
Timing attacks in security protocols:
symbolic framework and proof techniques?

Vincent Cheval1,2 and Véronique Cortier1

1 LORIA, CNRS, France
2 School of Computing, University of Kent, UK

Abstract. We propose a framework for timing attacks, based on (a variant of)
the applied-pi calculus. Since many privacy properties, as well as strong secrecy
and game-based security properties, are stated as process equivalences, we focus
on (time) trace equivalence. We show that actually, considering timing attacks
does not add any complexity: time trace equivalence can be reduced to length
trace equivalence, where the attacker no longer has access to execution times but
can still compare the length of messages. We therefore deduce from a previous
decidability result for length equivalence that time trace equivalence is decidable
for bounded processes and the standard cryptographic primitives.
As an application, we study several protocols that aim for privacy. In particular,
we (automatically) detect an existing timing attack against the biometric passport
and new timing attacks against the Private Authentication protocol.

1 Introduction

Symbolic models as well as cryptographic models aim at providing high and strong
guarantees when designing security protocols. However, it is well known that these
models do not capture all types of attacks. In particular, most of them do not detect
side-channel attacks, which are attacks based on a fine analysis of e.g., time latencies,
power consumption, or even acoustic emanations [34,12]. The issue of side-channel at-
tacks is well-known in cryptography. Efficient implementations of secure cryptographic
schemes may be broken by a fine observation of the computation time or the power
consumption. Of course, counter-measures have been proposed but many variations of
side-channel attacks are still regularly discovered against existing implementations.

The same kind of issues occur at the protocol level as well. For example, the biomet-
ric passport contains an RFID chip that stores sensitive information such as the name,
nationality, date of birth, etc. To protect users’ privacy, data are never sent in the clear.
Instead, dedicated protocols ensure that confidential data are sent encrypted between
the passport and the reader. However, a minor variation in the implementation of the
protocol in the French passport has led to a privacy flaw [9]. Indeed, by observing the
error message when replaying some old message, an attacker could learn whether a
given passport belongs to Alice or not. The attack has been fixed by unifying the er-
ror messages produced by the passports. However, it has been discovered [25] that all
? The research leading to these results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 258865, project ProSecure

2 Vincent Cheval and Véronique Cortier

biometric passports (from all countries) actually suffer from exactly the same attack as
soon as the attacker measures the computation time of the passport instead of simply
looking at the error messages.

The goal of the paper is to provide a symbolic framework and proof techniques
for the detection of timing attacks on security protocols. Symbolic models for secu-
rity protocols typically assume “the perfect encryption hypothesis”, abstracting away
the implementation of the primitives. We proceed similarly in our approach, assuming
a perfect implementation of the primitives w.r.t. timing. It is well known that imple-
mentation robust against side-channel attacks should, at the very least, be “in constant
time”, that is, the execution time should only depend on the number of blocks that need
to be processed. “Constant time” is not sufficient to guarantee against timing attacks
but is considered to be a minimal requirement and there is an abundant literature on
how to design such implementations (see for example the NaCl library [1] and some
related publications [33,16]). One could think that side-channel attacks are only due to
a non robust implementation of the primitives and that it is therefore enough to analyze
in isolation each of the cryptographic operations. However, in the same way that it is
well known that the perfect encryption assumption does not prevent flaws in protocols,
a perfect implementation of the primitives does not prevent side-channel attacks. This is
exemplified by the timing attack found against the biometric passport [25] and the tim-
ing attacks we discovered against the Private Authentication protocol [7] and several of
its variants. These attacks require both an interaction with the protocol and a dedicated
time analysis. Robust primitives would not prevent these attacks.

Our first contribution is to propose a symbolic framework that models timing attacks
at the protocol level. More precisely, our model is based on the applied-pi calculus [4].
We equip each function symbol with an associated time function as well as a length
function. Indeed, assuming a perfect implementation of the primitives, the computation
time of a function typically only depends on the size of its arguments. Each time a pro-
cess (typically a machine) performs an observable action (e.g., it sends out a message),
the attacker may observe the elapsed time. Our model is rather general since it inher-
its the generality of the applied-pi calculus with e.g., arbitrary cryptographic primitives
(that can be modeled through rewrite systems), possibly arbitrarily replicated processes,
etc. Our time and length functions are also arbitrary functions that may depend on the
machine on which they are run. Indeed, a biometric passport is typically much slower
than a server. Moreover, a server usually handles thousands of requests at the same time,
which prevents from a fine observation of its computation time. Our model is flexible
enough to cover all these scenarios. Finally, our model covers more than just timing
attacks. Indeed, our time functions not only model execution times but also any kind of
information that can be leaked by the execution, such as power consumption or other
“side-channel” measurements.

