (MΦS↓).

— if ℓk = out(c, d) is an output coming from a process coloured by i ∈ {a, b} with d a channel
name, then ℓ′k = out(cρChi

, dρChi
)

— if ℓk = νchm.out(c, chm) is an output coming from a process coloured by i ∈ {a, b} with chm

a channel name, then ℓ′k = νchm.out(cρChi
, chm)

— if ℓk = τ , then ℓ′k = τ .

Proof. We have that S
w
−→ (E0;P

′
S ; Φ

′
S). We will show by induction on |w| the properties stated

in the lemma but also that there exists (Pa, αa) and (Pb, αb) two original well-tagged multi-sets
of processes such that col(Pa) = a, col(Pb) = b, P ′

S = Paαa ⊎ Pbαb and P ′
D = Pa

D ⊎ Pb
D with for

all i ∈ {a, b}, Pi
D↓ = δρi (Pi)ρChi

δρi (αi↓)↓.

Base case |w| = 0: In this case, we need to verify that S and D satisfy the wanted properties.
By hypothesis on S and D, we have S = (E0;PS ; ΦS) and D = (E0;PD; ΦD) such that PS =
{[P ′

a]a, [P
′
b]b}, ΦS = Φa ⊎ Φb, PD = {δρa([P

′
a]a)ρCha

, δρb ([P
′
b]b)ρChb

} and ΦD = δρ(ΦS).
Thus by definition of an original well-tagged multi-set of processes, we define Pa = {[P ′

a]a},
αa = id , Pb = {[P ′

b]b}, αb = id . Hence, we have δρi (αi↓) = id and so Pi
D↓ = δρi (Pi)ρChi

↓, for all
i ∈ {a, b}.

Furthermore, we know by hypothesis that for all (w ⊲ u) ∈ ΦA ∪ ΦB , u = f(n) for some
f ∈ {pk, vk} and n ∈ N . Hence we have that [u]i = u and testi(u) = true for all i ∈ {a, b}, which
implies that ΦS is well-tagged and in normal form.

At last, δρa(ΦA) = ΦA and δρb (ΦB) = ΦBρ
−1
0 , hence we have that δρ(ΦS↓) = ΦD↓.

Inductive case |w| > 0: In this case, we have that w = w1.ℓ and so S
w1−−→ (E0;P

′′
S ; Φ

′′
S)

ℓ
−→

(E0;P ′
S ; Φ

′
S) with no internal communication between two processes of different colors. Hence, by

inductive hypothesis on w1, we have that there exists D
w′

1−−→ (E0;P
′′
D; Φ′′

D), (P ′
a, α

′
a) and (P ′

b, α
′
b)

two original well-tagged multi-sets of processes such that:

— Φ′′
D↓ = δρ(Φ′′

S↓)

— Φ′′
S is well-tagged

— P ′′
S = P ′

aα
′
a ⊎ P ′

bα
′
b and P ′′

D = Pa
D

′ ⊎ Pb
D

′
with for all i ∈ {a, b}, Pi

D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓.

— for all k ∈ {1, . . . , |w| − 1}, ℓk satisfies the desired properties.

We proceed by case analysis on the rule applied for the transition (E0;P
′′
S ; Φ

′′
S)

ℓ
−→ (E0;P

′
S ; Φ

′
S).

Since by hypothesis, we know that there is no internal communication between two processes
of different colors, and P ′′

S = P ′
aα

′
a ⊎ P ′

bα
′
b we can assume that a rule is applied on P ′

iα
′
i, with

i ∈ {a, b}. Let j ∈ {a, b} such that i 6= j

Case of the rule Then: In this case, by definition of (P ′
i, α

′
i), there exists φ formula and Q1,

Q2 processes and Q′
i ⊆ P ′

i such that P ′′
S = {if φ then [Q1]iα

′
i else [Q2]iα

′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j ,

P ′
S = {[Q1]iα

′
i} ⊎Q′

iα
′
i ⊎P ′

jα
′
j , Φ

′
S = Φ′′

S and φ a conjunction of equations (u = v). By definition,
we have that ([Q1]i, α

′
i) and ([Q2]i, α

′
i) are both original well-tagged processes.

Furthermore, we have that for all equation (u = v) ∈ φ, u =E v; and either (a) there exists
u such that φ is the formula testi([u]i)α

′
i, or (b) there exists u1, u2 such that φ is the formula

[u1]iα
′
i = [u2]iα

′
i and α′

i � testi([u1]i) ∧ testi([u2]i).
But we also have Pi

D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓, which means that there exists φ′ formula and Q′

1,

Q′
2 processes and Qi

D ⊆ piD
′
such that P ′′

D = {if φ′ then Q′
1 else Q′

2)}⊎Qi
D ⊎Pj

D

′
with Q′

1↓ =
δρi ([Q1]i)ρChi

δρi (α
′
i↓)↓, Q

′
2↓ = δρi ([Q2]i)ρChi

δρi (α
′
i↓)↓. Furthermore, in case (a) φ′↓ is the formula

testi(δ
ρ
i ([u]i))δ

ρ
i (α

′
i↓)↓; and in case (b) φ′ is the formula (u′ = v′) where u′↓ = δρi ([u1]i)δ

ρ
i (α

′
i↓)↓

and v′↓ = δρi ([u2]i)δ
ρ
i (α

′
i↓)↓.

In case (a), For all equation (u′ = v′) ∈ φ, u′ =E v′ which is equivalent to u′↓ = v′↓.
Thus it is equivalent to (α′

i↓) � testi([u]i). But by Lemma B.3, we know that this is equiva-
lent to δρi (α

′
i↓) � testi(δ

ρ
i ([u]i)). Thus we have that for all equation (u′ = v′) of testi(δ

ρ
i ([u]i)),

u′δρi (α
′
i↓)↓ = v′δρi (α

′
i↓)↓. Since φ′↓ is the formula testi(δ

ρ
i ([u]i))δ

ρ
i (α

′
i↓)↓, we can conclude that for

all equation (u′ = v′) of φ′, u′↓ = v′↓ and so u′ =E v′.
In case (b), we know that α↓ � testi([u1]i) ∧ testi([u2]i) and [u1]iα

′
i↓ = [u2]iα↓. Thus by

Corollary B.1, we can deduce that δρi ([u1]i)δ
ρ
i (α

′
i↓)↓ = δρi ([u2]i)δ

ρ
i (α

′
i↓)↓ which means that u′↓ =

v′↓ and so u′ =E v′.

φ′ being satisfied in both cases allows us to deduce that (E0;P
′′
D; Φ′′

D)
ℓ
−→ (E0; {Q

′
1} ⊎ Qi

D ⊎

Pj
D

′
; Φ′′

D).
Thus, we have Φ′

D = Φ′′
D, but Φ′

S = Φ′′
S , hence we have that Φ′

S is well-tagged and Φ′
D↓ =

δρ(Φ′
S↓). Furthermore, let ℓ′ = ℓ = τ and Pi = {[Q1]i} ⊎ Q′

i, αi = α′
i, Pj = P ′

j , αj = α′
j . By

definition of [Q1]i, we have that (Pi, αi) and (Pj , αj) are both original well-tagged multisets of
processes.

We already showed that PS = Piαi ⊎Pjαi and thanks to Q′
1↓ = δρi ([Q1]i)ρChi

δρi (α
′
i↓)↓, we can

deduce that PD↓ = δρi (Pi)ρChi
δρi (αi↓)↓ ⊎ δρj (Pj)ρChj

δρj (αj↓)↓. Hence the result holds.

Case of the rule Else: This case similar to the rule Then.

Case of the rule Comm: In this case, by definition of (P ′
i, α

′
i), there exists u, x, p terms, Q1, Q2

processes and Q′
i ⊆ P ′

i such that P ′′
S = {out(p, [u]iα

′
i).[Q1]iαi; in(p, x).[Q2]iα

′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j ,

P ′
S = {[Q1]iα

′
i; [Q2]iα

′
i{x 7→ [u]iαi}} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j , Φ

′
S = Φ′′

S and α′
i � testi([u]i).

First of all, we trivially have that Φ′
S is well-tagged.

Furthermore, we have Pi
D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓, which means that there exists p′, u′ terms

and Q′
1, Q′

2, processes such that P ′′
D = {out(p′, u′).Q′

1; in(p
′, x).Q′

2} ⊎ Qi
D ⊎ Pj

D

′
with Q′

1↓ =

δρi ([Q1]i)ρChi
δρi (α

′
i↓)↓, Q′

2↓ = δρi ([Q2]i)ρChi
δρi (α

′
i↓)↓, p′ = p′↓ = δρi (p)ρChi

= pρChi
and u′↓ =

δρi ([u]i)δ
ρ
i (α

′
i↓)↓. Hence for ℓ′ = ℓ = τ , we have that (E0;P ′′

D; Φ′′
D)

ℓ′

−→ (E0;Q′
1⊎Q′

2{x 7→ u′}⊎Qi
D ⊎

Pj
D

′
; Φ′′

D).
Let Φ′

D = Φ′′
D. Since Φ′

S = Φ′′
S , then by hypothesis, we have that Φ′

D↓ = δρ(Φ′
S↓). Let’s

denote αi = α′
i{x 7→ [u]iαi}. We already know that α′

i � testi([u]i). Thus thanks to Lemma B.2
and (α′

i↓) � testi([u]i), we deduce that u′↓ = δρi ([u]i)δ
ρ
i (α

′
i↓)↓ = δρi ([u]i(α

′
i↓))↓ = δρi ([u]iα

′
i↓).

This implies that δρi (αi↓) = δρi (α
′
i){x 7→ u′↓}. But Q′

2{x 7→ u′}↓ = (Q′
2↓){x 7→ (u′↓)}↓, hence

Q′
2{x 7→ u′}↓ = δρi ([Q2]i)ρChi

δρi (αi↓)↓.
Moreover, since x 6∈ fvars([Q1]i) ∪ fvars(Q′

i), we can deduce that [Q1]iα
′
i = [Q1]iαi, Q′

2↓ =
δρi ([Q2]i)ρChi

δρi (αi↓)↓ and Q′
iα

′
i = Q′

iαi. Thus, we have that ({[Q1]i, [Q2]i}⊎Q′
i, αi) is an original

well-tagged multi-set of processes. Hence the result holds.

Case of the rule In: In this case, by definition of (P ′
i, α

′
i), there exists x, p,M terms, Q1 pro-

cess, Q′
i ⊆ P ′

i, MΦ′′
S = u, fvars(M) ⊆ dom(Φ′′

S) and fnames(M) ∩ E0 = ∅ such that P ′′
S =

{in(p, x).[Q1]iα
′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j , P ′

S = {[Q1]iα
′
i{x 7→ u}} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j , Φ′

S = Φ′′
S and α′

i �

testi([u]i). We trivially have that Φ′
S is well-tagged.

Furthermore, we have Pi
D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓, which means that there exists p′ term and

Q′
1 process such that P ′′

D = {in(p′, x).Q′
1} ⊎ Qi

D ⊎ Pj
D

′
with Q′

1↓ = δρi ([Q1]i)ρChi
δρi (α

′
i↓)↓ and

p′ = p′↓ = δρi (p)ρChi
= pρChi

.
By hypothesis, we assumed that for all v ∈ {k, vk(k), pk(k) | k ∈ img(ρ)∪dom(ρ)}, νE0.Φ′′

D ⊢ v
implies that v ∈ img(ΦD), where ΦD = δρ(Φa ⊎ Φb). Thus, thanks to Lemma 5.13, we have that
there exists a term Mi such that fvars(Mi) ⊆ dom(Φ′′

D), fnames(Mi) ∩ E0 = ∅ and MiΦ
′′
D↓ =

δρi (MΦ′′
S↓). Thus, with ℓ′ = in(pρChi

,Mi), we can deduce that (E0;P
′′
D; Φ′′

D)
ℓ′

−→ (E0;Q
′
1{x 7→

u′} ⊎ Qi
D ⊎ Pj

D

′
; Φ′′

D) where u′ = MiΦ
′′
D.

But MΦ′′
S↓ = u↓ and MiΦ

′′
D↓ = u′↓. Thus, we have that δρi (u↓) = u′↓. Since Q′

1↓ =
δρi ([Q1]i)ρChi

δρi (α
′
i↓)↓, we deduce that Q′

1{x 7→ u′}↓ = δρi ([Q1]i)ρChi
δρi (α

′
i↓){x 7→ δρi (u↓)}↓.

Let αi = α′
i{x 7→ u}, we have that that δρi (αi↓) = δρi (α

′
i↓){x 7→ δρi (u↓)} and so Q′

1{x 7→ u′}↓ =
δρi ([Q1]i)ρChi

δρi (αi↓)↓ and [Q1]iα
′
i{x 7→ u} = [Q1]iαi. Moreover, since x 6∈ fvars(Q′

i), we can
deduce that , Q′

1↓ = δρi ([Q1]i)ρChi
δρi (αi↓)↓ and Q′

iα
′
i = Q′

iαi. Thus, we have that ({[Q1]i}⊎Q′
i, αi)

is an original well-tagged multi-set of processes. Hence the result holds.

Case of the rule Out-T: In such a case, by definition of (P ′
i, α

′
i), there exists u, p terms and

Q1 process, Q′
i ⊆ P ′

i such that P ′′
S = {out(p, [u]iα′

i).[Q1]iα
′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j , P ′

S = {[Q1]iα
′
i} ⊎

Q′
iα

′
i ⊎ P ′

jα
′
j , Φ′

S = Φ′′
S ⊎ {axn ⊲ [u]iα

′
i} and α′

i � testi([u]i). Furthermore, we have that ℓ =
νaxn.out(p, axn).

Moreover, we have Pi
D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓, which means that there exists p′, u′ terms

and Q′
1 process such that P ′′

D = {out(p′, u′).Q′
1} ⊎ Qi

D ⊎ Pj
D

′
with Q′

1↓ = δρi ([Q1]i)ρChi
δρi (α

′
i↓)↓,

p′ = p′↓ = δρi (p)ρChi
= pρChi

and u′↓ = δρi ([u]i)δ
ρ
i (α

′
i↓)↓. Hence for ℓ′ = νwn.out(pρChi

, wn), we

have that (E0;P
′′
D; Φ′′

D)
ℓ′

−→ (E0; {Q
′
1} ⊎ Qi

D ⊎ Pj
D

′
; Φ′

D).
We first need to show that Φ′

S is well-tagged. Since Φ′′
S is well tag, we only need to focus on

the new term [u]iα
′
i. Let x ∈ dom(α′

i), we know that x was initially a variable from S. Thus, x
was introduced by an input in(c, x) for some c and so there exists a transition ℓx in w1 such that
this transition reduces in(c, x). If ℓx = in(c,M) (i.e. the rule In), then we trivially have that the
result holds with M ; else ℓx = τ (i.e. the rule Comm). But in the case ℓx = τ , we know that the
output comes from a process colored by i and so there exists v such that xα′

i = [v]iα
′
i. Thus with

a simple induction on the size of w1, we can show that Φ′
S is well-tagged.

Since all variables in [u]i are colored by i, then thanks to Lemma B.2 and (α′
i↓) � testi([u]i),

δρi ([u]i)δ
ρ
i (α

′
i↓)↓ = δρi ([u]i(α

′
i↓))↓ = δρi ([u]iα

′
i↓) = δρi (u↓). But u′↓ = δρi ([u]i)δ

ρ
i (α

′
i↓)↓, which means

that u′↓ = δρi (u↓). Since col(wn) = i, we can conclude that Φ′
D↓ = δρ(Φ′

S↓). Hence the result
holds.

At last, let αi = α′
i, we have that ({[Q1]i} ⊎ Q′

i, αi) is an original well-tagged multi-set of
processes. Hence our result holds.

Case of the rule Out-Ch: Obvious since dom(ρ) and img(ρ) only contain names of base type and
so if ℓ = out(c, d), since c and d are public then ℓ′ = out(cρChi

, dρChi
)

Case of the rule Open-Ch: Obvious since dom(ρ) and img(ρ) only contain names of base type
and so if ℓ = νchout(c, ch), since c is public and dom(ρChi

) is only composed of public channels,
then ℓ′ = νchm.out(cρChi

, chm)
Case of the rule Par: Obvious

Lemma 5.15 (Completeness). Let D
w
−→ (E0;PD; ΦD). Let Φ+ be a ground well-tagged frame

such that Φ+ = Φa ⊎ Φb ⊎ Φ for some Φ, and Φ+, ΦD have the same colours. If the following
properties are satisfied:

— w = ℓ1.ℓn

— νE0.ΦD ∼ νE0.δρ(Φ+)

— for all u ∈ {k, vk(k), pk(k) | k ∈ img(ρ) ∪ dom(ρ)}, νE0.δ
ρ(Φ+) ⊢ u or νE0.ΦD ⊢ u implies

that u ∈ img(Φa ⊎ Φbρ
−1)

— for all k ∈ {1, . . . , n}, if ℓk = in(c,Mk) with c ∈ img(ρChi
), i ∈ {a, b} then there exists M i

k

such that Mkδ
ρ(Φ+↓)↓ = δρi (M

i
kΦ+↓).

then there exists a label w′ = ℓ′1.ℓ
′
n and a well-tagged frame ΦS such that S

w′

−→ (E ;PS ; ΦS),
ΦD↓ = δρ(ΦS↓), and for all k ∈ {1, . . . , n},

— if ℓk = νax .out(c, ax) with c ∈ img(ρChi
), i ∈ {a, b} then ℓ′k = νax .out(cρ−1

Chi
, ax)

— if ℓk = in(c,Mk) with c ∈ img(ρChi
), i ∈ {a, b}, then ℓ′k = in(cρ−1

Chi
,M i

k).

— if ℓk = out(c, d) with c ∈ img(ρChi
), i ∈ {a, b} and d a channel name, then ℓ′k = out(c, d)ρ−1

Chi

— if ℓk = νchm.out(c, chm) with c ∈ img(ρChi
), i ∈ {a, b} and chm a channel name, then

ℓ′k = νchm.out(cρ−1
Chi

, chm)

— if ℓk = τ then ℓ′k = τ

Proof. The proof of this Lemma is very similar to the proof of Lemma 5.14. Indeed, in the proof of
Lemma 5.14, we used Lemma B.2 to show that α � testi([u]i) implies that δρi (α) � testi(δ

ρ
i ([u]i)).

But Lemma B.2 shows that those two properties are equivalent. The same goes for Corollary B.1
The only difference is that in the case of the rule In, Lemma 5.13 cannot be called. Intuitively,

Lemma 5.13 allows us to show that for all recipes applied on Φ′
S , we can create an equivalent

recipe for Φ′
D; but not the other way around. On the other hand, the new hypothesis is added in

this lemma (the last one) which is the corresponding result of Lemma 5.13.
Indeed we have νE0.δ

ρ(Φ+) ∼ νE0.Φ
′
D. But with our inductive step, we would have Φ′′

D = Φ′
D,

Φ′′
S well tagged and Φ′′

D↓ = δρ(Φ′′
S↓). Thus we have that νE0.δρ(Φ+↓) ∼ νE .δρ(Φ′′

S↓). Let Mk

be the recipe from an input. By hypothesis, we have that Mkδ
ρ(Φ+↓)↓ = δρi (M

i
kΦ+↓). But by

Lemma 5.13, there exists M such that Mδρ(Φ+↓)↓ = δρi (M
i
kΦ+↓) and Mδρ(Φ′′

S↓)↓ = δρi (M
i
kΦ

′′
S↓).

But Mkδ
ρ(Φ+↓)↓ = Mδρ(Φ+↓)↓ implies Mkδ

ρ(Φ′′
S↓)↓ = Mδρ(Φ′′

S↓)↓, which allows us to conclude
that Mkδ

ρ(Φ′′
S↓)↓ = MkΦ

′′
D↓ = δρi (M

i
kΦ

′′
S↓).

We conclude this appendix with the proof of Theorem 5.2.

Theorem 5.2. Let PA, P ′
A (resp. PB , P ′

B) be two sequences of plain processes built Fa ∪ F0

(resp. Fb ∪ F0). Let K0 be a finite set of names of base type, and C and C ′ be two composition
contexts. Let K′

0 be a subset of K0 such that K′
0 = names(PA, P

′
A) ∩ names(PB , P

′
B) ∩ K0. Let

Φ0 = {ax 1 ⊲ f1(k1), . . . , axn ⊲ fn(kn)} with fi ∈ {pk, vk}, and ki ∈ K0 for any i ∈ {1, . . . , n}.
Assume that the processes (K0;C[[PA]a]; Φ0) and (K0;C[[PB]b]; Φ0) (resp. (K0;C[[P ′

A]a]; Φ0), and

(K0;C[[P ′
B]b]; Φ0)):

— do not reveal any key in {k, pk(k), vk(k) | k ∈ K′
0} unless if the key occurs explicitly in Φ0;

and

— do not reveal any shared key in C (resp. C ′);

Lastly, we assume that plain processes PA, P ′
A and PB , P ′

B do not use variable of channel type.
In such a case,

(K0;C[[PA]a]; Φ0) ≈t (K0;C
′[[P ′

A]a]; Φ0)

(K0;C[[PB]b]; Φ0) ≈t (K0;C
′[[P ′

B]b]; Φ0)

(K0;C[[PA]a | [PB]b]; Φ0) ≈t (K0;C
′[[P ′

A]a | [P ′
B]b]; Φ0)

Proof. Before we start the proof, we rename Φ0 into Φa. We colour Φa by a. If we assume that
Φa = {axa

1 ⊲ u1, . . . , ax
a
n ⊲ un}, we build the frame Φb, coloured by b such that Φb = {ax b

1 ⊲

u1, . . . , ax
b
n ⊲ un}. At last, let ρ0 be the bijective renaming such that img(ρ0) = K′

0 and dom(ρ0)
are composed of fresh names.

Let Cha and Chb be two sets of fresh channel type names. Furthermore, let ρCha
be a bijective

renaming from the public channel of (K0;C[[PA]a]; Φ0) and (K0;C
′[[P ′

A]a]; Φ0) to Cha. We define
ρChb

in the same way.
We know by hypothesis that (K0;C[[PA]a]; Φ0) ≈t (K0;C

′[[P ′
A]a]; Φ0) and (K0;C[[PB]b]; Φ0) ≈t

(K0;C
′[[P ′

B]b]; Φ0). But the trace equivalence is stable under renaming. Thus, we have:

(K0;C[[PA]aρCha
]; Φa) ≈t (K0;C

′[[P ′
A]aρCha

]; Φa)

(K0ρ
−1
0 ;C[[PB]bρChb

ρ−1
0]; Φbρ

−1
0) ≈t (K0ρ

−1
0 ;C ′[[P ′

B]bρChb
ρ−1
0]; Φbρ

−1
0)

But img(ρ0) = K′
0 and K′

0 represents the sets of shared named of K0 betweenPA, P ′
A and

PB , P ′
B. Hence, since dom(Φa) ∩ dom(Φb) = ∅, we can compose the two equivalences such

that if we denote D = (K0 ∪ K0ρ
−1
0 ;C[[PA]aρCha

] | C[[PB]bρChb
ρ−1
0]; Φa ⊎ Φbρ

−1
0) and D′ =

(K0 ∪ K0ρ
−1
0 ;C ′[[P ′

A]aρCha
] | C ′[[P ′

B]bρChb
ρ−1
0]; Φa ⊎ Φbρ

−1
0), we have that D ≈t D

′.
Let’s denote now S = (K0;C[[PA]a | [PB]b]; Φa ⊎Φb) and S′ = (K0;C

′[[P ′
A]a | [P ′

B]b]; Φa ⊎Φb).
We will show that S ≈t S

′. Indeed, since Φ0 = Φa and Φb have exactly the same terms, then
S ≈t S

′ is equivalent to (K0;C[[PA]a | [PB]b]; Φ0) ≈t (K0;C
′[[P ′

A]a | [P ′
B]b]; Φ0).

To avoid confusion, for a sequence of actions w including the τ actions, we will denote w̃ the
sequence of actions w where we removed the τ actions.

Let (tr, νE .Φ) ∈ trace(S), by Lemma 5.12, there exists a renaming ρ and two bounded inter-
mediate processes S1 = (E1; {Pa, Pb}; Φa ⊎ Φb) and D1 = (E1; {PaρCha

, Pbρ
−1ρChb

}; Φa ⊎ Φbρ
−1)

such that

1. ρ| dom(ρ0) = ρ0, dom(ρ) ∪ img(ρ) ⊆ E1 and dom(ρ) does not appear in {Pa, Pb}

2. for all i ∈ {a, b}, there exists P ′
i built on Fi ∪ F0 such that such that Pi = [P ′

i]i

3. there exists Φ1 such that (tr, νE1.Φ1) ∈ trace(S1) and νE1.Φ1 ∼ νE .Φ

4. for all (tr′, νE1.Φ′) ∈ trace(D1), there exists νE ′′.Φ′′ such that (tr′, νE ′′.Φ′′) ∈ trace(D) and
νE1.Φ′ ∼ νE ′′.Φ′′

We colour Pa and Pb by a and b respectively.
In order to apply Lemma 5.14, we need to get rid of the possible internal communications

between two processes of different colours in (tr, νE1.Φ1). Since (tr, νE1.Φ1) ∈ trace(S1), we have

that S1
tr
⇒ (E1;P; Φ1), for some P. Thus, there exists wS such that w̃ = tr and S1

wS−−→ (E1;P; Φ1).

We show by induction on #{τ ∈ wS} that there exists w+
S such that S1

w+

S−−→ (E1;P; Φ1 ⊎ Φ+),
for some Φ+ and w+

S does not contain any τ action corresponding to an internal communications
between two processes of different colours:
Base case #{τ ∈ wS} = 0: The result trivially holds since there is no τ action.

Inductive step #{τ ∈ wS} > 0: Assume that there is an internal communication between two
processes of different colours (if not the result holds trivially). Thus there exists w1, w2 such that
wS = w1.τ.w2 and S1

w1−−→ (E1;P1; Φ2)
τ
−→ (E1;P2; Φ2)

w2−−→ (E1;P; Φ1). Since τ is an internal
communication, then P1 = {in(c, x).P1; out(c, u).P2} ⊎ Q and P2 = {P1{x 7→ u};P2} ⊎ Q, for
some P1, P2,Q, c, x, u. But by hypothesis, we know that processes of different colours do not share

private channels. Thus c is a public channel. Hence, we have that (E1;P1; Φ2)
νax .out(c,ax)
−−−−−−−−→ P ′

where P ′ = (E1; {in(c, x).P1;P2} ⊎ Q; Φ2 ⊎ {ax ⊲ u}). Once again, since c is a public channel, we

now have that P ′ in(c,ax)
−−−−−→ (E1;P2; Φ2⊎{ax ⊲ u}). A simple induction on the rest of the trace allows

us to show that (E1;P2; Φ2⊎{ax ⊲ u})
w2−−→ (E1;P; Φ1⊎{ax ⊲ u}). Since we removed the τ action

without adding new ones, we can apply our inductive hypothesis on w1.νax .out(c, ax).in(c, ax).w2

in order to conclude.

We showed that S1
w+

S−−→ (E1;P; Φ1 ⊎ Φ+), for some Φ+ and w+
S does not contain any τ action

corresponding to an internal communication between two processes of different colours. Let’s

denote ΦS = Φ1 ⊎ Φ+, we have that (w̃+
S , νE1.ΦS) ∈ trace(S1). Thanks to Lemma 5.14, we can

deduce that ΦS is well-tagged and there exists D1
w+

D−−→ (E1;PD; ΦD) such that ΦD↓ = δρ(ΦS↓).
Furthermore, if w+

S = ℓ1.ℓn then w+
D = ℓ′1.ℓ

′
n such that for all k ∈ {1, . . . , n},

— if ℓk = νax .out(c, ax) is an output coming from a process coloured by i ∈ {a, b}, then
ℓ′k = νax .out(cρChi

, ax)

— if ℓk = in(c,M) is an input coming from a process coloured by i ∈ {a, b}, then ℓ′k =
in(cρChi

,Mi) with MiΦD↓ = δρi (MΦS↓).

— if ℓk = out(c, d) is an output coming from a process coloured by i ∈ {a, b} with d a channel
name, then ℓ′k = out(cρChi

, dρChi
)

— if ℓk = νchm.out(c, chm) is an output coming from a process coloured by i ∈ {a, b} with chm

a channel name, then ℓ′k = νchm.out(cρChi
, chm)

— if ℓk = τ , then ℓ′k = τ .

Hence we have that (w̃+
D, νE1.ΦD) ∈ trace(D1). Thus, thanks to the property 4 established

earlier with Lemma 5.12, there exists νE1.Φ1
D such that (νE1.Φ1

D) ∈ trace(D) and νE1.Φ1
D ∼

νE1.ΦD Furthermore, we showed that D ≈t D
′, hence we deduce that there exists νE ′1.Φ′1

D such

that (w̃+
D, νE ′1.Φ′1

D) ∈ trace(D′) and νE1.Φ1
D ∼ νE ′1.Φ′1

D.
Once again by Lemma 5.12, there exists a renaming ρ′ and two bounded intermediate processes

S′
1 = (E ′

1; {P
′
a, P

′
b}; Φa ⊎ Φb) and D′

1 = (E ′
1; {P

′
aρCha

, P ′
bρ

−1ρChb
}; Φa ⊎ Φbρ

−1) such that

1. ρ′| dom(ρ0)
= ρ0, dom(ρ′) ∪ img(ρ′) ⊆ E ′

1 and dom(ρ′) does not appear in {P ′
a, P

′
b}

2. for all i ∈ {a, b}, there exists P ′′
i built on Fi ∪ F0 such that such that P ′

i = [P ′′
i]i

3. there exists Φ′
D such that (w̃+

D, νE ′
1.Φ

′
D) ∈ trace(D′

1) and νE ′
1.Φ

′
D ∼ νE ′1.Φ′1

D

4. for all (tr′, νE ′
1.Φ

′) ∈ trace(S′
1), there exists νE ′′.Φ′′ such that (tr′, νE ′′.Φ′′) ∈ trace(S) and

νE ′
1.Φ

′ ∼ νE ′′.Φ′′

Since our processes are bounded intermediate process, we can assume that E1 = E ′
1 and ρ = ρ′

(if not we can apply some renaming on private name in E1 or E ′
1 in order to make them equal).

Thus, (w̃+
D, νE1.Φ

′
D) ∈ trace(D′

1).

Let’s summarise what we have proved so far. We had (tr, νE .Φ) ∈ trace(S), then obtain a trace

(tr, νE1.Φ1) ∈ trace(S1) such that νE .Φ ∼ νE1.Φ1. We modified this trace into (w̃+
S ,Φ1 ⊎ Φ+)

where visible actions νax .out(c, ax).in(c, ax) replaced some τ actions. Then Lemma 5.12 allowed

us to build the trace (w̃+
D, νE1.ΦD) ∈ trace(D1) which only modify the terms in the trace but not

the actions themselves. At last, we obtain, thanks to our hypothesis, that there exists Φ′
D such

that (w̃+
D, νE1.Φ

′
D) ∈ trace(D′

1) such that νE1.ΦD ∼ νE1.Φ
′
D.

(w̃+
D, νE1.Φ

′
D) ∈ trace(D′

1) implies that there exists w′+
D such that w̃′+

D = w̃+
D and D′

1

w′+

D−−→
(E1;P

′; Φ′
D). It is possible that there exists ℓ ∈ τ∗ such that νax .out(ci, ax).ℓ.in(cj , ax) ∈ w′+

D

where ci ∈ img(ρChi
), cj ∈ img(ρChj

) and i 6= j. But, thanks to Lemma 5.16, we can assume that
this case does not occur and so there is no τ action between νax .out(ci, ax) and in(cj , ax), for any
ax ∈ dom(Φ′

D).
Since νE1.ΦD ∼ νE1.Φ

′
D, ΦS is a well-tagged frame and ΦD↓ = δρ(ΦS↓), we can apply

Lemma 5.15 on D′
1

w′+

D−−→ (E1;P
′; Φ′

D) which allow us to deduce that there exists a well-tagged frame

Φ′
S such that S′

1

w′+

S−−→ (E0;P
′′; Φ′

S), Φ
′
D↓ = δρ(Φ′

S↓), and if w′+
D = ℓ1.ℓn then w′+

S = ℓ′1.ℓ
′
n

and for all k ∈ {1, . . . , n},

— if ℓk = νax .out(c, ax) with c ∈ Chi, i ∈ {a, b} then ℓ′k = νax .out(cρ−1
Chi

, ax)

— if ℓk = in(c,Mk) with c ∈ Chi, i ∈ {a, b}, then ℓ′k = in(cρ−1
Chi

,M i
k).

— if ℓk = out(c, d) with c ∈ Chi, i ∈ {a, b} and d a channel name, then ℓ′k = out(cρ−1
Chi

, dρ−1
Chi

)

— if ℓk = τ then ℓ′k = τ

where the couples (Mk,M
i
k) were generated by the application of Lemma 5.14 earlier on the trace

w̃+
S . Note that it is possible because the channels (public and private) of processes with different

colours are disjoints in D1 and D′
1. For example, if we have in(c,M) ∈ w+

D and c ∈ Cha, then we
know for sure that the input was done by a process coloured by a in D′

1 and in D1.

Hence, by construction of w+
S and w′+

S , we have in fact that w+
S = w′+

S and so (w̃+
S , νE1.Φ

′
S) ∈

trace(S′
1). Thanks to Corollary 5.4, we can also deduce that νE1.ΦS ∼ νE1.Φ′

S .
But ΦS = Φ1⊎Φ+ and since dom(ΦS) = dom(Φ′

S), there exists Φ′
1 and Φ′

+ such that dom(Φ′
1) =

dom(Φ1), dom(Φ+) = dom(Φ′
+) and Φ′

S = Φ′
1 ⊎ Φ′

+. Since the transformation between w′+
D

and w′+
S only modifies the terms of the sequence of actions and not the actions themselves, and

since we assume that there is no τ action between νax .out(ca, ax) and in(cb, ax) in w′+
S , for any

ax ∈ dom(Φ′
+), a simple induction on | dom(Φ′

+)| allows us to show that (w̃S , νE1.Φ
′
1) ∈ trace(S′

1)
and so (tr, νE1.Φ′

1) ∈ trace(S′
1). Moreover, since we have that νE1.(Φ1 ⊎ Φ+) ∼ νE1.(Φ′

1 ⊎ Φ′
+),

we can deduce that νE1.Φ1 ∼ νE1.Φ
′
1. At last, thanks to the property 4 obtained by application

of Lemma 5.12, we deduce that there exists νE ′.Φ′ such that (tr, νE ′.Φ′) ∈ trace(S) and νE ′.Φ′ ∼
νE1.Φ′

1. Since we have νE .Φ ∼ νE1.Φ1, we conclude that (tr, νE ′.Φ′) ∈ trace(S) and νE .Φ ∼ νE ′.Φ′.
Hence the result holds.

Appendix C

Decision procedure of trace

equivalence

C.1 Getting rid of some recipes

C.1.1 Getting rid of public names in the recipes

Let N be a positive integer. Let a ∈ E . We denote σE,N,a and θE,N the substitution de-
fined such that for all i ∈ N

+, biσE,N,a = hi×N (a) and biθE,N = hi×N (ax 1). At last, we denote
lenh(u) = max{k | hk(u′) ∈ st(u) for some u′}. Intuitively, lenh(u) represents the longest succes-
sive application of h in u.

Lemma C.1. Let E be a finite set on names and a ∈ E. Let N ∈ N
+. For all u, v ∈ T (F ,N), if

uσE,N,a = vσ1
E,N,a, lenh(u) < N and lenh(v) < N then u = v.

Proof. We prove the result by induction on |uσE,N,a|.

Base case |uσE,N,a| = 1: In such a case, uσ1
E,N,a ∈ N . Since N > 0, we deduce that fnames(u) ∩

(N r E) = ∅. Hence u ∈ E and so uσE,N,a. Similarly, we have that vσE,N,a = v and so u = v.

Inductive step |uσE,N,a| > 1: Otherwise we have uσE,N,a = f(u1, . . . , un). We do a case analysis
on f:

— Case f = h: In such a case, there exists k ∈ N
+ such that uσE,N,a = hk(u1) and root(u1) 6= h

for some u1. If u1 6= a then by definition of σE,N,a, we deduce that there exists u′
1 such that

u′
1σE,N,a = u1 and u = hk(u′

1). Similarly, we have that there exists v′1σE,N,a = u1 and v =
hk(v′1). By inductive hypothesis, we deduce that u′

1 = v′1 and so u = hk(u′
1) = hk(v′1) = v.

Assume now that u1 = a. In such a case, there exists i ∈ N
+ and j ≤ k such that u = hj(bi)

and k = j + i × N . Similarly, there exists i′ ∈ N
+ and j′ ≤ k such that v = hj

′

(bi′) and
k = j′+ i′×N . But by hypothesis, we know that lenh(u) < N and lenh(v) < N hence j < N
and j′ < N . Thus j + i×N = j′ + i′ ×N implies that i = i′ and j = j′. We conclude that
u = v.

— Case f 6= h: By definition of σE,N,a, there exists u′
1, . . . , u

′
n, v

′
1, . . . , v

′
n such that u =

f(u′
1, . . . , u

′
n), v = f(v′1, . . . , v

′
n) and so for all i ∈ {1, . . . , n}, u′

iσE,N,a = ui = v′iσE,N,a.
By our inductive hypothesis on u′

i, v
′
i, we conclude that u′

i = v′i for all i ∈ {1, . . . , n} and so
u = v.

In Lemma C.1, the conditions on the number of occurrence of h in u and v is crucial. Indeed,
if we consider N = 1 and the terms u = senc(h(a), b1), v = senc(b1, b1) then we obtain uσE,N,a =
vσE,N,a = senc(h(a), h(a)). This is an issue when it comes to check if a message or not. Intuitively,
our representation of public names should not change the validity of a term. However, if we
consider the term t = sdec(u, h(a)) then Message(t) does not hold while Message(tσE,N,a) holds.

231

Using the conditions on the number of occurrence of h in terms, we will see in the next lemma
that such example can be avoided.

Lemma C.2. Let E ba finite set of names and a ∈ E. Let N ∈ N
+. For all u ∈ T (F ,N), if

lenh(u) < N then:

— Message(u) if, and only if, Message(uσE,N,a); and

— (uσE,N,a)↓ = (u↓)σE,N,a

Proof. We prove both results at the same time by induction on |u|:

Base case |u| = 1: In such a case, we have that u ∈ N . If u ∈ E then uσE,N,a = u and so the
results trivially holds. Else there exists i ∈ N

+ such that u = bi. Thus uσE,N,a = hi×N (a). But
h ∈ Fc hence (uσE,N,a)↓ = uσE,N,a = (u↓)σE,N,a. Moreover, Message(bi) and Message(hi×N (a))
both hold. Thus the result holds.

Inductive step |u| > 1: Otherwise u = f(u1, . . . , un) with f ∈ F . We first prove that (uσE,N,a)↓ =
(u↓)σE,N,a by case analysis on f.

— Case 1, f ∈ Fc: In such a case, we have that (uσE,N,a)↓ = f(u1σE,N,a↓, . . . , unσE,N,a↓).
By inductive hypothesis on u1, . . . , un, we deduce that (uσE,N,a)↓ = f((u1↓)σE,N,a, . . . ,
(un↓)σE,N,a) and so (uσE,N,a)↓ = f(u1, . . . , un)↓σE,N,a.

— Case 2, f ∈ Fd: In such a case, u↓ = f(u1↓, . . . , un↓)↓. Moreover, uσE,N,a↓ = f(u1σE,N,a↓, . . . ,
unσE,N,a↓)↓. By inductive hypothesis on u1, . . . , un, we deduce that uσE,N,a↓ = f(u1↓σE,N,a,
. . . , un↓σE,N,a)↓.
Consider f(v1, . . . , vn) → v a fresh instance of the rewrite rule of f. f is reduced in u↓ is
equivalent to (u1↓, . . . , un↓) is unifiable with (v1, . . . , vn). Similarly, f is reduce in uσE,N,a↓
is equivalent to (u1↓σE,N,a, . . . , un↓σE,N,a) is unifiable with (v1, . . . , vn). We prove by case
analysis on the rewrite rule involve that f is reduced in u↓ is equivalent to f is reduce in
uσE,N,a↓ :

— f = sdec: In such a case, we have that u = sdec(u1, u2). Hence f is reduced in u↓ is
equivalent to u1↓ = senc(v1, v2) and u2↓ = v2 for some v1, v2. Moreover, f is reduced in
uσE,N,a↓ is equivalent to u1↓σE,N,a = senc(v′1, v

′
2) and u2↓σE,N,a = v′2 for some v′1, v

′
2.

First of all, u1↓ = senc(v1, v2) and u2↓ = v2 implies that u1↓ = senc(v1σE,N,a, v2σE,N,a)
and u2↓σE,N,a = v2σE,N,a. Hence f is reduced in u↓ implies f is reduced in uσE,N,a↓.
Secondly, by definition of σE,N,a, u1↓σE,N,a = senc(v′1, v

′
2) implies that there exits v′′1 , v

′′
2

such that u1↓ = senc(v′′1 , v
′′
2) and v′′1σE,N,a = v′1 and v′′2σE,N,a = v′2 = u2↓σE,N,a. By

Lemma C.1, we obtain that v′′2 = u2↓ and so u1↓ = senc(v′1, u2↓). Hence f is reduced
in uσE,N,a↓ implies that f is reduced in u↓.

— f ∈ {̌,adec, proj1, proj2}: Similar to the case f = sdec.

We have shown that f is reduced in u↓ is equivalent to f is reduce in uσE,N,a↓. Since all
rewrite rules are subterm convergent, we deduce that (uσE,N,a)↓ = (u↓)σE,N,a.

At last, Message(u) is equivalent to Message(ui) for all i ∈ {1, . . . , n} and u↓ ∈ T (Fc,N). By
inductive hypothesis, we know that Message(ui) if and only if Message(uiσE,N,a). Furthermore, we
have shown that (uσE,N,a)↓ = (u↓)σE,N,a and we know that for all i ∈ N

+, biσE,N,a ∈ T (Fc,N).
We can deduce that u↓ ∈ T (Fc,N) is equivalent to (u↓)σE,N,a ∈ T (Fc,N) which is equivalent to
(uσE,N,a)↓ ∈ T (Fc,N). Hence we conclude that Message(u) if and only if Message(uσE,N,a).

Corollary C.1. Let E be a finite set of names. Let N ∈ N
+. Let Φ be a ground frame such that

ax 1Φ = a ∈ E. For all ξ ∈ T (F ,AX ∪N), if param(ξ) ⊆ dom(Φ) and lenh(ξΦ) < N then:

— Message(ξΦ) if and only if Message((ξθE,N)(ΦσE,N,a))

— (ξΦ↓)σE,N,a = (ξθE,N)(ΦσE,N,a)↓

Proof. By definition of σE,N,a and θE,N , we have that for all i ∈ N
+, biσE,N,a = biθE,NΦ =

(biθE,N)(ΦσE,N,a). More over, for all axk ∈ dom(Φ), axkΦσE,N,a = (axkθE,N)(ΦσE,N,a). Hence
we have ξΦσE,N,a = (ξθE,N)(ΦσE,N,a). We conclude by applying Lemma C.2 to ξΦ.

Lemma 6.2. Let Σ and Σ′ two sets of constraint systems that contain constraint systems having
the same structure. Assume that E is the common set of privates names in Σ and Σ′. At last,
assume that there exists a ∈ E such that for all C ∈ Σ ∪ Σ′, ax 1Φ = a with Φ the frame of C.

If Σ ≈
T (F,AX)
s Σ′ then for all C ∈ Σ, for all (σ, θ) ∈ Solc(C), there exists N ′ such that

for all N > N ′, there exist C′ ∈ Σ′ and a substitution σ′ such that (σ′, θ) ∈ Solc(C′) and
νE .ΦσσE,N,a ∼T (F,AX) νE .Φ

′σ′σE,N,a.

Proof. Let C = (E ; Φ;D;Eq) ∈ Σ and let (σ, θ) ∈ Solc(C). Let N ′ be the integer equal to the
number of occurrence of the function symbol h in Σ, Σ′ and θ. Let N > N ′. Before proving the
result, we show the following proposition:

Proposition: For all (E ; Φ′;D′;Eq′) ∈ Σ ∪ Σ′, for all substitution σ′, if for all (X, k
?

⊢ x) ∈ D′,
(Xθ)(Φ′σ′) and param(Xθ) ⊆ {ax 1, . . . , axk}, then

— for all (X, k
?

⊢ x) ∈ D′, lenh(xσ′) ≤ Nk(C
′)

— for all (axk ⊲ uk) ∈ Φ, lenh(uiσ
′) ≤ Nk−1(C

′) +Mk(C
′)

where Mk(C
′) is the number of occurrence in {uj | (ax j ⊲ uj) ∈ Φ′ ∧ j ≤ k} and Nk(C

′) is the

number of occurrence in {Y θ | (Y, j
?

⊢ y) ∈ D′∧j ≤ k} plus Mk(C′). We assume that M0 = N0 = 0
We prove these both results at the same time by induction on k.

Base case k = 1: In such a case, by hypothesis on Φ′ we know that ax 1Φ
′ = a. Hence lenh(aσ

′) =

0 = M1. Let (X, 1
?

⊢ x) ∈ D′. Since param(Xθ) ⊆ {ax 1}, (Xθ)(Φ′σ′) = xσ′ and ax 1Φ
′ = a,

we deduce that lenh(xσ
′) = lenh(Xθ). But N1 is bigger than lenh(Xθ). Thus we deduce that

lenh(Xθ) ≤ N1 and so lenh(xσ
′) ≤ N1.

Inductive step k > 1: Let (axk ⊲ uk) ∈ Φ′. Let hj(u) ∈ st(ukσ) for some j and u. Either (a)
there exists u′ ∈ st(uk) and j′ such that u′ = hj

′

(x) and xσ = hj−j′(u) with x ∈ X 1; or (b) there
exists x ∈ vars1(uk) such that hj(u) ∈ st(xσ′).

In case (a), by definition of Mk(C′), we have j′ ≤ Mk(C′) and so j′ + Nk−1(C′) ≤ Mk(C′) +
Nk−1(C

′). Moreover, by definition of a constraint system, we know that for all x ∈ vars1(uk),

there exists (X, i
?

⊢ x) ∈ D′ such that i < k. By inductive hypothesis on x, we deduce that
lenh(xσ

′) ≤ Ni(C′). Since Ni(C′) ≤ Nk−1(C′), we deduce that Nk−1(C′)+Mk(C′) ≥ j′+Nk−1(C′) ≥
j′ + Ni(C

′) ≥ j′ + lenh(xσ
′) ≥ j′ + j − j′ = j. Hence, it implies that Nk−1(C

′) + Mk(C
′) ≥ j.

In case (b), once again by inductive hypothesis on x, we deduce that lenh(xσ
′) ≤ Ni(C

′). Since
Ni(C′) ≤ Nk−1(C′) and j ≤ lenh(xσ

′) then j ≤ Nk−1(C′) +Mk(C′).
Since we have showed that for all hj(u) ∈ st(ukσ

′), j ≤ Nk−1(C
′) +Mk(C

′), we conclude that
lenh(ukσ

′) ≤ Mk(C
′) +Nk−1(C

′)

Let (X, k
?

⊢ x) ∈ D′, by hypothesis on θ and σ′, we have that (Xθ)(Φ′σ′) = xσ′ and
param(Xθ) ⊆ {ax 1, . . . , axk}. Let hj(u) ∈ st(xσ′) for some j and u. Either (a) there exists
ξ ∈ st(Xθ) and j′ such that u′ = hj

′

(ax i), ax iΦσ
′ = hj−j′(u) for some i ≤ k; or (b) there exists

ax i ∈ dom(Φ′) such that hj(u) ∈ st(ax iΦ
′σ′); or (c) hj(u) ∈ st(Xθ).

In case (a), we have proved that lenh(ax iΦ
′σ′) ≤ Mk(C

′) and by definition of Nk(C
′), we deduce

that Nk(C′) ≥ j′ + Mk(C′) and so Nk(C′) ≥ j′ + lenh(ax iΦσ
′). Since lenh(ax iΦσ

′) ≥ j − j′, we
conclude that Nk(C

′) ≥ j. In case (b), thanks to lenh(ax iΦ
′σ′) ≤ Mk(C

′), we directly conclude
that j ≤ Nk(C

′). In case (c), the definition of Nk(C
′) implies that j ≤ Nk(C

′).
Since we have showed that for all hj(u) ∈ st(xσ′), j ≤ Nk(C′), we conclude that lenh(xσ

′) ≤
Nk(C

′).

Main result: Let θ′ = θθE,N and σ′ = σσE,N,a. We show that (σ′, θ′) ∈ Solc(C):

— let (X, k
?

⊢ x) ∈ D. (σ, θ) ∈ Solc(C) implies that (Xθ)(Φσ) = xσ, param(Xθ) ⊆ {ax 1, . . . ,
axk} and Message(xσ). Moreover, by our proposition, (σ, θ) ∈ Solc(C) also implies that
lenh(xσ) ≤ Nk(C) < N . By Corollary C.1, Message(xσ) implies that Message((XθθE,N)
(ΦσσE,N,a)). Hence, we deduce that (Xθ′)(Φσ′) = xσσE,N,a = xσ′ and Message(xσ′).

At last, since param(biθE,N) = {ax 1} for all i ∈ N
+, we conclude that param(Xθ′) ⊆

{ax 1, . . . , axk}.

— let (s
?
= s′) or (s

?

6= s′) in Eq. Thanks to our proposition, we know that for all x ∈ vars1(s, s′),
lenh(xσ) ≤ Nk with k = |Φ|. But N is strictly bigger that Nk plus the number of occurrence
of h in s and s′. Hence, we deduce that lenh(sσ) < N and lenh(s

′σ) < N . By Lemma C.2, we
deduce that Message(sσ) is equivalent to Message(sσσE,N,a); and Message(s′σ) is equivalent
to Message(s′σσE,N,a); and sσ↓σE,N,a = (sσσE,N,a)↓; and s′σ↓σE,N,a = (s′σσE,N,a)↓. But
thanks to Lemma C.1, (sσ↓)σE,N,a = (s′σ↓)σE,N,a is equivalent to sσ↓ = s′σ↓. Therefore we
can deduce that sσ↓ = s′σ↓, Message(sσ) and Message(s′σ) is equivalent to sσ′↓ = s′σ′↓,

Message(sσ′) and Message(s′σ′). Thus, if (s
?
= s′) (resp. (s

?

6= s′)) is in Eq then (σ, θ) ∈
Solc(C) implies that sσ′↓ = s′σ′↓, Message(sσ′) and Message(s′σ′) (resp. sσ′↓ 6= s′σ′↓, or
¬Message(sσ′) or ¬Message(s′σ′)).

— let (ax i ⊲ ui) ∈ Φ. By our proposition, we know that lenh(uiσ) < N hence thanks to
Lemma C.1, (σ, θ) ∈ Solc(C) implies that Message(uiσσE,N,a) and so Message(uiσ

′)

It conclude the proof that (σ′, θ′) ∈ Solc(C).

By hypothesis, Σ ≈
T (F,AX)
s Σ′ hence there exists a constraint system C′ = (E ; Φ′;D′;Eq′) and

a substitution σ′′ such that (σ′′, θ′) ∈ Solc(C) and νE .Φσ′ ∼T (F,AX) νE .Φ
′σ′′. We now show that

there exists σ′′′ such that σ′′ = σ′′′σE,N,a and (σ′′′, θ) ∈ Solc(C).

We define σ′′′ such that dom(σ′′′) = dom(σ′′) and for all (X, k
?

⊢ x) ∈ D′, xσ′′′ = (Xθ)(Φσ′′′).
Such substitution exists thanks to the origination property of the constraint system C′. We prove

by induction on k that for all (X, k
?

⊢ x) ∈ D′, xσ′′′σE,N,a = xσ′′, Message(xσ′′′); and for all
(axk ⊲ uk) ∈ Φ′, Message(ukσ

′′′).

Base case k = 0: This case is impossible.

Base case k > 0: Let (axk ⊲ uk) ∈ Φ′. By the origination property of a constraint system, we

know that for all y ∈ vars1(uk), there exists (Y, i
?

⊢ y) ∈ D′ such that i < k. Hence by our
inductive hypothesis, we deduce that for all y ∈ vars1(uk), yσ′′′σE,N,a = yσ′′. Hence we deduce
that ukσ

′′′σE,N,a = ukσ
′′. Thanks to our proposition, we know that len<(ukσ

′′′)N . Moreover,
we have (σ′′, θ′) ∈ Solc(C

′) which implies Message(ukσ
′′). Hence by Lemma C.2, we deduce that

Message(ukσ
′′′).

Let (X, k
?

⊢ x) ∈ D′. Let (ax i ⊲ ui) ∈ Φ′ such that ax i ∈ Xθ′ and so i ≤ k. By our inductive
hypothesis on the variable of ui, we deduce that uiσ

′′′σE,N,a = uiσ
′′. Hence (Xθ′)(Φσ′′) =

(Xθ′)(Φσ′′′σE,N,a). Since θ′ = θθE,N , then xσ′′ = (Xθ′)(Φσ′′) = (Xθ)(Φσ′′′)σE,N,a = xσ′′′σE,N,a.
Moreover (σ′′, θ′) ∈ Solc(C′) implies Message(xσ′′). But, thanks to our proposition, we know
that lenh(xσ

′′′) ≤ Nk(C
′) < N therefore by Lemma C.2, we deduce that Message(xσ′′) implies

Message(xσ′′′σE,N,a) which implies Message(xσ′′′).

It remains to show that for all (s
?
= s′) ∈ Φ′, sσ′′′↓ = s′σ′′′↓, Message(sσ′′′) and Message(s′σ′′′).

We know by (σ′′, θ′) ∈ Solc(C
′) that sσ′′↓ = s′σ′′↓, Message(sσ′′) and Message(s′σ′′). Since

len<(sσ
′′′)N , len<(s′σ′′′)N and σ′′′σE,N,a, we can apply Lemma C.2 which allows us to conclude.

For all (s
?

6= s′) ∈ Φ′, we similarly prove that sσ′′′↓ 6= s′σ′′′↓, or ¬Message(sσ′′′) or ¬Message(s′σ′′′).
Thus we conclude that (σ′′′, θ) ∈ Solc(C

′).
We have proved that there exists C′ ∈ Σ′ and a substitution σ′′′ such that (σ′′′, θ) ∈ Solc(C′)

and νE .ΦσσE,N,a ∼T (F,AX) νE .Φ
′σ′′′σE,N,a. Hence the result holds.

Lemma 6.3. Let E be a set of private names. Let Φ and Φ′ two ground frames with the same
domain and ax 1Φ = ax 1Φ

′ ∈ E. If for all N ′, there exists N > N ′ such that ΦσE,N,a ∼T (F,AX)

Φ′σE,N,a then Φ ∼c Φ
′.

Proof. Let ξ, ξ′ ∈ T (F ,AX ∪ N r E) such that param(ξ) ⊆ dom(Φ), param(ξ′) ⊆ dom(Φ′) and
fnames(ξ, ξ′)∩E = ∅. Let N ′ the number of occurrence of h in ξ, ξ′, Φ and Φ′. By hypothesis the
exists N > N ′ such that ΦσE,N,a ∼T (F,AX) Φ

′σE,N,a. Since N > N ′, we have that lenh(ξΦ) < N ,
lenh(ξ

′Φ) < N , lenh(ξΦ′) < N and lenh(ξ
′Φ′) < N .

— Thanks to Corollary C.1 and lenh(ξΦ) < N , Message(ξΦ) is equivalent to Message((ξθE,N)
(ΦσE,N)). But ξθE,N ∈ T (F ,AX) and param(ξθE,N) ⊆ dom(Φ) = dom(ΦσE,N,a). Hence we
deduce that ΦσE,N,a ∼T (F,AX) Φ

′σE,N,a implies that Message((ξθE,N)(ΦσE,N)) is equivalent
to Message((ξθE,N)(Φ′σE,N)).
Once again by Corollary C.1 and lenh(ξΦ

′) < N , we deduce that Message((ξθE,N)(Φ′σE,N))
is equivalent to Message(ξΦ′). Thus Message(ξΦ) is equivalent to Message(ξΦ′).

— Assume that ξΦ↓ = ξ′Φ↓, Message(ξΦ) and Message(ξ′Φ). Corollary C.1, lenh(ξΦ) < N
and lenh(ξ

′Φ) < N imply that (ξθE,N)(ΦσE,N,a)↓ = (ξΦ↓)σE,N,a and (ξ′θE,N)(ΦσE,N,a)↓
= (ξ′Φ↓)σE,N,a. Hence from ξΦ↓ = ξ′Φ↓, we deduce that (ξθE,N)(ΦσE,N,a)↓ = (ξ′θE,N)
(ΦσE,N,a)↓. But (ξθE,N), (ξθE,N) ∈ T (F ,AX). Moreover, thanks to by Corollary C.1, we
also have Message((ξ′θE,N)(ΦσE,N,a)) and Message((ξθE,N)(ΦσE,N,a)). Thus we deduce that
ΦσE,N,a ∼T (F,AX) Φ

′σE,N,a implies that (ξθE,N)(Φ′σE,N,a)↓ = (ξ′θE,N)(Φ′σE,N,a)↓.
Once again by Corollary C.1, lenh(ξΦ

′) < N and lenh(ξ
′Φ′) < N , (ξθE,N)(Φ′σE,N,a)↓ =

(ξ′θE,N)(Φ′σE,N,a)↓ implies that (ξΦ′↓)σE,N,a = (ξ′Φ′↓)σE,N,a. Thus thanks to Lemma C.1,
we deduce that ξΦ′↓ = ξ′Φ′↓. The proof of the other side of the static equivalence can be
done symmetrically.

We can conclude that Φ ∼c Φ
′.

C.1.2 Normalised recipe

For a recipe ξ and a frame Φ, we say that root(ξ) is not reduced if f(ξ1, . . . , ξn)Φ↓ = f(ξ1Φ↓, . . . ,
ξnΦ↓) and root(ξ) ∈ Fd with ξ = f(ξ1, . . . , ξn) for some ξ1, . . . , ξn. We establish three properties
on the recipes in Πn:

Lemma C.3. Let Φ be a ground frame such that for all (ax i ⊲ ui) ∈ Φ, Message(ui). Let ξ be a
recipe such that param(ξ) ⊆ dom(Φ), ξΦ↓ 6∈ T (Fc,N). If for every ξ′ ∈ st(ξ),

ξ′ = f(g(ξ1, . . . , ξn), . . . , βm), f ∈ Fd and g ∈ Fc implies f is not reduced,

then, either root(ξ) ∈ Fc or root(ξ) is not reduced.

Proof. We prove this result by induction on the size of ξ.

Base case: |ξ| = 1. In such a case, ξ ∈ dom(Φ) and so ξΦ↓ ∈ T (Fc,N) by hypothesis on the
frame. Hence the result trivially holds.

Induction step: |ξ| > 1. If root(ξ) ∈ Fc or root(ξ) is not reduced then the property trivially holds.
Else we have that ξ = f(ξ1, . . . , ξm) with f ∈ Fd and f is reduced. We show that this case is
impossible.

f is reduced implies that there is a rewrite rule f(u1, . . . , un) → u such that f(u1, . . . , un) and
f(ξ1Φ↓, . . . , ξnΦ↓) are unifiable. Since ξΦ↓ 6∈ T (Fc,N) and ξΦ↓ ∈ st(ξ1Φ↓) (since u ∈ st(u1)), we
have that ξ1Φ↓ 6∈ T (Fc,N). By applying our induction hypothesis on ξ1, we deduce that either
root(ξ1) ∈ Fc or root(ξ1) is not reduced.

— If root(ξ1) ∈ Fc then by hypothesis on the subterms of ξ, we deduce that f is not reduced
which is in contradiction with the hypothesis.

— If root(ξ1) is not reduced, then root(ξ1Φ↓) ∈ Fd. This contradicts the fact that f(u1, . . . , un)
and f(ξ1Φ↓, . . . , ξnΦ↓) are unifiable since we have that root(u1) ∈ Fc.

This allows us to conclude that either root(ξ) ∈ Fc or root(ξ) is not reduced.

The following corollary is a direct consequence of Lemma C.3 since by definition of ξ ∈ Πn,
there is no ξ′ ∈ st(ξ) of form f(ξ1, . . . , ξn) with f ∈ Fd and root(ξ1) ∈ Fc.

Corollary C.2. Let Φ be a ground frame such that for all (ax i ⊲ ui) ∈ Φ, Message(ui). Let
ξ ∈ Πn such that param(ξ) ⊆ dom(Φ) and ξΦ↓ 6∈ T (Fc,N). We have that either root(ξ) ∈ Fc or
root(ξ) is not reduced.

Lemma 6.5. Let Φ be a ground frame such that for all (ax i ⊲ ui) ∈ Φ, Message(ui). Let ξ ∈ Πn a
ground recipe such that param(ξ) ∈ dom(Φ). ξΦ↓ ∈ T (Fc,N) if, and only if, Message(ξΦ) holds.

Proof. We prove this result by induction on the size of ξ.

Base case: |ξ| = 1. In such a case, ξ ∈ dom(Φ) thus there exists (ax i ⊲ ui) ∈ Φ such ax i = ξ and
ξΦ↓ = ui↓. But Message(ui) holds thus by definition, ui↓ ∈ T (Fc,N). Hence, the result holds.

Induction case: |ξ| > 1. In such a case, we have that ξ = f(ξ1, . . . , ξn) with f ∈ Fc ∪ Fd. Assume
first that f ∈ Fc. In such a case, ξiΦ↓ ∈ T (Fc,N) for every i ∈ {1 . . . n}. Hence, we can apply our
induction hypothesis on each ξi. This allows us to conclude.

Assume now that f ∈ Fd. By hypothesis, we have that ξΦ↓ ∈ T (Fc,N) and so f is reduced by
the rewriting system. Let f(u1, . . . , un) → u be the rewrite rule involved in f(ξ1Φ↓, . . . , ξnΦ↓) →
ξΦ↓. We distinguish two cases:

— Case 1: ξ1Φ↓ ∈ T (Fc,N). Since vars({u2, . . . , un}) ⊆ vars(u1), we deduce that for every
i ∈ {1, . . . , n}, ξiΦ↓ ∈ T (Fc,N). Hence, we easily conclude by applying our induction
hypothesis.

— Case 2: ξ1Φ↓ 6∈ T (Fc,N). Thanks to Corollary C.2, we deduce that either root(ξ1) ∈ Fc

or root(ξ1) is not reduced. Since ξ ∈ Πn, we have that root(ξ1) 6∈ Fc, hence root(ξ1) is
not reduced. It implies that root(ξ1Φ↓) ∈ Fd. By definition of a rewriting rule, we know
that root(u1) ∈ Fc. This contradicts the fact that f(u1, . . . , un) and f(ξ1Φ↓, . . . , ξnΦ↓) are
unifiable. Hence, this case is impossible.

Lemma C.4. Let Φ be a ground frame such that for all (ax i ⊲ ui) ∈ Φ, Message(ui). Let ξ be
a recipe such that param(ξ) ⊆ dom(Φ) and ξ 6∈ Πn. If for all f(ξ1, . . . , ξn) ∈ st(ξ), f ∈ Fd and
root(ξ1) ∈ Fc imply f is not reduced, then ξΦ↓ 6∈ T (Fc,N).

Proof. We prove this result by induction on the size of ξ.

Base case: |ξ| = 1. In such a case, we have that ξ ∈ dom(Φ), and thus ξ ∈ Πn. Hence, there is
nothing to prove.

Induction step: |ξ| > 1. In such a case, we have that ξ = f(ξ1, . . . , ξn) with f ∈ Fc ∪ Fd. We
distinguish several cases:

— Case 1, f ∈ Fc: In such a case, we have that ξi 6∈ Πn for some i ∈ {1, . . . , n}. Assume
w.l.o.g. that ξ1 6∈ Πn. Hence, by applying our induction hypothesis on ξ1, we deduce that
ξ1Φ↓ 6∈ T (Fc,N). Since ξΦ↓ = f(ξ1Φ↓, . . . , ξnΦ↓), we have that ξΦ↓ 6∈ T (Fc,N). The same
reasoning holds when i ∈ {2, . . . , n}.

— Case 2, f is not reduced: In such a case, we have that root(ξΦ↓) ∈ Fd. Hence, we have that
ξΦ↓ 6∈ T (Fc,N). This allows us to conclude.

— Case 3, f ∈ Fd and f is reduced. In such a case, by hypothesis, we have that root(ξ1) 6∈ Fc.
Let f(u1, . . . , un) → u be the rewrite rule involved in f(ξ1Φ↓, . . . , ξnΦ↓) → ξΦ↓. Since ξ 6∈ Πn,
we have that ξi 6∈ Πn for some i ∈ {1, . . . , n}. We distinguish two cases:

1. If ξ1 6∈ Πn then by applying our induction hypothesis on ξ1, we have that ξ1Φ↓ 6∈
T (Fc,N).

2. Otherwise, if ξi 6∈ Πn for some i ∈ {2, . . . , n}, then by applying our induction hypothesis
on ξi, we have that ξiΦ↓ 6∈ T (Fc,N), and thus ξ1Φ↓ 6∈ T (Fc,N) since vars(ui) ⊆
vars(u1) and u1, ui are constructor terms.

Hence, in both cases, we have that ξ1Φ↓ 6∈ T (Fc,N). Thanks to Lemma C.3, we know that
either root(ξ1) ∈ Fc or root(ξ1) is not reduced. We have already shown that root(ξ1) 6∈ Fc,
thus we have that root(ξ1) is not reduced, and thus root(ξ1Φ↓) ∈ Fd. This contradicts the
fact that root(ξ) ∈ Fd and root(ξ) is reduced. Thus, this case is impossible.

Lemma 6.6. Let Φ be a ground frame such that for all (ax i ⊲ ui) ∈ Φ, Message(ui). Let
ξ ∈ T (F ,N∪AX). If Message(ξΦ) then there exists a ground recipe ξ′ ∈ Πn such that ξΦ↓ = ξ′Φ↓,
Message(ξ′Φ) and param(ξ′) ⊆ param(ξ)

Proof. We prove this result by induction on the number of subterm ξ′ of ξ such that ξ′ is of the
form g(ξ1, . . . , ξn), g ∈ Fd and root(ξ1) ∈ Fc. We denote this number N(ξ)

Base case N(ξ) = 0: In such a case, we have that ξ ∈ Πn and so the result holds.

Inductive step N(ξ) > 0: Let p ∈ Pos(ξ) such that ξ|p = g(ξ1, . . . , ξn), g ∈ Fd and root(ξ1) ∈ Fc.
By hypothesis, we have Message(ξΦ) hence it implies that g(ξ1, . . . , ξn)Φ↓ ∈ T (Fc,N) and so g

is reduced. Since root(ξ1) ∈ Fc, we have ξ1 = f(α1, . . . , αm) for some f ∈ Fc and some recipe
α1, . . . , αm. However, according to the rewriting system, g is reduced implies that p|ξΦ↓ = α1Φ↓.

Let ξ′ = ξ[α1]p. We deduce that ξ′Φ↓ = ξΦ↓. Moreover, α ∈ st(ξ) and Message(ξΦ) implies
that Message(ξ′Φ) and param(ξ′) ⊆ param(ξ). At last, since N(ξ′) < N(ξ) then by induc-
tive hypothesis on ξ′, there exists ξ′′ ∈ Πn such that ξ′′Φ↓ = ξ′Φ↓ = ξΦ↓, Message(ξ′′Φ) and
param(ξ′′) ⊆ param(ξ′) ⊆ param(ξ).

Lemma C.5. Let Φ, Φ′ be ground frames of same domain and such that for all (ax i ⊲ ui) ∈ Φ
(resp. Φ′), Message(ui). Assume that Φ ∼2 Φ′. Let ξ1, ξ2, ξ3 ∈ T (F ,AX) such that param({ξ1, ξ2,
ξ3}) ⊆ dom(Φ) and for all f(α1, . . . , αn) ∈ st(ξi) (i = 1, 2, 3), root(α1) ∈ Fc implies f is not
reduced by Φ. The following properties hold:

1. Message(ξ3Φ) implies Message(ξ3Φ
′); and

2. if Message(ξ1Φ), Message(ξ2Φ), ξ1Φ↓ = ξ2Φ↓ then ξ1Φ
′↓ = ξ2Φ

′↓.

Proof. Assume that Message(ξ3Φ) thus ξ3Φ↓ ∈ T (Fc,N). In such a case, thanks to Lemma C.4,
we have that ξ3 ∈ Πn. Since Φ ∼2 Φ′, we easily conclude that Message(ξ3Φ

′).
Now, assume that Message(ξ1Φ), Message(ξ2Φ) and ξ1Φ↓ = ξ2Φ↓. First, if ξ1 and ξ2 are in

Πn, then the result trivially holds. Otherwise, we prove that ξ1Φ
′↓ = ξ2Φ

′↓ by induction on
max(|ξ1|, |ξ2|).

Base case max(|ξ1|, |ξ2|) = 1: In such a case, we have that ξ1, ξ2 ∈ dom(Φ) and so ξ1, ξ2 ∈ Πn.
We already proved that the result holds.

Induction step max(|ξ1|, |ξ2|) > 1: We assume w.l.o.g. that ξ1 6∈ Πn. In such a case, thanks to
Lemma C.4, we have that ξ1Φ↓ 6∈ T (Fc,N) and since ξ1Φ↓ = ξ2Φ↓, we also have that ξ2Φ↓ 6∈
T (Fc,N). Thanks to Lemma C.3, we have that:

— either root(ξ1) is not reduced or root(ξ1) ∈ Fc; and

— either root(ξ2) is not reduced or root(ξ2) ∈ Fc.

Hence, we deduce that ξ1 = f1(α1, . . . , αm) and ξ2 = f2(β1, . . . , βk) for some f1, α1, . . . , αm and
f2, β1, . . . , βk. Moreover, we also deduce that

ξ1Φ↓ = f1(α1Φ↓, . . . , αmΦ↓) and ξ2Φ↓ = f2(β1Φ↓, . . . , βkΦ↓).

Since ξ1Φ↓ = ξ2Φ↓, it implies that f1 = f2, k = m and αiΦ↓ = βiΦ↓ for every i ∈ {1, . . . ,m}.
Moreover, Message(ξ1Φ) implies Message(αiΦ) and Message(ξ2Φ) implies Message(βiΦ) for all
i ∈ {1, . . . ,m}. By applying our induction hypothesis on αi, βi, we have that αiΦ

′↓ = βiΦ
′↓ for

every i ∈ {1, . . . ,m}. This allows us to deduce that f1(α1Φ
′↓, . . . , αkΦ

′↓) = f2(β1Φ
′↓, . . . , βkΦ

′↓),
and thus ξ1Φ

′↓ = ξ2Φ
′↓.

Lemma 6.7. Let Φ and Φ′ be two ground frames such that for all (ax i ⊲ ui) ∈ Φ (resp. Φ′),
Message(ui). Φ ∼T (F,AX) Φ

′ is equivalent to Φ ∼Πn
Φ′.

Proof. The right implication (⇒) is an easy case. Indeed, for all ξ, ξ′ ∈ Πn, by definition of Πn, we
have ξ, ξ′ ∈ T (F ,AX). Hence, since Φ ∼T (F,AX) Φ

′, Message(ξΦ) is equivalent to Message(ξΦ′).
Furthermore, if Message(ξΦ) and Message(ξ′Φ) then ξΦ↓ = ξ′Φ↓ is equivalent to ξΦ′↓ = ξ′Φ′↓.
Hence Φ ∼Πn

Φ′.

We now prove the left implication (⇐) of the equivalence. Let ξ1, ξ2 ∈ T (F ,AX) such that
param(ξ1, ξ2) ⊆ dom(φ). We show that

— Message(ξ1Φ) implies Message(ξ1Φ
′); and

— if Message(ξ1Φ) and Message(ξ2Φ) then ξ1Φ↓ = ξ2Φ↓ implies ξ1Φ
′↓ = ξ2Φ

′↓.

Let n1 (resp. n2) be the number of subterms of the form f(α1, . . . , αn) ∈ st(ξ1) (resp. st(ξ2))
such that f ∈ Fd, root(α1) ∈ Fc and f is reduced by Φ. Let n = max(n1, n2) and m = |ξ1|+ |ξ2|.
We prove this result by induction on (n,m) with the lexicographic ordering. We assume that
Message(ξ1Φ) and Message(ξ2Φ).

Base case : n = 0. In such a case, for all f(α1, . . . , αn) ∈ st({ξ1, ξ2}), root(α1) ∈ Fc and f ∈ Fd

imply f is not reduced. Hence, we apply Lemma C.5 and so the result holds.

Induction step: n > 0. There exists w.l.o.g p ∈ Pos(ξ1) such that ξ1|p = ξ where ξ = f(α1, . . . , αn),
f ∈ Fd, root(α1) ∈ Fc and f is reduced by Φ. Thus, there exists a rewriting rule that can be applied
on the position p of ξ1. We consider the different rewriting rules in turn:

— f = sdec with ξ = sdec(senc(β1, β2), α2) and α2Φ↓ = β2Φ↓. Moreover Message(ξ1Φ) implies
Message(α2Φ) and Message(β2Φ);

— f = adec with ξ = adec(aenc(β1, β2), α2) and β2Φ↓ = (pk(α2))Φ↓. Moreover Message(ξ1Φ)
implies Message(pk(α2)Φ) and Message(β2Φ);

— f = check with ξ = check(sign(β1, β2), α2) and α2Φ↓ = vk(β2)Φ↓. Moreover Message(ξ1Φ)
implies Message(α2Φ) and Message(vk(β2)Φ);

— f = proj1 with ξ = proj1(〈β1, β2,)〉. Moreover, Message(ξ1Φ) implies Message(β1Φ);

— f = proj2 with ξ = proj2(〈β2, β1,)〉. Moreover, Message(ξ1Φ) implies Message(β1Φ).

In the first three cases, we can apply our induction hypothesis in order to deduce that:

— f = sdec, α2Φ
′↓ = β2Φ

′↓; or

— f = adec and β2Φ
′↓ = (pk(α2))Φ

′↓; or

— f = check and α2Φ
′↓ = (vk(β2))Φ

′↓.

Hence, we can deduce that ξΦ′↓ = β1Φ
′↓. Note that this result trivially holds when f ∈

{proj1, proj2}. Hence, we have that:

ξ1Φ↓ = (ξ1[β1]p)Φ↓ and ξ1[Φ
′]↓ = (ξ1[β1]p)Φ

′↓

Moreover, since ξΦ′↓ = β1Φ
′↓, Message(ξ1Φ) and Message(β1Φ), we have that Message(ξ1[β1]pΦ).

We apply now our induction hypothesis on ξ1[β1]p and ξ2. Note that even if the first mea-
sure does not decrease, we necessarily have that |ξ1[β1]| < |ξ1|. This allows us to obtain that
Message(ξ1[β1]pΦ

′). Moreover, if ξ1Φ↓ = ξ2Φ↓, then we have that ξ1[β1]pΦ↓ = ξ2Φ↓ and so by our
induction hypothesis, we deduce that ξ1[β1]pΦ

′↓ = ξ2Φ
′↓, and thus ξ1Φ′↓ = ξ2Φ

′↓. The other side
of the static equivalence is proved symmetrically. This allows us to conclude.

C.1.3 Constructor constraint system

Lemma C.6. Let s ∈ T (F ∪N ,X 1). Assume that s′ ∈ st(s) such that root(s′) ∈ Fd and all strict
subterms of s′ is constructive. If for all fresh rewriting rule ℓ → r, ℓ is not unifiable with s′, then
for all mapping τ from vars1(s) to ground constructor terms, ¬Message(sτ).

Proof. Let τ a mapping from vars1(s) to ground constructor terms. Assume that Message(sτ).
By definition of Message(·), we can deduce that s′τ↓ ∈ T (Fc,N). But root(s′) ∈ Fd, thus s′τ
has to be reduced. Let’s assume that s′ = f(u1, . . . , un). We know that all strict subterms of s′

only contain constructor; but τ is a mapping to ground constructor terms. Therefore, we have
uiτ↓ = uiτ , for i = 1 . . . n, which means that s′τ is reducible implies that s′ is unifiable with a
fresh rewriting rule. It implies a contradiction with our hypothesis and so ¬Message(sτ).

Lemma C.7. Let s, t ∈ T (F ∪N ,X 1) such that s
σ
֌R t. For all mapping τ (resp. τ ′) from a set

of variable including vars1(s) (resp. vars1(t)) to ground constructor terms, we have:

— Message(sτ) implies that there exists τ ′ such that τ = (στ ′)|dom(τ), Message(tτ ′) and sτ↓ =
tτ ′↓.

— Message(tτ ′) implies that there exists τ such that τ = στ ′, Message(sτ), and sτ↓ = tτ ′↓

Proof. Let s, t ∈ T (F ∪N ,X 1) such that s
σ
֌R t. Let τ (resp. τ ′) a mapping from vars(s) (resp.

vars(t)) to ground constructor terms. We prove the two result separately:

— If Message(sτ): By hypothesis, we know that s
σ
֌R t and so there exists a fresh rewriting

rule ℓ → r and a position p non variable of s such that:

σ = mgu(ℓ, s|p) and t = sσ[rσ]p

By definition of a rewriting rule, we deduce that rσ↓ = ℓσ↓ = s|pσ↓. Thus, it implies that
t↓ = sσ[rσ]p↓ = sσ[s|pσ]p↓ = sσ↓.

But by Lemma C.6, we know that Message(sτ) implies that there exists a fresh rewriting
rule ℓ′ → r′ such that ℓ′ and s|pτ are unifiable. Since we consider rewriting rule such that
a destructor can be reduced by only one rewriting rule, we deduce that ℓ → r is the same
rule as ℓ′ → r′ and so ℓ and s|pτ are unifiable. Since s|pτ is closed, there exists τ ′′ such that
dom(τ ′′) = vars1(ℓ) and ℓτ ′′ = s|pτ . ℓ being fresh also implies that dom(τ ′′) ∩ dom(τ) = ∅
and so ℓττ ′ = s|pττ

′. But σ = mgu(ℓ, s|p), which means that there exists a mapping τ ′ such
that ττ ′′ = στ ′. Hence τ = (στ ′)|dom(τ).

But, we already know that t↓ = sσ↓, thus tτ ′↓ = sστ ′↓ = sτ↓.

At last, we check that Message(tτ ′). Let t′ ∈ st(tτ ′). If t′ ∈ st(rστ ′), then t′ ∈ T (Fc,N)
since we know that σ and τ ′ are both mapping to ground constructor terms and r is also
a constructor term. If t′ 6∈ st(rστ ′) then a simple induction on the position p′ of t′ on
t allows us to conclude that t′↓ = s|p′στ ′↓ and so t′↓ = s|p′τ↓. But Message(sτ) implies
s|p′τ↓ ∈ T (Fc,N) and so t′↓ ∈ T (Fc,N).

— As proved in the previous point, s
σ
֌R t implies that t↓ = sσ↓. Thus tτ ′↓ = sστ ′↓ = sτ↓

with τ = στ ′.

Let s′ ∈ st(sτ), if s′ ∈ st(ℓτ), then either s′ is a strict subterm of ℓτ or s′ = ℓτ . In the first
case, we know by the innermost strategy that all strict subterm are constructive terms which
means that Message(s′); in the second case, we know that ℓτ↓ = rτ↓. Since Message(tτ ′)
and τ = στ ′, we can conclude that ℓτ↓ ∈ T (Fc,N).

At last, if s′ 6∈ st(ℓτ), then a simple induction on the position p′ of s′ on s allows us to
conclude that s′↓ = t|p′τ ′↓ and so Message(s′).

Lemma 6.9. Let E and E′ be two conjunctions of equations between terms such that E
σ
֌R E′.

For all substitutions τ on ground constructor terms,

— τ �c E
′ implies that στ �c E

— τ �c E implies that there exists τ ′ such that τ = (στ ′)|dom(τ) and τ ′ �c E
′

Proof. This Lemma is almost a direct implication of Lemma C.7. Let E =
∧

i=1...n ui
?
= vi be a

conjunction of equations betweens terms. Let τ be a mapping from vars1(E) to ground constructor
terms, we have τ �c E iff :

∀i ∈ {1 . . . n}, uiτ↓ = viτ↓ ∧Message(uiτ) ∧Message(viτ)

Assume now that E
σ
֌R E′ and j ∈ {1 . . . n} such that uj

σ
֌R t.

— Assume that there exists a mapping τ from vars1(E) to ground constructor terms such
that τ �c E. It implies that Message(ujτ) and so by Lemma C.7, we know that there
exists a mapping τ ′ from vars(E′) to ground constructor terms such that τ = (στ ′)|dom(τ),
ujτ↓ = tτ ′↓ and Message(tτ ′). By hypothesis, we have uiτ↓ = viτ↓, for i = 1 . . . n and so
(uiσ)τ

′↓ = (viσ)τ
′↓. In the case i = j, ujτ↓ = vjτ↓ implies tτ ′↓ = (vjσ)τ

′↓. At last, by
hypothesis, we also have Message(uiτ) and Message(viτ), for i = {1 . . . n} which means that
Message((uiσ)τ

′) and Message((viσ)τ
′). In the case of i = j, we know that Message(tτ ′) by

Lemma C.7. We can conclude that τ ′ �c E
′.

— Assume that there exists a mapping τ ′ from vars1(E′) to ground constructor terms such
that τ ′ �c E′. It implies that Message(tτ ′) and so by Lemma C.7, we have that τ =
στ ′, tτ ′↓ = ujτ↓ and Message(ujτ). But τ ′ � E′ also implies ujτ↓ = tτ ′↓ = (vjσ)τ

′↓ =
vjτ↓ and Message(vjτ). At last, we know that (uiσ)τ

′↓ = (viσ)τ ′↓, Message((uiσ)τ
′) and

Message((viσ)τ
′), for i = 1 . . . n 6= j which allows us to conclude that τ �c E.

Lemma 6.10. Let φ = ∀x̃
∨m

j=1 uj

?

6= vj and φ′ = ∀ỹ
∨n

i=1 u
′
j

?

6= v′j two formulas such that
φ֌R φ′. For all substitutions τ of constructor terms, τ �c φ if and only if τ �c φ

′.

Proof. Assume first that τ 6�c φ′. There exists a substitution τ ′ on constructor terms such that

dom(τ ′) = ỹ and ττ ′ 6�
∨n

i=1 u
′
i

?

6= v′i. This implies that ττ ′ �c σ ∧ E′. By hypothesis, we have

E
σ
֌R E′, hence dom(σ) ∩ fvars(E′) = ∅. Thus ττ ′ �c σE

′ implies that there exists τ ′′ such that

ττ ′ = στ ′′ and τ ′′ �c E
′. Hence by lemma 6.9, we deduce that στ ′′ � E and so στ ′′ 6�

∨m
j=1 uj

?