Our second main contribution is to provide techniques to decide (time) process
equivalence in our framework. Equivalence-based properties are at the heart of many
security properties such as privacy properties [29,9] (e.g., anonymity, unlinkability, or
ballot privacy), strong secrecy [19] (i.e. indistinguishability from random), or game-
based security definitions [5,27] (e.g., indistinguishability from an ideal protocol). Side
channel attacks are particularly relevant in this context where the attacker typically tries

Timing attacks in security protocols 3

to distinguish between two scenarios since any kind of information could help to make a
distinction. Several definitions of equivalence have been proposed such as trace equiva-
lence [4], observational equivalence [4], or diff-equivalence [18]. In this paper, we focus
on trace equivalence. In an earlier work [24], we introduced length (trace) equivalence.
It reflects the ability for an attacker to measure the length of a message but it does not
let him access to any information on the internal computations of the processes.
Our key result is a generic and simple simplification result: time equivalence can be re-
duced to length equivalence. More precisely, we provide a general transformation such
that two processes P and Q are in time equivalence if and only if their transformation
P̃ and Q̃ are in length equivalence, that is P ≈ti Q⇔ P̃ ≈` Q̃. This result holds for an
arbitrary signature and rewriting system, for arbitrary processes - including replicated
processes, and for arbitrary length and time functions. The first intuitive idea of the re-
duction is simple: we add to each output a term whose length encodes the time needed
for the intermediate computations. The time elapsed between two outputs of the same
process however does not only depend on the time needed to compute the sent term
and the corresponding intermediate checks. Indeed, other processes may run in parallel
on the same machine (in particular other ongoing sessions). Moreover, the evaluation
of a term may fail (for example if a decryption is attempted with a wrong key). Since
we consider else branches, this means that an else branch may be chosen after a failed
evaluation of a term, which execution time has to be measured precisely. The proof of
our result therefore involves a precise encoding of these behaviors.

A direct consequence of our result is that we can inherit existing decidability re-
sults for length equivalence. In particular, we deduce from [24] that time equivalence is
decidable for bounded processes and a fixed signature that captures all standard cryp-
tographic primitives. We also slightly extend the result of [24] to cope with polynomial
length functions instead of linear functions.

As an application, we study three protocols that aim for privacy in different appli-
cation contexts: the private authentication protocol (PA) [7], the Basic Authentication
Protocol (BAC) of the biometric passport [2], and the 3G AKA mobile telephony proto-
col [10]. Using the APTE tool [22] dedicated to (length) trace equivalence, we retrieve
the flaw of the biometric passport mentioned earlier. We demonstrate that the PA pro-
tocol is actually not private if the attacker can measure execution times. Interestingly,
several natural fixes still do not ensure privacy. Finally, we provide a fix for this proto-
col and (automatically) prove privacy. Similarly, we retrieve the existing flaw on the 3G
AKA protocol.

Related work. Several symbolic frameworks already include a notion of
time [15,30,26,31,32]. The goal of these frameworks is to model timestamps. The sys-
tem is given a global clock, actions take some number of “ticks”, and participants may
compare time values. Depending on the approach, some frameworks (e.g. [15,30]) are
analysed using interactive theorem provers, while some others (e.g. [26,32]) can be
analysed automatically using for example time automata techniques [32]. Compared to
our approach, the representation of time is coarser: each action takes a fixed time which
does not depend on the received data while the attack on e.g. the biometric passport
precisely requires to measure (and compare) the time of a given action. Moreover, these
frameworks consider trace properties only and do not apply to equivalence properties.

4 Vincent Cheval and Véronique Cortier

They can therefore not be applied to side-channel analysis.
On the other hand, the detection or even the quantification of information possibly
leaked by side-channels is a subject thoroughly studied in the last years (see
e.g. [35,13,37,17,11]). The models for quantifying information leakage are typically
closer to the implementation level, with a precise description of the control flow of
the program. They often provide techniques to measure the amount of information
that is leaked. However, most of these frameworks typically do not model the crypto-
graphic primitives that security protocols may employ. Messages are instead abstracted
by atomic data. [35] does consider primitives abstracted by functions but the framework
is dedicated to measure the information leakage of some functions and does not apply
to the protocol level. This kind of approaches can therefore not be applied to protocols
such as BAC or PA (or when they may apply, they would declare the flawed and fixed
variants equally insecure).
Fewer papers do consider the detection of side-channel attacks for programs that in-
clude cryptography [36,8]. Compared to our approach, their model is closer to the im-
plementation since it details the implementation of the cryptographic primitives. To do
so, they over-approximate the ability of an attacker by letting him observe the control
flow of the program, e.g. letting him observe whether a process is entering a then or
an else branch. However privacy in many protocols (in particular for the BAC and PA)
precisely relies on the inability for an attacker to detect whether a process is entering a
then (meaning e.g. that the identity is valid) or an else branch (meaning e.g. that the
identity is invalid). So the approach developed in [36,8] could not prove secure the fixed
variants of BAC and PA. Their side-channel analysis is also not automated, due to the
expressivity of their framework.