6= vj .
Since στ ′′ = ττ ′, dom(τ) = fvars(φ) and x̃ ⊆ dom(τ ′), we conclude that τ 6�c φ.

Assume now that τ 6�c φ. There exists a substitution τ ′ on ground constructor terms such that

dom(τ ′) = x̃ and ττ ′ 6�c
∨m

j=1 uj

?

6= vj . This implies that ττ ′ � E. By hypothesis, we have E
σ
֌R

E′, hence thanks to Lemma 6.9, we deduce that there exists τ ′′ such that ττ ′ = (στ ′′)|dom(ττ ′)

and τ ′′ � E′. Hence, στ ′′ �c E′ ∧ σ. Since dom(τ) = fvars(φ′), dom(στ ′′) ⊇ ỹ ∪ fvars(φ′) and

ττ ′ = (στ ′′)|dom(ττ ′), we deduce that there exists τ ′′′ = (στ ′′)|ỹ such that ττ ′′′ 6�c
∨n

i=1 u
′
i

?

6= v′i.
Hence we conclude that τ 6�c φ

′.

Lemma 6.11. Let Σ1,Σ
′
1 two sets of concrete constraint systems having the same structure. There

exist Σ2,Σ
′
2 two sets of constructor constraint systems having the same structure such that:

Σ1 ≈Πn
s Σ′

1 if and only if Σ2 ≈s Σ
′
2

Proof. We first show how we obtain a constructor constraint system from a concrete constraint
system. Then we will show that the solutions are preserved and finally we will prove the wanted
equivalence.

Building the constructor constraint systems: Let C = (E ; Φ;D;Eq) be a concrete constraint system
where Φ = {ax 1 ⊲ t1, . . . axn ⊲ tn}. Let y1, . . . , yn fresh variables. Assume that Eq = Ee ∧ D

where D =
∧m

j=1 uj

?

6= vj and Ee is a conjunction of equations. We associate a constructor
constraint system C′ or ⊥ to C as follows:

Let E0 = Ee ∧
∧n

i=1 yi
?
= ti. Assume that E0

σ1

֌R E1

σ2

֌R . . .
σℓ

֌R Eℓ and for all E′, for all σ′,

Eℓ 6
σ′

֌R E′. Eℓ exists since the narrowing strictly decrease the number of destructor symbols. If
Eℓ contains a function symbol then we associate ⊥ to C.

Else, since applying a narrowing on a conjunction of equation does not change the number of

conjunction, and for all i ∈ {1, . . . , n}, yi are fresh variables, we deduce that Eℓ = E′
e∧

∧n
i=1 yi

?
= t′i

for some E′
e, t

′
1, . . . , t

′
n. Hence, we associate C′ = (Φ′;D′;Eq′) to C where

1. α = σ1 . . . σℓ

2. D′ = Dα

3. Φ′ = {ax 1 ⊲ t′1, . . . , axn ⊲ t′n}

4. Eq′ = E′
e ∧

∧
k∈I φk

and I ⊆ {1 . . .m} satisfies:

— for all k ∈ I, ukα
?

6= vkα֌R . . .֌R φk, φk does not contain destructor symbols.

— for all k 6∈ I, for all φ, ukα
?

6= vkα ֌R . . . ֌R φ implies φ contain at least a destructor
symbol.

By construction, C′ is a constructor constraint system. However, it remains to prove the following
properties:

— for every 1 ≤ k ≤ n, for every z ∈ vars1(tkα), there exists (X, i
?

⊢ xα) ∈ D′ such that
z ∈ vars1(xα) and i < k.

— for every the free variables z of Eq′, there exists (X, i
?

⊢ xα) ∈ D′ such that z ∈ vars1(xα).

Our rewriting system is subterm hence for all s
σ
֌R t, for all x ∈ vars1(t), either x ∈ vars1(s)

and x 6∈ dom(σ); or else there exists y ∈ vars1(s) such that x ∈ vars1(yσ). Thus, by extension to

conjunction of equations, we have for all
∧m

k=1 uk
?
= vk

σ
֌R

∧m
k=1 u

′
k

?
= v′k, for all k ∈ {1, . . . ,m},

for all x ∈ vars1(u′
k) (resp. vars1(v′k)), either x ∈ vars1(uk) (resp. vars1(vk)) and x 6∈ dom(σ); or

else there exists y ∈ vars1(u′
k) (resp. vars1(vk)) such that x ∈ vars1(yσ).

By applying a simple induction on ℓ, we can deduce that for all i ∈ {1, . . . , n}, for all x ∈
vars1(t′i), either (a) x ∈ vars1(ti) and x 6∈ dom(σ); or else (b) there exists y ∈ vars1(ti) such that
x ∈ vars1(yσ1 . . . σℓ). In case (a), by the origination property of concrete constraint systems, we

deduce that there exists (X, j
?

⊢ x) ∈ D such that j < i. Since xα = x, we deduce that (X, j
?

⊢
x) ∈ D′ and so the result holds. In case (b), by the origination property of concrete constraint

systems, we deduce that there exists (X, j
?

⊢ y) ∈ D such that j < i and so (X, j
?

⊢ yα) ∈ D′.
Since x ∈ vars1(yα), the results holds. The proof is similar for the variables in E′

e.
At last, consider two formulas φ and φ′ such that φ֌R φ′. By definition, we know that there

exists E,E′, σ, x̃, ỹ such that: φ = ∀x̃.¬E, φ′ = ∀x̃.ỹ.¬(σ∧E′), E
σ
֌R E′ and ỹ = vars1(σ)r(E).

We show that fvars(φ′) ⊆ fvars(φ). Let z ∈ fvars(φ′). Hence, z 6∈ x̃ and either (a) z ∈ vars1(σ) or
(b) z ∈ vars1(E′). In case (a), since ỹ = vars1(σ)r (E), we deduce that z ∈ vars1(E). Moreover,
with z 6∈ x̃, we deduce that z ∈ fvars(φ). In case (b), we already proved that either z ∈ vars1(E)
or else there exists y ∈ vars1(E) such that x ∈ vars1(yσ). We do the same reasoning as in case
(a) and we conclude that z ∈ fvars(φ).

For all k ∈ I, by applying a simple induction on ukα
?

6= vkα֌R . . .֌R φk, we deduce that
fvars(φk) ⊆ vars1(ukα, vkα). Thus by applying the same reasoning as for the variables of t′i, we
can conclude that fvars(Eq′) ⊆ vars1(D′).

Preserving the solution: We say that Sol(⊥) = ∅. Let’s denote SolΠn

c (C) = {(σ, θ) ∈ Solc(C) | ∀X ∈
dom(θ), Xθ ∈ Πn}. We show the two following properties:

1. for all (σ, θ) ∈ SolΠn

c (C), there exists σ′ such that (σ′, θ) ∈ Sol(C′) and Φσ↓ = Φ′σ′;

2. for all (σ, θ) ∈ Sol(C′), there exists σ such that (σ, θ) ∈ SolΠn

c (C) and Φσ↓ = Φ′σ′.

where Φ′ is the frame of C′.

First property: Let (σ, θ) ∈ SolΠn

c (C). By definition, for all i ∈ {1, . . . , n}, Message(tiσ). Let’s

denote τ = {y1 7→ tiσ; . . . ; yn 7→ tnσ} ∪ σ. We have that τ �c
∧n

i=1 yi
?
= ti. Moreover, (σ, θ) ∈

SolΠn

c (C) also implies that σ �c Eq hence τ �c E0. At last, since (σ, θ) ∈ SolΠn

c (C) implies that for

all (X, i
?

⊢ x) ∈ D, Message(xσ), we deduce that (τ↓) �c E0 and (τ↓) is a mapping from vars1(E0)
to ground constructor terms. Thanks to Lemma 6.9, we deduce with a simple induction on ℓ that
there exists τ ′ such that τ↓ = (σ1 . . . σℓτ

′)dom(τ) and τ ′ � Eℓ. Thanks to Lemma C.6, we deduce
that Eℓ does not contain a destructor and so C′ 6= ⊥.

Let σ′ be the substitution τ ′ restricted to the domain dom(τ ′) r {y1, . . . yn}. We verify that
(σ′, θ) ∈ Sol(C′). τ↓ � E0 and τ ′ �c Eℓ imply that for all k ∈ {1, . . . , n}, tkτ↓ = ykτ↓ = ykατ

′ =
ykτ

′ = t′kτ
′. Hence we deduce that Φτ↓ = Φ′τ ′. Since the variables y1, . . . , yn are not in Φ

nor Φ′, Φσ↓ = Φ′σ′. Furthermore, we know that for all (X, i
?

⊢ x) ∈ D, (Xθ)(Φσ) = xσ. But
xσ↓ = xτ↓ = xσ1 . . . σℓτ

′ = xατ ′ = xασ′. Hence, we have that (Xθ)(Φ′τ ′)↓ = (Xθ)(Φσ↓)↓ =
(Xθ)(Φσ)↓ = xασ′. Moreover, we know that τ ′ �c E′

e and E′
e only contains constructor terms.

Thus τ ′ � E′
e. Since y 6∈ vars1(E′

e), we deduce that σ′ � E′
e.

At last, let k ∈ I. Since τ �c uk

?

6= vk and for all x ∈ dom(τ), Message(xτ), we deduce that

τ↓ �c uk

?

6= vk which implies that ασ′ �c uk

?

6= vk and so σ′ �c ukα
?

6= vkα. Thanks to Lemma 6.10,
we deduce that σ′ �c φk. Since φk only contains constructor terms, we deduce that σ′ � φk. This
conclude the proof of (σ′, θ) ∈ Sol(C′).

Second property: Let (σ′, θ) ∈ Sol(C′). By definition, we have that σ′ is a mapping to ground

constructor terms. Let denote τ ′ = {y1 7→ t′iσ
′; . . . ; yn 7→ t′nσ

′} ∪ σ′. Hence τ ′ � ∧
∧n

i=1 yi
?
= t′i.

Moreover, (σ′, θ) ∈ Sol(C′) implies that σ′ � E′
e∧

∧
k∈I φk. Thus, we deduce that τ ′ � Eℓ∧

∧
k∈I φk.

Since all terms in Eℓ are constructor term, τ ′ �c Eℓ ∧
∧

k∈I φk.

By Lemma 6.10, τ ′ �c
∧

k∈I φk implies that τ ′ �c
∧

k∈I ukα
?

6= vkα. Let k 6∈ I, we know

that for all φ, ukα
?

6= vkα ֌R φ implies φ contains a destructor. Assume that no narrowing
can be apply on φ (φ exists since the narrowing strictly reduces the number of destructors). Let

w
?

6= w′ ∈ φ such that w contains a destructor. By Lemma C.6, we deduce that for all mapping
to ground constructor terms, and more specifically τ ′, ¬Message(wτ ′). Hence, we deduce that

τ ′ �c
∧m

k=1 ukα
?

6= vkα and so ατ ′ �c D.
Thanks to Lemma 6.9, τ ′ �c Eℓ implies that σ1 . . . σℓτ

′ �c E0 and so ατ ′ �c E0. Hence,
ατ ′ �c Ee and for all i ∈ {1, . . . , n}, Message(tiατ

′). Moreover, since y1, . . . yn are not variable of
α, we deduce for all i ∈ {1 . . . , n}, tiατ ′↓ = yiατ

′↓ = yiτ
′↓ = t′iτ

′.

Let σ be the substitution such that for all (X, i
?

⊢ x) ∈ D, (Xθ)(Φσ) = xσ. We prove by
induction on i that Message(xσ), xσ↓ = xατ ′ and Message(tiσ).

The base case i = 0 is trivial since there is no deducible constraint with i = 0.
Inductive step i > 0: (σ′, θ) ∈ Sol(C′) implies that param(Xθ) ⊆ {ax 1, . . . , ax i}. But thanks

to the origination property of a constraint system, we know that for all j ≤ i, for all y ∈ vars1(tj),

there exists (Y, k
?

⊢ y) ∈ D such that k < j ≤ i. Hence by our inductive hypothesis, yσ↓ = yατ ′

and Message(yσ). We already proved that Message(tjατ
′) and tjατ

′↓ = t′jτ
′ thus Message(tjσ)

and tjσ↓ = t′jτ
′. Therefore xσ↓ = (Xθ)(Φσ)↓ = (Xθ)(Φατ ′)↓ = (Xθ)(Φ′τ ′)↓ = xατ ′. At last,

since Xθ ∈ Πn and xσ↓ = xατ ′ ∈ T (Fc,N) then by Lemma 6.5, we deduce that Message(xσ).
At last, since for all x ∈ dom(σ), xσ↓ = xατ ′ and Message(xσ) then ατ ′ �c Ee implies σ �c Ee;

and ατ ′ �c D implies σ �c D. This conclude the proof of (σ, θ) ∈ SolΠn

c (C).

The main result: Let Σ1,Σ
′
1 two sets of concrete constraint systems having the same structure.

We build Σ2,Σ
′
2 the two sets of constructor constraint system associated to Σ1,Σ

′
1 respectively.

— Assume that Σ2 ≈s Σ′
2: Let C1 ∈ Σ1, let (σ1, θ) ∈ SolΠn

c (C1). We have shown that there
exists C2 ∈ Σ2 and a substitution σ2 such that (σ2, θ) ∈ Sol(C2) and Φ1σ1↓ = Φ2σ2, where
Φ1 and Φ2 are the respective frames of C1 and C2. Thus by our hypothesis, we deduce that
there exists C′

2 ∈ Σ′
2 and a substitution σ′

2 such that (σ′
2, θ) ∈ Sol(C′

2) and Φ2σ2 ∼ Φ′
2σ

′
2,

where Φ′
2 is the frame of C′

2.
We have shown that there exists C′

1 ∈ Σ′
1 and a substitution σ′

1 such that (σ′
1, θ) ∈ SolΠn

c (C′
1)

such that Φ′
1σ

′
1↓ = Φ′

2σ
′
2, where Φ′

1 is the frame of C′
1.

It remains to show that Φ1σ1 ∼Πn
Φ′

1σ
′
1. First of all, (σ1, θ) ∈ SolΠn

c (C1) and (σ′
1, θ) ∈

SolΠn

c (C2) implies that for all (ax i ⊲ u) ∈ Φ1σ1 (resp. Φ′
1σ

′
1), Message(u). Let ξ, ξ′ ∈ Πn such

that param({ξ, ξ′}) ⊆ dom(Φ1σ1). Thanks to Lemma 6.5, Message(ξΦ1σ1) is equivalent to

ξΦ1σ1↓ ∈ T (Fc,N). But we proved Φ1σ1↓ ∼ Φ′
1σ

′
1↓ thus ξΦ1σ1↓ ∈ T (Fc,N) is equivalent

to ξΦ′
1σ

′
1↓ ∈ T (Fc,N). One again by Lemma 6.5, ξΦ′

1σ
′
1↓ ∈ T (Fc,N) is equivalent to

Message(ξΦ′
1σ

′
1) and so Message(ξΦ1σ1) is equivalent to Message(ξΦ′

1σ
′
1). Assume now that

Message(ξΦ1σ1) and Message(ξ′Φ1σ1). It implies that ξΦ1σ1↓ ∈ T (Fc,N) and ξ′Φ1σ1↓ ∈
T (Fc,N). Thus, since Φ1σ1↓ ∼ Φ′

1σ
′
1↓, we deduce that ξΦ1σ1↓ = ξ′Φ1σ1↓ is equivalent to

ξΦ′
1σ

′
1↓ = ξ′Φ′

1σ
′
1↓. Therefore, we deduce that Φ1σ1 ∼Πn

Φ′
1σ

′
1.

This conclude the proof of Σ1 ≈Πn
s Σ′

1.

— Assume that Σ1 ≈s Σ
′
1: Let C2 ∈ Σ2, let (σ2, θ) ∈ Sol(C2). We have shown that there exists

C1 ∈ Σ1 and a substitution σ1 such that (σ1, θ) ∈ SolΠn

c (C2) and Φ1σ1↓ = Φ2σ2, where Φ1

and Φ2 are the respective frames of C1 and C2. Thus by our hypothesis, we deduce that there
exists C′

1 ∈ Σ′
1 and a substitution σ′

1 such that (σ′
1, θ) ∈ Sol(C′

1) and Φ1σ1 ∼Πn
Φ′

1σ
′
1, where

Φ′
1 is the frame of C′

1.
We have shown that there exists C′

2 ∈ Σ′
2 and a substitution σ′

2 such that (σ′
2, θ) ∈ Sol(C′

2)
such that Φ′

1σ
′
1↓ = Φ′

2σ
′
2, where Φ′

2 is the frame of C′
2.

It remains to show that Φ2σ2 ∼ Φ′
2σ

′
2. First of all, (σ1, θ) ∈ SolΠn

c (C1) and (σ′
1, θ) ∈ SolΠn

c (C2)
implies that for all (ax i ⊲ u) ∈ Φ1σ1 (resp. Φ′

1σ
′
1), Message(u). Let ξ, ξ′ ∈ Πn such

that param({ξ, ξ′}) ⊆ dom(Φ2σ2). Thanks to Lemma 6.5, Message(ξΦ1σ1) is equivalent to
ξ(Φ1σ1)↓ ∈ T (Fc,N). Since Φ1σ1↓ = Φ2σ2, we deduce that Message(ξΦ1σ1) is equivalent to
ξΦ2σ2↓ ∈ T (Fc,N). Similarly, Message(ξΦ′

1σ
′
1) is equivalent to ξΦ′

2σ
′
2↓ ∈ T (Fc,N). Since

Φ1σ1 ∼Πn
Φ′

1σ
′
1, we deduce that ξΦ2σ2↓ ∈ T (Fc,N) is equivalent to ξΦ′

2σ
′
2↓ ∈ T (Fc,N).

Assume know that ξΦ2σ2↓ ∈ T (Fc,N) and ξΦ′
2σ

′
2↓ ∈ T (Fc,N). We already proved that

is was equivalent to Message(ξΦ1σ1) and Message(ξ′Φ1σ1). Moreover, we also proved that
ξΦ2σ2↓ = ξΦ1σ1↓ and ξ′Φ2σ2↓ = ξ′Φ1σ1↓. Hence, thanks to Φ1σ1 ∼Πn

Φ′
1σ

′
1, we deduce that

ξΦ2σ2↓ = ξ′Φ2σ2↓ is equivalent to ξΦ′
1σ

′
1↓ = ξ′Φ′

1σ
′
1↓. At last, since ξΦ′

1σ
′
1↓ = ξΦ′

2σ
′
2↓ and

ξ′Φ′
1σ

′
1↓ = ξ′Φ′

2σ
′
2↓, we conclude that ξΦ2σ2↓ = ξ′Φ2σ2↓ is equivalent to ξΦ′

2σ
′
2↓ = ξ′Φ′

2σ
′
2↓.

Therefore we deduce that Φ2σ2 ∼ Φ′
2σ

′
2.

This conclude the proof of Σ2 ≈Πn
s Σ′

2.

Note that

C.2 General invariants

C.2.1 Structure invariant

Lemma 8.1. Let (M,M ′) be a pair of matrices of constraint systems such that M and M ′ have the
same structure. Any internal (resp. external) application of a rule in Figure 7.1 and/or Figure 7.2
transforms the pair (M,M ′) on a pair (M1,M

′
1) (resp. two pairs (M1,M

′
1) and (M2,M

′
2)) of

matrices having the same structure.

Proof. Let C and C′ be two constraint systems. Recall that the transformations rules Dest,
Eq-left-left, Eq-left-right and Ded-st are applied internally whereas the rules Cons(X, f),
Axiom(X, path) and Eq-right-right(X, ξ) are applied externally when X ∈ S2 and internally
otherwise (i.e. X 6∈ S2).

Let Rule(p̃) be a rule and let C1, C2 (resp. C′
1, C

′
2) be the two constraint systems obtained by

application of R on C (resp. C′). We assume that the application of Rule(p̃) is done simulta-
neously on C and C′ (i.e. the possible fresh second order variables created are the same in both
applications). We show that :

1. if C and C′ have the same structure (resp. shape) then C1, C
′
1 and C2, C

′
2 have the same

structure (resp. shape);

2. if Rule(p̃) is applied internally on C, then C, C1 and C2 have the same shape.

With theses properties, the result directly holds. We prove theses properties by case analysis
on the rule Rule(p̃). To simplify the notation, we will use the notation S1(C), S2(C),Φ(C), . . .
while we refer to the different elements of a constraint system C.

Case Rule(p̃) = Cons(X, f): We assume that the application of R(p̃) was done simultaneously,
thus if ar(f) = n, we denote by X1, . . . , Xn the fresh second order variables used in C1 and C′

1.
Assume first that C and C′ have the same structure. Thus we have that S2(C) = S2(C′). By

definition of Cons(X, f), we have that S2(C) = S2(C2) and S2(C
′) = S2(C

′
2) which means that

S2(C2) = S2(C
′
2). Furthermore, If X ∈ S2(C) = S2(C

′), then S2(C1) = S2(C) ∪ {X1, . . . , Xn} =
S2(C′) ∪ {X1, . . . , Xn} = S2(C′

1). Otherwise, we have that S2(C1) = S2(C) = S2(C′) = S2(C′
1).

We also have that Er(C) = Er(C′). But by definition of Cons(X, f), Er(C1) = Er(C) ∧X
?
=

f(X1, . . . , Xn) and Er(C′
1) = Er(C′) ∧X

?
= f(X1, . . . , Xn). Thus we have that Er(C′

1) = Er(C1).
Similarly, we have that Er(C2) = Er(C′

2).
Since the frame is not modified by the rule Cons(X, f), then we have {(ξ, i) | ξ, i ⊲ Φ(C)} =

{(ξ, i) | ξ, i ⊲ Φ(C′)} implies that {(ξ, i) | ξ, i ⊲ Φ(C1)} = {(ξ, i) | ξ, i ⊲ Φ(C′
1)}. The same holds

for C2 and C′
2.

At last, we have D(C1) = D(C) ∪ {X1, i
?

⊢ x1, . . . , Xn, i
?

⊢ xn} and D(C′
1) = D(C′) ∪ {X1, i

?

⊢

x′
1, . . . , Xn, i

?

⊢ x′
n} where x1, . . . , xn, x

′
1, . . . , x

′
n are fresh variables. Thus, {(X, i) | X, i

?

⊢ u ∈

D(C)} = {(X, i) | X, i
?

⊢ u ∈ D(C′)} implies that {(X, i) | X, i
?

⊢ u ∈ D(C1)} = {(X, i) | X, i
?

⊢ u ∈
D(C′

1)}. The case for C2 and C′
2 is trivial since D(C2) = D(C) and D(C′

2) = D(C′).
We can conclude that if C and C′ have the same structure then C1 and C′

1 (resp. C2 and C′
2)

also have the same structure. Similarly, we show that if C and C′ have the same shape then C1
and C′

1 (resp. C2 and C′
2) also have the same shape.

At last, if Cons(X, f) is applied internally (i.e. X 6∈ S2(C)), then we have that S2(C) =
S2(C1) = S2(C2). Furthermore since X1, . . . , Xn are fresh then X1, . . . , Xn 6∈ S2(C) and so C, C1
and C2 have the same shape.

Case Rule(p̃) = Axiom(X, path): The rule Axiom(X, path) does not modify S2 and either it does
not modify D, in the case of C2 and C′

2, or it removes this constraint in the case of C1, and C′
1. Thus,

we easily have that if C and C′ have the same shape, then C1 and C′
1 (resp. C2 and C′

2) also have the
same shape. Furthermore, in the case of an internal application of Axiom(X, path), we have that

X 6∈ S2(C). If (X, i
?

⊢ u) ∈ D(C), then we have that (X, i) 6∈ {(Y, j) | (Y, j
?

⊢ v ∈ D(C)∧Y ∈ S2(C)}.
Thus we can also deduce that C, C1 and C2 have the same shape when the rule Axiom(X, path) is
applied internally.

At last, assume that C and C′ have the same structure. Thus, we have that {(ξ, i) | ξ, i ⊲ u ∈
Φ(C)} = {(ξ, i) | ξ, i ⊲ u ∈ Φ(C′)}. But if there exists (ξ, i ⊲ u) ∈ Φ(C) with path(ξ) = path

then it implies that there exists u′ such that (ξ, i ⊲ u′) ∈ Φ(C′). With this, we can deduce that

Er(C1) = Er(C) ∧X
?
= ξ and Er(C′

1) = Er(C′) ∧X
?
= ξ. Since Er(C) = Er(C′), we can conclude

that Er(C1) = Er(C′
1) and so C1 and C′

1 have the same structure. A similar reasoning allows us to
conclude that C2 and C′

2 have the same structure.

Case Rule(p̃) = Dest(ξ, ℓ → r, i): The application of this rule on C (resp C′) only adds a new non
deducibility constraint on C2 (resp. C′

2). Thus, we trivially have that C, C2 have the same shape;
and C, C′ have the same structure (resp. shape) implies that C2, C

′
2 have the same structure (resp.

shape).
We consider now the constraint systems C1 and C′

1. Since Dest(ξ, ℓ → r, i) is applied si-
multaneously on C and C′, then there exists X2, . . . , Xn fresh second order variables such that

D(C1) = D(C) ∪ {X2, i
?

⊢ u2; . . . ; Xn, i
?

⊢ un} and D(C′
1) = D(C′) ∪ {X2, i

?

⊢ u′
2; . . . ; Xn, i

?

⊢ u′
n}

where f(u1, . . . un) → w and f(u′
1, . . . , u

′
n) → w′ are fresh renaming of ℓ → r. Thus we

can deduce that {(X, i) | X, i
?

⊢ u ∈ D(C)} = {(X, i) | X, i
?

⊢ u ∈ D(C′)} implies that

{(X, i) | X, i
?

⊢ u ∈ D(C1)} = {(X, i) | X, i
?

⊢ u ∈ D(C′
1)}.

Furthermore, we also have that Φ(C1) = Φ(C)∪ {f(ξ,X2, . . . , Xn), i ⊲ w} and Φ(C′
1) = Φ(C′)∪

{f(ξ,X2, . . . , Xn), i ⊲ w′}. Thus, we deduce that {(ξ, i) | ξ, i ⊲ u ∈ Φ(C)} = {(ξ, i) | ξ, i ⊲ u ∈
Φ(C′)} implies that {(ξ, i) | ξ, i ⊲ u ∈ Φ(C1)} = {(ξ, i) | ξ, i ⊲ u ∈ Φ(C′

1)}.

Since S2(C) = S2(C1) and S2(C′) = S2(C′
1) by definition of Dest, we can conclude that if C, C′

have the same structure then C1, C
′
1 also have the same structure.

At last, the facts that S2(C) = S2(C1) and X2, . . . , Xn are fresh variables (i.e. X2, . . . , Xn 6∈

S2(C)) also imply that {(X, i) | X, i
?

⊢ u ∈ D(C) ∧X ∈ S2(C)} = {(X, i) | X, i
?

⊢ u ∈ D(C1) ∧X ∈
S2(C1)}. Thus, we can conclude that C, C1 have the same shape.

Case Rule(p̃) = Eq-left-left(ξ1, ξ2): This rule only modifies Eq(C) and Eq(C′) thus the result
trivially holds.

Case Rule(p̃) = Eq-left-right(ξ1, X2) : The application of this rule modifies Eq(C), Eq(C′)

and adds an frame element on NoUse(C) and NoUse(C′). Hence, it is easy to see that the rule
does not modify the shape of the constrain systems. Assume now that C and C′ have the same
structure. It implies that {ξ, i | (ξ, i ⊲ u) ∈ NoUse(C)} = {ξ, i | (ξ, i ⊲ u) ∈ NoUse(C′)} and
{ξ, i | (ξ, i ⊲ u) ∈ Φ(C)} = {ξ, i | (ξ, i ⊲ u) ∈ Φ(C′)}. Hence, we have that there exists u, u′

such that (ξ1, i1 ⊲ u) ∈ Φ(C) and (ξ1, i1 ⊲ u′) ∈ Φ(C′). Thus, by definition of the rule, we have
that NoUse(C1) = NoUse(C) ∪ {ξ1, i1 ⊲ u} and NoUse(C′

1) = NoUse(C′) ∪ {ξ1, i1 ⊲ u′}. It implies
that {ξ, i | (ξ, i ⊲ u) ∈ NoUse(C1)} = {ξ, i | (ξ, i ⊲ u) ∈ NoUse(C′

1)} and so C1, C′
1 have the same

structure.

Since only Eq(C2), Eq(C′
2) are modified from Eq(C), Eq(C′), we easily deduce that C2,C2 have

the same structure.

Case Rule(p̃) = Eq-right-right(X, ξ) : By the application of this rule on C and C′, we have

that Er(C1) = Er(C) ∧ X
?
= ξ and Er(C′

1) = Er(C′) ∧ X
?
= ξ. Furthermore, the constraint

X, i
?

⊢ u ∈ D(C) (resp. X, i
?

⊢ u′ ∈ D(C′)) is removed in D(C1) (resp. D(C2)). Thus, we can easily
see that if C, C′ have the same structure (resp. shape) then C1, C′

1 and C2, C′
2 also have the same

structure (resp. shape).

In the case were Eq-right-right(X, ξ) is applied internally, we have that X 6∈ S2(C) which

means that (X, i) 6∈ {(Y, j) | Y, j
?

⊢ v ∈ D(C) ∧ Y ∈ S2(C)}. Thus, we have that {(Y, j) | Y, j
?

⊢

v ∈ D(C) ∧ Y ∈ S2(C)} = {(Y, j) | Y, j
?

⊢ v ∈ D(C1) ∧ Y ∈ S2(C1)}. This allows us to conclude
that C and C1 have the same shape when Eq-right-right(X, ξ) is applied internally. The result
trivially holds for C2 and C′

2.

Case Rule(p̃ = Ded-st(ξ, f): The application of this rule on C (resp C′) only adds a new non
deducibility constraint on C2 (resp. C′

2). Thus, we trivially have that C, C2 have the same shape;
and C, C′ have the same structure (resp. shape) implies that C2, C

′
2 have the same structure (resp.

shape).

We consider now the constraint systems C1 and C′
1. Since Ded-st(ξ, f) is applied simultaneously

on C and C′, then X1, . . . , Xn fresh second order variables such that D(C1) = D(C) ∪ {X1, i
?

⊢

x1; . . . ; Xn, i
?

⊢ xn} and D(C′
1) = D(C′) ∪ {X1, i

?

⊢ x1; . . . ; Xn, i
?

⊢ xn} where x1, . . . , xn are

fresh variables. Thus we can deduce that {(X, i) | X, i
?

⊢ u ∈ D(C)} = {(X, i) | X, i
?

⊢ u ∈ D(C′)}

implies that {(X, i) | X, i
?

⊢ u ∈ D(C1)} = {(X, i) | X, i
?

⊢ u ∈ D(C′
1)}.

Since S2(C) = S2(C1) and S2(C
′) = S2(C

′
1) by definition of Ded-st, we can conclude that if

C, C′ have the same structure then C1, C
′
1 also have the same structure.

At last, the facts that S2(C) = S2(C1) and X2, . . . , Xn were fresh variables (i.e. X2, . . . , Xn 6∈

S2(C)) also imply that {(X, i) | X, i
?

⊢ u ∈ D(C) ∧X ∈ S2(C)} = {(X, i) | X, i
?

⊢ u ∈ D(C1) ∧X ∈
S2(C1)}. Thus, we can conclude that C, C1 have the same shape.

C.2.2 Well-formed invariant

Lemma C.8. Let ξ, ζ ∈ Πn and let X ∈ X 2. Let θ and Θ be two substitutions such that θ =
{X 7→ ζ} and Θ = {X 7→ path(ζ)}. The following property holds:

path(ξθ) = path(ξ)Θ

Proof. We prove this result by induction on |path(ξ)|:

Base case |path(ξ)| = 1: In such a case, either ξ ∈ AX or ξ ∈ X 2. If ξ ∈ AX , then ξθ = ξ,
path(ξ) = ξ and ξΘ = ξ. Thus, we have path(ξθ) = path(ξ)Θ. Otherwise ξ ∈ X 2 and path(ξ) = ξ.
We distinguish two cases: ξ = X or ξ 6= X. If ξ = X then path(Xθ) = path(ζ) = XΘ = path(X)Θ.
Else, we have that ξθ = ξ. But path(ξ) = ξ and so path(ξ)Θ = path(ξ). Thus we conclude
path(ξθ) = path(ξ)Θ.

Inductive step |path(ξ)| > 1: Otherwise, there exist ξ1, . . . , ξn ∈ Πn and f ∈ F such that ξ =
f(ξ1, . . . , ξn) and path(ξ) = f · path(ξ1). Thus ξθ = f(ξ1θ, . . . , ξnθ) and so path(ξθ) = f · path(ξ1θ).
Using our induction hypothesis on path(ξ1), we have that path(ξ1θ) = path(ξ1)Θ which allows us
to conclude that path(ξθ) = f · path(ξ1)Θ = path(ξ)Θ.

Lemma C.9. Let C be a well formed constraint system and Φ its associated frame. Let ξ ∈ Πn

such that C⌊ξ⌋Φ ∈ T (Fc,F
∗
d · AX ∪ X 2). Let θ, Θ be two substitutions such that θ = {X → ξ′},

Θ = {X → C⌊ξ′⌋Φ} and C⌊ξ′⌋Φ ∈ T (Fc,F
∗
d · AX ∪ X 2). The following property holds:

C⌊ξθ⌋Φ = C⌊ξ⌋ΦΘ

Proof. We prove this result by induction on |C⌊ξ⌋Φ|:

Base case |C⌊ξ⌋Φ| = 1: In such a case, either C⌊ξ⌋Φ ∈ (F∗
d · AX) or ξ ∈ X 2. If ξ ∈ X 2

r {X},
then ξθ = ξ and so C⌊ξθ⌋Φ = ξ = C⌊ξ⌋ΦΘ. Thus the result holds. On the other hand, if ξ = X,
then ξθ = ξ′ and C⌊ξ⌋Φ = X and so C⌊ξθ⌋Φ = C⌊ξ′⌋Φ = XΘ.

Assume now that C⌊ξ⌋Φ ∈ (F∗
d · AX). In such case, there exists (ζ, i ⊲ u) ∈ Φ such that

path(ζ) = path(ξ). But since path(ξ) ∈ (F∗
d · AX), we also have that path(ξ) = path(ξθ), which

means that C⌊ξθ⌋Φ = C⌊ξ⌋Φ = C⌊ξ⌋ΦΘ.

Inductive step |C⌊ξ⌋Φ| > 1: By hypothesis, we know that C⌊ξ⌋Φ ∈ T (Fc,F∗
d · AX ∪ X 2), thus, we

have that root(C⌊ξ⌋Φ) ∈ Fc and so root(ξ) ∈ Fc. Assume that ξ = f(ξ1, . . . , ξn). By definition of a
context, we have: C⌊ξ⌋Φ = f(C⌊ξ1⌋Φ, . . . ,C⌊ξn⌋Φ). Thus we can applied our inductive hypothesis
on ξi, for i ∈ {1 . . . n}. This allows us to deduce that C⌊ξiθ⌋Φ = C⌊ξi⌋ΦΘ. Hence, we have that

C⌊ξθ⌋Φ = C⌊f(ξ1, . . . , ξn)θ⌋Φ
= f(C⌊ξ1θ⌋Φ, . . . ,C⌊ξnθ⌋Φ)
= f(C⌊ξ1⌋Φ, . . . ,C⌊ξn⌋Φ)Θ
= C⌊f(ξ1, . . . , ξn)⌋ΦΘ
= C⌊ξ⌋ΦΘ

This allows us to conclude.

Lemma 8.2. Any rule in Figure 7.1 and Figure 7.2 transforms a normalised well-formed con-
straint system into a pair of constraint systems that are also well-formed after normalisation. For
the rule Dest, we assume that its application is not useless.

Proof. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a normalised well-formed constraint system
and let Rule(p̃) be a rule. Let C1 and C2 be the two constraint systems obtained by application
of Rule(p̃) on C. In the case where the normalisation of C1 and C2 is ⊥, the result trivially holds
thus we will assume that C1↓ 6=⊥ and C2↓ 6=⊥. We show the result by base analysis on the rule
Rule(p̃).

Case Rule(p̃) = Cons(X, f): The rule Cons only adds the inequation root(X) 6= f on Er(C2).
Thus, we have that C2↓ = C2 and C2 trivially satisfies all the properties of Definition 8.2, except

for the property 6. But Er(C2) = Er(C) ∧ root(X) 6= f. Since C is a well-formed constraint
system, then Er(C) satisfies Property 6. Furthermore, since f ∈ Fc, then root(X) 6= f also satisfies
Property 6. We can conclude that C2 is a well-formed constraint system.

On the other hand, we have that Er(C1) = Er(C)∧X
?
= f(X1, . . . , Xn), D(C1) = D(C)\{X, i

?

⊢

t} ∪ {X1, i
?

⊢ x1; . . . ; Xn, i
?

⊢ xn}, Eq(C1) = Eq(C) ∧ t
?
= f(x1, . . . , xn) and Φ(C) = Φ(C1). Let

σ = mgu(t
?
= f(x1, . . . , xn)) and θ = mgu(X

?
= f(X1, . . . , Xn)). By hypothesis, we know that C

is normalised which means that X 6∈ dom(mgu(Er(C))) and vars1(t) ∩ dom(mgu(Eq(C))) = ∅.
Since X1, . . . , Xn, x1, . . . , xn are fresh variables, we can deduce mgu(Er(C1)) = mgu(Er(C))θ and
mgu(Eq(C1)) = mgu(Eq(C))σ.

Furthermore, C normalised also implies that Φ(C)mgu(Er(C))mgu(Eq(C)) = Φ(C) and also that
D(C)mgu(Eq(C)) = D(C). Thus, we can deduce that Φ(C1↓) = Φ(C)θσ and D(C1↓) = D(C1)σ.
We now prove the different properties one by one.

Let (ξ, j ⊲ u) ∈ Φ(C1↓). Since Φ(C1↓) = Φ(C)θσ, we know that there exists (ξ′, j ⊲ u′) ∈ Φ(C)
such that ξ = ξ′θ and u = u′σ.

1. this property is direct from Lemma C.8 and C being a well-formed constraint system.

2. this property is direct from Lemma C.8 and C being a well-formed constraint system.

3. We know that ξ = ξ′θ where θ = mgu(X
?
= f(X1, . . . , Xn)). But paramC

max(X) = i =
paramC1↓

max(Xj), we deduce that paramC
max(ξ) = paramC1↓

max(ξ
′). Since C is well-formed, we have

paramC
max(ξ) ≤ j and so paramC1↓

max(ξ
′) ≤ j.

4. Let Y ∈ vars2(ξ) and y ∈ vars1(Y acc1(C1↓)). If Y ∈ {X1, . . . , Xn} then there exists z such
that y ∈ vars1(zσ) and z ∈ vars1(t). Thus z ∈ vars1(Xacc1(C)). But ξ = ξ′θ thus it implies
that X ∈ vars2(ξ′). Since C is well formed, we deduce that there exists (ζ, k ⊲ w) ∈ Φ(C)
such that z ∈ vars1(w) and k ≤ j. We already showed that Φ(C1↓) = Φ(C)θσ hence

y ∈ vars1(wσ) with (ζθ, k
?

⊢ wσ) ∈ Φ(C1↓). The result holds
If Y 6∈ {X1, . . . , Xn}, then Y ∈ vars2(ξ′) and Y 6= X. Hence Y ∈ vars2(D(C)). Since
D(C1↓) = D(C1)σ, Φ(C1↓) = Φ(C)θσ and C is well-formed, we deduce the result.

5. Let λ be a ground substitution such that for all Y ∈ vars2(ξ), (Y λ)Φ(C1↓)λ↓ = vλ where

(Y, k
?

⊢ v) ∈ D(C1↓). Let λ′ the substitution such that λ′ = θσλ. We show that for all

Z ∈ vars2(ξ′), (Zλ′)Φ(C)λ′↓ = wλ′ where (Z, k
?

⊢ w) ∈ D(C). Let Z ∈ vars2(ξ′). Since
ξ = ξ′θ, we have to distinguish two cases :

— Either Z = X: In this case, we have that Zλ′ = Xθσλ = f(X1, . . . , Xn)λ. But in
such a case, we have that X1, . . . , Xn ∈ vars2(ξ) and so by hypothesis, we have that
(Xkλ)Φ(C1↓)λ↓ = xkλ, for all k ∈ {1, . . . , n}. Since Φ(C1↓) = Φ(C)θσ, we can deduce
that (Xkλ)Φ(C)λ

′↓ = xkλ = xkλ
′. Thus (Zλ′)(Φ(C)λ′)↓ = f(x1, . . . , xn)λ

′ = tλ′.

— Or Z ∈ vars2(ξ)\{X1, . . . , Xn}: In such a case, we have that Zθσ = Z and so Zλ′ = Zλ.
Furthermore, we know that Φ(C1↓) = Φ(C)θσ and so Φ(C1↓)λ = Φ(C)λ′. Thus, we have

that (Zλ′)Φ(C)λ′↓ = (Zλ)Φ(C1↓)λ↓. By hypothesis, there exists Z, k
?

⊢ v ∈ D(C1↓)

such that (Zλ)Φ(C1↓)λ↓ = vλ. But D(C1↓) = D(C1)σ and D(C1) = D(C)\{X, i
?

⊢

t}∪{X1, i
?

⊢ x1; . . . ; Xn, i
?

⊢ xn}. Thus there exists Z, k
?

⊢ v′ ∈ D(C) such that v = v′σ

and so vλ = v′λ′. We can conclude that (Zλ′)Φ(C)λ′↓ = v′λ′ with Z, k
?

⊢ v′ ∈ D(C).

By hypothesis, we know that C is a well-formed constraint system and so we deduce that
(ξ′λ′)(Φ(C)λ′)↓ = u′λ′. But ξ′λ′ = ξλ, u′λ′ = uλ and Φ(C)λ′ = Φ(C1↓)λ. Thus we conclude
that (ξλ)Φ(C1↓)λ = uλ.

6. Let (ζ1
?

6= ζ2) ∈ Er(C1↓). By the normalisation, we know that there exists (ζ ′1
?

6= ζ ′2) ∈ Er(C1)
such that ζ ′1θ = ζ1 and ζ ′2θ = ζ2. Moreover, by the rule Cons, the sets of inequations of

Er(C) and Er(C1) are the same thus (ζ ′1
?

6= ζ ′2) ∈ Er(C). Since C is well formed, we deduce
that ζ ′1 ∈ X 2 and there exists k ∈ N and a term u such that (ζ ′2, k ⊲ u) ∈ Φ(C). Since
Φ(C1↓) = Φ(C)θσ, we deduce that (ζ2, k ⊲ uσ) ∈ Φ(C1↓).
But path(ζ ′2) exists thanks to C being well-formed (Property 1) thus root(()ζ ′2) 6∈ Fc. Since
f ∈ Fc and ζ1 = ζ ′1θ, we deduce that ζ ′1 6= X otherwise the inequation would have disappeared
by the normalisation rule (Nneq2). Thus ζ1 ∈ X 2 and so the result holds.

Let (root(ζ)
?

6= g) ∈ Er(C1↓). Thanks to the normalisation, we know that ζ ∈ X 2 otherwise
the inequation would have disappeared by the normalisation rules (Ntop2). Hence the result
holds.

7. Let Y ∈ vars2(C1↓). If Y ∈ {X1, . . . , Xn}, then since θ = {X
?
= f(X1, . . . , Xn)} and Y is

fresh, we have that Ymgu(Er(C1↓)) = Y and so we deduce that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) =
Y ∈ T (Fc,F

∗
d · AX ∪ X 2). Otherwise, we have that Y ∈ vars2(C). Note that C is well-

formed, thus we deduce that C⌊Ymgu(Er(C))⌋Φ(C) ∈ T (Fc,F∗
d · AX ∪ X 2). But the path of

any recipe in Φ(C) is closed which means that any context with Φ(C1↓) and Φ(C) are the
same. More specifically, we have C⌊Ymgu(Er(C))⌋Φ(C) = C⌊Ymgu(Er(C))⌋Φ(C1↓). Note that
mgu(Er(C1↓)) = mgu(Er(C))θ, θ = {X 7→ f(X1, . . . , Xn)} and f ∈ Fc. Thus by Lemma C.9,
we have that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C)θ ∈ T (Fc,F

∗
d · AX ∪ X 2).

Let ζ ∈ st(Ymgu(Er(C1↓)) such that path(ζ) ∈ F∗
d · AX . Since θ = {X 7→ f(X1, . . . , Xn)}

with f ∈ Fc and mgu(Er(C1)) = mgu(Er(C))θ, then there exists ζ ′ ∈ st(Ymgu(Er(C))) such
that ζ = ζ ′θ. Since C is well-formed, then there exists k and u such that (ζ ′, k ⊲ u) ∈ Φ(C).
But Φ(C1↓) = Φ(C)θσ. Hence (ζ, k ⊲ uσ) ∈ Φ(C1↓). Hence the result holds.

8. Assume that (ξ, j ⊲ u) ∈ NoUse(C1↓). Since NoUse(C1↓) = NoUse(C)θσ, we have that (ξ′, j ⊲
u′) ∈ NoUse(C). Since C is a well-formed constraint system, we deduce that there exists
Y ∈ vars2(C) such that C⌊Ymgu(Er(C))⌋Φ(C)acc

1(C) = u′ and paramC
max(Ymgu(Er(C))) < j.

We have seen that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C)θ when proving the

previous item. Furthermore, we know that D(C1↓) = D(C1)σ and D(C1) = D(C)\{X, i
?

⊢

t}∪{X1, i
?

⊢ x1; . . . ; Xn, i
?

⊢ xn}. Thus, we deduce that acc1(C)σ = θacc1(C1↓). This allows
us to conclude that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓)acc

1(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C)θacc
1(C1↓) =

u′σ = u.
At last, we already have that Ymgu(Er(C1↓)) = Ymgu(Er(C))θ. Thus, since paramC

max(X) =
paramC1↓

max(f(X1, . . . , Xn)) = i, then paramC
max(Ymgu(Er(C))) < j implies that paramC1↓

max(Y
mgu(Er(C1↓)) < j.

9. Similar to Property 7

10. Let (Z, k
?

⊢ u) ∈ D(C1↓). Assume that Z 6∈ S2(C1) and let x ∈ vars1(u). If X ∈ S2(C) then it

implies that there exists (Z, k
?

⊢ u′) ∈ D(C) such that u = u′σ. There exists a variable z such
that x ∈ vars1(zσ) and z ∈ vars1(u′). Since C is well-formed, we deduce that there exists

(Y, p
?

⊢ w′) ∈ D(C) such that z ∈ vars1(w′) and p < k. Thus x ∈ vars1(w′σ). If Y 6= X then

we deduce that (Y, p
?

⊢ w′σ) ∈ D(C1↓) and so the result holds. If Y = X, then t = w′ and

p = i. Since σ = mgu(t
?
= f(x1, . . . , xn)), we deduce that there exists ℓ ∈ {1 . . . , n} such that

x ∈ vars1(xℓσ). But (Xℓ, i
?

⊢ xℓ) ∈ D(C1) with k < i and so the result holds.
Assume now that X 6∈ S2(C). If Z 6∈ {X1, . . . , Xn} then the proof is similar to the case where
X ∈ S2(C) and so the result holds. If X ∈ {X1, . . . , Xn} then there exists ℓ ∈ {1, . . . , n}

such that x ∈ vars1(xℓσ). Since σ = mgu(t
?
= f(x1, . . . , xn)), we deduce that x ∈ vars1(tσ).

Hence, there exists z such that x ∈ vars1(zσ) and z ∈ vars1(t). Once again, thanks to C

being-well formed, there exists (Y, p
?

⊢ w′) ∈ D(C) such that p < k and z ∈ vars1(w′) and so

x ∈ vars1(w′σ). But (Y, p
?

⊢ w′σ) ∈ D(C1↓) thus the result holds.

Case Rule(p̃) = Axiom(X, path): By definition of Axiom, we have X, i
?

⊢ u ∈ D(C) and ξ, j ⊲ v
in Φ(C) such that i ≥ j, path(ξ) = path and (ξ, j ⊲ v) 6∈ NoUse(C). The rule Axiom only adds

the inequation X
?

6= ξ on Er(C2). Thus, we have that C2↓ = C2 and C2 trivially satisfies all the

properties of Definition 8.2, except for the property 6. But Er(C2) = Er(C)∧X
?

6= ξ. Since C is a

well-formed constraint system, then Er(C) satisfies Property 6. Furthermore, X
?

6= ξ also satisfies
Property 6 by definition. We can conclude that C2 is a well-formed constraint system.

On the other hand, we have that Er(C1) = Er(C)∧X
?
= ξ, D(C1) = D(C)\{X, i

?

⊢ u}, Eq(C1) =

Eq(C) ∧ u
?
= v and Φ(C) = Φ(C1). Let σ = mgu(u

?
= v) and θ = mgu(X

?
= ξ). By hypothesis,

C is a normalized constraint system which means that ({X} ∪ vars2(ξ)) ∩ dom(mgu(Er(C))) = ∅
and vars1(u, v) ∩ dom(mgu(Eq(C))) = ∅. Thus, we can deduce mgu(Er(C1)) = mgu(Er(C))θ and
mgu(Eq(C1)) = mgu(Eq(C))σ. Since C is normalized, we have that Φ(C)mgu(Er(C))mgu(Eq(C)) =
Φ(C) and D(C)mgu(Eq(C)) = D(C). Thus, we can deduce that Φ(C1↓) = Φ(C)θσ and D(C1↓) =

D(C)σ\{X, i
?

⊢ uσ}. We now prove the different properties one by one.

Let (ζ, k ⊲ w) ∈ Φ(C1↓). Since Φ(C1↓) = Φ(C)θσ, we know that there exists (ζ ′, k ⊲ w′) ∈ Φ(C)
such that ζ = ζ ′θ and w = w′σ.

1. this property is direct from Lemma C.8 and C being a well-formed constraint system.

2. this property is direct from Lemma C.8 and C being a well-formed constraint system.

3. We know that ζ = ζ ′θ where θ = {X 7→ ξ}. But C is a well-formed constraint system hence
we deduce that paramC

max(ξ) ≤ j. Since paramC
max(X) = i ≥ j ≥ paramC

max(ξ), we deduce that
paramC1↓

max(ζ) ≤ paramC
max(ζ

′) ≤ j. Hence the result holds.

4. Let Y ∈ vars2(ζ) and y ∈ vars1(Y acc1(C1↓)). Y ∈ vars2(D(C1↓)) which means that Y ∈
vars2(D(C)). Since D(C1↓) = D(C1)σ, Φ(C1↓) = Φ(C)θσ and C is well-formed, we deduce
the result.

5. Let λ be a substitution such that for all Y ∈ vars2(ζ), (Y λ)Φ(C1↓)λ↓ = rλ where (Y, ℓ
?

⊢
r) ∈ D(C1↓). Let λ′ the substitution such that λ′ = θσλ. We show that for all Y ∈ vars2(ζ ′),

(Y λ′)Φ(C)λ′↓ = rλ′ where (Y, ℓ
?

⊢ r) ∈ D(C). Let Y ∈ vars2(ζ ′). Since ζ = ζ ′θ, we have to
distinguish two cases :

— Either Y = X: In this case, we have that ξ ∈ st(ζ). Thus, by hypothesis, we have

that for all Z ∈ vars2(ξ), (Zλ)Φ(C1↓)λ↓ = tλ, where (Z,m
?

⊢ t) ∈ D(C1↓). But

(Z,m
?

⊢ t) ∈ D(C1↓) implies that there exist t′ such that (Z,m
?

⊢ t′) ∈ D(C) and
t = t′σ. Since Φ(C1↓) = Φ(C)θσ, we can deduce that (Zλ)Φ(C)λ′↓ = t′σλ = t′λ′.
At last, θ = {X 7→ ξ} implies that Zθ = Z and so Zλ = Zλ′. Thus we have that
(Zλ′)Φ(C)λ′↓ = tλ′. Since C is a well-formed constraint system, we can deduce that
(ξλ′)Φ(C)λ′↓ = vλ′. Since Xθ = ξ and λ′ = θσλ, we have that ξλ′ = Xλ′. With
uσ = vσ, we can conclude that (Xλ′)Φ(C)λ′↓ = uλ′.

— Or Y ∈ vars2(ζ): In such a case, we have that Y θσ = Y and so Y λ′ = Y λ. Further-
more, we know that Φ(C1↓) = Φ(C)θσ and so Φ(C1↓)λ = Φ(C)λ′. Thus, we have that

(Y λ′)Φ(C)λ′↓ = (Y λ)Φ(C1↓)λ↓. By hypothesis, there exists Y, ℓ
?

⊢ r ∈ D(C1↓) such

that (Y λ)Φ(C1↓)λ↓ = rλ. However, we have that D(C1↓) = D(C)σ\{X, i
?

⊢ uσ} and

Y 6= X. Thus there exists Y, ℓ
?

⊢ r′ ∈ D(C) such that r = r′σ and so rλ = r′λ′. We can

conclude that (Y λ′)Φ(C)λ′↓ = r′λ′ with Y, ℓ
?

⊢ r′ ∈ D(C).

By hypothesis, we know that C is well-formed and so (ζ ′λ′)(Φ(C)λ′)↓ = w′λ′. We have that
ζ ′λ′ = ζλ, w′λ′ = wλ and Φ(C)λ′ = Φ(C1↓)λ. Thus we conclude that (ζλ)Φ(C1↓)λ = wλ.

6. Let (ζ1
?

6= ζ2) ∈ Er(C1↓). By the normalisation, we know that there exists (ζ ′1
?

6= ζ ′2) ∈ Er(C1)
such that ζ ′1θ = ζ1 and ζ ′2θ = ζ2. Moreover, by the rule Axiom, the sets of inequations of

Er(C) and Er(C1) are the same thus (ζ ′1
?

6= ζ ′2) ∈ Er(C). Since C is well formed, we deduce
that ζ ′1 ∈ X 2 and there exists k ∈ N and a term u such that (ζ ′2, k ⊲ u) ∈ Φ(C). Since
Φ(C1↓) = Φ(C)θσ, we deduce that (ζ2, k ⊲ uσ) ∈ Φ(C1↓).

But thanks to C being well-formed (Property 1), path(ζ ′2) and path(ξ) exists, are closed
and if path(ζ ′2) = path(ξ′) then ζ ′2 = ξ′. But ξ = ξ′θ, ζ2 = ζ ′2θ path(ζ ′2) = path(ζ2) and
path(ξ) = path(ξ′). Thus we deduce that ζ2 = ξ implies that ζ1 6= ξ otherwise C1↓ =⊥ by
the normalisation rule (Nt2).

Moreover, by definition of the path of recipe, path(ξ) 6= path(ζ2) implies ξ 6= ζ2. Thus we
deduce that ζ1 6= ξ otherwise the inequation would have disappeared by the normalisation
rule (Nneq2). Thus ζ1 ∈ X 2 and so the result holds.

7. Let Y ∈ vars2(C1↓). We have mgu(Er(C1↓)) = mgu(Er(C))θ with θ = {X 7→ ξ}. Further-
more, we know that path(ξ) ∈ F∗

d · AX since C is well-formed. Let Θ = {X 7→ path(ξ)}. By
Lemma C.9, we have that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C1↓)Θ. However,
we have that C⌊Ymgu(Er(C))⌋Φ(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C) and since C is well-formed, we
also have that C⌊Ymgu(Er(C))⌋Φ(C) ∈ T (Fc,F∗

d · AX ∪ X 2). Since path(ξ) ∈ F∗
d · AX , we

conclude that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) ∈ T (Fc,F
∗
d · AX ∪ X 2).

Let ζ ∈ st(Ymgu(Er(C1↓)) such that path(ζ) ∈ F∗
d · AX . Since θ = {X 7→ ξ} and

mgu(Er(C1)) = mgu(Er(C))θ, then (a) either ζ ∈ st(ξ) with (ξ, i ⊲ v) ∈ Φ(C) and (ξ, i ⊲
vσ) ∈ Φ(C1↓) or (b) there exists ζ ′ ∈ st(Ymgu(Er(C))) such that ζ = ζ ′θ. In both cases,
since C is well-formed (Property 7), then there exists k and u such that (ζ ′, k ⊲ u) ∈ Φ(C).
But Φ(C1↓) = Φ(C)θσ. Hence (ζ, k ⊲ uσ) ∈ Φ(C1↓). Hence the result holds.

8. Assume that (ζ, k ⊲ w) ∈ NoUse(C1↓). Since NoUse(C1↓) = NoUse(C)θσ, we have that
(ζ ′, k ⊲ w′) ∈ NoUse(C). Since C is well-formed, we deduce that there exists Y ∈ vars2(C)
such that C⌊Ymgu(Er(C))⌋Φ(C)acc

1(C) = w′ and paramC
max(Ymgu(Er(C))) < k. We have

seen that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C)Θ when proving the previous
point. We have that path(ξ)acc1(C)σ = vσ = uσ = Xacc1(C)σ. Thus, we deduce that

Θacc1(C)σ = acc1(C)σ. Furthermore, we know that D(C1↓) = D(C)σ\{X, i
?

⊢ uσ} and
Φ(C1↓) = Φ(C)θσ which means that acc1(C)σ = Θacc1(C1↓). This allows us to conclude that
w = w′σ = C⌊Ymgu(Er(C))⌋Φ(C)acc

1(C)σ = C⌊Ymgu(Er(C1↓))⌋Φ(C1↓)acc
1(C1↓).

Lastly, since C is a well formed constraint system, we know that for all Z ∈ vars2(ξ),
paramC

max(Z) ≤ j ≤ i = paramC
max(X). Since Ymgu(Er(C1↓)) = Ymgu(Er(C))θ, then

paramC
max(Ymgu(Er(C))) < k implies that paramC1↓

max(Ymgu(Er(C1↓))) < k.

9. Similar to Property 7

10. Let (Z, k
?

⊢ t) ∈ D(C1↓). Assume that Z 6∈ S2(C1) and let x ∈ vars1(u). It implies

that there exists (Z, k
?

⊢ t′) ∈ D(C) such that t = t′σ. Hence, there exists a variable z
such that x ∈ vars1(zσ) and z ∈ vars1(t′). Since C is well-formed, we deduce that there

exists (Y, p
?

⊢ w′) ∈ D(C) such that z ∈ vars1(w′) and p < k. Thus x ∈ vars1(w′σ). If

Y 6= X then we deduce that (Y, p
?

⊢ w′σ) ∈ D(C1↓) and so the result holds. If Y = X,

then u = w′ and p = i. Since σ = mgu(u
?
= v), we deduce that x ∈ vars1(vσ). But

(ξ, j
?

⊢ vσ) ∈ Φ(C1↓) with j ≤ i. Thus by the origination property of a constraint system,

there exists (Y2, p2
?

⊢ w2) ∈ D(C1↓) such that p2 < j and x ∈ vars1(w2). Since p2 < j ≤ i < k
then the result holds.

Case Rule(p̃) = Dest(ξ, ℓ → r, i): By definition of Dest, we have that (ξ, j ⊲ v) ∈ Φ(C) such
that j ≤ i, (ξ, j ⊲ v) 6∈ NoUse(C), X2, . . . , Xn fresh variables and f(u1, . . . , un) → w a fresh

renaming of ℓ → r. The rule Dest only adds a non-deducibility constraint in C2. Hence, we have
that C2↓ = C2 and since C is well formed, we easily deduce that C2 is also well-formed.

On the other hand, we have that D(C1) = D(C)\{X2, i
?

⊢ u2; . . . ; Xn, i
?

⊢ un}, Eq(C1) =

Eq(C) ∧ u1
?
= v and Φ(C1) = Φ(C) ∪ {f(ξ,X2, . . . , Xn), i ⊲ w}. By hypothesis, we know that

C is normalised which means that vars1(v) ∩ dom(mgu(Eq(C))) = ∅. Let σ = mgu(u1
?
= v).

Since f(u1, . . . , un) → w is a fresh renaming of ℓ → r and for all k ∈ {1, . . . , k}, vars1(uk) ⊆
vars1(u1), we can deduce mgu(Eq(C1)) = mgu(Eq(C))σ. Furthermore, C normalised also implies
that Φ(C)mgu(Eq(C)) = Φ(C) and D(C)mgu(Eq(C)) = D(C). Thus, we can deduce that Φ(C1↓) =

Φ(C)σ ∪ {f(ξ,X2, . . . , Xn) ⊲ wσ} and D(C1↓) = D(C)σ ∪ {X2, i
?

⊢ u2σ; . . . , Xn, i
?

⊢ unσ}. We now
prove the different properties one by one.

Let (ζ, k ⊲ u) ∈ Φ(C1↓). Since Φ(C1↓) = Φ(C)σ∪{f(ξ,X2, . . . , Xn) ⊲ wσ}, we know that either
there exists u′ such that (ζ, k ⊲ u′) ∈ Φ(C) with u′σ = u, or (ζ, k ⊲ u) = (f(ξ,X2, . . . , Xn), i ⊲ wσ)

1. If (ζ, k ⊲ u) = (f(ξ,X2, . . . , Xn), i ⊲ wσ), we have that path(ζ) = f · path(ξ). Since C is
well-formed, we have that path(ξ) exists and is closed. Thus path(ζ) exists and is closed.
Furthermore, since the rule Dest is never applied if its application is useless, then we deduce
that the frame Φ(C) does not contain f(ξ, ζ2, . . . , ζn), j ⊲ w′ and j ≤ i and root(ℓ) = f. Thus,
with C being well formed hence satisfies Property 1, we can conclude that for all distinct
frame elements (ξ1, i1 ⊲ u1) and (ξ2, i2 ⊲ u2) in Φ(C1↓, path(ξ1) 6= path(ξ2).

2. If (ζ, k ⊲ u) = (f(ξ,X2, . . . , Xn), i ⊲ wσ), since we know that (ξ, j ⊲ vσ) ∈ Φ(C1↓), the
result trivially holds. Otherwise, we have that (ζ, k ⊲ u′) ∈ Φ(C) and since C is well-formed,
we easily conclude.

3. If (ζ, k ⊲ u) = f(ξ,X2, . . . , Xn) then paramC1↓
max(ζ) = max(paramC1↓

max(ξ), i). But paramC1↓
max(ξ) =

paramC
max(ξ) thus since C is well-formed, we deduce that paramC1↓

max(ξ) ≤ j. Since j ≤ i by
definition, we conclude that paramC1↓

max(ζ) = i thus the result holds.

4. Let Y ∈ vars2(ζ) and y ∈ vars1(Y acc1(C1↓)). If Y ∈ {X2, . . . , Xn} then y ∈ vars1(vσ).
Indeed, our rewrite rule satisfies vars1(u2, . . . , un) ⊆ vars1(u1) thus with σ = mgu(u1, v)
and y ∈ vars1(u2σ, . . . , unσ) the result holds.
If Y 6∈ {X2, . . . , Xn} then Y ∈ vars2(D(C)) and so there exists z such that y ∈ vars1(zσ) and
z ∈ vars1(Y acc1(C)). Since C is well-formed, we deduce that there exists (β,m ⊲ t) ∈ Φ(C)
such that m ≤ k and z ∈ vars1(t). But (β,m ⊲ tσ) ∈ Φ(C1↓) hence y ∈ vars1(tσ). Thus the
result holds.

5. Let λ be a substitution such that for all Y ∈ vars2(ζ), we have that (Y λ)Φ(C1↓)λ↓ = rλ

where (Y, k
?

⊢ r) ∈ D(C1↓). Let λ′ = σλ. Actually, Y ∈ vars2(ζ) and (ζ, k ⊲ u′) ∈ Φ(C)

implies that there exists r′ such that (Y, k
?

⊢ r′) ∈ D(C) and r′σ = r. Since Y σλ = Y λ
and Φ(C1↓) = Φ(C)σ ∪ {f(ξ,X2, . . . , Xn) ⊲ wσ}, we can deduce that (Y λ′)Φ(C)σλ↓ =
(Y λ′)Φ(C)λ′↓ = r′λ′. Since C is well-formed, we have that (ζλ′)(Φ(C)λ′)↓ = u′λ′. Since
ζσλ = ζλ and u′λ′ = uλ, we can deduce that (ζλ)Φ(C1↓)λ↓ = uλ.

6. Er(C1↓) = Er(C) thus the result trivially holds.

7. Let X ∈ vars2(C1↓). We have that Er(C1↓) = Er(C). Let θ = mgu(Er(C)). We show that
C⌊Xθ⌋Φ(C1↓) ∈ T (Fc,F

∗
d · AX ∪ X 2). If X ∈ {X2, . . . , Xn}, then the result trivially holds.

Otherwise, we have that X ∈ vars2(C). Since C is a well-formed constraint system, we know
that C⌊Xθ⌋Φ(C) ∈ T (Fc,F

∗
d ·AX ∪X 2). Thus for all Ξ ∈ st(C⌊Xθ⌋Φ(C)), root(Ξ) 6∈ Fd. Since

Φ(C1↓) = Φ(C)σ ∪ {f(ξ,X2, . . . , Xn) ⊲ wσ} and f ∈ Fd, we conclude that C⌊Xθ⌋Φ(C1↓) =
C⌊Xθ⌋Φ(C) ∈ T (Fc,F∗

d · AX ∪ X 2).
Let β ∈ st(Xmgu(Er(C1↓))) and path(β) ∈ F∗

d · AX . Since mgu(Er(C1↓)) = mgu(Er(C)),
then β ∈ st(Xmgu(Er(C))). Thanks to C being well-formed, we deduce that there exists k, u
such that (β, k ⊲ u) ∈ Φ(C) and so (β, k ⊲ uσ) ∈ Φ(C1↓). Hence the result holds.

8. Assume that (ζ, k ⊲ u) ∈ NoUse(C1↓). Since NoUse(C1↓) = NoUse(C)σ, we know that there
exists u′ such that (ζ, k ⊲ u′) ∈ Φ(C) and u′σ = u. Since C is a well formed constraint

system, we know that there exists X ∈ vars2(C) such that C⌊Xθ⌋Φ(C)acc
1(C) = u′ and

paramC
max(Xmgu(Er(C))) < k. Since mgu(Er(C)) = mgu(Er(C1↓)) and D(C)σ ⊆ D(C1↓), we

deduce that paramC1↓
max(Xmgu(Er(C1↓))) = paramC

max(Xmgu(Er(C))) < k

In the previous point, we have shown that C⌊Xθ⌋Φ(C) = C⌊Xθ⌋Φ(C1↓). Furthermore, we
have acc1(C1↓) = acc1(C)σ ∪ {f · path(ξ) 7→ wσ; X2 7→ u2σ; . . . ; Xn 7→ unσ}. Actually,
C⌊Xθ⌋Φ(C) = C⌊Xθ⌋Φ(C1↓) implies that f·, path(ξ), X2, . . . , Xn 6∈ st(C⌊Xθ⌋Φ(C1↓)). Hence, we
have that C⌊Xθ⌋Φ(C1↓)acc

1(C1↓) = C⌊Xθ⌋Φ(C)acc
1(C)σ = u′σ = u.

9. Similar to Property 7

10. Let (Z, k
?

⊢ u) ∈ D(C1↓). Assume that Z 6∈ S2(C1) and let x ∈ vars1(u). If Z 6∈ {X2, . . . , Xn}

then there exists (Z, k
?

⊢ u′) ∈ D(C) such that u = u′σ. There exists a variable z such that

x ∈ vars1(zσ) and z ∈ vars1(u′). Since C is well-formed, we deduce that there exists (Y, p
?

⊢

t′) ∈ D(C) such that z ∈ vars1(t′) and k < p. Thus x ∈ vars1(t′σ). But (Y, p
?

⊢ t′σ) ∈ D(C1↓)
hence the result holds.
If Z ∈ {X2, . . . , Xn} then there exists ℓ ∈ {2, . . . , n} such that x ∈ vars1(xℓσ). Since

σ = mgu(u1
?
= v), f(u1, . . . , un) → w is a renaming of ℓ → r and vars1(uℓ) ⊆ vars1(u1), we

deduce that x ∈ vars1(vσ). By the origination property of a constraint system, (ξ, j ⊲ vσ) ∈

Φ(C1↓) and x ∈ vars1(vσ) implies that there exists (Y, p
?

⊢ t) ∈ D(C1↓) such that p < j and
x ∈ vars1(t). But j ≤ i hence p < i = k and so the result holds.

Case Rule(p̃) = Eq-left-left(ξ1, ξ2): The rule Eq-left-left only adds the insequation u1

?

6=
u2 in C2. Since C is well-formed, we easily deduce that C2↓ is also well-formed.

On the other hand, we have that Φ(C1) = Φ(C), D(C1) = D(C), NoUse(C1) = NoUse(C),

Er(C) = Er(C1) and Eq(C1) = Eq(C) ∧ u1
?
= u2. Since C is a well formed constraint, we have

vars1(u1, u2) ∩ dom(mgu(Eq(C))) = ∅. Let σ = mgu(u1
?
= u2). We have that Φ(C1↓) = Φ(C)σ,

D(C1↓) = D(C)σ and NoUse(C1↓) = NoUse(C)σ. We have also that acc1(C1↓) = acc1(C)σ. Thus,
we easily deduce that C1↓ is a well-formed constraint system.

Case Rule(p̃) = Eq-left-right(ξ1, X2): This case is similar to the rule Eq-left-left. Let

σ = mgu(u1
?
= u2). We have that Φ(C1↓) = Φ(C)σ, D(C1↓) = D(C)σ and acc1(C1↓) = acc1(C)σ.

On the other hand, we have that NoUse(C1↓) = NoUse(C)σ ∪ {ξ1, i1 ⊲ u1σ}. Thus C1 easily
satisfies all the properties of Definition 8.2 except the property 8. We know that u1σ = u2σ

and X2, i2
?

⊢ u2σ ∈ D(C1↓). Furthermore, since C is normalised, we have that X2mgu(Er(C)) =
X2mgu(Er(C1↓)) = X2 and so C⌊X2mgu(Er(C1↓))⌋Φ(C1↓) = X2. Lastly, since X2acc

1(C1) = u2σ,
we deduce that C⌊X2mgu(Er(C1↓))⌋Φ(C1↓)acc

1(C1↓) = u1σ. Moreover, by definition of the rule
Eq-left-right, i1 > i2 hence we deduce that paramC1↓

max(X2) < i1.
For any frame element other than (ξ1, i1 ⊲ u1σ) the result holds since C is well-formed,

Φ(C1↓) = Φ(C)σ, D(C1↓) = D(C)σ and acc1(C1↓) = acc1(C)σ.

Case Rule(p̃) = Eq-right-right(X, ξ): By definition of the rule Eq-right-right, we have that

X, i
?

⊢ u ∈ D(C), ξ ∈ T (Fc, vars
2(D(C)), and ξacc1(C) = v. The rule Eq-right-right only adds

the insequation u
?

6= v in Eq(C2). Thus, we have that C2↓ = C2. Since C is well-formed, we also
have that C2↓ is a well-formed constraint system.

On the other hand, we have that Er(C1) = Er(C)∧X
?
= ξ, D(C1) = D(C)\{X, i

?

⊢ u}, Eq(C1) =

Eq(C) ∧ u
?
= v and Φ(C) = Φ(C1). By hypothesis, C is normalised which means that ({X} ∪

vars2(ξ)) ∩ dom(mgu(Er(C))) = ∅ and vars1(u, v) ∩ dom(mgu(Eq(C))) = ∅. Let σ = mgu(u
?
=

v) and θ = mgu(X
?
= ξ). We deduce that mgu(Er(C1)) = mgu(Er(C))θ and mgu(Eq(C1)) =

mgu(Eq(C))σ. Furthermore, since C is normalized, we have that Φ(C)mgu(Er(C))mgu(Eq(C)) =

Φ(C) and D(C)mgu(Eq(C)) = D(C). Thus, we can deduce that Φ(C1↓) = Φ(C)θσ and D(C1↓) =

D(C)σ\{X, i
?

⊢ uσ}. We now prove the different properties one by one.

Let (ζ, k ⊲ w) ∈ Φ(C1↓). Since Φ(C1↓) = Φ(C)θσ, we know that there exists (ζ ′, k ⊲ w′) ∈ Φ(C)
such that ζ = ζ ′θ and w = w′σ.

1. this property is direct from Lemma C.8 and C being a well-formed constraint system.

2. this property is direct from Lemma C.8 and C being a well-formed constraint system.

3. We know that ζ = ζ ′θ where θ = mgu(X
?
= ξ). By definition of the rule Eq-right-right,

paramC
max(ξ) ≤ paramC

max(X) = i. Since C is a well-formed constraint system hence we deduce
that paramC1↓

max(ζ
′θ) ≤ paramC

max(ζ
′) ≤ j. Hence the result holds.

4. Let Y ∈ vars2(ζ) and y ∈ vars1(Y acc1(C1↓))). Y ∈ vars2(D(C1↓)) implies that Y ∈
vars2(D(C)). Since D(C)σ ⊆ D(C1↓), we deduce that there exists z ∈ vars1(Y acc1(C)) such
that y ∈ vars1(zσ). Since C is well-formed, we deduce that there exists (β, j ⊲ v) ∈ Φ(C)
such that j ≤ k and z ∈ vars1(v). Hence (βθ, j ⊲ vσ) ∈ Φ(C1↓) and y ∈ vars1(vσ). Thus
the result holds.

5. Let λ be a substitution such that for all Y ∈ vars2(ζ), (Y λ)Φ(C1↓)λ↓ = rλ where (Y, ℓ
?

⊢
r) ∈ D(C1↓). Let λ′ the substitution such that λ′ = θσλ. We show that for all Y ∈ vars2(ζ ′),

(Y λ′)Φ(C)λ′↓ = rλ′ where (Y, ℓ
?

⊢ r) ∈ D(C). Let Y ∈ vars2(ζ ′). Since ζ = ζ ′θ, we have to
distinguish two cases :

— Either Y = X: In this case, we have that ξ ∈ st(ζ). Thus, by hypothesis, we have

that for all Z ∈ vars2(ξ), (Zλ)Φ(C1↓)λ↓ = tλ, where (Z,m
?

⊢ t) ∈ D(C1↓). But

(Z,m
?

⊢ t) ∈ D(C1↓) implies that there exist t′ such that (Z,m
?

⊢ t′) ∈ D(C) and
t = t′σ. Since Φ(C1↓) = Φ(C)θσ, we deduce that (Zλ)Φ(C)λ′↓ = t′σλ = t′λ′. Moreover,
θ = {X 7→ ξ} implies that Zθ = Z and so Zλ = Zλ′. Thus we have that (Zλ′)Φ(C)λ′↓ =
t′λ′ = Zacc1(C)λ′. Since ξ ∈ T (Fc, vars

2(D(C))), we deduce that (ξλ′)Φ(C)λ′↓ =
ξacc1(C)λ′ = vλ′. Since Xθ = ξ and λ′ = θσλ, we have that ξλ′ = Xλ′. With uσ = vσ,
we can conclude that (Xλ′)Φ(C)λ′↓ = uλ′.

— Or Y ∈ vars2(ζ): In such a case, we have that Y θσ = Y and so Y λ′ = Y λ. Fur-
thermore, we know that Φ(C1↓) = Φ(C)θσ and so Φ(C1↓)λ = Φ(C)λ′. Thus, we have

that (Y λ′)Φ(C)λ′↓ = (Y λ)Φ(C1↓)λ↓. By hypothesis, there exists Y, ℓ
?

⊢ r ∈ D(C1↓)

such that (Y λ)Φ(C1↓)λ↓ = rλ. Since D(C1↓) = D(C)σ\{X, i
?

⊢ uσ} and Y 6= X, there

exists Y, ℓ
?

⊢ r′ ∈ D(C) such that r = r′σ and so rλ = r′λ′. We can conclude that

(Y λ′)Φ(C)λ′↓ = r′λ′ with Y, ℓ
?

⊢ r′ ∈ D(C).

By hypothesis, we know that C well-formed. Hence, we have that (ζ ′λ′)(Φ(C)λ′)↓ = w′λ′.
Since ζ ′λ′ = ζλ, w′λ′ = wλ and Φ(C)λ′ = Φ(C1↓)λ, we conclude that (ζλ)Φ(C1↓)λ = wλ.

6. We know that ξ ∈ T (Fc,AX) hence this case is similar to the proof of Property 6 for the
rule Cons.

7. Let Y ∈ vars2(C1↓). We have mgu(Er(C1↓)) = mgu(Er(C))θ with θ = {X 7→ ξ}. Fur-
thermore, we know that ξ ∈ T (Fc, vars

2(D(C))) and so C⌊ξ⌋Φ(C1↓) = ξ ∈ T (Fc,X
2). By

Lemma C.9, we have that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C1↓)θ. We have
that C⌊Ymgu(Er(C))⌋Φ(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C) and C⌊Ymgu(Er(C))⌋Φ(C) ∈ T (Fc,F∗

d ·
AX ∪X 2) (since C is well-formed). Since we have that ξ ∈ T (Fc, vars

2(D(C))), we conclude
that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) ∈ T (Fc,F

∗
d · AX ∪ X 2).

Let ζ ∈ st(Ymgu(Er(C1↓))) such that path(ζ) ∈ F∗
d · AX . We know that mgu(Er(C1↓)) =

mgu(Er(C))θ. But θ = mgu(X
?
= ξ) with ξ ∈ T (Fc,AX). Hence path(ζ) ∈ F∗

d · AX implies
that there exists ζ ′ ∈ st(Ymgu(Er(C))) such that ζ = ζ ′θ. Since C is well-formed, we deduce

that there exists k, w such that (ζ ′, k ⊲ w) ∈ Φ(C). Thus (ζ ′θ, k ⊲ wσ) ∈ Φ(C1↓) and so the
result holds.

8. Assume that (ζ, k ⊲ w) ∈ NoUse(C1↓). Since NoUse(C1↓) = NoUse(C)θσ, we have that
(ζ ′, k ⊲ w′) ∈ NoUse(C). Since C is well-formed, we deduce that there exists Y ∈ vars2(C)
such that C⌊Ymgu(Er(C))⌋Φ(C)acc

1(C) = w′ and paramC
max(Ymgu(Er(C))) < k. As shown in

the previous point, we have that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C)θ. Fur-
thermore, we have ξacc1(C)σ = vσ = uσ = Xacc1(C)σ. Thus, we deduce that θacc1(C)σ =

acc1(C)σ. Moreover, we know that D(C1↓) = D(C)σ\{X, i
?

⊢ uσ} and Φ(C1↓) = Φ(C)θσ
which means that acc1(C)σ = θacc1(C1↓). We can conclude that C⌊Ymgu(Er(C1↓))⌋Φ(C1↓)

acc1(C1↓) = C⌊Ymgu(Er(C))⌋Φ(C)acc
1(C)σ = w′σ = w. Lastly, for all Z ∈ vars2(ξ),

paramC
max(Z) ≤ i = paramC

max(X). Since Ymgu(Er(C1↓)) = Ymgu(Er(C))θ, we conclude
that paramC

max(Ymgu(Er(C))) < k implies that paramC1↓
max(Ymgu(Er(C1↓))) < k.

9. Similar to Property 7

10. Let (Z, k
?

⊢ t) ∈ D(C1↓). Assume that Z 6∈ S2(C1) and let x ∈ vars1(u). It implies that

there exists (Z, k
?

⊢ t′) ∈ D(C) such that t = t′σ. Hence, there exists a variable z such
that x ∈ vars1(zσ) and z ∈ vars1(t′). Since C is well-formed, we deduce that there exists

(Y, p
?

⊢ w′) ∈ D(C) such that z ∈ vars1(w′) and p < k. Thus x ∈ vars1(w′σ). If Y 6= X then

we deduce that (Y, p
?

⊢ w′σ) ∈ D(C1↓) and so the result holds. If Y = X, then u = w′ and

p = i. Since σ = mgu(u
?
= v), we deduce that x ∈ vars1(vσ). Moreover, by construction

of v, it implies that there exists (Y ′, p′
?

⊢ u′) ∈ D(C1↓) such that Y ′ ∈ vars2(ξ), p′ ≤ i and
x ∈ vars1(u′). Since p′ ≤ i = p < k, we deduce that p′ < k and so the result holds.

Case Rule(p̃) = Ded-st(ξ, f): The rule Ded-st only adds a non-deducibility constraint in C2.
Thus, we have that C2↓ = C2 and since C is a well formed constraint system, we easily deduce that
C2 is also well-formed.

On the other hand, we have that Φ(C1) = Φ(C), D(C1) = D(C) ∪ {X1,m
?

⊢ x1; . . . ; Xn,m
?

⊢

xn}, NoUse(C1) = NoUse(C), Er(C) = Er(C1) and Eq(C1) = Eq(C) ∧ u
?
= f(x1, . . . , xn) where

x1, . . . , xn are fresh variables. Since C is well-formed, we have vars1(u) ∩ dom(mgu(Eq(C))) = ∅.

Let σ = mgu(u
?
= f(x1, . . . , xn)). We have that Φ(C1↓) = Φ(C)σ, D(C1↓) = D(C)σ ∪ {X1,m

?

⊢

x1σ; . . . ; Xn,m
?

⊢ xnσ} and NoUse(C1↓) = NoUse(C)σ. Since the variables X1, . . . , Xn do not

appear in the frame, the facts that C is well-formed and σ = mgu(u
?
= f(x1, . . . , xn)) implies that

C1↓ is also a well-formed constraint system.

Lemma C.10. Let C be a well-formed constraint system. We have for all (Y, p
?

⊢ u) ∈ D, for all

x ∈ vars1(u), there exists (X, q
?

⊢ v) ∈ D such that x ∈ vars1(v), q ≤ p and X ∈ S2.

Proof. Let C be a well-formed constraint system and C1, C2 the two constraint systems obtained
by application of the rule on C.

For any rule, only disequations and non-deducibility constraint are added on C2. Thus, we
trivially have that D(C) = D(C2), Φ(C) = Φ(C2) and S2(C) = S2(C2). Therefore, we can conclude
that C2 satisfies the property.

We focus now C1. First of all, we prove that the application of a substitution preserves the

property. Let σ be a substitution such that dom(σ) ∩ img(σ) = ∅. Let (Y, p
?

⊢ uσ) ∈ D(Cσ), let
x ∈ vars1(uσ).

— if x ∈ vars1(u), then by hypothesis, there exists (X, q
?

⊢ v) ∈ D(C) such that x ∈ vars1(v),
q ≤ p and X ∈ S2(C). But dom(σ) ∩ img(σ) = ∅, which means that x ∈ vars1(vσ). Since
S2(C) = S2(Cσ), the result holds.

— if x 6∈ vars1(u), it means that x ∈ img(σ) and that there exists y ∈ vars1(u) such that

x ∈ vars1(yσ). Thus by hypothesis, we have that there exists (X, q
?

⊢ v) ∈ D(C) such that
y ∈ vars1(v), q ≤ p and X ∈ S2(C). Therefore, we have x ∈ vars1(vσ) which prove the
result.

We prove the result by case analysis on the rule applied on a constraint system :

Rule Cons: The substitution σ = mgu(t
?
= f(x1, . . . , xn)) was applied on C, with x1, . . . , xn fresh

variables. Hence we know that Cσ satisfies the property. Let first assume that the rule Cons was

applied on (X, i
?

⊢ t) such that X 6∈ S2(C). In such a case, we have that S2(C) = S2(C1). On

C1, the deducible constraints (Xk, i
?

⊢ xkσ) are added, for all j ∈ {1, . . . , n}. Since σ = mgu(t
?
=

f(x1, . . . , xn)), we know that vars1(x1σ, . . . , xnσ) = vars1(tσ). Thus for all x ∈ vars1(xkσ), there

exists (Y, q
?

⊢ vσ) ∈ D(C) such that x ∈ vars1(v), q ≤ i and Y ∈ S2(Cσ) = S2(C1), which proves
the result.

If we assume now that X ∈ S2(C), by application of the rule, we have S2(C1) = S2(C) ∪

{X1, . . . Xn}. Thus for all (Y, p
?

⊢ uσ) ∈ D(C1), for all x ∈ uσ, we know by hypothesis that there

exists (Z, q
?

⊢ vσ) ∈ D(Cσ) such that x ∈ vars1(vσ), q ≤ p and Z ∈ S2(Cσ). If Z 6= X then the

result holds, else we know that σ = mgu(t
?
= f(x1, . . . , xn)) and so vars1(x1σ, . . . , xnσ) = vars1(tσ).

Therefore, there exists k ∈ {1 . . . n} such that x ∈ vars1(xkσ), which also proves the result.

Rule Axiom(X, path): Assume that the rule is applied on (X, i
?

⊢ u) ∈ D and (ξ, j ⊲ v) ∈ Φ with

path(ξ) = path. The substitution σ = mgu(u
?
= v) was applied on C thus we know that Cσ satisfies

the property. Furthermore, the deducible constraint X, i
?

⊢ u was removed from D(C) in C1. If

X 6∈ S2(C1) then the result trivially holds. Else, let (Y, p
?

⊢ wσ) ∈ D(C1) such that Y 6∈ S2(C1).

By hypothesis, we know that for all x ∈ vars1(wσ), there exists (Z, q
?

⊢ tσ) ∈ D(Cσ) such that
x ∈ vars1(tσ), Z ∈ S2(Cσ) and q ≤ p. If Z 6= X then the result holds, else x ∈ vars1(uσ)

implies that x ∈ vars1(vσ) since σ = mgu(u
?
= v). But the rule tells us that j ≤ i and so j ≤ p.

Furthermore, by Definition of a constraint system, we know that there exists (Z ′, k
?

⊢ u′) ∈ D(C1)

such that x ∈ vars1(u′) and k < j. But (Z ′, k
?

⊢ u′) ∈ D(Cσ) and so by hypothesis, there exists

(Y ′, k′
?

⊢ v′) ∈ D(Cσ) such that x ∈ vars1(v′), k′ ≤ k and Y ′ ∈ S2(Cσ). Since k′ ≤ k < i then we

have Y ′ 6= X which implies that (Y ′, k′
?

⊢ v′) ∈ D(C1) and Y ′ ∈ S2(C1). Hence the result holds.

Rule Dest(ξ, ℓ → r, i): Assume that the rule is applied on (ξ, j ⊲ v) ∈ Φ(C) with f(u1, . . . , un) → w

a fresh variant of ℓ → r. The substitution σ = mgu(v
?
= u1) was applied on C thus we know that

Cσ satisfies the property. Furthermore, only deducible constraints (Xi, j
?

⊢ uiσ) were added on
C1 such that Xi 6∈ S2(C1), for all i ∈ {2, . . . , n}. Since by definition of our rewriting rules,
vars1(u2, . . . , un) ⊆ vars1(u1), we have for all i ∈ {2 . . . n}, for all x ∈ vars1(uiσ), x ∈ vars1(vσ).

Thus by Definition of a constraint system, we have that there exists (Z, k
?

⊢ t) ∈ D(C1) such that

x ∈ vars1(t), k < jand so k < i. But k < i implies that (Z, k
?

⊢ t) ∈ D(Cσ). Hence there exists

(Z ′, k′
?

⊢ t′) ∈ D(Cσ) such that Z ′ ∈ S2(Cσ), k′ ≤ k′ and x ∈ vars1(Cσ). But, it implies that

(Z, k′
?

⊢ t′) ∈ D(C1) and Z ′ ∈ S2(C1). Hence the result holds.

Rule Eq-left-left, Eq-left-right and Eq-right-right: For those rules, D(Cσ) = D(C1) and
S2(Cσ) = S2(C1) hence the result trivially holds.

Rule Ded-st(ξ, f): Assume that the rule is applied on (ξ, i ⊲ u). The substitution σ = mgu(u
?
=

f(x1, . . . , xn)) was applied on C with x1, . . . , xn fresh variables. Thus we know that Cσ satisfies

the property. Furthermore, only deducible constraints (Xi,m
?

⊢ xiσ) were added on C1 such that

Xi 6∈ S2(C1), for all i ∈ {1, . . . , n}. Since σ = mgu(u
?
= f(x1, . . . , xn)), we have for all i ∈ {1 . . . n},

for all x ∈ vars1(xiσ), x ∈ vars1(uσ). Thus by definition of a constraint system, we have that

there exists (X, k
?

⊢ t) ∈ D(C1) with x ∈ vars1(t), t < i and so t < m. But t < m implies

that (X, k
?

⊢ t) ∈ D(Cσ) which means that there exists (X ′, k′
?

⊢ t′) ∈ D(Cσ) with x ∈ vars1(t),

X ′ ∈ S2(Cσ) and k′ ≤ k and so k′ < m. It implies that (X ′, k′,
?

⊢ t′) ∈ D(C1) and X ′ ∈ S2(C1).
Hence the result holds.

C.3 Proof of completeness

Lemma 8.5 (completeness). Let C be a normalised constraint system obtained by following the
strategy and Rule(p̃) be a transformation rule applicable on C. Let C1 and C2 be the two resulting
constraint systems obtained by applying Rule(p̃) on C. We denote by Φ, Φ1 and Φ2 the respective
frames of C, C1 and C2 and we denote by S1 the set of free variable of C.

For all i ∈ {1, 2}, for all (σi, θi) ∈ Sol(Ci), (σ, θ) ∈ Sol(C) and Init(Φ)σ = Init(Φi)σi where
σ = σi|vars1(C) and θ = θi|vars2(C)

Variation: For all i ∈ {1, 2}, for all (σi, θi) ∈ Sol(Ci), (σ, θ) ∈ Sol(C) and Init(Φ)σ = Init(Φi)σi

where σ = σi|vars1(C) and θ = θi|vars2(C).

Proof. We prove this lemma by case analysis on the transformation rule that is used to transform C
on C1, C2. In each situation where some conditions are added on the resulting constraint system
(without modifying the conditions that are already present in C), the result trivially holds. This
remark allows one to conclude for the rules Eq-left-left, Eq-left-right, Ded-st, Dest, and
the case i = 2 for the rules Cons, Axiom and Eq-right-right. Therefore, it remains to prove
the result for the remaining cases, i.e. rule Cons when i = 1, rule Axiom when i = 1 and rule
Eq-right-right when i = 1.

Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse). We consider the remaining cases using the notation
introduced in Figure 7.1.

Rule Cons(X, f), i = 1 : Assume that X, k
?

⊢ t ∈ D(C) and so D(C1) = {X1, k
?

⊢ x1; . . . ; Xn, k
?

⊢

xn} ∪ D(C) r {X, k
?

⊢ t}, Eq(C1) = Eq(C) ∧ t
?
= f(x1, . . . , xn) and Er(C1) = Er(C) ∧ X

?
=

f(X1, . . . , Xn), Φ(C) = Φ(C1) with x1, . . . , xn and X1, . . . , Xn fresh variables.
Let (σ1, θ1) ∈ Sol(C1). By definition of a solution of a constraint system, we know that:

1. (Xjθ1)(Φ(C1)σ1)↓ = xjσ1↓ and param(Xjθ1) ⊆ {ax 1, . . . , ax i} for any j ∈ {1, . . . , n};

2. σ1 |= Eq(C) ∧ t
?
= f(x1, . . . , xn) ∧ ND(C) and so tσ1↓ = f(x1σ1, . . . , xnσ1)↓;

3. θ1 |= Er(C) ∧X
?
= f(X1, . . . , Xn) and so Xθ1 = f(X1θ1, . . . , Xnθ1).

Hence, we have that:

(Xθ1)(Φ(C)σ1)↓ = f(X1θ1, . . . , Xnθ1)(Φ(C)σ1)↓
= f((X1θ1)Φ(C)σ1↓, . . . , (Xnθ1)Φ(C)σ1↓)↓
= f(x1σ1↓, . . . , xnσ1↓)↓
= f(x1σ1, . . . , xnσ1)↓
= tσ1↓

Moreover, thanks to param(Xjθ1) ⊆ {ax 1, . . . , ax i} for j ∈ {1, . . . , n}, we have that param(Xθ1) ⊆
{ax 1, . . . , ax i}. This allows us to conclude that(σ1|vars1(C), θ1|vars2(C)) ∈ Sol(C).

Rule Axiom(X, path), i = 1. Assume that (X, k
?

⊢ u) ∈ D(C) and (ξ, j ⊲ v) ∈ Φ(C) with j ≤ k

and path(ξ) = path. Thus, we have Er(C1) = Er(C) ∧ X
?
= ξ, Eq(C1) = Eq(C) ∧ u

?
= v,

D(C1) = D(C)r {(X, k
?

⊢ u)} and Φ(C1) = Φ(C)
Let (σ1, θ1) ∈ Sol(C1). By definition of a solution of a constraint system, we know that:

1. σ1 |= Eq(C) ∧ u
?
= v ∧ND(C), and so uσ1 = vσ1.

2. θ1 |= Er(C) ∧X
?
= ξ, and so Xθ1 = ξθ1.

Hence, we have that (Xθ1)(Φσ1)↓ = (ξθ1)(Φσ1)↓. Moreover, since C is well-formed (Defi-
nition 8.2, item 3), we deduce that paramξ

max(()) ≤ j hence for all Y ∈ vars2(ξ), there exists

q ≤ j and w such that (Y, q
?

⊢ w) ∈ D(C). Since X an ξ are unifiable, we also deduce that

X 6∈ vars2(ξ). Hence (Y, q
?

⊢ w) ∈ D(C1). Thanks to (σ1, θ1) ∈ Sol(C1), Y θ1Φ(C1)σ1↓ = wσ1.
Hence, thanks to C being well-formed (Definition 8.2, item 5) and Φ(C1) = Φ(C), we deduce that
ξθ1Φ(C)σ1↓ = vσ1 = uσ1.

At last, since paramξ
max(()) ≤ j and for all Y ∈ vars2(ξ), (σ1, θ1) ∈ Sol(C1) also indicates

that param(Y θ1) ⊆ {ax 1, . . . , ax j} and so param(ξθ1) ⊆ {ax 1, . . . , ax j}. At last, with j ≤ k
and Xθ1 = ξθ1, we conclude that param(Xθ1) ⊆ {ax 1, . . . , axk}. This allow us to conclude that
(σ1|vars1(C), θ1|vars2(C)) ∈ Sol(C).

Rule Eq-right-right(X, ξ), i = 1. Assume that (X, k
?

⊢ u) ∈ D(C) and ξ ∈ T (Fc, dom(α)) with

α = {Y → w | (Y, j
?

⊢ w) ∈ D(C) ∧ j ≤ i ∧ Y ∈ S2}. Thus, we have Er(C1) = Er(C) ∧ X
?
= ξ,

Eq(C1) = Eq(C) ∧ u
?
= v, D(C1) = D(C)r {(X, k

?

⊢ u)} and Φ(C1) = Φ(C).
Let (σ1, θ1) ∈ Sol(C1). By definition of a solution of a constraint system, we know that:

1. σ1 |= Eq ∧ u
?
= v ∧ ND , and so uσ1↓ = vσ1↓.

2. θ1 |= Er ∧X
?
= ξ, and so Xθ1 = ξθ1.

Hence, we have that (Xθ1)(Φ(C1)σ1)↓ = (ξθ1)(Φ(C1)σ1)↓. Moreover, according to Figure 7.2,
we have that ξ ∈ T (Fc, dom(α)) and v = ξα

Since (σ1, θ1) ∈ Sol(C1), we have that for all (Y, j
?

⊢ w) ∈ D(C1), (Y θ1)Φ(C)σ1↓ = wσ1.
Since ξ ∈ T (Fc,X

2), we can deduce that (ξθ1)(Φ(C)σ1)↓ = vσ1. This allows us to deduce that
(Xθ1)(Φ(C)σ1)↓ = vσ1↓ and so (Xθ1)(Φ(C)σ1)↓ = uσ1↓. Furthermore, we also know that for all

(Y, j
?

⊢ w) ∈ D, if Y ∈ vars2(ξ), then j ≤ i which means that param(Y θ1) ⊆ {ax 1, . . . , ax i}. Thus
we have:

param(Xθ1) = param(ξθ1) ⊆ {ax 1, . . . , ax i}.

This allows us to conclude that (σ1|vars1(C), θ1|vars2(C)) ∈ Sol(C).

C.4 Strategy Invariants

C.4.1 Preliminaries

We write C →∗ C′ when C′ is obtained from C by applying a sequence of transformation rules.

Lemma C.11. Let C and C′ be two normalised well-formed constraint systems such that C →∗ C′.
Let θ = mgu(Er(C)), θ′ = mgu(Er(C′)) and σ′ = mgu(Eq(C′)). The following property holds: for
all X ∈ vars2(C), C⌊Xθ⌋Φacc1(C)σ′ = C⌊Xθ′⌋Φ′acc1(C′) and paramC′

max(Xθ′) ≤ paramC
max(Xθ).

Proof. We prove this result by induction on the length N of the derivation C →∗ C′.

Base case N = 0: In such a case, C = C′. Thus, we have that θ = θ′ and acc1(C) = acc1(C′).
Therefore, we have for all X ∈ vars2(C), C⌊Xθ⌋Φacc

1(C)σ′ = C⌊Xθ′⌋Φ′acc1(C′)σ′. Since C is
normalised, we have that dom(σ′) ∩ img(acc1(C′)) = ∅, which means that C⌊Xθ′⌋Φ′acc1(C′)σ′ =
C⌊Xθ′⌋Φ′acc1(C′) and so C⌊Xθ⌋Φacc1(C)σ′ = C⌊Xθ′⌋Φ′acc1(C′). Furthermore, since θ = θ′ and
C = C′, we trivially have that paramC′

max(Xθ′) ≤ paramC
max(Xθ). Hence the result holds.

Inductive case N > 0: In such a case, we have that C →∗ C′′ → C′ for some normalised constraint
system C′′. By Lemma 8.2, we know that C′′ is also well-formed. Let θ′′ = mgu(Er(C′′)) and σ′′ =
mgu(Eq(C′′)). By inductive hypothesis, we know that for all X ∈ vars2(C), C⌊Xθ⌋Φacc1(C)σ′′ =
C⌊Xθ′′⌋Φ′′acc1(C′′) and paramC′′

max(Xθ′′) ≤ paramC
max(Xθ). The application of a rule on C′′ produced

two constraint systems C1 and C2. We show the result by case analysis on the rule applied on C′′

and we distinguish two cases depending on whether C′ = C1 or C′ = C2.

Case C′′ = C2 for any rule: According to Figure 7.1 and Figure 7.2, for any rule, only inequa-
tions or non deducibility constraint are added in C2, or some frame elements are marked as NoUse.
Hence, we have that θ′′ = θ′, σ′′ = σ′, ,Φ′′ = Φ′ and D′′ = D′. Thus, C⌊Xθ⌋Φacc

1(C)σ′′ =
C⌊Xθ′′⌋Φ′′acc1(C′′) implies C⌊Xθ⌋Φacc1(C)σ′ = C⌊Xθ′⌋Φ′acc1(C′). Moreover, we also deduce
paramC′

max(Xθ′) = paramC′′

max(Xθ′′). Since paramC′′

max(Xθ′′) ≤ paramC
max(Xθ), we conclude that

paramC′

max(Xθ′) ≤ paramC
max(Xθ) and so the result holds.

We now consider the case where C′′ = C1, and we consider each rule in turn:

Rule Cons(X, f): Let Y ∈ vars2(C). The rule described in Figure 7.1 tells us that:

— Eq′ = Eq′′ ∧ t
?
= f(x1, . . . , xn).

— Er′ = Er′′ ∧X
?
= f(X1, . . . , Xn)

— (X, i
?

⊢ t) ∈ D(C′′)

Since C′′ is normalised, it means that vars(t) ∩ dom(σ′′) = ∅. Furthermore, x1, . . . , xn are fresh

variables, and so {x1, . . . , xn} ∩ dom(σ′′) = ∅. Thus, mgu(Eq′′ ∧ t
?
= f(x1, . . . , xn)) = σ′′mgu(t

?
=

f(x1, . . . , xn)). Let Σ = mgu(t
?
= f(x1, . . . , xn)) (it exists otherwise the normalised constraint

system C′ would be ⊥), we have σ′ = σ′′Σ. Since X1, . . . , Xn are also fresh variables, thus if we

denote Θ = mgu(X
?
= f(X1, . . . , Xn)), then θ′ = θ′′Θ.

According to Figure 7.1, (X, i
?

⊢ t) ∈ D(C′′) implies (Xk, i
?

⊢ xkΣ) ∈ D(C′) for all k ∈ {1, . . . , n}.

Hence, we have that paramC′′

max(X) = paramC′

max(XΘ). Since only X, i
?

⊢ t was removed from D(C′′),
we deduce that paramC′

max(Y θ′′Θ) = paramC′′

max(Y θ′′). Hence paramC′

max(Y θ′) = paramC′′

max(Y θ′′) ≤
paramC

max(Y θ).
From the first equality, we deduce that C⌊Y θ⌋Φacc1(C)σ′ = C⌊Y θ⌋Φacc1(C)σ′′Σ. Therefore

by our inductive hypothesis, we have C⌊Y θ⌋Φacc
1(C)σ′ = C⌊Y θ′′⌋Φ′′acc1(C′′)Σ. But since no

frame element was added on Φ′, thus we have C⌊Y θ′′⌋Φ′′ = C⌊Y θ′′⌋Φ′ . Furthermore, since C′′ is
well-formed, we know that C⌊Y θ′′⌋Φ′′ ∈ T (Fc ∪ (F∗

d · AX),X 2) and since C⌊f(X1, . . . , Xn)⌋Φ′ ∈
T (Fc ∪ (F∗

d · AX),X 2), we can deduce by Lemma C.9 that C⌊Y θ′′Θ⌋Φ′ = C⌊Y θ′′⌋Φ′{X →
C⌊f(X1, . . . , Xn)⌋Φ′} and so C⌊Y θ′′Θ⌋Φ′ = C⌊Y θ′′⌋Φ′′Θ

At last, since the constraint with the variable X was removed in D′ and since we consider C′

normalised, we have :

— for all Z ∈ vars2(D′′)r {X}, ZΘacc1(C′) = Zacc1(C′) = Zacc1(C′′)Σ

— for all i ∈ {1, . . . , n}, Xiacc
1(C′) = xiΣ and so Xacc1(C′′)Σ = tΣ = f(x1, . . . , xn)Σ =

XΘacc1(C′)

Thus, we deduce that acc1(C′′)Σ = Θacc1(C′), which implies, thanks to C⌊Y θ′′Θ⌋Φ′ = C⌊Y θ′′⌋Φ′′Θ,
that : C⌊Y θ′′⌋Φ′′acc1(C′′)Σ = C⌊Y θ′⌋Φ′acc1(C′) and so C⌊Y θ⌋Φacc

1(C)σ′ = C⌊Y θ′⌋Φ′acc1(C′).

Rule Axiom(X, path): Let Y ∈ vars2(C). The rule described in Figure 7.1 tells us that:

— Eq′ = Eq′′ ∧ u
?
= v.

— Er′ = Er′′ ∧X
?
= ξ

— (X, i
?

⊢ u) ∈ D(C′′), (ξ, j ⊲ v) ∈ Φ(C′′) and path(ξ) = path

Since C′′ is normalised, it means that (vars(u) ∪ vars(v)) ∩ dom(σ′′) = ∅ which means that

mgu(Eq′′ ∧ u
?
= v) = σ′′mgu(u

?
= v). Let Σ = mgu(u

?
= v); we have σ′ = σ′′Σ. For the

same reason, if we denoted Θ = mgu(X
?
= ξ), we have θ′ = θ′′Θ. No element has been added into

the frame C′ (from C′′), which means that C⌊Y θ′⌋Φ′ = C⌊Y θ′⌋Φ′′ = C⌊Y θ′′Θ⌋Φ′′ . By Lemma C.9
and since C′′ is well-formed, we deduce that C⌊Y θ′′Θ⌋Φ′′ = C⌊Y θ′′⌋Φ′′{X → C⌊ξ⌋Φ′′}.

Thanks to C being well formed (Definition 8.2, item 3), we deduce that paramC′′

max(ξ) ≤ j.

Moreover, since Θ = mgu(X
?
= ξ), we deduce that X 6∈ vars2(ξ) and so (ξ, j ⊲ vΣ) ∈ Φ(C′).

The deducible constraint (X, i
?

⊢ u) being the only one removed from D(C′′), we deduce that
paramC′′

max(ξ) = paramC′

max(ξ). Hence paramC′

max(X) = i ≥ j ≥ paramC′′

max(ξ). Therefore we deduce
paramC′

max(Y θ′′Θ) ≤ paramC′′

max(Y θ′′). Thus we deduce that paramC′

max(Y θ′) = paramC′

max(Y θ′′Θ) ≤
paramC′′

max(Y θ′′) ≤ paramC
max(Y θ).

At last, since the constraint with the variable X was removed in D′ and C′ normalised, we
have:

— for all Z ∈ vars(D′′)r {X}, Z{X → C⌊ξ⌋Φ′′}acc1(C′) = Zacc1(C′) = Zacc1(C′′)Σ

— Xacc1(C′′)Σ = uΣ = vΣ = X{X → C⌊ξ⌋Φ′′}acc1(C′)

Thus, we deduce that acc1(C′′)Σ = {X → C⌊ξ⌋Φ′′}acc1(C′). Hence, thanks to our inductive
hypothesis (applied on C′′ and Y), we have that C⌊Y θ⌋Φacc1(C)σ′′ = C⌊Y θ′′⌋Φ′′acc1(C′′), and we
deduce that C⌊Y θ⌋Φacc

1(C)σ′ = C⌊Y θ⌋Φacc
1(C)σ′′Σ = C⌊Y θ′′⌋Φ′′acc1(C′′)Σ = C⌊Y θ′′⌋Φ′′{X →

C⌊ξ⌋Φ′′}acc1(C′) = C⌊Y θ′′Θ⌋Φ′′acc1(C′) = C⌊Y θ′⌋Φ′acc1(C′).

Rule Dest(ξ, ℓ → r, i): Let Y ∈ vars2(C). The rule described in Figure 7.1 tells us that:

— Eq′ = Eq′′ ∧ u
?
= u1.

— Er′ = Er′′ and so θ′ = θ′′.

Since C′ is normalised, it means that vars(u) ∩ dom(σ′′) = ∅. Furthermore, we know that all

variable in u1 are fresh variables, which means that mgu(Eq′′ ∧ u
?
= u1) = σ′′mgu(u

?
= u1). Let

Σ = mgu(u
?
= u1). We have that σ′ = σ′′Σ.

Since θ′ = θ′′ and no deducible constraint is removed from D(C′′) to D(C′), we trivially have
that paramC′′

max(Y θ′′) = paramC′

max(Y θ′) and so paramC′

max(Y θ′) ≤ paramC
max(Y θ).

The frame element (f(ξ,X1, . . . , Xn), i ⊲ w) with f ∈ Fd was added in Φ′, but since C′′ is
well-formed, we know that C⌊Y θ′′⌋Φ′′ ∈ T (Fc, (F∗

d · AX)∪X 2), thus we deduce that C⌊Y θ′′⌋Φ′′ =
C⌊Y θ′′⌋Φ′ = C⌊Y θ′⌋Φ′ .

At last, since only constraints with fresh variable Xk were added in D′ and since C′ is nor-
malised, we have that acc1(C′)| dom(acc1(C′′)) = acc1(C′′)Σ. With this last property, we can use
the inductive hypothesis (on C′′ and Y). We obtain that C⌊Y θ⌋Φacc

1(C)σ′′ = C⌊Y θ′′⌋Φ′′acc1(C′′),
and so C⌊Y θ⌋Φacc

1(C)σ′ = C⌊Y θ⌋Φacc
1(C)σ′′Σ = C⌊Y θ′′⌋Φ′′acc1(C′′)Σ = C⌊Y θ′⌋Φ′acc1(C′′)Σ =

C⌊Y θ′⌋Φ′acc1(C′)| dom(acc1(C′′)).
Since C⌊Y θ′′⌋Φ′′ = C⌊Y θ′⌋Φ′ , then for all Z ∈ vars2(C⌊Y θ′⌋Φ′), Z ∈ dom(acc1(C′′)). Moreover,

it also implies that for all path ∈ st(C⌊Y θ′⌋Φ′), path ∈ dom(acc1(C′′)). Hence, we deduce that
C⌊Y θ′⌋Φ′acc1(C′)| dom(acc1(C′′)) = C⌊Y θ′⌋Φ′acc1(C′) and so C⌊Y θ⌋Φacc

1(C)σ′ = C⌊Y θ′⌋Φ′acc1(C′).

Rules Eq-left-right and Eq-left-left: Let Y ∈ vars2(C). The rule described in Figure 7.1

tells us that Eq′ = Eq′′ ∧ u1
?
= u2 and Er′ = Er′′, hence θ′′ = θ′. Since C′′ is normalised, we have

that (vars(u1)∪vars(u2))∩dom(σ′′) = ∅ which means that mgu(Eq′′∧u1
?
= u2) = σ′′mgu(u1

?
= u2).

Let Σ = mgu(u1
?
= u2). We have that σ′ = σ′′Σ.

Neither the frame nor the constraints changed between C′′ and C′, which means that C⌊Y θ′⌋Φ′ =
C⌊Y θ′⌋Φ′′ . Since C′ is normalised, we also have acc1(C′) = acc1(C′′)Σ. By the inductive hy-
pothesis (applied on C′′ and Y), we have that C⌊Y θ⌋Φacc

1(C)σ′′ = C⌊Y θ′′⌋Φ′′acc1(C′′) and so
C⌊Y θ⌋Φacc1(C)σ′ = C⌊Y θ⌋Φacc1(C)σ′′Σ = C⌊Y θ′′⌋Φ′′acc1(C′′)Σ = C⌊Y θ′⌋Φ′acc1(C′).

Furthermore, since θ′ = θ′′ and no deducible constraint is removed from D(C′′) to D(C′), we
trivially have that paramC′′

max(Y θ′′) = paramC′

max(Y θ′) and so paramC′

max(Y θ′) ≤ paramC
max(Y θ).

Rule Eq-right-right(X, ξ): Let Y ∈ vars2(C). The rule described in Figure 7.1 tells us that:

— Eq′ = Eq′′ ∧ u
?
= v.

— Er′ = Er′′ ∧X
?
= ξ

— (X, i
?

⊢ u) ∈ D(C′′)

where ξ ∈ T (Fc, dom(α)) and v = ξα with α = {Y → u | (Y, j
?

⊢ u) ∈ D(C′′) ∧ j ≤ i ∧ Y ∈ S2}.
But acc1(C′′)| dom(α) = α. Hence, we have that v = ξacc1(C′′).

Since C′′ is normalised, it means that (vars(u) ∪ vars(v)) ∩ dom(σ′′) = ∅ which means that

mgu(Eq′′ ∧ u
?
= v) = σ′′mgu(u

?
= v). Let Σ = mgu(u

?
= v). We have that σ′ = σ′′Σ. For the same

reason, we have that θ′ = θ′′Θ where Θ = {X → ξ}. No element has been added into the frame C′

(w.r.t. C′′). Hence, we have that C⌊Y θ′⌋Φ′ = C⌊Y θ′⌋Φ′′ = C⌊Y θ′′Θ⌋Φ′′ . By Lemma C.9, C′′ well
formed and ξ ∈ T (Fc,X

2), we deduce that C⌊Y θ′′Θ⌋Φ′′ = C⌊Y θ′′⌋Φ′′Θ.
Since for all Z ∈ vars2(ξ), paramC′′

max(Z) ≤ i = paramC′′

max(X) and Θ = {X → ξ}, we deduce that
paramC′

max(XΘ) ≤ paramC′′

max(X). Therefore paramC′

max(Y θ′′Θ) ≤ paramC′′

max(Y θ′′). Thus we deduce
that paramC′

max(Y θ′) = paramC′

max(Y θ′′Θ) ≤ paramC′′

max(Y θ′′) ≤ paramC
max(Y θ).

At last, since the constraint with the variable X was removed in D′ and C′ normalised, we
have:

— for all Z ∈ vars(D′′)r {X}, ZΘacc1(C′) = Zacc1(C′) = Zacc1(C′′)Σ

— Xacc1(C′′)Σ = uΣ = vΣ = XΘacc1(C′′)Σ = XΘacc1(C′)

Thus, we deduce that acc1(C′′)Σ = Θacc1(C′). Hence, thanks to our inductive hypothesis (applied
on C′′ and Y), we have that C⌊Y θ⌋Φacc

1(C)σ′′ = C⌊Y θ′′⌋Φ′′acc1(C′′). From this, we deduce
that C⌊Y θ⌋Φacc

1(C)σ′ = C⌊Y θ⌋Φacc
1(C)σ′′Σ = C⌊Y θ′′⌋Φ′′acc1(C′′)Σ = C⌊Y θ′′⌋Φ′′Θacc1(C′) =

C⌊Y θ′′Θ⌋Φ′′acc1(C′). Hence we conclude that C⌊Y θ⌋Φacc1(C)σ′ = C⌊Y θ′⌋Φ′acc1(C′).

Rule Ded-st: Let Y ∈ vars2(C). The rule described in Figure 7.1 tells us that:

— Eq′ = Eq′′ ∧ u
?
= f(x1, . . . , xn).

— Er′ = Er′′ and so θ′ = θ′′.

Since C′′ is normalised, this means that vars(u) ∩ dom(σ′′) = ∅. Furthermore, we know that the

variables xi are fresh variables, which means that mgu(Eq′′ ∧ u
?
= f(x1, . . . , xn)) = σ′′mgu(u

?
=

f(x1, . . . , xn)). Let Σ = mgu(u
?
= f(x1, . . . , xn)). We have that σ′ = σ′′Σ.

Since θ′ = θ′′ and no deducible constraint are removed from D(C′′) to D(C′), we trivially have
that paramC′′

max(Y θ′′) = paramC′

max(Y θ′) and so paramC′

max(Y θ′) ≤ paramC
max(Y θ).

No element has been added into the frame C′ (w.r.t. C′′). Hence, we have that C⌊Y θ′′⌋Φ′′ =
C⌊Y θ′′⌋Φ′ = C⌊Y θ′⌋Φ′ .

At last, since only constraints with fresh variable Xi were added in D′ and since C′ normalised,
we have that acc1(C′)| dom(acc1(C′′)) = acc1(C′′)Σ. With this last property, we can use the induc-
tive hypothesis (applied on C′′ and Y). We obtain that C⌊Y θ⌋Φacc1(C)σ′′ = C⌊Y θ′′⌋Φ′′acc1(C′′),
and so C⌊Y θ⌋Φacc

1(C)σ′ = C⌊Y θ⌋Φacc
1(C)σ′′Σ = C⌊Y θ′′⌋Φ′′acc1(C′′)Σ = C⌊Y θ′⌋Φ′acc1(C′′)Σ =

C⌊Y θ′⌋Φ′acc1(C′)| dom(acc1(C′′)).
Since C⌊Y θ′′⌋Φ′′ = C⌊Y θ′⌋Φ′ , then for all Z ∈ vars2(C⌊Y θ′⌋Φ′), Z ∈ dom(acc1(C′′)). Moreover,

it also implies that for all path ∈ st(C⌊Y θ′⌋Φ′), path ∈ dom(acc1(C′′)). Hence, we deduce that
C⌊Y θ′⌋Φ′acc1(C′)| dom(acc1(C′′)) = C⌊Y θ′⌋Φ′acc1(C′) and so C⌊Y θ⌋Φacc

1(C)σ′ = C⌊Y θ′⌋Φ′acc1(C′).

Lemma C.12. Let C and C′ be two normalised well-formed constraint systems such that C →∗ C′.
Let σ = mgu(Eq(C′)), and (ξ, i ⊲ u) ∈ Φ. There exist (ξ′, i ⊲ u′) ∈ Φ′ such that path(ξ) = path(ξ′)
and u′ = uσ.

Proof. According to the rules described in Figure 7.1 and 7.2 and the fact that C is well-formed,
the path path(ξ) of a frame element (ξ, i ⊲ u) is never modified. The only operation that affect
this frame element is the normalisation of a constraint system, i.e. the most general unifier of Eq
is applied on u (idem for Er). Thus, if σ = mgu(Eq(C′)), we can conclude that u = u′σ.

Lemma C.13. Let C be a normalised well-formed constraint system. Let C1 and C2 be two nor-
malised well formed constraint systems such that C →∗ C1 and C →∗ C2. Let ρ be a variable
renaming from X 1 to X 1. Let ax ∈ AX such that {ax , i ⊲ u1} ∈ Φ1 and {ax , i ⊲ u2} ∈ Φ2. Let
w ∈ F∗

d , {ξ1, i1 ⊲ v1} ∈ Φ1 and {ξ2, i2 ⊲ v2} ∈ Φ2 such that path(ξ1) = path(ξ2) = w · ax . We
have:

if u1ρ = u2 then v1ρ = v2

Proof. We prove the result by induction on |w|:

Base case |w| = 0: In such a case, then ξ1 = ξ2 = ax . Thus by Property 1 of a well-formed
constraint system, we know that u1 = v1 and u2 = v2 and so the result trivially holds.

Inductive step |w| > 0: Assume that w = f · w′ and u1ρ = u2. By Property 2 of a well-formed
constraint system, we know that there exists (ξ′1, i

′
1 ⊲ v′1) ∈ Φ1 and (ξ′2, i

′
2 ⊲ v′2) ∈ Φ2 such

that path(ξ′1) = path(ξ′2) = w′ · ax . Thus by our inductive hypothesis, we know that v′1ρ = v′2.
Furthermore, by definition of the rule Dest (the only rule that can add an element into the frame),
we know that there exists a position p (actually for our rewriting rules p = 1) such that v1 = v′1|p
and v2 = v′2|p. Hence, we have that v1ρ = (v′1|p)ρ = (v′1ρ)|p = v′2|p = v2.

C.4.2 Preservation of the strategy invariants by the rules

Lemma C.14. Let C be a well formed constraint system satisfying InvVarConstraint(s). Let R(p̃)
be an occurrence of the rule Cons, or Axiom or Eq-right-right with support s′ ≤ s. Let C1, C2
be the two constraint systems obtained by applying R(p̃) on C. We have that for all i ∈ {1, 2}, Ci
satisfies the invariant InvVarConstraint(s).

Proof. According to the definitions of the three rules, C2 only differs from C by an addition of an
inequality on recipes. Thus, we trivially deduce that C2 satisfies InvVarConstraint(s). We prove
the result for C1 by case analysis on the rule applied:

Rule Cons(X, f): Since the support of the rule is s′, then there exists (X, s′
?

⊢ u) ∈ D(C). More-

over, C satisfies InvVarConstraint(s) hence, we deduce u ∈ X 1. But D(C1) = D(C)σ\{X, s′
?

⊢ uσ}∪

{X1, s
′
?

⊢ x1σ; . . . ;Xn, s
′
?

⊢ xnσ} where σ = mgu(u
?
= f(x1, . . . , xn)) and x1, . . . , xn, X1, . . . , Xn are

fresh variables. Since s′ ≤ s then C satisfies InvVarConstraint(s) also implies that X ∈ S2. Thus,
by definition of the rule Cons, X1, . . . , Xn ∈ S2.

Moreover, since u ∈ X 1, we deduce that σ = {u 7→ f(x1, . . . , xn)}. Hence for all i ∈ {1, . . . , n},
xiσ = xi. Moreover, since C satisfies InvVarConstraint(s), we deduce that for all (Y, j ⊲ y) ∈ D
such that Y 6= X, yσ = y. Thus, thanks to x1, . . . , xn and X1, . . . , Xn being fresh, the result
holds.

Rule Axiom(X, path): Since the support of the rule is s′, then there exists (X, s′
?

⊢ u) ∈ D(C) and
(ξ, j ⊲ v) ∈ Φ(C) with j ≤ s′. Moreover, C satisfies InvVarConstraint(s) hence, we deduce u ∈ X 1.

But D(C1) = D(C)σ\{X, s′
?

⊢ uσ} where σ = mgu(u
?
= v). Thus the first property is trivially

satisfied.
Moreover, u ∈ X 1 implies that either (a) σ = {u 7→ v} or (b) v ∈ X 1 and σ = {v 7→ u}. In

case (a), since C satisfies InvVarConstraint(s), we deduce that for all (Z, k
?

⊢ z) ∈ D(C) and k ≤ s,

if Z 6= X then (Z, k
?

⊢ z ∈ D(C1) hence the result holds. In case (b), v ∈ X 1 implies, by the

origination property, that there exists (Y, k
?

⊢ v′) ∈ D(C) such that k < j and v ∈ vars1(v′). But

C satisfies InvVarConstraint(s) thus v = v′. Hence for all (Z1, ℓ1
?

⊢ z1) ∈ D(C1), if ℓ1 ≤ s then

either Z1 6= Y and so (Z1, ℓ1
?

⊢ z1) ∈ D(C), or Z1 = Y and v′ = u. By relying on C satisfying
InvVarConstraint(s), the result holds.

Rule Eq-right-right(X, ξ): Proof similar to the rule Axiom.

Lemma C.15. Let C be a well formed constraint system satisfying InvUntouched(s). Let R(p̃) be
an occurrence of a rule with support s′ ≤ s. Let C1, C2 be the two constraint systems obtained by
applying R(p̃) on C. We have that for all i ∈ {1, 2}, Ci satisfies the invariant InvUntouched(s).

Proof. The rule Dest is the only one that add frame element. But the support of the rule being
s′, Dest can only introduce frame element of the form (ζ, s′ ⊲ w). Thus since s′ ≤ s, we deduce
deduce that for all (ξ, k ⊲ u) ∈ Φ(C1) (resp. Φ(C2)), if s < k then ξ = axk.

Similarly, the only rules that add elements in Er(C) are Cons, Axiom and Eq-right-right.
In case of Cons and Eq-right-right, the result trivially holds by definition of the rules and the
fact that s′ ≤ s. In case of application of the rule Axiom(X, path), by definition, we know that

there exists (X, s′
?

⊢ u) ∈ D(C) and (ξ, k ⊲ v) ∈ Φ(C) with k ≤ s′. But since C is well formed
(Definition 8.2, item 3), we know that paramC

max(ξ) ≤ k which implies that for all Y ∈ vars2(ξ),

(Y, ℓ
?

⊢ w) ∈ D(C) implies that ℓ ≤ k. Hence any new (in)equations in Er only contain variables
Y such that paramC1

max(Y) ≤ s′ ≤ s. Hence the result holds.

Lemma C.16. Let C be a well formed constraint system satisfying InvNoUse(s) (resp. InvDest(s),
InvVarFrame(s) and InvDedsubs). Let R(p̃) be an occurrence of a rule different from Dest, or the
rule Dest with support s′ > s. Let C1, C2 be the two constraint systems obtained by applying R(p̃)
on C. We have that for all i ∈ {1, 2}, Ci satisfies the invariant InvNoUse(s) (resp. InvDest(s),
InvVarFrame(s) and InvDedsubs).

Proof. We prove the different invariant by case analysis on the rule applied.

Rule Cons(X, f): The rule Cons only adds the inequation root(X) 6= f on Er(C2). Thus, C2
trivially satisfies all the wanted invariants.

On the other hand, we have that Φ(C1) = Φ(C)θσ, NoUse(C1) = NoUse(C)θσ, ND(C1) =

ND(C)σ and D(C1) = D(C)σ\{X, i
?

⊢ tσ} ∪ {X1, i
?

⊢ x1σ; . . . ; Xn, i
?

⊢ xnσ} where σ = mgu(t
?
=

f(x1, . . . , xn)) and θ = mgu(X
?
= f(X1, . . . , Xn)). We now prove the different invariants one by

one.
Let (ξ, p ⊲ v) ∈ Φ(C1) such that p ≤ s. Since Φ(C1) = Φ(C)σ, there exists ξ′ and v′ such that

(ξ′, p ⊲ v′) ∈ Φ(C), ξ′θ = ξ and v′σ = v:

— InvNoUse(s): Assume that v ∈ X 1. In such a case, v′σ = v implies v′ ∈ X 1. But C satisfies
InvNoUse(s) hence (ξ′, p ⊲ z) ∈ NoUse(C). With NoUse(C1) = NoUse(C)θσ, we deduce that
(ξ, p ⊲ v) ∈ NoUse(C1) thus the result holds.

— InvVarFrame(s): Let Y ∈ vars2(ξ). In such a case, ξ′θ = ξ implies that there exists Y ′ ∈
vars2(ξ′) such that Y ∈ vars2(Y ′θ). But C satisfies InvVarFrame(s) implies that there exists

q < p and u ∈ T (Fc,N ∪ X 1) such that (Y ′, q
?

⊢ u) ∈ D(C). If Y ′ 6= X then Y ′ = Y and so

(Y, q
?

⊢ uσ) ∈ D(C1) thus the result holds. If Y ′ = X then Y ∈ {X1, . . . , Xn} and s′ = q .

But for all k ∈ {1, . . . , n}, we have (Xk, s
′
?

⊢ xkσ) ∈ D(C1). With s′ = q < p then the result
holds.

— InvDest(s): The result is direct from Φ(C1) = Φ(C)θσ, NoUse(C1) = NoUse(C)θσ, ND(C1) =
ND(C)σ and the fact that C satisfies the invariant InvDest(s).

— InvDedsub: Assume that |Φ(C)| = m. Since C satisfies the invariant, then for all g ∈ Fc,
(ξ′, p ⊲ v′) ∈ NoUse(C) implies that either (a) there exists Y1, . . . , Yk ∈ vars2(C) such that for
all i ∈ {1, . . . , k}, paramC

max(Yimgu(Er(C))) ≤ s and C⌊g(Y1, . . . , Ym)mgu(Er(C))⌋acc1(C) =

v′, or else (b) ND(C) � ∀x̃.v′
?

6= g(x1, . . . , xn) ∨m 6
?

⊢ x1 ∨ . . . ∨m 6
?

⊢ xk where x1, . . . , xk are
fresh variables.

In case (a), since mgu(Er(C1)) = mgu(Er(C))θ and f(X1, . . . , Xn) = C⌊f(X1, . . . , Xn)⌋ ∈
T (Fc,X 2) then thanks to Lemma C.9, we deduce that C⌊g(Y1, . . . , Yk)mgu(Er(C1))⌋ =
C⌊g(Y1, . . . , Yk)mgu(Er(C))⌋θ. But for all Z ∈ vars2(C), Zacc1(C)σ = Zθacc1(C1) thus
C⌊g(Y1, . . . , Yk)mgu(Er(C1))⌋acc

1(C1) = C⌊g(Y1, . . . , Yk)mgu(Er(C))⌋acc1(C)σ = v′σ = v.
Hence the result holds.

In case (b), since ND(C1) = ND(C)σ then ND(C1) � ∀x̃.v
?

6= g(x1, . . . , xn)∨m 6
?

⊢ x1∨. . .∨m 6
?

⊢
xk. Hence the result holds.

Rule Dest(ξ, ℓ → r, s′) and s′ > s : Since the rule only adds a frame element (ζ, s′ ⊲ w) for some
ζ, w and applies a substitution on first order term, then the result holds by relying on C verifying
each invariant respectively.

The proofs of all the others rules are similar to the rule Cons. Note that for the rule
Ded-st(ξ, f), if C satisfies the invariant InvDedsub, then it implies that the application of the
rule Ded-st(ξ, f) was in fact useless hence according to the strategy, such application could not
have happen. Hence the result holds.

Lemma C.17. Let M be a well-formed matrix of constraint systems satisfying InvMatrix(s). Let
R(p̃) be an occurrence of a rule different from Dest and Eq-left-right, or Dest with support
s′ > s, or Eq-left-right with support s′ > s. Let M1,M2 be the two matrix of constraint systems
obtained by applying R(p̃) on M (if R(p̃) is an internal rule, only M1 exists). We have that for
all i ∈ {1, 2}, Mi satisfies the invariant InvMatrix(s).

Proof. Note that the invariant InvMatrix(s) mainly focus on the path of the frames. But thanks to
M being well-formed we have that for all C ∈ T (Fc,N), C is well-formed. Hence by Definition 8.2,
item 1, we know that all path of the frame element are closed. Hence relying on Lemma C.8, we
trivially deduce that the result holds for the rule Cons, Axiom, Eq-right-right, Eq-left-left
and Ded-st. Hence it remains to prove that the result holds for Eq-left-right with support
s′ > s and Dest with support s′ > s. But in both cases, the only possible modifications on the
frames or the sets NoUse only occurs on frame elements with support stricly bigger than s. Hence
the result holds.

Lemma C.18. Let C be a well formed constraint system. Let s ∈ N, if C satisfies InvDedsubs
(resp. InvVarFrame(s), InvNoUse(s), InvDest(s) and InvVarConstraint(s)) then for all s′ ≤ s, C
satisfies InvDedsubs′ (resp. InvVarFrame(s′), InvNoUse(s′), InvDest(s′) and InvVarConstraint(s′)).

If C satisfies InvUntouched(s) then for all s′ ≥ s, C satisfies InvUntouched(s′).

Proof. Direct from the definition of the invariants.

Lemma C.19. Let M be a well formed constraint system satisfying InvGeneral. Let R(p̃) be an
occurrence of a rule different from Dest and Eq-left-right. Let M1,M2 be the two matrix of
constraint systems obtained by applying R(p̃) on M (if R(p̃) is an internal rule, only M1 exists).
We have that for all i ∈ {1, 2}, Mi satisfies the invariant InvGeneral.

Let R(p̃ be a occurrence of the rule Dest or Eq-left-right. Let M ′ be the matrix of constraint
systems obtained by applying R(p̃) on M . We have that M ′ satisfies Properties 5, 6 and 7 of the
invariant InvGeneral.

C.4.3 Invariants specific to different steps and phases of the strategy

In this subsection, we will show several invariants that are specific to each phase and step of
the strategy. In fact, the invariants are interconnected. Intuitively, we have to define an invariant
for each step and also an invariant for the link between each step, i.e. we have to show that the
invariant of the end of a step corresponds to the invariant at the beginning of the next step.

Let (M0,M
′
0) be a pair of matrices of constraint systems. We say that a pair of matrices

of constraint systems (M1,M
′
1) is obtained from (M0,M

′
0) by applying Step i of Phase j of the

strategy with parameters s (and k), for some i ∈ {a, b, c, d, e}, j ∈ {1, 2} if (M0,M
′
0) →

∗ (M1,M
′
1)

and the rules applied follow exactly the description of Step i of Phase j with parameters s (and
k) given in Section 7.4.

Moreover, we will say that (M1,M
′
1) is obtained from (M0,M

′
0) at the end of Step i of Phase

j of the strategy with parameters s (and k) if (M0,M
′
0) →∗ (M1,M

′
1), the rules applied follow

exactly the description of Step i of Phase j with parameters s (and k) given in Section 7.4 and
no rule following the description of Step i of Phase j with parameters s (and k) is applicable on
(M1,M

′
1).

C.4.3.1 Invariants of Phase 1

Property C.1. We say that a pair of matrices of constraint systems (M,M ′) satisfy PP1(s) if
M and M ′ have the same structure, satisfy InvMatrix(s) and InvGeneral, and for all constraint
system C in M or M ′, C satisfies the invariants InvVarConstraint(s), InvVarFrame(s), InvDest(s),
InvNoUse(s) and InvUntouched(s).

Moreover, if Φ is a frame of a constraint system in M or M ′ and s = |Φ| then (M,M ′) satisfies
also InvDedsub.

Lemma C.20. Let (M,M ′) be a pair of row matrices of initial constraint systems having the
same structure. (M,M ′) satisfies PP1(0).

Proof. We start by proving that M and M ′ satisfy InvGeneral (Definition 8.1). First of all, Item 5, 6
and 7 trivially hold since M and M ′ are row matrices, i.e. there is only one constraint system in
each column of M and M ′. Furthermore, by definition of an initial constraint system, we know
that for all C different from ⊥, for all (ξ, i ⊲ u) ∈ Φ(C), ξ = ax i. Hence Item 1 is trivially true.
More over, for all ξ′ ∈ Πn with root(ξ′) 6∈ Fc, if path(ξ′) = path(ξθ) then path(ξθ) = path(ax iθ) =
path(ax i) = ax i. Hence, path(ξ′) = ax i implies ax i = ξ′ and so Item 2 holds. Since ξ = ax i, then
Item 4 also holds. At last, C is an initial constraint system also implies NoUse(C) = ∅. Hence
Item 3 holds.

The invariants InvMatrix(s), InvVarConstraint(0), InvVarFrame(0), InvDest(0), InvNoUse(0) are

trivially satisfied since their no deducible constraint (X, i
?

⊢ u) or frame element (ξ, i
?

⊢ u) such
that i ≤ 0.

It remains to prove that (M,M ′) satisfies the invariant InvUntouched(0). We already know
that for all constraint system C in M or M ′. If C is different from ⊥ then for all (ξ, i ⊲ u) ∈ Φ(C),
ξ = ax i. Furthermore we know that Er(C) = ⊤. At last, by definition of an initial constraint
system vars2(D(C)) ⊆ S2(C). Hence C satisfies the invariant InvUntouched(0).

C.4.3.2 Invariants of Phase 1, Step a

Property C.2. We say that a pair of matrices of constraint systems (M,M ′) satisfy PP1Sa(s) if
M and M ′ have the same structure, satisfy InvMatrix(s− 1) and InvGeneral, and for all constraint
system C in M or M ′, if C 6=⊥ then

— C invariants InvDest(s− 1), InvVarFrame(s− 1), InvNoUse(s− 1), InvUntouched(s); and

— for all (ξ, s ⊲ u) ∈ Φ(C) with u ∈ X 1, there exists X ∈ S2(C) and ℓ < s such that (X, ℓ
?

⊢
u) ∈ D(C); and

— for all (ξ, s ⊲ u) ∈ Φ(C), either ξ ∈ AX or there exists X2, . . . , Xn ∈ X 2
r S2(C), f ∈ Fd

and (ξ′, p ⊲ v) ∈ Φ(C) such that ξ = f(ξ′, X2, . . . , Xn) and p ≤ s; and

— for all (X, i
?

⊢ u) ∈ D(C), for all f ∈ Fc, for all (ξ, j ⊲ v) ∈ Φ(C), Er(C) 6� X
?

6= ξ and

Er(C) 6� root(X)
?

6= f; and

— for all (X, i
?

⊢ u) ∈ D(C), X ∈ S2(C) implies i = s and there exists a unique frame element
(g(ξ1, . . . , ξn), j ⊲ v) ∈ Φ(C) and k ∈ {2, . . . , n} such that j = s and ξk = X

Lemma C.21. Let (M,M ′) be a pair of matrices of constraint systems satisfies PP1(s− 1). For
all pair of matrices of constraint systems (M1,M

′
1) obtained during Step a of the first phase on

(M,M ′) with support s, (M1,M
′
1) satisfies PP1Sa(s).

Proof. Let (M1,M
′
1) be a pair of matrices of constraint systems obtained during Step a of the first

phase on (M,M ′). We show by induction on the size N of the branch of (M1,M
′
1) that (M1,M

′
1)

satisfies the wanted properties. plus a new one : for all C in (M1,M
′
1),

6. for all x ∈ vars2({u | X, i
?

⊢ u ∧ i < s}), if for all (X, i
?

⊢ u) ∈ D(C) such that X ∈ S2(C),
i < s implies x 6= u, then for all u ∈ {v | (ξ, i ⊲ v) ∈ Φ(C) or (X, i ⊲ v) ∈ D(C)}, for all
position p, if u|p = x then there exists p′ such that p = p′ · 1 and u|p′ = pk(x).

This property stated that when a variable is never a right hand term of a deducible constraint,
then this variable is always used under the constructor pk.

Base case N = 0: In such a case we have that (M1,M
′
1) = (M,M ′). Hence, we trivially have that

M1 and M ′
1 satisfy InvMatrix(s−1) and InvGeneral. Furthermore, we also have that for all C in M1

and M ′
1, C satisfies the invariant InvVarFrame(s− 1) and InvNoUse(s− 1). Furthermore, thanks to

Lemma C.18, we also have that C satisfies InvUntouched(s). We know prove the other properties:

6. We know that C satisfies InvVarConstraint(s−1) hence for all x ∈ vars2({u | X, i
?

⊢ u∧i < s}),

there exists (X, i
?

⊢ u) ∈ D(C) such that x = u and X ∈ S2(C). Hence the property holds.

3. for all (ξ, s ⊲ x) ∈ Φ(C), thanks to the property of origination of a constraint system, we
know that there exists (X, ℓ ⊲ u) ∈ D(C) such that ℓ < s and x ∈ vars1(u). But C satisfies
InvVarConstraint(s− 1) which means that u ∈ X 1 and so x = u.

4. Since C satisfies InvUntouched(s− 1), we know that for all (ξ, s ⊲ u) ∈ Φ(C), ξ = ax s ∈ AX .

5. Since C satisfies InvUntouched(s− 1), we know that for all (X, k
?

⊢ u) ∈ D(C), if k ≥ s then
X 6∈ vars2(Er(C)). Hence for all f ∈ Fc, for all recipe ξ on a frame element of Φ(C), we have

that Er(C) 6� X
?

6= ξ and Er(C) 6� root(X)
?

6= f.

Inductive step N > 0: In such a case, there exists a couple of matrices of constraint systems
(M2,M

′
2) such that (M2,M

′
2) is the father of (M1,M

′
1). By our inductive hypothesis, we know

that (M2,M
′
2) satisfies the properties stated by the lemma. For all C in (M1,M

′
1), there exists a

constraint system C′ in (M2,M
′
2) such that C′ → C.

1. We know that M2 and M ′
2 satisfy InvMatrix(s − 1), M2 → M1, M ′

2 → M1. Since the rule
applied are of support s, then thanks to Lemma C.17 we have that M1 and M ′

1 satisfy
InvMatrix(s− 1).
Thanks to Lemma C.19, we already know that Property 5 of InvGeneral is satisfied. Thus, it
remains to prove the others properties. Let (σ, θ) ∈ Sol(C) and let (ξ, i ⊲ u) ∈ Φ(C). Thanks
to Lemma 8.5, we know that there exists (σ′, θ′) ∈ Sol(C′) such that θ′ = θ|vars2(C′) and
σ′ = σ|vars1(C′) We do a case analysis on the rule applied

— Case Eq-left-right: In such a case, we have that Er(C′) = Er(C) and if Σ =
mgu(Eq(C)), we have that Φ(C) = Φ(C′)Σ and D(C) = D(C′)Σ. Hence we have
θ = θ′. Thus since, by hypothesis, C′ satisfies the Property 1 of InvGeneral, we have
param(ξθ′) ⊆ {ax 1, . . . , ax i} and so param(ξθ) ⊆ {ax 1, . . . , ax i}.

Let ξ′ ∈ Πn with root(ξ′) 6∈ Fc, path(ξ′) = path(ξθ) and ξ′(Φ(C)σ)↓ ∈ T (Fc,N).
Since θ = θ′, we have that path(ξ′) = path(ξθ′). Furthermore, σ′ = σ|vars1(C′) implies
that ξ′(Φ(C)σ)↓ = ξ′(Φ(C′)σ′)↓. Hence by hypothesis, since C satisfies Property 2 of
InvGeneral, we have param(ξ′) 6⊆ {ax 1, . . . , ax i−1}.

— Case Dest when the guess is negative: The proof is similar to the case Eq-left-right.

— Case Dest: Otherwise, we have that Er(C′) = Er(C) and if Σ = mgu(Eq(C)), we have
that Φ(C) = Φ(C′)Σ∪{g(ζ,X2, . . . , Xn), s ⊲ w} and D(C) = D(C′)Σ∪{Xi, s ⊲ vi}i=2..n

where X2, . . . , X2 are fresh variables, (ζ, j ⊲ t) ∈ Φ(C) and j ≤ s. Let’s denote
ζ ′ = g(ζ,X2, . . . , Xn).

Since C′ satisfies InvGeneral, we already know that paramζ
max(()θ) ≤ j. Furthermore, by

definition of (σ, θ) ∈ Sol(C), we have that paramX
max(()kθ) ≤ s, for all k = 2..n. Hence

we can conclude that param(ζ ′θ) ⊆ {ax 1, . . . , ax s}.

We now show that ax s ∈ st(ζ ′θ). If j = s, then we have that ax s ∈ st(ζθ) since
C′ satisfies InvGeneral. Thus we conclude that ax s ∈ st(ζ ′θ). Else j < s. (σ′, θ′) ∈
Sol(C′) implies that σ′ � ND(C′). But we know that C′ also satisfies InvDest(s − 1).
Hence, j < s and σ′ � ND(C′) implies that there exists no recipe (ξ2, . . . , ξn) ∈ Πn

such that param(ξ2, . . . , ξn) ⊆ {ax 1, . . . , ax s−1} such that g(ζθ′, ξ2, . . . , ξn)(Φ(C′)σ′)↓ ∈
T (Fc,N). But we know that g(ζθ′, ξ2, . . . , ξn)(Φ(C′)σ′)↓ = g(ζθ, ξ2, . . . , ξn)(Φ(C)σ)↓.
At last, since (σ, θ) ∈ Sol(C) implies ζ ′θ(Φ(C)σ)↓ ∈ T (Fc,N), we can conclude that
there exists k ∈ {2, . . . , n} such that ax s ∈ st(Xkθ) and so ax s ∈ st(ζ ′). Thus, C
satisfies Properties 1 and 2 of InvGeneral.

It remains to prove Property 3 and 4 of the invariant InvGeneral. Let X ∈ vars2(C) such
that path(ξ) ∈ st(C⌊Xmgu(Er(C))⌋Φ). We already know that the rule Eq-left-right and
Dest do not modify Er. Furthermore, all new second order variables introduced by the
Dest are not instantiated during Step a. Hence if C′′ is the constraint system in M or M ′

such that C′′ →∗ C, then we have we have that path(ξ) ∈ st(C⌊Xmgu(Er(C))⌋Φ) implies
that X ∈ vars2(C′′) and path(ξ) ∈ st(C⌊Xmgu(Er(C′′))⌋Φ). Furthermore, since C′′ satisfies
InvUntouched(s − 1), we can deduce that i < s. Hence, by hypothesis on C′′, we have that
(ξ, i ⊲ u′′) 6∈ NoUse(C′′) where u′′mgu(Eq(C′′)) = u. At last, since during Step a with
support s, Eq-left-right only add frame element of the form (ξ′, s ⊲ v) and i < s, we can
conclude that (ξ, i ⊲ u) 6∈ NoUse(C). Hence C satisfies Property 3 of InvGeneral.

Assume now that (ξ, i ⊲ u) 6∈ NoUse(C) and let ξ′ ∈ st(ξ) such that (ξ′, j ⊲ v) ∈ Φ(C) ∩
NoUse(C). Since Eq-left-right only add frame element of the form (ζ, s ⊲ w) and C′

satisfies Property 4 of InvGeneral, we can deduce that i = j = s. Thus, the only way
this case occur is if Dest was applied on a frame element which belong to NoUse or if
Eq-left-right was applied on (ξ′, j ⊲ v) after that Dest was applied on it. But this case
is impossible since it would imply that v ∈ X 1 and we now by definition of Dest that u is a
strict subterm of v. Hence we have that (ξ′, j ⊲ v) 6∈ NoUse(C) and so C satisfies Property 4
of InvGeneral.

2. Since C′ in (M2,M
′
2), C

′ satisfies InvVarFrame(s− 1), InvNoUse(s− 1) and InvUntouched(s).
Thanks to Lemmas C.15 and C.16, we can deduce that C satisfies InvVarFrame(s − 1),
InvNoUse(s− 1) and InvUntouched(s).

6. Let x ∈ vars2({u | X, i
?

⊢ u ∧ i < s}) such that for all (X, i
?

⊢ u) ∈ D(C) such that i < s and
X ∈ S2(C), x 6= u. We know that C′ → C hence we do a case analysis on the rule applied
Dest or Eq-left-right:

Case Eq-left-right(X, ξ): We focus on the son which modifies the terms in the con-
straint systems, i.e. when the equality guess is true. Since the rule Eq-left-right(X, ξ)

is applicable then there exists i, u0, v0 such that (X, i
?

⊢ u0) ∈ D(C′), X ∈ S2(C′) and
(ξ, s ⊲ v0) ∈ Φ(C′). Let σ = mgu(u, v). We know that Φ(C) = Φ(C′)σ and D(C) = D(C′)σ.

But x ∈ vars2({(u | X, i
?

⊢ u) ∈ D(C) ∧ i < s}), thus it implies that x 6∈ dom(σ) and

so x′ ∈ vars2({(u | X, i
?

⊢ u) ∈ D(C′) ∧ i < s}). Furthermore, it also implies that for

all (X, i
?

⊢ u) ∈ D(C′) such that i < s and X ∈ S2(C
′), x 6= u. Indeed, if there exists

(X, i
?

⊢ x) ∈ D(C′) then (X, i
?

⊢ x) ∈ D(C) which is a contradiction with our hypothesis.
Let t ∈ {v | (ξ, i ⊲ v) ∈ Φ(C) or (X, i ⊲ v) ∈ D(C)}, thus there exists t′ ∈ {v | (ξ, i ⊲ v) ∈
Φ(C′) or (X, i ⊲ v) ∈ D(C′)} such that t′σ = t. Let p a position such that t|p = x.
If x 6∈ img(σ), then we can deduce that t′|p = x. Hence, by our inductive hypothesis, we
have that there exists p′ such that p = p′ · 1 and t′|p′ = pk(x) and so t′σ|p′ = pk(x).
If x ∈ img(σ), then x ∈ u0 or x ∈ v0. But by our inductive hypothesis we have that for all
p, if u0|p = x then there exists p′ such that p = p′ · 1 and u0|p′ = pk(x). Hence by definition
of the mgu, for all y ∈ dom(σ), x ∈ vars(yσ) implies that either (a) x = yσ or (b) there for
all p, if yσ|p = x then there exists p′ such that p = p′ · 1 and yσ|p′ = pk(x).

Case (a): In such a case, we have that for all (X, i
?

⊢ u) ∈ D(C′) such that i < s and

X ∈ S2(C′), y 6= u. Indeed, if there exists (X, i
?

⊢ y) ∈ D(C′) then (X, i
?

⊢ x) ∈ D(C) which
is a contradiction with our hypothesis. Hence, t|p = x implies that t′|p = y or t′|p = x. If
t′|p = x then the result holds similarly to the case x 6∈ img(σ). If t′|p = y, we know by our
inductive hypothesis that t′|p′ = pk(y) with p = p′ ·1 and so t′σ|p′ = pk(x). Hence the result
holds.
Case (b): Otherwise, t|p = x implies that t′|p = x or there exists p′, p′′ such that p = p′ · p′′

and t′|p′ = y and yσ|p′′ = x. But by hypothesis on y, there exists p′′′ such that p′′ = p′′′ · 1
and yσ|p′′′ = pk(x), hence we have that t′σ|p′·p′′′ = pk(x). Hence the result holds.

Case Dest(ξ, ℓ → r, s): Once again, we focus on the son which may instantiate the terms in
the constraint system, i.e. when the guess is positive. Since Dest(ξ, ℓ → r, s) is applicable
then there exists i ≤ s, u0 such that (ξ, i ⊲ u0) ∈ Φ(C′). First of all, we deduce u0 6∈ X 1.
Indeed, if u0 ∈ X 1, then since C′ satisfies the properties the lemma, we have that either

(ξ, i ⊲ u0) ∈ NoUse(C′) if i < s, or else there exists (X, j
?

⊢ u0) ∈ D(C′). Thus we would
have that the rule Eq-left-right(X, ξ) would be applicable which contradict the strategy
that imposes that the rule Eq-left-right are prioritised over the rule Dest.

By definition of the rule Dest, we know that Φ(C′)σ ∪ {ξ′, s ⊲ wσ} = Φ(C) and {(X, i
?

⊢

u) ∈ D(C′) | X ∈ S2}σ = {(X, i
?

⊢ u) ∈ D(C) | X ∈ S2} where σ = mgu(u0, v1) and
g(v1, . . . , vn) → x1 is a fresh instance of ℓ → r.
But the definition of ℓ → r implies that v1 = f(x1, x2), for f ∈ {senc, 〈〉, sign}; or v1 =
aenc(x1, pk(x2)). Thus, since u0 6∈ X 1, then we have vars2(D(C′)) ∩ dom(σ) = ∅ when
f ∈ {senc, 〈〉, sign}. Hence the result holds. When v1 = aenc(x1, pk(x2)), the only way to
have vars2(D(C′)) ∩ dom(σ) 6= ∅ is if u0 = aenc(u1, y) with y ∈ vars2(D(C′)). But in such a
case, it implies that we have that yσ = pk(x2). Thus if x = x2 then x satisfies the properties
since x2 6∈ vars1(C′) and yσ = pk(x2).

3. Let (ξ, s ⊲ x) ∈ Φ(C) with x ∈ X 1. Thanks to Property 6, we know that if for all (X, i ⊲
v) ∈ D(C), X ∈ S2(C) and i < s implies v 6= x, then all term in the frame, x are always used
under the constructor pk. But it is not the case for (ξ, s ⊲ x). Hence, we deduce that there

exists (X, i
?

⊢ v) ∈ D(C) such that X ∈ S2(C),i < s and v = x.

4. The rule Eq-left-right and Dest do not modify Er(C′). Hence, we only have to look at the
new frame element that are added on the frame. But by definition of Dest, the application
of Dest(ξ, ℓ → r, s) implies the addition of a new element (g(ξ,X2, . . . , Xn), s ⊲ w) where
g ∈ Fd, X2, . . . Xn are fresh, and there exists i, u such that (ξ, i ⊲ u) ∈ Φ(C). Hence the
result holds.

5. Once again, the rule Eq-left-right and Dest no not modify Er(C′) hence Er(C′) = Er(C).
Hence, C′ satisfies Property C.2 implies that C satisfies Property C.2.

Lemma C.22. Let (M1,M
′
1) be a pair of matrices of constraint system satisfying PP1(s− 1).

Let (M2,M
′
2) be a pair of matrices of constraint systems obtained from (M1,M

′
1) by applying

Step a of Phase 1 of the strategy with parameters s. Moreover we assume that (M2,M
′
2) is obtained

after a sequence of application of Dest or Eq-left-right. For all constraint system C, C′ in
(M2,M

′
2),

1. for all (ξ, s ⊲ u) ∈ NoUse(C), there exists X ∈ S2(C) such that for all C′′ in M or M ′, if there
exists (ξ′, s ⊲ u′) ∈ NoUse(C′′) such that path(ξ′) = path(ξ) then C⌊Xmgu(Er(C′′))⌋Φ(C′′)

acc1(C′′) = u′. Else, by denoting v′ = C⌊Xmgu(Er(C′′))⌋Φ(C′′)acc
1(C′′), we have that

Eq(C′′) � v′
?

6= u′.

2. for all (ξ, i ⊲ u) ∈ Φ(C) r NoUse(C), for all (ξ′, i′ ⊲ u′) ∈ Φ(C′) r NoUse(C′), if path(ξ) =
path(ξ′) then Dest(ξ, ℓ → r, s) is applicable on C is equivalent to Dest(ξ′, ℓ → r, s) is
applicable on C′

Proof. The proof of this Lemma follows the application of the rule Dest and Eq-left-right in
sequence.

Property C.3. We say that a pair of matrices of constraint systems (M,M ′) satisfy PP1SaE(s) if
M and M ′ have the same structure, satisfy InvMatrix(s− 1) and InvGeneral, and for all constraint
system C in M or M ′, if C 6=⊥ then C satisfies the invariants InvVarFrame(s − 1), InvDest(s),

InvNoUse(s) and InvUntouched(s). Moreover, for all (X, i
?

⊢ u) ∈ D(C),

— X 6∈ S2(C) implies that i = s.

— for all f ∈ Fc, for all ξ ∈ Πn, Er(C) 6� X
?

6= ξ and Er(C) 6� root(X)
?

6= f.

Lemma C.23. Let (M,M ′) be a pair of matrices of constraint systems satisfying PP1(s−1). For
all pair of matrices of constraint systems (M1,M

′
1) obtained from (M,M ′) at the end of Step a of

Phase 1 of the strategy with parameter s, (M1,M
′
1) satisfies PP1SaE(s).

Proof. We know that all constrain system in M and M ′ satisfies InvVarConstraint(s − 1). Hence,

for all C ∈ M (resp. M ′), for all (X, i
?

⊢ u) ∈ D(C), if i ≤ s− 1 implies that X ∈ S2(C). Moreover,
C satisfies InvUntouched(s − 1) which implies that if i > s − 1, X ∈ S2(C). Thus we deduce that
X ∈ S2(C). But during the step a of Phase 1, only the rule Dest add new deducible constraint.
Furthermore, Dest is applied with support s. Hence, Dest can only add deducible constraint of

the form Y, s
?

⊢ v. Thus for all C, for all (X, i
?

⊢ u) ∈ D(C), if X 6∈ S2(C) then i = s.
Since (M,M ′) satisfies PP1(s− 1), we already know that already know that M and M ′ satisfy

the invariant InvMatrix(s − 1). Furthermore, Lemma C.21 also indicates that for all constraint
system C in M or M ′, C satisfies the invariant InvGeneral, InvVarFrame(s − 1), InvDest(s − 1),
InvNoUse(s − 1) and InvUntouched(s). Hence it remains to prove that C satisfies InvDest(s) and
InvNoUse(s).

At the end of Step a, we know that the rules Dest and Eq-left-right are not applicable on
a constraint system in M or M ′ for any parameter with support inferior or equal to s.
Invariant InvNoUse(s): Let (ξ, p ⊲ v) ∈ Φ(C). If p < s then, thanks to InvNoUse(s− 1), the result
holds. Else assume that p = s and v ∈ X 1. But, thanks to Lemma C.21, we have that there exists

(X, i
?

⊢ u) ∈ D(C) such that u = v and i < s. Thus, since Eq-left-right is not applicable on C,

we have that either (ξ, p ⊲ v) ∈ NoUse(C) or Eq(C) � u
?

6= v. But u = v implies Eq(C) � u
?

6= u
which implies that C↓ = ⊥ by normalisation, which is a contradiction with a fact that Φ(C). Thus
we have that (ξ, p ⊲ v) ∈ NoUse(C) and so C satisfies InvNoUse(s).

Invariant InvDest(s): Let (ξ, p ⊲ v) ∈ Φ(C), f ∈ Fd and (ξ, p ⊲ v) 6∈ NoUse(C) and p ≤ s. We do
a case analysis on p:

— Case p = s: In such a case, we only have to show that either (ξ′, s ⊲ v′) ∈ Φ(C) for some

ξ′ such that path(ξ′) = f · path(ξ); or else ND � ∀x̃, v 6= u1 ∨ s 6
?

⊢ u2 ∨ . . . ∨ s 6
?

⊢ un where
f(u1, . . . , un) → w is a fresh rewriting rule with vars1(u1, . . . , un, w) = x̃.

But we know that Dest is not applicable on C for any parameter with support s. Hence
Dest(ξ, f(u1, . . . , un) → w, s) is not applicable. But since ξ, f(u1, . . . , un) → w and s are
valid parameter for C, it implies that Dest(ξ, f(u1, . . . , un) → w, s) was already applied and
so the definition of the rule Dest in Figure 7.1 allows us to conclude.

— Case p < s: We know that C satisfies InvDest(s − 1). Hence, we have to show that if for

every p ≤ k ≤ s− 1, ND � ∀x̃, v 6= u1 ∨ s− 1 6
?

⊢ u2 ∨ . . .∨ s− 1 6
?

⊢ un where f(u1, . . . , un) → w
is a fresh rewriting rule with vars1(u1, . . . , un, w) = x̃, then either (ξ′, s ⊲ v′) ∈ Φ(C) for

some ξ′ such that path(ξ′) = f · path(ξ); or else ND � ∀x̃, v 6= u1 ∨ s 6
?

⊢ u2 ∨ . . . ∨ s 6
?

⊢ un.

But once again, we know that Dest is not applicable on C for any parameter with support
s. Hence Dest(ξ, f(u1, . . . , un) → w, s) is not applicable. But since ξ, f(u1, . . . , un) → w
and s are valid parameter for C, it implies that Dest(ξ, f(u1, . . . , un) → w, s) was already
applied and so the definition of the rule Dest in Figure 7.1 allows us to conclude.

C.4.3.3 Invariants of Phase 1, Step b

Given a pair of matrices (M,M ′) such that M (resp. M ′) has n columns (resp. n′), we say
that the kth column of (M,M ′) is either the kth column of M if k ≤ n; or else the (k−n)th column
of M ′ if k > n. If n+ n′ < k then the kth column of (M,M ′) is not defined.

Moreover, will assume from now on that m is the size of a frame of a constraint system in M
or M ′.

Property C.4. We say that a pair of matrices of constraint systems (M,M ′) satisfy PP1Sb(s, k)
if (M,M ′) satisfies PP1SaE(s) and for all i ≤ k, for all constraint system C in the ith column of
(M1,M

′
1), C also satisfies InvVarConstraint(s) and InvVarFrame(s) (and InvDedsub when s = m)

Lemma C.24. Let (M,M ′) be a pair of matrices of constraint systems satisfying PP1SaE(s).
(M,M ′) satisfies PP1Sb(s, 0).

Proof. Trivial since (M,M ′) does not have a 0th column.

Property C.5. We say that a pair of matrices of constraint systems (M,M ′) satisfy PP1SbE(s, k)
if M and M ′ have the same structure, satisfy InvMatrix(s−1) and InvGeneral, and for all constraint
system C in M or M ′, if C 6=⊥ then C satisfies the invariants InvVarFrame(s − 1), InvDest(s),
InvNoUse(s) and InvUntouched(s). Moreover, for all constraint system C in the kth column of

(M1,M
′
1), for all (X, i

?

⊢ u) ∈ D(C),

— X 6∈ S2(C) implies u ∈ X 1 and i = s.

— for all f ∈ Fc, for all ξ ∈ Πn, Er(C) 6� X
?

6= ξ and Er(C) 6� root(X)
?

6= f.

— if s = m then C satisfies InvDedsub.

At last, for all i ≤ k, for all constraint system C in the ith column of (M1,M
′
1), C also satisfies

InvVarConstraint(s) and InvVarFrame(s) (and InvDedsub when s = m).

Lemma C.25. Let (M,M ′) be a pair of matrices of constraint systems satisfying PP1Sb(s, k).
For all pair of matrices of constraint systems (M1,M

′
1) obtained at the end of Step b of the first

phase with support s and column k on (M,M ′), (M1,M
′
1) satisfies PP1SbE(s, k).

Proof. During Step b of the first phase, the rule Dest and Eq-left-right are not applied.
Furthermore, the rules applied can only be applied with support inferior or equal to s. Hence,
thanks to Lemmas C.19, C.15, C.16 and C.17, we can deduce that M1 and M ′

1 satisfy InvMatrix(s−

1), and for all C in M1 or M ′
1, C satisfies InvGeneral, InvVarFrame(s− 1), InvNoUse(s), InvDest(s),

InvDedsub (when s = |Φ(C)|) and InvUntouched(s).
At the end of Step b, we cannot applied the rule Ded-st. Hence for all (ξ, p ⊲ v) ∈ Φ(C), we

know that Ded-st(ξ, f) is useless for any f ∈ Fc. However, the definition of Ded-st(ξ, f) being
useless for all ξ and path implies the invariant InvDedsub. Thus we deduce that C satisfies the
invariant InvDedsub.

Let (X, i
?

⊢ u) ∈ D(C). Since (M1,M
′
1) is obtained at the end of step b, we know that

Cons(X, f) is not strongly applicable on C, for all f ∈ Fc. Hence it implies that u ∈ X 1 and either

(a) for all f ∈ Fc, Er(C) � root(X)
?

6= f; or (b) for all f ∈ Fc, Er(C) 6� root(X)
?

6= f.
In case (a), since Axiom(X, ξ) is not strongly applicable on C, for all ξ, we deduce that for all

(ξ, j ⊲ v) ∈ Φ(C), if j ≤ i then Er(C) � X
?

6= ξ. But C satisfies InvNoUse(s), InvDest(s), i.e. the
rule Dest(ξ, ℓ → r, s) is useless for all ξ and ℓ → r. Thus, by Definition 7.9 of the normalisation,
we would have that C↓ = ⊥ which is a contradiction with the fact that D(C) 6= ∅. Hence this case
is impossible

In Case (b), the rule Axiom can only be applied during Step b if the strong application

conditions of the rule are satisfied. But since u ∈ X 1 and for all f ∈ Fc, Er(C) 6� root(X)
?

6= f,
we deduce that the rule Axiom(X, path) was never applied during step b for any path. Hence, we

deduce that for all ξ, Er 6� X
?

6= ξ. Hence the result holds.
At last, we know that the only rule that add deducible constraints during step b are Cons and

Ded-st. But Ded-st is only applied when i = s and it create deducible constraint of the form

X, s
?

⊢ u. On the other hand, thanks to Lemma C.23, we know that for all C in M or M ′, for all

(X, i
?

⊢ u) ∈ D(C), if X 6∈ S2 then i = s. But, according to Figure 7.1, by applying Cons(Y, f)

for some f ∈ Fc and Y, i
?

⊢ v, if Y ∈ S2 (resp. 6∈ S2) then the rule Cons creates new deducible

constraint systems of the form (Z, i
?

⊢ w) where Z is in S2 (resp. not in S2). Since the only for all

C in M or M ′, for all (X, i
?

⊢ u) ∈ D(C), if X 6∈ S2 then i = s, we deduce that the index of any new
deducible constraints created by Cons whose second order variables are not in S2 is necessary s.
Thus the result holds.

C.4.3.4 Invariants of Phase 1, Step c

Property C.6. We say that a pair of matrices of constraint systems (M,M ′) satisfy PP1ScE(s, k)
if M and M ′ have the same structure, satisfy InvMatrix(s−1) and InvGeneral, and for all constraint
system C in M or M ′, if C 6=⊥ then C satisfies the invariants InvVarFrame(s − 1), InvDest(s),
InvNoUse(s) and InvUntouched(s). Moreover, for all constraint system C in the kth column of

(M1,M
′
1), for all (X, i

?

⊢ u) ∈ D(C),

— X 6∈ S2(C) implies u 6∈ X 1.

— for all f ∈ Fc, for all ξ ∈ Πn, Er 6� root(X)
?

6= f and Er 6� X
?

6= ξ

— if s = m then C satisfies InvDedsub.

At last, for all i ≤ k, for all constraint system C in the ith column of (M1,M
′
1), C also satisfies

InvVarConstraint(s), InvVarFrame(s) (and InvDedsub when s = m).

Lemma C.26. Let (M,M ′) be a pair of matrices of constraint systems satisfying PP1SbE(s, k).
For all pair of matrices of constraint systems (M1,M

′
1) obtained at the end of Step c of the first

phase with support s and column k on (M,M ′), (M1,M
′
1) satisfies PP1ScE(s, k).

Proof. Let (M0,M
′
0) be the pair of matrices of constraint systems, ancestor of (M,M ′), obtained

at the end of step b. Thanks to Lemma C.25, we know that (M0,M
′
0) satisfies InvMatrix(s − 1).

Furthermore, we know that for all constraint system C in the kth column of (M0,M
′
0), C satisfies

InvGeneral, InvVarFrame(s − 1), InvNoUse(s), InvDest(s) and InvUntouched(s). Hence thanks to
Lemmas C.19, C.15, C.16 and C.17, we deduce, by a simple induction on the size of the branch
between (M0,M

′
0) and (M,M ′), that (M,M ′) satisfes InvMatrix(s−1) and for all constraint system

C in the kth column of (M,M ′), C satisfies InvGeneral, InvVarFrame(s−1), InvNoUse(s), InvDest(s)
and InvUntouched(s).

It remains to prove that for all i ∈ {1, . . . , n}, for all (X, j
?

⊢ u) ∈ D(Mi,k), if X 6∈ S2(C) then

u 6∈ X 1. Let’s denote C = Mi,k. Let (X, j
?

⊢ u) ∈ D(C) such that X 6∈ S2(C) and u ∈ X 1. Thus we
have that X1(C) 6= ∅. Thanks to C being well-formed (Definition 8.2, item 10) and Lemma C.10,

we know that there exists (Y, ℓ
?

⊢ v) ∈ D(C) such that Y ∈ S2(C), ℓ < j and u ∈ vars1(v).
Assume first that v ∈ X 1 and so u = v. Thanks to Lemma C.25 and the fact that the rules

applied in step c do not add second order inequation in Er with a variable not in S2, we deduce

that for all f ∈ Fc, Er(C) 6� root(X)
?

6= f. But if there exists f ∈ Fc such that Er(C) � root(Y)
?

6= f,

then it would implies that either a rule Axiom or Cons would be applicable on (Y, ℓ
?

⊢ v); or else

C = ⊥ by normalisation. Hence, we have that for all f ∈ Fc, Er(C) 6� root(Y)
?

6= f. Therefore
we have that Eq-right-right(X,Y) is applicable which contradicts the fact that (M,M ′) was
obtained at the end of step c.

Similarly, if v 6∈ X 1, it implies that either C = ⊥ by normalisation or that a rule Axiom or

Cons would be applicable on (Y, ℓ
?

⊢ v), which contradicts our hypothesis.

Thus we deduce that for all i ∈ {1, . . . , n}, for all (X, j
?

⊢ u) ∈ D(Mi,k), if X 6∈ S2 then
u 6∈ X 1.

C.4.3.5 Invariants of Phase 1, end of cycle Step b - c

Property C.7. We say that a pair of matrices of constraint systems (M,M ′) satisfy PP1SbcE(s, k)
if M and M ′ have the same structure, satisfy InvMatrix(s−1) and InvGeneral, and for all constraint
system C in M or M ′, if C 6=⊥ then C satisfies the invariants InvVarFrame(s − 1), InvDest(s),
InvNoUse(s) and InvUntouched(s). Moreover, for all constraint system C in the kth column of

(M1,M
′
1), for all (X, i

?

⊢ u) ∈ D(C),

— X ∈ S2(C)

— for all f ∈ Fc, for all ξ ∈ Πn, Er 6� root(X)
?

6= f and Er 6� X
?

6= ξ

— if s = m then C satisfies InvDedsub.

At last, for all i ≤ k, for all constraint system C in the ith column of (M1,M
′
1), C also satisfies

InvVarConstraint(s) and InvVarFrame(s) (and InvDedsub when i = s).

Lemma C.27. Let (M,M ′) be a pair of matrices of constraint systems satisfying PP1Sb(s, k).
For all pair of matrices of constraint systems (M1,M

′
1) obtained at the end of the cycle of steps

b+c of the first phase with support s and column k on (M,M ′), (M1,M
′
1) satisfies PP1SbcE(s, k).

Proof. (M,M ′) being obtained at the end of cycle of steps b+ c of Phase 1 implies that (M,M ′) is
also obtained at the end of step c. Hence thanks to Lemma C.26, we know that (M,M ′) satisfies
InvMatrix(s− 1) and for all constraint system C in the kth of (M,M ′), we have that C satisfies the
invariants InvGeneral, InvVarFrame(s− 1), InvNoUse(s), InvDest(s) and InvUntouched(s). Hence it

remains to prove that for all (X, i
?

⊢ u) ∈ D(C), X ∈ S2(C).

Assume that there exists (X, i
?

⊢ u) ∈ D(C) such that X 6∈ S2(C). Thus, thanks to Lemma C.26,
we have that u 6∈ X 1. But thanks to Lemma C.25, we know that if no rule of step b is applicable
than it would imply that u ∈ X 1 which is a contradiction. Hence a rule of step b is applicable on
(M,M ′) which contradicts the fact that (M,M ′) is obtained at the end of the cycle step b + c.
Hence we have that X ∈ S2(C).

C.4.3.6 Invariant of Phase 1, Step d

Lemma C.28. Let (M,M ′) be a pair of matrices of constraint systems satisfying PP1SbcE(s, k).
For all pair of matrices of constraint systems (M1,M

′
1) obtained at the end of the Step d of the

first phase with support s and column k on (M,M ′), (M1,M
′
1) satisfies PP1Sb(s, k + 1).

Proof. Let (M1,M
′
1) be the pair of matrices of constraint systems, ancestor of (M,M ′), obtained

at the end of the cycle b + c. Thanks to Lemma C.26, we already know that (M1,M
′
1) satisfy

InvMatrix(s − 1) and InvGeneral. Furthermore, for all constraint system C in the kth column on
(M1,M

′
1), we have that C satisfies the invariants InvVarFrame(s− 1), InvNoUse(s), InvDest(s) and

InvUntouched(s). But thanks to Lemmas C.19, C.17, C.16, C.15 and C.14, we have that (M,M ′)
satisfies InvMatrix(s−1) and InvGeneral. Furthermore, for all constraint system C in the kth column
on (M,M ′), we have that C satisfies the invariants InvVarFrame(s − 1), InvNoUse(s), InvDest(s)
and InvUntouched(s).

Using a similar proof as in Lemma C.25, we also show that C satisfies InvVarConstraint(s)

and for all (X, i ⊲ x) ∈ D(C), for all (ξ, j ⊲ u) ∈ Φ(C), for all f ∈ Fc, Er 6� root(X)
?

6= f and

Er 6� X
?

6= ξ.
Hence it remains to prove that C satisfies the invariant InvVarFrame(s). Let (ξ, s ⊲ v) ∈ Φ(C)

and Z ∈ vars2(ξ). Thanks to C being well formed, we know that there exists j ≤ s and a term u

such that (Z, j
?

⊢ u) ∈ D(C). Furthermore, for all x ∈ vars1(u), there exists (ζ, k ⊲ w) ∈ Φ such
that k ≤ s and x ∈ vars1(w). But since C satisfies InvVarConstraint(s), we know that u ∈ X 1 and
so x = u. But by the property of origination of a constraint system, we deduce that there exists

(X, q
?

⊢ t) ∈ D with q < k ≤ s and u ∈ vars1(t). Once again since C satisfies InvVarConstraint(s),
we deduce that t = u. Moreover, the invariant InvVarConstraint(s) stipulates that all right hand
term of the deducible constraints with index inferior to s are distinct. Hence, we deduce that

(X, q
?

⊢ t) and (Z, j
?

⊢ u) are the same constraint and so q = j. But we proved that q < k and
k ≤ s which means that j < s and so the result holds.

C.4.3.7 Invariant of Phase 1, Step e

Lemma C.29. Let (M,M ′) be a pair of matrices of constraint systems obtained by following
the strategy. Assume that M and M ′ satisfy the invariant InvGeneral. Let C and C′ be two
constraint systems occurring in the same column of M . Assume that C and C′ satisfy the invariants
InvVarConstraint(s) and InvUntouched(s) for some s. We have that there exists a variable renaming
ρ : X 1

r S1(C) → X 1
r S1(C

′) such that:

1. mgu(Eq(C))|S1(C)ρ = mgu(Eq(C′))|S1(C′), and D(C)ρ = D(C′);

2. {(uρ, u′) | (ξ, i ⊲ u) ∈ Φ ∧ (ξ′, i′ ⊲ u′) ∈ Φ′ ∧ path(ξ) = path(ξ′)} ⊆ {(u, u) | u ∈ T (Fc,N ∪
X 1)}.

Proof. First, we define the renaming ρ, and then we show that the two properties are satisfied.

Definition of the renaming ρ. By Lemma 8.1, we know that the matrices M and M ′ have the
same structure, and so the systems C and C′ have the same shape. Hence, we have:

— S2(C) = S2(C′), and

— {(X, i) | X, i
?

⊢ u ∈ D(C) and X ∈ S2(C)} = {(X, i) | X, i
?

⊢ u ∈ D(C′) and X ∈ S2(C′)}.

Since the system C satisfies the invariants InvVarConstraint(s) and InvUntouched(s), we have that

X ∈ S2(C) for each (X, i
?

⊢ u) ∈ D(C), and similarly, we have that X ∈ S2(C
′) for each (X, i

?

⊢ u) ∈

D(C′). This allows us to conclude that {(X, i) | X, i
?

⊢ u ∈ D(C)} = {(X, i) | X, i
?

⊢ u ∈ D(C′)}.
Actually, the invariant InvVarConstraint(s) also tells us that:

— for all (X, i
?

⊢ u) ∈ D(C) such that i ≤ s, we have that u is a variable (distinct of the ones
introduced by the other constraints); and

— for all (X, i
?

⊢ u) ∈ D(C′) such that i ≤ s, we have that u is a variable (distinct of the ones
introduced by the other constraints).

Hence, this allows us to define a renaming ρ such that dom(ρ) = {x | (X, i
?

⊢ x) ∈ D(C) ∧ i ≤ s},

and ρ(x) = Xacc1(C′) where (X, i
?

⊢ x) ∈ D(C).

Property 1. With such renaming, we trivially have that D(C)ρ = D(C′) but only for the deducibility
constraints (X, i ⊲ u) with i ≤ s. Hence, we still have to prove this result for i > s. Since the
systems C and C′ occur on the same column of the matrix M , there exists an initial constraint
system C0 that is an ancestor of C and C′. Moreover, we know that C and C′ satisfy the invariant
InvUntouched(s). Hence, we deduce that:

— for all (X, i
?

⊢ u) ∈ D(C) such that i > s, we have that X ∈ vars2(D(C0)); and

— for all (X, i
?

⊢ u′) ∈ D(C′) such that i > s, we have that X ∈ vars2(D(C0)).

Let σ = mgu(Eq(C)) and σ′ = mgu(Eq(C′)). Since C and C′ are normalised, for i > s, we deduce

that (X, i
?

⊢ u) ∈ D(C), (X, i
?

⊢ u′) ∈ D(C′), and (X, i
?

⊢ u0) ∈ D(C0) imply that u = u0σ and

u′ = u0σ
′. Let S1

def
= S1(C) = S1(C

′) = S1(C0). Hence, to conclude the proof of D(C)ρ = D(C′), it
remains to show that σ|S1

ρ = σ′
|S1

.
By definition of an initial constraint system, we know that for all x ∈ S1, there exists

(X, k
?

⊢ u) ∈ D(C0) such that x ∈ vars1(u) and X ∈ S2(C0). Since C and C′ satisfy the invariant
InvUntouched(s), we have that no rule was applied with support strictly superior to s, and we

deduce that for all (Y, j
?

⊢ v) ∈ D(C0), for all y ∈ vars1(v), indC0
(y) > s, we have that y 6∈ dom(σ)

and y 6∈ dom(σ′). Hence, we only focus on variable x ∈ S1 such that there exists (X, k
?

⊢ u) ∈ D(C0,
x ∈ vars1(u) and k ≤ s. We prove by induction on k ≤ s that Xacc1(C0)σρ = Xacc1(C0)σ

′.

Base case k = 0. There is no constraint X, k
?

⊢ u with k = 0. Hence, the result trivially holds.

Inductive step k > 0. Let (X, k
?

⊢ u) ∈ D(C0). By Lemma C.11, we know that:

{
uσ = C⌊X⌋Φ0

acc1(C0)σ = C⌊XΘ⌋Φacc1(C) and param≤
max(XΘ)k

uσ′ = C⌊X⌋Φ0
acc1(C0)σ

′ = C⌊XΘ′⌋Φ′acc1(C′) and param≤
max(XΘ′)k

where Θ = mgu(Er(C)) and Θ′ = mgu(Er(C′)).
However, X ∈ S2(C0) implies that X ∈ S2(C) = S2(C

′) and so thanks to M satisfying the
invariant InvGeneral (item 5), we deduce that C⌊XΘ⌋Φ = C⌊XΘ′⌋Φ′ . Furthermore, for all i ≤ k,
for all w · ax i ∈ st(C⌊XΘ⌋Φ), we know that there exists u0 such that (ax i, i ⊲ u0) ∈ Φ(C0). Thus
by Lemma C.12, (ax i, i ⊲ u0σ) ∈ Φ and (ax i, i ⊲ u0σ

′) ∈ Φ′. But by definition of a constraint

system, for all y ∈ vars1(u0), there exists (Y, ℓ
?

⊢ v) ∈ D(C0) such that ℓ < k and y ∈ vars1(v). By
our inductive hypothesis, we know that vσρ = vσ′ which implies that yσρ = yσ′ and so we can
deduce that u0σρ = u0σ

′.
But thanks to the definition of a context, for all w, w · ax i ∈ st(C⌊XΘ⌋Φ) = st(C⌊XΘ⌋Φ′)

implies that there exists (ξ, j ⊲ v) ∈ Φ and (ξ′, j′ ⊲ v′) ∈ Φ′ such that path(ξ) = path(ξ′) = w ·ax i.
Since ax iacc

1(C)ρ = u0σρ = u0σ
′ = ax iacc

1(C′), then thanks to Lemma C.13, we can deduce that
vρ = v′ and so (w · ax i)acc

1(C)ρ = (w · ax i)acc
1(C′).

At last, since param≤
max(XΘ)k and param≤

max(XΘ′)k, then for all (w · ax i) ∈ st(C⌊XΘ⌋Φ), we
have i ≤ k. The same holds for (w · ax i) ∈ st(C⌊XΘ′⌋Φ′). Hence, since we proved that for all
w, for all i ≤ k, (w · ax i)acc

1(C)ρ = (w · ax i)acc
1(C′), since C⌊XΘ⌋Φ = C⌊XΘ′⌋Φ′ , and since for

all (X, i
?

⊢ x) ∈ D(C), for all (X, i
?

⊢ x′) ∈ D(C′), i ≤ s implies xρ = x′, then we can deduce
that C⌊XΘ⌋Φacc

1(C)ρ = C⌊XΘ′⌋Φacc
1(C′). Thus we conclude that Xacc1(C0)σρ = uσρ = uσ′ =

Xacc1(C0)σ
′.

Property 2. Let (ξ, i ⊲ u) ∈ Φ and (ξ′, i′ ⊲ u′) ∈ Φ′ such that path(ξ) = path(ξ′) = w · axk.
Since the constraint systems C and C′ are well-formed, there exist (axk, k ⊲ v) ∈ Φ and (axk, k ⊲
v′) ∈ Φ′. Thanks to Lemma C.12, we know that there exits v0 such that (axk, k ⊲ v0) ∈ Φ0 with
v0σ = v and v0σ

′ = v′. Since σ|S1
ρ = σ′

|S1
, we deduce that v0σρ = v0σ

′ and so vρ = v′.

Lemma C.30. Let (M,M ′) be a pair of matrices of constraint systems satisfying PP1(s). For all
pair of matrices of constraint systems (M1,M

′
1) obtained by applying all the steps of Phase 1 of

the strategy with support s, (M1,M
′
1) satisfies PP1(s+ 1).

Proof. The step e of the strategy consists of transforming some of the constraint systems into
⊥. Moreover, the step e is applied only once step d was applied on all columns of (M,M ′).
Thus, thanks to Lemma C.28, we can already deduce that M and M ′ satisfies InvGeneral and for
all constraint system C in (M,M ′), C satisfies the invariants InvVarConstraint(s), InvVarFrame(s),
InvNoUse(s), InvDest(s), InvUntouched(s), and for all (X, i ⊲ x) ∈ D(C), for all (ξ, j ⊲ u) ∈ Φ(C),

for all f ∈ Fc, Er 6� root(X)
?

6= f and Er 6� X
?

6= ξ.
Similarly, we have that (M,M ′) satisfies the invariant InvGeneral and InvMatrix(s − 1). Thus

it remains to prove that (M,M ′) satisfies the invariant InvMatrix(s). But by the definition of the
transformation in step e, we can deduce that for all C, for all C′ in the same column of (M,M ′),
we have {path(ξ), i | (ξ, i ⊲ u) ∈ Φ(C) ∧ i ≤ s} = {path(ξ), i | (ξ, i ⊲ u) ∈ Φ(C′) ∧ i ≤ s}.

At last, let (M1,M
′
1) be the matrices ancestors of (M,M ′) obtained at the end of Step a of

phase 1 with support s. Let C be a constraint system in (M,M ′) such that (ξ, s ⊲ u) ∈ NoUse(C).
Let C′ be a constraint system in (M,M ′) in the column on C. We proved that there exists
(ξ′, s ⊲ u′) ∈ Φ(C′) such that path(ξ′) = path(ξ). Assume that (ξ′, s ⊲ u′) 6∈ Φ(C′). Since the
frame is not modify during step b − c − d, other than applying substitution, we can deduce that
there exists C1, C′

1 in (M1,M
′
1), ξ1, ξ

′
1 ∈ Πn, u1, u

′
1 ∈ T (Fc,N ∪X 1) such that C1 →∗ C, C′

1 →∗ C′,
(ξ1, s ⊲ u1) ∈ NoUse(C1), (ξ′1, s ⊲ u′

1) ∈ Φ(C′
1)r NoUse(C′

1) and path(ξ1) = path(ξ′1)
Thanks to Lemma C.22, there exists X ∈ S2(C1) such that C⌊Xmgu(Er(C1))⌋Φ(C1)acc

1(C1) =
u1 and either (a) (ξ′1, s ⊲ u′

1) ∈ NoUse(C′′) and C⌊Xmgu(Er(C′
1))⌋Φ(C′

1
)acc

1(C′
1) = u′

1. Or else, (b)

by denoting v′1 = C⌊Xmgu(Er(C′
1))⌋Φ(C′

1
)acc

1(C′
1), we have that Eq(C′

1) � v′1
?

6= u′
1. We show that

case (b) can not happen.
Let’s denote σ = mgu(Eq(C)), σ′ = mgu(Eq(C′)), θ = mgu(Er(C)) and θ′ = mgu(Er(C′)).

Thanks to Lemma C.11, we deduce that v′1σ
′ = C⌊Xθ′⌋Φ(C′)acc

1(C′) and u1σ = C⌊Xθ′⌋Φ(C)acc
1(C).

However, since X ∈ S2(C1) and (M,M ′) have the same structure, we deduce that X ∈ S2(C) and
X ∈ S2(C

′). But (M,M ′) satisfies the invariant InvGeneral, hence thanks to Property 5 of invariant
InvGeneral, we have that C⌊Xθ′⌋Φ(C′) = C⌊Xθ⌋Φ(C).

On the other hand, since C and C′ satisfies InvVarConstraint(s) and InvUntouched(s), then by
Lemma C.29, we have that there exists a variable renaming ρ : X 1

r S1(C) → X 1
r S1(C

′) such
that:

1. mgu(Eq(C))|S1(C)ρ = mgu(Eq(C′))|S1(C′), and D(C)ρ = D(C′);

2. {(uρ, u′) | (ξ, i ⊲ u) ∈ Φ ∧ (ξ′, i′ ⊲ u′) ∈ Φ′ ∧ path(ξ) = path(ξ′)} is include in {(u, u) | u ∈
T (Fc,N ∪ X 1)};

Thus we have that acc1(C)ρ = acc1(C′) and so v′1σ
′ = C⌊Xθ′⌋Φ(C′)acc

1(C′) = C⌊Xθ⌋Φ(C)acc
1(C)ρ =

u1σρ = uρ = u′ = u′
1σ

′. Hence, we have that v′1σ
′ = u′

1σ
′. However, we assume that Eq(C′

1) �

v′1
?

6= u′
1 which implies that Eq(C′) � v′1σ

′
?

6= u′
1σ

′. But v′1σ
′ = u′

1σ
′ and by the normalisation, we

would have that C′ = ⊥ which is a contradiction with our hypothesis. Hence, we proved that only
case (a) can happen which implies that (ξ, s ⊲ u) ∈ NoUse(C) implies (ξ′, s ⊲ u′) ∈ NoUse(C′). It
allows us to conclude that {path(ξ), i | (ξ, i ⊲ u) ∈ NoUse(C) ∧ i ≤ s} = {path(ξ), i | (ξ, i ⊲ u) ∈
NoUse(C′) ∧ i ≤ s}.

C.4.3.8 All invariants

Property C.8. Let (M,M ′) be a pair of matrices of constraint system. We say that (M,M ′)
satisfies PP1E if (M,M ′) satisfies PP1(∞) and for all constraint system C in M or M ′, C also
satisfies InvDedsub.

Lemma C.31. Let (M,M ′) be a pair of row matrices of initial constraint systems having the same
structure. For all (M ′

1,M
′
1) obtained at the end of phase 1 of the strategy from (M,M ′), (M,M ′)

satisfies PP1E. Moreover, for all (M2,M
′
2) such that (M,M ′) →∗ (M2,M

′
2) →

∗ (M ′
1,M

′
1),

— if (M2,M
′
2) is obtained from Step a with support s then (M2,M

′
2) satisfies PP1Sa(s);

— if (M2,M
′
2) is obtained at the end of Step a with support s then (M2,M

′
2) satisfies PP1SaE(s);

— if (M2,M
′
2) is obtained at the end Step b with support s and column k then (M2,M

′
2) satisfies

PP1SbE(s, k);

— if (M2,M
′
2) is obtained at the end Step c with support s and column k then (M2,M

′
2) satisfies

PP1ScE(s, k);

— if (M2,M
′
2) is obtained at the end of the cycle of steps b + c with support s and column k

then (M2,M
′
2) satisfies PP1SbcE(s, k);

— if (M2,M
′
2) is obtained at the end of Step d with support s then (M2,M

′
2) satisfies PP1Sb(s, k

+ 1).

Proof. Simple induction on the parameter s and k that rely on all the previous lemmas of this
subsection.

Lemma 8.3. Let (M,M ′) be a pair of row matrices of initial constraint systems having the same
structure. Let (M1,M

′
1) be a pair of matrices of constraint systems obtained by following the

strategy on (M,M ′). (M1,M
′
1) satisfies InvGeneral.

Proof. We rely on Lemma C.31 to prove that if (M1,M
′
1) is obtained from Step a with support s,

s ∈ N, then (M1,M
′
1) satisfies PP1Sa(s) and so InvGeneral. For any other step and phase, we rely

on Lemma C.19 to conclude.

C.4.3.9 Invariant of Phase 2, Step a

Lemma C.32. Let (M,M ′) be a pair of matrices of constraint systems obtained at the end of
Step a of the second phase of the strategy. We have that for all constraint system C in (M,M ′),
vars1(Eq(C)) do not contain universal variable.

Proof. Thanks to the normalisation, we know that for all constraint system C in M , the disjunc-

tions of inequations in Eq(C) are of the form ∀ỹ.
∨

i xi

?

6= ui where ỹ is a set of universal variable
and xi are not universal for any i. Furthermore, thanks to the normalisation and more specifically
by rule (Nelim1), xi 6∈ ỹ, for all i and by rule (Nelmin2), for all y ∈ ỹ, there exists i such that

y ∈ vars1(ui) . Let xi

?

6= ui and y ∈ vars1(ui) ∩ ỹ. Since xi is not a universal variable, there

exists (X, j
?

⊢ xi) ∈ D(C). But we assumed that the rules Cons and Axiom are no longer appli-

cable. Thus, we deduce that for all f ∈ Fc, Er(C) � root(X)
?

6= f and for all (ξ, k
?

⊢ u) ∈ Φ(C),

Er(C) � X
?

6= ξ. Moreover, we know that C satisfies the invariant InvDest(∞) hence by the def-
inition of the normalisation, we should have C = ⊥ which is a contradiction with our hypothesis

on C. Hence vars1(ui) ∩ ỹ = ∅ for all xi

?

6= ui. Hence by rule (Nelim2) of the normalisation, we
deduce that Eq(C) do not contain universal variable.

C.4.3.10 Invariant of Phase 2, Step b

Lemma C.33. Let (M,M ′) be a pair of matrices of constraint systems at the end of Step b. For
all constraint system C and its association table in M or M ′, we have that:

— for all disjunction
∨

i ui

?

6= vi, if Eq(C) = E ∧
∨

i ui

?

6= vi and T [
∨

i ui

?

6= vi] = ⊥, then for all

i, ui

?

6= vi satisfies one of the following properties:

1. ui ∈ X 1 and vi ∈ N .

2. ui, vi ∈ X 1, Er(C) 6� root(X)
?

6= f and Er(C) � root(Y)
?

6= g, for all f, g ∈ Fc, where

(X, p
?

⊢ ui), (Y, q
?

⊢ vi) ∈ D(C).

3. ui ∈ X 1, root(vi) ∈ Fc and for all f ∈ Fc, Er(C) � root(X)
?

6= f, where (X, p
?

⊢ ui) ∈
D(C).

— for all disjunction D, if Eq(C) = E ∧ D and T [D] =
∨

i ξi
?

6= ξ′i, then either for all i,

st(ξi, ξ
′
i) ∩ (F∗

d · AX) = ∅ or else for all i, ξi
?

6= ξ′i satisfies one of the following properties:

1. ξi ∈ (F∗
d · AX)

2. ξi, ξ
′
i ∈ X 2, for all f ∈ Fc, Er(C) � root(ξi)

?

6= f and Er(C) 6� root(ξ′i)
?

6= f.

3. ξi ∈ X 2, root(ξ′i) ∈ Fc and for all f ∈ Fc, Er(C) � root(ξi)
?

6= f

Proof. By definition of Step b oh Phase 2 of the strategy, for all constraint system C and its
association table T , Cons(X, f) and Eq-right-right(X, ξ) is not applicable for all f ∈ Fc and
all ξ.

Consider a disjunction
∨n

i ui

?

6= vi such that Eq(C) = E ∧
∨n

i ui

?

6= vi and T [
∨n

i ui

?

6= vi] = ⊥.
Let i ∈ {1, . . . , n}. We do a case analysis on ui and vi.

— ui ∈ X 1 and vi ∈ N (or the reverse): The results holds trivially.

— ui 6∈ X 1 and vi ∈ N (or the reverse): We know that C is normalised. Hence such inequality
is necessary reduced either by the rules (Nneq1) or (Nt1). Hence this case is impossible.

— ui, vi ∈ X 1: In such a case, there exists (X, k
?

⊢ ui) ∈ D(C) and (Y, ℓ
?

⊢ vi) ∈ D(C). Assume
w.l.o.g. that ℓ ≤ k. Since Eq-right-right is not applicable for step b, we deduce that the
conditions of application of the rule Eq-right-right(X,Y) in Figure 7.2 are not satisfied.

Hence we deduce that there exists f ∈ Fc such that Er � root(X)
?

6= f and Er 6� root(Y)
?

6= f

(or the reverse). Assume w.l.o.g. that Er � root(X)
?

6= f and Er 6� root(Y)
?

6= f.

Since Cons(X, g) is not applicable for Step b, for all g ∈ Fc, Er � root(X)
?

6= f implies that

Er � root(X)
?

6= g for all g ∈ Fc. Similarly, Er 6� root(Y)
?

6= f implies that Er 6� root(Y)
?

6= g

for all g ∈ Fc (otherwise Cons(Y, g) would be applicable). Hence we deduce that for all

f, g ∈ Fc, Er(C) 6� root(X)
?

6= f and Er(C) � root(Y)
?

6= g. Thus the result holds.

— Otherwise, ui ∈ X 1 and root(vi) = f ∈ Fc (or the reverse): ui ∈ X 1 implies that there exist

(X, k
?

⊢ ui) ∈ D(C). Since Cons(X, g) is not applicable for Step b, for all g ∈ Fc, we deduce

that st(vi) ∩ N = ∅, indC(vi) ≤ k and either for all g ∈ Fc, Er � root(X)
?

6= g; or for all

g ∈ Fc, Er 6� root(X)
?

6= g.
st(vi) ∩ N = ∅ implies that there exists ξ ∈ T (Fc,X 2) such that ξacc1(C) = vi. But
Eq-right-right(X, ξ) is not applicable for Step b. Hence, we deduce that indC(vi) ≤ k

implies that Er � root(X)
?

6= root(ξ) where root(ξ) ∈ Fc. Hence using what we proved

thanks to Cons not being applicable, we deduce that for all g ∈ Fc, Er � root(X)
?

6= g.
Hence the result holds.

Consider now a disjunction D such that Eq(C) = E ∧D for some E, T [D] =
∨n

i ξi
?

6= ξ′i and
there exists j ∈ {1, . . . , n} such that st(ξj , ξ

′
j) ∩ (F∗

d · AX) 6= ∅. Let i ∈ {1, . . . , n}, we do a case
analysis on ξi and ξ′i:

— ξi ∈ (F∗
d · AX) or ξ′i ∈ (F∗

d · AX): The result trivially holds.

— ξi, ξ
′
i ∈ X 2: In such a case, since Eq-right-right(ξi, ξ

′
i) is not applicable for Step b, we

deduce that there exists f ∈ Fc such that Er � root(ξi)
?

6= f and Er 6� root(ξ′i)
?

6= f (or the

reverse). Assume w.l.o.g. that Er � root(ξi)
?

6= f and Er 6� root(ξ′i)
?

6= f.

Since Cons(ξi, g) and Cons(ξ′i, g) are not applicable for Step b for all g ∈ Fc, Er � root(ξi)
?

6=

f implies that Er � root(ξi)
?

6= g, for all g ∈ Fc. Moreover, Er 6� root(ξ′i)
?

6= f implies that

Er 6� root(ξ′i)
?

6= g for all g ∈ Fc. Hence the result holds.

— ξi ∈ X 2, root(ξ′i) = f ∈ Fc (or the reverse): Since Cons(ξi, f) is not applicable for Step b, we

deduce that either (a) Er � root(ξi)
?

6= f or (b) st(ξ) ∩ (F∗
d · AX) = ∅ and paramCξi

max(C) ≥

paramC
ξ′i
max(C). In case (a), since Cons(ξi, g) not applicable for Step b for all g ∈ Fc, then

Er � root(ξi)
?

6= f implies for all g ∈ Fc, Er � root(ξi)
?

6= g. Hence the result holds. In case

(b), since st(ξj , ξ
′
j)∩(F

∗
d ·AX) 6= ∅, st(ξ)∩(F∗

d ·AX) = ∅, paramCξi
max(C) ≥ paramC

ξ′i
max(C) and

Eq-right-right(ξi, ξ
′
i) not applicable for Step b, then we deduce that Er(ξ) � root(ξi)

?

6= f.

But thanks to Cons(ξi, g) not applicable for Step b, we conclude that Er(ξ) � root(ξi)
?

6= g

for all g ∈ Fc. Hence the result holds.

C.5 Proof of soundness

In this section, we will focus on the proof of soundness. However, unlike the proof of complete-
ness, this proof depends heavily on the strategy that has been described in Section 7.4, and on
the invariants described in Section C.4. Hence, the proof will depend on the strategy.

C.5.1 Preliminaries

Lemma C.34. Let Φ be a closed frame and ξ, ξ′ be two ground recipes in Πn with root(ξ), root(ξ′) 6∈
Fc and such that path(ξ) = path(ξ′). If ξΦ↓, ξ′Φ↓ ∈ T (Fc,N), then we have that ξΦ↓ = ξ′Φ↓.

Proof. We prove this result by induction of the length n of path(ξ):

Base case n = 1: In such a case, we have that path(ξ) = path(ξ′) ∈ AX . Hence, we have that
ξ = ξ′, and so ξΦ↓ = ξ′Φ↓.

Inductive step n > 1: Since path(ξ) = path(ξ′), we know that there exists f ∈ Fd and there exist
ξ1, . . . , ξn, ξ

′
1, . . . , ξ

′
n ∈ Πn such that ξ = f(ξ1, . . . , ξn) and ξ′ = f(ξ′1, . . . , ξ

′
n). By Lemma 6.5, for all

ζ ∈ st(ξ)∪st(ξ′), we have that ζΦ↓ ∈ T (Fc,N). Hence, for all i = 1, . . . , n, for all ζ ∈ st(ξi)∪st(ξ
′
i),

we have that ζΦ↓ ∈ T (Fc,N). By definition of path, we have that path(ξ1) = path(ξ′1) (since
path(ξ) = path(ξ′)).

Applying our induction hypothesis on (ξ1, ξ
′
1), we obtain that ξ1Φ↓ = ξ′1Φ↓. We have that

ξΦ↓, ξ′Φ↓ ∈ T (Fc,N). Hence, we have that

f(ξ1Φ↓, . . . , ξnΦ↓) → ξΦ↓ and f(ξ′1Φ↓, . . . , ξ
′
nΦ↓) → ξ′Φ↓

using the rewriting rule associated to f. This rule is of the form f(u1, . . . , un) → u with u ∈ st(u1).
Since ξ1Φ↓ = ξ′1Φ↓, we easily conclude that ξΦ↓ = ξ′Φ↓.

Lemma C.35. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-formed constraint system
obtained by following the strategy and (σ, θ) ∈ Sol(C). Let ξ ∈ Πn be a ground recipe conforms to
Φθ w.r.t. NoUseθ. For all ξ′ ∈ st(ξ), ξ′ conforms to Φθ w.r.t. NoUseθ.

Proof. We prove the result by induction on |ξ|.

Base case |ξ| = 1: In such a case, ξ ∈ AX . Hence for all ξ′ ∈ st(ξ), ξ′ = ξ and so the result
trivially holds.

Inductive step |ξ| > 1: Otherwise, ξ = f(ξ1, . . . , ξn). We do a case analysis on C⌊ξ⌋Φ.

— Case |C⌊ξ⌋Φ| > 1: In such a case, we have that C⌊ξ⌋Φ = f(C⌊ξ1⌋Φ, . . . ,C⌊ξn⌋Φ). Moreover,
ξ conforms to Φθ w.r.t. NoUseθ implies that for all i ∈ {1, . . . , n}, ξi conforms to Φθ w.r.t.
NoUseθ. Hence by inductive hypothesis on ξi, for all i ∈ {1, . . . , n}, the result holds.

— Case |C⌊ξ⌋Φ| = 1: Otherwise, since ξ conforms to Φθ, we deduce that there exists (ζ, i ⊲ u) ∈
Φ such that (ζ, i ⊲ u) 6∈ NoUseθ and ζθ = ξ. Thanks to C being well-formed, (Definition 8.2,
item 9), we deduce that path(ζ) is closed. Hence there exists ζ1, . . . , ζn such that ζ =
f(ζ1, . . . , ζn) and ζiθ = ξi for all i ∈ {1, . . . , n}.
But thanks to C being well-formed (Definition 8.2, item 9), we deduce that for all ζ ′ ∈ st(ζ),
C⌊ζ ′⌋Φ ∈ T (Fc,F

∗
d · AX ∪ X 2) and if path(ζ ′) ∈ F∗

d · AX then there exists j and v such
that (ζ ′, j ⊲ v) ∈ Φ. Hence for all i ∈ {1, . . . , n}, ζiθ conforms to Φθ w.r.t. NoUseθ if
for all X ∈ vars2(C⌊ζ ′⌋Φ), Xθ conforms to Φθ w.r.t. NoUseθ; and for all ζ ′′ ∈ st(ζi), if
(ζ ′′, j′ ⊲ v′) ∈ Φ for some j′, v′ then (ζ ′′, j′ ⊲ v′) 6∈ NoUseθ.
Since (ζ, i ⊲ u) 6∈ NoUse, and relying on Lemma 8.3 (Item 4), we deduce that for all
ζ ′′ ∈ st(ζi), if path(ζ ′′) ∈ F∗

d · AX then there exists j and v such that (ζ ′′, j ⊲ v) ∈ Φ and
(ζ ′′, j ⊲ v) 6∈ NoUse. At last, (σ, θ) ∈ Sol(C) implies that for all X ∈ vars2(C), Xθ conforms
to Φθ w.r.t. NoUseθ. Hence we deduce that for all i ∈ {1, . . . , n}, ζiθ conforms to Φθ w.r.t.
NoUseθ. We conclude by applying our inductive hypothesis on ζiθ, for all i ∈ {1, . . . , n}.

Lemma C.36. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-formed constraint system
obtained by following the strategy and (σ, θ) ∈ Sol(C). Let ξ be a ground recipe in Πn such that
ξ(Φσ)↓ ∈ T (Fc,N). We have that there exists ξ′ a recipe in Πn such that:

— ξ′ conforms with Φθ w.r.t NoUseθ;

— ξ(Φσ)↓ = ξ′(Φσ)↓; and

— paramC
max(ξ

′) ≤ paramC
max(ξ).

Proof. We prove this lemma by induction on |ξ|.

Base case |ξ| = 0: In such a case, the result trivially holds.

Inductive step |ξ| > 0: We do a case analysis on C⌊ξ⌋Φ:

— Case 1: C⌊ξ⌋Φ ∈ (F∗
d ·AX). By definition of C⌊ξ⌋Φ, we know that there exists (ζ, i ⊲ u) ∈ Φ

such that path(ζ) = path(ξ). Since (σ, θ) ∈ Sol(C) and thanks to Lemma 8.3 (item 2), we
deduce that i ≤ paramC

max(ξ). Note that C is a well-formed constraint system and (σ, θ) ∈
Sol(C), thus by Definition 8.2 (item 5), we have that (ζθ)(Φσ)↓ = uσ. Moreover, relying on
Lemma C.34, we can deduce that ξ(Φσ)↓ = (ζθ)(Φσ)↓.

Case 1.a : (ζ, i ⊲ u) ∈ NoUse. Let Θ = mgu(Er). In such a case, since C is a well-formed
constraint system (Definition 8.2, item 8), we know that there exists X ∈ vars2(C) such that
C⌊XΘ⌋Φacc

1(C) = u and paramC
max(XΘ) < i. Since we proved that i ≤ paramC

max(ξ), we can
deduce that paramC

max(XΘ) < paramC
max(ξ).

But since (σ, θ) ∈ Sol(C), we know that θ � Er, Xθ ∈ Πn, Xθ conforms with Φθ w.r.t.
NoUseθ and (Xθ)Φσ↓ = (ζθ)Φσ↓. Note that ξ(Φσ)↓ = (ζθ)(Φσ)↓ and so ξΦσ↓ = (Xθ)Φσ↓.

Furthermore, (σ, θ) ∈ Sol(C) also implies that for all Z ∈ vars2(XΘ), paramC
max(Zθ) ≤

paramC
max(Z). With θ � Er and paramC

max(XΘ) < i, we deduce that paramC
max(Xθ) < i. This

allows us to conclude for ξ′ = Xθ.

Case 1.b: (ζ, i ⊲ u) 6∈ NoUse. In such a case, let ξ′ = ζθ. Since C is a well formed constraint
system (Definition 8.2, item 3), we know that paramC

max(ζ) ≤ i. Since (σ, θ) ∈ Sol(C) implies
that for all Z ∈ vars2(ζ), paramC

max(Zθ) ≤ paramC
max(Z), we deduce that paramC

max(ζθ) ≤ i.
Since we proved that i ≤ paramC

max(ξ), we deduce that paramC
max(ζθ) ≤ paramC

max(ξ).

At last, since we assumed that (ζ, i ⊲ u) 6∈ NoUse then (ζθ, i ⊲ u) 6∈ NoUseθ. Hence ξ′ = ζθ
conforms to Φθ w.r.t. NoUseθ. Hence, we conclude.

— Case 2: root(C⌊ξ⌋Φ) ∈ Fc. By definition of C⌊ξ⌋Φ, there exists ξ1, . . . , ξn ∈ Πn such that
ξ = f(ξ1, . . . , ξn) and f ∈ Fc. But for any i = 1 . . . n, we have paramC

max(ξi) ≤ paramC
max(ξ) and

|ξi| < |ξ|. Thus, by our inductive hypothesis, we can deduce that there exists ξ′1, . . . , ξ
′
n ∈ Πn

such that for all i = 1 . . . n,

— ξ′i conforms with Φθ w.r.t NoUseθ;

— ξi(Φσ)↓ = ξ′i(Φσ)↓; and

— param(ξi) ⊆ {ax 1, . . . , ax j} implies param(ξ′i) ⊆ {ax 1, . . . , ax j}, for any j.

Let ξ′ = f(ξ′1, . . . , ξ
′
n). Since f ∈ Fc, we can deduce that:

— f(ξ′1, . . . , ξ
′
n) conforms with Φθ w.r.t. NoUseθ;

— ξΦσ↓ = f(ξ1, . . . , ξn)Φσ↓ = f(ξ′1, . . . , ξ
′
n)Φσ↓ = ξ′Φσ↓; and

— paramC
max(ξ

′) = max{paramC
max(ξ

′
i) | i ∈ {1, . . . , n}} and so paramC

max(ξ
′) ≤ paramC

max(ξ).

— root(C⌊ξ⌋Φ) ∈ Fd. By definition of C⌊ξ⌋Φ, there exists ξ1, . . . , ξn ∈ Πn such that ξ =
g(ξ1, . . . , ξn) and g ∈ Fd. As in Case 2, we can apply our inductive hypothesis on each ξi.
Thus, we will also have that there exists ξ′1, . . . , ξ

′
n such that:

— ξ′i conforms with Φθ w.r.t NoUseθ;

— ξi(Φσ)↓ = ξ′i(Φσ)↓; and

— paramC
max(ξ

′
i) ≤ paramC

max(ξi).

Let ξ′ = g(ξ′1, . . . , ξ
′
n). In order to conclude, we have to show that ξ′ = g(ξ′1, . . . , ξ

′
n) conforms

with Φθ w.r.t. NoUseθ. We do a case analysis:

Case 3.a: if root(ξ′1) ∈ Fc, then we have that g(ξ′1, . . . , ξ
′
n) 6∈ Πn. But we know that

g(ξ′1, . . . , ξ
′
n)Φσ↓ ∈ T (Fc,N) which means that g is reduced by a rewriting rule ℓ → r. But

all the rewriting rules we consider are defined such that if g is reduced then it implies there
exists a substerm ζ of ξ′1 such that ζΦσ↓ = g(ξ′1, . . . , ξ

′
n)Φσ↓ = g(ξ1, . . . , ξn)Φσ↓. Since ξ′1

conforms with Φθ w.r.t. NoUseθ, then so does ξ′, which allow us to conclude.

Case 3.b: Otherwise, we deduce that ξ′ ∈ Πn. Moreover, if there exists (ζ, i ⊲ u) ∈ Φ such
that path(ζ) = g · path(ξ′1), then we apply the same reasoning than Case 1. Else it implies
that C⌊ξ′⌋Φ = g(C⌊ξ′1⌋Φ, . . . ,C⌊ξ

′
n⌋Φ) and since ξ′i, i = 1 . . . n are all conforms to Φθ w.r.t.

NoUseθ, we conclude that ξ′ conforms to Φθ w.r.t. NoUseθ.

Lemma C.37. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-formed constraint system
obtained by following the strategy and (σ, θ) ∈ Sol(C). Let s ∈ N. Assume that Dest(ζ, ℓ → r, s)
is useless C for any ζ, ℓ → r. For all ground recipe ξ ∈ Πn, if ξ conforms to Φθ w.r.t. NoUseθ,
ξΦσ↓ ∈ T (Fc,N) and param(ξ) ⊆ {ax 1, . . . ax s} then C⌊ξ⌋Φ ∈ T (Fc,F

∗
d · AX).

Proof. Let p the position of the smallest subterm of C⌊ξ⌋Φ such that root(C⌊ξ⌋Φ|p) ∈ Fd. Hence,
we deduce that ξ|p = g(ξ1, . . . , ξn) and g ∈ Fd. Moreover, since ξ conforms to Φθ w.r.t. NoUseθ,
ξ ∈ Πn and by the minimality of C⌊ξ⌋Φ|p, we deduce that there exists (ζ, i ⊲ u) ∈ Φ such
that ξ1 = ζθ and (ζ, i ⊲ u) 6∈ NoUse. Since C is well-formed, we know that paramC

max(ζ) ≤ i.
Furthermore, since (σ, θ) ∈ Sol(C), we deduce that paramC

max(ζθ) ≤ i. Moreover, since C is obtained

by following the strategy then thanks to Lemma 8.3, C satisfies InvGeneral. Thus we deduce that
ax i ∈ st(ζθ) and so paramC

max(ζθ) = i. But ζθ ∈ st(ξ) and param(ξ) ⊆ {ax 1, . . . ax s} hence i ≤ s.
Thus thanks Dest(ζ, ℓ → r, s) being useless on C with ℓ → r the rewrite rule associated to g,

we deduce that :

— either there exists (ζ ′, p′ ⊲ v′) ∈ Φ for some ξ′ such that path(ζ ′) = g · path(ζ) and some p′

such that p′ ≤ s. But path(ξ|p) = g · path(ξ1) = g · path(ζθ). Thanks to C being well-formed
(Definition 8.2, item 1), we know that path(ζ) is closed hence path(ξ|p) = path(ζ ′). This is
a contradiction with the fact that root(C⌊ξ⌋Φ|p) ∈ Fd.

— else ND � ∀x̃.u
?

6= u1 ∨ s 6
?

⊢ u2 ∨ . . . ∨ s 6
?

⊢ un where g(u1, . . . , un) → w is a renaming
of ℓ → r. But (σ, θ) ∈ Sol(C) implies σ � ND . Moreover, ξ ∈ Πn and ξ(Φσ)↓ implies,
thanks to Lemma 6.5, that ξ|p = g(ξ1, . . . , ξn)(Φσ)↓. Hence along with the hypothesis
param(ξ) ⊆ {ax 1, . . . ax s}, this is a contradiction with σ � ND .

We conclude that such position p does not exist and so C⌊ξ⌋Φ ∈ T (Fc,F
∗
d · AX).

C.5.2 Order relation on second order variables

In this subsection, we state some properties regarding the relation <θ described in Defini-
tion 8.3.

Lemma C.38. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-formed constraint system. Let
(σ, θ) be a pre-solution of C. Let X,Y ∈ vars2(D) such that X <θ Y . We have that Xθ is a strict
subterm of Y θ.

Proof. X <θ Y implies that there exist X1, . . . , Xn ∈ vars2(D) such that X <θ X1 <θ . . . <θ

Xn <θ Y , and if we rename X,Y into X0, Xn+1 then we have that for all i ∈ {0, . . . , n}, Xi ∈
vars2(C⌊Xi+1θ⌋acc

2(C)) and Xi 6= Xi+1.
Since (σ, θ) is a pre-solution of C, we know that for all X ∈ vars2(C), Xθ conforms to the Φθ

w.r.t. NoUseθ. Moreover, for all i ∈ {0, . . . , n}, Xi ∈ vars2(C⌊Xi+1θ⌋Φacc
2(C)) implies that there

exists (ξ, k ⊲ u) ∈ Φ such that Xi ∈ vars2(ξ) and path(ξ) ∈ st(C⌊Xi+1θ⌋Φ). Thanks to C being
well-formed, we know that path(ξ) ∈ F∗

d · AX and exists hence Xi is a strict subterm of ξ which
implies that Xiθ is a strict subterm of ξθ. But Xi+1θ is conformed to Φθ w.r.t. NoUse, and thus
we have that ξθ ∈ st(Xi+1θ). Thus, we can deduce that Xiθ is a strict subterm of Xi+1θ.

A simple induction on n allows us to conclude that X0θ is a strict subterm of Xn+1θ and so
Xθ is a strict subterm of Y θ.

Lemma C.39. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-formed constraint system. Let
(σ, θ) be a pre-solution of C. We have that <θ is a strict partial order.

Proof. Since (σ, θ) is a pre-solution of C, we have that for all X ∈ vars2(D), Xθ conforms to Φθ
w.r.t. NoUse. By definition, <θ is a strict partial order if, and only if:

— ¬(X <θ X) (irreflexivity)

— if X <θ Y then ¬(Y <θ X) (asymmetry)

— if X <θ Y and Y <θ Z then X <θ Z (transitivity)

By Definition 8.3, we already know that <θ is closed by transitivity. Assume first that X <θ X.
Thanks to Lemma C.38, we know that Xθ is a strict subterm of Xθ which is impossible. For the
same reason, X <θ Y and Y <θ X would imply that Xθ is a strict subterm of Xθ, hence the
contradiction.

Lemma C.40. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-formed constraint system
obtained by following the strategy. Let (σ, θ) ∈ Sol(C). Let X,Y ∈ vars2(D), we have that X <θ Y
implies that paramC

max(X) ≤ paramC
max(Y).

Proof. Thanks to Lemma 8.3, item 1, we know that for all (ξ, i ⊲ u) ∈ Φ, ax i ∈ st(ξθ). Further-
more, since C is well formed (Definition 8.2, item 3), we deduce that paramC

max(ξ) ≤ i. Moreover,
(σ, θ) ∈ Sol(C) implies that for all Y ∈ vars2(ξ), paramC

max(Y θ) ≤ paramC
max(Y). Thus with

ax i ∈ st(ξθ), we deduce that paramC
max(ξθ) = i.

We have that X <θ Y , and thus there exist X1, . . . , Xn ∈ vars2(D) such that X <θ X1 <θ

. . . <θ Xn <θ Y and if we rename X,Y into X0, Xn+1 then for all i ∈ {0, . . . , n}, Xi ∈
vars2(C⌊Xi+1θ⌋acc

2(C)) and Xi 6= Xi+1.

Let i ∈ {0, . . . , n, n + 1}. We know that there exist ui and ki such that (Xi, ki
?

⊢ ui) ∈ D.
Since (σ, θ) ∈ Sol(C), we have that param(Xiθ) ⊆ {ax 1, . . . , axki

}.
But Xi ∈ vars2(C⌊Xi+1θ⌋acc

2(C)) implies that there exists (ξ, j ⊲ v) ∈ Φ such that path(ξ) ∈
st(C⌊Xi+1θ⌋) and Xi ∈ vars2(ξ). Furthermore, since Xi+1θ conforms with Φθ w.r.t. NoUse, we
can deduce that ξθ ∈ st(Xi+1θ). We have seen that ax j ∈ st(ξθ), we can deduce that j ≤ ki+1. At
last, since Xiθ ∈ st(ξθ), param(Xiθ) ⊆ {ax 1, . . . , axki

} and param(ξθ) ⊆ {ax 1, . . . , ax j}, we can
deduce that ki ≤ j which implies ki ≤ ki+1 and so paramC

max(Xi) ≤ paramC
max(Xi+1). Altogether,

this allows us to conclude that paramC
max(X0) ≤ . . . ≤ paramC

max(Xn+1) and so paramC
max(X) ≤

paramC
max(Y).

Lemma C.41. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) be a well-formed constraint system
obtained by following the strategy. Let (σ, θ) ∈ Sol(C). Let ξ be a ground recipe in Πn and

(X, i
?

⊢ u) ∈ D such that:

— ξ conforms to Φθ w.r.t. NoUseθ and param(ξ) ⊆ {ax 1, . . . , ax i}.

— there exists a position p, such that ξ′ = Xθ|p, ξ′Φσ↓ = ξΦσ↓, and C0 = C1[C2]p where
C0 = C⌊Xθ[ξ]p⌋, C1 = C⌊Xθ⌋ and C2 = C⌊ξ⌋.

— for all Y ∈ vars2(C⌊ξ⌋acc2(C)), ¬(X <θ Y).

Then there exists θ′ such that (σ, θ′) is a pre-solution of C with θ′ � mgu(Er), Xθ′ = Xθ[ξ]p and
for all Y ∈ vars2(D)r {X}, C⌊Y θ⌋Φθ = C⌊Y θ′⌋Φθ′ .

Proof. Since we assume that C is well-formed (Definition 8.2, item 2), the path of any recipe of
a frame element of Φ is closed hence for all ξ, for all θ, C⌊ξ⌋Φ = C⌊ξ⌋Φθ. Hence we omit the
substitution in the context. Let θ′ be a substitution defined as follows:

— for all Y ∈ vars2(D) such that ¬(X <θ Y), Y θ′
def
= Y θ

— Xθ′
def
= Xθ[ξ]p

— Otherwise, Y θ′
def
= C⌊Y θ⌋Φacc2(C)θ′, where Y ∈ vars2(D)

— for all Y ∈ vars2(C)r vars2(D), Y θ′ = Ymgu(Er)θ′

First, we need to justify that the substitution θ′ is well-defined. By Lemma C.39, we know
that the relation <θ is a strict partial order. Let Y ∈ vars2(D) such that X <θ Y and so
Y θ′ = C⌊Y θ⌋Φacc

2(C)θ′. But for all Z ∈ vars2(C⌊Y θ⌋Φacc
2(C)), we have Z <θ Y . Since the

relation <θ is a strict partial order on vars2(D), we conclude that Y θ′ is well-defined. At last, for
all Y ∈ vars2(C)rvars2(D), for all X ∈ vars2(Ymgu(Er)), X ∈ vars2(D). Since θ′ is well defined
on any variables in vars2(D), we conclude that θ′ is well-defined on all variable of C.

Now, it remains to prove the three expected properties.

Property 1. Xθ′ = Xθ[ξ]p: By definition of θ′, we know that Xθ′ = Xθ[ξ]p hence the result
trivially holds.

Property 2. θ′ � mgu(Er): By definition, for all Y ∈ vars2(C) r vars2(D), Y θ′ = Ymgu(Er)θ′.
Hence, we trivially deduce that θ′ � mgu(Er).

Property 3. for all Y ∈ vars2(D) r {X}, C⌊Y θ⌋Φθ = C⌊Y θ′⌋Φθ′ : For any variable Y ∈ vars2(D)
such that ¬(X <θ Y), we have that Y θ′ = Y θ which means that C⌊Y θ⌋Φ = C⌊Y θ′⌋Φ. Moreover,

for all Y ∈ vars2(C) r {X}, if X <θ Y then Y θ′ = C⌊Y θ⌋Φacc2(C)θ′. But since Y θ is a ground
recipe, then st(C⌊Y θ⌋Φ)∩dom(acc2(C)) ⊆ (F∗

d ·AX) and for all w ∈ dom(acc2(C))∩ (F∗
d ·AX), we

have that C⌊wacc2(C)θ⌋Φ = C⌊wacc2(C)θ′⌋Φ (= w). Therefore, we have that C⌊Y θ′⌋Φ = C⌊Y θ⌋Φ.

Property 4. (σ, θ′) is a pre-solution of C, i.e.

— for every Y ∈ vars2(C), we have that Y θ′ conforms to the frame Φθ′ w.r.t. NoUseθ, and

— for every (Y, j
?

⊢ v) in D, we have that (Y θ′)(Φσ)↓ = vσ↓ and param(Y θ′) ⊆ {ax 1, . . . , ax j}.

Thanks to C being well-formed (Definition 8.2, item 7), we know that for all Y ∈ vars2(C),
C⌊Ymgu(Er)⌋ ∈ T (Fc,F∗

d · AX ∪ X 2) and for all ζ ∈ st(Ymgu(Er)), path(ζ) ∈ F∗
d · AX implies

that there exists j and v such that (ζ, j ⊲ v) ∈ Φ. Since θ � Er, we deduce that C⌊Y θ⌋ =
C⌊Ymgu(Er)⌋{Z 7→ C⌊Zθ⌋ | Z ∈ vars2(C⌊Ymgu(Er)⌋)}. But by definition, for all Y ∈ vars2(C)r
vars2(D), Y θ′ = mgu(Er)θ′. Hence, along with C satisfying InvGeneral (Definition 8.1, item 3)
thanks to Lemma 8.3, we deduce that Y θ′ conforms to Φθ′ w.r.t. NoUseθ′ if and only if for all
Z ∈ vars2(C⌊Ymgu(Er)⌋), Zθ′ conforms to Φθ′ w.r.t. NoUseθ′. Thus it remains to prove that for
all Y ∈ vars2(D), Y θ′ conforms to Φθ′ w.r.t. NoUseθ′

Let Y, j
?

⊢ v be a deducibility constraint in D. We prove the results by induction on <θ.

Base case 1: ¬(X <θ Y). In such a case, we have that Y θ′ = Y θ. Thus, we have (Y θ′)Φσ↓ =
(Y θ)Φσ↓ and param(Y θ′) = param(Y θ) ⊆ {ax 1, . . . , ax j}. Furthermore, by definition of <θ, we
have that for all Z ∈ vars2(C⌊Y θ⌋Φacc

2(C)), Z <θ Y and so ¬(X <θ Z). Thus, Zθ = Zθ′. With
Y θ′ = Y θ and Y θ conforms with Φθ w.r.t. NoUseθ, we can deduce that Y θ′ also conforms with
Φθ′ w.r.t. NoUseθ′.

Base case 2: Y = X. In such a case, we have that Xθ = Xθ[ξ]p. By hypothesis, we know
that ξ(Φσ)↓ = Xθ|pΦσ↓. Thus, we have that Xθ[ξ]pΦσ↓ = XθΦσ↓. Furthermore, we also know
that param(ξ) ⊆ {ax 1, . . . , ax i} and param(Xθ) ⊆ {ax 1, . . . , ax i}. Thus we can conclude that
param(Xθ[ξ]p) ⊆ {ax 1, . . . , ax i}.

By hypothesis, we know that for all Z ∈ vars2(C⌊ξ⌋Φacc2(C)), ¬(X <θ Z) which means that
Zθ′ = Zθ and so ξ conforms with Φθ′ w.r.t. NoUseθ. By definition of <θ, we have that for all
Z ∈ vars2(C⌊Xθ⌋Φacc

2(C)), Z <θ X which means that Zθ′ = Zθ and so Xθ conforms with Φθ′

w.r.t. NoUseθ′. Therefore, since by hypothesis we have that C⌊Xθ′⌋ = C⌊Xθ⌋[C⌊ξ⌋]p, we can
conclude that Xθ′ = Xθ[ξ]p conforms with Φθ′ w.r.t. NoUseθ′.

Inductive case X <θ Y : In such a case, Y θ′ = C⌊Y θ⌋Φacc
2(C)θ′. We know by definition of <θ that

if Z ∈ vars2(C⌊Y θ⌋Φacc
2(C)) then Z <θ Y . Hence by Lemma C.40, paramC

max(Z) ≤ paramC
max(Y)

which implies that there exists a constraint (Z, ℓ
?

⊢ r) ∈ D with ℓ ≤ j. Therefore, thanks to our
induction hypothesis, we deduce that (Zθ′)(φσ)↓ = rσ↓ and param(Zθ′) ⊆ {ax 1, . . . , ax ℓ}.

Let w ∈ st(C⌊Y θ⌋Φ)∩(F
∗
d ·AX). Hence there exists (ζ, ℓ ⊲ r) ∈ Φ such that ζ = wacc2(C)θ′. We

already show that for all Z ∈ vars2(ζ) with (Z, ℓ′
?

⊢ r′) ∈ D, Zθ′(Φσ)↓ = r′σ↓ and param(Zθ′) ⊆
{ax 1, . . . , ax

′
ℓ}. Hence, thanks to C being well-formed (Definition 8.2, item 5), we deduce that

ζθ′(Φσ)↓ = r↓ = ζθ(Φσ)↓. Moreover, once again thanks to C being well-formed (Definition 8.2,
item 3), param(ζθ′) ⊆ {ax 1, . . . , ax ℓ} and so param(wacc2(C)θ′) ⊆ {ax 1, . . . , ax ℓ}. At last, since
(σ, θ) ∈ Sol(C) and thanks to C satisfying InvGeneral (item 1), we deduce that ax ℓ ∈ st(ζθ) which
implies that ax ℓ ∈ st(Y θ) and so ℓ ≤ j. Hence, we can conclude that Y θ′(Φσ)↓ = Y θ(Φσ)↓ = vσ↓
and param(Y θ′) ⊆ {ax 1, . . . , ax j}.

Lastly, by definition of θ′, we have that Y θ′ = C⌊Y θ⌋acc2(C)θ′ thus, since Y θ conforms with
Φθ w.r.t. NoUseθ, we deduce that Y θ′ conforms with the frame Φθ′ w.r.t. NoUseθ′.

C.5.3 Preliminaries for soundness of Phase 1 Step a

In this subsection, we are only looking to prove Lemma 8.6 when the strategy is on the first
phase of the first step. Hence, according to Subsection 7.4, the only rules that can be applied during

this phase are Dest and Eq-left-right. In such a case, thanks to Lemma C.31, the constraint
systems or matrices of constraint system we will consider in this subsection all satisfy the invariants
PP1Sa(s) for some s depending on the parameter of the rules Dest and Eq-left-right.

Let T be a set of terms, and u be a term, we denote by nbocc(u, T) the number of occurrences
of u in T .

Lemma C.42. Let M be a matrix of constraint systems obtained during phase 1.a with support
s by following the strategy. Let C be a constraint system in M with Φ its associated frame, and
(σ, θ) ∈ Sol(C). Moreover, let (ξ, s ⊲ u) ∈ Φ and let ζ ∈ Πn such that:

— param(ζ) ⊆ {ax 1, . . . , ax s−1},

— ζΦσ↓ = uσ,

— for all Y ∈ vars2(C), ξ 6∈ st(Ymgu(Er)), and

— for all g ∈ Fd, for all (ξ′, i ⊲ v) ∈ Φ, path(ξ′) 6= g · path(ξ).

Either nbocc(ξθ, {Xθ | X ∈ vars2(C)}) = 0 or else there exists θ′ such that (σ, θ′) ∈ Sol(C) and:

nbocc(ξθ
′, {Xθ′ | X ∈ vars2(C)}) < nbocc(ξθ

′, {Xθ′ | X ∈ vars2(C)}).

Proof. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse), (σ, θ) ∈ Sol(C), and consider (X, k
?

⊢ v) ∈ D

such that k ≥ s and C⌊ξ⌋ ∈ st(C⌊Xθ⌋). We first show that if such (X, k
?

⊢ v) does not exists,
then nbocc(ξθ, {Xθ | X ∈ vars2(C)}) = 0. By hypothesis, we know that for all g ∈ Fd, for all
(ξ′, i ⊲ v) ∈ Φ, path(ξ′) 6= g · path(ξ). moreover, since C satisfies PP1Sa(s), we know that for all
(β, s ⊲ v) ∈ Φ(C), either β ∈ AX or there exists X2, . . . , Xn ∈ X 2, f ∈ Fd and (β′, p ⊲ v) ∈ Φ(C)
such that β = f(β′, X2, . . . , Xn) and p ≤ s. Hence we deduce that for all (β, s ⊲ v) ∈ Φ(C), if
ξ ∈ st(β) then ξ = β. Furthermore, since for all Y ∈ vars2(C), ξ 6∈ st(Ymgu(Er)), then for all
Y ∈ vars2(C), ξθ ∈ st(Y θ) implies that there exists Z ∈ vars2(D) such that ξθ ∈ st(Zθ). We
select X ∈ vars2(D) such that Xθ is the smallest recipe that contain ξθ. If X does not exists
then nbocc(ξθ, {Xθ | X ∈ vars2(C)}) = 0 else since Xθ conforms with Φθ w.r.t. NoUseθ and for
all (β, s ⊲ v) ∈ Φ(C), if ξ ∈ st(β) then ξ = β, we conclude that C⌊ξ⌋ ∈ st(C⌊Xθ⌋).

Property 1. We first show for all ζ ∈ Πn, for all position p in Xθ, if ζΦσ↓ = (Xθ)|pΦσ↓, then there
exists ζ ′ ∈ st(ζ) and a position p′ such that p′ is a prefix of p and Xθ[ζ]p(Φσ)↓ = Xθ[ζ ′]p′(Φσ)↓
and Xθ[ζ ′]p′ ∈ Πn. We prove this result by induction on the length |p| of p.

Base case |p| = 0. In such a case we have that p = ǫ. Let ζ ′ = ζ and p′ = p. We have that
Xθ[ζ ′]p′ = ζ ′ = ζ. Since by hypothesis, we have that ζ ∈ Πn, the result trivially holds.

Inductive step |p| > 0. In such a case, we have that p = p1 · r for some r ∈ N and some p1 such
that |p1| < |p|. Assume that Xθ|p1

= f(ξ1, . . . , ξn). We have to distinguish two cases:

1. r = 1, f ∈ Fd and root(ζ) ∈ Fc: We know that Xθ(Φσ)↓ ∈ T (Fc,N) and Xθ ∈ Πn. Thus, by
Lemma 6.5, we can deduce that f(ξ1, . . . , ξn)Φσ↓ ∈ T (Fc,N), and thus f has been reduced.
But by hypothesis, we also know that ζΦσ↓ = ξ1Φσ↓. If we denote ζ = g(ζ1, . . . , ζm), then
by definition of our rewrite rule, we have that ζ1Φσ↓ = f(ξ1, . . . , ξn)Φσ↓. Since ζ ∈ Πn, we
have also that ζ1 ∈ Πn. Furthermore, we have ζ1Φσ↓ = Xθ|p1

Φσ↓. Thanks to our induction
hypothesis, we deduce that there exist ζ ′1 ∈ stζ1 and p′1 a prefix of p1 such Xθ[ζ1]p1

(Φσ)↓ =
Xθ[ζ ′1]p′

1
(Φσ)↓ and Xθ[ζ ′1]p′

1
∈ Rr. Let ζ ′ = ζ ′1 and p′ = p′1. This allows us to conclude.

2. Otherwise: By definition of Πn, we have that Xθ[ζ]p ∈ Πn, and thus the result holds with
ζ ′ = ζ and p′ = p.

Property 2. We show that for all ζ ∈ Πn such that param(ζ) ⊆ {ax 1, . . . , axk}, for all (σ, θ) ∈
Sol(C), for all position p ∈ Pos(C⌊Xθ⌋), if ζ(Φσ)↓ = (Xθ)|p(Φσ)↓, ζ conforms to Φθ w.r.t. NoUseθ,
for all Y ∈ vars2(C⌊ζ⌋acc2(C)), ¬(X <θ Y) and nbocc(C⌊ξ⌋,C⌊Xθ[ζ]p⌋) < nbocc(C⌊ξ⌋,C⌊Xθ⌋)

then there exists θ′ such that (σ, θ′) ∈ Sol(C) and nbocc(C⌊ξ⌋, {C⌊Y θ′⌋ | Y ∈ vars2(C)}) <
nbocc(C⌊ξ⌋, {C⌊Y θ⌋ | Y ∈ vars2(C)}).

We prove this property by induction on the length |p| of p.

Base case |p| = 0. In such a case, we can apply Lemma C.41. Indeed, ζ conforms to Φθ w.r.t.
NoUseθ and param(ζ) ⊆ {ax 1, . . . , axk}. Furthermore we have ζ(Φσ)↓ = Xθ(Φσ)↓ and for all
Y ∈ vars2(C⌊ζ⌋acc2(C)), ¬(X <θ Y). Hence, we deduce that there exists θ′ such that (σ, θ′) is
a pre-solution of C with Xθ′ = ζ and for all Y ∈ vars2(D)\{X}, we have that C⌊Y θ⌋ = C⌊Y θ′⌋,
θ′ � mgu(Er). By hypothesis, we know that nbocc(C⌊ξ⌋, {C⌊ζ⌋}) < nbocc(C⌊ξ⌋, {C⌊Xθ⌋}) and
since C⌊Y θ⌋ = C⌊Y θ′⌋, for all Y ∈ vars2(D)\{X}, we can deduce that

nbocc(C⌊ξ⌋, {C⌊Y θ′⌋ | Y ∈ vars2(D)}) < nbocc(C⌊ξ⌋, {C⌊Y θ⌋ | Y ∈ vars2(D)}).

Moreover, by hypothesis on ξ, we know that for all Y ∈ vars2(C), ξ 6∈ st(Ymgu(Er)). Hence, since
θ � mgu(Er) and θ′ � mgu(Er), we deduce that:

nbocc(C⌊ξ⌋, {C⌊Y θ′⌋ | Y ∈ vars2(C)}) < nbocc(C⌊ξ⌋, {C⌊Y θ⌋ | Y ∈ vars2(C)}).

Furthermore, (σ, θ) ∈ Sol(C) implies σ � Eq ∧ ND . At last, C satisfies PP1Sa(s) (item C.2) thus
along with θ′ � mgu(Er), we deduce that θ′ � Er and so the result holds. Hence the result holds.

Inductive step |p| > 0. In such a case, we have that p = p′ ·r with r ∈ N and |p′| < |p|. Assume that
Xθ|p′ = f(ξ1, . . . , ξn). Since ζ(Φσ)↓ = Xθ|p(Φσ)↓, we have that (Xθ|p′)[ζ]r(Φσ)↓ = Xθ|p′(Φσ)↓.
By definition of (σ, θ) ∈ Sol(C), we know that f(ξ1, . . . , ξn) conforms to Φθ. Now, we distinguish
several cases:

Case (a): f ∈ Fc. In such a case, let ζ ′ = (Xθ|p′)[ζ]r. Hence we have that Xθ[ζ ′]p′ = Xθ[ζ]p
which implies that Xθ[ζ ′]p′(Φσ)↓ = Xθ(Φσ)↓ and Xθ[ζ ′]p′ ∈ Πn.

Moreover, since f ∈ Fc, we have that C⌊ζ ′⌋ = f(C⌊ξ1⌋, . . . ,C⌊ξr−1⌋,C⌊ζ⌋,C⌊ξr+1⌋, . . . ,C⌊ξn⌋).
But by hypothesis, ζ and Xθ|p′ are conforms to Φθ w.r.t. NoUse. Hence, ξ1, . . . , ξn also conform
to Φθ w.r.t. NoUse which implies that ζ ′ conforms to Φθ w.r.t. NoUseθ.

Furthermore, we know that Xθ conforms to Φθ w.r.t. NoUseθ and p ∈ Pos(C⌊Xθ⌋) hence
C⌊ξ1⌋, . . . ,C⌊ξn⌋ ∈ st(C⌊Xθ⌋). Moreover, by definition of <θ, we have for all i ∈ {1, . . . , n},
for all Y ∈ vars2(C⌊ξi⌋acc

2(C)), Y <θ X. But by Lemma C.39, <θ is a strict partial order
which means that Y <θ X implies ¬(X <θ Y). Since by hypothesis, we have that for all Y ∈
vars2(C⌊ζ⌋acc2(C)), ¬(X <θ Y), then we can deduce that for all Y ∈ vars2(C⌊ζ ′⌋acc2(C)), ¬(X <θ

Y).
At last, Xθ[ζ ′]p′ = Xθ[ζ]p and #{C⌊ξ⌋ ∈ st(C⌊Xθ[ζ]p⌋)} < #{C⌊ξ⌋ ∈ st(C⌊Xθ⌋)} trivially

implies that #{C⌊ξ⌋ ∈ st(C⌊Xθ[ζ ′]p′⌋)} < #{C⌊ξ⌋ ∈ st(C⌊Xθ⌋)}.
Hence we conclude by applying our inductive hypothesis on θ, ζ ′ and p′.

Case (b): f ∈ Fd, r 6= 1. This case is similar to Case (a). Indeed, let ζ ′ = (Xθ|p′)[ζ]r. We have
p ∈ Pos(C⌊Xθ⌋). Hence C⌊Xθ|p′⌋ = f(C⌊ξ1⌋, . . . ,C⌊ξn⌋) and C⌊ζ ′⌋ = f(C⌊ξ1⌋, . . . ,C⌊ξr−1⌋,C⌊ζ⌋,
C⌊ξr+1⌋, . . . ,C⌊ξn⌋). Thus we can apply the same reasoning as Case (a).

Case (c): f ∈ Fd, r = 1 and |C⌊Xθ|p′ [ζ]r⌋| > 1. In such a case, we know that C⌊Xθ|p′ [ζ]r⌋ =
f(C⌊ζ⌋,C⌊ξ2⌋, . . . ,C⌊ξn⌋) since |C⌊Xθ|p′ [ζ]r⌋| > 1. Thus, similarly to Case (a), we can apply our
inductive hypothesis.

Case (d): f ∈ Fd, r = 1 and |C⌊Xθ|p′ [ζ]r⌋| = 1. In such a case, we have that there exists
(γ, ℓ ⊲ w) ∈ Φ such that path(γ) = f ·path(ζ). Since ζ conforms to Φθ w.r.t. NoUse, we can denote
γθ = f(ζ, γ2θ, . . . , γnθ). Since C is well-formed and (σ, θ) ∈ Sol(C), we also know that γθ(Φσ)↓ =
wσ and Xθ(Φσ↓) ∈ T (Fc,N). Thus by Lemma 6.5, we can deduce that Xθ|p′(Φσ)↓ ∈ T (Fc,N).
Therefore, since we have seen that ζΦσ↓ = ξ1Φσ↓, we can deduce that for all i ∈ {2, . . . , n},
ξi(Φσ)↓ = γiθ(Φσ)↓. We now distinguish three cases:

— ℓ < s: In such a case, let ζ ′ = γθ. Since (X, k
?

⊢ v) ∈ D(Mi,j), k ≥ s > ℓ and C is well
formed, we know that for all Y ∈ vars2(γ), paramC

max(Y) < k = paramC
max(X). Hence by

Lemma C.40, ¬(X <θ Y).
At last, we know that nbocc(C⌊ξ⌋,C⌊Xθ[ζ]p⌋) < nbocc(C⌊ξ⌋,C⌊Xθ⌋) hence we deduce that
C⌊ξ⌋ ∈ st(C⌊Xθ|p′⌋). Thus along with |C⌊ζ ′⌋| = 1, C⌊ζ ′⌋ 6= C⌊ξ⌋ (since s 6= ℓ), we can
deduce that #{C⌊ξ⌋ ∈ st(C⌊Xθ[ζ ′]p′⌋)} < #{C⌊ξ⌋ ∈ st(C⌊Xθ⌋)}. Hence, we can apply our
inductive hypothesis on ζ ′, θ and p′.

— ℓ > s: Such a case is impossible. Indeed, by Property PP1Sa(s), ℓ > s implies that γ ∈ AX
which is in contradiction with path(γ) = f · path(ζ).

— ℓ = s: Thanks to C satisfying Property PP1Sa(s), we know that γ2, . . . , γn ∈ X 2. We prove
our result now by induction on N = #{γi | X <θ γi, i ∈ {2, . . . , n}}.
Base case N = 0: Such a case is similar to the case ℓ < s. Indeed, by hypothesis, we
know that for all Y ∈ vars2(γ), ¬(X <θ Y) (note that the first argument of γ can not be a
variable). We can apply our inductive hypothesis on ζ ′, θ and p′.

Inductive case N > 0. We know that there exists i0 ∈ {2, . . . , n} such that X <θ γi0 . Since
C is well-formed, we know that paramC

max(γi0) ≤ ℓ = s. Moreover, by Lemma C.40, X <θ γi0
implies that paramC

max(X) ≤ paramC
max(γi0). Since paramC

max(X) = k and k ≥ s, we can

deduce that k = s = ℓ and so there exists v such that (γi0 , s
?

⊢ v) ∈ D. Furthermore, we
already know that ξi0(Φσ)↓ = γi0θ(Φσ)↓ and C⌊ξi0⌋ ∈ st(C⌊Xθ⌋) thanks p ∈ Pos(C⌊Xθ⌋).
Hence, for all Y ∈ vars2(C⌊ξi0⌋acc

2(C)) we have that Y <θ X, and thus Y <θ γi0 (and
so ¬(γi0 <θ Y)). Thus, thanks to Lemma C.41, we know that there exists θ′ such that
(σ, θ′) is a pre-solution of C, γi0θ

′ = ξi0 , θ′ � mgu(Er) and for all Y ∈ vars2(D)\{γi0},
C⌊Y θ′⌋ = C⌊Y θ⌋.
Let j ∈ {2, . . . , n} such that i0 6= j. We show that if X <θ′ γj then X <θ γj : X <θ′ γj
implies that there exists Y1, . . . , Ym such that X <θ′ Y1 <θ′ . . . <θ′ Ym <θ′ γj . But we know
that for all Y ∈ vars2(C)\{γi0}, C⌊Y θ′⌋ = C⌊Y θ⌋. Hence, if for all q ∈ {1, . . . ,m}, Yq 6= γi0 ,
we trivially have that X <θ γj . If there exists q ∈ {1, . . . ,m} such that Yq = γi0 , it would
imply that X <θ′ γi0 . However X <θ′ γi0 is impossible. Indeed, assume that X <θ′ γi0 .
We have that C⌊Xθ⌋ = C⌊Xθ′⌋ and we have seen that C⌊ζi0⌋ ∈ st(C⌊Xθ⌋). Hence, we have
that C⌊ζi0⌋ ∈ st(C⌊Xθ′⌋), and thus for all Y ∈ vars2(C⌊ξi0⌋acc

2(C)) we have that Y <θ′ X.
Since we have assumed that X <θ′ γi0 , we have that either (a) X ∈ vars2(C⌊γi0θ

′⌋acc2(C)),
or (b) there exists Z such that X <θ′ Z and Z ∈ vars2(C⌊γi0θ

′⌋acc2(C)). The case (a) is
impossible since this would imply that X <θ′ X. The case (b) is impossible too since it
would imply that Z <θ′ X, and thus X <θ′ X. Hence we have that:

{γi | X <θ′ γi, i ∈ {2, . . . , n}} ⊂ {γi | X <θ γi, i ∈ {2, . . . , n}}.

Note that X <θ γi0 by hypothesis whereas we have seen that ¬(X <θ′ γi0).
At last, we know that (σ, θ) ∈ Sol(C) and (σ, θ′) is a pre-solution of C. But thanks to C

satisfying Property PP1Sa(s), we know that for all Y, q
?

⊢ v, if q ≥ s then Y 6∈ vars2(Er).

Hence, since (γi, s
?

⊢ v) ∈ D, θ′ � mgu(Er) and for all Y ∈ vars2(D)\{γi}, C⌊Y θ′⌋ = C⌊Y θ⌋,
we can conclude that θ′ � Er (we rely on the form of the inequations to conclude on this
point). Moreover, since ND only depend on σ, we can conclude that (σ, θ′) ∈ Sol(C) which
allows us to apply our inductive hypothesis on ζ ′ = γθ′, θ′ and p.

Proof of the lemma. Relying on Property 1 and Property 2, we are now able to conclude.
We have ζ ∈ Πn, param(ζ) ⊆ {ax 1, . . . , ax s−1}, ζΦσ↓ = uσ where (ξ, s ⊲ u) ∈ Φ and

Xθ|p = ξθ where p ∈ Pos(C⌊Xθ⌋). But since C is well formed and (σ, θ) ∈ Sol(C), we know that
ξθ(Φσ)↓ = uσ = ζ(Φσ)↓.

Hence by the first property, we can deduce that there exists ζ ′ ∈ st(ζ), a position p′ prefix
of p such that Xθ[ζ]p(Φσ)↓ = Xθ[ζ ′]p′(Φσ)↓ and Xθ[ζ ′]p′ ∈ Πn. But we already know that

Xθ[ζ]p(Φσ)↓ = Xθ(Φσ)↓ so Xθ[ζ ′]p′(Φσ)↓ = Xθ(Φσ)↓. Furthermore ζ ′ ∈ st(ζ), ζ conforms to
Φθ w.r.t. NoUse thus we have that ζ ′ also conforms to Φθ w.r.t. NoUse. At last, param(ζ) ⊆
{ax 1, . . . , ax s−1} and ζ ′ ∈ st(ζ) implies that param(ζ ′) ⊆ {ax 1, . . . , ax s−1}.

Let Y ∈ vars2(C⌊ζ ′⌋acc2(C)) and assume that X <θ Y . Thanks to Lemma C.40, it implies that
paramC

max(X) ≤ paramC
max(Y) and so s ≤ k ≤ paramC

max(Y). Furthermore Y ∈ vars2(C⌊ζ ′⌋acc2(C))
also implies that there exists (γ, i ⊲ u) ∈ Φ such that γθ ∈ st(ζ ′) and Y ∈ vars2(γ). But thanks
to C satisfying InvGeneral, ax i ∈ st(γθ). Thus with param(ζ ′) ⊆ {ax 1, . . . , ax s−1}, we deduce that
i ≤ s− 1. On the other hand, Y ∈ vars2(γ) implies that paramC

max(Y) ≤ i. Hence we deduce that
s ≤ paramC

max(Y) ≤ i ≤ s− 1 which is a contradiction. Therefore, for all Y ∈ vars2(C⌊ζ ′⌋acc2(C)),
¬(X <θ Y).

At last, since param(ζ ′) ⊆ {ax 1, . . . , ax s−1} and ax s ∈ st(ξθ) by the invariant InvGeneral, we
can deduce ξθ 6∈ st(ζ ′), and thus C⌊ξ⌋ 6∈ stC⌊ζ ′⌋. Furthermore, by hypothesis, for all (ξ′, i ⊲ v) ∈
Φ, for all g ∈ Fd, we have that path(ξ′) 6= g · path(ξ). Since ξθ = Xθ|p and p′ is a prefix of p, then
C⌊ξθ⌋ = (C⌊Xθ⌋)|p and we can conclude that nbocc(C⌊ξ⌋, {C⌊Xθ[ζ]p⌋}) < nbocc(C⌊ξ⌋, {C⌊Xθ⌋}).

We can now apply the second property which means that there exists θ′ such that (σ, θ′) ∈
Sol(C) and

nbocc(C⌊ξ⌋, {C⌊Y θ′⌋ | Y ∈ vars2(C)}) < nbocc(C⌊ξ⌋, {C⌊Y θ⌋ | Y ∈ vars2(C)})

Once again, since for all (ξ′, i ⊲ v) ∈ Φ, for all g ∈ Fd, we have that path(ξ′) 6= g · path(ξ) and for
all Y ∈ vars2(C), Y θ′ conforms to Φθ′ w.r.t. NoUse, then we can deduce that:

nbocc(ξθ
′, {Y θ′ | Y ∈ vars2(C)}) < nbocc(ξθ, {Y θ | Y ∈ vars2(C)}).

C.5.4 Soundness

The purpose of this section is to prove the soundness of step e of Phase 1 of the strategy, the
soundness of the normalisation and the following lemma.

Lemma 8.6 (soundness). Let C be a normalised constraint system obtained by following the
strategy and Rule(p̃) be a transformation rule applicable on C. Let C1 and C2 be the two resulting
constraint systems obtained by applying Rule(p̃) on C. We denote by Φ, Φ1 and Φ2 the respective
frames of C, C1 and C2 and we denote by S1 the set of free variables of C.

Let (σ, θ) ∈ Sol(C). There exist σ′, θ′, and i0 ∈ {1, 2} such that (σ′, θ′) ∈ Sol(Ci0), σ =
σ′|vars1(C) and Init(Φ)σ = Init(Φi0)σ

′.

We distinguish two cases:

— An application of a rule during Phase 1, Step a. Note that in such a case, only the rules
Dest and Eq-left-right are applicable.

— An application of a rule during 1.b, 1.c, 1.d or phase 2. Note that in such a case, only the
rules Cons, Axiom, Eq-left-left, Eq-right-right and Ded-st are applicable.

An application during phase 1.a. In such a phase, only the rules Dest and Eq-left-right are
applicable. Assume that we are on the cycle with parameter for support equal to s. We prove the
result by case analysis on the rules.

Rule Dest(ξ, l → r, s) : Let g(u1, . . . , un) → u be a fresh variant of l → r and x̃ be the variables
that occur in this variant. Note that g ∈ Fd. Let (σ, θ) ∈ Sol(C). We distinguish two cases.

Case 1: there exist ground recipes ξ2, . . . , ξn in Πn such that g(ξθ, ξ2, . . . , ξn)Φσ↓ ∈ T (Fc,N)
and param({ξ2, . . . , ξn}) ⊆ {ax 1, . . . , ax s}. To be more specific, since the rule Dest(ξ, ℓ → r, s)
is applicable and the constraint system was obtained by following the strategy, we deduce that
ax s ∈ param({ξ2, . . . , ξn}) (else σ would not satisfy ND).

First, w.l.o.g., we can assume that for any strict subterm ξ′k of ξk with k ∈ {2, . . . , n},
we have that ξ′k(Φσ) 6= ξk(Φσ) (otherwise, we can simply choose ξ′k instead of ξk). More-
over, by Lemma C.36, we can also assume that ξ2, . . . , ξn conform to the frame Φθ. Let τ =
mgu({(ξθ)φσ↓ = u1, ξ2(φσ)↓ = u2, . . . , ξn(φσ)↓ = un}), and σ1 = σ ∪ τ .

Our goal is to build a substitution θ′ such that for all X ∈ vars2(C1), Xθ′ conforms to the
frame Φ1θ

′ (where Φ1 is the frame associated to C1). In particular, we have to ensure that there
is a unique “key” that is used to decrypt ξθ′. Actually, we show how to build θ′ in order to ensure

that Xθ′ conforms to Φ1θ
′ for every X ∈ {Y | Y, j

?

⊢ r in C1}, we conclude for the remaining
variables.

Let S = {Y | {Y, j
?

⊢ r} ∈ C and g(ξθ, ζ2, . . . , ζn) ∈ st(Y θ) for some ζ2, . . . , ζn}. Notice that
for all Y ∈ S, s ≤ paramC

max(Y) else σ would not satisfy ND . We distinguish two cases:

Case a: S = ∅. Let θ′ be a substitution defined as follows:

— Xiθ
′ = ξi for i = 2 . . . n, and

— Xθ′ = Xθ otherwise.

In such a case, it is relatively easy to conclude that (σ1, θ
′) ∈ Sol(C1). In particular, we have that

Xθ′ conforms to Φ1θ
′ for all variable X. First Φ1 = Φ ∪ {g(ξ,X2, . . . , Xn), i ⊲ w}. For every

variable X 6∈ {X2, . . . , Xn}, we have Xθ′ = Xθ, which means that Φθ = Φθ′. Since S = ∅, we

easily conclude that Y θ′ conforms to Φ1θ
′ for all variables in {Y | Y, j

?

⊢ r ∈ D(C1)}r{X2, . . . , Xn}.
Furthermore, since ξi conforms to Φθ′ and by the choice of ξi, we deduce that ξi conforms to Φ1θ

′.
At last, also by the choice of ξi, we also deduce that (Xiθ

′)Φ1σ1↓ = uiσ1 which allows us to
conclude.

Case b: S 6= ∅. Otherwise, we chose Y0 a minimal variable w.r.t. the relation <θ and the maximal
parameter. Such minimal exists since by Lemma C.39, the relation <θ is a strict partial order.
We have that g(ξ, ζ2, . . . , ζn) ∈ st(Y0θ) for some recipe ζ2, . . . , ζn.

If param({ζ2, . . . , ζn}) 6⊆ {ax 1, . . . , ax s} then for each i ∈ {2, . . . , n}, we denote by ζ0i = ξi,
else for each i ∈ {2, . . . , n}, we denote by ζ0i a minimal (for the size) subterm of ζi such that
ζi(Φσ)↓ = ζ0i (Φσ)↓.

Note that in both cases, for all i ∈ {2, . . . , n}, ζi(Φσ)↓ = ζ0i (Φσ)↓. Indeed, we know that
g(ξθ, ζ2, . . . , ζn) ∈ st(Y θ), g(ξθ, ζ2, . . . , ζn) ∈ Πn and Y θ(Φσ)↓ ∈ T (Fc,N). Hence by Lemma 6.5,
g(ξ, ζ2, . . . , ζn)(Φσ)↓ ∈ T (Fc,N). Furthermore, we know that g(ξθ, ξ2, . . . , ξn)Φσ↓ ∈ T (Fc,N).
Hence since path(g(ξθ, ζ2, . . . , ζn)) = path(g(ξθ, ξ2, . . . , ξn)), then by Lemma C.34, ζi(Φσ)↓ =
ξi(Φσ)↓, for all i ∈ {2, . . . , n}.

We rely on Lemma C.41 to build a substitution θ′ that will be conformed to the frame Φ1θ
′.

To achieve this, the idea is to replace any occurrence of g(ξ, . . .) that occur in Y θ with Y ∈ S by
g(ξ, ζ02 , . . . , ζ

0
n). We prove our result by induction on:

m = nbocc(g(ξθ,_2, . . . ,_n), {Y θ | Y ∈ S})− nbocc(g(ξθ, ζ
0
2 , . . . , ζ

0
n), {Y θ | Y ∈ S})

where _i is used to represent any value.
Base case m = 0: Let θ′ be the substitution defined as follows:

— Xiθ
′ = ζ0i for i = 2, . . . , n, and

— Xθ′ = Xθ otherwise.

We conclude as in the previous case (S = ∅).

Inductive case m > 0: Let Y ∈ S such that there exists p ∈ Pos(C⌊Y θ⌋) such that path(Y θ|p) =
g · path(ξ) and Y θ|p 6= g(ξθ, ζ02 , . . . , ζ

0
n). We first show that such Y and p exists. We know that

there is no frame element in Φ whose recipe has a path equal to g · path(ξ). Furthermore, thanks
to C being well-formed (Definition 8.2, item 9), we deduce that no subterm of a recipe of a frame
element in Φ has a path equal to g · path(ξ). Hence, we choosing Y minimal w.r.t. <θ such
that g(ξθ, γ2, . . . , γn) ∈ st(Y θ) for some γ2 . . . , γn and g(ξθ, γ2, . . . , γn) 6= g(ξθ, ζ02 , . . . , ζ

0
n), we

can conclude that there exists p ∈ Pos(C⌊Y θ⌋) such that path(Y θ|p) = g · path(ξ) and Y θ|p 6=
g(ξθ, ζ02 , . . . , ζ

0
n) (otherwise Y would not be minimal w.r.t. <θ).

Let ζ0
def
= g(ξθ, ζ02 , . . . , ζ

0
n).

— Since ζ0 is a subterm of Y0θ, we know that ζ0 conforms to Φθ. Furthermore, by defi-
nition of each ζ0i , i ∈ {1, . . . , n}, we know that param(ζ0) ⊆ {ax 1, . . . , ax s}. Moreover,
(σ, θ) ∈ Sol(C) implies param(Y0θ) ⊆ {ax 1, . . . , ax j} hence ζ0 subterm of Y0θ implies that
param(ζ0){ax 1, . . . , ax s} ⊆ {ax 1, . . . , ax j}.

— Since Y θ|p conforms with Φθ and path(Y θ|p) = g · path(ξ), there exists ξ2, . . . , ξn such that
Y θ = g(ξθ, ξ2, . . . , ξn). Furthermore ξ is a recipe of a frame element in Φ, and there is
no frame element in Φ having g · path(ξ) as a path. Hence, we have that C⌊Y θ|p⌋Φθ =
g(path(ξ),C⌊ξ2⌋Φθ, . . . ,C⌊ξn⌋Φθ) and C⌊ζ0⌋Φθ = g(path(ξ),C⌊ζ02⌋Φθ, . . . ,C⌊ζ

0
n⌋Φθ). Thus, we

deduce that C⌊Y θ[ζ0]p⌋ = C⌊Y θ⌋[C⌊ζ0⌋]p. We have that (σ, θ) ∈ Sol(C), thus (Y θ)(Φσ)↓ ∈
T (Fc,N) and (Y0θ)(Φσ)↓ ∈ T (Fc,N). Thanks to Lemma 6.5, (Y θ|p)(Φσ)↓ ∈ T (Fc,N)
and ζ0(Φσ)↓ ∈ T (Fc,N). Since path(Y θ|p) = path(ζ0), by Lemma C.34, we conclude
that(Y θ|p)(Φσ)↓ = ζ0(Φσ)↓.

— Lastly, by definition of ζ02 , . . . , ζ
0
n, either (a) ζ0i = ζi, for i ∈ {2, . . . , n} and ζ0i are subterms

of Y0θ; or (b) param(g(ξθ, ζ2, . . . , ζn)) 6⊆ {ax 1, . . . , ax s} and ζ0i = ξi, for i ∈ {2, . . . , n}.

In case (a), since Y, Y0 ∈ S and Y0 is a minimal variable w.r.t. <θ then we deduce
that for all Z ∈ vars2(C⌊ζ0⌋Φacc2(C)), ¬(Y <θ Z). In case (b), we know that Y0 is
also minimal w.r.t. the maximal parameter. Hence paramC

max(Y0) ≤ paramC
max(Y). But

param(g(ξθ, ζ2, . . . , ζn)) 6⊆ {ax 1, . . . , ax s} and (σ, θ) ∈ Sol(C) implies that paramC
max(Y0) >

s and so paramC
max(Y) > s. Since param(g(ξθ, ξ2, . . . , ξn)) ⊆ {ax 1, . . . , ax s}, C satisfies

InvUntouched(s), C is a well-formed constraint system (item 3) and by Lemma C.40, then
we deduce that for all Z ∈ vars2(C⌊ζ0⌋Φacc

2(C)), ¬(Y <θ Z).

We satisfy all the conditions required to apply Lemma C.41, Hence, there exists θ′ such that
(σ, θ′) is a pre-solution of C with Y θ′ = Y θ[ζ0]p and for all Z ∈ vars2(C) r {Y }, we have that
C⌊Zθ⌋Φθ = C⌊Zθ′⌋Φθ′ ,

Hence, we have that the measure m strictly decreases. Furthermore, since (σ, θ) ∈ Sol(C)
and using the fact that (σ, θ′) is a pre-solution of C, it only remains to prove that θ′ |= Er in
order to conclude that (σ, θ′) ∈ Sol(C). Actually, we know that θ′ � mgu(Er) and thanks to C
satisfying PP1Sa(s) (item C.2), we have trivially have that θ′ � Er and so (σ, θ′) ∈ Sol(C). Then,
we conclude by relying on our induction hypothesis.

Case 2: for all ground recipes ξ2, . . . , ξn in Πn, either param({ξ2, . . . , ξn}) 6⊆ {ax 1, . . . , ax s} or we
have that g(ξθ, ξ2 . . . , ξn)Φσ↓ 6∈ T (Fc,N). Since g ∈ Fd, g(ξθ, ξ2 . . . , ξn)Φσ↓ ∈ T (Fc,N) means
that there exists a substitution τ which maps variable in x̃ to ground constructor terms such that

g(u1τ, . . . , unτ) = g(ξθ(Φσ)↓, ξ2(Φσ)↓, . . . , ξn(Φσ)↓).

This means that u1τ = ξθ(Φσ)↓, u2τ = ξ2(Φσ)↓, . . . , and unτ = ξn(Φσ)↓. Moreover, since
(σ, θ) ∈ Sol(C), we have that (ξθ)(Φσ)↓ = vσ. Therefore, we have that:

σ |= ∀x̃ · [v 6= u1 ∨ s 6
?

⊢ u2 ∨ . . . ∨ s 6
?

⊢ un]

This allows us to conclude that (σ, θ) ∈ Sol(C2).

Rule Eq-left-right(X, ξ): By hypothesis we know that there exists u, v and k such that (X, k
?

⊢
u) ∈ D(C), (ξ, s ⊲ v) ∈ Φ(C) and k < s. Furthermore, according to the strategy, we know that
the rule Eq-left-right is prioritised over the rule Dest, and that the rule Eq-left-right is
strongly applicable on at least on constraint system on the row of the matrix of constraint system.
Assume that C′ is such constraint system. By hypothesis, C′ is normalised. It would imply that

there exists x ∈ X 1 such that (X, k
?

⊢ x) ∈ D(C′) and (ξ, s ⊲ x) ∈ Φ(C′). Assume now that there
exists (ξ′, ℓ ⊲ w) ∈ Φ(C′) and g ∈ Fd such that path(ξ′) = g · path(ξ), hence it means that an
instance of the rule Dest was previously applied on (ξ, s ⊲ x). But according to the definition
of our rewrite rules and since C′ is normalised, it would imply that x is instantiated by a term
different from a variable and so x 6∈ X 1 which is a contraction. Hence, for all (ξ′, ℓ ⊲ w) ∈ Φ(C′),
for all g ∈ Fd, path(ξ′) 6= g · path(ξ). But by Lemma 8.1 and since C and C′ are on the same row
of M , we can deduce that C′ and C have the same structure and so for all (ξ′, ℓ ⊲ w) ∈ Φ(C), for
all g ∈ Fd, path(ξ′) 6= g · path(ξ).

Let (σ, θ) ∈ Sol(C). We distinguish two cases:

1. uσ↓ = vσ↓. In such a case, we need to transform θ such that the frame element (ξ, s ⊲ v)
will not be used anymore. Let denote Nb(θ) = nbocc(ξθ, {Y θ | Y ∈ vars2(C)}). We show
that there exists θ′ such that (σ, θ′) ∈ Sol(C1). We prove this result by induction on Nb(θ).

Base case Nb(θ) = 0: We know that C1 is C where NoUse(C1) = NoUse(C) ∪ (ξ, s ⊲ v)

and Eq(C1) = Eq(C) ∧ u
?
= v. By hypothesis, we already know that uσ↓ = vσ↓, hence

σ � Eq(C1). Hence it remains to prove that for all Y ∈ vars2(C), Y θ conforms to Φθ w.r.t.
NoUse(C1). But we already know thanks to (σ, θ) ∈ Sol(C) that Y θ conforms to Φθ w.r.t.
NoUse(C). And since Nb(θ) = 0, we can conclude that Y θ conforms to Φθ w.r.t. NoUse(C1)
and so (σ, θ) ∈ Sol(C1).

Inductive step Nb(θ) > 0: Since (σ, θ) ∈ Sol(C) and uσ↓ = vσ↓, we have that Xθ(Φσ)↓ =
ξθ(Φσ)↓ and param(Xθ) ⊆ {ax 1, . . . , axk} with k < s. Moreover, we proved that for all
(ξ′, ℓ ⊲ w) ∈ Φ(C), for all g ∈ Fd, path(ξ′) 6= g · path(ξ). At last, since the rule Dest
and Eq-left-right does not add equations in Er and Step a is the first step applied
during Phase 1 with parameter s, we deduce that ξ 6∈ st(mgu(Er)). Hence by Lemma C.42,
we can deduce that there exists θ′ such that (σ, θ′) ∈ Sol(C) and Nb(θ′) < Nb(θ). Since
(σ, θ′) ∈ Sol(C) and uσ↓ = vσ↓, we have still have that Xθ′(Φσ)↓) = ξθ′(Φσ)↓. Hence, by
our inductive hypothesis on θ′, we can deduce that there exists θ′′ such that (σ, θ′′) ∈ Sol(C1).

2. uσ↓ 6= vσ↓. In such a case, it is easy to see that (σ, θ) ∈ Sol(C2).

An application during phase 1.b, 1.c, 1.d or 2. Rule Cons(X, f) : Let (σ, θ) ∈ Sol(C). We distin-
guish two cases:

1. root(Xθ) = f. In such a case, there exists ξ1, . . . , ξn ∈ Πn such that Xθ = f(ξ1, . . . , ξn).
Since (σ, θ) ∈ Sol(C) and f ∈ Fc, we deduce that param(Xθ) ⊆ {ax 1, . . . , ax i}, and

(Xθ)(Φσ)↓ = f(ξ1(Φσ)↓, . . . , ξn(Φσ)↓) = f(t1, . . . , tn) = tσ↓

for some terms t1, . . . , tn.

Let θ′ = θ ∪ {X1 7→ ξ1, . . . , Xn 7→ ξn} and σ′ = σ ∪ {x1 7→ t1, . . . , xn 7→ tn}. Since
Φ(C1) = Φ(C), we trivially have that Φσ = Φσ′ and thus for every i ∈ {1, . . . , n}, we have
that (Xiθ

′)(Φσ′)↓ = ti↓ and param(Xiθ
′) ⊆ param(Xθ) ⊆ {ax 1, . . . , ax i}. Furthermore,

tσ′ = f(t1, . . . , tn) and xiσ
′ = ti, for all i ∈ {1, . . . , n} implies that tσ′↓ = f(x1, . . . , xn)σ

′↓.
At last, by definition of θ′, we also have that Xθ′ = f(X1, . . . , Xn)θ

′. This allows us to
conclude that (σ′, θ′) ∈ Sol(C1).

2. root(Xθ) 6= f. In such a case, we have that θ |= Er ∧ root(X) 6= f and so we can conclude
that (σ, θ) ∈ Sol(C2).

Rule Axiom(X, path). Let (σ, θ) ∈ Sol(C). We distinguish two cases:

1. path(Xθ) = path. In such a case, by definition of (σ, θ) ∈ Sol(C), we have that Xθ conforms
to Φθ w.r.t. NoUse, and thus Xθ = ξθ. We have also that (Xθ)(Φσ)↓ = uσ↓. Lastly, since
C is well-formed, we know that (ξθ)(Φσ)↓ = vσ↓. Altogether, this allows us to deduce that
uσ↓ = vσ↓. We conclude that (σ, θ) ∈ Sol(C1).

2. path(Xθ) 6= path. Since path(ξ) = path, path(Xθ) 6= path implies that Xθ 6= ξ. Thus,
θ � Er ∧X 6= ξ. We can conclude that (σ, θ) ∈ Sol(C2).

Rule Eq-left-left(ξ1, ξ2). Let (σ, θ) ∈ Sol(C). We distinguish two cases:

1. u1σ↓ = u2σ↓. In such a case, it is easy to see that (σ, θ) ∈ Sol(C1).

2. u1σ↓ 6= u2σ↓. In such a case, it is easy to see that (σ, θ) ∈ Sol(C2).

Thus, in both cases, we easily conclude.

Rule Eq-right-right(X, ξ). Let (σ, θ) ∈ Sol(C). We distinguish two cases:

1. uσ↓ = vσ↓. In such a case, since (σ, θ) ∈ Sol(C), then for all Y ∈ vars2(ξ), we have that Y θ
conforms to the frame Φθ w.r.t. NoUse. But the conditions of the rule Eq-right-right tell

us that ξ ∈ T (Fc, vars
2(α)) where α = {Y → w | (Y, j

?

⊢ w) ∈ D(C) ∧ j ≤ i ∧ Y ∈ S2(C)}
which means that C⌊ξθ⌋Φθ = ξ{Y → C⌊Y θ⌋Φθ | Y ∈ vars2(ξ)}. Thus, we deduce that ξθ
conforms to Φθ too.

Moreover, the conditions of the rule Eq-right-right also tell us that v = ξα. By (σ, θ) ∈
Sol(C), we deduce that for all Y ∈ vars2(ξ), (Y θ)Φσ↓ = (Y α)σ↓. Once again, since ξ ∈
T (Fc, dom(α)), we have that (ξθ)Φσ↓ = vσ = uσ = (Xθ)Φσ↓.

We want to conclude the result by applying Lemma C.41. But in order to do that, we need
to prove that for all Y ∈ vars2(C⌊ξθ⌋Φacc2(C)), ¬(X <θ Y). We prove this property by case
analysis on ξ:

Case ξ ∈ vars2(D): In such a case, we denote ξ by Z and so there exists (Z, j
?

⊢ v) ∈ D.
For all Y ∈ vars2(C⌊ξθ⌋Φacc

2(C)), we have that Y <θ Z by definition of <θ. Hence, if
¬(X <θ Z) then for all Y ∈ vars2(C⌊ξθ⌋Φacc2(C)), ¬(X <θ Y . We apply Lemma C.41 on

the deducibility constraint X, i
?

⊢ u with the recipe Zθ; otherwise we have X <θ Z and so
since <θ is a strict partial order by Lemma C.39, we deduce that ¬(Z <θ X). Thus, we

apply Lemma C.41 on the deducible constraint Z, j
?

⊢ v with the recipe Xθ. Therefore, in
both case, we know that there exists θ′ such that (σ, θ′) is a pre-solution of C with Xθ′ = Zθ′,
θ′ � mgu(Er) and for all Y ∈ vars2(D)\{X,Z}, we have C⌊Y θ⌋Φθ = C⌊Y θ′⌋Φθ′ . At last,

by the condition of Eq-right-right, we know that root(X)
?

6= f ∈ Er is equivalent to

root(Z)
?

6= f ∈ Er, thus (relying on the form of the inequations in Er) we can deduce that
θ′ � Er and so (σ, θ′) ∈ Sol(C1).

Case ξ 6∈ vars2(D): As explained in the strategy (Section 7.4), the rule Eq-right-right
with such parameter is only applied when the strategy is on the second phase. But, in such
a case, since C satisfies the invariant InvVarFrame(∞), we have that (⋆):

for all (ζ, k ⊲ u) ∈ Φ, for all Z ∈ vars2(ζ), there exists j < k and z ∈ X 1 such that

(Z, j
?

⊢ z) ∈ D.

Moreover, we proved that C⌊ξθ⌋Φθ = ξ{Y → C⌊Y θ⌋Φθ | Y ∈ vars2(ξ)}, hence for all
Y ∈ vars2(C⌊ξθ⌋Φacc

2(C)), there exists Z ∈ vars2(ξ) such that Y ∈ vars2(C⌊Zθ⌋Φacc
2(C)).

It implies that there exists (ζ, k ⊲ u) ∈ Φ such that Y ∈ vars2(ζ) and ζθ ∈ st(Zθ). Since C
also satisfies InvGeneral, we know that axk ∈ st(ζθ) and so we have that k ≤ paramC

max(Z).
But thanks to (⋆), we have that paramC

max(Y) < k, which implies that paramC
max(Y) <

paramC
max(Z). But by definition of ξ, we have that Z ∈ vars2(ξ), and thus we have that

paramC
max(Z) ≤ paramC

max(X), hence we conclude, thanks to Lemma C.40, that ¬(X <θ Y).

Thus we apply Lemma C.41 on the deducible constraint X, i
?

⊢ u with the recipe ξθ.
Therefore, there exists θ′ such that (σ, θ′) is a pre-solution of C with Xθ′ = ξθ and for

all Y ∈ vars2(C)\{X}, we have C⌊Y θ⌋Φθ = C⌊Y θ′⌋Φθ′ . At last, by the condition of

Eq-right-right, we know that root(ξ) = f implies root(X)
?

6= f ∈ Er, thus we can de-
duce that θ′ � Er and so (σ, θ′) ∈ Sol(C1).

2. uσ↓ 6= vσ↓. In such a case, it is easy to see that (σ, θ) ∈ Sol(C2).

Rule Ded-st(ξ, f). Let (σ, θ) ∈ Sol(C). We distinguish two cases:

1. There exist ground recipes ξ1, . . . , ξn in Πn such that f(ξ1, . . . , ξn)(Φσ)↓ = uσ↓. In such a
case, we can assume w.l.o.g. (see Lemma C.36) that f(ξ1, . . . , ξn) conforms to Φθ w.r.t.
NoUse, and thus ξ1, . . . , ξn conform also to the frame Φθ w.r.t. NoUse. For every j ∈
{1, . . . , n}, let tj = ξj(Φσ)↓. Let θ′ = θ ∪ {X1 7→ ξ1, . . . , Xn 7→ ξn}, and σ′ = σ ∪ {x1 7→
t1, . . . , xn 7→ tn}. Clearly, we have that Xθ′ conforms to Φθ′ for every X ∈ vars2(C1). Since
f is a constructor symbol, f(ξ1, . . . , ξn)Φσ↓ = uσ↓ implies σ′ � u = f(x1, . . . , xn). Moreover,
since m is the maximal index that occurs in C, we have that param(Xiθ

′) ⊆ {ax 1, . . . , axm}
and thus (σ, θ) ∈ Sol(C1).

2. Otherwise, for all ground recipes ξ1, . . . , ξn in Πn, we necessarily have that f(ξ1, . . . , ξn)Φσ↓ 6=
uσ↓. Since f is a constructor symbol, we have that

f(ξ1, . . . , ξn)Φσ↓ = f(ξ1Φσ↓, . . . , ξnΦσ↓).

We can distinguish two cases: either root(uσ) 6= f or else there exists i ∈ {1 . . . n}, terms
t1, . . . , tn such that uσ = f(t1, . . . , tn) and ξiΦσ↓ 6= ti↓ for any ground recipe ξi. Therefore,
we have that:

σ � ∀x̃ · [u 6= f(x1, . . . , xn) ∨m 6
?

⊢ x1 ∨ . . . ∨m 6
?

⊢ xn].

This allows us to conclude that (σ, θ) ∈ Sol(C2).

Lemma 8.4. Let C be a constraint system obtained by following the strategy. Sol(C) = Sol(C↓).

Proof. The rules for normalisation presented in Figure 7.3 corresponds to classic transformation
on formula of first order logic. Once can easily prove that all the rules in Figure 7.3 preserves the
set of solutions. Hence we focus on the two rules presented in Figure 7.4.

Rule (Nname): In such a case, Eq = Eq′ ∧ ∀x̃.[Eq′′ ∨ x
?

6= a], a ∈ N and (X, i
?

⊢ x) ∈ D. Thus
x 6∈ x̃. Moreover, we have that Axiom(X, path) is useless for any path, and Dest(ξ, ℓ → r, i) is
useless for any ξ, ℓ → r.

Let (σ, θ) ∈ Sol(C). We show that xσ 6= a. Thanks to Lemma C.37, C⌊Xθ⌋Φ ∈ T (Fc,F
∗
d ·

AX). Moreover, But Axiom(X, path) is useless for any path. Hence either Axiom(X, path) is not
applicable or its application results in two constraint systems C1 and C2 such that C1 simplifies to
⊥ using the rules in Figure 7.3 and C2 simplifies into C. But if there exists (ξ, j ⊲ v) ∈ Φ such

that path(ξ), j ≤ i and (ξ, j ⊲ u) 6∈ NoUse then the application of C1 add the equation X
?
= ξ in

Er, and the equation x
?
= v in Eq. Hence C1 simplifies in ⊥ implies that Xθ 6= ξθ or xσ 6= vσ.

However, thanks to C being well-formed (Definition 8.2, item 5) and (σ, θ) ∈ Sol(C), we deduce
that Xθ(Φσ)↓ = xσ and ξθ(Φσ)↓ = vσ. Hence xσ 6= vσ implies Xθ 6= ξθ.

Hence Axiom(X, path) is useless for any path implies that for all (ζ, j ⊲ v) ∈ Φ(C), if j ≤ i
and (ζ, j ⊲ v) 6∈ NoUse then Xθ 6= ζθ. But we know that C satisfies InvGeneral thus for all
(ζ, j ⊲ v) ∈ Φ(C), ax j ∈ st(ζθ). Thus, paramXθ ⊆ {ax 1, . . . , ax i} and Xθ conforms to Φθ w.r.t.
NoUseθ implies that for all w ∈ C⌊Xθ⌋Φ ∩ F∗

d · AX , there exists (ζ, j ⊲ v) ∈ Φ(C) such that
path(ζ) = w and j ≤ s. Since we already proved that in this case, Xθ 6= ξθ, then we deduce that
C⌊Xθ⌋Φ ∈ T (Fc,F

∗
d ·AX) and |C⌊Xθ⌋Φ| > 1. Along with Xθ(Φσ)↓ = xσ, it implies that |xσ| > 1

and so xσ 6= a.

Rule (Nnosol): In such a case, we have (X, i
?

⊢ u) ∈ D, Cons(X, f) is useless for any f ∈ Fc,
Axiom(X, path) is useless for any path and Dest(ξ, ℓ → r, i) is useless for all ξ, ℓ → r.

Let (σ, θ) ∈ Sol(C). In the case of rule (Nname), we showed that C⌊Xθ⌋Φ ∈ T (Fc,F∗
d · AX)

and |C⌊Xθ⌋Φ| > 1. But Cons(X, f) is useless for any f ∈ Fc. Hence either Cons(X, f) is not
applicable or its application results in two constraint systems C1 and C2 such that C1 simplifies to
⊥ using the rules in Figure 7.3 and C2 simplifies into C.

Let f ∈ Fc. Since (X, i
?

⊢ u) ∈ D, then Cons(X, f) is applicable. According to Figure 7.1, its

application adds an equation X
?
= f(X1, . . . , Xn) in Er and u

?
= f(x1, . . . , xn) where X1, . . . , Xn

and x1, . . . , xn are fresh variables. Since X1, . . . , Xn, x1, . . . , xn are fresh, C1 simplifying to ⊥
implies that root(Xθ) 6= f or root(uσ) 6= f. But (σ, θ) ∈ Sol(C) implies that (Xθ)(Φσ)↓ = uσ.
Moreover, along with C⌊Xθ⌋Φ ∈ T (Fc,F

∗
d · AX) and |C⌊Xθ⌋Φ| > 1, C1 simplifying to ⊥ implies

that root(uσ) = root(Xθ). Hence we deduce that root(Xθ) 6= f. Hence, we proved that for all
f ∈ Fc, root(Xθ) 6= f which is a contradiction with C⌊Xθ⌋Φ ∈ T (Fc,F

∗
d · AX) and |C⌊Xθ⌋Φ| > 1.

Hence (σ, θ) 6∈ Sol(C) and so Sol(C) = ∅ = Sol(⊥).

Lemma C.43. Let (M,M ′) be a pair of matrices of constraint systems. Let k with the number
of column in M and M ′. Assume that (M,M ′) is obtained at the end of Step d of Phase 1 of the
strategy with parameter s for the support and k for the index of the column. Let C be a constraint
system in M or M ′. If C is replaced by ⊥ when applying Step e of Phase 1 of the strategy, then
we have that Sol(C) = ∅.

Proof. Let C be a constraint system in M or M ′ such that C is replaced by ⊥ when applying Step
e of Phase 1 of the strategy. By definition, we know that there is two conditions that trigger the
replacement of C by ⊥. We prove that if one of the two conditions is satisfied then Sol(C) = ∅.

Condition 1: By definition, we know that there exists a constraint system C′ in the same column
as C, a recipe ξ, such that:

— (ξ, i ⊲ u) ∈ Φ(C′) for some i ≤ s and u

— for all (ξ′, j ⊲ v) ∈ Φ(C), path(ξ) 6= path(ξ′)

Let w · axk = path(ξ). We prove by induction on |w| that there exists w′ suffix of w, (ζ, j ∈
u) ∈ Φ(C), (ζ ′, j′ ∈ u′) ∈ Φ(C′) such that:

— path(ζ) = path(ζ ′) = w′ · axk, j ≤ s and j′ ≤ s.

— there exists (ζ ′′, j′′ ⊲ u′′) ∈ Φ(C′) such that path(ζ ′′) = g · path(ζ) for some g ∈ Fd.

— for all (ζ ′′′, j′′′ ⊲ u′′′) ∈ Φ(C), path(ζ ′′′) 6= path(ζ ′′).

Base case |w| = 0: In such a case, we have that ξ = axk. But C and C′ are both originated from the
same initial constraint system, thus we know that there exists u, u′ such that (axk, k ⊲ u) ∈ Φ(C)
and (axk, k ⊲ u′) ∈ Φ(C′). Hence there is a contradiction with our hypothesis on ξ.

Inductive step |w| > 0: Otherwise, there exists w′ and g ∈ Fd such that w = g · w′ · axk. But
C′ is a well-formed constraint system, hence by Property 2 of a well formed constraint system,
(ξ, i ⊲ u) ∈ Φ(C′) implies that there exists (ζ ′, j′ ⊲ v′) ∈ Φ(C′) such that path(ζ ′) = w′ · axk and
i ≤ j′.

Hence if there exists (ζ, j ⊲ v) ∈ Φ(C) such that path(ζ) = path(ζ ′) then the result holds
with (ζ ′′, j′′ ⊲ u′′) = (ξ, i ⊲ u). Else, since |w′| < |w|, we can apply our inductive hypothesis on
(ζ ′, j′ ⊲ v′) and so the result also holds.

Main proof for Condition 1: Thanks to Lemma C.31, we know that (M,M ′) satisfies PP1Sb(s, k+
1). Since k corresponds to the number of column in M and M ′, we deduce that all constraint
systems in M or M ′ satisfies InvVarConstraint(s), InvUntouched(s) and InvDest(s).

Let (σ, θ) ∈ Sol(C). Thanks to C satisfying InvDest(s), (ζ, j ∈ u) ∈ Φ(C) and for all (ζ ′′′, j′′′ ⊲
u′′′) ∈ Φ(C), path(ζ ′′′) 6= g · path(ζ), we deduce that σ � ND(C) implies that there is no recipe
ζ2, . . . , ζn ∈ Πn such that g(ζθ, ζ2, . . . , ζn)(Φ(C)σ)↓ ∈ T (Fc,N) and paramC

max(ζi) ≤ s for all
i ∈ {2, . . . , n}.

But (ζ ′′, j′′ ⊲ u′′) ∈ Φ(C′) with path(ζ ′′) = g · path(ζ). Hence there exists ξ2, . . . , ξn such that
ζ ′′ = g(ζ ′, ξ2, . . . , ξn). We will show that ζ ′θ(Φ(C)σ)↓ = ζθ(Φ(C)σ)↓ and ζ ′′θ(Φ(C)σ)↓ ∈ T (Fc,N)

with paramC
max(ξiθ) ≤ s, for all i ∈ {2, . . . , n}. Hence it will contradict the fact that σ � ND(C)

and so it will implies that Sol(C) = ∅.
We know that C and C′ satisfy InvVarConstraint(s) and InvUntouched(s). Moreover, thanks to

Lemma C.29, we also know that there exists a variable renaming ρ : X 1
r S1(C) → X 1

r S1(C′)
such that:

1. mgu(Eq(C))|S1(C)ρ = mgu(Eq(C′))|S1(C′), and D(C)ρ = D(C′);

2. {(uρ, u′) | (ξ, i ⊲ u) ∈ Φ ∧ (ξ′, i′ ⊲ u′) ∈ Φ′ ∧ path(ξ) = path(ξ′)} is include in {(u, u) | u ∈
T (Fc,N ∪ X 1)};

(σ, θ) ∈ Sol(C) implies that for all X, k
?

⊢ t ∈ D(C), we have (Xθ)(Φ(C)σ)↓ = tσ. Moreover,
we know that for all (ax ℓ, ℓ ⊲ v) ∈ Φ(C), (ax ℓ, ℓ ⊲ v′) ∈ Φ(C′), vρ = v′ which means that

(Xθ)(Φ(C)σ)↓ = tσ implies (Xθ)(Φ(C′)ρ−1σ)↓ = t′ρ−1σ with (X, k
?

⊢ t′) ∈ D(C′) and tρ = t′.
But, for all X ∈ vars2(ζ ′), by Property 3 of a well formed constraint system, we know that

param≤
max(ζ

′)j′ and so there exists (X, k
?

⊢ t′) ∈ D(C′) such that k ≤ j′. Thus (Xθ)(Φ(C′)ρ−1σ)↓ =
t′ρ−1σ. C being well-formed (item 5) allows us to deduce that (ζ ′θ)(Φ(C′)ρ−1σ)↓ = u′ρ−1σ↓ ∈
T (Fc,N). Hence, we have that (ζ ′θ)(Φ(C)σ)↓ = uσ↓ = (ζθ)(Φ(C)σ)↓.

Similarly, we have that (ζ ′′θ)(Φ(C)σ)↓ = u′′ρ−1σ↓ ∈ T (Fc,N). It remains to show that for all
i ∈ {2, . . . , n}, param(ξiθ) ⊆ {ax 1, . . . , ax s}. Since C′ satisfies the invariant InvUntouched(s), we
know that j′′ ≤ s. But C′ is well-formed (item 3) hence we deduce that paramC′

max(ζ
′′) ≤ j′′. Since

C and C′ have the same shape and satisfy InvVarConstraint(s), we deduce that paramC
max(ζ

′′) =
paramC′

max(ζ
′′). But for all X ∈ vars2(ζ ′′), (σ, θ) ∈ Sol(C) implies paramC

max(Xθ) ≤ paramC
max(X).

Hence, along with paramC
max(ζ

′′) ≤ j′′, it implies that paramC
max(ζ

′′θ) ≤ j′′ ≤ s. Since for all
i ∈ {2, . . . , n}, ξi ∈ st(ζ ′′), we can deduce that paramC

max(ξiθ) ≤ s.

Condition 2: By hypothesis, there exists a constraint system C′ in the column of C, (ξ, i ⊲ u) ∈
Φ(C), (ξ′, i′ ⊲ u′) ∈ Φ(C′), f ∈ Fc such that

— path(ξ) = path(ξ′), i ≤ s and i′ ≤ s

— ND(C) � ∀x̃.u 6= f(x1, . . . , xn) ∨ s 6
?

⊢ x1 ∨ . . . ∨ s 6
?

⊢ xn where x̃ = x1 . . . xn are variables.

— there exists X1, . . . , Xn ∈ vars2(C′) such that C⌊f(X1, . . . , Xn)Θ
′⌋Φ(C′)acc

1(C′) = u′ and
such that param≤

max(f(X1, . . . , Xn)Θ
′)s where Θ′ = mgu(Er(C′)).

We prove in Condition 1 that (σ, θ) ∈ Sol(C) implies that for all (X, k
?

⊢ t′) ∈ D(C′),

Xθ(Φ(C)σ)↓ = Xθ(Φ(C′)ρ−1σ)↓ = t′ρ−1σ. Hence, for all (ζ, i
?

⊢ v′) ∈ Φ(C′), Property 5 of a
well formed constraint systems for C′ implies that ζθ(Φ(C′)ρ−1σ)↓ = v′ρ−1σ with param≤

max(ζθ)i.
Let Θ = mgu(Er(C)) and Θ′ = mgu(Er(C′)). By hypothesis, we know that X1, . . . , Xn ∈

vars2(C′), hence thanks to Property 7 of a well formed constraint system, we have that for all
i ∈ {1, . . . , n}, C⌊XiΘ

′⌋Φ(C′) ∈ T (Fc,F
∗
d ·AX ∪X 2) and for all ξ ∈ st(XΘ′), path(ξ) exists implies

that there exists j and v such that (ξ, j ⊲ v) ∈ Φ(C′). Hence, C⌊f(X1, . . . , Xn)Θ
′⌋Φ(C′)acc

1(C′) = u′

implies that f(X1, . . . , Xn)Θ
′θ(Φ(C′)ρ−1σ)↓ = u′ρ−1σ. Since f(X1, . . . , Xn)Θ

′θ(Φ(C′)ρ−1σ)↓ =
f(X1, . . . , Xn)Θ

′θ(Φ(C)σ)↓ and uρ = u′, we can deduce that f(X1, . . . , Xn)Θ
′θ(Φ(C)σ)↓ = uσ.

Moreover, we know that paramC′

max(f(X1, . . . , Xn)Θ
′) ≤ s which implies that for all Y ∈

vars2(f(X1, . . . , Xn)Θ
′), paramC′

max(Y) ≤ s. But C and C′ have the same shape and both satisfy the
invariant InvVarConstraint(s). Hence paramC′

max(Y) = paramC
max(Y). Since (σ, θ) ∈ Sol(C), we have

that paramC
max(Y) ≤ s implies paramC

max(Y θ) ≤ s. We conclude that paramC
max(f(X1, . . . , Xn)Θ

′θ) ≤
s.

Hence, we proved that there exists ξ1, . . . , ξn ∈ Πn such that paramC
max(ξi) ≤ s for all i ∈

{1, . . . , n}, and f(ξ1, . . . , ξn)(Φ(C)σ)↓ = uσ. But ND(C) � ∀x̃.u 6= f(x1, . . . , xn)∨ s 6
?

⊢ x1 ∨ . . .∨ s 6
?

⊢
xn where x̃ = x1 . . . xn are variables. Moreover, (σ, θ) ∈ Sol(C) implies that σ � ND(C) which is a
contradiction with the fact that f(ξ1, . . . , ξn)(Φ(C)σ)↓ = uσ. Hence, Sol(C) = ∅.

C.5.5 Link between solutions

Lemma 8.7. Let (C, C′) be a pair of normalised constraint systems having the same structure and
obtained by following the strategy. We denote by Φ and Φ′ their associated frame. We denote by
S1, S

′
1 their associated set of free variables. Let Rule(p̃) be a transformation rule applicable on

(C, C′). Let (C1, C
′
1) and (C2, C

′
2) the two resulting pairs of constraint systems obtained by applying

Rule(p̃) on (C, C′), and we denote by Φ1, Φ
′
1, Φ2, and Φ′

2 their associated frame.
Let σ, θ and σ′ be three substitutions such that (σ, θ) ∈ Sol(C), (σ′, θ) ∈ Sol(C′), and Φσ ∼ Φ′σ′.

For all substitution θ′,

1. (σ, θ′) ∈ Sol(C) if, and only, if (σ′, θ′) ∈ Sol(C′).

2. Let i ∈ {1, 2}, and σi be a substitution such that σ|S1
= σi|S1

and (σi, θ
′) ∈ Sol(Ci). Then,

(σ′
i, θ

′) ∈ Sol(C′
i) for some substitution σ′

i such that σ′|S′

1
= σ′

i|S′

1
. Moreover, we have that

Init(Φi)σi = Init(Φ)σ and Init(Φ′
i)σ

′
i = Init(Φ′)σ′.

Proof. Let σ, θ and σ′ be three substitutions such that (σ, θ) ∈ Sol(C), (σ′, θ) ∈ Sol(C′), and
Φσ ∼ Φ′σ. Let θ′ be another substitution. We prove the two properties separately. The variation
can be proved in a similar way.

1. We assume that (σ, θ′) ∈ Sol(C), and we show that (σ′, θ′) ∈ Sol(C′). The other im-
plication can be done in a similar way. Let C = (S1;S2; Φ;D;Eq;Er;ND ;NoUse) and
C′ = (S′

1;S
′
2; Φ

′;D′;Eq′;Er′;ND ′;NoUse′). First, since (σ′, θ) ∈ Sol(C′), we have that
σ′ |= ND ′∧Eq′. Second, since C and C′ have the same structure, we have that Er = Er′, and

so θ′ |= Er′. Moreover, for any X, i
?

⊢ u′ ∈ D′, we have that param(Xθ′) ⊆ {ax 1, . . . , ax i}
and for any ground recipe ξ in Πn, ξ conforms to Φθ′ w.r.t. NoUseθ′ if, and only if, ξ conforms
to Φ′θ′ w.r.t. NoUse′θ′. In order to conclude, it remains to show that (Xθ′)Φσ′↓ = u′σ′↓ for

any (X, i
?

⊢ u′) ∈ D′.

Since (σ, θ) ∈ Sol(C) and (σ, θ′) ∈ Sol(C), we have (Xθ)Φσ↓ = (Xθ′)Φσ↓ for each constraint

(X, i
?

⊢ u) ∈ D. Since Φσ ∼ Φ′σ′, we have that (Xθ)Φ′σ′↓ = (Xθ′)Φ′σ′↓ for each constraint

(X, i
?

⊢ u′) ∈ D′ (by relying also on the fact that C and C′ have the same structure). Moreover,

since (σ′, θ) ∈ Sol(C′), we have that (Xθ)Φ′σ′↓ = u′σ′↓ for each constraint (X, i
?

⊢ u′) ∈ D′.

Altogether, this allows us to obtain that (Xθ′)Φ′σ′↓ = u′σ′↓ for each constraint (X, i
?

⊢ u′) ∈
D′. This allows us to conclude.

2. Let i ∈ {1, 2} and σi be a substitution such that σ = σi|vars1(C) and (σi, θ
′) ∈ Sol(Ci).

First, by inspection of the rules, it is easy to see that Init(Φi)σi = Init(Φ)σ and Init(Φ′
i)σ

′
i =

Init(Φ′)σ′. Since Ci and C′
i have the same structure, we have that Er(Ci) = Er(C′

i), and so

θ′ |= Er(C′
i). Moreover, for any X, j

?

⊢ u ∈ D(C′
i), we have that param(Xθ′) ⊆ {ax 1, . . . , ax i}

and for any ground recipe ξ in Πn, ξ conforms to Φiθ
′ w.r.t. NoUseθ′ if, and only if, ξ

conforms to Φ′
iθ

′ w.r.t. NoUse′θ′. In order to conclude, it remains to show that there exists
a substitution σ′

i such that (σ′
i, θ

′) ∈ Sol(C′
i), i.e. such that (Xθ′)Φiσ

′
i↓ = u′σ′

i↓ for any

(X, j
?

⊢ u′) ∈ D′
i and σ′

i |= ND ′
i ∧ Eq′i.

Thanks to Lemma 8.5, we have that (σ, θ′|vars2(C)) ∈ Sol(C). Thanks to Item 1, we know that
(σ′, θ′|vars2(C)) ∈ Sol(C′). Then, we prove the results by case analysis on the rule Rule(p̃)
(we rely on the notation of Figures 7.1 and 7.2) foccusing on the additional constraints that
have been added in C′

i.

Rule Cons, i = 1: Since (σ′, θ′|vars2(C)) ∈ Sol(C′) and θ′ � Er′i, we have (Xθ′)Φ′σ′↓ = t′σ′

and root(Xθ′) = f. Thus, we can deduce that root(t′σ′) = f. Let σ′
i = σ′∪{x′

1 7→ t′1, . . . , x
′
n 7→

t′n} where t′σ′ = f(t′1, . . . , t
′
n) and so σ′

i � t′
?
= f(x′

1, . . . , x
′
n). Moreover, (σ′, θ′|vars2(C)) ∈

Sol(C′) implies that σ′ � ND ′ ∧ Eq′ which means that σ′
i � ND ′ ∧ Eq′ ∧ t′

?
= f(x′

1, . . . , x
′
n)

and so σ′
i � ND ′

i ∧ Eq′i. At last, since we already know that Xθ′ = f(X1θ
′, . . . , Xnθ

′)
and (Xθ′)Φ′σ′↓ = t′σ′ = f(x′

1σ
′
i, . . . , x

′
nσ

′
i), we can deduce that (Xjθ

′)(Φ′σ′
i)↓ = x′

jσ
′
i for

j = {1 . . . n}.

Rule Cons, i = 2: We have that (σ′, θ′) ∈ Sol(C′), thus it remains to prove that θ′ �
root(X) 6= f. We know that θ′ � Er′i which means that θ′ � root(X) 6= f.

Rule Axiom, i = 1: We already know that θ′ � Er′i thus θ′ � X
?
= ξ. Thus it remains to prove

that σ′ � u′ ?
= v′. We know that (σ′, θ′) ∈ Sol(C′), and thus we have that Xθ′(Φ′σ′)↓ = u′σ′

and ξθ′(Φ′σ′)↓ = v′σ′. Moreover, thanks to Item 1, we have that (σ, θ′) ∈ Sol(C). This
implies that Xθ′(Φσ)↓ = uσ and ξθ′(Φσ)↓ = vσ. But, we know that Φσ ∼ Φ′σ′ and we have

that σ � u
?
= v. Thus, we can deduce that ξθ′(Φ′σ′)↓ = Xθ′(Φ′σ′)↓ and so σ′ � u′ ?

= v′.

Rule Axiom, i = 2: We already shown that θ′ |= Er′i and so θ′ |= X
?

6= ξ. We have nothing
else to prove.

Rule Dest, i = 1: Since (σi, θ
′) ∈ Sol(Ci), we can deduce that f(ξ,X2, . . . , Xn)θ

′(Φσ)↓ =
wσi ∈ T (Fc,N). Moreover, we know that Φσ ∼ Φ′σ′, thus f(ξ,X2, . . . , Xn)θ

′(Φσ)↓ ∈
T (Fc,N) implies f(ξ,X2, . . . , Xn)θ

′(Φ′σ′)↓ ∈ T (Fc,N) which means that ξθ′(Φ′σ′)↓ can be
reduced by the destructor f. Thus, f(u′

1, . . . , u
′
n) → w′ being a fresh renaming of ℓ → r, we

can extend σ′ into σ′
i such that u′

1σ
′
i = v′σ′

i. Moreover, for each rewriting rule, we have that
vars1(u′

j) ⊆ vars1(u′
1) for j = 2 . . . n, thus f(ξ,X2, . . . , Xn)θ

′(Φ′σ′)↓ ∈ T (Fc,N) implies
that Xjθ

′(Φ′
iσ

′
i)↓ = u′

jσ
′ for j = 2 . . . n.

Rule Dest, i = 2: The non deducibility constraint added in C′
2 corresponds to the fact that

for all (ξ1, . . . , ξn) ∈ Πn with parameter included in {ax 1, . . . , ax i}, we have ξ1Φ
′σ′↓ 6=

ξθΦ′σ′↓ ∨ f(ξ1, . . . , ξn)Φ
′σ′↓ 6∈ T (Fc,N). But, by hypothesis, we know that (σ2, θ

′) ∈
Sol(C2) and σ = σ2|vars1(C) = σ2. Thus, σ2 � ND2 and so for all recipes (ξ1, . . . , ξn) ∈ Πn

with parameter included in {ax 1, . . . , ax i}, we have ξ1Φσ↓ 6= ξθΦσ↓ ∨ f(ξ1, . . . , ξn)Φσ↓ 6∈
T (Fc,N). Lastly, since we have that Φσ ∼ Φ′σ′, the result holds.

Rule Eq-left-left: We add an equation u1
?
= u2 (resp. a disequation u1

?

6= u2). Moreover,
we have that ujσ = ξjθ

′(Φσ)↓ for j = 1, 2. Thanks to Item 1, we know that (σ′, θ′) ∈ Sol(C′)
which means that u′

jσ
′ = ξjθ

′(Φ′σ′)↓, for j = 1, 2. Since Φσ ∼ Φ′σ′, we have that u1σ = u2σ
(resp. u′

1σ
′ 6= u′

2σ
′) and this allows us to conclude.

The case of the rule Eq-left-right can be done in a similar way.

Rule Eq-right-right: We know that (σ′, θ′) ∈ Sol(C′), and thus we have that Xθ′(Φ′σ′)↓ =

u′σ′ and for all Y ∈ vars2(ξ), Y θ′(Φ′σ′)↓ = w′σ′ where (Y, k
?

⊢ w′) ∈ D(C′). Hence, by
construction of v′, we deduce that ξθ′(Φ′σ′)↓ = v′σ′. Moreover, thanks to Item 1, we have
that (σ, θ′) ∈ Sol(C). Similarly, this implies that Xθ′(Φσ)↓ = uσ and ξθ′(Φσ)↓ = vσ. We do
a case analysis on i.

Case i = 1: In such a case, θ′ � Er(C′
i) and so θ′ � X

?
= ξ. Thus it remains to prove that

σ′ � u′ ?
= v′. But, we know that Φσ ∼ Φ′σ′ and we have that σ � u

?
= v. Thus, we can

deduce that ξθ′(Φ′σ′)↓ = Xθ′(Φ′σ′)↓ and so σ′ � u′ ?
= v′.

Case i = 2: In such a case, we only have to prove that u′σ′ 6= v′σ′. We know that uσ 6= vσ
which implies that Xθ′(Φσ)↓ 6= ξθ′(Φσ)↓. But we have Φσ ∼ Φ′σ′ hence Xθ′(Φσ)↓ 6=
ξθ′(Φσ)↓ implies Xθ′(Φ′σ′)↓ 6= ξθ′(Φ′σ′)↓ and so u′σ′ 6= v′σ′. This allow us to conclude.

Rule Ded-st : Since (σi, θ
′) ∈ Sol(Ci), we know that ξθ′(Φσi)↓ = uσi and depending on

the value of i, the constraints added on Ci indicates whether there exists ξ1, . . . , ξn ∈ Πn

such that f(ξ1, . . . , ξn)Φσ↓ = ξθ′(Φσ)↓, or not. But once again, since we have Φσ ∼ Φ′σ′ by
hypothesis, we can transfer this property on σ′. This allows us to conclude.

C.6 Link between equivalence symbolic and the final test

C.6.1 Preliminaries

Lemma C.44. Let M be matrix of constraint systems obtained by following the strategy. Let C and
C′ be two constraint systems from the same column in M . Let (σ, θ) ∈ Sol(C) and (σ′, θ′) ∈ Sol(C′)
such that σ|S1(C) = σ′

|S1(C′). We have that:

1. Init(Φ(C))σ = Init(Φ(C′))σ′;

2. for all (ξ, i ⊲ u) ∈ Φ(C), for all (ξ′, i′ ⊲ u′) ∈ Φ(C′), if path(ξ) = path(ξ′) then uσ = u′σ′;

3. for all X ∈ S2(C) = S2(C
′), if (X, i

?

⊢ u) ∈ D(C) and (X, i
?

⊢ u′) ∈ D(C′), then uσ = u′σ′.

Proof. Since C and C′ are both from the same column of M , we deduce that they have at least one
common ancestor. Let C0 be the constraint system on the row matrix of initial constraint system
such that C0 →∗ C and C0 →∗ C′.

Property 1: Let u, u′ ∈ T (Fc,N ∪X 1) such that (ax i, i ⊲ u) ∈ Φ(C) and (ax i, i ⊲ u′) ∈ Φ(C′), for
some i. Furthermore let u0 ∈ T (Fc,N ∪ X 1) such that (ax i, i ⊲ u0) ∈ Φ(C0).

Since C0 →∗ C and C0 →∗ C′, we obtain from Lemma C.12 that u = u0Σ and u′ = u0Σ
′ where

Σ = mgu(Eq), Σ′ = mgu(Eq′). But (σ, θ) ∈ Sol(C) implies that σ � Eq(C) and so there exists
σ0 such that σ = Σσ0. Similarly, there exists σ′

0 such that σ′ = Σ′σ′
0. Moreover, u0 is a term in

the initial constraint system C0, hence vars1(u0) ⊆ S1(C0) = S1(C) = S1(C
′) which also implies

that u0σ|S1(C) = u0σ and u0σ
′
|S1(C′) = u0σ

′. At last, by applying the hypothesis σ|S1(C) = σ′
|S1(C′),

which leads to u0σ = u0σ
′. Hence, we have that:

uσ = u0Σ(Σσ0) = u0σ = u0σ
′ = uΣ′(Σ′σ′

0) = u′σ′.

Property 2: Let (ξ, i ⊲ u) ∈ Φ(C) and (ξ′, i′ ⊲ u′) ∈ Φ(C′). We know that C and C′ are well-formed
constraint systems. Thanks to Property 5 of a well-formed constraint system and the fact that
(σ, θ) ∈ Sol(C) and (σ′, θ′) ∈ Sol(C′), we deduce that ξθ(Φ(C)σ)↓ = uσ and ξ′θ′(Φ(C′)σ′)↓ = u′σ′.
We have seen that Init(Φ(C)σ = Init(Φ(C′))σ′. We have assumed that path(ξ) = path(ξ′), and we
know that uσ, u′σ′ ∈ T (Fc,N). Hence we can apply Lemma C.34 which leads to ξθ(Φ(C)σ)↓ =
ξ′θ′(Φ(C′)σ′)↓ and so uσ = u′σ′.

Property 3: Since X ∈ S2(C) = S2(C
′) and C0 →∗ C, C0 →∗ C′, then there exists Y ∈ S2(C0) such

that X ∈ vars2(C⌊YΘ⌋Φ(C)) where Θ = mgu(Er(C)). Let Θ′ = mgu(Er(C′)), Σ = mgu(Eq(C)) and
Σ′ = mgu(Eq(C′). By applying Lemma C.11 on Y , we have that Y acc1(C0)Σ = C⌊YΘ⌋Φ(C)acc

1(C).
But (σ, θ) ∈ Sol(C) implies that σ |= Eq(C) and so there exists σ0 such that σ = Σσ0,

and acc1(C)σ = acc1(C)σ0 since C is normalised. Hence, Y acc1(C0)σ = C⌊YΘ⌋Φ(C)acc
1(C)σ0 =

C⌊YΘ⌋Φ(C)acc
1(C)σ. Similarly, we have that Y acc1(C0)σ

′ = C⌊YΘ′⌋Φ(C′)acc
1(C′)σ′.

Our inductive hypothesis tells us that σ|S1
= σ′

|S1
which implies that acc1(C0)σ = acc1(C0)σ

′.
Furthermore, M satisfies InvGeneral, hence for all Z ∈ S2(C) = S2(C

′), C⌊ZΘ⌋Φ(C) = C⌊ZΘ′⌋Φ(C′).
Since Y ∈ S2(C0) then Y ∈ S2(C) and so we deduce that C⌊YΘ′⌋Φ(C′) = C⌊YΘ⌋Φ(C). Hence, we
deduce that C⌊YΘ⌋Φ(C)acc

1(C)σ = C⌊YΘ⌋Φ(C)acc
1(C′)σ′. Since X ∈ vars2(C⌊YΘ⌋Φ(C)), we can

conclude that Xacc1(C)σ = Xacc1(C′)σ′ and so uσ = u′σ′.

C.6.2 Step e of the strategy

Lemma C.45. Let M,M1 be a matrix of constraint system obtained respectively at the beginning
and end of step a of phase 1 with support s such that M 7→ M1. Let C1 be a constraint system
in M1. Assume that C the constraint system in M ancestor of C1 satisfies Sol(C) = Sol(C). Let
(σ, θ) ∈ Sol(C1). If (σ, θ) 6∈ Sol(C1) then there exists a constraint system C′

1 in the same column of
C1 such that:

1. C 7→∗ C′
1;

2. {(ξ, i) | i < s ∧ (ξ, i ⊲ u) ∈ Φ(C1)} = {(ξ, i) | i < s ∧ (ξ, i ⊲ u) ∈ Φ(C′
1)};

3. {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C1)} ⊆ {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C′
1)};

4. {path(ξ) | (ξ, s ⊲ u) ∈ NoUse(C1)} = {path(ξ) | (ξ, s ⊲ u) ∈ NoUse(C ′
1)} ∩ {path(ξ) | (ξ, s ⊲

u) ∈ Φ(C1)};

5. there exists (σ′, θ′) ∈ Sol(C′
1) such that σ|S1(C) = σ′

|S1(C)
.

Proof. We prove this result by induction on the size N of the branch C 7→ C1. According to the
strategy, every application of the rule Dest or Eq-left-right implies the application of the
same rule with the same parameters on each line of the matrix. Hence, for the induction, we
assume that the sequence of applications of a rule Dest or Eq-left-right on each line is applied
simultaneously.

Base case N = 0: In such a case, C = C1, hence Sol(C1) = Sol(C1). By choosing C′
1 = C1 = C,

properties 1, 2 and 3 trivially holds. Furthermore, since NoUse(C′
1) ⊆ Φ(C′

1), property 4 hold. At
last, by hypothesis we have (σ, θ) ∈ Sol(C1) which implies that (σ, θ) ∈ Sol(C1). With C1 = C′

1, we
conclude that (σ, θ) ∈ Sol(C′

1). Hence property 5 holds.

Inductive step N > 0: Let R(p̃) be the last rule applied. Let M2 be the matrix such that M2 → M1

(note that the rule applied is necessary an internal rule) and let C2 be the constraint system in
M2 such that C2 7→ C1. Thanks to Lemma 8.5, (σ, θ) ∈ Sol(C1) implies that (σ′, θ′) ∈ Sol(C2) with
σ′
|S1

= σ|S1
and θ|vars2C2

= θ′.
Hence by induction hypothesis, we know that there exists a constraint system C′

2 in the same
column of C2 such that:

1. C 7→∗ C′
2

2. {(ξ, i) | i < s ∧ (ξ, i ⊲ u) ∈ Φ(C2)} = {(ξ, i) | i < s ∧ (ξ, i ⊲ u) ∈ Φ(C′
2)}

3. {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C2)} ⊆ {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C′
2)}

4. {path(ξ) | (ξ, s ⊲ u) ∈ NoUse(C2)} = {path(ξ) | (ξ, s ⊲ u) ∈ NoUse(C ′
2)} ∩ {path(ξ) | (ξ, s ⊲

u) ∈ Φ(C2)}

5. there exists (σ′′, θ′′) ∈ Sol(C′
2) such that σ′′

|S1
= σ′

|S1
.

Thanks to the description of the strategy (see Section 7.4), we know that applying the rule
Dest or Eq-left-right is always follows by the application of the same instance of the rule
on each line of the matrix. However, when the parameters of the instance of the rule are not
compatible with the constraint systems on a line of the matrix, this line stay untouched. Hence,
we do a case analysis on the rule applied and on whether the parameters were compatible or not.
Note that Propertiy 3 of the inductive hypothesis on C2 and C′

2 implies that if the parameters of
the rule are compatible for C2, then they also are compatible for C′

2.

— R(p̃) = Eq-left-right(X0, ξ0) where X0, ξ0 are not compatible parameters for C′
2: In such

a case, it implies that there is no frame element in Φ(C′
2) with path(ξ0) as path. Hence, C′

2

remains unchanged and so C′
2 is a constraint system in M1. However, we know that for all

(ξ, s ⊲ u) ∈ Φ(C2), there exists (ξ′, s ⊲ u′) ∈ Φ(C′
2) such that path(ξ) = path(ξ′), thus we

can deduce that X0, ξ0 are also not compatible parameters for C2 which means that C1 is in
fact C2. Hence, by denoting C′

1 = C′
2, the result holds.

— R(p̃) = Dest(ξ0, ℓ 7→ r, s) where ξ0, ℓ 7→ r, s are not compatible for C′
2: Similarly to the

previous case, it implies that there is no frame element in Φ(C′
2) with path(ξ0) as path.

Hence C2 = C1 and by denoting C′
1 = C′

2, the result holds.

— R(p̃) = Eq-left-right(X0, ξ0) where X0, ξ0 are compatible parameters for C′
2 but not for C2:

In such a case, there exists a frame element (ξ, s ⊲ u) ∈ Φ(C′
2) such that path(ξ0) = path(ξ).

Furthermore, there is not such frame element in C2. Since the rule is applied on C′
2 and

(σ′′, θ′′) ∈ Sol(C′
2), then by Lemma 8.6, we can deduce that there exists a constraint system

C′
1 in M1 such that:

— C′
2 7→ C′

1 which implies C →∗ C′
1 hence property 1 holds.

— there exist (σ′′′, θ′′′) ∈ Sol(C′
1) such that σ′′′

|S1(C)
= σ′′

|S1(C)
hence property 5 holds.

Hence it remains to proves Properties 2, 3 and 4. But the rule Eq-left-right does not
add new frame elements in the frame, thus properties 2 and 3 are trivially satisfied. At last,
by the rule Eq-left-right, we may have:

NoUse(C′
1) = NoUse(C′

2) ∪ {(ξ, s ⊲ u)

But, by hypothesis X0, ξ0 are not compatible parameters for C2 then it means that there is
no frame element (ζ, s ⊲ v) ∈ Φ(C2) such that path(ζ) = path(ξ0) = path(ξ). Hence, we have
that:

{path(ξ) | (ξ, s ⊲ u) ∈ NoUse(C′
1)} ∩ {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C2)}
=

{path(ξ) | (ξ, s ⊲ u) ∈ NoUse(C′
2)} ∩ {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C2)}

Therefore, property 4 holds.

— R(p̃) = Dest(ξ0, ℓ → r, s) where ξ0, ℓ → r, s are compatible parameters for C′
2 but not

for C2: Properties 1 and 5 are proved similarly to the previous case. It remains to prove
Properties 2, 3 and 4. Since ξ0, ℓ → r, s are compatible parameters for C′

2, there exist
(ξ, i ⊲ u) ∈ Φ(C′

2) such that path(ξ) = ξ0 and i ≤ s.

Let g ∈ Fd be the destructor symbol of ℓ → r. This instance of the rule Dest may only add a
frame element (ζ, s ⊲ w) where path(ζ) = g ·path(ξ0). Hence Property 2 holds. Furthermore
since Φ(C′

2) ⊆ Φ(C′
1), Property 3 also holds. At last, since the rule Dest does not add frame

in element in NoUse, we have that NoUse(C′
1) = NoUse(C′

2) and so Property 4 holds.

— R(p̃) = Eq-left-right(X0, ξ0) where X0, ξ0 are compatible parameters for both C2 and C′
2:

Thanks to Lemma 8.6, we can deduce that there exists a constraint system C′
1 in M1 such

that:

— C′
2 7→ C′

1 which implies C →∗ C′
1 hence property 1 holds.

— there exist (σ′′′, θ′′′) ∈ Sol(C′
1) such that σ′′′

|S1(C)
= σ′′

|S1(C)
hence property 5 holds.

Moreover, since the rule Eq-left-right does not add new frame elements, properties 2
and 3 also holds.

Let u, u′ ∈ T (Fc,N ∪ X 1) such that (X0, i
?

⊢ u) ∈ D(C1) and (X0, i
?

⊢ u′) ∈ D(C′
1). Further-

more, let (ξ, s ⊲ v) ∈ Φ(C1) and (ξ′, s ⊲ v′) ∈ Φ(C′
1) such that path(ξ) = path(ξ′) = path(ξ0).

We already proved that (σ, θ) ∈ Sol(C1), (σ′′′, θ′′′) ∈ Sol(C′
1) and σ|S1(C) = σ′′′

|S1(C)
. Thus, by

Lemma C.44, we can deduce that uσ = u′σ′′′ and vσ = v′σ′′′. Thus, σ � u
?
= v is equivalent

to σ′′′ � u′ ?
= v′. But by the description of the rule, we have that (ξ, s ⊲ u) ∈ NoUse(C1) is

equivalent to σ � u
?
= v; and (ξ′, s ⊲ u′) ∈ NoUse(C′

1) is equivalent to σ′′′ � u′ ?
= v′. Hence

we conclude that

(ξ, s ⊲ v) ∈ NoUse(C1) is equivalent to (ξ′, s ⊲ v′) ∈ NoUse(C′
1)

and so Property 4 holds.

— R(p̃) = Dest(ξ0, ℓ → r, s) where ξ0, ℓ → r, s are compatible parameters for C′
2 and C2.

Thanks to Lemma 8.6, we can deduce that there exists a constraint system C′
1 in M1 such

that:

— C′
2 7→ C′

1 which implies C →∗ C′
1 hence property 1 holds.

— there exist (σ′′′, θ′′′) ∈ Sol(C′
1) such that σ′′′

|S1(C)
= σ′′

|S1(C)
hence property 5 holds.

Let g ∈ Fd be the destructor symbol of ℓ → r. This instance of the rule Dest may only add
a frame element (ζ, s ⊲ w) where path(ζ) = g · path(ξ0). Hence Property 2 holds.

Let (ξ, j ⊲ u) ∈ Φ(C1) and (ξ′, j′ ⊲ u′) ∈ Φ(C′
1) such that path(ξ) = path(ξ′) = path(ξ0).

First of all, thanks to Property 2 of our inductive hypothesis, we deduce that j = j′.

Assume now that there exists (ζ, s ⊲ w) ∈ Φ(C1) such that path(ζ) = g · path(ξ0). We show
that there necessary exists (ζ ′, s ⊲ w′) ∈ Φ(C′

1) such that path(ζ ′) = g · path(ξ0).
Since path(ζ) = g·path(ξ0) then there exists X2, . . . , Xn ∈ X 2 such that ζ = g(ξ,X2, . . . , Xn).
Furthermore, thanks to (σ, θ) ∈ Sol(C1), to the definition of a solution of a constraint system
and to Property 5 of a well-formed constraint system, we deduce that ζθ(Φ(C1)σ)↓ = wσ.
But (σ′′′, θ′′′) ∈ Sol(C′

1) and σ|S1(C) = σ′′′
|S1(C)

. Thus, by Lemma C.44, we can deduce
that Init(Φ(C1))σ = Init(Φ(C′

1))σ
′′′ which implies that ζθ(Φ(C1)σ)↓ = ζθ(Φ(C′

1)σ
′′′)↓ ∈

T (Fc,N). Furthermore, Lemma C.44 also implies that uσ = u′σ′′′. Hence we have that
ξ′θ′′′(Φ(C′

1)σ
′′′)↓ = ξθ(Φ(C1)σ)↓ = ξθ(Φ(C′

1)σ
′′′)↓. Thus, g(ξ′θ′′′, X2θ, . . . ,Xnθ)(Φ(C

′
1)σ

′′′)↓
∈ T (Fc,N). With σ′′′ � ND(C′

1) thanks to (σ′′′, θ′′′) ∈ Sol(C′
1), the description of the rule

Dest allows us to conclude that there exists (ζ ′, s ⊲ w′) ∈ Φ(C′
1) such that path(ζ ′) =

path(ζ). Hence Property 3 folds.
Since the rule Dest does not add a frame element in NoUse, we conclude that Property 4
holds.

Lemma C.46. Let M,M1 be a matrix of constraint system obtained respectively at the beginning
and end of step a of phase 1 with support s such that M 7→ M1. Let C1 be a constraint system in
M1. Assume that C the constraint system in M ancestor of C1 satisfies Sol(C) = Sol(C).

Let (σ, θ) ∈ Sol(C1). Assume that

1. for all X ∈ D(C1), for all position p of C⌊Xθ⌋Φ(C1), if root(()C⌊Xθ⌋Φ(C1) ∈ Fd, then there
is no ground recipe ξ ∈ Πn such that ξ(Φ(C1)σ)↓ = Xθ′|p(Φ(C1)σ)↓ and parammax(ξ

′) <
parammax(Xθ|p); and

2. for all ξ, ξ′ ∈ st(Xθ | X ∈ D(C1)), path(ξ) = path(ξ′) implies ξ = ξ′.

There exists a constraint system C′
1 in the same column of C1 and there exists (σ′, θ′) ∈ Sol(C′

1)
such that σ|S1(C) = σ′

|S1C
and for all X ∈ S2(C1), Xθ = Xθ′

Proof. Our hypothesis on M , M1 and C1 allows us to apply Lemma C.45. Hence we have that
there exists a constraint system C′

1 in the same column as C1 such that:

1. C 7→∗ C′
1;

2. {(ξ, i) | i 6= s ∧ (ξ, i ⊲ u) ∈ Φ(C1)} = {(ξ, i) | i < s ∧ (ξ, i ⊲ u) ∈ Φ(C′
1)};

3. {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C1)} ⊆ {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C′
1)};

4. {path(ξ) | (ξ, s ⊲ u) ∈ NoUse(C1)} = {path(ξ) | (ξ, s ⊲ u) ∈ NoUse(C ′
1)} ∩ {path(ξ) | (ξ, s ⊲

u) ∈ Φ(C1)};

5. there exists (σ′, θ′) ∈ Sol(C′
1) such that σ|S1(C) = σ′

|S1(C)
.

However, Property 5 is not a sufficient for our result. Hence we will build a new substitution θ′′

that satisfies the properties stated in the Lemma.
Since C1 and C′

1 have the same shape, we have that S2(C1) = S2(C
′
1). Furthermore, since during

Stepa of phase 1 with support s, the only added deducible constraint are of the following form:

X, s
?

⊢ u, for some X and u where X 6∈ S2(C1).

We now show that there exists a second order variable renaming ρ such that:

— {(Xρ, i) | (X, i
?

⊢ u) ∈ D(C1)} ⊆ {(X, i) | (X, i
?

⊢ u) ∈ D(C′
1)}

— {(ξρ, i) | (ξ, i ⊲ u) ∈ Φ(C1)} ⊆ {(ξ, i) | (ξ, i ⊲ u) ∈ Φ(C′
1)}

First of all, since C1 and C′
1 have the same shape, we deduce that S2(C1) = S2(C′

1) and {(X, i) |

(X, i
?

⊢ u) ∈ D(C1) ∧ X ∈ S2(C1)} = {(X, i) | (X, i
?

⊢ u) ∈ D(C′
1) ∧ X ∈ S2(C

′
1)}. Hence, we

define ρ on S2(C) is the identity. Let (X, i
?

⊢ u) ∈ D(C1) such that X 6∈ S2(C1). Since M1 satisfies
PP1Sa(s), we deduce that there exists a unique frame element (g(ξ1, . . . , ξn), j ⊲ v) ∈ Φ(C1) and
k ∈ {2, . . . , n} such that j = s and ξk = X. But we already proved that {path(ξ) | (ξ, s ⊲ u) ∈
Φ(C1)} ⊆ {path(ξ) | (ξ, s ⊲ u) ∈ Φ(C′

1)}. Hence along with Property C.2 of the invariant PP1Sa(s)

on C′
1, we deduce that there exists (g(ξ′1, X

′
2, . . . , X

′
n), s ⊲ v′) ∈ Φ(C′

1) and path(ξ′1) = path(ξ1).
Thus, we define ρ on X such that Xρ = X ′

k. Moreover, since X ′
k 6∈ S2(C), we deduce that there

exists u′
k such that (X ′

k, s
?

⊢ u′
k) ∈ D(C′

1). Hence we conclude that {(Xρ, i) | (X, i
?

⊢ u) ∈ D(C1)} ⊆

{(X, i) | (X, i
?

⊢ u) ∈ D(C′
1)}.

We already know that {(ξ, i) | i 6= s∧ (ξ, i ⊲ u) ∈ Φ(C1)} = {(ξ, i) | i < s∧ (ξ, i ⊲ u) ∈ Φ(C′
1)}.

Moreover, for all (ξ, i ⊲ u) ∈ Φ(C1), for all X ∈ vars2(ξ), paramC1
max(X) ≤ i (thanks to C1 being

well-formed. But C1 satisfies InvUntouched(s). Hence if i 6= s and X ∈ vars2(ξ), then i < s
and so X ∈ S2(C). Thus, if i 6= s then ξρ = ξ. Let (ξ, s ⊲ u) ∈ Φ(C1). Since C1 is well-

formed (item 3), paramC1
max(ξ) exists and so for all Z ∈ vars2(ξ), there exists (Z, j

?

⊢ u) ∈ D(C1).
Thus by construction of ρ, we deduce that there exists u′ such that (ξρ, s ⊲ u′) ∈ Φ(C′

1) and so
{(ξρ, i) | (ξ, i ⊲ u) ∈ Φ(C1)} ⊆ {(ξ, i) | (ξ, i ⊲ u) ∈ Φ(C′

1)}.
Hence, for all X ∈ vars2D(C′

1) ∩ img(ρ), we define Xθ′′ = Xρ−1θ. It remains to define the
variables that are not in img(ρ).

First of all, for all Y ∈ vars2D(C1), for all position p, if root(C⌊Y θ1⌋Φ(C1)|p) = g ∈ Fd then
path(Y θ|p) ∈ F∗

d · AX . But since (σ, θ) ∈ Sol(C1), then Y θ|p(Φ(C1)σ)↓ ∈ T (Fc,N). Moreover, we
know that (σ′, θ′) ∈ Sol(C′

1) with σ|S1(C) = σ′
|S1(C)

. By Lemma C.44, we know that Init(Φ(C1))σ =

Init(Φ(C′
1))σ

′ and so Y θ|p(Φ(C
′
1)σ

′)↓ ∈ T (Fc,N).
Furthermore, the matrix M1 is obtained at the end of step a of phase 1 of the strategy,

then C′
1 satisfies the invariant InvDest(s). Thus, with σ′ � ND(C′

1), we can deduce that either
(a) there exists a frame element (ξ, s ⊲ u) ∈ Φ(C′

1) such that path(ξ) = path(Y θ|p) or else (b)
there exist a frame element (ξ′, i ⊲ v) ∈ Φ(C′

1) such that path(ξ′) is a suffix of path(Y θ|p) and
(ξ′, i ⊲ v) ∈ NoUse(C′

1).
Case (b): Since (σ, θ) ∈ Sol(C1), we deduce that Y θ conforms to Φ(C1) w.r.t. NoUse(C1). Hence,
we deduce that there is no frame element on Φ(C1) which recipe have path(ξ′) as path. Hence,
thanks to property 2 of the well formed constraint system, we can also deduce that there exists
a position p′ of C⌊Y θ⌋Φ(C1) such that C⌊Y θ⌋Φ(C1)|p = path(ξ′) and i = s. But by Property 8 of
a well-formed constraint system, (ξ′, s ⊲ v) ∈ NoUse(C′

1) implies that there exists Z ∈ vars2(C′
1)

such that C⌊Zmgu(Er(C′
1))⌋Φ(C′

1
)acc

1(C′
1) = v and param

C′

1
max(Zmgu(Er(C′

1))) < s.
Since we proved that Init(Φ(C1))σ = Init(Φ(C′

1))σ
′, then Zθ(Φ(C1)σ)↓ = ξ′θ(Φ(C1)σ)↓ =

Y θ|p(Φ(C1)σ)↓. Hence we have that Y θ|p(Φ(C1)σ)↓ = Zθ(Φ(C1)σ)↓ where parammax(Zθ) < s
which is a contradiction on the hypothesis on θ. Thus we can deduce that this case is impossible.
Case (a): Let’s denote Y θ|p = g(ζ1, . . . , ζn). Thanks to M1 satisfying invariant PP1Sa(s), we
know that there exists X2, . . . , Xn ∈ vars2(D(C′

1)) such that ξ = g(ξ1, X2, . . . , Xn) for some ξ1.
Furthermore, we know, by definition of θ, that all recipe in θ with the same path is equal to Y θ|p.
Hence for all i ∈ {2, . . . , n}, we define Xiθ

′′ = ζi.
Let M be the set of all the others variables in D(C′

1) not already defined at this stage. For all
X ∈ M, we define Xθ′′ = C⌊Xθ′⌋Φ(C′

1
)acc

2(C′
1)θ

′′ which exists by following the order <θ′ on M.
Typically, the variables in M represents the variables that could not be instantiate thanks

to θ. Thus, since (σ′, θ′) ∈ Sol(C′
1), we used θ′ to defined those variables. The expression

C⌊Xθ′⌋Φ(C′

1
)acc

2(C′
1)θ

′′ represents the fact that the context of Xθ′ and Xθ′′ are the same.
Finally, for all X ∈ vars2(C′

1)r vars2(D(C′
1)), we define Xθ′′ = Xmgu(Er(C′

1))θ
′′

To verify that (σ′, θ′′) ∈ Sol(C′
1), it remains to prove that θ′′ � Er(C′

1). The others propriety
are indeed satisfied by construction of θ′′. Thanks to M1 satisfying invariant PP1Sa(s) (item C.2),
we know that the variable in D(C′

1) do not appear in any inequation in Er(C′
1. Furthermore, since

by definition of θ′′, θ′′ satisfies mgu(Er(C′
1)), we can deduce that θ′′ � Er(C′

1).

Lemma C.47. Let M be a matrix of constraint system obtained at the end of step e of phase 1
of the strategy with s as support. Let C be a constraint system in M . Let (σ, θ) ∈ Sol(C). We have
that there exists θ′ such that (σ, θ′) ∈ Sol(C) and

1. for all X ∈ D(C), for all position p of C⌊Xθ′⌋Φ(C), if root(()C⌊Xθ′⌋Φ(C)|p ∈ Fd, then
there is no ground recipe ξ ∈ Πn such that ξ(Φ(C)σ)↓ = Xθ′|p(Φ(C)σ)↓ ∈ T (Fc,N) and
parammax(ξ) < parammax(Xθ′|p); and

2. for all ξ, ξ′ ∈ st(Xθ | X ∈ D(C)), path(ξ) = path(ξ′) implies ξ = ξ′.

Proof. We begin by proving the first property of the result: We show that there exists θ′ such that
(σ, θ′) ∈ Sol(C) and for all X ∈ D(C), for all position p of C⌊Xθ′⌋Φ(C), if root(()C⌊Xθ′⌋Φ(C)|p ∈
Fd, then there is no recipe ξ ∈ Πn such that ξ(Φ(C)σ)↓ = Xθ′|p(Φ(C)σ)↓ ∈ T (Fc,N) and
parammax(ξ) < parammax(Xθ′|p).

We prove this property by induction on the number of positions p which do not satisfy the
property. Let’s denote this number m(θ)

Base case m(θ) = 0: In such a case, the result trivially holds.

Inductive step m(θ) > 0: Otherwise, let X ∈ vars2(D(C)), a position p and a ground recipe ξ ∈ Πn

such that root(C⌊Xθ⌋Φ(C)|p) ∈ Fd, ξ(Φ(C)σ)↓ = Xθ|p(Φ(C)σ)↓ ∈ T (Fc,N) and parammax(ξ) <
parammax(Xθ|p).

First of all, thanks to Lemma C.36, we know that there exists ξ′ ∈ Πn such that ξ′ conforms
to Φ(C)θ w.r.t. NoUse(C)θ, ξ(Φ(C)σ)↓ = ξ′(Φ(C)σ)↓ and parammax(ξ

′) ≤ parammax(ξ).
Secondly, thanks to Property 1 shown in Lemma C.42, we know that there exists a position

p′ and ξ′′ ∈ st(ξ′), such that p′ is a prefix of p and Xθ[ξ′]p(Φ(C)σ)↓ = Xθ[ξ′′]p′(Φ(C)σ)↓ and
Xθ[ξ′′]p′ ∈ Πn.

We want to apply Lemma C.41 for the replacement. We know that C satisfies the invari-
ants InvVarFrame(s) and InvUntouched(s). Thus for all (ζ, i ⊲ u) ∈ Φ(C), for all Z ∈ vars2(ζ),
paramC

max(Z) < i. But, for all Z ∈ vars2(C⌊Xθ[ξ′′]p′⌋Φ(C)), either Z ∈ vars2(C⌊Xθ⌋Φ(C)) else
Z ∈ vars2(C⌊ξ′′⌋Φ(C)). Since ξ′′ ∈ st(ξ′) and parammax(ξ

′) ≤ parammax(ξ) < parammax(Xθ|p), we
can deduce, thanks to Lemma C.40, that ¬(X < Z). Hence we can apply Lemma C.41 which gives
us that there exists θ′ such that (σ, θ′) is a pre-solution of C with Xθ′ = Xθ[ξ′′]p′ , θ′ � mgu(Er(C))
and for all Y ∈ vars2(D)r {X}, C⌊Y θ′⌋Φ(C) = C⌊Y θ⌋Φ(C).

However, we know that M is obtained at the end of step e of Phase 1 with support s. Hence
thanks to Lemma C.31, M satisfies PP1Sb(s,∞) and so C satisfies: for all (X, i ⊲ x) ∈ D(C), for

all (ξ, j ⊲ u) ∈ Φ(C), for all f ∈ Fc, Er 6� root(X)
?

6= f and Er 6� X
?

6= ξ. Hence, we can deduce
that θ′ � Er(C) and so (σ, θ′) ∈ Sol(C).

At last, since we replace a subterm of Xθ by a recipe of strictly smaller maximal parameter
and for all Y ∈ vars2(D) r {X}, C⌊Y θ′⌋Φ = C⌊Y θ⌋Φ, we can deduce that m(θ′) < m(θ). Hence
we conclude by applying our inductive hypothesis.

We now show the second property of the result. First of all, we know that for all X ∈ D(C),
Xθ conforms to Φ(C)θ w.r.t. NoUse(C). Hence, if there exists X,Y ∈ D(C), ξ ∈ st(Xθ) and
ξ′ ∈ st(Y θ) such that path(ξ) = path(ξ′) and ξ 6= ξ′, it implies that root(()ξ) ∈ Fd and there is no
frame element (ζ, i ⊲ u) ∈ Φ(C) such that path(ξ) = path(ζ) (otherwise it would contradict the
conformity of Xθ to Φ(C)θ w.r.t. NoUseθ). Hence it implies that there exists p (resp. p′) position
of C⌊Xθ⌋Φ(C) (resp. C⌊Y θ⌋Φ(C)) such that Xθ|p = ξ (resp. Y θ|p = ξ′).

Hence, we do our proof by induction on the number of position that do not satisfies the wanted
property: Let M(θ) be the set defined such that M(θ) = {path | X,Y ∈ vars2(D(C)) and ξ, ξ′ ∈
st(Xθ, Y θ) and path(ξ) = path(ξ′) and ξ 6= ξ′}.

Base case M(θ) = ∅: In such a case, the result trivially holds.

Inductive step M(θ) 6= ∅: Let w be a minimal path in term of size in M(θ). Let X0 be a minimal
variable in term of <θ of all variables X where there exists a position p of C⌊Xθ⌋Φ(C) such that
path(Xθ|p) = w.

Hence we know that there exists p0 position of C⌊X0θ⌋Φ(C) such that path(X0θ|p0
) = w. We

will replace any recipe that have w as path by X0θ|p0
that we denote ξ0. Hence, we do a new

induction on:

m(θ) =
∑

path(ξ)=w

nbocc(ξ, {Y θ | Y ∈ D(C)})− nbocc(ξ0, {Y θ | Y ∈ D(C)})

Base case m = 0: In such a case, it implies that any subterm whose path is equal to w, is in fact
ξ0. Hence it contradicts the fact that w ∈ M.

Inductive case m > 0: Otherwise, we have that there exists Y ∈ vars2(D(C)) and p position of
C⌊Y θ⌋Φ(C) such that path(Y θ|p) = w but Y θ|p 6= Xθ|p0

. We want to apply Lemma C.41 hence we
have to verify the application conditions of the lemma. Let ξ = Xθ|p0

.

— Since ξ is a subterm of Xθ and (σ, θ) ∈ Sol(C), we have that ξ conforms to Φ(C)θ w.r.t.
NoUse(C)θ. Furthermore, thanks to the first property we shown in this lemma, we know that
path(ξ) = path(Y θ|p) implies parammax(ξ) = parammax(Y θ|p). Hence since Y θ|p ∈ st(Y θ) and
(σ, θ) ∈ Sol(C), we deduce that parammax(ξ) ≤ paramC

max(Y).

— Since path(ξ) = path(Y θ|p), ξ(Φ(C)σ)↓ ∈ T (Fc,N) and Y θ|p(Φ(C)σ)↓ ∈ T (Fc,N), then by
Lemma C.34, we have that ξ(Φ(C)σ)↓ = Y θ|p(Φ(C)σ)↓. Furthermore path(ξ) = path(Y θ|p)
also implies that C⌊Y θ[ξ]p⌋Φ(C) = C⌊Y θ⌋Φ(C)[C⌊ξ⌋Φ(C)]p.

— X0 was chosen as minimal under <θ, hence for all Z ∈ vars2(C⌊ξ⌋Φ(C)acc
2(C)), if we had

Y <θ Z then it would imply that Y <θ X0 since we have that Z <θ X0. This is a
contradiction, hence we have that ¬(Y <θ Z).

Thus by Lemma C.41, we have that there exists θ′ such that (σ, θ′) is a pre-solution of C with Y θ′ =
Y θ[ξ]p, θ′ � mgu(Er(C)) and for all Z ∈ vars2D r {Y }, we have that C⌊Zθ′⌋Φ(C) = C⌊Zθ⌋Φ(C).

But with (σ, θ) ∈ Sol(C), we trivially have that σ � Eq(C1). Moreover, since C is a constraint
system obtained from step e, we have shown that for all Z ∈ vars2(D(C)), for all f ∈ Fc, there is

no inequation in Er(C) of the form Z
?

6= ξ or root(Z)
?

6= f where ξ is a recipe of Φ(C). Hence we
have that θ′ � Er(C) and so (σ, θ′) ∈ Sol(C).

By construction, we have that m(θ′) < m(θ). Furthermore, the construction of θ′, i.e. Y θ′ =
Y θ[ξ]p and for all Z ∈ vars2D r {Y }, C⌊Zθ′⌋Φ(C) = C⌊Zθ⌋Φ(C), imply that X0 is also a minimal
variable in term of <θ′ from all variables X ∈ vars2(D(C)) where there exists a position p of
C⌊Xθ′⌋Φ(C) such that path(Xθ′|p) = w. Hence we can apply our inductive hypothesis on θ′ which
conclude the result.

Definition C.1. We define a constructor layer equivalence relation between ground recipe of Πn,
denoted RFc

, as follows: Let ξ, ξ′ ∈ Πn two ground recipes, ξ RFc
ξ′ if:

— path(ξ), path(ξ′) exist and path(ξ) = path(ξ′); or

— ξ = f(ξ1, . . . , ξn), ξ′ = g(ξ′1, . . . , ξ
′
n) for some g, f ∈ Fc, g = f and for all I ∈ {1, . . . , n},

ξi RFc
ξ′i.

Lemma C.48. Let Φ a ground frame. Let ξ and ξ′ two ground recipe. C⌊ξ⌋Φ = C⌊ξ′⌋Φ implies
ξ RFc

ξ′.

Proof. We prove the result by induction on |C⌊ξ⌋Φ| but we will also prove in the same time that
if C⌊ξ⌋Φ = C⌊ξ′⌋Φ, and path(ξ), path(ξ′) exist then path(ξ′) = path(ξ).

Base case |C⌊ξ⌋Φ| = 1: In such a case, there exists (ζ, i ⊲ u) ∈ Φ such that path(ζ) = path(ξ).
Since C⌊ξ′⌋Φ = C⌊ξ⌋Φ, we deduce that path(ξ′) = path(ξ) and so ξ RFc

ξ′.

Inductive step |C⌊ξ⌋Φ| > 1: By definition of a context, it implies that ξ = f(ξ1, . . . , ξn) and
C⌊ξ⌋Φ = f(C⌊ξ1⌋Φ, . . . ,C⌊ξn⌋Φ). Similarly, ξ′ = g(ξ′1, . . . , ξ

′
n) and C⌊ξ′⌋Φ = g(C⌊ξ′1⌋Φ, . . . ,C⌊ξ

′
n⌋Φ).

Since C⌊ξ⌋Φ = C⌊ξ′⌋Φ, we deduce that g = f and for all i ∈ {1, . . . , n}, C⌊ξi⌋Φ = C⌊ξ′i⌋Φ. If f ∈ Fc

then by induction on ξi and ξ′i, we deduce that for all i ∈ {1, . . . , n}, ξi RFc
ξ′i. Along with f = g,

we conclude that ξ RFc
ξ′.

Else we have f = g ∈ Fd. But ξ and ξ′ are recipe in Πn. Hence it implies that root(ξ1) 6∈ Fc and
root(ξ′1) 6∈ Fc. Hence path(ξ) and path(ξ′) exists and path(ξ) = f · path(ξ1), path(ξ′) = f · path(ξ′1).
But by inductive hypothesis on ξ1, ξ

′
1, we deduce that path(ξ1) = path(ξ′1). Hence we conclude

that path(ξ) = path(ξ′) and so ξ RFc
ξ′.

Lemma C.49. Let M be a matrix of constraint system obtained during step b to d of phase 1 of the
strategy. Let M ′ be the father of M . Let C1 a constraint system in M and C′

1 be its father in M ′.
Let C′

2 be a constraint system in the column of C′
1 in M ′. Let (σ′

1, θ
′
1) ∈ Sol(C′

1), (σ
′
2, θ

′
2) ∈ Sol(C′

2)
and (σ1, θ1) ∈ Sol(C1). If

1. σ1|vars1(C′

1
) = σ′

1, θ1|vars2(C′

1
) = θ′1

2. σ′
1|S1(C′

1
) = σ′

2|S1(C′

2
)

3. for all X ∈ S2(C
′
1), Xθ′1 RFc

Xθ′2

4. for all X,Y ∈ S2(C
′
2), for all p ∈ Pos(C⌊Xθ′2⌋Φ(C′

2
)), for all p ∈ Pos(C⌊Y θ′2⌋Φ(C′

2
)), if

path(Xθ′2|p) = path(Xθ′2|p′) then Xθ′2|p = Xθ′2|p′ .

then we have that there a constraint system C2 in the column of C1 in M and (σ2, θ2) ∈ Sol(C2)
such that

1. C′
2 → C2

2. σ2|vars1(C′

2
) = σ′

2, θ2|vars2(C′

2
) = θ′2

3. for all X ∈ S2(C1), Xθ1 RFc
Xθ2

4. for all X,Y ∈ S2(C2), for all p ∈ Pos(C⌊Xθ2⌋Φ(C′

2
)), for all p ∈ Pos(C⌊Y θ2⌋Φ(C2)), if

path(Xθ2|p) = path(Xθ2|p′) then Xθ2|p = Xθ2|p′ .

Proof. Since M ′ is the father of M , we do a case analysis on the rule applied on M ′.

Case of internal rule not applied on C′
2: In such a case, it implies that C′

2 is also a constraint
system in the column of C1 in the matrix M . Hence, by denoting C2 = C′

2, and (σ2, θ2) = (σ′
2, θ

′
2),

we trivially have that the two first wanted properties. Hence, it remains to show that Xθ1 = Xθ2
for all X ∈ S2(C1). But since C2 is in M , we know that C2 and C1 have the same structure and
so S2(C1) = S2(C2). Similarly, we have S2(C

′
1) = S2(C

′
2). At last, the rule applied is an internal

rule hence we have S2(C1) = S2(C
′
1). Thus, θ1|vars2(C′

1
) = θ′1 implies that for all X ∈ S2(C1),

Xθ1 = Xθ′1. Hence with Xθ′1 RFc
Xθ′2 and θ2 = θ′2, then we deduce that Xθ1 RFc

Xθ2.
Moreover, θ2 = θ′2 and hypothesis 4 implies property 4.

Case of internal rule applied on C′
2: In such a case, it implies that C1 = C′

1 and so (σ1, θ1) = (σ′
1, θ

′
1).

Let C3 and C4 be the two constraint system obtained by application of R(p̃) on C′
2. By the definition

of an internal rule, we know that both C3 and C4 are in the column of C1 in the matrix M .
Thanks to Lemma 8.6, (σ′

2, θ
′
2) ∈ Sol(C′

2) implies that there exists i ∈ {3, 4} and (σ, θ) ∈ Sol(Ci)
such that σ|S1(Ci) = σ′

2|S1(C′

2
).

Furthermore, the only possible rule applicable in this case are Axiom, Cons, Eq-left-left,
Eq-right-right and Ded-st. Since the strategy dictates that Eq-right-right can only be
applied internally when ξ is a variable with parammax(ξ) < s then, by following the proof of
Lemma 8.6, we deduce for all X ∈ S2(C

′
2), C⌊Xθ⌋Φ(Ci) = C⌊Xθ′2⌋Φ(Ci). But thanks to Lemma C.48,

we deduce that Xθ RFc
Xθ′2.

Let p, p′ positions of C⌊Xθ⌋Φ(Ci), C⌊Y θ⌋Φ(Ci) respectively where X,Y ∈ S2(C). Assume that
path(Xθ|p) = path(Y θ|p′). But C⌊Xθ⌋Φ(Ci) = C⌊Xθ′2⌋Φ(C′

1
) and C⌊Y θ⌋Φ(Ci) = C⌊Y θ′2⌋Φ(C′

1
). Hence

path(Xθ|p) = path(Y θ|p′) implies that path(Xθ′2|p) = path(Y θ′2|p′). By hypothesis 4, we deduce
that Xθ′2|p = Y θ′2|p′ . Hence, thanks to C⌊Xθ⌋Φ(Ci) = C⌊Xθ′2⌋Φ(C′

1
), C⌊Y θ⌋Φ(Ci) = C⌊Y θ′2⌋Φ(C′

1
) we

deduce that C⌊Xθ|p⌋Φ(Ci) = C⌊Y θ|p⌋Φ(Ci). Since Xθ, Y θ conforms to Φ(Ci)θ w.r.t. NoUseθ, we
deduce that Xθ|p = Y θ|p.

Moreover, since Xθ (resp. Xθ′2) conforms with Φ(C′
1θ) (resp. Φ(Ciθ′2)) and C⌊Xθ⌋Φ(Ci) =

C⌊Xθ′2⌋Φ(Ci) Since S2(C
′
2) = S2(Ci) and by hypothesis, Xθ′1 RFc

Xθ′2, we have that Xθ1 RFc
Xθ′1

RFc
Xθ′2 RFc

Xθ. Hence, the result holds by denoting C2 = Ci and (σ2, θ2) = (σ, θ).

Case of external rule: In such a case, the rule R(p̃) is applied on both C′
1 and C′

2. The only possible
external rules are Cons, Axiom and Eq-right-right. By definition of an external application
of the rule, we also know that if C is the right (resp. left) son of C1 then there exists a constraint
system C′ in M such that C′ is the right (resp. left) son of C′

1. We do a case analysis on the rule
applied.

— Rule Cons(X, f), left son: In such a case, Er(C1) = Er(C′
1) ∧X

?
= f(X1, . . . , Xn), Er(C2) =

Er(C′
2) ∧X

?
= f(X1, . . . , Xn); and Eq(C1) = Eq(C′

1) ∧Xacc1(C′
1)

?
= f(x1, . . . , xn), Eq(C2) =

Eq(C′
2) ∧Xacc1(C′

2)
?
= f(y1, . . . , yn) where Xi, xi, yi are fresh variables for all i ∈ {1, . . . , n}

in S2(C1) = S2(C2). Moreover, X ∈ S2(C
′
1) = S2(C

′
2).

By hypothesis, we know that (σ1, θ1) ∈ Sol(C1), θ1|vars2(C′

1
) and (σ′

2, θ
′
2) ∈ Sol(C ′

2). Hence
θ1 � Er(C1) implies that root(Xθ′1) = f ∈ Fc. But Xθ′1 RFc

Xθ′2 thus we deduce that
root(Xθ′2) = f. We define θ2 = θ′2 ∪ {X1 7→ Xθ′2|1; . . . Xn 7→ Xθ′2|n}. We show that for
all i ∈ {1, . . . , n}, Xiθ1 RFc

Xiθ2. root(Xθ′2) = root(Xθ′1) =∈ Fc and Xθ′1 RFc
Xθ′2

implies by definition of RFc
that Xθ′1 = f(ξ1, . . . , ξn) and Xθ′2 = f(ζ1, . . . , ζn) for some

ξ1, . . . , ξn, ζ1, . . . , ζn, and for all i ∈ {1, . . . , n}, ξi RFc
ζi. Since for all i ∈ {1, . . . , n},

Xiθ1 = ξi and Xiθ2 = ζi, the result holds.

Moreover, since for all i ∈ {1, . . . , n}, C⌊ζi⌋Φ(C2) is a subterm of C⌊Xθ′2⌋Φ(C2), then hypoth-
esis 4 implies property 4.

It remains to build σ2. Since (σ′
2, θ

′
2) ∈ Sol(C′

2), we know that Xθ′2(Φ(C
′
2)σ

′
2)↓ = f(u1, . . . , un)

where for all i ∈ {1, . . . , n}, ζi(Φ(C′
2)σ

′
2)↓ = ui. Since y1, . . . , yn are fresh variables, we define

σ2 = σ′
2 ∪ {y1 7→ u1, . . . , yn 7→ un}. Hence σ2 � Xacc1(C′

2)
?
= f(y1, . . . , yn). Hence we

conclude that (σ2, θ2) ∈ Sol(C2).

— Rule Cons(X, f), right son: In such a case, Er(C1) = Er(C′
1) ∧ root(X)

?

6= f and Er(C2) =
Er(C′

2) ∧ root(X) 6= f. By hypothesis, we know that (σ1, θ1) ∈ Sol(C1), θ1|vars2(C′

1
) and

(σ′
2, θ

′
2) ∈ Sol(C ′

2). Hence θ′1 � Er(C1) implies that root(Xθ′1) 6= f ∈ Fc. But Xθ′1 RFc
Xθ′2

thus we deduce that root(Xθ′2) 6= f. Hence the result holds with (σ2, θ2) = (σ′
2, θ

′
2). Moreover,

hypothesis 4 trivially implies property 4.

— Rule Axiom(X, path), left son: Er(C1) = Er(C′
1) ∧ X

?
= ξ1, Er(C2) = Er(C′

2) ∧ X
?
= ξ2,

Eq(C1) = Eq(C′
1) ∧ Xacc1(C′

1)
?
= path(ξ1)acc

1(C′
1) and Eq(C2) = Eq(C′

2) ∧ Xacc1(C′
2)

?
=

path(ξ2)acc
1(C′

2) where path(ξ1) = path(ξ2).

By hypothesis, we know that (σ1, θ1) ∈ Sol(C1), θ1|vars2(C′

1
) and (σ′

2, θ
′
2) ∈ Sol(C ′

2). Hence
θ1 � Er(C1) implies Xθ′1 = ξ1θ

′
1. But Xθ′1 RFc

Xθ′2 hence since path(Xθ′1 exists, we deduce
that path(Xθ′2) exists and path(Xθ′2) = path(Xθ′1). Moreover, (σ′

2, θ
′
2) ∈ Sol(C′

2) also implies
that Xθ′2 conforms with Φ(C′

2)θ
′
2 w.r.t. NoUseθ′2. Hence since ξ2 is a recipe of a frame

element of Φ(C′
2) such that path(ξ2) = path(ξ1) = path(Xθ′2), we conclude that Xθ′2 = ξ2θ

′
2.

Hence θ′2 � Er(C2). Moreover, hypothesis 4 trivially implies property 4.

Since (σ′
1, θ

′
1) ∈ Sol(C′

1), (σ
′
2, θ

′
2) ∈ Sol(C′

2) and σ′
1|S1(C′

1
) = σ′

2|S1C′

2
then by Lemma C.44, we

have that Xacc1(C′
2)σ

′
2 = Xacc1(C′

1)σ
′
1 and path(ξ1)acc

1(C′
1)σ

′
1 = path(ξ2)acc

1(C′
2)σ

′
2. Hence,

σ′
1 satisfies Xacc1(C′

1)
?
= Y acc1(C′

1) implies that σ′
2 � Xacc1(C′

2)
?
= path(ξ2)acc

1(C′
2). Hence

(σ′
2, θ

′
2) ∈ Sol(C2).

— Rule Axiom(X, path), right son: Er(C1) = Er(C′
1) ∧ X

?

6= ξ1, Er(C2) = Er(C′
2) ∧ X

?

6= ξ2.
By hypothesis, we know that (σ1, θ1) ∈ Sol(C1), θ1|vars2(C′

1
) and (σ′

2, θ
′
2) ∈ Sol(C ′

2). Hence

θ1 � Er(C1) implies Xθ′1
?

6= ξ1θ
′
1. Since Xθ′1 conforms with Φ(C′

1)θ
′
1 w.r.t. NoUse(C′

1)θ
′
1, it

also implies that path(Xθ′1)
?

6= path(ξ1). But Xθ′1 RFc
Xθ′2 hence path(Xθ′2) = path(Xθ′1)

and so path(Xθ′2) 6= path(ξ2). Thus, we deduce that Xθ′2 6= ξ2θ
′
2 and so the result holds with

(σ2, θ2) = (σ′
2, θ

′
2).

— Rule Eq-right-right(X, ξ), left son: Er(C1) = Er(C′
1)∧X

?
= Y , Er(C2) = Er(C′

2)∧X
?
= Y ,

Eq(C1) = Eq(C′
1) ∧Xacc1(C′

1)
?
= Y acc1(C′

1) and Eq(C2) = Eq(C′
2) ∧Xacc1(C′

2)
?
= Y acc1(C′

2).
By hypothesis, we know that (σ1, θ1) ∈ Sol(C1), θ1|vars2(C′

1
) and (σ′

2, θ
′
2) ∈ Sol(C ′

2). Hence
θ1 � Er(C1) implies Xθ′1 = Y θ′1. But Xθ′1 RFc

Xθ′2 and Y θ′1 RFc
Y θ′2. Hence, we deduce

that Xθ′2 RFc
Y θ′2. Moreover, thanks to hypothesis 4, Xθ′2 RFc

Y θ′2 implies that Xθ′2 = Y θ′2
and so θ′2 � Er(C2).

Since (σ′
1, θ

′
1) ∈ Sol(C′

1), (σ
′
2, θ

′
2) ∈ Sol(C′

2) and σ′
1|S1(C′

1
) = σ′

2|S1C′

2
then by Lemma C.44, we

have that Xacc1(C′
2)σ

′
2 = Xacc1(C′

1)σ
′
1 and Y acc1(C′

1)σ
′
1 = Y acc1(C′

2)σ
′
2. Hence, σ′

1 satisfies

Xacc1(C′
1)

?
= Y acc1(C′

1) implies that σ′
2 � Xacc1(C′

2)
?
= Y acc1(C′

2). Hence (σ′
2, θ

′
2) ∈ Sol(C2).

Thus the result holds with (σ2, θ2) = (σ′
2, θ

′
2).

— Rule Eq-right-right(X, ξ), right son: Eq(C1) = Eq(C′
1) ∧ Xacc1(C′

1)
?

6= Y acc1(C′
1) and

Eq(C2) = Eq(C′
2) ∧ Xacc1(C′

2)
?
= Y acc1(C′

2). Since (σ′
1, θ

′
1) ∈ Sol(C′

1), (σ′
2, θ

′
2) ∈ Sol(C′

2)
and σ′

1|S1(C′

1
) = σ′

2|S1C′

2
then by Lemma C.44, we have that Xacc1(C′

2)σ
′
2 = Xacc1(C′

1)σ
′
1

and Y acc1(C′
1)σ

′
1 = Y acc1(C′

2)σ
′
2. Hence, σ′

1 satisfies Xacc1(C′
1)

?

6= Y acc1(C′
1) implies that

σ′
2 � Xacc1(C′

2)
?

6= Y acc1(C′
2). Hence (σ′

2, θ
′
2) ∈ Sol(C2). Thus the result holds with (σ2, θ2) =

(σ′
2, θ

′
2).

Lemma C.50. Let M be a matrix of constraint system obtained by at step e of phase 1 of the
strategy with any support. Let C be a constraint system in M . We have that Sol(C) = Sol(C)

Proof. We prove this result by induction of the support s of the step e. For the purpose of the
induction, we assume that step e of phase 1 with support 0 corresponds to the root.

Base case s = 0 : In such a case, we know that M is a row matrix of initial constraint system.
Hence, we trivially have that Sol(C) = Sol(C) and so the result holds.

Inductive step s > 0: Let (σ, θ) ∈ Sol(C). Thanks to Lemma C.47, we know that there exists θ′

such that (σ, θ′) ∈ Sol(C) and

1. for all X ∈ D(C), for all position p of C⌊Xθ′⌋Φ(C), if root(C⌊Xθ′⌋Φ(C)) ∈ Fd, then there is no
recipe ξ ∈ Πn such that ξ(Φ(C)σ)↓ = Xθ′|p(Φ(C)σ)↓ and parammax(ξ

′) < parammax(Xθ′|p);
and

2. for all ξ, ξ′ ∈ st(Xθ′ | X ∈ D(C)), path(ξ) = path(ξ′) implies ξ = ξ′.

Since s > 0, we also know that there exists a matrix M1 ancestor of M such that M1 is obtained
at the end of step a of the first phase with support s. Hence, there exists a constraint system C1
ancestor of C such that C1 is in M1.

By a simple induction on the number of rule applied between M1 and M , we prove, thanks to
Lemma 8.5, that there exists (σ1, θ1) ∈ Sol(C1) such that σ|vars1(C1) = σ1 and θ|vars2(C2) = θ1.

Let X ∈ D(C1) and p a position of C⌊Xθ1⌋Φ(C1) such that root(C⌊Xθ1⌋Φ(C1)|p) ∈ Fd. We show
that there exists Y ∈ D(C) and p′ a position of C⌊Xθ⌋Φ(C) such that root(C⌊Y θ⌋Φ(C)|p′) ∈ Fd.

The rule Dest was never applied to obtained M from M1, thus θ|vars2(C2) = θ1 implies
that root(C⌊Xθ1⌋Φ(C1)|p) = root(C⌊Xθ⌋Φ(C)|p) ∈ Fd, and so root(C⌊Xθ1⌋Φ(C1)|p) ∈ Fd implies
root(C⌊Xθ⌋Φ(C)|p) ∈ Fd. But thanks to Property 7 of a well formed constraint system, we
know that C⌊Xmgu(Er(C))⌋Φ(C) ∈ T (Fc ∪ (F∗

d · AX)) and for all Y ∈ vars2(Xmgu(Er(C)),
Y ∈ vars2(D(C)). Hence, root(C⌊Xθ⌋Φ(C)|p) ∈ Fd implies that there exists Y ∈ vars2(D(C)) and
a position p′ such that Y θ|p′ = Xθ|p and root(C⌊Y θ⌋Φ(C)|p′) ∈ Fd.

Hence, we deduce that (σ1, θ1) satisfies:

1. for all X ∈ D(C1), for all position p of C⌊Xθ1⌋Φ(C1), if root(C⌊Xθ1⌋Φ(C)) ∈ Fd, then there is no
recipe ξ ∈ Πn such that ξ(Φ(C1)σ)↓ = Xθ1|p(Φ(C1)σ)↓ and parammax(ξ) < parammax(Xθ1|p);
and

2. for all ξ, ξ′ ∈ st(Xθ1 | X ∈ D(C1)), path(ξ) = path(ξ′) implies ξ = ξ′.

Moreover, let M2 be the matrix ancestor of M1 obtained from step e with support s − 1.
Thanks to our inductive hypothesis, we know that for all constraint system C0 in M2, we have
Sol(C0) = Sol(C0). Hence, we can apply Lemma C.46 on C1 and (σ1, θ1) which implies that there
exists a constraint system C2 in the same column of C1 and there exists (σ2, θ2) ∈ Sol(C2) such
that σ1|S1(C1) = σ2|S1C2

and for all X ∈ S2(C1), Xθ1 = Xθ2. Xθ1 = Xθ2 trivially implies that
Xθ1 RFc

Xθ2. Moreover, since Xθ1 = Xθ2 and for all ξ, ξ′ ∈ st(Xθ1 | X ∈ D(C1)), path(ξ) =
path(ξ′) implies ξ = ξ′, we deduce that for all X,Y ∈ S2(C2), for all p ∈ Pos(C⌊Xθ′2⌋Φ(C2)), for all
p ∈ Pos(C⌊Y θ′2⌋Φ(C′

2
)), if path(Xθ′2|p) = path(Xθ′2|p′) then Xθ′2|p = Xθ′2|p′ .

Once again with a simple induction on the number of rule applied between M1 and M , we
use Lemma C.49 to prove that there exists a constraint system C′ in the column of C in M and
(σ′′, θ′′) ∈ Sol(C′) such that σ′′|S1(C′) = σ|S1(C) and for all X ∈ S2(C), Xθ′ = Xθ′′.

But thanks to Lemma C.30, we know that the matrix M satisfies the invariant InvMatrix(()s).
Thus there exists a renaming ρ of first order variable such that:

— {xρ | (X, i
?

⊢ x) ∈ D(C) ∧ i ≤ s} = {x | (X, i
?

⊢ x) ∈ D(C′) ∧ i ≤ s}

— {uρ | (ξ, i ⊲ u) ∈ Φ(C) ∧ i ≤ s} = {u | (ξ, i ⊲ u) ∈ Φ(C′) ∧ i ≤ s}

— ND(C)ρ = ND(C′)

Moreover, (σ, θ′) ∈ Sol(C), (σ′′, θ′′) ∈ Sol(C′) and σ|S1(C) = σ′′|S1(C′). Hence by Lemma C.44,

we can deduce that for all (X, i
?

⊢ x) ∈ D(C′), with i ≤ s, we have that (X, i
?

⊢ xρ) ∈ D(C′) and
xσ′′ = xρσ. Thus with ND(C)ρ = ND(C′) and (σ′′, θ′) ∈ Sol(C′), we have that σ′′ � ND(C′) which
implies σ′′ � ND(C)ρ. Since for all x ∈ vars1(ND(C)), indC(x) ≤ s, we conclude that ρσ � ND(C)ρ
which implies that σ � ND(C) and so (σ, θ) ∈ Sol(C).

Lemma 8.9. Let (M,M ′) be a pair of matrix obtained at the end strategy. For all constraint
system C in M or M ′, Sol(C) = Sol(C).

Proof. Let (σ, θ) ∈ Sol(C). Let C′ be the constraint system ancestor of C such that C′ is on the
matrix obtained from the last step e of phase 1. With a simple induction on the number of
rule applied from C′ to C, we use Lemma 8.5 to show that there exists (σ′, θ′) ∈ Sol(C′) with
σ|vars1(C′) = σ′. But by Lemma C.50, we know that (σ′, θ′) ∈ Sol(C′). Furthermore, the rules
applied on phase 2 of the strategy do not add new non-deducible constraint system hence we can
deduce that σ′ � ND(C′) and σ|vars1(C′) = σ′ implies that σ � ND(C) and so (σ, θ) ∈ Sol(C).

C.6.3 Proof of symbolic equivalence on a leaf

Lemma C.51. Let C a well formed constraint system in a pair of matrices of constraint systems
obtained by application of the strategy on initial pair of matrices of constraint systems. Let σ, σ′

two substitution such that σ � Eq and σ′ � Eq. If σ|S1
= σ′

|S1
, then σ = σ′.

Proof. The proof of this Lemma is direct from the definition of the rules. Indeed, S1 correspond
to the first order variable in the initial pair of matrices of constraint systems. Furthermore, even
if a rule may create fresh first order variable, they are always related to existing variables by an
equation on first order terms.

Lemma 8.8. Let (M,M ′) be a pair of matrix obtained at the end strategy. (M,M ′) is in solved
form.

Proof. Since (M,M ′) is obtained at the end of the strategy then there exists (M0,M
′
0), (M1,M

′
1)

and (M2,M
′
2) such that

(M0,M
′
0) →

∗ (M1,M
′
1) →

∗ (M2,M
′
2) →

∗ (M,M ′)

and (M0,M
′
0) is the pair of row matrices of initial constraint system, (M1,M

′
1) is obtained at the

end of Phase 1 of the strategy and (M2,M
′
2) is obtained at the end of Step a of Phase 2 of the

strategy.
Thanks to Lemma C.31, we know that (M1,M

′
1) satisfies PP1E. Hence for all constraint system

in M1 or M ′
1, C satisfies InvDedsub, InvVarFrame(∞), InvDest(∞), InvNoUse(∞), InvUntouched(∞)

and InvVarConstraint(∞). The rule applied on Phase 2 are only Cons, Eq-right-right and
Axiom. Hence thanks to Lemma C.16, we deduce that any constraint system in (M,M ′) satisfies
InvNoUse(∞), InvDest(∞), InvVarFrame(∞) and InvDedsub. Moreover by Lemma C.15, we deduce
that any constraint system in (M,M ′) satisfies InvUntouched(∞). At last, by Lemma C.14, we
deduce that any constraint system in (M,M ′) also satisfies InvVarConstraint(∞).

Since (M1,M
′
1) satisfies PP1E, we deduce that (M,M ′) satisfies InvMatrix(∞) and InvGeneral.

Hence thanks to Lemma C.17 and C.19, we deduce that (M,M ′) also satisfies InvMatrix(∞) and
InvGeneral.

Let C 6=⊥ in M or M ′. (M,M ′) being obtained at the end of the strategy implies that the
rule Cons and Axiom are not applicable on any constraint system in M,M ′. Hence we deduce
that either property 2 holds or there exists X ∈ D(C) such that Axiom(X, path) and Cons(X, f)

are useless for all path, f. But we know that C satisfies InvDest(∞). Hence Dest(ξ, ℓ → r, s) is
useless for any ξ, ℓ → r, s. This case is impossible since C is normalised and we assumed that
C 6=⊥. Hence C 6=⊥ implies that property 2 holds on C.

We show the properties 1 and 2 of solved pair of matrices on (M,M ′). If we assumed that C
and C′ was in the same column. We know that (M,M ′) satisfies the invariant InvGeneral and C, C′

both satisfy InvVarConstraint(∞) and InvUntouched(∞). Hence by Lemma C.29, we deduce that
the properties 1, 2 hold.

It remains to show property 1 of solved constraint system and property 3 of solved pair of
matrices. Thanks to Lemma C.32, we know that (M2,M

′
2) does not contain universal variables.

But the rule Cons, Axiom and Eq-right-right do not add new universal variable. Hence
(M,M ′) does not contain universal variables. (M,M ′) being at the end of the strategy implies
that the rule Axiom, Cons and Eq-right-right are no longer applicable. Consider C a constraint
system in (M,M ′) and T its association table. We show that all disjunction of inequation are in
the association table T .

Let
∨

i ui

?

6= vi such that Eq(C) = E ∧
∨

i ui

?

6= vi for some E, and T [
∨

i ui 6= vi] = ⊥. Thanks

to Lemma C.33, we know that for all i, ui

?

6= vi satisfies one of the following properties:

1. ui ∈ X 1 and vi ∈ N : In such a case, there exists (X, k
?

⊢ ui) ∈ D. But Axiom(X, path)
is useless for any path. Since C satisfies InvDest(∞), Dest(ξ, ℓ → r, s) is useless for any
ξ, ℓ → r, s. But in such a case, the normalisation rule (Nname) is applicable which is a
contradiction with the fact that C is normalised. Hence this case is impossible.

2. ui, vi ∈ X 1, Er(C) 6� root(X)
?

6= f and Er(C) � root(Y)
?

6= g, for all f, g ∈ Fc, where (X, p
?

⊢

ui), (Y, q
?

⊢ vi) ∈ D(C): In such a case, for all g ∈ Fc, Er(C) � root(Y)
?

6= g implies that

Cons(Y, g) is useless. But Axiom(Y, path) is not applicable and Er(C) � root(Y)
?

6= g implies
that Axiom(Y, path) is useless for all path. Since C satisfies InvDest(∞), Dest(ξ, ℓ → r, s) is
useless for any ξ, ℓ → r, s. But in such a case, the normalisation rule (Nnosol) is applicable
which is a contradiction with the fact that C is normalised. Hence this case is impossible.

3. ui ∈ X 1, root(vi) ∈ Fc and for all f ∈ Fc, Er(C) � root(X)
?

6= f, where (X, p
?

⊢ ui) ∈ D(C):

Since for all f ∈ Fc, Er(C) � root(X)
?

6= f, then similarly to the previous case, we prove that
this case is impossible.

Since all cases are impossible, we can deduce that T [
∨

i ui

?

6= vi] 6= ⊥. Hence let
∨

j ξj
?

6= ξj such

that T [
∨

i ui

?

6= vi] =
∨

i ξi
?

6= ξi. Once again thanks to Lemma C.33, we know that either for all i,

st(ξi, ξ
′
i) ∩ (F∗

d · AX) = ∅ or else for all i, ξi
?

6= ξ′i satisfies one of the following properties:

1. ξi ∈ (F∗
d · AX)

2. ξi, ξ
′
i ∈ X 2, for all f ∈ Fc, Er(C) � root(ξi)

?

6= f and Er(C) 6� root(ξ′i)
?

6= f

3. ξi ∈ X 2, root(ξ′i) ∈ Fc and for all f ∈ Fc, Er(C) � root(ξi)
?

6= f

We already prove that if for all f ∈ Fc, Er(C) � root(X) 6= f for some X ∈ vars2(D) then thanks to
Axiom(X, path) not being applicable and C satisfying InvDest(∞), the normalisation rule (Nnosol)
is applicable which is a contradiction with the fact that C is normalised. Hence, we deduce that

either (a) for all i, st(ξi, ξ′i)∩ (F∗
d · AX) = ∅ or else (b) for all i, st(ξi, ξ′i)∩ (F∗

d · AX)
?

6= ∅. In case

(b), we describe in Subsection 7.4 the entry
∨

i ui

?

6= vi should be removed, i.e. T [
∨

i ui

?

6= vi] = ⊥
which is a contradiction with or hypothesis. Hence, we deduce that only case (a) is possible.

To sum up, we proved that for all
∨

i ui

?

6= vi, for all E, Er(C) = E ∧
∨

i ui

?

6= vi implies that

there exists
∨

j ξj
?

6= ξj such that T [
∨

i ui

?

6= vi] =
∨

j ξj
?

6= ξj and for all j, st(ξj , ξ′j)∩(F
∗
d ·AX) = ∅.

But thanks to Lemma 8.17, we deduce that

(∨
j βjacc

1(C)
?

6= β′
jacc

1(C)

)
↓ =

∨
i ui

?

6= vi. Since

for all j, st(ξj , ξ′j) ∩ (F∗
d · AX) = ∅, we deduce that for all i, st(ui, vi) ∩N = ∅. Hence property 1

of solved constraint system is satisfied.

Furthermore, Lemma 8.17 also indicates that there exists
∨

i u
′
i

?

6= v′i such that T ′[
∨

i u
′
i

?

6= v′i] =
∨

j ξj
?

6= ξj and so

(∨
j βjacc

1(C′)
?

6= β′
jacc

1(C′)

)
↓ =

∨
i u

′
i

?

6= v′i.

Since C and C′ both satisfy InvVarConstraint(∞), we deduce that for all (X, i
?

⊢ u) ∈ D(C),
X ∈ S2(C) and u ∈ X 1. Moreover, the variables as right hand term of deducible constraints

are all distinct. Since C and C′ have the same shape, then (X, i
?

⊢ x) ∈ D(C) implies that there

exists x′ ∈∈ X 1 such that (X, i
?

⊢ x′) ∈ D(C′). Hence we can define ρ such that for all xρ = x′.
Therefore, we have acc1(C)ρ = acc1(C′) and for all j, st(ξj , ξ′j)∩ (F∗

d · AX) = ∅. Hence, we deduce

that
∨

i uiρ
?

6= viρ =
∨

i u
′
iρ

?

6= v′iρ. Thus, we can conclude that Eq(C)ρ restricted to inequation is
equal to Eq(C′) restricted to inequation, and so the result holds.

Lemma 8.10. Let (M,M ′) be a pair of matrix obtained at the end strategy. Let C be a constraint
system in M or M ′ different from ⊥. There exists (σ, θ) ∈ Sol(C).

Proof. Assume that C 6=⊥. Thanks to Lemma 8.8, we know that (M,M ′) is in solved form. Hence
we deduce that C satisfies InvVarConstraint(∞) and all right hand terms of deducible constraints

are distinct variable. Therefore, for each deducible constraint (X, i
?

⊢ x) ∈ D(C), we can define θ
on vars2(D) such that Xθ ∈ T (Fc, {ax 1}) for all X ∈ vars2(D).

We show that for all u, (ax 1, 1 ⊲ u) 6∈ NoUse(C). (M,M ′) is in solved form implies that C
is well-formed. Hence, if (ax 1, 1 ⊲ u) 6∈ NoUse(C) then by Definition 8.2, item 8, there exists
X ∈ vars2(C) such that paramC

max(Xmgu(Er(C))) < 1 which is impossible. Hence (ax 1, 1 ⊲ u) 6∈
NoUse(C) and so for all ξ ∈ T (Fc, {ax 1}), for all θ, ξ conforms to Φθ w.r.t. NoUseθ.

Since the set T (Fc, {ax 1}) is infinite, we have an infinite set of pair of substitutions (σ, θ) where

for all (X, i
?

⊢ x) ∈ D, Xθ(Φσ)↓ = xσ, param(Xθ) = {ax 1} ⊆ {ax 1, . . . , ax i} and Xθ conforms
to Φθ w.r.t. NoUseθ. We extend each of (σ, θ) by (σ′, θ′) such that θ′|vars2(D) = θ, σ′|vars1(D) =
σ, for all X ∈ vars2(C)\vars2(D), Xθ′ = Xmgu(Er)θ; and for all x ∈ vars1(C) r vars1(C),
xσ′ = xmgu(Eq)σ. Hence obtain an infinite set of pre-solution (σ, θ) of C such that σ � mgu(Eq)

and θ � mgu(Er). Moreover, we also know that for all (X, i
?

⊢ x) ∈ D(C), for all f ∈ Fc,

Er 6� root(X)
?

6= f. At last, we also know that Er 6� X
?

6= ax 1. Hence, we deduce that θ � Er.
It remains to prove that there exists a pre-solution in this infinite set that satisfies the inequa-

tions in Eq(C). Since each variable in the inequations are a variable of vars1(D) and the set of
possible value for each of these variable is infinite, then Thanks to [CD94], we deduce that there
exists at least one (σ0, θ0) of pre-solution such that σ0 � Eq(C) and so (σ0, θ0) ∈ Sol(C). Therefore,
thanks to Lemma 8.9, we deduce that (σ0, θ0) ∈ Sol(C) and so the result holds.

Definition C.2. Let C = (S1, S2,Φ, D,Eq,Er,ND) be a well formed solved constraint system.
Let σ be a substitution mapping vars1(C) to ground messages. We define a new semantics on
logic formula built upon elementary formulas using classical connectives. The semantics for the
elementary formulas are given below and is extended as expected to general formulas. We have:
for all i ∈ N, for all u, v ∈ T (Fc,N ∪ X 1),

— σ �≤i u
?
= v if σ � u

?
= v

— σ �≤i u
?

6= v if σ � u
?

6= v or there exists x ∈ vars1(u) ∪ vars1(v) such that indC(x) > i

Lemma C.52. Let C be a well formed solved constraint system on a leaf. Let n ∈ N. Let (σ, θ)
such that:

— σ �≤n Eq(C)

— for all (X, i
?

⊢ u) ∈ D(C), Xθ(Φ(C)σ)↓ = uσ and paramC
max(Xθ) ≤ i

— for all (X, i
?

⊢ u) ∈ D(C), C⌊Xθ⌋Φ(C) ∈ T (Fc ∪ (F∗
dAX)) and for (ξ, j ⊲ v) ∈ Φ(C), if

path(ξ) ∈ st(C⌊Xθ⌋Φ(C)) then j ≤ i.

— for all X ∈ D(C), Xθ conforms to Φ(C)θ w.r.t. NoUse(C)θ

There exists (σ′, θ′) ∈ Sol(C) such that σx|indC(x)≤n = σ′
x|indC(x)≤n

Proof. Since C is in solved formed, we know that it satisfies the invariants InvVarConstraint(∞).

Hence, we have that for all (X, i
?

⊢ u) ∈ D(C), u is a variable. Furthermore, all right hand variables

of the deducible constraints are distinct. Thus, for all (X, i
?

⊢ x) ∈ D(C), indC(x) = i.

Let σ0 = σx|indC(x)≤n. Let D0 = {(X, i
?

⊢ x) ∈ D(C) | i > n}, Φ0 = Init(Φ)σ0 and Eq0 =
Eq(C)σ0. D0, Φ0 and Eq0 represent a simplified version of C where we fixed the value of the
variable in dom(σ0).

Let (ax 1, 1 ⊲ u) ∈ Φ0. Thanks to the origination property of a constraint system, we know
that vars1(u) = ∅. Furthermore, since C is a well formed constraint system, we also have that
(ax 1, 1 ⊲ u) 6∈ NoUse(C). Hence for all ξ ∈ T (Fc∪{ax 1}), for all substitution λ, we have ξ(Φ0λ)↓ ∈

T (Fc,N). Thus for all (X, i
?

⊢ x) ∈ D0, x can be instantiate by any recipe ξ ∈ T (Fc∪{ax 1}). But
the set T (Fc∪{ax 1}) is an infinite set and for all x ∈ vars1(Eq0), x ∈ vars1(D0). Therefore, thanks
to [CD94], we deduce that there exists a substitution (σ1, θ1) such that dom(θ1) = vars2(D0),
dom(σ1) = vars1(D0) and:

— for all (X, i
?

⊢ x) ∈ D0, Xθ1 ∈ T (Fc ∪ {ax 1}) and xσ1 = Xθ1(Φ0σ1)↓

— σ1 satisfies the inequations of Eq0.

We define θ′ such that:

— for all X ∈ vars2(D(C))r vars2(D0), Xθ′ = Xθ

— for all X ∈ vars2(D0), Xθ′ = Xθ1

— for all X ∈ vars2(C)r vars2(D(C)), Xθ′ = Xmgu(Er(C))θ′.

Furthermore, we define σ′ such that:

— σ′|x|indC(x)≤n = σ0 = σx|indC(x)≤n

— σ′|x|indC(x)>n = σ1

— for all x ∈ vars1(C)r vars1(D(C)), xσ′ = xmgu(Eq(C))σ′.

We verify that (σ′, θ′) ∈ Sol(C): For all (X, i
?

⊢ x) ∈ D(C), if i ≤ n then Xθ′ = Xθ. But
paramC

max(Xθ) ≤ i and σ′|x|indC(x)≤n = σ0 = σx|indC(x)≤n. Thus we have that Xθ′(Φ(C)σ′)↓ =
Xθ(Φ(C)σ)↓ = xσ = xσ′.

Furthermore, since for all (ξ, j ⊲ v) ∈ Φ(C), for all Y ∈ vars2(ξ), paramC
max(Y) < j, thanks

to C being in solved form and so satisfying the invariant InvVarFrame(∞). But for all (X, i
?

⊢
x) ∈ D(C), for all (ξ, j ⊲ v) ∈ Φ(C), path(ξ) ∈ st(C⌊Xθ⌋Φ(C)) implies j ≤ i and so for all
Y ∈ vars2(C⌊Xθ⌋Φ(C)acc

2(()C)), paramC
max(Y) < paramC

max(X). Hence we deduce with a simple

induction on i that for all (X, i
?

⊢ x) ∈ D(C), if i ≤ n then Xθ conforms to Φ(C)θ w.r.t. NoUse(C)θ
implies that Xθ′ conforms to Φ(C)θ′ w.r.t. NoUse(C)θ′.

Moreover, for all (X, i
?

⊢ x) ∈ D(C), if i > n then Xθ′ ∈ T (Fc ∪ {ax 1}) and so Xθ′ trivially
conforms to Φ(C)θ′ w.r.t. NoUse(C)θ′.

We already know that σ1 satisfies the inequations of Eq0 where Eq0 = Eq(C)σ0. Hence by
definition of σ′, we have that σ′ � Eq(C).

At last, we know that for all X ∈ vars2(C)rvars2(D(C)), Xθ′ = Xmgu(Er(C))θ′. Furthermore,
since C is in solved form, we have that for all X ∈ vars2(D(C)), for all f ∈ Fc, for all ξ recipe of

Φ(C), Er(C) 6� X
?

6= ξ and Er(C) 6� root(X)
?

6= f. Hence, we conclude that θ′ � Er(C).
To sum up, we have proved that (σ′, θ′) ∈ Sol(C). But since C is a constraint system on a leaf,

then by Lemma 8.9, we know that Sol(C) = Sol(C). Hence we conclude that (σ′, θ′) ∈ Sol(C).

Lemma 8.11. Let (M,M ′) be a pair of matrix obtained at the end strategy. Let C, C′ be two
constraint system in the same line in (M,M ′) (C and C′ may be contained in the same matrix).
If C 6=⊥ and C′ 6=⊥ then C ≈s C

′.

Proof. We show one side of the equivalence, the other side being done symmetrically. Let (σ, θ) ∈
Sol(C). Thanks to Lemma 8.8, we know that (M,M ′) are in solved form. We will show that there
exists σ′ such that:

1. (σ′, θ) is a pre-solution of C′ with σ′ � mgu(Eq(C′)) and θ � Er(C′);

2. σ′ � Eq(C′) and for all ξ, ξ′ ∈ Πn, if C⌊ξ⌋Φ(C),C⌊ξ
′⌋Φ(C) ∈ T (Fc ∪ (F∗

d · AX)) then

— ξ(Φ(C)σ)↓ = ξ′(Φ(C)σ)↓ is equivalent to ξ(Φ(C′)σ′)↓ = ξ′(Φ′(C′)σ′)↓

— ξ(Φ(C)σ)↓ ∈ T (Fc,N) is equivalent to ξ(Φ(C′)σ′)↓ ∈ T (Fc,N)

3. Φ(C)σ ∼ Φ(C′)σ′ and (σ′, θ) ∈ Sol(C′)

Property 1: Since (M,M ′) are in solved form then C and C′ also have the same structure. Hence,
we deduce that Er(C) = Er(C′). But (σ, θ) ∈ Sol(C), thus θ � Er(C) and so θ � Er(C′). Moreover,
since C′ is normalised, then mgu(Eq(C′)) exists and vars1(Φ′) ∪ vars1(D′) = img(mgu(Eq′))).
Thus, we will first define σ′ on the variables contain in Φ′ and D′; and then for any variable
y ∈ vars1(C′) we will have yσ′ = y mgu(Eq′)σ′.

We define σ′ recursively on the index of minimal constraint of a variable x:

Base case indC′(x) = 0 : By definition of a constraint system, for all (X, k
?

⊢ u) ∈ D(C′), k > 0
which means that for all x ∈ vars1(D′), indC′(x) > 0. Thus, the result trivially holds.

Inductive step indC′(x) > 1 : Let (X, k
?

⊢ x) ∈ D(C′) such that k = indC′(x). Since C and C′ have

same structure, we deduce that there exists (X, k
?

⊢ y) ∈ D(C) and param(Xθ) ⊆ {ax 1, . . . , axk}.
C being in solved form indicates that C satisfies InvDest(∞). Hence thanks to Lemma C.37, we
have that C⌊Xθ⌋Φ(C) ∈ T (Fc∪(F∗

d ·AX)), which also means that C⌊Xθ⌋Φ(C′) ∈ T (Fc∪(F∗
d ·AX)).

(σ, θ) ∈ Sol(C) implies that θ conforms to Φ(C)θ w.r.t NoUse(C)θ. Once again, due to the same
structure between C and C′, we have {ξ, i | (ξ, i ⊲ u) ∈ NoUse(C)} = {ξ, i | (ξ, i ⊲ u) ∈ NoUse(C′)}.
Thus, θ conforms to Φ(C)θ w.r.t NoUse(C)θ implies that θ conforms to Φ(C′)θ w.r.t NoUse(C′)θ.

Let ζ ∈ st(()Xθ) such that C⌊ζ⌋Φ(C′) ∈ (F∗
d ·AX). By definition of a context we know that there

exists (ξ, p ⊲ v) ∈ Φ(C′) such that path(ξ) = path(ζ). Furthermore, since θ conforms to Φ(C′)θ
w.r.t NoUse(C′)θ, we have that ζ = ξθ. Since C′ is in solved formed, C satisfies InvVarFrame(∞)

and so for all Y ∈ vars1ξ, there exists (Y, q
?

⊢ y) ∈ D(C′) such that q < p. But we also know
that the right hand term of the deducible constraints are distinct variables. Hence, we have that
indC′(y) = q < p. Moreover (σ, θ) ∈ Sol(C) implies, thanks to (M,M ′) satisfying InvGeneral, that
param(ξθ) ⊆ {ax 1, . . . , axp} and so p ≤ k. Thus, we can deduce that indC′(y) < k. By applying
our inductive hypothesis on y, we know that (Y θ)(Φ(C′)σ′)↓ = yσ′. By Property 5 of a well formed
constraint system, we now can deduce (ξθ)(Φ(C′)σ′)↓ = ζ(Φ(C′)σ′)↓ = vσ′ ∈ T (Fc,N).

Furthermore, we proved that C⌊Xθ⌋Φ(C′) ∈ T (Fc∪(F∗
d ·AX)) which allows us to conclude that

(Xθ)(Φ(C′)σ′)↓ ∈ T (Fc,N) and so we define xσ′ such that : xσ′ = (Xθ)(Φ(C′)σ′)↓ ∈ T (Fc,N).

Property 2: We first prove that for all n ∈ N, σ′ �≤n Eq(C′) implies that for all ξ, ξ′ ∈ Πn,
if C⌊ξ⌋Φ(C′),C⌊ξ

′⌋Φ(C′) ∈ T (Fc ∪ (F∗
d · AX)), ξ and ξ′ conforms to Φ(C′)θ, and for all x ∈

vars1(C⌊ξ⌋Φ(C′)acc
1(C′)) ∪ vars1(C⌊ξ′⌋Φ(C′)acc

1(C′)), indC′(x) ≤ n, then

— ξ(Φ(C′)σ′)↓ ∈ T (Fc,N) implies ξ(Φ(C)σ)↓ ∈ T (Fc,N)

— ξ(Φ(C′)σ′)↓ = ξ′(Φ(C′)σ′)↓ ∈ T (Fc,N) implies ξ(Φ(C)σ)↓ = ξ′(Φ(C)σ)↓ ∈ T (Fc,N)

We prove this result by induction on (|ξ(Φ(C′)σ′)↓|, parammax(ξ) + parammax(ξ
′)) :

Base case (|ξ(Φ(C′)σ′)↓|, parammax(ξ) + parammax(ξ
′)) = (0, 0): Such a case is impossible thus the

result holds.

Inductive step (|ξ(Φ(C′)σ′)↓|, parammax(ξ) + parammax(ξ
′)) > (0, 0) : We prove the result by case

analysis on the two recipes ξ and ξ′ :

— root(ξ) = root(ξ′) ∈ Fc : In such a case, assume that ξ = f(ξ1, . . . , ξn) and ξ′ = f(ξ′1, . . . , ξ
′
n).

Since f ∈ Fc, ξ(Φ(C′)σ′)↓ = ξ′(Φ(C′)σ′)↓ implies ξk(Φ(C′)σ′)↓ = ξ′k(Φ(C
′)σ′)↓, for k = 1 . . . n

and |ξk(Φ(C′)σ′)↓| < |ξ(Φ(C′)σ′)↓|, for k = 1 . . . n. At last, since vars1(C⌊ξk⌋Φ(C′)acc
1(C′)) ⊆

vars1(C⌊ξ⌋Φ(C′)acc
1(C′)), for k = 1 . . . n, then we can apply our inductive hypothesis on ξk

and ξ′k which means that for all k ∈ {1, . . . , n},

ξk(Φ(C)σ)↓ ∈ T (Fc,N) and ξk(Φ(C)σ)↓ = ξ′k(Φ(C)σ)↓

Thus, we deduce that ξ(Φ(C)σ)↓ ∈ T (Fc,N) and ξ(Φ(C)σ)↓ = ξ′(Φ(C)σ)↓.

— C⌊ξ⌋Φ(C′) ∈ F∗
d · AX and there exists (ζ, p ⊲ u′

1) ∈ NoUse(C′) with ζθ = ξ : First of all,
C⌊ξ⌋Φ(C′) ∈ F∗

d · AX and ξ conforms to Φ(C′)θ implies that there exists (ζ, q ⊲ u′
1) ∈ Φ(C′)

such that ζθ = ξ.

C and C′ being on the same line of a pair of matrices of constraint systems on the leaves, we
deduce that Er(C) = Er(C′) and there exists u′

1 ∈ T (Fc,N ∪ X 1) such that (ζ, p ⊲ u′
1) ∈

Φ(C) ∩ NoUse(C). Let’s denote Θ = mgu(Er(C)), we have Θ = Θ′.

Since C is well-formed then by the property 5 of a well-formed constraint system, we de-
duce that (ζθ)Φ(C)σ↓ = u1σ ∈ T (Fc,N) and so ξ(Φ(C)σ↓ ∈ T (Fc,N). Secondly, by the
property 8, we also know that there exists X ∈ vars2(C′) = vars2(C) such that

— C⌊XΘ′⌋Φ(C′) ∈ T (Fc,F
∗
d · AX ∪ X 2)

— C⌊XΘ′⌋Φ(C′)acc
1(C′) = u′

1 and paramC′

max(XΘ) < p

where Θ′ = mgu(Er(C′).

Furthermore, by hypothesis, we assumed that for all (Z, q
?

⊢ z) ∈ D(C′), C⌊Zθ⌋Φ(C′) ∈
T (Fc∪(F

∗
d ·AX)), thus we have that C⌊Xθ⌋Φ(C′) ∈ T (Fc∪(F

∗
d ·AX)). At last, by Property 5

of a well formed constraint system, we can also conclude that (Xθ)Φ(C′)σ′↓ = u′
1σ

′↓.

Furthermore, the equation C⌊XΘ′⌋Φ(C′)acc
1(C′) = u′

1, due to the application of the rule
Eq-left-right, implies that C⌊XΘ⌋Φ(C)acc

1(C) = u1. Hence, with the same reasoning,
we deduce that (Xθ)Φ(C)σ↓ = u1σ↓. But parammax(Xθ) < p therefore we can apply our
inductive hypothesis on (Xθ, ξ′) which means that ξ′Φ(C)σ↓ = (Xθ)Φ(C)σ↓ = u1σ↓ =
ξ(Φ(C)σ)↓.

— C⌊ξ⌋Φ(C′),C⌊ξ
′⌋Φ(C′) ∈ F∗

d ·AX : In such a case, we know that there exists (ζ, p ⊲ u′
1), (ζ

′, p′ ⊲
u′
2) ∈ Φ(C′) such that ζθ = ξ and ζ ′θ = ξ′. Furthermore, since C and C′ have the same

structure, there exists u1, u2 ∈ T (Fc,N ∪ X 1) such that (ζ, p ⊲ u1), (ζ
′, p′ ⊲ u2) ∈ Φ(C).

Since C, C′ are well-formed then by the property 5 of a well-formed constraint system, we
deduce that ξ(Φ(C)σ)↓ = u1σ, ξ′(Φ(C)σ)↓ = u2σ, ξ(Φ(C′)σ′)↓ = u′

1σ
′ and ξ′(Φ(C′)σ′)↓ =

u′
2σ

′.

But (M,M ′) is a leaf, then the rule Eq-left-left(ζ, ζ ′) is already applied on (M,M ′).
Thus,

— either we have Eq(C) � u1
?
= u2 and Eq(C′) � u′

1
?
= u′

2: By the normalisation of a
constraint system, we deduce that u1 = u2 and u′

1 = u′
2. Thus, we trivially have that

ξ(Φ(C)σ)↓ = ξ′(Φ(C)σ)↓.

— or Eq(C) � u1

?

6= u2 and Eq(C′) � u′
1

?

6= u′
2: ξ(Φ(C′)σ′)↓ = ξ′(Φ(C′)σ′)↓ implies that

σ′ 6� u′
1

?

6= u′
2. But we know that for all x ∈ vars1(u′

1) ∪ vars1(u′
2), indC′(x) ≤ n, thus

we have σ′ 6� u1

?

6= u2 implies that σ′ 6�≤n Eq(C′), which is in contradiction with our
hypothesis.

— C⌊ξ⌋Φ(C′) ∈ F∗
d · AX and root(ξ′) ∈ Fc : By Lemma C.52, we know that there exists

(σ′′, θ′) ∈ Sol(C′) such that σ′
x|ind

C′ (x)≤n = σ′′
x|ind

C′ (x)≤n.

Since C⌊ξ⌋Φ(C′) ∈ F∗
d · AX , then there exists (ζ, p ⊲ u) ∈ Φ(C) and (ζ, p ⊲ u′) ∈ Φ(C′) such

that ζθ = ξ. Furthermore, since C, C′ are well-formed then by the property 5 of a well-
formed constraint system, we deduce that ξ(Φ(C)σ)↓ = uσ and ξ(Φ(C′)σ′)↓ = u′σ′. Since
(σ′′, θ′) ∈ Sol(C′), we also have that ζθ′(Φ(C′)σ′′)↓ = u′σ′′.
By hypothesis, we know that for all x ∈ vars1(C⌊ξ⌋Φ(C′)acc

1(C′)), indC′(x) ≤ n. Further-
more since σ′

x|ind
C′ (x)≤n = σ′′

x|ind
C′ (x)≤n, we can deduce that u′σ′ = u′σ′′. Thus we have

ζθ′(Φ(C′)σ′′)↓ = ξ(Φ(C′)σ′)↓.
Similarly, we have that for all x ∈ vars1(C⌊ξ′⌋Φ(C′)acc

1(C′)), indC′(x) ≤ n. Since C⌊ξ′⌋Φ(C′) ∈
T (Fc ∪ (F∗

d · AX)), we can deduce that C⌊ξ′⌋Φ(C′)acc
1(C′)σ′ = C⌊ξ′⌋Φ(C′)acc

1(C′)σ′′. Hence,
(σ′′, θ′) ∈ Sol(C′) implies that ξ′(Φ(C′)σ′)↓ = ζ ′(Φ(C′)σ′′)↓ where ζ ′ = C⌊ξ′⌋Φ(C′)acc

2(C′)θ′.
Thus, ξ(Φ(C′)σ′)↓ = ξ′(Φ(C′)σ′)↓ implies that ζθ′(Φ(C′)σ′′)↓ = ζ ′(Φ(C′)σ′′)↓. But (σ′′, θ′) ∈
Sol(C′) implies σ′′ � ND(C′). Furthermore, since C′ satisfies InvDedsub∞ and since root(ξ′) ∈
Fc implies root(ζ ′) ∈ Fc, we can deduce that there exists X1, . . . , Xn ∈ vars2(C′) such
that C⌊f(X1, . . . , Xn)Θ

′⌋Φ(C′)acc
1(C′) = u′, where Θ′ = mgu(Er(C′)). Furthermore, since

X1, . . . , Xn was obtained by the application of the rule Ded-st on the frame element (ζ, p ⊲
u′), we also have that C⌊f(X1, . . . , Xn)Θ⌋Φ(C′)acc

1(C′) = u, where Θ = mgu(Er(C)) = Θ′.
But thanks to C being well formed, we know that for all i ∈ {1, . . . , n}, C⌊XiΘ

′⌋Φ(C′) ∈ T (Fc∪
(F∗

d · AX)). Hence we can deduce from Property 5 of a well-formed constraint system that
f(X1, . . . , Xn)θ(Φ(C

′)σ′)↓ = u′σ′. Similarly, we also have that f(X1, . . . , Xn)θ(Φ(C)σ)↓ = uσ.
At last, root(ξ′) ∈ Fc implies that there exists ξ1, . . . , ξn such that ξ′ = f(ξ1, . . . , ξn). Hence,
by applying our inductive hypothesis on (Xiθ, ξi) since |Xiθ(Φ(C

′)σ′↓| < |ξΦ(C′)σ′↓|, for
i = 1 . . . n. Hence we deduce that f(X1, . . . , Xn)θ(Φ(C)σ)↓ = ξ′(Φ(C)σ)↓. Since we al-
ready proved that f(X1, . . . , Xn)θ(Φ(C)σ)↓ = uσ = ξ(Φ(C)σ)↓, we conclude that ξ(Φσ)↓ =
ξ′(Φσ)↓.

We continue the proof of Property 2 by proving that for all n ∈ N, σ′ �≤n Eq(C′). We prove
this result by induction on n:

Base case n = 0: In such a case, we know that for all u
?

6= v in Eq(C′), for all x ∈ vars1(u)∪vars1(v),
indC′(x) > 0. Moreover, we know that u, v ∈ T (Fc,X 1) thanks to C′ being in solved formed. Thus
we can conclude that σ′ �≤0 Eq(C′).

Inductive step n > 0 : Let u
?

6= v in Eq(C′) such that for all x ∈ vars1(u)∪ vars1(v), indC′(x) ≤ n.
But since C′ is in solved form, we know that there is no name inside u and v. Thus, we can define

two recipe ξ, ξ′ such that ξ = uλ, ξ′ = vλ where λ is the substitution {x → Xθ | X, p
?

⊢ x ∈ D(C′)}

and ξΦ(C′)σ′↓ = uσ′, ξ′Φ(C′)σ′↓ = vσ′. We know that for all (X, p
?

⊢ x) ∈ D(C′), C⌊Xθ⌋Φ(C′) ∈
T (Fc ∪ (F∗

d · AX)) therefore we can deduce that C⌊ξ⌋Φ(C′),C⌊ξ
′⌋Φ(C′) ∈ T (Fc ∪ (F∗

d · AX)).
Furthermore, for all x ∈ vars1(u, v), for all w ∈ st(C⌊xλ⌋Φ(C′)) ∩ (F∗

d · AX)), if (ζ, q ⊲ t) ∈ Φ(C′)
is the frame element such that w = path(ζ), then q ≤ indC′(x) ≤ n and we know that by the
property of origination that for all y ∈ vars1(t), indC′(y) < q. Thus we deduce that for all
y ∈ vars1(C⌊ξ⌋Φ(C′)acc

1(C′)) ∪ vars1(C⌊ξ′⌋Φ(C′)acc
1(C′)), indC′(y) < n.

Assume now that uσ′ = vσ′. By our inductive hypothesis, we know that σ′ �≤n−1 Eq′ and
from the first result we showed in Property 2, we can deduce that ξΦ(C′)σ′↓ = ξ′Φ(C′)σ′↓ implies
that ξΦ(C)σ↓ = ξ′Φ(C)σ↓. But thanks to (M,M ′) being in solved form, we know that that there

exists a renaming ρ such that uρ
?

6= vρ in Eq(C), ξΦ(C)σ↓ = uρσ and ξ′Φ(C)σ↓ = vρσ. Hence, it
implies that σ 6� Eq(C) which is incoherent with (σ, θ) ∈ Sol(C). Our assumption is contradicted
and so uσ′ 6= vσ′. Hence the result holds.

By combining the first and second result of Property 2, we prove that σ′ � Eq(C′) and for all
ξ, ξ′ ∈ Πn, if C⌊ξ⌋Φ(C′),C⌊ξ

′⌋Φ(C′) ∈ T (Fc ∪ (F∗
d · AX)) and ξ, ξ′ conforms to Φ(C′)θ then

— ξ(Φ(C′)σ′)↓ = ξ′(Φ(C′)σ)↓ implies ξ(Φ(C)σ)↓ = ξ′(Φ(C)σ)↓

— ξ(Φ(C′)σ′)↓ ∈ T (Fc,N) implies ξ(Φ(C)σ)↓ ∈ T (Fc,N)

By hypothesis, we know that (σ, θ) ∈ Sol(C) and so σ � Eq(C). Thus, we can use the same
reasoning as for the first result to prove that: for all ξ, ξ′ ∈ Πn, if C⌊ξ⌋Φ(C),C⌊ξ

′⌋Φ(C) ∈ T (Fc ∪
(F∗

d · AX)) and ξ, ξ′ conforms to Φ(C)θ then

— ξ(Φ(C)σ)↓ = ξ′(Φ(C)σ)↓ implies ξ(Φ(C′)σ′)↓ = ξ′(Φ(C′)σ′)↓

— ξ(Φ(C)σ)↓ ∈ T (Fc,N) implies ξ(Φ(C′)σ′)↓ ∈ T (Fc,N)

Thus, we conclude the proof of Property 2.

Property 3: We have to show that Φ(C)σ ∼ Φ(C′)σ′ and (σ′, θ) ∈ Sol(C′). From Property 2,
we proved the static equivalence for any recipe ξ, ξ′ ∈ Πn such that in C⌊ξ⌋Φ(C),C⌊ξ

′⌋Φ(C) ∈
T (Fc ∪ (F∗

d · AX)) and ξ, ξ′ conforms to the frame Φ(C)θ (and so Φ(C′)θ).
Thanks to Property 2, we deduce that σ′ � Eq(C′). Hence we have that (σ′, θ) ∈ Sol(C′). But,

thanks to Lemma 8.9, we know that Sol(C′) = Sol(C′). Hence, we have that (σ′, θ) ∈ Sol(C′).
Thus, by Lemma C.37, we can deduce that for all ξ ∈ Πn, ξ(Φ(C′)σ′)↓ ∈ T (Fc,N) and ξ conforms
to Φ(C′)θ w.r.t. NoUse(C′)θ implies that C⌊ξ⌋Φ(C′) ∈ T (Fc ∪ (F∗

d · AX)).
Let ξ, ξ′ ∈ Πn. Let M(ξ, ξ′) be the multiset of recipe ζ such that ζ ∈ st(ξ) ∪ st(ξ′) and ζ

doesn’t conforms to the frame Φ(C′)θ w.r.t. NoUse(C′)θ. We prove our result by induction on the
natural order on multiset.

Base case M = ∅: In such a case, we can deduce that ξ and ξ′ conforms to the frame Φ(C′)θ
w.r.t. NoUse(C′)θ. Thus, thanks to Lemma C.37, C⌊ξ⌋Φ(C′) ∈ T (Fc ∪ (F∗

d · AX)) and C⌊ξ′⌋Φ(C′) ∈
T (Fc ∪ (F∗

d · AX)). Thus we deduce by applying Property 2.

Inductive case M 6= ∅: Let ζ ∈ st(ξ) ∪ st(ξ′) the smallest recipe such that ζ doesn’t conform
to the frame Φ(C)θ. In such a case, we can deduce that C⌊ζ⌋Φ(C) ∈ (F∗

d · AX) (if not, we would
have ζ = f(ζ1, . . . , ζn) and there exists i ∈ {1 . . . n} such that ζi doesn’t conforms to the frame
Φ(C)θ which contradict ζ being the smallest). Since C⌊ζ⌋Φ(C) ∈ (F∗

d · AX), then there exists
(β, i ⊲ u) ∈ Φ(C) and (β, i ⊲ u′) ∈ Φ(C′) such that path(β) = path(ζ). We do a case analysis on
(β, i ⊲ u):

Case (β, i ⊲ u) 6∈ NoUse(C): In such a case, since ζ does not conforms with Φ(C)θ w.r.t.
NoUseθ, we deduce that ζ 6= βθ. Hence ζ = f(ζ1, . . . , ζn) for some f ∈ Fd. Moreover, by min-
imality of ζ, for all i ∈ {1, . . . , n}, we know that ζi conforms to Φ(C)θ w.r.t. NoUseθ. Fur-
thermore, path(β) = path(ζ) implies that β = f(β1, . . . , βn) and path(β1) = path(ζ1). Thus,
ζ1 conforms to Φ(C)θ implies that ζ1 = β1θ. Furthermore, we know that ζΦ(C)σ↓ ∈ T (Fc,N)
and (βθ)Φ(C)σ↓ ∈ T (Fc,N), then by Lemma 6.5, we deduce that ζkΦ(C)σ↓ ∈ T (Fc,N) and
(βkθ)Φ(C)σ↓ ∈ T (Fc,N), for k = 1 . . . n. At last, from the rewriting rule we consider and
from ζ1 = β1θ, we can deduce that (βkθ)Φ(C)σ↓ = ζkΦ(C)σ↓. But all of βkθ and ζk conform
to Φ(C)θ, which means by Property 2 that (βkθ)Φ(C

′)σ′↓ = ζkΦ(C
′)σ′↓, for k = 1 . . . n and so

ζΦ(C′)σ′↓ = (βθ)Φ(C′)σ′↓.
At last, since ζ is a subterm of ξ or ξ′ (w.l.o.g. subterm of ξ), there exists a position p such

that ζ = ξ|p. But M(ξ[βθ]p, ξ
′) is strictly smaller than M(ξ, ξ′) since ζ doesn’t conforms to Φ(C)θ

and βθ does. Thus we can apply our inductive hypothesis on (ξ[βθ]p, ξ
′) and so:

— ξ[βθ]pΦ(C)σ↓ ∈ T (Fc,N) is equivalent to ξ[βθ]pΦ(C′)σ′↓ ∈ T (Fc,N)

— if ξ[βθ]pΦ(C)σ↓ ∈ T (Fc,N) then ξ[βθ]pΦ(C)σ↓ = ξ′Φ(C)σ↓ is equivalent to ξ[βθ]pΦ(C′)σ′↓ =
ξ′Φ(C′)σ′↓.

But ζΦ(C)σ↓ = (βθ)Φ(C)σ↓ and ζΦ(C′)σ′↓ = (βθ)Φ(C′)σ′↓. Hence we deduce that:

— ξΦ(C)σ↓ ∈ T (Fc,N) is equivalent to ξΦ(C′)σ↓ ∈ T (Fc,N)

— if ξΦ(C)↓ ∈ T (Fc,N) then ξΦ(C)σ↓ = ξ′Φ(C)σ↓ is equivalent to ξΦ(C′)σ′↓ = ξ′Φ(C′)σ′↓.

Hence the result holds.

Case (β, i ⊲ u) ∈ NoUse(C): Thanks to C being well-formed, we know that there exists
X ∈ vars2(C) such that Xθ ∈ Πn, Xθ conforms to Φ(C)θ w.r.t. NoUse(C)θ, and Xθ(Φ(C)σ)↓ =
βθ(Φ(C)σ)↓. Moreover, similarly to the previous case, we can show that ζΦ(C)σ↓ = βθΦ(C)σ↓
and ζΦ(C′)σ′↓ = βθΦ(C′)σ′↓. Hence we would want to apply our inductive hypothesis on ξ[Xθ]p
and ξ′ where p is the position of ζ in ξ. However, ξ[Xθ]p is not necessary a recipe in Πn. Thus
we have to transform first this recipe so that we can apply our inductive hypothesis.

Subproperty: We show that for all recipe γ ∈ Πn conforms to Φθ w.r.t. NoUseθ, for all position p of
ξ, if γ ∈ Πn, γΦ(C)σ↓ = ξ|pΦ(C)σ↓ and γΦ(C′)σ′↓ = ξ|pΦ(C

′)σ′↓ then that there exists a subterm
γ′ of γ and a position p′ prefix of p such that ξ[γ]p(Φ(C)σ)↓ = ξ[γ′]p′Φ(C)σ↓, ξ[γ]p(Φ(C′)σ′)↓ =
ξ[γ′]p′Φ(C′)σ′↓ and ξ[ζ ′]p′ ∈ Πn. We prove this result by induction on the length |p| of p.
Base case |p| = 0. In such a case we have that p = ǫ. In such a case since γ ∈ Πn, we deduce that
ξ[γ]p ∈ Πn. Hence the result holds.

Inductive step |p| > 1: In such a case, we have that p = p1 · r for some r ∈ N and some p1 such
that |p1| < |p|. Assume that ξ|p1

= f(ξ1, . . . , ξn). We have to distinguish two cases:

1. r = 1, g ∈ Fd and root(γ) ∈ Fc: Since γΦ(C)σ↓ = ξ|pΦ(C)σ↓ and ξΦ(C)σ↓ ∈ T (Fc,N) then
by Lemma 6.5, we deduce that g is reduced. We do a case analysis on f:

— f = sdec with ξ|p1
[γ] = sdec(senc(γ1, γ2), ξ2) and ξ2Φ(C)σ↓ = γ2Φ(C)σ↓. But γ2 ∈ st(γ)

and γ2 conforms to Φ(C)θ w.r.t. NoUse(C)θ. Moreover, ξ2 ∈ st(ξ) hence M(ξ, ξ′) >
M(γ2, ξ2). Hence by our main inductive hypothesis, we deduce that γ2Φ(C′)σ′↓ =
ξ2Φ(C

′)σ′↓ and so ξ|p1
[γ]Φ(C′)σ′↓ = γ1Φ(C

′)σ′↓. Thus, we apply our inductive hypoth-
esis on γ′ = γ1 and p1. Hence the result holds

— f ∈ Fd r {sdec}: The proof is similar to the case f = sdec.

2. Otherwise: By definition of Πn, we have that ξ[Xθ]p ∈ Πn, and thus the result holds with
ζ ′ = ζ and p′ = p.

Main proof: We already know that Xθ(Φ(C)σ)↓ = βθ(Φ(C)σ)↓. Since Xθ and βθ conforms to Φθ
w.r.t. NoUseθ, we deduce that Xθ(Φ(C′)σ′)↓ = βθ(Φ(C′)σ′)↓. Furthermore, we proved that
ζΦ(C)σ↓ = βθΦ(C)σ↓ and ζΦ(C′)σ′↓ = βθΦ(C′)σ′↓. Hence we deduce that Xθ(Φ(C)σ)↓ =
ζΦ(C)σ↓ and Xθ(Φ(C′)σ′)↓ = ζΦ(C′)σ′↓. Thanks to Subproperty, we deduce that there ex-
ists p′ prefix of p and a subterm γ of Xθ such that ξ(Φ(C)σ)↓ = ξ[γ]p′Φ(C)σ↓, ξ(Φ(C′)σ′)↓ =
ξ[γ]p′Φ(C′)σ′↓ and ξ[γ]p′ ∈ Πn. But γ is a subterm of Xθ hence is conforms to Φ(C)θ w.r.t.
NoUse(C)θ. Hence, since ζ do not conforms to Φ(C)θ w.r.t. NoUse(C)θ, then M(ξ[γ]p′ , ξ′) <
M(ξ, ξ′). Hence we can apply our inductive hypothesis on (ξ[γ]p′ , ξ′).

ξΦ(C)σ↓ ∈ T (Fc,N) implies ξ[γ]p′Φ(C)σ↓ ∈ T (Fc,N) and so ξ[γ]p′Φ(C′)σ′↓ ∈ T (Fc,N)
which allows us to deduce that ξΦ(C′)σ′↓ ∈ T (Fc,N). Similarly, if ξΦ(C)σ↓ ∈ T (Fc,N) and
ξΦ(C)σ↓ = ξ′Φ(C)σ↓ then ξ[γ]p′Φ(C)σ↓ = ξ′Φ(C)σ↓. Thus, thanks to our inductive hypothesis,
ξ[γ]p′Φ(C′)σ′↓ = ξ′Φ(C′)σ′↓ and so ξΦ(C′)σ′↓ = ξ′Φ(C′)σ′↓. The other side of the equivalence can
be done symmetrically. Hence the result holds.

C.7 Proofs of termination

C.7.1 Proofs of termination of each step of Phase 1 of the strategy

In the following section, we will denote πi(·) the function that project the ith of a tuple.

C.7.1.1 Termination of Step a of Phase 1

Lemma 8.12. Let (M0,M
′
0) be a pair of matrices obtained during Step a of Phase 1 of the strategy.

Let R(p̃) one of the possible instances of Dest and Eq-left-right applicable on (M0,M
′
0). If we

denote (M1,M
′
1) the pair of matrices of constraint systems obtained by applying R(p̃) on (M0,M

′
0),

then µm
1.a(M1,M

′
1) < µm

1.a(M0,M
′
0).

Proof. Let C be a constraint system in M0 or M ′
1. Let C1 and C2 be the two constraint systems

obtained by application of an instance of Dest or Eq-left-right. We show that:

µ1.a(C1) < µ1.a(C) and µ1.a(C2) < µ1.a(C)

We do a case analysis on the rule applied:

Case Eq-left-right(X, ξ): The definition of Eq-left-right implies that there exists (X, i ⊲
u) ∈ D(C) and (ξ, s ⊲ v) ∈ Φ(C) with i < s. Furthermore, we have that D(C1) = D(C)σ and
Φ(C1) = Φ(C1)σ where σ = mgu(u, v). But thanks to the property of origination of a constraint
system, we know that vars1(v) ⊆ vars1(D(C)).

Assume first that σ is different from the identity. In such a case, since C1 is normalised, we
have that dom(σ)∩ vars1(D(C1)) = ∅ and so |vars1(D(C1))| < |vars1(D(C))|. Hence we have that
µ1.a(C1) < µ1.a(C).

Assume now that σ is the identity. In such a case, we have that π1(µ1.a(C)) = π1(µ1.a(C1)) and
π2(µ1.a(C)) = π2(µ1.a(C1))). Moreover, the definition of the rule Eq-left-right indicated that
(ξ, s ⊲ v) ∈ NoUse(C1) while (ξ, s ⊲ v) 6∈ NoUse(C). Hence we have that |Φ(C1)| − |NoUse(C1)| <
|Φ(C)| − |NoUse(C)| and so µ1.a(C1) < µ1.a(C).

For the constraint system C2, since no substitution is applied on C, then π1(µ1.a(C)) =
π1(µ1.a(C2)) and π2(µ1.a(C)) = π2(µ1.a(C2)). Furthermore, we have that NoUse(C) = NoUse(C2)

hence π3(µ1.a(C)) = π3(µ1.a(C2)). On the other hand, we have Eq(C2) = Eq(C) ∧ u
?

6= v. Hence
we deduce that π4(µ1.a(C2) < π4(µ1.a(C)) and so µ1.a(C2) < µ1.a(C).

Case Dest(ξ, ℓ → r, s): By definition there exists i, u such that (ξ, i ⊲ u) ∈ Φ(C). First of all,
we deduce u 6∈ X 1. Indeed, thanks to Lemma C.31, we know that (M0,M

′
0) satisfies Property

PP1Sa(s). Hence if u ∈ X 1, then either (a) (ξ, i ⊲ u) ∈ NoUse(C′) if i < s, or else (b) there exists

(X, j
?

⊢ u) ∈ D(C). Case (a) is impossible since the rule Dest(ξ, ℓ → r, s) would not be applicable,
and case (b) is also impossible since it would imply that the rule Eq-left-right(X, ξ) is applicable
which contradict the strategy that imposes that the rule Eq-left-right are prioritised over the
rule Dest.

According to Figure 7.1, Φ(C)σ ∪ {(ξ′, s ⊲ wσ)} = Φ(C1) and D(C)σ ∪ {X2, s
?

⊢ u2; . . . ;Xn, d
?

⊢
un} = D(C1) where f(u1, . . . , un) → w is a fresh renaming of the rewrite rule ℓ → r and σ =

mgu(u1
?
= u). But according to the definition of our rewrite rules, u 6∈ X 1 implies that either

σ|vars1(u) is the identity or σ|vars1(u) = {x 7→ pk(z)} where x ∈ vars1(u) and z ∈ vars1(u1).
Therefore, along with the fact that vars1(u2, . . . , un) ⊆ vars1(u1), we deduce that |vars1(D(C1))| =
|vars1(D(C)|.

Furthermore, w is a strict subterm of u1 hence wσ is a strict subterm of uσ. For simplicity,
let’s denote F ′ = {aenc, senc, 〈〉, sign}. For all (ζ, p ⊲ v) ∈ Φ(C), since σ|vars1(D) is either identity
or σ|vars1(D) = {x → pk(y)}, then have that |{t ∈ st(vσ) | root(t) ∈ F ′}| = |{t ∈ st(v) | root(t) ∈
F ′}|. Furthermore, wσ being a strict subterm of uσ implies that |{t ∈ st(wσ) | root(t) ∈ F ′}|
denoted n1 is strictly inferior to |{t ∈ st(uσ) | root(t) ∈ F ′}|, denoted n2. At last, Dest(ξ, ℓ →
r, s) is useless on C1 hence there exists a multiset S such that π2(µ1.a(C))) = S ∪ {{n2}} and
π2(µ1.a(C1)) = S ∪ {{n1, n1, n1, n1, n1}} (there are five rewriting rules available). Thus, n1 < n2

implies that π2(µ1.a(C1)) < π2(µ1.a(C)) and so µ1.a(C1) < µ1.a(C).
For the case of the constraint system C2, since Dest(ξ, ℓ → r, s) is useless on C2 and since

only non-deducible constraint are added, we trivially have that |vars1(D(C2))| = vars1(D(C))|
and π2(µ1.a(C2)) < π2(µ1.a(C)). Hence we have µ1.a(C2) < µ1.a(C).

We finish the proof by showing that µm
1.a(M1,M

′
1) < µm

1.a(M0,M
′
0). Each application of Dest

or Eq-left-right are internal rule. Assume that M0 = [R1, . . . Rn] and M ′
0 = [R′

1, . . . , R
′
n]

where Ri, R′
i are row matrices. Assume w.l.o.g. that the rule is applied on the first line. By

definition of the application of an internal rule, we have M1 = [W1,W2, R2, . . . , Rn] and M ′
1 =

[W ′
1,W

′
2, R

′
2, . . . , R

′
n] where W1,W2 (resp. W ′

1,W
′
2) are the two row matrices obtained from R1

(resp. R′
1).

Let C be constraint system in R1 (resp. R′
1). Let C1 and C2 be the two sons of C by application

of the rule. We know that C1 ∈ W1 (resp. C1 ∈ W ′
1) and C2 ∈ W2 (resp. C2 ∈ W ′

2). But
since we proved that µ1.a(C1) < µ1.a(C) and µ1.a(C2) < µ1.a(C), we deduce that µm

1.a(M1,M
′
1) <

µm
1.a(M0,M

′
0).

C.7.1.2 Termination of Step b of Phase 1

Lemma 8.13. Let C be a well-formed constraint system satisfying the invariant InvVarFrame(s).
Let R(p̃) be any instance of any rules except Dest and Eq-left-right with support inferior to
s. Assume that R(p̃) is strongly applicable on C. Denote C1 and C2 the two constraint systems
obtained by application of R(p̃) on C. The following property holds :

µ1.b(C1) < µ1.b(C) ∧ µ1.b(C2) < µ1.b(C)

Proof. We prove the this lemma by case analysis on the rule R(p̃). We will assume that C1 (resp.
C2) always corresponds to the son where the guess is positive (resp. negative).

Rule Cons(X, f): We assumed that the rule is strongly applicable on C, hence there exists i, t

such that (X, i
?

⊢ t) ∈ D(C) and t 6∈ X 1 or t ∈ X 1 and there exists g ∈ Fc such that root(X)
?

6= g

is in Er(C).
We first focus on C1. We know that C1 is normalised. Hence, the rule Cons adds in D(C1) the

deducible constraints (Xk, i
?

⊢ xkσ) where Xk, xk are fresh, for k = 1 . . . n, and σ = mgu(t, f(x1, . . . ,
xn)).

But since Xk are fresh and Er(C1) = Er(C) ∧ X
?
= f(X1, . . . , Xn), we deduce that (Xk, g) 6∈

π1(µ1.b(C1)), for all g, k = 1 . . . n. Furthermore, since for all (Y, j
?

⊢ v) ∈ D(C) other than (X, i
?

⊢ t),

(Y, j
?

⊢ vσ) ∈ D(C1), then (Y, g) ∈ π1(µ1.b(C1)) implies (Y, g) ∈ π1(µ1.b(C1)). Hence we deduce
that π1(µ1.b(C1)) ≤ π1(µ1.b(C)).

If t ∈ X 1 then we have at least (X, f) ∈ π1(C). But since X 6∈ vars2(D(C1)), we deduce that
π1(µ1.b(C1)) < π1(µ1.b(C)). Thus, we conclude that µ1.b(C1) < µ1.b(C).

Else t 6∈ X 1: If root(t) 6= f, we have that C1↓ =⊥ hence the result trivially holds. Else root(t) = f

and so it implies that root(t) = f and dom(σ) = {x1, . . . , xn}. Hence xkσ is a strict subterm of t, for
k = 1 . . . n. Hence we have that vars1(D(C1)) = vars1(D(C)) and so π2(µ1.b(C1)) = π2(µ1.b(C)).
t 6∈ X 1 also implies that Φ(C1) = Φ(C) and ND(C1) = ND(C). Hence, since the applications
conditions of Ded-st and Eq-left-left only depends on these two elements, we deduce that
π4(µ1.b(C1)) = π4(µ1.b(C)) and π3(µ1.b(C1)) = π3(µ1.b(C)). At last, since dom(σ) = {x1, . . . , xn}
and xkσ are strict subterms of t, we can deduce that π5(µ1.b(C1)) < π5(µ1.b(C)). Thus, we conclude
that µ1.b(C1) < µ1.b(C).

We now focus on C2. In such a case, the only difference between C2 and C is that Er(C2) =

Er(C) ∧ root(X)
?

6= f. Hence we trivially have that πk(µ1.b(C2)) = πk(µ1.b(C)), for k = 2 . . . 5. On
the other hand, if t ∈ X 1 then we have π1(µ1.b(C2)) < π1(µ1.b(C)) else we have that π1(µ1.b(C2)) =
π1(µ1.b(C)) and π6(µ1.b(C2)) < π6(µ1.b(C)). Hence, in both cases, we can conclude that µ1.b(C2) <
µ1.b(C).

Rule Axiom(X, ξ): We assumed that the rule is strongly applicable on C, hence there exists

(X, i
?

⊢ u) ∈ D(C), (ξ, j ⊲ v) ∈ Φ(C) such that j ≤ i and either u 6∈ X 1 or t ∈ X 1 and there exists

g ∈ Fc such that Er(C) � root(X)
?

6= g.

We first focus on C1. We know that C1 is normalised. Hence, we have that D(C1) = D(C)σ r

{X, i
?

⊢ uσ} where σ = mgu(u, v). Furthermore, we have Er(C1) = Er(C)∧X
?
= ξ. Thus, we have

that π1(µ1.b(C1)) ≤ π1(µ1.b(C)). We do a case analysis on u and v:
Case u ∈ X 1: In such a case we have that there exist f such that (X, f) ∈ π1(µ1.b(C)). Since

D(C1) = D(C)σ r {X, i
?

⊢ uσ}, we can deduce that π1(µ1.b(C1)) < π1(µ1.b(C)). Thus we conclude
that µ1.b(C1) < µ1.b(C).

Case u 6∈ X 1 and σ is the identity: σ being the identity implies that u = v and so thanks to
the origination property of constraint system, we have that |vars1(D(C1))| = |vars1(D(C))|. Fur-
thermore since Φ(C1) = Φ(C), we trivially have that π4(µ1.b(C1)) = π4(µ1.b(C)) and π3(µ1.b(C1)) =
π3(µ1.b(C)). At last, u 6∈ X 1 implies that u is either a name or root(u) ∈ Fc. Thus D(C1) = D(C)r

{X, i
?

⊢ u} implies that π5(µ1.b(C1)) < π5(µ1.b(C)). Thus we conclude that µ1.b(C1) < µ1.b(C).
Case u 6∈ X 1 and σ is not the identity:. By the property of origination of a constraint system,

we know that vars1(v) ⊆ vars1(D(C)). Hence we have that |vars1(D(C)σ)| < |vars1(D(C))|. We
proved that D(C1) ⊆ D(C)σ, therefore we can deduce that π2(µ1.b(C1)) < π2(µ1.b(C1)). Thus we
conclude that µ1.b(C1) < µ1.b(C).

We now focus on C2. In such a case, the only difference between C2 and C is that Er(C2) =

Er(C)∧X
?

6= ξ. Hence we trivially have that πk(µ1.b(C2)) = πk(µ1.b(C)), for k = 1 . . . 6. Moreover,

Er(C2) = Er(C) ∧ X
?

6= ξ also implies that π7(µ1.b(C2)) < π7(µ1.b(C)). Thus we conclude that
µ1.b(C2) < µ1.b(C).

Rule Eq-left-left(ξ1, ξ2): We assumed that the rule is applicable on C (for Phase 1), hence

there exists (ξ1, i1
?

⊢ u1) ∈ Φ(C), (ξ2, u2 ⊲ u2) ∈ Φ(C).
We first focus on C1. We know that C1 is normalised. Hence, we have that D(C1) = D(C)σ

where σ = mgu(u1, u2). Thus, we have that π1(µ1.b(C1)) ≤ π1(µ1.b(C)).
By the origination property of a constraint system, we know that vars1(u1, u2) ⊆ vars1(D(C)).

Hence we deduce that vars1(D(C1)) ⊆ vars1(D(C)). But if σ is not the identity then we have that
|vars1(D(C1))| < |vars1(D(C))|. Thus we deduce that µ1.b(C1) < µ1.b(C).

Else if σ is the identity, then we have that vars1(D(C1)) = vars1(D(C)) and so π2(µ1.b(C1)) ≤
π2(µ1.b(C)). Furthermore, σ being the identity also implies that Φ(C1) = Φ(C). Thus we deduce
that π3(µ1.b(C1)) = π3(µ1.b(C)). At last, we are focused on the case of the application of the rule
Eq-left-left, therefore we trivially have that π4(µ1.b(C1)) < π4(µ1.b(C)). Thus we conclude that
µ1.b(C1) < µ1.b(C).

Rule Eq-right-right(X,Y): We assumed that the rule is strongly applicable on C hence there

exists (X, i
?

⊢ u) ∈ D(C) and (Y, j
?

⊢ v) ∈ D(C) such that u = v ∈ X 1. In such a case, we

first have that C2 = ⊥ since Er(C2) � u
?

6= u yields ⊥ by normalisation. Thus we deduce that
µ1.b(C2) < µ1.b(C).

We know focus on C1. We have that D(C1) = D(C) r {Xi
?

⊢ u}. Hence we deduce that
πk(µ1.b(C1)) ≤ πk(µ1.b(C)), for k = 1, 6, 7 and that π8(µ1.b(C1)) < π8(µ1.b(C)). Furthermore, since
Φ(C1) = Φ(C), we deduce that πk(µ1.b(C1)) = πk(µ1.b(C)), for k = 2, 3, 4, 5. Thus we conclude that
µ1.b(C1) < µ1.b(C).

Rule Ded-st(ξ, f, i): We assumed that the rule is applicable on C hence there exists (ξ, i
?

⊢ u) ∈

Φ(C) such that (ξ, i
?

⊢ u) 6∈ NoUse(C). We know that C satisfies the invariant InvVarFrame(s) hence
we can deduce that u 6∈ X 1.

We first focus on C1: If root(u) 6= f then we have that C1 =⊥ since C1 is normalised (otherwise,

we would have Eq(C1) = Eq(C) ∧ u
?
= f(x1, . . . , xn) which is reduced into ⊥ by the normalisation

rule (Nins1)). Thus we deduce that µ1.b(C1) < µ1.b(C).

Else root(u) = f. In such a case, we have Er(C1) = Er(C), Φ(C1) = Φ(C) and D(C1) =

D(C)∪{Xk, i
?

⊢ xkσ}k=1...n such that xkσ is a strict subterm of u and Xk are fresh, for k = 1 . . . n

and σ = mgu(u
?
= f(x1, . . . , xn)). Xk being fresh implies that there do not exist g ∈ Fc such that

Er(C1) � root(X)
?

6= g. Hence we deduce that π1(µ1.b(C1)) = π1(µ1.b(C)). Furthermore, thanks
to the origination property of a constraint system, we know that vars1(u) ⊆ vars1(D(C)), thus
thanks to xkσ being strict subterm of u, we deduce that π2(µ1.b(C1)) ≤ π2(µ1.b(C)). At last, we
are focused on the case of the application of the rule Ded-st, therefore we trivially have that
π3(µ1.b(C1)) < π3(µ1.b(C)). Thus we conclude that µ1.b(C1) < µ1.b(C).

We now focus on C2: In such a case, we have that Er(C2) = Er(C), Φ(C2) = Φ(C) and
D(C2) = D(C). Hence we trivially have that πk(µ1.b(C2)) ≤ πk(µ1.b(C)), for k = 1, 2. At last,
we are focused on the case of the application of the rule Ded-st, therefore we trivially have that
π3(µ1.b(C2)) < π3(µ1.b(C)) and so we conclude that µ1.b(C2) < µ1.b(C).

C.7.1.3 Termination of Step c of Phase 1

Lemma C.53. Let (M,M ′) be a pair of matrices of constraint systems obtained during the Step
c of Phase 1 of the the strategy with parameters s and k. Assume w.l.o.g. that the kth column of
(M,M ′) is the kth column of M . Assume that the rule Cons(X0, f) can be applied externally on

(M,M ′) such that (X0, j0
?

⊢ u0) ∈ D(Mi0,k), i0 ∈ {1, . . . , n} and

L1
Mi0,k

(X0, j0
?

⊢ u0) = min

{
L1
Mi,k

(Z, ℓ
?

⊢ v)

∣∣∣∣∣
i ∈ {1, . . . , n}, (Z, ℓ

?

⊢ v) ∈ D(Mi,k),
vars(v) ∩ X1(Mi,k) 6= ∅, Z ∈ S2

}

For all term u, for all i ∈ {1, . . . , n}, if (X0, j0
?

⊢ u) ∈ D(Mi,k) and u ∈ X 1 then u 6∈ X1(Mi,k).

Proof. For simplicity, we will denote C = Mi0,k and C′ = Mi,k. We know that (X0, j0
?

⊢ u0) ∈ D(C).

Let (X0, j0
?

⊢ u) ∈ D(C′) such that u ∈ X 1. Assume that u ∈ X1(C′).

In such a case, we have that L1
C′(X0, j0

?

⊢ u) = (j0, ǫ). But we know that (X0, j0
?

⊢ u0) ∈ D(C)

and by the minimality of L1
C(X0, j0

?

⊢ u0), we deduce that L1
C(X0, j0

?

⊢ u0) ≤ (j0, ǫ). Hence we
deduce that u0 ∈ X 1 and u0 ∈ X1(C).

But u0 ∈ X1(C) also implies that there exists (Y, j
?

⊢ u0) ∈ D(C) such that Y 6∈ S2. Moreover,

the minimality of L1
C(X0, j0

?

⊢ u0) also implies that there no deducible constraint (Y ′, j′
?

⊢ v) ∈
D(C) such that u0 ∈ vars1(v) and j′ < j0. Hence, thanks to C being well-formed (Definition 8.2,
item 10) we deduce that j0 < j. Consider the pair of matrices of constraint system system (M1,M

′
1)

ancestor of (M,M ′) such that (M1,M
′
1) is obtained at the end of Step b with parameters s and k.

Thanks to Lemma C.31, we know that (M1,M
′
1) satisfies PP1SbE(s, k). Let C1 be the constraint

system in M1 ancestor of C. Since no internal rule are applied other than Eq-right-right during

step c, we deduce that (Y ′, j′
?

⊢ v′) ∈ D(C1) for some v′ and so thanks to Property PP1SbE(s, k),

we deduce that for all f ∈ Fc, Er(C1) 6� root(Y)
?

6= f. Once again thanks to the fact that no
internal rule are applied other than Eq-right-right during step c, we can easily show that for

all f ∈ Fc, Er(C) 6� root(Y)
?

6= f.
Furthermore, Property PP1SbE(s, k) indicates that for all X ∈ vars2(D(C1)), for all f ∈ Fc,

Er(C1) 6� root(X)
?

6= f. Hence, if if there exists f ∈ Fc such that Er(C) � root(X0)
?

6= f, it
would implies that there exists C′′ such that C1 →∗ C′′ →∗ C, C′′ is obtained during step c,

(X0, j0
?

⊢ u0) ∈ D(C′′), (Y, j
?

⊢ u0) ∈ D(C′′) and for all f ∈ Fc, Er(C) 6� root(X0)
?

6= f. But in
such a case, the rule Eq-right-right should have been applied according to the strategy and

so we would have that (Y, j
?

⊢ x0) 6∈ D(C) which is a contradiction. Hence we conclude that
u 6∈ X1(C′).

Lemma 8.14. Let (M,M ′) be a pair of matrices of constraint systems obtained during the Step c
of Phase 1 of the strategy with parameter s and k respectively for support and column. Let R(p̃) be
the next possible rule applicable according to step c of the strategy and let (M1,M

′
1) and (M2,M

′
2)

be the two pairs of matrices of constraint systems obtained by application of R(p̃) on (M,M ′) (in
the case of R(p̃) being the rule Eq-right-right, there is only one pair of constraint system since
Eq-right-right is applied internally). We have that:

µk
1.c(M1,M

′
1) < µk

1.c(M,M ′) ∧ µk
1.c(M2,M

′
2) < µk

1.c(M,M ′)

Proof. We prove the result by case analysis on the rule R(p̃):

Rule Eq-right-right(X,Y): Since this rule is applied internally, there exists C in the kth column
of (M,M ′) such that Eq-right-right(X,Y) is strongly applicable on C. Furthermore, we deduce

that X 6∈ S2(C) and Y ∈ S2(C). Assume that (X, i
?

⊢ x) ∈ D(C) and (Y, j
?

⊢ x) ∈ D(C). According
to the strong application condition of Eq-right-right(X,Y) in case of internal rule for phase 1,
we have that j < i.

By normalisation, we have that C2 =⊥ and so we trivially have that µ1.c(C2) < µ1.c(C).

We focus on C1: Since Y ∈ S2(C) and x ∈ X 1, we can deduce that L1
C(Y, j

?

⊢ x) = (j, 0). But

D(C1) = D(C)r {X, i
?

⊢ x}.

If there is no (Z, ℓ
?

⊢ x) ∈ D(C) such that Z 6= X and Z 6∈ S2(C), we have that x 6∈ X1(C1).

Hence, we can deduce that L1
C1
(Y, j

?

⊢ x) is not defined and so π1(µ1.c(C1)) < π1(µ1.c(C)). Thus
we deduce that µ1.c(C1) < µ1.c(C)

Else there exists (Z, ℓ
?

⊢ x) ∈ D(C) such that Z 6= X and Z 6∈ S2(C). Thus X1(C1) = X1(C).

Thus, with D(C1) = D(C)r {X, i
?

⊢ x}, we deduce that π1(µ1.c(C1)) = π1(µ1.c(C)). Furthermore,
we (X,Z) ∈ π2(µ1.c(C)) while (X,Z) 6∈ π2(µ1.c(C1)). Hence we easily deduce that π2(µ1.c(C1)) <
π2(µ1.c(C)) and so that µ1.c(C1) < µ1.c(C).

Since we proved that µ1.c(C1) < µ1.c(C) and µ1.c(C2) < µ1.c(C) and since the rule is applied
internally, we deduce that µk

1.c(M1,M
′
1) < µk

1.c(M,M ′).

Rue Cons(X, f): The rule is applied externally. Hence we will show that for all constraint system
C in the kth column, we have that µ1.c(C1) ≤ µ1.c(C) and µ1.c(C2) ≤ µ1.c(C) where C1 and C2
are the constraint system obtained by applying the rule on C. Furthermore, by the definition of

the strategy, we know that there exists C0 such that L1
C0
(X, i0

?

⊢ u0) is minimal. Thus we will
show that in the case of C0, µ1.c(C1) < µ1.c(C0) and µ1.c(C2) < µ1.c(C0), where C1 and C2 are the
constraint system obtained by applying the rule on C0.

We first focus on C1: Thanks to Lemma C.53, we know that for all C in the kth column, for all

i ∈ N, for all term u, (X, i0
?

⊢ u) ∈ D(C) and u ∈ X 1 implies u 6∈ X1(C).

Case u ∈ X 1: By normalisation, D(C1) = (D(C){X, i0
?

⊢ u})σ ∪ {Xj , i0
?

⊢ xj}j=1...n where
σ = {u → f(x1, . . . , xn)} and xj are fresh variables and u 6∈ X1(C). Hence we deduce that for all

(Y, j
?

⊢ v) ∈ D(C1), for all p, if v|p ∈ X1(C1) then v|p ∈ X 1, v|p = v|pσ and (Y, j
?

⊢ v) ∈ D(C). Thus
we deduce that v|p ∈ X1(C) and so π1(µ1.c(C1)) = π1(µ1.c(C)). Since Xj ∈ S2(C1), for j = 1 . . . n,
we deduce that π2(µ1.c(C1)) = π2(µ1.c(C)). At last, xj 6∈ X1(C1), for j = 1 . . . n also implies that
πi(µ1.c(C1)) = πi(µ1.c(C)), for i = 3, 4 and so we deduce that µ1.c(C1) = µ1.c(C).

Case u 6∈ X 1 and vars1(u) ∩ X1(C) = ∅: In such a case, we have that D(C1) = (D(C) r

{X, i0
?

⊢ u}) ∪ {Xj , i0
?

⊢ xjσ}j=1...n where xjσ is a strict subterm of u, for j = 1 . . . n and

σ = mgu(u
?
= f(x1, . . . , xn)). Thus, vars1(u) ∩ X1(C) = ∅ implies that vars1(xjσ) ∩ X1(C) = ∅

for j = 1 . . . n. Therefore, we have that L1
C1
(Xj , i0

?

⊢ xjσ) does not exist, for j = 1 . . . n which
implies that πj(µ1.c(C1)) = πj(µ1.c(C)) for j = 1, 3, 4. At last, since Xj ∈ S2(C1), for j = 1 . . . n,
we deduce that π2(µ1.c(C1)) = π2(µ1.c(C)) and so we conclude that µ1.c(C1) = µ1.c(C).

Case u 6∈ X 1 and vars1(u) ∩ X1(C) 6= ∅: In such a case, we still have that D(C1) = (D(C) r

{X, i0
?

⊢ u}) ∪ {Xj , i0
?

⊢ xjσ}j=1...n where σ = mgu(u, f(x1, . . . , xn)). Since u 6∈ X 1, we can
deduce that for all j ∈ {1, . . . , n}, for all p, if xjσ|p ∈ X1(C1) then u|j·p = xjσ|p ∈ X1(C). With
the fact that indC(x) = indC1

(x) for all x ∈ vars1(D(C)), we can deduce that (indC1
(xjσ|p), p) <

(indC(xjσ|p), j · p), for all j ∈ {1, . . . , n}. Thus we can deduce that π1(µ1.c(C1)) < π1(µ1.c(C)) and
so µ1.c(C1) < µ1.c(C).

Note that by the application condition on the rule Cons(X, f) for step c, we can deduce that
u0 6∈ X 1 and vars1(u0) ∩ X1(C0) 6= ∅. Thus we have µ1.c(C1) < µ1.c(C0)

We now focus on C2: In such a case we have that D(C2) = D(C). Hence we trivially have that

πi(µ1.c(C2)) = πi(µ1.c(C)), for i = 1, 2. On there other hand, since Er(C2) = Er(C)∧ root(X)
?

6= f,
we have that π3(µ1.c(C2)) ≤ π3(µ1.c(C)) which allows us to conclude that µ1.c(C2) ≤ µ1.c(C).

Note that by the application condition on the rule Cons(X, f) for step c, we can deduce that
u0 6∈ X 1 and vars1(u0) ∩ X1(C0) 6= ∅. Thus we have π3(µ1.c(C2)) < π3(µ1.c(C0)) which allows us
to conclude that µ1.c(C2) < µ1.c(C0).

Rue Axiom(X, path): The rule is applied externally. Hence, similarly to the case of the rule Cons,
we will show that for all constraint system C in the kth column, we have that µ1.c(C1) ≤ µ1.c(C)
and µ1.c(C2) ≤ µ1.c(C) where C1 and C2 are the constraint system obtained by applying the rule on
C. Furthermore, we will show that in the case of C0, µ1.c(C1) < µ1.c(C0) and µ1.c(C2) < µ1.c(C0),
where C1 and C2 are the constraint system obtained by applying the rule on C0.

By definition of the rule, we know that there exists (X, i
?

⊢ u) ∈ D(C) and (ξ, j
?

⊢ v) ∈ Φ(C)
such that j ≤ i.

We first focus on C1: By definition of the rule, we have that D(C1) = D(C)σ r {X, i
?

⊢ uσ}
where σ = mgu(u, v). Furthermore, we have that Φ(C1) = Φ(C)σ.

Let x ∈ vars1(v). By the property of origination of a constraint system, we deduce that

indC(x) < i. Let (Y, ℓ
?

⊢ t) ∈ D(C) such that x ∈ vars1t and indC(x) = ℓ. By the minimality of

L1
C0
(X, i

?

⊢ u0), we deduce that x 6∈ X1(C).
Let x ∈ X1(C) ∩ vars1(u). If x ∈ img(σ) then we have that x ∈ vars1(vσ). But by the

property of origination of a constraint system, we deduce that there exists (Y, ℓ
?

⊢ t) ∈ D(C1) such

that ℓ < j ≤ i and x ∈ vars1(t). Moreover, x ∈ X1(C) implies that for all (Z,m
?

⊢ w) ∈ D(C),

x ∈ vars1(w) implies that L1
C(Z,m

?

⊢ w) exists. But by minimality of L1
C0
(X, i

?

⊢ u0), we deduce
that i ≤ m. Hence, we deduce that indC(x) = i. Since we already show that indC1

(x) ≤ ℓ < j ≤ i,
we deduce that indC1

(x) < indC(x).

Let (Y, ℓ
?

⊢ tσ) ∈ D(C1), let p a position such that tσ|p ∈ X1(C1). We distinguish two cases:

— Case 1, t|p = tσ|p and t|p 6∈ vars1(σ): In such a case, it implies that t|p ∈ X1(C). Further-

more, we deduce that (indC(t|p) = indC1
(t|p). Hence we have that {{(indC1

(t|p), p
′) | (Z, ℓ′

?

⊢

t′) ∈ D(C1) ∧ t′|p′ = t|p}} = {{(indC(t|p), p′) | (Z, ℓ′
?

⊢ t′) ∈ D(C) ∧ t′|p′ = t|p}}

— Case 2, tσ|p ∈ img(σ): We have shown that in such a case, indC1
(tσ|p) < indC(tσ|p). Since

tσ|p ∈ vars1(u), we deduce that {{(indC1
(tσ|p), p

′) | (Z, ℓ′
?

⊢ t′) ∈ D(C1) ∧ t′|p′ = tσ|p}} <

{{(indC(tσ|p), p
′) | (Z, ℓ′

?

⊢ t′) ∈ D(C) ∧ t′|p′ = tσ|p}}.

Hence we deduce that π1(µ1.c(C1)) ≤ π1(µ1.c(C)) and if vars1(u) ∩ X1(C) 6= ∅ then π1(µ1.c(C1)) <
π1(µ1.c(C)).

At last, since D(C1) = D(C)σ r {X, i
?

⊢ uσ} and Er(C1) = Er(C) ∧ X
?
= ξ, we deduce that

πi(µ1.c(C1)) ≤ πi(µ1.c(C)), for i = 2, 3, 4. Thus we conclude that µ1.c(C1) ≤ µ1.c(C).
Note that vars1(u0) ∩ X1(C0) 6= ∅. Hence we have that π1(µ1.c(C1)) < π1(µ1.c(C0)) and so

µ1.c(C1) < µ1.c(C0).

We now focus on C2: In such a case, we have that D(C2) = D(C) and Er(C2) = Er(C)∧X
?

6= ξ.
Hence we trivially have that πi(µ1.c(C2)) = πi(µ1.c(C)), for i = 1, 2, 3. Furthermore, we also have
that π4(µ1.c(C2)) = π4(µ1.c(C)) if vars1(u) ∩ X1(C) = ∅, else π4(µ1.c(C2)) < π4(µ1.c(C)).

We conclude that µ1.c(C2) ≤ µ1.c(C) and since vars1(u0) ∩ X1(C0) 6= ∅, we also conclude that
µ1.c(C2) < µ1.c(C0).

C.7.1.4 Termination of the cycle of steps b and c of Phase 1

Lemma C.54. Let C be a well-formed constraint system. Let R(p̃) be an instance of one of the
following rule : Cons, Axiom or Eq-right-right. Let C1, C2 be the two constraint systems
obtained by application of R(p̃) on C. For all i ∈ {1, 2}, for all u ∈ T (Fc,N ∪ X 1), if vars1(u) ⊆
vars1(D(C)) then indCi

(uσi) ≤ indC(u) where σi = mgu(Eq(Ci)).

Proof. We do a case analysis on the rule applied: First of all, according to the definition of the
rule in Figure 7.1 and 7.2, we have that mgu(Eq(C2)) = mgu(Eq(C)) and D(C2) = D(C) for all the
rules considered. Hence we have that uσ2 = u and indC2

(u) = indC(u). Thus the result holds.

Rule Cons(X, f): Let (X, i
?

⊢ t) ∈ D(C). According to Figure 7.1, we have that D(C1) = (D(C)σr

{X, i
?

⊢ tσ}) ∪ {Xk, i
?

⊢ xk}k=1..n, where xk, Xk are fresh variables for k = 1 . . . n and σ =
mgu(t, f(x1, . . . , xn)).

If t 6∈ X 1 then it implies that dom(σ) = {x1, . . . , xn}, D(C)σ = D(C) and vars1(D(C)) =
vars1(D(C1)). Hence we deduce that uσ1 = u and indC1

(u) = indC(u) and so indC1
(uσ1) = indC(u).

Else t ∈ X 1. In such a case, σ = {t 7→ f(x1, . . . , xn)}. For all x ∈ vars1(D(C1))r {x1, . . . , xn},

indC1
(x) = indC(x). Assume now that indC(t) < i thus there exists (Y, j

?

⊢ v) ∈ D(C) such that

t ∈ vars1(v) and indC(t) = j. But it implies that (Y, j
?

⊢ vσ) ∈ D(C1). On the other hand, if

indC(t) = i we know that {Xk, i
?

⊢ xk}k=1..n ⊆ D(C1). Hence we deduce that for all k ∈ {1, . . . , n},
indC1

(xk) = indC(t).
Since indC(u) = max{indC(x) | x ∈ vars1(u)}, we deduce that indC(u) = indC1

(uσ1). Thus the
result holds.

Rule Axiom(X, path): Let (X, i
?

⊢ t) ∈ D(C) and (ξ, j ⊲ v) ∈ Φ(C) such that path(ξ) = path.

According to Figure 7.1, we have that D(C1) = (D(C)σ r {X, i
?

⊢ tσ}) were σ = mgu(t, v).

For all x 6∈ vars1(t, v), we have that xσ = x and since D(C1) = (D(C)σ r {X, i
?

⊢ tσ}), we can
deduce that indC1

(x) = indC(x).
Let x ∈ dom(σ). We show that for all y ∈ vars1(xσ), indC1

(y) ≤ indC(x). If indC(x) = ℓ then

it implies that there exists (Y, ℓ
?

⊢ w) ∈ D(C) such that x ∈ vars1(w). If X 6= Y then we have

that (Y, ℓ
?

⊢ wσ) ∈ D(C1) and since y ∈ vars1(wσ), we can deduce that indC1
(y) ≤ indC(x). Else if

X = Y then it implies that x ∈ vars1(t). But Φ(C1) = Φ(C) which implies that (ξ, j ⊲ vσ) ∈ Φ(C1).
Thus, by the origination property of a constraint system, we can deduce that y ∈ vars1(vσ) implies

that there exists (Z, p
?

⊢ w′) ∈ D(C1) such that p < j and y ∈ vars1(w′). Hence we deduce that
indC1

(y) ≤ p < j ≤ indC(x). Hence the result holds.

Let x ∈ vars1(img(σ)). If indC(x) < i then since D(C1) = (D(C)σ r {X, i
?

⊢ tσ}), we deduce
that indC1

(x) ≤ indC(x). Else indC(x) = i. But since x ∈ vars1(vσ), the by the properties of
origination, we deduce that indC1

(x) < indC(x).
We proved that for all x ∈ vars1(u), we have that indC1

(xσ) ≤ indC(x). Thus we conclude that
indC1

(uσ) ≤ indC(u).

Rule Eq-right-right(X,Y): Let (X, i1
?

⊢ v1) ∈ D(C) and (Y, i2
?

⊢ v2) ∈ D(C) such that i1 ≥ i2.

According to Figure 7.2, we have that D(C1) = (D(C)σ r {X, i1
?

⊢ v1σ}) were σ = mgu(v1, v2).
For all x 6∈ vars1(v1, v2), we have that xσ = x thus we can deduce that indC1

(x) = indC(x).

Let x ∈ dom(σ). Let y ∈ vars1(xσ). If indC(x) = ℓ then it implies that there exists (Z, ℓ
?

⊢

w) ∈ D(C) such that x ∈ vars1(w). If X 6= Z then we have that (Z, ℓ
?

⊢ wσ) ∈ D(C1) and
since y ∈ vars1(wσ), we can deduce that indC1

(y) ≤ indC(x). Else if X = Z then it implies that

x ∈ vars1(v1). But (Y, i2
?

⊢ v2σ) ∈ D(C1) and y ∈ vars1(v2σ). Hence we have that indC1
(y) ≤ i2 ≤

i1 = indC(x).

Let x ∈ vars1(img(σ)). If indC(x) < i1 then since D(C1) = (D(C)σr{X, i1
?

⊢ v1σ}), we deduce

that indC1
(x) ≤ indC(x). Else indC(x) = i1. But since x ∈ vars1(v2σ) and (Y, i2

?

⊢ v2σ) ∈ D(C1),
we deduce that indC1

(x) ≤ i2 ≤ i1 = indC(x).
We proved that for all x ∈ vars1(u), we have that indC1

(xσ) ≤ indC(x). Thus we conclude that
indC1

(uσ) ≤ indC(u).

Lemma 8.15. Let (M,M ′) be a pair of matrices of constraint systems obtained at the end of the
Step c of Phase 1 of the strategy with parameter s and k respectively for support and column. Let
(M1,M

′
1) be a pair of matrices of constraint systems obtained by application on (M,M ′) of Steps

b and c with the same parameters. µk
1.b+c(M1,M

′
1) < µk

1.b+c(M,M ′).

Proof. Since (M,M ′) and (M1,M
′
1) are both obtained at two consecutive end of step c of phase

1, there exists (M2,M
′
2) such that (M,M ′) →∗ (M2,M

′
2) →

∗ (M1,M
′
1) and (M2,M

′
2) is obtained

at the end of Step b of Phase 1. The proof of this result is divided in two parts. We first show
that µk

1.b+c(M2,M
′
2) ≤ µk

1.b+c(M,M ′). Secondly we show that µk
1.b+c(M1,M

′
1) < µk

1.b+c(M2,M
′
2).

First part, µk
1.b+c(M2,M

′
2) ≤ µk

1.b+c(M,M ′): All the rules applied during Step b are internal rules.
Furthermore, we know that (M,M ′) was obtained at the end of step c which means that we already
apply at leaf one Step b before obtaining (M,M ′). Hence, the rules Ded-st and Eq-left-left
are useless on (M,M ′) for the support s and the column k. Thus the only rules that are applied
between (M,M ′) and (M2,M

′
2) are Cons, Eq-right-right and Axiom.

Consider two pair of matrices (M3,M
′
3) and (M4,M

′
4) such that (M,M ′) →∗ (M4,M

′
4) →

(M3,M
′
3) →∗ (M2,M

′
2) and assume that R(p̃) is the rule applied on (M4,M

′
4). Let C be a

constraint system in the kth column of (M4,M
′
4). If the rule R(p̃) was not applied on C then C

is in the kth column on (M3,M
′
3). If the rule R(p̃) was applied on C then there exists C1 and C2

such that C1 and C2 both in the kth column of (M3,M
′
3) and they are the two constraint systems

obtained by applying R(p̃) on C.
According to Figure 7.1 and 7.2, and the normalisation rules 7.3, for all i ∈ {1, 2}, for all

(X, i
?

⊢ u) ∈ D(Ci), there exists (Y, i
?

⊢ v) ∈ D(C) and v′ ∈ st(v) such that v′mgu(Eq(Ci)) = u.
But thanks to Lemma C.54, indCi

(v′mgu(Eq(Ci))) ≤ indC(v
′) and so indCi

(u) ≤ indC(v
′). Since

v′ ∈ st(v), we deduce that indCi
(u) ≤ indC(v). This allows us to deduce that max{indCi

(u) |

X 6∈ S2(Ci), (X, j
?

⊢ u) ∈ D(Ci)} ≤ max{indC(u) | X 6∈ S2(C), (X, j
?

⊢ u) ∈ D(C)}. Hence we
deduce that µk

1.b+c(M3,M
′
3) ≤ µk

1.b+c(M4,M
′
4). With a simple induction, we can conclude that

µk
1.b+c(M2,M

′
2) ≤ µk

1.b+c(M,M ′).

Second part, µk
1.b+c(M1,M

′
1) < µk

1.b+c(M2,M
′
2): Let C1 be a constraint system in the kth column

of (M1,M
′
1). Let C2 be the constraint system ancestor of C1 such that C2 is in (M2,M

′
2).

Thanks to Lemma C.31, we know that (M1,M
′
1) satisfies PP1ScE(s, k), and (M2,M

′
2) satisfies

PP1SbE(s, k). Thus we deduce that for all (X, i
?

⊢ u) ∈ D(C1), if X 6∈ S2(C1), then u 6∈ X 1 and

i = s. Furthermore, we deduce that for all (X, i
?

⊢ u) ∈ D(C2), if X 6∈ S2(C2), then u ∈ X 1

and i = s. But the rules applied during step c either remove internal deducible constraint by

Eq-right-right or instantiate them by Axiom or Cons. Thus, for all (X, s
?

⊢ t1) ∈ D(C1), if

X 6∈ S2(C1), then there exists t2 such that (X, s
?

⊢ t2) ∈ D(C2).

Let C3 be a constraint system such that C2 →∗ C3 →∗ C1. Let (X, s
?

⊢ t3) ∈ D(C3). Thanks
to Lemma C.54, we know that indC1

(t1) ≤ indC3
(t3) ≤ indC2

(t2). We will show that that there

exists C4 and C3 such that C2 →∗ C3 → C4 →∗ C1, (X, s
?

⊢ t4) ∈ D(C4), (X, s
?

⊢ t3) ∈ D(C3) and
indC4

(t4) < indC3
(t3), which will imply that indC1

(t1) < indC2
(t2).

Let C3 and C4 be the constraint systems such that (X, s
?

⊢ t3) ∈ D(C3), (X, s
?

⊢ t4) ∈ D(C4),
t2 = t3, t3 6= t4 and C2 →∗ C3 → C4 →∗ C1. Those two constraints systems exist since we know
that t1 6= t2. Let R()̃ be the rule applied on C3 to obtained C4. Since t2 = t3, we deduce that
t3 ∈ X 1 and so t3 ∈ X1(C3). Thanks to Lemma C.53 and t3 ∈ X1(C3), we deduce that R()̃ is not
an instance of Cons. Furthermore, since Eq-right-right is applied internally we also deduce
that R()̃ is not an instance of Eq-right-right. Hence we conclude that R()̃ is an instance of
Axiom.

Assume that R(p̃) = Axiom(X0, path). By definition, of the rule, there exists (X0, i0
?

⊢ u0) ∈
D(C3) and (ξ, j0 ⊲ v0) ∈ Φ(C3) such that j0 ≤ i0. Furthermore, we have D(C4) = D(C3)σ r

{X0, i0
?

⊢ u0σ}, t = vσ and Φ(C4) = Φ(C3)σ where σ = mgu(u0, v0). Since by hypothesis (X, s
?

⊢
t4) ∈ D(C4) and t4 6= t3, we have that t3 ∈ dom(σ) and t3 ∈ vars1(u0, v0). But the rule Axiom is
applied on the deducible constraint minimal for L1(). Hence we deduce that t3 ∈ vars1(u0) and
indC3

(t3) = i0. But for all x ∈ vars1(t3σ), we have that x ∈ vars1(v0σ) and Φ(C4) = Φ(C3)σ. Thus,

by the property of origination of a constraint system, we know that there exists (Y, p
?

⊢ w) ∈ D(C4)
such that x ∈ vars1(w) and p < j0 ≤ i0. Thus, we have that indC4

(x) < i0 and so for all
x ∈ vars1(t3σ)), indC4

(x) < indC3
(t3). Since t3σ = t4, we conclude that indC4

(t4) < indC3
(t3).

We have shown that for all (X, s
?

⊢ u) ∈ D(C1), if X 6∈ S2(C1) there exists v such that

(X, s
?

⊢ v) ∈ D(C2) and indC1
(u) < indC2

(v). Thus we can conclude that µk
1.b+c(M1,M

′
1) <

µk
1.b+c(M2,M

′
2).

C.7.1.5 Termination of Step d of Phase 1

Lemma 8.16. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step d of
Phase 1 of the strategy with parameter s and k respectively for support and column. Furthermore,
let R(p̃) be the next possible rule applicable according to step d of the strategy and let (M1,M

′
1)

and (M2,M
′
2) be the two pairs of matrices of constraint systems obtained by application of R(p̃)

on (M,M ′). We have that:

µk
1.d(M1,M

′
1) < µk

1.d(M,M ′) ∧ µk
1.d(M2,M

′
2) < µk

1.d(M,M ′)

Proof. Assume w.l.o.g. that the kth column of (M,M ′) is the kth column of M . We know that the
only rules that can be applied in Step d are Cons, Eq-right-right and Axiom. Furthermore,
the external application of those rules implies that Mi,k → M1i,k and Mi,k → M2i,k, for all
i ∈ {1, . . . , n}. But thanks to Lemma C.14, we know that if Mi,k satisfies InvVarConstraint(s)
then M1i,k and M2i,k also satisfy InvVarConstraint(s) or are equal to ⊥. Thus, we deduce that
π1(µ

k
1.d(M1,M

′
1)) ≤ π1(µ

k
1.d(M,M ′)) and π1(µ

k
1.d(M2,M

′
2)) ≤ π1(µ

k
1.d(M,M ′)).

Let i0 be the index of the line such that for all i ≤ i0, Mi0,k = ⊥ or Mi,k satisfies the invariant
InvVarConstraint(s). Let R(p̃) be an instance of a rule that is strongly applicable on Mj0,k. We do

a case analysis on j0.

Case j0 ≤ i0+1 and R(p̃) strongly applicable on Mi0+1,k: In such a case, by applying Lemma 8.13,
we obtained that µ1.b(M1i0+1,k) < µ1.b(Mi0+1,k) and µ1.b(M2i0+1,k) < µ1.b(Mi0+1,k). It implies
that π2(µ

k
1.d(M1,M

′
1)) < π2(µ

k
1.d(M,M ′)) and π2(µ

k
1.d(M2,M

′
2)) < π2(µ

k
1.d(M,M ′)). Hence the

result holds.

Case j0 ≤ i0 + 1 and R(p̃) not strongly applicable on Mi0+1,k: Since R(p̃) is strongly applicable
on Mj0,k then we have that Mj0,k 6= ⊥ and j0 6= i0 + 1. Hence by definition of i0, we deduce that
Mj0,k satisfies the invariant InvVarConstraint(s). Hence R(p̃) strongly applicable on Mj0,k implies
that:

— R(p̃) = Cons(X, f) with (X, i
?

⊢ x) ∈ D(Mj0,k), x ∈ X 1 and there exists g ∈ Fc such

that Er(Mj0,k) � root(X)
?

6= g. But thanks to Lemma 8.3, (M,M ′) satisfies InvGeneral and
more specifically Property 6 of the invariant InvGeneral which means that Er(Mi0+1,k) �

root(X)
?

6= g. Thus, we deduce that R(p̃) is also strongly applicable on Mi0+1,k which is a
contradiction with our hypothesis.

— R(p̃) = Axiom(X, path) with (X, i
?

⊢ x) ∈ D(Mj0,k), x ∈ X 1 and there exists g ∈ Fc such

that Er(Mj0,k) � root(X)
?

6= g. Once again, thanks to Property 6 of the invariant InvGeneral,

we deduce that Er(Mi0+1,k) � root(X)
?

6= g. However R(p̃) is not strongly applicable on

Mi0+1,k which means that if there exists a frame element (ξ, i
?

⊢ u) ∈ Φ(Mi0+1,k) such that

path(ξ) = path then Er(Mi0+1,k) � X
?

6= ξ. But thanks to Property 7 and the fact that
Axiom(X, path) is strongly applicable on Mj0,k, we deduce that there is no frame element

(ξ, i
?

⊢ u) ∈ Φ(Mi0+1,k) such that path(ξ) = path. Thus, we have that M1i0+1,k = ⊥ and
M2i0+1,k = Mi0+1,k.

Therefore, we deduce that π1(µ
k
1.d(M1,M

′
1)) < π1(µ

k
1.d(M,M ′)) and π2(µ

k
1.d(M2,M

′
2)) =

π2(µ
k
1.d(M,M ′)). Furthermore, we have that Er(M2j0,k) = Er(Mj0,k) ∧ X

?

6= ξ where

path(ξ) = path and (ξ, i
?

⊢ u) ∈ Φ(Mj0,k). Hence we deduce that π3(µ
k
1.d(M2,M

′
2)) <

π3(µ
k
1.d(M,M ′)). Thus we conclude that µk

1.d(M1,M
′
1) < µk

1.d(M,M ′) and µk
1.d(M2,M

′
2) <

µk
1.d(M,M ′).

Case j0 > i0 + 1: In such a case, it implies that no instance of the rule Cons, Axiom and
Eq-right-right can be strongly applied on Mi0+1,k with support inferior of equal to s. Thus,

we can first deduce that for all (X, i
?

⊢ u) ∈ D(Mi0+1,k), if i ≤ s then u ∈ X 1 and for all f ∈ Fc,

Er(Mi0+1,k) 6� root(X)
?

6= f. Indeed, assume that u 6∈ X 1.

— if there exists (ξ, j ⊲ v) ∈ Φ(Mi0+1,k) such that j ≤ i and Er(Mi0+1,k) 6� X
?

6= ξ, then
Axiom(X, path(ξ)) would be strongly applicable on Mi0,k which contradicts our hypothesis

— if there exists f ∈ Fc such that Er(Mi0+1,k) 6� root(X)
?

6= f, then Cons(X, f) would be
strongly applicable on Mi0+1,k which contradicts our hypothesis.

— Else we would have that for all (ξ, j ⊲ v) ∈ Φ(Mi0+1,k), j ≤ i implies Er(Mi0+1,k) � X
?

6= ξ

and for all f ∈ Fc, Er(Mi0+1,k) � root(X)
?

6= f. But in such a case, the normalisation of the
constraint system would implies that Mi0+1,k = ⊥ witch contradicts the definition of i0.

We now prove that in fact the case j0 > i0+1 is impossible. Assume that (X, i
?

⊢ x) and (Y, j
?

⊢ y)
in D(Mi0+1,k) such that x = y. In such a case, since we proved that for all f ∈ Fc, Er(Mi0+1,k) 6�

root(X)
?

6= f and Er(Mi0+1,k) 6� root(Y)
?

6= f, we can deduce that the rule Eq-right-right(X,Y)
is strongly applicable on Mi0+1,k which is a contradiction on our hypothesis. Hence we can
deduce that Mi0+1,k satisfies the invariant InvVarConstraint(s) which is also a contradiction on the
definition of i0. Hence the case j0 > i0 + 1 is impossible.

C.7.2 Proofs of results on association tables

Lemma C.55. Let C be a well-formed constraint system. Let E be a disjunction of disequation
on first order constructive term. Let D be a disjunction of disequation on context of recipe. We
have that:

L1
C(E) = L1

C(E↓) and L2
C(D) = L2

C(D

)

Proof. Direct from the definition of normalisation ↓ and

.

Lemma C.56. Let E be a disjunction of first order constructive term and let σ a substitution
on constructive term. Let D be a disjunction of term in T (Fc, (F∗

d · AX) ∪ X 2) and let θ be a
substitution from X 2 to T (Fc, (F

∗
d · AX) ∪ X 2). We have that:

Eσ↓ = (E↓)σ↓ and Dθ

= (D

)θ

Let C be a constraint system such that for all β ∈ st(D) ∩ ((F∗
d · AX) ∪ X 2), β ∈ dom(acc1(C)).

We have that (D

)acc1(C)↓ = Dacc1(C)↓.

Proof. Direct from the definition of normalisation ↓ and

.

Lemma 8.17. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step b or
Step c of Phase 2 of the strategy. For all constraint systems C, C′ in (M,M ′) and their respective

association tables T , T ′, for all
∨n

i xi

?

6= vi, for all
∨m

j βj

?

6= β′
j, if T [

∨n
i xi

?

6= vi] =
∨m

j βj

?

6= β′
j,

then we have that: 


m∨

j

βjacc
1(C)

?

6= β′
jacc

1(C)


 ↓ =

n∨

i

xi

?

6= vi

Moreover, if T [
∨n

i xi

?

6= vi] =
∨m

j βj

?

6= β′
j and for all k ∈ {1, . . . ,m}, st(βj , β

′
j) ∩ (F∗

d · AX) = ∅

then there exists
∨n′

i x′
i

?

6= v′i such that T ′[
∨n′

i x′
i

?

6= v′i] =
∨m

j βj

?

6= β′
j.

Proof. Let (M0,M
′
0) be the pair of matrices of constraint system, ancestor of (M,M ′), obtained

at the end of Step a of the second phase of the strategy. As mentioned in Section 7.2, there
is three different kind of transformations on the association tables. The first one, called default
transformation, is applied on each application of any rule. The second one consist of added new
entry on the association table after the application of the rule Cons. The last one consisting of
removing some entry is applied when the association tables meet some conditions. Hence we will
prove the result by case analysis on the three transformations and by induction on the size N of
the branch between (M0,M

′
0) and (M,M ′).

Base case N = 0: In such a case, we have (M,M ′) = (M0,M
′
0). But according to the strategy,

the association table of any constraint system, in (M0,M
′
0) are empty. Hence the result trivially

holds.

Inductive step N > 0: Since N > 0, we know that there exists (M1,M
′
1) a pair of matrices of

constraint systems such that (M1,M
′
1) → (M,M ′). Let C be two constraint system in (M,M ′)

and let T its respective association table. Let R(p̃) be the rule applied on (M1,M
′
1) to obtain

(M,M ′). Furthermore, let C1 be the constraint system in (M1,M
′
1) such that C1 → C and let T1

its association table. We do a case analysis on the transformation from T1 to T .
Let E be a disjunction of inequation on first order term and let D be a disjunction of inequations

on context of recipe such that T [E] = D. For simplicity purpose, we will denote σ = mgu(Eq(C)),
θ = mgu(Er(C)) and Θ = {X 7→ C⌊Xθ⌋Φ(C) | X ∈ vars2(C)}.

— Default transformation: By definition of the default transformation, we know that there
exists a disjunction on first order term such that E = E1σ↓ and T [E] = T1[E1]Θ↓. Let’s

denote T1[E1] = D1 =
∨

i βi

?

6= β′
i

By inductive hypothesis on (M1,M
′
1), we know that D1acc

1(C1)↓ = E1 which implies that
D1acc

1(C1)↓σ↓ = E1σ↓ = E. Hence, thanks to Lemma C.56, we deduce that D1acc
1(C1)σ↓ =

E. But thanks to Lemma C.11, we know that for all i, for all X ∈ vars2(βi), Xacc1(C1)σ =
C⌊Xθ⌋Φ(C)acc

1(C) = XΘacc1(C). Hence, since for all i, βi ∈ T (Fc, (F∗
d ·AX)∪X 2), we deduce

that βiacc
1(C1)σ = βiΘacc1(C). Similarly, we have that β′

iacc
1(C1)σ = β′

iΘacc1(C). Hence
we deduce that D1acc

1(C1)σ = D1Θacc1(C). But again thanks to Lemma C.56, we prove
that D1Θacc1(C)↓ = (D1Θ

)acc1(C)↓ = Dacc1(C)↓. Thus we conclude that Dacc1(C)↓ =
D1acc

1(C1)σ↓ = E.

— Rule Eq-right-right(X, ξ): In the case of the rule Eq-right-right when the inequation

holds, the strategy indicates that we add on T the following entry: T [x
?

6= v] := X
?

6= ξ where

x = Xacc1(C) and v = ξacc1(C). Hence we deduce that (X
?

6= ξ)acc1(C)↓ = (x
?

6= v)↓. But

v ∈ T (Fc,X
1) which means that (x

?

6= v)↓ = (x
?

6= v) and so the result holds.

— Removing entry: The last transformation consists of removing some entry from the associ-
ation table. Hence the result trivially holds.

Lemma 8.18. Let C be a well-formed constraint system satisfying InvVarConstraint(∞). Let β, β′

be two contexts of recipes such that β, β′ ∈ T (Fc ∪ (F∗
d · AX),X 2). We have that L1

C(βacc
1(C)

?

6=

β′acc1(C)) ≤ L2
C(β

?

6= β′). Furthermore, if β ∈ (F∗
d · AX) or β′ ∈ (F∗

d · AX), then we have that

L1
C(βacc

1(C)
?

6= β′acc1(C)) < L2
C(β

?

6= β′).

Proof. We know that L2
C(β

?

6= β′) = {{paramCC
max(β); paramCC

max(β
′)}}. But we know that β, β′ ∈

T (Fc, (F
∗
d · AX) ∪ X 2) which means that paramC

max(β) = max{paramCC
max(ζ) | ζ ∈ st(β) ∩ ((F∗

d ·
AX) ∪ X 2)}. Similarly, we have that indC(βacc

1(C)) = max{indC(u) | ζ ∈ st(β) ∩ ((F∗
d · AX) ∪

X 2) ∧ u = ζacc1(C)}.
Hence, to prove the result, it suffices to show that for all (ξ, i ⊲ u) ∈ Φ(C), indC(u) ≤

paramCC
max(path(ξ)); and for all (X, i

?

⊢ x) ∈ D(C), indC(x) ≤ paramCC
max(X).

— Case (X, i
?

⊢ x) ∈ D(C): We know that C satisfies the invariant InvVarConstraint(∞). Hence,

(X, i
?

⊢ x) is the only deducible constraint system that contain x which means that indC(x) =
i. Furthetmore, by definition of paramCC

max(X), we have that paramCC
max(X) = i and so the

result holds.

— Case (ξ, i ⊲ u) ∈ Φ(C) : We know that path(ξ) ∈ F∗
d · AX hence there exists axk such that

ξ = w · axk. Hence by definition, we have that paramCC
max(path(ξ)) = k. Let v such that

(axk, k ⊲ v) ∈ Φ(C). Once again thanks to the fact that C is well-formed, we can deduce
that u ∈ st(v). But thanks to the origination property of constraint system and the invariant

InvVarConstraint(∞), we have that for all x ∈ vars1(v). there exists (X, ℓ
?

⊢ x) ∈ D(C) such
that ℓ < k. Hence, we can deduce that indC(u) ≤ indC(v) < k = paramCC

max(path(ξ)). Hence
the result holds.

Lemma 8.19. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step b
or Step c of Phase 2 of the strategy. Let R(p̃) be one of the following external rules: Axiom,
Cons, Eq-right-right. Let (M1,M

′
1) and (M2,M

′
2) be the results of the application of R(p̃) on

(M,M ′). We have that:

µgen(M1,M
′
1) ≤ µgen(M,M ′) and µgen(M2,M

′
2) ≤ µgen(M,M ′)

Furthermore, for i = 1, 2, if a removal transformation was applied on the association table of
(Mi,M

′
i) then µgen(Mi,M

′
i) < µgen(M,M ′).

Proof. The removal transformation is independent of the rule applied on the pair of matrices.
Hence, we will first prove the result without considering the removal transformation (i.e. only
default transformation for the rule Cons and Axiom; and the default and addition transformations
for the rule Eq-right-right). Then we will show the result when a removal transformation is
applied. We do a case analysis on the rule applied on (M,M ′):

Case Rule Cons(X, f): Let C be a constraint system in (M,M ′) different from ⊥ and let C1, C2 the
two constraint systems obtained by applying the rule Cons(X, f) on C. Hence we have that C1 and
C2 are respectively in (M1,M

′
1) and (M2,M

′
2). We can first notice that the only difference between

C2 and C is that Er(C2) = Er(C) ∧ root(X)
?

6= f. Hence, we can deduce that Eq(C2) = Eq(C) and
so the association tables of C and C2 are the same. Thus, we conclude that µgen(M2,M

′
2) =

µgen(M,M ′).
We now focus on (M1,M

′
1): Since C satisfies InvVarConstraint(∞), we know that there exist

x ∈ X 1 such that (X, i
?

⊢ x) ∈ D(C). Furthermore, by definition of the rule, we know that

Er(C1) = Er(C) ∧X
?
= f(X1, . . . , Xn) and Eq(C1) = Eq(C) ∧ x

?
= f(x1, . . . , xn) where Xk, xk are

fresh variable and indC1
(xk) = paramCC

max(Xk) = i, for all k = 1 . . . n.
Hence, thanks to the normalisation, we deduce that for all disjunction D1 of disjunction of first

order term, if there exists E1 such that Eq(C1) = E1 ∧ D1 then there exists D and E such that
Eq(C) = E ∧D and Dσ↓ = D1 where σ = {x 7→ f(x1, . . . , xn)}. But indC(x) = indC1

(xk), for all
k ∈ {1, . . . , n}. Hence we deduce that L1

C(D) = L1
C1
(Dσ). But, thanks to Lemma C.55, we have

that L1
C1
(Dσ) = L1

C1
(Dσ↓) and so L1

C(D) = L1
C1
(D1).

Since we only consider the default transformation on the association table from now, we also
have that T1[D1] = ⊥ implies T [D] = ⊥. Hence, we proved that for all D1 such that Eq(C1) =
E1∧D1 and T1[D1] = ⊥, there exists D such that Eq(C) = E∧D, T [D] = ⊥ and L1

C(D) = L1
C1
(D1).

Thus we deduce that µ1
gen(M1,M

′
1) ≤ µ1

gen(M,M ′).
Furthermore, by definition of the default transformation on the association tables, we have

that if T1[D1] exists then we know that T [D] also exists and T1[D1] = T [D]Θ

where Θ =

{X 7→ f(X1, . . . , Xn)}. But once again, we know that paramCC
max(X) = paramCC1

max(Xk), for
all k ∈ {1, . . . , n}. Hence we deduce that L2

C(T [D]) = L2
C1
(T [D]Θ). Thanks to Lemma C.55,

we have that L2
C1
(T [D]Θ) = L2

C1
(T [D]Θ↓) and so L2

C1
(T1[D1]) = L2

C(T [D]). Thus we deduce
that µ2

gen(M1,M
′
1) ≤ µ2

gen(M,M ′). Since we proved that µ1
gen(M1,M

′
1) ≤ µ1

gen(M,M ′), we can
conclude that µgen(M1,M

′
1) ≤ µgen(M,M ′).

Case Rule Axiom(X, path): Let C be a constraint system in (M,M ′) different from ⊥ and let C1, C2
the two constraint systems obtained by applying the rule Axiom(X, path) on C. Hence we have
that C1 and C2 are respectively in (M1,M

′
1) and (M2,M

′
2). We can first notice that either C1 = ⊥

and C2 = C or else the only difference between C2 and C is that Er(C2) = Er(C)∧ root(X)
?

6= ξ for
some ξ such that path(ξ) = path. Hence, we can deduce that Eq(C2) = Eq(C) and so the association
tables of C and C2 are the same. Thus, we conclude that µgen(M2,M

′
2) = µgen(M,M ′).

We now focus on (M1,M
′
1): Since C satisfies InvVarConstraint(∞), we know that there exist

x ∈ X 1 such that (X, i
?

⊢ x) ∈ D(C). Furthermore, by definition of the rule, we know that

there exists (ξ, j ⊲ v) ∈ Φ(C) such that path(ξ) = path, j ≤ i, Er(C1) = Er(C) ∧ X
?
= ξ and

Eq(C1) = Eq(C) ∧ x
?
= v.

Hence, thanks to the normalisation, we deduce that for all disjunction D1 of disjunction of
first order term, if there exists E1 such that Eq(C1) = E1 ∧ D1 then there exists D and E such
that Eq(C) = E ∧ D and Dσ↓ = D1 where σ = {x 7→ v}. But thanks to InvVarConstraint(∞)
and the property of origination of a constraint system, we know that for all y ∈ vars1(v), there

exists (Y, ℓ
?

⊢ y) ∈ D(C) with ℓ < j. Hence we have that indC1
(v) < indC(x) which implies that

L1
C1
(Dσ) ≤ L1

C(D). But, thanks to Lemma C.55, we have that L1
C1
(Dσ) = L1

C1
(Dσ↓) and so

L1
C1
(D1) ≤ L1

C(D).
Since we only consider the default transformation on the association table from now, we also

have that T1[D1] = ⊥ implies T [D] = ⊥. Hence, we proved that for all D1 such that Eq(C1) =
E1∧D1 and T1[D1] = ⊥, there exists D such that Eq(C) = E∧D, T [D] = ⊥ and L1

C1
(D1) ≤ L1

C(D).
Thus we deduce that µ1

gen(M1,M
′
1) ≤ µ1

gen(M,M ′).
Furthermore, by definition of the default transformation on the association tables, we have

that if T1[D1] exists then we know that T [D] also exists and T1[D1] = T [D]Θ

where Θ =
{X 7→ C⌊ξ⌋Φ(C)}. But we know C⌊ξ⌋Φ(C) = C⌊ξ⌋Φ(C1) = path ∈ F∗

d · AX . Assume that path =
w · axk. Since C is a well-formed constraint system and thanks to Property 2 of a well-formed
constraint system, we know that k ≤ j. Hence we deduce that paramCC1

max(C⌊ξ⌋Φ(C)) = k ≤

j. But since (X, i
?

⊢ x) ∈ D(C), we have that paramCC
max(X) = i with j ≤ i. Thus we have

that paramCC1
max(XΘ) ≤ paramCC

max(X) which implies that L2
C1
(T [D]Θ) ≤ L2

C(T [D]). Thanks to
Lemma C.55, we have that L2

C1
(T [D]Θ) = L2

C1
(T [D]Θ↓) and so L2

C1
(T1[D1]) ≤ L2

C(T [D]). Thus we
deduce that µ2

gen(M1,M
′
1) ≤ µ2

gen(M,M ′). Since we proved that µ1
gen(M1,M

′
1) ≤ µ1

gen(M,M ′),
we can conclude that µgen(M1,M

′
1) ≤ µgen(M,M ′).

Case Rule Eq-right-right(X, ξ): We first focus on (M2,M
′
2): Let C be a constraint system in

(M,M ′) different from ⊥ and T its association table. Let C2 the constraint system in (M2,M
′
2)

with T2 its association table such that C → C2 by the rule Eq-right-right(X, ξ). According to

Figure 7.2 and since C satisfies the invariant InvVarConstraint(∞), we have that (X, i
?

⊢ x) ∈ D(C)

with x ∈ X 1. Furthermore, for all Y ∈ vars2(ξ), there exists (Y, j
?

⊢ y) ∈ D(C) with y ∈ X 1,

j ≤ i and indC(y) = j. At last, we have Eq(C2) = (Eq(C) ∧ x
?

6= v)↓ where v = ξacc1(()C).

Note that if there exists E′ and E′′ such that Eq(C) = E′ ∧ (E′′ ∨ x
?

6= v) then we have that

Eq(C2) = E′↓ ∧ x
?

6= v. Furthermore, by definition of the addition transformation, we have that

T2[x
?

6= v] = X
?

6= ξ, i.e. (X
?

6= ξ) ∈ S(M2,M
′
2). Since we proved those properties for any constraint

system C in (M,M ′), we can deduce that:

— Case (a): If there exists C in (M,M ′) and T its association table, E′, E′′ such that Eq(C) =

E′ ∧ (E′′ ∨ x
?

6= v) and T [E′′ ∨ x
?

6= v] = ⊥ where x = Xacc1(C) and v = ξacc1(C) then

the number of occurrence of L1
C(E

′′ ∨ x
?

6= v) strictly decrease between µ1
gen(M,M ′) and

µ1
gen(M2,M

′
2). Thus we have µ1

gen(M2,M
′
2) < µ1

gen(M,M ′);

— Case (a’): else µ1
gen(M2,M

′
2) = µ1

gen(M,M ′)

Assume now that there exists E′, E′′, D such that Eq(C) = E′∧ (E′′∨x
?

6= v) and T [E′′∨x
?

6= v] =

D∨X
?

6= ξ with x = Xacc1(C) and v = ξacc1(C). We already have shown that Eq(C2) = E′↓∧x
?

6= v.

Hence by definition of the default transformation, we deduce that T2[E
′′ ∨ x

?

6= v] = ⊥. Since we
prove this property for any constraint system C in (M,M ′), we can deduce that:

— Case (b): if there exists D such that (D∨X
?

6= ξ) ∈ S(M,M ′) then (D∨X
?

6= ξ) 6∈ S(M2,M
′
2)

and (X
?

6= ξ) ∈ S(M2,M
′
2). But for all D, L2

C2
(X

?

6= ξ) ≤ L2
C(D ∨ X

?

6= ξ). Thus, we have
that µ2

gen(M2,M
′
2) ≤ µ2

gen(M,M ′).

— Case (b’): else S(M2,M
′
2) = S(M,M ′) ∪ {X

?

6= ξ} and so µ2
gen(M2,M

′
2) = µ2

gen(M,M ′) ∪

{{L2
C2
(X

?

6= ξ)}}.

If (M,M ′) satisfies Case (b) then we proved that µ2
gen(M2,M

′
2) ≤ µ2

gen(M,M ′) and in both cases
(a) or (a’) we proved that µ1

gen(M2,M
′
2) ≤ µ1

gen(M,M ′). Hence we conclude that µgen(M2,M
′
2) ≤

µgen(M,M ′).

It remains to show that when (M,M ′) satisfies Case (b’) then the result holds. Case (b′)

is satisfied when then there is no D such that (D ∨ X
?

6= ξ) ∈ S(M,M ′). It implies that for

all constraint system C in (M,M ′) and T its association table, for all E, T [E ∨ x
?

6= v] = ⊥
with x = Xacc1(C) and v = ξacc1(C). But according to the application condition of the rule
Eq-right-right for Step b of Phase 2 of the strategy, it implies that there exists C in (M,M ′), T

its association table, E′, E′′ formulas such that Eq(C) = E′ ∧ (E′′ ∨x
?

6= v) and T [E′′ ∨x
?

6= v] = ⊥
with x = Xacc1(C) and v = ξacc1(C). Thus (M,M ′) satisfies Case (a). In such a case, we

already have shown that the number of occurrence of L1
C(E

′′ ∨ x
?

6= v) strictly decrease between

µ1
gen(M,M ′) and µ1

gen(M2,M
′
2). But L1

C(x
?

6= v) ≤ L1
C(E

′′ ∨x
?

6= v) and since all constraint system

in (M,M ′) satisfy InvVarConstraint(∞) and ξ ∈ T (Fc, vars
2(C)), we also have that L2

C(X
?

6= ξ) =

L1
C(x

?

6= v) ≤ L1
C(E

′′∨x
?

6= i). Hence we have that µ1
gen(M2,M

′
2)∪{{L2

C(X
?

6= ξ)}} ≤ µ1
gen(M,M ′).

Thus, µ1
gen(M2,M

′
2) ∪ {{L2

C(X
?

6= ξ)}} ∪ µ2
gen(M2,M

′
2) ≤ µ1

gen(M,M ′) ∪ µ2
gen(M,M ′) and so we

conclude that µgen(M2,M
′
2) ≤ µgen(M,M ′).

We now focus on (M1,M
′
1): Let C be a constraint system in (M,M ′) different from ⊥ and T

its association table. Let C1 the constraint system in (M1,M
′
1) with T1 its association table such

that C → C1 by the rule Eq-right-right(X, ξ). According to Figure 7.2 and since C satisfies the

invariant InvVarConstraint(∞), we have that (X, i
?

⊢ x) ∈ D(C) with x ∈ X 1. Furthermore, for all

Y ∈ vars2(ξ), there exists (Y, j
?

⊢ y) ∈ D(C) with y ∈ X 1, j ≤ i and indC(y) = j. At last, we have

Eq(C1) = (Eq(C) ∧ x
?
= v)↓ and D(C1) = D(C)r {X, i

?

⊢ x} where v = ξacc1(()C).
Hence, thanks to the normalisation, we deduce that for all disjunction D1 of disjunction of

first order term, if there exists E1 such that Eq(C1) = E1 ∧ D1 then there exists D and E such
that Eq(C) = E ∧D and Dσ↓ = D1 where σ = {x 7→ v}. But we proved that for all Y ∈ vars2(ξ),

there exists (Y, j
?

⊢ y) ∈ D(C) with y ∈ X 1, j ≤ i and indC(y) = j. Hence with ξ ∈ T (Fc,X
2), we

deduce that indC(v) ≤ indC(x). Since X 6∈ vars2(ξ) and D(C1) = D(C)r {X, i
?

⊢ x}, we also have
that indC1

(v) = indC(v) which implies that L1
C1
(Dσ) ≤ L1

C(D). But, thanks to Lemma C.55, we
have that L1

C1
(Dσ) = L1

C1
(Dσ↓) and so L1

C1
(D1) ≤ L1

C(D).
Since only the default transformation on the association table is applied for (M1,M

′
1), we

also have that T1[D1] = ⊥ implies T [D] = ⊥. Hence, we proved that for all D1 such that
Eq(C1) = E1 ∧ D1 and T1[D1] = ⊥, there exists D such that Eq(C) = E ∧ D, T [D] = ⊥ and
L1
C1
(D1) ≤ L1

C(D). Thus we deduce that µ1
gen(M1,M

′
1) ≤ µ1

gen(M,M ′).
Furthermore, by definition of the default transformation on the association tables, we have

that if T1[D1] exists then we know that T [D] also exists and T1[D1] = T [D]Θ

where Θ = {X 7→
C⌊ξ⌋Φ(C)}. But ξ ∈ T (Fc,X

2) implies that C⌊ξ⌋Φ(C) = ξ. Moreover, according to Figure 7.2, for all

Y ∈ vars2(ξ), paramCC
max(Y) ≤ paramCC

max(X). Since D(C1) = D(C)r{X, i
?

⊢ x} and X 6∈ vars2(ξ),
we deduce that paramCC1

max(Y) = paramCC
max(Y) and so paramCC1

max(ξ) ≤ paramCC
max(X). Thus we

have L2
C1
(T [D]Θ) ≤ L2

C(T [D]). Thanks to Lemma C.55, we have that L2
C1
(T [D]Θ) = L2

C1
(T [D]Θ↓)

and so L2
C1
(T1[D1]) ≤ L2

C(T [D]). Hence we deduce that µ2
gen(M1,M

′
1) ≤ µ2

gen(M,M ′). Since we
proved that µ1

gen(M1,M
′
1) ≤ µ1

gen(M,M ′), we can conclude that µgen(M1,M
′
1) ≤ µgen(M,M ′).

Application of the removal transformations: To simplify the proof, for a pair of matrices (M,M ′),

we denote (M̃, M̃ ′) the pair of matrices obtained after applying all the removal transformation.
Similarly, for an association table T in (M,M ′), we denote T̃ the association table corresponding
of T in (M̃, M̃ ′).

Let C be constraint system in (M,M ′) and its association table T such that T [D] =
∨

j βj

?

6= β′
j

with βj ∈ (F∗
d · AX), for all j and for some D. In such a case, we have (

∨
j βj

?

6= β′
j) ∈ S(M,M ′)

which means that there exists a multiset M2 such that µ2
gen(M,M ′) = M2∪{{L2

C(
∨

j βj

?

6= β′
j)}}.

However according to the definition of the removal transformation, the entry is in fact removed,
i.e. T̃ [D] = ⊥.

Since the removal transformation is applied on all association tables in (M,M ′), we can deduce

that (
∨

j βj

?

6= β′
j) 6∈ S(M̃, M̃ ′) and so µ2

gen(M̃, M̃ ′) = M2. On the other hand, if we denote M1

the multiset such that M1 = {{L1
C(D) | T [D] = (

∨
j βj

?

6= β′
j), for some D and some C in (M,M ′)

with T its association table}}, we also have that µ1
gen(M̃, M̃ ′) = µ1

gen(M,M ′) ∪M1.
But thanks to Lemma 8.17, we know that for all C in (M,M ′) and T its association table, for

all D, if T [D] = (
∨

j βj

?

6= β′
j) then (

∨
j βj

?

6= β′
j)acc

1(C)↓ = D. Hence thanks to Lemma C.55,

we deduce that L1
C(D) = L1

C(
∨

j βjacc
1(C)

?

6= β′
jacc

1(C)). At last, thanks to Lemma 8.18 and

βj ∈ (F∗
d · AX) for all j, we deduce that L1

C(D) < L2
C(
∨

j βj

?

6= β′
j). Thus, it allows us to conclude

that M2 < {{L2
C(
∨

j βj

?

6= β′
j)}} and so µgen(M̃, M̃ ′) < µgen(M,M ′).

C.7.3 Proofs of termination of each step of Phase 2 of the strategy

C.7.3.1 Termination of Step a of Phase 2

Lemma 8.20. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step a
of Phase 2 of the strategy. Let R(p̃) be one instance of the rule Axiom or Cons such that R(p̃)
is strongly applicable on at least one constraint system in M or M ′. At last, let (M1,M

′
1) and

(M2,M
′
2) be the two pairs of matrices of constraint systems obtained by application of R(p̃) on

(M,M ′). We have that:

µ2.a(M1,M
′
1) < µ2.a(M,M ′) ∧ µ2.a(M2,M

′
2) < µ2.a(M,M ′)

Proof. Thanks to the normalisation, we know that for all constraint system C in M , the disjunc-

tions of inequations in Eq(C) are of the form ∀ỹ.
∨

i xi

?

6= ui where ỹ is a set of universal variable

and xi are not universal for any i. Assume that (X, i
?

⊢ x) ∈ D(C) and a rule is applied on this de-
ducible constraint, i.e. Cons(X, f) or Axiom(X, path). Let’s denote C1 and C2 the two constraint
systems obtained by applying the rule on C, i.e. C1 is in (M1,M

′
1) and C2 is in (M2,M

′
2).

We first focus on (M1,M
′
1): In the case of rule Cons, since C satisfies InvVarConstraint(∞),

we deduce that x will be instantiated in C1 by f(x1, . . . , xn) where xk are not universal, for all
k ∈ {1, . . . , n}. In the case of rule Axiom, since C satisfies the invariant InvNoUse(∞), we know
that (ξ, j ⊲ u) ∈ Φ(C) with path(ξ) = path(ξ) implies that u 6∈ X 1 (otherwise we would have
(ξ, j ⊲ u) ∈ NoUse(C) and so the rule Axiom(X, path) would not be applicable).

Hence we have shown that x is necessary instantiated by a term different from a variable. We
denote σ the substitution that instantiates x. Let’s now look at the possible atomic statement
that contains x:

1. Case Eq(C) = E′ ∧ [∀ỹ.z.E′′ ∨ x
?

6= v] and z ∈ vars1(v): In such a case, we have that

Eq(C1) = E′σ↓ ∧ [∀ỹ.z.E′′σ ∨ xσ
?

6= vσ]↓. By hypothesis, we know that Eq(C) is normalised.
Hence we have that v 6= z which means that root(v) ∈ Fc. Let’s denote v = g(v1, . . . , vn).
Since x ∈ vars1(v), there exists k and a position p such that z ∈ vars1(vk) and vk|p = z.
This implies that (k · p) ∈ π1(µ2.a(M,M ′)). Furthermore, we proved that xσ 6∈ X 1, thus we
can denote xσ = f(u1, . . . , um).

If g = f then n = m and we have that (xσ
?

6= vσ)↓ = u1 ∨ v1 ∨ . . .∨ un ∨ vn. Hence in such a
case, we deduce that the same occurrence of z have the position p ∈ π1(µ2.a(M1,M

′
1)).

Else g 6= f. In such a case, we deduce that E′σ↓ ∧ [∀ỹ.z.E′′σ ∨ xσ
?

6= vσ]↓ = E′σ↓. Thus,
this specific occurrence of z in Eq(C) is no longer in Eq(C1).

2. Case Eq(C) = E′ ∧ [∀ỹ.z.E′′ ∨ x′
?

6= v], x′ 6= x and z ∈ vars1(v): We already proved that xσ

do not contain an universal variable and x
?

6= x′ which implies that x′
?

6= vσ)↓ = x′
?

6= vσ.
Hence if p is a position such that vσ|p = z then we also have that v|p = z which means that
p ∈ π1(µ2.a(M,M ′)) and p ∈ π1(µ2.a(M1,M

′
1)).

3. Case Eq(C) = E′∧ [∀ỹ.E′′∨x′
?

6= v] and vars1(v)∩ ỹ = ∅: Once again, we already proved that
xσ do not contain an universal variable hence vars1(v)∩ ỹ = ∅ implies that vars1(vσ)∩ ỹ = ∅

We have shown that the position of an occurrence of an universal variable either stay the same or
decrease. More specifically, we have shown that in Case 1, the position necessary decrease or the
occurrence is no longer in Eq(C1). Since Case 1 corresponds to the application condition of the
rule Axiom and Cons, we deduce that µ2.a(M1,M

′
1) < µ2.a(M,M ′).

We now focus on (M2,M
′
2): By definition of the rule Axiom and Cons, we know that the only

difference between C and C2 is the second order formula Er, i.e. Er(C2) = Er(C)∧ root(X)
?

6= f in

the case of the rule Cons(X, f); and Er(C2) = Er(C)∧X
?

6= ξ in the case of the rule Axiom(X, path)
with path(ξ) = path and (ξ, j ⊲ u) ∈ Φ(C). Hence we trivially have that πk(µ2.a(M2,M

′
2)) =

πk(µ2.a(M,M ′)) with k = 1, 2 and π3(µ2.a(M2,M
′
2)) < π3(µ2.a(M,M ′)) in the case of the

rule Axiom; whereas we have π1(µ2.a(M2,M
′
2)) = π1(µ2.a(M,M ′)) and π2(µ2.a(M2,M

′
2)) <

π2(µ2.a(M,M ′)) in the case of the rule Cons. We conclude that µ2.a(M2,M
′
2) < µ2.a(M,M ′).

C.7.3.2 Termination of Step b of Phase 2

Definition C.3. Let C be a well-formed constraint system satisfying InvVarConstraint(∞). We

say that H1(x
?

6= v) exists if root(v) ∈ Fc and either st(v)∩N 6= ∅ or indC(x) < indC(v). Moreover,

when H1(x
?

6= v) exists, H1(x
?

6= v) = (ha, hb) where ha = max{|p| | v|p ∈ N} and hb = max{v|p ∈
X 1 ∧ indC(x) < indC(v|p)}.

We define similarly H2 for context of recipes:

Definition C.4. Let C be a well-formed constraint system satisfying InvVarConstraint(∞). We

say that H2(X
?

6= β) exists if root(β) ∈ Fc and either st(β) ∩ (F∗
d · AX) 6= ∅ or paramCC

max(X) <

paramCC
max(β). Moreover, when H2(X

?

6= β) exists, H2(X
?

6= β) = (ha, hb) where ha = max{|p| |
β|p ∈ (F∗

d · AX)} and hb = max{β|p ∈ X 2 ∧ paramCC
max(X) < paramCC

max(β|p)}.

Lemma C.57. Let C be a well-formed constraint system satisfying InvVarConstraint(∞). Let

y
?

6= u be a inequation on term. Let σ = {x 7→ v} such that x 6∈ vars1(v), indC(v) ≤ indC(x)

and st(v) ∩ N = ∅. If mgu(yσ
?

6= uσ) exists then
∨n

k zk
?

6= tk such that (y
?

6= u)σ↓ =
∨

k yk
?

6= tk.
Moreover,

— if indC(x) < indC(y) then

— (y
?

6= u)σ↓ = (y
?

6= uσ); and

— H1(y
?

6= uσ) exists implies H1(y
?

6= u) exists and H1(y
?

6= uσ) = H1(y
?

6= u);

— else if indC(x) = indC(y) then for all k,

— if indC(yk) > indC(y) then H1(yk
?

6= tk) does not exist.

— if indC(yk) = indC(y) and H1(yk
?

6= tk) exists then H1(y
?

6= u) exists. Moreover, if

x = y and v 6∈ X 1 then H1(yk
?

6= tk) < H1(y
?

6= u) else H1(yk
?

6= tk) = H1(y
?

6= u) and

(y 6= u)σ↓ = (yσ
?

6= uσ).

Proof. Since mgu(yσ
?

6= uσ) exists, we deduce that either x 6∈ st(y, u) or x ∈ st(u) or else x = y.

In the first two cases, we deduce that (yσ
?

6= uσ)↓ = (y
?

6= uσ). Moreover, since indC(v) ≤ indC(x)

and st(v) ∩ N = ∅, we also deduce that if H1(y
?

6= uσ) exists then so does H1(y
?

6= uσ) and

H1(y
?

6= u) = H1(y
?

6= uσ).
Assume now that x = y and u = v. In such a case, by the normalisation rule (Nt1), we deduce

that n = 0 and so the result trivially holds.

At last, assume that x = y and u 6= v. In such a case, since mgu(yσ
?

6= uσ) exists then the only
normalisation rule that can be applied are (Nt1) and (Nsplit). Hence, thanks to st(v)∩N = ∅, we

deduce that there exists
∨

k yk
?

6= tk such that (y
?

6= u)σ↓ =
∨n

k yk
?

6= tk and for all k ∈ {1, . . . , n}:

1. either yk ∈ st(v) and tk ∈ st(u);

2. or yk ∈ st(u) and tk ∈ st(v).

Let k ∈ {1 . . . n}. Assume first that indC(yk) > indC(y). Since x = y and indC(v) ≤ indC(x), we
deduce that yk 6∈ st(v) and so yk ∈ st(u) and tk ∈ st(v). But tk ∈ st(v) and indC(yk) > indC(v)
implies indC(tk) < indC(yk). Moreover, by hypothesis, st(v) ∩ N = ∅ hence st(tk) ∩ N = ∅. Thus

we deduce that H1(yk
?

6= tk) does not exists. Hence the result holds.

Assume now that indC(yk) = indC(y) and H1(yk
?

6= tk) exists. Thus, we deduce that root(tk) ∈
Fc and either st(tk)∩N 6= ∅ or indyk

(<)indtk(). But we know that indC(v) ≤ indC(x) = indC(y) =
indC(yk) and st(v) ∩ N = ∅ hence in both cases, we deduce that yk ∈ st(v) and tk ∈ st(u).
Furthermore, tk ∈ st(u) and root(tk) ∈ Fc implies that root(u) ∈ Fc. At last, tk ∈ st(u),
indC(yk) = indC(y) and either st(tk) ∩ N 6= ∅ or indyk

(<)indtk() imply that either st(u) ∩ N 6= ∅

or indy(<)indu(). Hence H1(y
?

6= u) exists.

It remains to check the value of H1(y
?

6= u). If v ∈ X 1 then tk = u and so we deduce that

H1(y
?

6= u) = H1(yk
?

6= u). Else v 6∈ X 1 implies that root(v) = root(u) ∈ Fc. In such a case, there
is at leaf one application of the normalisation rule (Nsplit) and so the length of the position of

each name or each variable in u strictly decrease. Hence we deduce that H1(yk
?

6= tk) < H1(y
?

6= u).
Thus the result holds.

Lemma C.58. Let C be a well-formed constraint system satisfying InvVarConstraint(∞). Let Y
?

6=
β be a inequation on context of recipe. Let θ = {X 7→ ξ} such that X 6∈ vars2(ξ), paramCC

max(ξ) ≤

paramX
max(C) and st(ξ) ∩ (F∗

d · AX) = ∅. If mgu(Y θ
?

6= βθ) exists then
∨n

k Yk

?

6= ζk such that

(Y
?

6= β)θ

=
∨

k Yk

?

6= ζk. Moreover,

— if paramCC
max(x) < paramCC

max(y) then

— (Y
?

6= β)θ

= (Y
?

6= βθ); and

— H2(Y
?

6= βθ) exists implies H2(Y
?

6= β) exists and H2(Y
?

6= βθ) = H2(Y
?

6= β);

— else if paramCC
max(X) = paramY

max(C) then for all k,

— if paramCC
max(Yk) > paramCC

max(Y) then H2(Yk

?

6= ζk) does not exist.

— if paramCC
max(Yk) = paramCC

max(Y) and H2(Yk

?

6= ζk) exists then H2(Y
?

6= β) exists.

Moreover, if X = Y and ξ 6∈ X 2 then H2(Yk

?

6= ζk) < H2(Y
?

6= β) else H2(Yk

?

6= ζk) =

H2(Y
?

6= β) and (Y 6= β)θ

= (Y θ
?

6= βθ).

Proof. The proof is similar to the proof of Lemma C.57.

Lemma 8.21. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step b
of the second phase. Let R(p̃) be an applicable rule and (M1,M

′
1) and (M2,M

′
2) the two pairs of

matrices of constraint systems obtained by application of R(p̃) on (M,M ′). We have that:

µ2.b(M1,M
′
1) < µ2.b(M,M ′) and µ2.b(M2,M

′
2) < µ2.b(M,M ′)

Proof. Thanks to Lemma 8.19, we know that µgen(M1,M
′
1) ≤ µgen(M,M ′) and µgen(M2,M

′
2) ≤

µgen(M,M ′). Furthermore, this lemma also tells us that for all i ∈ {1, 2}, if a removal transforma-
tion is applied on (Mi,M

′
i) then µgen(Mi,M

′
i) < µgen(M,M ′) which implies that µ2.b(Mi,M

′
i) <

µ2.b(M,M ′). Hence we will assume from now on that no removal transformation is applied. We
do a case analysis on the rule applied and the pair of matrices we consider:

Case rule Cons(X, f) and (M2,M
′
2): Let C be a constraint system in (M,M ′) different from ⊥

and T its association table. Let C2 be the constraint system in (M2,M
′
2) and T2 its association

table such that C → C2. According to Figure 7.1 and the strategy, there exists (X, i
?

⊢ x) ∈ D(C)

and Er(C) 6� root(X)
?

6= f. Furthermore, the only difference between C2 and C is that Er(C2) =

Er(C) ∧ root(X)
?

6= f.
Hence the default transformation on association table does not modify T which means that

T = T2 and so πk(µ2.b(M2,M
′
2)) = πk(µ2.b(M,M ′)), for k = 2, 3. Furthermore, we also have

that for all k ∈ {1, . . . , n} r {i}, µk
var(M2,M

′
2) = µk

var(M,M ′), µk
cons(M2,M

′
2) = µk

cons(M,M ′)

and µi
var(M2,M

′
2) = µi

var(M,M ′). Moreover, for all g ∈ Fc, Er(C2) 6� root(X)
?

6= g im-

plies that Er(C) 6� root(X)
?

6= g. Thus we deduce that µi
cons(M2,M

′
2) ≤ µi

cons(M2,M
′
2) and

so π4(µ2.b(M2,M
′
2)) ≤ π4(µ2.b(M,M ′)). At last, since Er(C) 6� root(X)

?

6= f and Er(C2) �

root(X)
?

6= f, we deduce that π5(µ2.b(M2,M
′
2)) < π5(µ2.b(M,M ′)) and so we have µ2.b(M2,M

′
2) <

µ2.b(M,M ′).

Case rule Cons(X, f) and (M1,M
′
1): Let C be a constraint system in (M,M ′) different from ⊥

and T its association table. Let C1 be the constraint system in (M1,M
′
1) and T1 its association

table such that C → C1. According to Figure 7.1 and the strategy, there exists (X, i
?

⊢ x) ∈ D(C)

and Er(C) 6� root(X)
?

6= f. Furthermore, we have that Er(C1) = Er(C) ∧ X
?
= f(X1, . . . , Xm),

Eq(C1) = (Eq(C)∧x
?
= f(x1, . . . , xm))↓ and D(C1) = D(C)r{X, i

?

⊢ x}∪{Xk, i
?

⊢ xk}k=1..m where
X1, x1, . . . , Xm, xm are fresh variables.

Thanks to the normalisation, we deduce that for all disjunction D1 of first order term, if there
exists E1 such that Eq(C1) = E1 ∧D1 then there exists D and E such that Eq(C) = E ∧D and
Dσ↓ = D1 where σ = {x 7→ f(x1, . . . , xm)}. But we assumed that only the default transformation
on association table is applied and so we have T1[D1] = ⊥ is equivalent to T [D] = ⊥. Thus
we deduce that π2(µ2.b(M1,M

′
1)) ≤ π2(µ2.b(M,M ′)). Moreover, since T1[D1] = T [D]{X 7→

f(X1, . . . , Xm)}

, then and st(T1[D1]) ∩ (F∗
d · AX) 6= ∅ is equivalent to st(T [D]) ∩ (F∗

d · AX) 6= ∅.
Hence we deduce that π3(µ2.b(M1,M

′
1)) ≤ π3(µ2.b(M,M ′)).

We first show that for all j > i, µj
cons,1(M,M ′). Let D1 be a disjunction on first order terms.

Let y1 ∈ X 1 and u1 a term such that Eq(C1) = E1 ∧ (D1 ∨ y1
?

6= u1), T1[D1 ∨ y1
?

6= u1] = ⊥,

j = indC1
(y1) > i and H1(y1

?

6= u1) exists. Since we only consider the default transformation
on association table, we deduce that there exists D and E such that Eq(C) = E ∧ D such that
Dσ↓ = D1 ∨ y1 6= u1 where σ = {x 7→ f(x1, . . . , xn)}.

But C and C1 satisfy InvVarConstraint(∞). Thus, thanks to Lemma C.57 and since indC(x) <

indC1
(y1) and H1(y1

?

6= u1) exists, we deduce that there exists D′, y, u such that D = D′ ∨ y
?

6= u,

(y
?

6= u)σ↓ = (y
?

6= uσ) = (y1 6= u1) and H1(y
?

6= u) = H1(y1
?

6= u1). At last, C being normalised

and satisfying InvVarConstraint(∞) also implies that there exists (Y, j
?

⊢ y1) ∈ D(C1) and so

(Y, j
?

⊢ y) ∈ D(C). Thus Er(C1) � root(Y)
?

6= root(u1) implies that Er(C1) � root(Y)
?

6= root(u).

We conclude that H1(y1
?

6= u1) ∈ µj
cons,1(M1,M

′
1) implies that H1(y

?

6= u) ∈ µj
cons,1(M,M ′) and so

µj
cons,1(M1,M

′
1) ≤ µj

cons,1(M,M ′).

Using a similar proof and relying on Lemma C.58, we can show that µj
cons,2(M1,M

′
1) ≤

µj
cons,2(M,M ′) and so µj

cons(M1,M
′
1) ≤ µM,M ′

cons ().

We now show that µi
cons(M1,M

′
1) < µi

cons(M,M ′). Let D1 be a disjunction on first order

terms. Let y1 ∈ X 1 and u1 a term such that Eq(C1) = E1 ∧ (D1 ∨ y1
?

6= u1), T1[D1 ∨ y1
?

6= u1] = ⊥,

j = indC1
(y1) = i and H1(y1

?

6= u1) exists. Since we only consider the default transformation
on association table, we deduce that there exists D and E such that Eq(C) = E ∧ D such that
Dσ↓ = D1 ∨ y1 6= u1 where σ = {x 7→ f(x1, . . . , xn)}.

Thanks to Lemma C.57 and since indC(x) = indC1
(y1) and H1(y1

?

6= u1) exists, we deduce that

there exists D′, y, u such that D = D′ ∨ y
?

6= u and (y
?

6= u)σ↓ =
∨

k yk
?

6= uk. Moreover, since σ =

{x 7→ f(x1, . . . , xn}, we deduce that H1(y
?

6= u) exists and if x = y then H1(y1
?

6= t1) < H1(y
?

6= u)

else H1(y1
?

6= t1) = H1(y
?

6= u), yσ = y1 and uσ = u1.
Thus, we deduce that µi

cons,1(M1,M
′
1) ≤ µi

cons,1(M,M ′) and if there exists one inequation in

C of the form x
?

6= v where H1(x
?

6= v) exists then µi
cons,1(M1,M

′
1) < µi

cons,1(M,M ′).
Similarly, relying on Lemma C.58, we can show that µi

cons,2(M1,M
′
1) ≤ µi

cons,2(M,M ′) and if

there exists one inequation in T of the form X
?

6= β where H2(X
?

6= β) exists then µi
cons,2(M1,M

′
1) <

µi
cons,2(M,M ′).

But according to the application condition for Cons(X, f), there exists at least one constraint
system C in (M,M ′) and T its association table that satisfy one of these two conditions. Hence,
we deduce that µi

cons(M1,M
′
1) < µi

cons(M,M ′).
At last, since we trivially have that µj

var(M1,M
′
1) = µj

var(M,M ′) for all j > i, we conclude
that µ2.b(M1,M

′
1) < µ2.b(M,M ′).

Case rule Eq-right-right(X, ξ) and (M2,M
′
2): Let C be a constraint system in (M,M ′) differ-

ent from ⊥ and T its association table. Let C2 be the constraint system in (M2,M
′
2) and T2 its

association table such that C → C2. According to Figure 7.1, there exists (X, i
?

⊢ x) ∈ D(C). Fur-

thermore, the only difference between C2 and C is that Eq(C2) = (Eq(C)∧Xacc1(C)
?

6= ξacc1(C))↓.

Moreover, T2[Xacc1(C)
?

6= ξacc1(C)] = X
?

6= ξ. But we know that ξ ∈ T (Fc,X
2) thus st(X

?

6=
ξ) ∩ (F∗

d · AX) = ∅. Hence we deduce that πk(µ2.b(M2,M
′
2)) < πk(µ2.b(M,M ′)), for k = 1, 2.

But according to the application condition for Eq-right-right(X, ξ), there exists at least one

constraint system C in (M,M ′) and T its association table such that Eq(C) = E′∧(E′′∨Xacc1(C)
?

6=
ξacc1(C)) and

— either (a) T [E′′ ∨Xacc1(C)
?

6= ξacc1(C)] = ⊥

— or else (b) T [E′′ ∨Xacc1(C)
?

6= ξacc1(C)] = D ∨X
?

6= ξ with (F∗
d · AX) ∩ st(D) 6= ∅.

But Eq(C1) = (Eq(C) ∧ Xacc1(C)
?

6= ξacc1(C))↓ and so by the normalisation rule (Nd), we have

Eq(C1) = E′ ∧ Xacc1(C)
?

6= ξacc1(C). Hence in Case (a), we deduce that π2(µ2.b(M2,M
′
2)) <

π2(µ2.b(M,M ′)) whereas in Case (b), π3(µ2.b(M2,M
′
2)) < π3(µ2.b(M,M ′)). Thus in both cases,

we deduce that µ2.b(M2,M
′
2) < µ2.b(M,M ′).

Case rule Eq-right-right(X, ξ) and (M1,M
′
1): Let C be a constraint system in (M,M ′) different

from ⊥ and T its association table. Let C1 be the constraint system in (M1,M
′
1) and T1 its

association table such that C → C1. According to the definition of the rule and since C satisfies

InvVarConstraint(∞), there exists (X, i
?

⊢ x) ∈ D(C) such that paramCC
max(ξ) ≤ i, ξacc1(C) ∈

T (Fc,X
1) and indC(ξacc

1()) ≤ i. Moreover, Eq(C1) = Eq(C)σ↓ ∧ x
?
= ξacc1(C) and Er(C1) =

Er(C)θ

∧X
?
= ξ where σ = {x 7→ ξacc1(C)} and θ = {X 7→ ξ}.

Thanks to the normalisation, we deduce that for all disjunction D1 of first order term, if there
exists E1 such that Eq(C1) = E1 ∧D1 then there exists D and E such that Eq(C) = E ∧D and
Dσ↓ = D1. But we assumed that only the default transformation on association table is applied
and so we have T1[D1] = ⊥ is equivalent to T [D] = ⊥. Thus we deduce that π2(µ2.b(M1,M

′
1)) ≤

π2(µ2.b(M,M ′)). Moreover, since T1[D1] = T [D]{X 7→ ξ}

and st(ξ) ∩ (F∗
d · AX) = ∅, then

st(T1[D1]) ∩ (F∗
d · AX) 6= ∅ is equivalent to st(T [D]) ∩ (F∗

d · AX) 6= ∅. Hence we deduce that
π3(µ2.b(M1,M

′
1)) ≤ π3(µ2.b(M,M ′)).

Once again, we can rely on Lemmas C.57 and C.58. Hence using a similar proof to the one for
the rule Cons, we deduce that µj

cons(M1,M
′
1) ≤ µj

cons(M,M ′) for all j ≥ i. Since the deducible

constraint (X, i
?

⊢ x) is removed in D(C1), we can also deduce that µi
var(M1,M

′
1) < µi

var(M,M ′)
and so µ2.b(M1,M

′
1) < µ2.b(M,M ′).

C.7.3.3 Termination of Step c of Phase 2

Lemma 8.22. Let (M,M ′) be a pair of matrices of constraint systems obtained during Step c of
the second phase. Let Axiom(p̃) be an applicable rule and (M1,M

′
1) and (M2,M

′
2) the two pairs

of matrices of constraint systems obtained by application of Axiom(p̃) on (M,M ′). We have that:

µ2.c(M1,M
′
1) < µ2.c(M,M ′) and µ2.c(M2,M

′
2) < µ2.c(M,M ′)

Proof. Direct from the definition of the rule Axiom.

C.7.3.4 Termination of the cycle of steps b and c of Phase 2

Lemma 8.23. Let (M,M ′) be a pair of matrices of constraint systems obtained at the end of Step
b of the second phase. Assume that there exists (M1,M

′
1) obtained at the end of the next Step b

of the second phase such that (M,M ′) →∗ (M1,M
′
1). At last, assume that there exists (M0,M

′
0)

obtained at the end of step c of the second phase such that (M1,M
′
1) →

∗ (M0,M
′
0). In such a case,

µgen(M0,M
′
0) < µgen(M,M ′).

Proof. Since (M,M ′) →∗ (M1,M
′
1) and both are obtained at the end of Step b, we deduce that

there exists (M2,M
′
2) obtained at the end of Step c such that (M,M ′) →∗ (M2,M

′
2) →

∗ (M1,M
′
1).

First of all, thanks to Lemma 8.19, if a removal transformation was applied on the association
table, we directly deduce that µgen(M0,M

′
0) < µgen(M,M ′). Hence for the rest of this proof, we

will assume that no removal transformation is applied.
Consider C (resp C1, C2) a constraint system in (M,M ′) (resp. (M1,M

′
1), (M2,M

′
2)) and T

(resp. T1, T2) its association table. Assume that C →∗ C2 →∗ C1.

Let
∨

i ui

?

6= vi such that Eq(C) = E ∧
∨

i ui

?

6= vi for some E, and T [
∨

i ui 6= vi] = ⊥. Thanks

to Lemma C.33, we know that for all i, ui

?

6= vi satisfies one of the following properties:

1. ui ∈ X 1 and vi ∈ N

2. ui, vi ∈ X 1, Er(C) � root(Xi)
?

6= f and Er(C) 6� root(Yi)
?

6= g, for all f, g ∈ Fc, where

(Xi, p
?

⊢ ui), (Yi, q
?

⊢ vi) ∈ D(C):

3. ui ∈ X 1, root(vi) ∈ Fc and for all f ∈ Fc, Er(C) � root(X)
?

6= f, where (Xi, p
?

⊢ ui) ∈ D(C)

We can assume that C1 and C2 are different from ⊥ otherwise the result trivially holds. However,

since in case 1 vi ∈ N and in cases 2,3 we have for all f ∈ Fc, Er(C) � root(Xi)
?

6= f, we deduce that
the rules Axiom(Xi, path) are applied during step c, for all i. Hence, since we assume that C1 6=⊥,

we deduce that either (
∨

i ui

?

6= vi)mgu(Eq(C2))↓ is true or else each ui ∈ dom(Eq(mgu(C2))) for
all i, i.e. each ui are instantiate by the rule axiom.

However, by applying Axiom(Xi, path), we know that there exists a frame element (ξ, j ⊲ t)
such that j ≤ i and path(ξ) = path. Moreover, by the origination property of a constraint system,
we know that indC(t) < j ≤ i. Hence thanks to Lemma C.54 and since each ui are instantiated
by a term ti such that indC(ti) < indC(ui), we deduce that L1

C(
∨

i ui 6= vi) < L1
C2
((
∨

i ui 6=
vi)mgu(Eq(C2))). Hence we conclude that µgen(M2,M

′
2) < µgen(M,M ′) and so µgen(M0,M

′
0) <

µgen(M,M ′).

Let
∨

j ξj
?

6= ξj such that T [
∨

i ui

?

6= vi] =
∨

i ξi
?

6= ξ′i. Once again thanks to Lemma C.33, we

know that either for all i, st(ξi, ξ′i) ∩ (F∗
d · AX) = ∅ or else for all i, ξi

?

6= ξ′i satisfies one of the
following properties:

1. ξi ∈ (F∗
d · AX)

2. ξi, ξ
′
i ∈ X 2, for all f ∈ Fc, Er(C) � root(ξi)

?

6= f and Er(C) 6� root(ξ′i)
?

6= f

3. ξi ∈ X 2, root(ξ′i) ∈ Fc and for all f ∈ Fc, Er(C) � root(ξi)
?

6= f

Assume first that there exists i such that st(ξi, ξ
′
i) ∩ (F∗

d · AX) 6= ∅. Since in cases 2 and3 we

have ξi ∈ X 2 and for all f ∈ Fc, Er(C) � root(ξi)
?

6= f, we deduce that the rules Axiom(ξi, path)
are applied during step c, for all i and all path. But we consider that C2 6=⊥. Hence thanks to
the normalisation rule (Nnosol), we deduce that each ξi that satisfied cases 2 and 3 are instan-

tiated in C2 by the rule Axiom(ξi, path). But in such a case, we would have that T2[(
∨

i ui

?

6=

vi)mgu(Eq(C2))↓] =
∨

j ζj
?

6= ζ ′j where for all j, ζj ∈ (F∗
d · AX). Hence the removal transformation

would have been applied which is in contradiction with our hypothesis. Hence we deduce that for
all i, st(ξi, ξ′i) ∩ (F∗

d · AX) = ∅.

Thus, can assume from now on that for all constraint system C in M or M ′, for all
∨

i ui

?

6= vi

in Eq(C), there exists D such that T [
∨

i ui

?

6= vi] = D and st(D) ∩ (F∗
d · AX) = ∅. (We already

corvered all the other cases). Since we assumed that (M,M ′) →∗ (M2,M
′
2), it implies that some

instances of the rules Axiom was applied between (M,M ′) and (M2,M
′
2) (otherwise, we would

have that the strategy would have stop at (M,M ′)).
But the according to the application conditions of the rule Axiom, it implies that there exists

C in (M,M ′) and f ∈ Fc such that (X, i
?

⊢ x) ∈ D(C) and Er(C) � root(X)
?

6= f. Since we

assumed that (M2,M
′
2) →∗ (M1,M

′
1), we can deduce that there exists a disjunction E ∨ x

?

6= u

such that T [E ∨ x
?

6= u] = D ∨ X
?

6= β (otherwise no rule Cons and Eq-right-right would be
applicable on (M2,M

′
2)). But by application of the rule Axiom(X, path), then we deduce that

st(T2[(E∨x
?

6= u)mgu(Eq(C2))↓])∩(F
∗
d ·AX) 6= ∅. Since the rules Cons and Eq-right-right only

instantiate the association tables by context of recipes in T (Fc,X 2), we deduce that st(T1[(E ∨

x
?

6= u)mgu(Eq(C1))↓]) ∩ (F∗
d · AX) 6= ∅. Since (M0,M

′
0) is obtained at the end of Step c and

(M1,M
′
1) →∗ (M0,M

′
0), by using a similar proof as previously, we prove that µgen(M0,M

′
0) <

µgen(M1,M
′
1) and so µgen(M0,M

′
0) < µgen(M,M ′).

Appendix D

ProVerif

D.1 Equivalence proofs

We say that a biprocess P is uniform when fst(P) → Q1 implies that P → Q for some biprocess
Q with fst(Q) ≡ Q1, and symmetrically for snd(P) → Q2. For the proof of Lemma 9.3, we rely
on [BAF08, Theorem 1].

Lemma 9.3. Let P0 be a closed biprocess. Suppose that, for all plain evaluation contexts C, all
evaluation contexts C ′, and all reductions C[P0] →∗ P ,

1. if P ≡ C ′[out(N,M).Q | in(N ′, x).R], then fst(N) =Σ fst(N ′) if, and only if, snd(N) =Σ

snd(N ′); and

2. if P ≡ C ′[let x = D in Q else R], then fst(D) ↓Σ fail if, and only if, snd(D) ↓Σ fail.

Then P0 satisfies observational equivalence.

Proof. We show that P is uniform, then we conclude by [BAF08, Theorem 1]. Let us show that,
if fst(P) → P ′

1 then there exists a biprocess P ′ such that P → P ′ and fst(P ′) ≡ P ′
1. The case for

snd(P) → P ′
2 is symmetric.

By induction on the derivation of fst(P) → P ′
1, we first show that there exist C, Q, and Q′

1

such that P ≡ C[Q], P ′
1 ≡ fst(C)[Q′

1], and fst(Q) → Q′
1 using one of the four process rules (Red

I/O), (Red Fun 1), (Red Fun 2), or (Red Repl): every step in this derivation trivially commutes
with fst, except for structural steps that involve a parallel composition and a restriction, in case
a ∈ fnames(P) but a /∈ fnames(fst(P)). In that case, we use a preliminary renaming from a to
some fresh a′ /∈ fnames(P).

For each of these four rules, relying on a hypothesis of Corollary 9.3, we find Q′ such that
fst(Q′) = Q′

1 and Q → Q′ using the corresponding biprocess rule:

(Red I/O): We have Q = out(N,M).R | in(N ′, x).R′ with ⊢ fst(N) =Σ fst(N ′) and Q′
1 = fst(R) |

fst(R′){fst(M)/x}. For Q′ = R | R′{M/x}, we have fst(Q′) = Q′
1 and, by hypothesis 1,

snd(N) =Σ snd(N ′), hence Q → Q′.

(Red Fun 1): We have Q = let x = D in R else R′ with fst(D) ↓Σ M1 and Q′
1 = fst(R){M1/x}. By

hypothesis 2 and Lemma 9.2, snd(D) ↓Σ M2 for some M2. We take Q′ = R{diff[M1,M2]/x},
so that fst(Q′) = Q′

1 and Q → Q′.

(Red Fun 2): We have Q = let x = D in R else R′ with fst(D) ↓Σ fail and Q′
1 = fst(R′). By

hypothesis 2, snd(D) ↓Σ fail. We obtain Q → Q′ for Q′ = R′.

(Red Repl): We have Q =!R and Q′
1 = fst(R) |! fst(R). We take Q′ = R |!R, so that fst(Q′) = Q′

1

and Q → Q′.

To conclude, we take the biprocess P ′ = C[Q′] and the reduction P → P ′.

337

D.1.1 Lemmas for modelling the equational theory

The following lemma shows the soundness of D′ ↓′Σ′ (M ′, σ′, φ′) with respect to D ↓Σ′ M . We
say that a term evaluation is plain if it does not contain diff. Similarly, we define a plain message
and plain may-fail message.

Lemma D.1. Let σ be a closed substitution.

Let D be a plain term evaluation. If Dσ ↓Σ′ U , then there exist U ′, σ1, φ, and σ′
1 such that

D ↓′ (U ′, σ1, φ), U = U ′σ′
1, σ = σ1σ

′
1 except on fresh variables introduced in the computation of

D ↓′ (U ′, σ1, φ), and σ′
1 � φ.

Let D1, . . . , Dn be plain term evaluations. If for all i ∈ {1, . . . , n}, Diσ ↓Σ′ Mi, then there
exist U ′

1, . . . , U
′
n, σ1, φ and σ′

1 such that (D1, . . . , Dn) ↓′ ((U ′
1, . . . , U

′
n), σ1, φ), Ui = U ′

iσ
′
1 for all

i ∈ {1, . . . , n}, σ = σ1σ
′
1 except on fresh variables introduced in the computation of (D1, . . . , Dn) ↓

′

((U ′
1, . . . , U

′
n), σ1, φ), and σ′

1 � φ.

Proof. The proof is by mutual induction following the definition of ↓′.

— Case D = U ′: Take σ1 = ∅, σ′
1 = σ and φ = ⊤. Since U = U ′σ and σ′

1 � ⊤, we have the
result.

— Case D = eval h(D1, . . . , Dn): Since eval h(D1σ, . . . ,Dnσ) ↓Σ′ U , there exist h(V1, . . . , Vn) →
V || φ′ in defΣ′(h) and σm such that Diσ ↓Σ′ Viσm, U = V σm and σm � φ′.

By induction hypothesis, there exist U ′
i , φ′′, σ1, and σ′

1 such that Viσm = U ′
iσ

′
1 for all

i ∈ {1, . . . , n}, (D1, . . . , Dn) ↓′ ((U ′
1, . . . , U

′
n), σ1, φ

′′), σ = σ1σ
′
1 except on fresh variables

introduced in the computation of (D1, . . . , Dn) ↓
′ ((U ′

1, . . . , U
′
n), σ1, φ

′′), and σ′
1 � φ′′.

Let σu be the most general unifier of U ′
i and Vi for i ∈ {1, . . . , n}. (The substitution σu exists

since Viσm = U ′
iσ

′
1.) Then eval h(D1, . . . , Dn) ↓

′ (V σu, σ1σu, φ
′σu∧φ′′σu). The substitution

that maps variables of Vi, V as σm and other variables as σ′
1 is a unifier of U ′

i and Vi, so
there exists σ′′

1 such that σm = σuσ
′′
1 on variables of Vi, V , and σ′

1 = σuσ
′′
1 on other variables.

With σm � φ′ and σ′
1 � φ′′, it also implies that σ′′

1 � φ′σu ∧ φ′′σu.

Then V σuσ
′′
1 = V σm = U and σ1σuσ

′′
1 = σ1σ

′
1 = σ except on fresh variables introduced

in the computation of (D1, . . . , Dn) ↓
′ ((U ′

1, . . . , U
′
n), σ1, φ

′′) and variables of V1, . . . , Vn, V ,
that is, fresh variables introduced in the computation of D ↓′ (V σu, σ1σu, φ

′σu ∧ φ′′σu).

— Case (D1, . . . , Dn): We have, for all i in {1, . . . , n}, Diσ ↓Σ′ Ui.

By induction hypothesis, there exist U ′
i , φ, σ1, and σ′

1 such that Ui = U ′
iσ

′
1 for all i ∈

{1, . . . , n− 1}, (D1, . . . , Dn−1) ↓
′ ((U ′

1, . . . , U
′
n−1), σ1, φ), σ = σ1σ

′
1 except on fresh variables

introduced in the computation of (D1, . . . , Dn−1) ↓′ ((U ′
1, . . . , U

′
n−1), σ1, φ), and σ′

1 � φ.

Then Dnσ = Dnσ1σ
′
1, so (Dnσ1)σ

′
1 ↓Σ′ Un. So by induction hypothesis, there exist U ′

n, φ′,
σ2, and σ′

2 such that Dnσ1 ↓′ (U ′
n, σ2, φ

′), Un = M ′
nσ

′
2, σ

′
1 = σ2σ

′
2 except on fresh variables

introduced in the computation of Dnσ1 ↓′ (U ′
n, σ2, φ

′), and σ′
2 � φ′. With σ′

1 � φ, we deduce
that σ2σ

′
2 � φ and so σ′

2 � φσ2.

Hence (D1, . . . , Dn) ↓′ ((U ′
1σ2, . . . , U

′
n−1σ2, U

′
n), σ1σ2, φσ2 ∧ φ′), σ′

2 � φσ2, Ui = U ′
iσ

′
1 =

(U ′
iσ2)σ

′
2 for all i ∈ {1, . . . , n− 1}, Un = U ′

nσ
′
2, and σ = σ1σ

′
1 = σ1σ2σ

′
2 except on fresh vari-

ables introduced in the computation of (D1, . . . , Dn) ↓
′ ((U ′

1σ2, . . . , U
′
n−1σ2, U

′
n), σ1σ2, φσ2∧

φ′).

For the following lemmas, w represents a variable that is either a message variable or a may-fail
message variable.

Lemma D.2. Let U ′ a plain ground may-fail message, σ a closed substitution and U a plain
may-fail message. Assume that U ′ =Σ Uσ. We have:

— if U ′ = fail then addeval(U)σ ↓Σ′ U ′

— if U ′ is a message and nfS,Σ({U ′} ∪ {wσ | w ∈ fvars(U)}) then addeval(U)σ ↓Σ′ U ′.

Proof. Assume first that U ′ = fail. In such a case, U can be either a may-fail variable or fail. In
both cases, addeval(U) = U and so addeval(U)σ = Uσ. Moreover, U ′ = fail and U ′ =Σ Uσ imply
that U ′ = Uσ and so addeval(U)σ ↓Σ′ U ′.

Assume now that U ′ is a message. The proof is by induction on U .

— Case U = fail: Impossible

— Case U = w: We have wσ =Σ Uσ =Σ U ′. Since nfS,Σ({wσ,U ′}), wσ = U ′. Moreover,
addeval(U)σ = wσ ↓Σ′ wσ = U ′.

— Case U = a: Since U ′ =′
Σ Uσ and nfS,Σ({U

′}), we have U ′ = a by [BAF08, Lemma 4], so
addeval(U)σ = a ↓Σ′ a = U ′.

— Case U = f(M1, . . . ,Mn): We have U ′ =Σ Mσ =Σ f(M1σ, . . . ,Mnσ) and nfS,Σ({U ′} ∪
{wσ | w ∈ fvars(M)}). By Property S2, there exist M ′

1, . . . ,M
′
n such that Miσ =Σ

M ′
i and nfS,Σ({U

′,M ′
1, . . . ,M

′
n} ∪ {wσ | w ∈ fvars(U)}). By Property S4, there exist

f(N1, . . . , Nn) → N in defΣ′(f) and σ′ such that U ′ = Nσ′ and Niσ
′ = M ′

i for all i ∈
{1, . . . , n}. By induction hypothesis, addeval(Mi)σ ↓Σ′ M ′

i = Niσ
′ for all i ∈ {1, . . . , n}. By

definition of ↓Σ′ , addeval(U)σ = eval f(addeval(M1)σ, . . . , addeval(Mn)σ) ↓Σ′ Nσ′ = U ′.

The following lemma shows the soundness of the rewrite rules of h in Σ′ with respect to these
rewrite rules in Σ. When h is a destructor, this is proved using the previous two lemmas, and
when h is a constructor, this follows from the definition of “Σ′ models Σ”.

Lemma D.3. Let U1, . . . , Un, U ground may-fail messages and let U the set of messages of U1,
. . . , Un, U . If h(V1, . . . , Vn) → V || φ is in defΣ(h), Ui =Σ Viσ for all i ∈ {1, . . . , n}, U =Σ V σ,
σ � φ, and nfS,Σ(U), then there exist h(V ′

1 , . . . , V
′
n) → V ′ || φ′ in defΣ′(h) and σ′ such that

Ui = V ′
i σ

′ for all i ∈ {1, . . . , n}, U = V ′σ′ and σ′ � φ′.

Proof. Case 1: h is a constructor in Σ. We do a case analysis on U :

— U is a message: In such a case, by definition of a destructor U1, . . . , Un are also messages
and V = h(V1, . . . , Vn). Hence we have U =Σ h(V1, . . . , Vn)σ =Σ h(U1, . . . , Un). The result
follows from Property S4.

— U = fail: Otherwise, there exists i ∈ {1, . . . , n} such that Ui = fail. We know that
h(u1, . . . , ui−1, fail, ui+1, . . . , un) → fail is in defΣ′(h). Hence, the result holds with σ′ such
that ujσ

′ = Uj , for all j 6= i.

Case 2: h is a destructor in Σ. By Property S2, there exists σ0 such that uσ0 = uσ for all
u ∈ fvars(V1, . . . , Vn, V) and nfS,Σ(U ∪{uσ0 | u ∈ fvars(V1, . . . , Vn, V) and uσ0 is a message}). So
U =Σ V σ0, Ui =Σ Viσ0 for all i ∈ {1, . . . , n} and σ0 � φ. By Lemma D.2, addeval(V)σ0 ↓Σ′ U and
addeval(Vi)σ0 ↓Σ′ Ui for all i ∈ {1, . . . , n}. By Lemma D.1, there exist V ′

1 , . . . , V
′
n, V ′, σ1, φ and

σ′ such that addeval(V1, . . . , Vn, V) ↓′ ((V ′
1 , . . . , V

′
n, V

′), σ1, φ
′), V ′

i σ
′ = Ui for all i ∈ {1, . . . , n},

V ′σ′ = U , σ0 = σ1σ
′ and σ′ � φ′. Then h(V ′

1 , . . . , V
′
n) → V ′ || φσ ∧ φ′ is in defΣ′(h), V ′

i σ
′ = Ui

for all i ∈ {1, . . . , n}, and V ′σ′ = U . Moreover, we know that σ0 � φ hence σ′ � φσ1 and so
σ′ � φσ1 ∧ φ′. Thus the result holds.

We define the function removeeval such that removeeval(D) = M where D is a term evaluation
that contains no destructor, and M is the term obtained by removing any eval before the function
symbols of D.

Lemma D.4. Assume that D is a plain term evaluation that contains no destructor. If D ↓′

(U, σ, φ) then φ = ⊤ and removeeval(D)σ =Σ U .
Assume that D1, . . . , Dn are plain term evaluations that contain no destructor. If we have

(D1, . . . , Dn) ↓′ ((U1, . . . , Un), σ, φ) then φ = ⊤ and removeeval(Di)σ =Σ Ui for all i ∈ {1, . . . , n}.

Proof. The proof is by mutual induction following the definition of ↓′.

— Case D = U : We have σ = ∅ and φ = ⊤, so Uσ =Σ U .

— Case D = eval f(D1, . . . , Dn): We have eval f(D1, . . . , Dn) ↓′ (V σu, σ
′σu, φ

′σu ∧ φσu) where
(D1, . . . , Dn) ↓′ ((U1, . . . , Un), σ

′, φ′), f is a constructor in Σ, f(V1, . . . , Vn) → V || φ is in
defΣ′(f) (with new variables), and σu is the most general unifier of (U1, V1), . . . , (Un, Vn).
By definition of defΣ′(f), we know that either V = fail or V is a message; and φ = ⊤.
Assume first that V is a message. In such a case, V1, . . . , Vn are messages too and by Prop-
erty S3, f(V1, . . . , Vn) =Σ V . By induction hypothesis, removeeval(Di)σ

′ =Σ Ui for all i =
1 . . . n and φ′ = ⊤. Moreover we have Uiσu =Σ Viσu. Hence we obtain removeeval(eval f(D1,
. . . , Dn))σ

′ =Σ f(removeeval(D1)σ
′σu, . . . , removeeval(Dn)σ

′σu) =Σ f(U1σu, . . . , Unσu) =Σ

f(V1σu, . . . , Vnσu) =Σ V σu.

— Case (D1, . . . , Dn): We have (D1, . . . , Dn) ↓′ ((U1σ
′, . . . , Un−1σ

′, Un), σσ
′, φσ′ ∧ φ′) where

(D1, . . . , Dn−1) ↓′ ((U1, . . . , Un−1), σ, φ) and Dnσ ↓′ (Un, σ
′, φ′). Then by induction hypothe-

sis, φ′ = ⊤, φ = ⊤, removeeval(Di)σ =Σ Ui for i ∈ {1, . . . , n−1} and removeeval(Dnσ)σ
′ =Σ

Un. Hence, removeeval(Di)σσ
′ =Σ Uiσ

′ for i ∈ {1, . . . , n − 1} and removeeval(Dn)σσ
′ =

Un.

The following lemma shows a completeness property: we do not lose precision by translating
computation in Σ into computations in Σ′. The proof of Lemma D.5 relies on Lemma D.4 for
destructor applications.

Lemma D.5. If h(U1, . . . , Un) → U || φ is in defΣ′(h) then there exists h(U ′
1, . . . , U

′
n) → U ′ || φ′

in defΣ(h) and σ such that Ui =Σ U ′
iσ for all i ∈ {1, . . . , n}, U =Σ U ′σ and for all σ′, σ′ � φ

implies σσ′ � φ′.

Proof. Case 1: h is a constructor in Σ. According to the definition of defΣ′(h), φ = ⊤ and either
U = fail or U is a message.

— U = fail: By definition of defΣ(h), we have Ui = U ′
i , for all i = 1 . . . n, U = U ′ and φ′ = ⊤.

— U is a message: In such a case, U1, . . . , Un are all messages and by Property S3, we have
h(U1, . . . , Un) =Σ U . Let σ be defined by xiσ = Ui for all i ∈ {1, . . . , n}, U ′

i = xi for all
i ∈ {1, . . . , n}, U ′ = h(x1, . . . , xn) and φ′ = ⊤. We have h(U ′

1, . . . , U
′
n) → U ′ || φ′ in defΣ(h)

because h(x1, . . . , xn) → h(x1, . . . , xn) || ⊤ is in defΣ(h). We also have Ui =Σ U ′
iσ for all

i ∈ {1, . . . , n}, U =Σ h(U1, . . . , Un) =Σ U ′σ, and for all σ′, σσ′ � ⊤

Case 2: h is a destructor in Σ. Then there exists h(U ′
1, . . . , U

′
n) → U ′ || φ′ in defΣ(h), such

that addeval(U ′
1, . . . , U

′
n, U

′) ↓′ ((U1, . . . , Un, U), σ, φ′′) and φ = φ′σ ∧ φ′′. By definition of the
destructors of Σ, we know that U ′

1, . . . , U
′
n, U

′ do not contain any destructor. Hence by Lemma D.4,
U =Σ U ′σ, for all i ∈ {1, . . . , n}, Ui =Σ U ′

iσ and φ′′ = ⊤. Hence, for all σ′, σ′ � φ implies σ′ � φ′σ
which implies σσ � φ′.

D.1.2 Proof of Lemmas 9.6 and 9.7

Lemma 9.7 is a consequence of the following lemma.

Lemma D.6. Let g a destructor of Σ. defΣ(g) does not satisfy Property P2 if and only if there
exist U1, . . . , Un ground may-fail messages, two pair of rewrite rules g(V1, . . . , Vn) → V || φ and
g(V ′

1 , . . . , V
′
n) → V ′ || φ′ in defΣ′(g), two substitution σ, σ′ such that:

— Ui = Viσ = V ′
i σ

′ for all i ∈ {1, . . . , n}

— V σ = fail and V ′σ′ is a message;

— σ � φ and σ′ � φ′

Proof. We start by proving the right implication of the result. defΣ(g) does not satisfy Property P2
implies that there exists U1, . . . , Un ground may-fail messages such that g(U1, . . . , Un) → fail

and g(U1, . . . , Un) → M for some message M . Hence there exists g(V1, . . . , Vn) → V || φ and
g(V ′

1 , . . . , V
′
n) → V ′ || φ′ in defΣ(g) and two substitutions σ, σ′ such that:

— Ui =Σ Viσ =Σ V ′
i σ

′ for all i ∈ {1, . . . , n}

— V σ = fail and V ′σ′ = M ;

— σ � φ and σ′ � φ′

Thanks to Property S2, there exists U ′
1, . . . , U

′
n,M

′ such that U ′
i =Σ Ui for all i ∈ {1, . . . , n},

M ′ =Σ M and if we denote U is the set of messages of U ′
1, . . . , U

′
n,M

′, then nfS,Σ(U).
By application of Lemma D.3 on the two rewrite rules, (U ′

1, . . . , U
′
n,M

′) and (U ′
1, . . . , U

′
n, fail),

we have that there exist g(V 1
1 , . . . , V

1
n) → V 1 || φ1 and g(V ′1

1 , . . . , V ′1
n) → V ′1 || φ′

1 in defΣ′(g),
two substitutions σ1, σ′

1 such that:

— U ′
i = V 1

i σ1 = V ′1
i σ′

1 for all i ∈ {1, . . . , n}

— V σ
1 = fail and V ′σ′

1 = M ′;

— σ1 � φ1 and σ′
1 � φ′

1

Hence the result holds.

We now prove the left implication of the result. We have U1, . . . , Un ground may-fail messages,
g(V1, . . . , Vn) → V || φ and g(V ′

1 , . . . , V
′
n) → V ′ || φ′ in defΣ′(g) and two substitutions σ, σ′ such

that: two substitution σ, σ′ such that:

— Ui = Viσ = V ′
i σ

′ for all i ∈ {1, . . . , n}

— V σ = fail and V ′σ′ is a message;

— σ � φ and σ′ � φ′

By Lemma D.5, we deduce that there exist g(V 1
1 , . . . , V

1
n) → V 1 || φ1 and g(V ′1

1 , . . . , V ′1
n) →

V ′1 || φ′
1 in defΣ(g), and two substitution σ1, σ′

1 such that:

— Vi =Σ V 1
i σ1 and V ′

i =Σ V ′1
i σ′

1 for all i ∈ {1, . . . , n}. Thus we deduce that Ui =Σ V 1
i σ1σ =Σ

V ′1
i σ′

1σ
′

— V =Σ V 1σ1 and V ′ =Σ V ′1σ′
1. Thus we deduce fail = V 1σ1σ and V ′1σ′

1σ
′ is a message.

— for all σ0, σ0 � φ implies σ1σ0 � φ1; and σ0 � φ′ implies σ′
1σ0 � φ′

1. Thus we deduce σ1σ � φ1

and σ′
1σ

′ � φ′
1.

We can deduce that g(U1, . . . , Un) → fail and g(U1, . . . , Un) → V ′1σ′
1σ

′ where V ′1σ′
1σ

′ is a message
and so we conclude that defΣ(g) do no satisfy Property P2.

Lemma 9.6 is a consequence of the following lemma.

Lemma D.7. Let g a destructor of Σ or arity n. Let x1, . . . , xn fresh message variables. defΣ(g)
does not satisfy Property P1 if and only if there exists (U1, . . . , Un), a set I and a closed substitution
σ such that:

— Ui = fail, for all i 6∈ I; and Ui = xi, for all i ∈ I

— for all g(V1, . . . , Vn) → V || φ in defΣ(g), if σu is the most general unifier of (V1, . . . , Vn)
and (U1, . . . , Un) then σ � ∀z̃.

[∨
i∈I xi 6=Σ Viσu ∨ ¬φσu

]
where z̃ are the variables of

V1σu, . . . , Vnσu.

Proof. Assume first that defΣ(g) does not satisfy Property P2. In such a case, there exists
U ′
1, . . . , U

′
n ground may-fail messages such that for all g(V1, . . . , Vn) → V || φ in defΣ(g), if there

exists a substitution σ′ such that Viσ
′ =Σ U ′

i for i = 1 . . . n then σ′ 6� φ.
But since U ′

i is ground for all i ∈ {1, . . . , n} then either U ′
i = fail or U ′

i is a message. Let I be
the subset of {1, . . . , n} such that for all i ∈ I, U ′

i = fail and for all i 6∈ I, U ′
i is a message. From

I we define U1, . . . , Un as expected. At last, we define σ = {xi 7→ U ′
i | i ∈ I}

Let g(V1, . . . , Vn) → V || φ in defΣ(g) such that σu is the most general unifier of (V1, . . . , Vn)
and (U1, . . . , Un). Thus Viσu = Uiσu for all i ∈ {1, . . . , n}. Assume that there exists σ′′ such
that U ′

i =Σ Viσuσ
′′ for all i ∈ {1, . . . , n}. Hence by hypothesis we have that σuσ

′′ 6� φ and so
σ′′ 6� φσu. Thus we conclude that σ � ∀z̃.

[∨
i∈I xi 6=Σ Viσu ∨ ¬φσu

]
where z̃ are the variables of

V1σu, . . . , Vnσu.
The proof of the left implication is similar.

D.1.3 Simplifications of the formulas

These simplifications are adapted from those for testunif (from [Bla04]).
— Conjunction : conjunction transforms clauses of the form H ∧ formula(φ1 ∧ φ2) → C as

follows :
H ∧ formula(φ1) ∧ formula(φ2) → C

— Unification of disequations: unifydiseq transforms clauses of the form H ∧ formula(∀z̃.
[
∨n

i pi 6= p′i ∨
∨m

j ∃ỹj .qj = q′j]) → C as follows. It tries to unify (p1, . . . , pn) and (p′1, . . . , p
′
n)

modulo the equational theory. If this unification fails, then the clause becomes H → C.
Otherwise, unifydiseq replaces the clause with

H ∧
ℓ∧

k=1

formula(∀z̃.[
nk∨

j=1

xk
j 6= xk

jσk ∨
m∨

j=1

∃ỹj .qjσk = q′jσk]) → C

where σk = {xk
1 7→ xk

1σk; . . . ;x
k
nk

7→ xk
nk
σk}, for all k = 1 . . . ℓ are the most general unifiers

of (p1, . . . , pn) and (p′1, . . . , p
′
n) modulo the equational theory and xk

1 , . . . , x
k
nk

are variables
of (p1, . . . , pn) and (p′1, . . . , p

′
n). In this unification, we assume that the variables of in the

domain of σk do not occur in its image. This way, we don’t have trivial equation x = x.
— Remove universal variable : elimuniversal transforms clauses of the form H∧formula(∀z̃, y.φ)

→ C, where y is not a variable of φ, as H∧formula(∀z̃.φ) → C. elimuniversal also transforms
clauses of the form H∧formula(∀z̃, y.[y 6= t∨φ]) → C as H∧formula(∀z̃.φ{t/y}]). A symetric
rule exists for clauses of the form H ∧ formula(∀z̃, y.[t 6= y ∨ φ]) → C. This simplification is
always applied after unifydiseq .

— Unification of equation : unifyeq transforms clauses of the form

H ∧ formula(∀z̃.[φ ∨ ∃ỹ.p = p′]) → C

as follows. It tries to unify p and p′ modulo the equational theory. If this unification fails,
then the clause becomes H ∧ formula(∀z̃.φ) → C. Otherwise, unifyeq replaces the clause
with

H ∧ formula(∀z̃.[φ ∨
n∨

i=1

∃ỹ.(xi
1, . . . , x

i
ki
) = (xi

1σi, . . . , x
i
ki
σi)]) → C

where σi = {xi
1 7→ xi

1σi; . . . ;x
i
ki

7→ xi
ki
σi}, for all i = 1 . . . n are the most general unifiers of

p1 and p2 modulo the equational theory and xi
1, . . . , x

i
ki

are variables of p1 and p′2.
— Remove existential variables : elimexistential transforms clauses of the form H∧ formula(∀z̃.

(φ∨∃ỹ.(x1, . . . , xn) = (p1, . . . , pn))) → C as follows: if I is the set of index i such that xi ∈ ỹ,
then

H ∧ formula(∀z̃.(φ ∨ ∃ỹ\{xi}i∈I .(xk1
, . . . , xkn

) = (pk1
, . . . , pkn

))) → C

where k1, . . . , kn are index between 1 and n that are not in I. A symetric rule exists for
formulas of the form H ∧ formula(∀z̃.(φ ∨ ∃ỹ.(p1, . . . , pn) = (x1, . . . , xn))) → C

— Failed universal variables : univfailed transforms any clauses of the form H ∧ formula(∀z̃.∨m
j=1 ∃ỹj .(x

j
1, . . . , x

j
nj
) = (qj1, . . . , q

j
nj
)) → C as follows: if I is the set of indexes j such that

any variables of (xj
1, . . . , x

j
nj
, qj1, . . . , q

j
nj
) is not in z̃, then

H ∧ formula(
∨

j∈I

∃ỹj .(x
j
1, . . . , x

j
nj
) = (qj1, . . . , q

j
nj
)) → C

— Development : develop transforms clauses of the form H ∧ formula(φ1 ∨ φ2) → C into two
new clauses : H ∧ formula(φ1) → C and H ∧ formula(φ2) → C.

— Application of substitution : applysubs transforms clauses of the form H ∧ formula(∃ỹ.(x1,
. . . , xn) = (q1, . . . , qn)) → C into Hσ → Cσ, where σ is the substitution {x1 7→ p1, . . . xn 7→
pn}.

— Detection of failed formula : elimformula removes clauses that contain the hypothesis
formula(⊥).

D.2 Proof of the Automatic Modification

This appendix provides the proofs of the results announced in Section 9.4.

D.2.1 Preliminary Lemmas

Lemma D.8. Let P , Q be processes. Suppose that, for all substitutions σ closing for P and Q,
Pσ ≈ Qσ. Then, for all contexts C closing for P and Q, C[P] ≈ C[Q].

Proof. This lemma is fairly standard in process calculi. For example, [AG99, Appendix C.3] shows
a similar result for the spi calculus. We give a proof for our calculus.

We rely on Definition 9.1, and use a relation R defined by P0RP ′
0 if and only if

P0 ≈ C ′[P1, . . . , Pn] and P ′
0 ≈ C ′[P ′

1, . . . , P
′
n]

for some context C ′ such that no hole of C ′ is in evaluation position and for i = 1, . . . , n, for all
substitutions σ closing for Pi and P ′

i , Piσ ≈ P ′
iσ.

We have that, for contexts C closing for P and Q, C[P]RC[Q]. Indeed, if the hole of C is not
in evaluation position, C[P] ≈ C[P], C[Q] ≈ C[Q], and for all substitutions σ closing for P and Q,
σP ≈ σQ. If the hole of C is in evaluation position, P and Q are closed, so P ≈ Q by hypothesis,
hence C[P] ≈ C[Q], so letting P0 = C[P] and P ′

0 = C ′ = C[Q] (C ′ is a context with no hole), we
have P0 ≈ C ′, P ′

0 ≈ C ′, hence C[P]RC[Q].
We show that R satisfies the three conditions of Definition 9.1. Moreover R is symmetric, so

we can then conclude that R ⊆≈, which implies the desired equivalence.

Condition 3 of Definition 9.1: Suppose P0RP ′
0, and let C be an evaluation context. P0RP ′

0

implies that there exists a context C ′, some processes P1, . . . , Pn, P
′
1, . . . , P

′
n such that P0 ≈

C ′[P1, . . . , Pn] and P ′
0 ≈ C ′[P ′

1, . . . , P
′
n]. Hence, we have C[P0] ≈ C[C ′[P1, . . . , Pn]] and C[P ′

0] ≈
C[C ′[P ′

1, . . . , P
′
n]] by Condition 3 of Definition 9.1. Since no hole of C ′ is in evaluation position,

then no hole of C[C ′] is also in evaluation position. Hence, we deduce that C[P0]RC[P ′
0].

Condition 2 of Definition 9.1: We first show that, if C ′[P1, . . . , Pn] ≡ Q0 where C ′ is any
context such that no hole of C ′ is in evaluation position, then C ′[P ′

1, . . . , P
′
n] ≡ C ′′[P ′

1, . . . , P
′
n] and

Q0 = C ′′[P1, . . . , Pn] for some context C ′′ such that no hole of C ′′ is in evaluation position. The
proof is done by induction on the derivation of C ′[P1, . . . , Pn] ≡ Q0.

Next, we show that, if C ′[P1, . . . , Pn] → Q0 where C ′ is any context such that no hole of C ′ is
in evaluation position, and for i = 1, . . . , n, for all substitutions σ closing for Pi and P ′

i , σPi ≈ σP ′
i ,

then C ′[P ′
1, . . . , P

′
n] → Q′

0 ≈ C ′′[Q′
1, . . . , Q

′
n′] and Q0 = C ′′[Q1, . . . , Qn′] for some context C ′′ and

processes Q′
0, Q

′
1, . . . , Q′

n′ such that no hole of C ′′ is in evaluation position and for i = 1, . . . , n′,
for all substitutions σ closing for Qi and Q′

i, σQi ≈ σQ′
i. The proof is done by induction on the

derivation of C ′[P1, . . . , Pn] → Q0.

— Case (Red I/O): We have C ′[P1, . . . , Pn] = out(N,M).Q | in(N ′, x).P → Q0 = Q | P{M/x}
with N =Σ N ′. Since no hole of C ′ is in evaluation position, we have Q = C1[Pi(i ∈ S)], P =
C2[Pi(i /∈ S)] for some contexts C1, C2 and some subset S of {1, . . . , n}, and C ′[P ′

1, . . . , P
′
n] =

out(N,M).C1[P
′
i (i ∈ S)] | in(N ′, x).C2[Pi(i /∈ S)] → C1[P

′
i (i ∈ S)] | C2[P

′
i (i /∈ S)]{M/x}.

We let Qi and Q′
i be the processes Pi and P ′

i for i ∈ S and Pi{
M/x} and P ′

i{
M/x} for i /∈ S,

such that the corresponding hole of C1 or C2 is not in evaluation position. We have for
all substitutions σ closing for Qi and Q′

i, σQi ≈ σQ′
i, since that property is preserved by

instantiation. We let C ′′ = C1[Pi(i ∈ S, in evaluation position)][] | C2{
M/x}[Pi{

M/x}(i /∈ S,
in evaluation position)][] where only the holes not in evaluation position remain. We let Q′

0 =
C1[P

′
i (i ∈ S)] | C2[P

′
i (i /∈ S)]{M/x}. We have Q0 = C ′′[Q1, . . . , Qn′] and C ′[P ′

1, . . . , P
′
n] →

Q′
0 ≈ C ′′[Q′

1, . . . , Q
′
n′].

— Case (Red Fun 1): As in the case (Red I/O), the holes in the in branch are instantiated.
The holes in the else branch disappear. The holes that become in evaluation position are
handled as in (Red I/O).

— Case (Red Fun 2): The holes in the in branch disappear. The holes that become in evaluation
position are handled as in (Red I/O).

— Case (Red Repl): The holes are duplicated.

— Cases (Red Par) and (Red Res): these cases follow immediately from the induction hypoth-
esis.

— Case (Red ≡): we use the property shown above for ≡ and the induction hypothesis.

Suppose that P0 →∗ Q0 and P0RP ′
0. We have P0 ≈ C ′[P1, . . . , Pn] and P ′

0 ≈ C ′[P ′
1, . . . , P

′
n] for

some context C ′ and processes P1, . . . , Pn, P ′
1, . . . , P

′
n such that no hole of C ′ is in evaluation

position and for i = 1, . . . , n, for all substitutions σ closing for Pi and P ′
i , σPi ≈ σP ′

i . By
Condition 2 of Definition 9.1, C ′[P1, . . . , Pn] →

∗ Q′′
0 and Q0 ≈ Q′′

0 for some Q′′
0 . By the property

above, C ′[P ′
1, . . . , P

′
n](→≈)∗C ′′[Q′

1, . . . , Q
′
n′] and Q′′

0 = C ′′[Q1, . . . , Qn′] for some context C ′′ and
processes Q′

1, . . . , Q
′
n′ such that no hole of C ′′ is in evaluation position and for i = 1, . . . , n′, for

all substitutions σ closing for Qi and Q′
i, σQi ≈ σQ′

i. By Condition 2 of Definition 9.1 again,
P ′
0 →∗ Q′

0 and C ′′[Q′
1, . . . , Q

′
n′] ≈ Q′

0 for some Q′
0. Hence Q0 ≈ C ′′[Q1, . . . , Qn′] and Q′

0 ≈ C ′′[Q′
1,

. . . , Q′
n′], so Q0RQ′

0.

Condition 1 of Definition 9.1: Let P ⇓0 M if and only if P = C[out(M ′, N).R] for some
evaluation context C that does not bind fnames(M) and M =Σ M ′.

We first notice that, if C ′[P1, . . . , Pn] ⇓0 M where no hole of C ′ is in evaluation position,
then C ′[P ′

1, . . . , P
′
n] ↓

0
M , since the difference between C ′[P1, . . . , Pn] and C ′[P ′

1, . . . , P
′
n] is only is

non-evaluation positions.
Suppose that P0 ⇓ M and P0RP ′

0. We have P0 ≈ C ′[P1, . . . , Pn] and P ′
0 ≈ C ′[P ′

1, . . . , P
′
n]

for some context C ′ and processes P1, . . . , Pn, P ′
1, . . . , P

′
n such that no hole of C ′ is in evaluation

position and for i = 1, . . . , n, for all substitutions σ closing for Pi and P ′
i , σPi ≈ σP ′

i . By
Condition 1 of Definition 9.1, C ′[P1, . . . , Pn] ⇓ M , that is, C ′[P1, . . . , Pn] →∗⇓0 M . By the
properties proved regarding Condition 2, C ′[P ′

1, . . . , P
′
n](→≈)∗C ′′[Q′

1, . . . , Q
′
n′] and C ′′[Q1, . . . ,

Qn′] ↓0M for some context C ′′ and processes Q′
1, . . . , Q

′
n′ such that no hole of C ′′ is in evaluation

position. Hence C ′′[Q′
1, . . . , Q

′
n′] ⇓0 M , so by Conditions 1 and 2 of Definition 9.1, C ′[P ′

1, . . . ,
P ′
n] ⇓ M . Since C ′[P ′

1, . . . , P
′
n] ≈ P ′

0, we conclude that P ′
0 ⇓ M .

Lemma D.9. Let P,Q,R be processes. Let a be a name, x a variable, M a term, and D a term
evaluation. We have that:

1. If a /∈ fnames(P), then for all contexts C closing for P , C[P] ≈ C[νa.P].

2. For all contexts C closing for !P , C[!P] ≈ C[! !P].

3. For all contexts C closing for P{M/x}, C[P{M/x}] ≈ C[let x = M in P else Q].

4. For all contexts C closing for P , C[P] ≈ C[let x = fail in Q else P].

5. For all contexts C closing for P0 = let x = D in fst′(P) else snd′(P), C[P0] ≈ C[let x =
eval glet(D) in P{eval gletin(x,D1,D2)/diff′[D1,D2]} else 0].

6. For all contexts C closing for P | Q, C[P | Q] ≈ C[Q | P].

For all contexts C closing for (P | Q) | R, C[(P | Q) | R] ≈ C[P | (Q | R)].

7. If x 6∈ fvars(P) ∪ fvars(Q) then for all contexts C closing for let x = D in P else Q,
C[let x = D in P else Q] ≈ C[let x = notfail(D) in Q else P].

Proof. We first prove this result for processes that do not contain diff. By applying the obtained
result twice, once for the component fst and once for the component snd, we obtain the same
equivalence for processes that may contain diff. By Lemma D.8, it is enough to show:

1. If a /∈ fnames(P), then P ≈ νa.P .

2. !P ≈ ! !P .

3. P{M/x} ≈ let x = M in P else Q.

4. P ≈ let x = fail in Q else P .

5. let x = D in fst′(P) else snd′(P) ≈
let x = eval glet(D) in P{eval gletin(x,D1,D2)/diff′[D1,D2]} else 0.

6. P | Q ≈ Q | P and (P | Q) | R ≈ P | (Q | R).

7. let x = D in P else Q ≈ let x = equals(D, fail) in Q else P

where P , Q, R are closed processes, M and D are ground terms and term evaluation, except for
P in Item 3 in which fvars(P) ⊆ {x}, for Q in Item 4 in which fvars(Q) ⊆ {x}, and for P in
Item 5 in which fvars(fst′(P)) ⊆ {x} and fvars(snd′(P)) = ∅. Item 6 is obvious since ≡⊆≈. Note
that in Item 7, since P and Q are closed, x 6∈ fvars(P) ∪ fvars(Q). Let us prove the other cases
by relying on Definition 9.1.

For Items 3 and 4, we use a relation R defined by P0RP ′
0 if and only if

P0 = C[P1] and P ′
0 = C[P ′

1]

or
P0 = C[P ′

1] and P ′
0 = C[P1]

or
P0 = P ′

0

for some evaluation context C and processes P1, P ′
1 such that P1R1P

′
1 where

— in Item 3, R1 is defined by P{M/x}R1let x = M in P else Q for all P,Q, x,M ;

— in Item 4, R1 is defined by PR1let x = fail in Q else P for all P,Q, x.

We show that R satisfies the three conditions of Definition 9.1. Moreover R is symmetric, so we
can then conclude that R ⊆≈, which implies the desired equivalences.

— R obviously satisfies Condition 3 of Definition 9.1.

— To show Condition 2 of Definition 9.1, we show that, if P0 → Q0 and P0RP ′
0, then there

exists Q′
0 such that Q0RQ′

0 and P ′
0 →∗ Q′

0.
If P0 = C[P1], P ′

0 = C[P ′
1], and P1R1P

′
1, then we first reduce P ′

1 into P1, transforming
let x = M in P else Q into P{M/x} (Item 3) and let x = fail in Q else P into P (Item 4). In
this case, we have P ′

0 = C[P ′
1] → C[P1] = P0 → Q0. Taking Q′

0 = Q0, we have Q0RQ′
0 and

P ′
0 →∗ Q′

0.
If P0 = C[P ′

1], P
′
0 = C[P1], and P1R1P

′
1, we show the following.

1. If C[P ′
1] ≡ P ′, then P ′ = C ′[P ′

1] and C[P1] ≡ C ′[P1] for some evaluation context C ′, by
induction on the derivation of C[P ′

1] ≡ P ′.

2. If C[P ′
1] → P ′, then either P ′ = C ′[P1] and C[P1] ≡ C ′[P1], or P ′ = C ′[P ′

1] and
C[P1] → C ′[P1], for some evaluation context C ′. The proof proceeds by induction of
the derivation of C[P ′

1] → P ′:
Case (Red I/O) is impossible.
Case (Red Fun 1) can be applied only in Item 3. In this case, C[P ′

1] = P ′
1 → P1 and we

take C ′ = [].
Case (Red Fun 2) can be applied only in Item 4. In this case, C[P ′

1] = P ′
1 → P1 and we

take C ′ = [].
In case (Red Par), we have C[P ′

1] = P | R → Q | R = P ′ with P → Q. First
case: R = C ′′[P ′

1], C = P | C ′′. Then P ′ = Q | C ′′[P ′
1]. Let C ′ = Q | C ′′. Then

P ′ = C ′[P ′
1], and C[P1] = P | C ′′[P1] → Q | C ′′[P1] = C ′[P1]. Second case: P = C ′′[P ′

1],
C = C ′′ | R. Then C ′′[P ′

1] → Q. By induction hypothesis, either Q = C ′′′[P1]
and C ′′[P1] ≡ C ′′′[P1], or Q = C ′′′[P ′

1] and C ′′[P1] → C ′′′[P1], for some evaluation
context C ′. Let C ′ = C ′′′ | R. Either P ′ = Q | R = C ′′′[P1] | R = C ′[P1] and
C[P1] = C ′′[P1] | R ≡ C ′′′[P1] | R = C ′[P1], or P ′ = Q | R = C ′′′[P ′

1] | R = C ′[P ′
1] and

C[P1] = C ′′[P1] | R → C ′′′[P1] | R = C ′[P1].
Case (Red Res) follows by induction hypothesis, similarly to the second case of (Red
Par).
Case (Red ≡) follows using the property above for ≡ and the induction hypothesis.

We have C[P ′
1] = P0 → Q0, so either Q0 = C ′[P1] and C[P1] ≡ C ′[P1], or Q0 = C ′[P ′

1] and
C[P1] → C ′[P1], for some evaluation context C ′. We let Q′

0 = C ′[P1]. In the first case, we
have Q0 = Q′

0 so Q0RQ′
0 and P ′

0 = C[P1] → C ′[P1] = Q′
0. In the second case, we have

Q0 = C ′[P ′
1] and Q′

0 = C ′[P1] so Q0RQ′
0 and P ′

0 = C[P1] → C ′[P1] = Q′
0.

If P0 = P ′
0, let Q′

0 = Q0. We have Q0RQ′
0 and P ′

0 = P0 → Q0 = Q′
0.

— To show Condition 1, using Condition 2, it is enough to show that, if P0RP ′
0 and P0 ≡

C ′[out(M ′, N).R] for some evaluation context C ′ that does not bind fnames(M) and M =Σ

M ′, then P ′
0 ⇓ M .

If P0 = C[P1], P ′
0 = C[P ′

1], and P1R1P
′
1, we have P ′

0 = C[P ′
1] → C[P1] = P0 hence P ′

0 ⇓ M .
If P0 = C[P ′

1], P ′
0 = C[P1], and P1R1P

′
1, we have P0 ≡ C ′[out(M ′, N).R]. By Prop-

erty 1 shown above for ≡, C ′[out(M ′, N).R] = C ′′[P ′
1] and C[P1] ≡ C ′′[P1] for some

C ′′. Hence there is an evaluation context C ′′′ that does not bind fnames(M) such that
C ′[out(M ′, N).R] = C ′′[P ′

1] = C ′′′[P ′
1, out(M

′, N).R], thus P ′
0 ≡ C ′′′[P1, out(M

′, N).R] and
so P ′

0 ⇓ M .
If P0 = P ′

0, the result is obvious.

For Item 5, we define the relation R by P0RP ′
0 if and only if

P0 = C[let x = D in fst′(P) else snd′(P)] and

P ′
0 = C[let x = eval glet(D) in P{eval gletin(x,D1,D2)/diff′[D1,D2]} else 0]

for some evaluation context C, variable x, term evaluation D, and process P

or
P0 = fst′(P){M/x} and P ′

0 = P{eval gletin(M,D1,D2)/diff′[D1,D2]} for some P and M

or
P0 = snd′(P) and P ′

0 = P{eval gletin(co,D1,D2)/diff′[D1,D2]} for some P

or the symmetric obtained by swapping P0 and P ′
0. We show let x = D in fst′(P) else snd′(P) ≈

let x = eval glet(D) in P{eval gletin(x,D1,D2)/diff′[D1,D2]} else 0, by proving that R satisfies the three
conditions of Definition 9.1, similarly to the proof we have done for Items 3 and 4.

For Item 1, we define the relation R by P0RP ′
0 if and only if νa.P0 ≡ P ′

0 or νa.P ′
0 ≡ P0 for

some a /∈ fnames(P0) or a 6∈ fnames(P ′
0) respectively. We show P ≈ νa.P , by proving that R

satisfies the three conditions of Definition 9.1.
For Item 2, we define the relation R by P0RP ′

0 if and only if

P0 ≡ C[!P] and P ′
0 ≡ C[! !P |!P | . . . |!P]

or
P0 ≡ C[! !P |!P | . . . |!P] and P ′

0 ≡ C[!P]

for some evaluation context C and process P . We show !P ≈! !P , by proving that R satisfies the
three conditions of Definition 9.1.

The proof follows a strategy similar to the proof of Items 3 and 4. For Items 1 and 2, some
details are however more complex, because the structural equivalence may modify νa.P and ! !P |
!P | . . . |!P . For instance, to show Condition 2 of Definition 9.1 for Item 1, we need to show
that, if P0 → Q0 and P0 ≡ νa.P ′

0, then there exists Q′
0 such that Q0 ≡ νa.Q′

0 and P ′
0 → Q′

0.
Such a result is fairly standard in process calculi and can be proved by showing a series of lemmas
decomposing reduction of νa.P and P | Q, using a labeled semantics.

For Item 7, we define the relation R by P0RP ′
0 if and only if

P0 = C[let x = D in P else Q] and

P ′
0 = C[let x = notfail(D) in Q else P]

for some evaluation context C, variable x, term evaluation D, and processes P,Q

such that x 6∈ fvars(P) ∪ fvars(Q)

or
P0 = P ′

0

or the symmetric obtained by swapping P0 and P ′
0. We show let x = D in P else Q ≈ let x =

notfail(D) in Q else P , by proving that R satisfies the three conditions of Definition 9.1, similarly to
the proof we have done for Items 3 and 4. It relies on the fact that if D ↓Σ M then notfail(D) ↓Σ fail,
and if D ↓Σ fail then notfail(D) ↓Σ co which is a message.

D.2.2 Proofs for the merge function

Lemma 9.8. Let P and P ′ be two biprocesses. If merge(P, P ′) = Q, then:

— for all contexts C closing for P , C[P] ≈ C[fst′(Q)];

— for all contexts C closing for P ′, C[P ′] ≈ C[snd′(Q)].

Proof. Let P0, P
′
0 be two biprocesses. We prove the result by induction on P0 and P ′

0. We do a
case analysis on the rules of Figure 9.6:

Case (Mnil): Trivial.

Case (Mout): We have P0 = out(M,N).P and P ′
0 = out(M ′, N ′).P ′. Let C be a context closing for

P0. We show that C[P0] ≈ C[fst′(merge(P0, P
′
0)], that is, C[out(M,N).P] ≈ C[let x = M in let x′ =

N in out(x, x′).fst′(merge(P, P ′))]. Let C1 = C[let x = M in let x′ = N in out(x, x′).[]]. By
induction hypothesis on merge(P, P ′), C1[P] ≈ C1[fst

′(merge(P, P ′))], so we just have to show
that C[out(M,N).P] ≈ C[let x = M in let x′ = N in out(x, x′).P]. This follows by two applications
of Lemma D.9, Item 3.

By symmetry, for all contexts C closing for P ′
0, C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

Case (Min): This case is similar to the case (Mout).

Case (Mpar): We have P0 = P1 | . . . | Pn and P ′
0 = P ′

1 | . . . | P ′
n. Furthermore, there ex-

ists a permutation (ik)k=1..n of (1, . . . , n) such that merge(P0, P
′
0) = Q1 | . . . | Qn with Qk =

merge(Pk, P
′
ik
), for k = 1..n. Let C a context closing for P0. Let Ck = C[fst′(Q1) | . . . | fst

′(Qk−1) |
[] | Pk+1 | . . . | Pn]. Since C is closing for P0, we have that Ck is closing for Pk. By induction
hypothesis on Qk, we deduce that Ck[Pk] ≈ Ck[fst

′(Qk)]. Moreover, Ck[fst
′(Qk)] = Ck+1[Pk+1].

Hence, with a simple induction on n, we deduce that C[P0] ≈ C[fst′(merge(P0, P
′
0))].

Using a similar proof and Lemma D.9, Item 6 to permute the elements of the parallel compo-
sition, we obtain that C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))], for all contexts C closing for P ′

0.

Case (Mres): We have P0 = νa.P and a 6∈ fnames(P ′
0). Let C a context closing for νa.P .

By induction hypothesis on merge(P, P ′
0), C[νa.P] ≈ C1[νa.fst

′(merge(P, P ′
0))]. Hence, C[P0] ≈

C[fst′(merge(P0, P
′
0))].

Let C be a context closing for P ′
0. Since a 6∈ fnames(P ′

0), by Lemma D.9, Item 1, C[P ′
0] ≈

C[νa.P ′
0]. By induction hypothesis on merge(P, P ′

0), we have C[νa.P ′
0] ≈ C[νa.snd′(merge(P, P ′

0))].
Hence we obtain the desired result: C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

Case (Mrepl1): We have P0 =! νa1. . . . νan.!P and P ′
0 =!P ′. Thanks to our induction hypothesis

on merge(!P, P ′
0), we have that, for all contexts C closing for P0, C[P0] ≈ C[fst′(merge(P0, P

′
0))].

Let C be a context closing for P ′
0. We have C[P ′

0] = C[!P ′] ≈ C[! !P ′] by Lemma D.9,
Item 2, so C[P ′

0] ≈ C[! νa1 . . . νan.!P
′] by n applications of Lemma D.9, Item 1. Let C1 =

C[! νa1 . . . νan[]]. By induction hypothesis on merge(!P, !P ′), C1[!P
′] ≈ C1[snd

′(merge(!P, !P ′))],
so C[P ′

0] ≈ C[! νa1 . . . νan.snd
′(merge(!P, !P ′))] = C[snd′(merge(P0, P

′
0))].

Case (Mrepl2): This case follows immediately by induction hypothesis.

Case (Mlet1): In this case, we have P0 = let x = D in P1 else P2 and P ′
0 = let x′ = D′ in P ′

1 else P
′
2.

Let C be a context closing for P0. Since y is a fresh variable, we have that C[P0] ≈ C[let y =
D in P1{

y/x} else P2]. By induction hypothesis on both Q1 = merge(P1{
y/x}, P

′
1{

y/x′}) and Q2 =

merge(P2, P
′
2), we obtain that C[let y = D in P1{y/x} else P2] ≈ C[let y = D in fst′(Q1) else P2]

≈ C[let y = D in fst′(Q1) else fst′(Q2)]. Since fst′(diff ′[D,D′]) = D, we obtain that C[P0] ≈
C[fst′(merge(P0, P

′
0))].

By symmetry, we obtain that, for all contexts C closing for P ′
0, C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

Case (Mlet2): We have P0 = let x = D in P1 else P2 and P ′
0 = let x′ = D′ in P ′

1 else P ′
2.

Let C be a context closing for P0. Since y is a fresh variable, we have that C[P0] ≈ C[let y =
D in P1{y/x} else P2]. By induction hypothesis on both Q1 = merge(P1{y/x}, P ′

2) and Q2 =
merge(P2, P

′
1), we obtain that C[let y = D in P1{

y/x} else P2] ≈ C[let y = D in fst′(Q1) else P2]
≈ C[let y = D in fst′(Q1) else fst′(Q2)]. Since fst′(diff ′[D, notfail(D′)]) = D, we obtain that
C[P0] ≈ C[fst′(merge(P0, P

′
0))].

Consider C a context closing for P ′
0. Thanks to Lemma D.9, Item 7, we have that C[P ′

0] ≈
C[let x′ = notfail(D′) in P ′

2 else P
′
1]. By inductive hypothesis on both Q1 = merge(P1{

y/x}, P
′
2) and

Q2 = merge(P2, P
′
1) we have C[let x′ = notfail(D′) in P ′

2 else P
′
1] ≈ C[let x′ = notfail(D′) in snd′(Q1)

else P ′
1] ≈ C[let x′ = notfail(D′) in snd′(Q1) else snd′(Q2). Since snd′(diff ′[D, notfail(D′)]) =

notfail(D′), we obtain that C[P ′
0] ≈ C[snd′(merge(P0, P

′
0))].

Case (Mlet3): We have P0 = let x = D in P1 else P2. Let C be a closing context for P0.
Since ≈ is closed under renaming and y is a fresh variable, we have that C[P0] ≈ C[let y =
D in P1{

y/x} else P2]. By induction hypothesis on Q = merge(P1{
y/x}, P

′
0) with the context

C[let y = D in [] else P2], we obtain that C[P0] ≈ C[let y = D in fst′(Q) else P2]. Since
C[let y = D in fst′(Q) else P2] = C[fst′(let y = diff ′[D, co] in Q else P2)], we obtain C[P0] ≈
C[fst′(merge(P0, P

′
0))].

Let C be a context closing for P ′
0. Since y is a fresh variable and so not a variable of

P ′
0, by Lemma D.9, Item 3, C[P ′

0] ≈ C[let y = co in P ′
0 else P2]. By induction hypothe-

sis on Q = merge(P{y/x}, P ′
0) with the context C[let y = co in [] else P2], we obtain that

C[let y = co in P ′
0 else P2] ≈ C[let y = co in snd′(Q) else P2]. Since C[let y = co in snd′(Q) else P2] =

C[snd′(let y = diff ′[D, co] in Q else P2)], we conclude that C[P ′
0] ≈ C[snd′(merge(P0, P

′
0))].

Case (Mlet4): We have P0 = let x = D in P1 else P2. Let C be a closing context for P0.
Since ≈ is closed under renaming and y is a fresh variable, we have that C[P0] ≈ C[let y =
D in P1{

y/x} else P2]. By induction hypothesis on Q = merge(P2, P
′
0) with the context C[let y =

D in P1{y/x} else []], we obtain that C[P0] ≈ C[let y = D in P1{y/x} else fst′(Q)] = C[fst′(let y =
diff ′[D, fail] in P1{

y/x} else Q)], we obtain the desired result: C[P0] ≈ C[fst′(merge(P0, P
′
0))].

Let C be a context closing for P ′
0. Thanks to Lemma D.9, Item 4, we deduce that C[P ′

0] ≈
C[let y = fail in P1{y/x} else P ′

0]. By induction hypothesis on Q = merge(P2, P
′
0) with the

context C[let y = fail in P1{
y/x} else []], we obtain C[let y = fail in P1{

y/x} else P ′
0] ≈ C[let y =

fail in P1{
y/x} else snd′(Q)] = C[snd′(let y = diff ′[D, fail] in P1{

y/x} else Q)]. So we conclude that
C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

D.2.3 Proofs for the simpl Function

Lemma 9.9. Let P be a biprocess. For all contexts C closing for P , C[P] ≈ C[simpl(P)].

Proof. Let P0 be a biprocess. We prove by induction on P0 that, for all contexts C closing for P0,
C[P0] ≈ C[simpl [P0]. We do a case analysis on the rules of Figure 9.7.

Case (Snil): Trivial.

Case (Sout): We have P0 = out(M,N).P and simpl(P0) = out(M,N).simpl(P). Let C be a
context closing for P0. Let C1 = C[out(M,N).[]]. We have that C[P0] = C1[P] with C1 closing
for P . By induction hypothesis on simpl(P), we can deduce that C1[P] ≈ C1[simpl(P))] =
C[out(M,N).simpl(P)] = C[simpl(P0)].

Cases (Sin), (Sres) and (Srepl): Proof similar to case (Sout).

Case (Smid): We have P0 = P | Q. Let C be a context closing for P0. Let C1 = [] | Q and
C2 = simpl(P) | []. By induction hypothesis on simpl(P), we obtain that C1[P] ≈ C1[simpl(P)].

Moreover, C1[simpl(P)] = C2[Q]. By induction hypothesis on simpl(Q), we have that C2[Q] ≈
C2[simpl(Q)]. With C2[simpl(Q)] = C[simpl(P0)], we conclude that C[P0] ≈ C[simpl(P0)].

Case (Slet): Proof similar to case (Smid).

Case (Smerge): We have P0 = let x = D in P else P ′. Let Q′ = merge(simpl(P), simpl(P ′)) and
Q = Q′{eval gletin(x,D1,D2)/diff′[D1,D2]}. Thanks to Lemma D.9, Item 5, we deduce that C[let x =
D in fst′(Q′) else snd′(Q′)] ≈ C[let x = eval glet(D) in Q else 0].

Furthermore, by induction hypothesis on P and Lemma 9.8 with the context C1 = C[let x =
D in [] else P ′], we obtain C1[fst

′(Q′)] ≈ C1[simpl(P)] ≈ C1[P]. Hence we deduce that C[let x =
D in fst′(Q′) else P ′] ≈ C[let x = D in P else P ′] = C[P0]. By induction hypothesis on P ′

and Lemma 9.8 with C2 = C[let x = D in fst′(Q′) else []], we obtain similarly C2[snd
′(Q′)] ≈

C2[simpl(P ′)] ≈ C2[P
′], that is, C[let x = D in fst′(Q′) else snd′(Q′)] ≈ C[let x = D in fst′(Q′) else

P ′], so we deduce that C[P0] ≈ C[let x = D in fst′(Q′) else snd′(Q′)]].
By combining the two equivalences, we conclude that C[P0] ≈ C[simpl(P0)]

	Introduction
	Security challenge
	Cryptographic protocols
	Cryptographic primitives
	Protocols
	Security properties

	Difficulties of security verification
	General difficulties
	Specificities of equivalence properties

	Automatic verification using symbolic models
	Existing models
	Existing results

	Limitations of existing results
	Contributions
	Privacy-type properties in the applied pi calculus
	Composing trace equivalence in a modular way
	A decision procedure for trace equivalence
	Proving more observational equivalences with ProVerif

	Research Publications

	Preliminaries
	Term Algebra
	Unification
	Equational theory
	Rewriting systems

	I Equivalence properties in the applied pi calculus
	Modelling of cryptographic protocols
	The applied pi calculus
	Syntax
	Semantics

	Behavioural equivalences and their relations
	Trace equivalence
	May-testing equivalence
	Relations between may-testing and trace equivalence
	Observational equivalence

	Some security properties
	Guessing attacks
	Strong secrecy
	Anonymity
	Unlinkability

	The e-passport protocol
	Protocols description
	Security analysis

	Towards deciding trace equivalence
	Intermediate calculus
	Syntax
	Semantics
	Equivalence
	Bounded intermediate processes

	Symbolic calculus
	Constraint system
	Syntax and semantics
	Symbolic trace equivalence

	Main result and conclusion

	Composing trace equivalence
	Some difficulties
	Sharing primitives with tagging
	Composition context

	Preliminaries
	Material for composition
	Derived well-tagged processes

	Going back to the disjoint case
	Name replacement
	Unfolding the processes
	Soundness and completeness
	Main result
	A first composition result

	Main composition result
	Some additional difficulties
	Roadmap of the proof
	Static equivalence
	Soundness and completeness
	Dealing with internal communication
	Main composition result

	Application
	Conclusion

	II A decision procedure for trace equivalence
	Model
	Syntax and semantics
	Syntax
	Semantics
	Equivalence

	Symbolic calculus
	Semantics
	From trace equivalence to concrete symbolic equivalence

	Getting rid of some recipes
	Getting rid of names
	Normalised recipe
	From concrete to constructor constraint systems

	A decision procedure for symbolic equivalence
	Preliminaries
	Extended frame
	Extended constraint systems

	Simplifying a constraint system
	The transformation rules
	Normalisation
	A strong strategy

	Simplifying sets of constraint systems
	From constraint system to vectors
	Matrices of constraint systems

	Our strategy
	First phase of the strategy
	Second phase of the strategy
	The final test

	Proof of the decision procedure
	Invariants
	Invariants independent from the strategy
	Strategy invariants

	Soundness and completeness
	Preliminaries
	Core lemmas
	Application to matrices of constraint systems

	Leaves
	Shape of the leaves
	Proving the symbolic equivalence

	Termination
	Termination of all steps of Phase 1 of the strategy
	Association table
	Termination of all steps of Phase 2 of the strategy

	Toward a more powerful attacker
	Semantic with predicate
	Toward deciding the trace equivalence w.r.t. a predicate
	Toward deciding the symbolic equivalence w.r.t. a predicate

	III ProVerif
	Proving more observational equivalences with ProVerif
	Model
	Syntax
	Semantics

	Using biprocesses to prove observational equivalence
	Biprocesses
	From equational theories to rewrite rules

	Clause generation
	Patterns and facts
	Clauses for the attacker
	Clauses for the protocol
	Proving equivalences
	Proving Properties P1 and P2

	Automatic modification of the protocol
	Targeted false attack
	Merging and simplifying biprocesses

	Applications
	Successful case study: the private authentication protocol
	Limitations: the Basic Access Control protocol

	Conclusion and perpectives
	Bibliography
	Appendices
	From the applied pi calculus to symbolics semantics
	Proofs on relating equivalence
	Proofs on symbolic semantics

	Composition of trace equivalence
	Preliminaries
	Proof for the first result
	Proof of second result

	Decision procedure of trace equivalence
	Getting rid of some recipes
	Getting rid of public names in the recipes
	Normalised recipe
	Constructor constraint system

	General invariants
	Structure invariant
	Well-formed invariant

	Proof of completeness
	Strategy Invariants
	Preliminaries
	Preservation of the strategy invariants by the rules
	Invariants specific to different steps and phases of the strategy

	Proof of soundness
	Preliminaries
	Order relation on second order variables
	Preliminaries for soundness of Phase 1 Step a
	Soundness
	Link between solutions

	Link between equivalence symbolic and the final test
	Preliminaries
	Step e of the strategy
	Proof of symbolic equivalence on a leaf

	Proofs of termination
	Proofs of termination of each step of Phase 1 of the strategy
	Proofs of results on association tables
	Proofs of termination of each step of Phase 2 of the strategy

	ProVerif
	Equivalence proofs
	Lemmas for modelling the equational theory
	Proof of Lemmas 9.6 and 9.7
	Simplifications of the formulas

	Proof of the Automatic Modification
	Preliminary Lemmas
	Proofs for the merge function
	Proofs for the simpl Function