2 Messages and computation time

2.1 Terms

As usual, messages are modeled by terms. Given a signature F (i.e. a finite set of
function symbols, with a given arity), an infinite set of names N , and an infinite set of
variables X , the set of terms T (F ,N ,X) is defined as the union of namesN , variables
X , and function symbols of F applied to other terms. In the spirit of [6], we split F
into two distinct subsets Fd and Fc. Fd represents the set of destructors whereas Fc
represents the set of constructors. We say that a term t is a constructor term if t does
not contain destructor function symbol, i.e. t ∈ T (Fc,N ,X). Intuitively, constructors
stand for cryptographic primitives such as encryption or signatures, while destructors
are operations performed on primitives like decryption or validity checks.

A term is said to be ground if it contains no variable. The set of ground terms may be
denoted by T (F ,N) instead of T (F ,N , ∅). The set of names of a term M is denoted
by names(M). ñ denotes a set of names. Substitutions are replacement of variables by
terms and are denoted by θ = {M1/x1

, . . . ,Mk /xk
}. The application of a substitution θ

to a term M is defined as usual and is denoted Mθ. The set of subterms of a term t is
denoted st(t). Given a term t and a position p, the subterm of t at position p is denoted
t|p. Moreover, given a term r, we denote by t[r]p the term t where its original subterm
at position p is replaced by r.

Timing attacks in security protocols 5

Example 1. A signature for modelling the standard cryptographic primitives (symmet-
ric and asymmetric encryption, concatenation, signatures, and hash) isFstand = Fc∪Fd
where Fc and Fd are defined as follows (the second argument being the arity):

Fc = {senc/2, aenc/2, pk/1, sign/2, vk/1, 〈 〉/2, h/1}
Fd = {sdec/2, adec/2, check/2, proj1/1, proj2/1, equals/2}

The function aenc (resp. senc) represents asymmetric (resp. symmetric) encryption with
corresponding decryption function adec (resp. sdec) and public key pk. Concatenation
is represented by 〈 〉 with associated projectors proj1 and proj2. Signature is modeled
by the function sign with corresponding validity check check and verification key vk. h
represents the hash function. The operator equals models equality tests. These tests are
typically hard-coded in main frameworks but we need here to model precisely the time
needed to perform an equality test.

2.2 Rewriting systems

The properties of the cryptographic primitives (e.g. decrypting an encrypted message
yields the message in clear) are expressed through rewriting rules. Formally, we equip
the term algebra with a rewriting system, that is a setR of rewrite rules `→ r such that
` ∈ T (F ,X) r X and r ∈ T (F , vars(`)). A term s is rewritten into t by a rewriting
system R, denoted s →R t if there exists a rewrite rule ` → r ∈ R, a position p of s
and a substitution σ such that s|p = `σ and t = s[rσ]p. The reflexive transitive closure
of→R is denoted by→∗R.

A rewriting system R is confluent if for all terms s, u, v such that s →∗R u and
s→∗R v, there exists a term t such that u→∗R t and v →∗R t. Moreover, we say that R
is convergent ifR is confluent and terminates.

A term t is in normal form (w.r.t. a rewrite systemR) if there is no term s such that
t →R s. Moreover, if t →∗R s and s is in normal form then we say that s is a normal
form of t. In what follows, we consider only convergent rewriting system R. Thus the
normal form of a term t is unique and is denoted t↓.

Example 2. We associate to the signature Fstand of Example 1 the following rewriting
system:

sdec(senc(x, y), y)→ x
adec(aenc(x, pk(y)), y)→ x

check(sign(x, y), vk(y))→ x
equals(x, x)→ x

proj1(〈x, y〉)→ x
proj2(〈x, y〉)→ y

The two first rewriting rules on the left represent respectively symmetric and asymmet-
ric encryption. The first two rules on the right represent the left and right projections.
The rewriting rule check(sign(x, y), vk(y)) → x models the verification of signature:
if the verification succeeds, it returns the message that has been signed. Finally, the
equality test succeeds only if both messages are identical and returns one of the two
messages.

A ground term u is called a message, denoted Message(u), if v↓ is a constructor
term for all v ∈ st(u). For instance, the terms sdec(a, b), proj1(〈a, sdec(a, b)〉), and
proj1(a) are not messages. Intuitively, we view terms as modus operandi to compute
bitstrings where we use the call-by-value evaluation strategy.

6 Vincent Cheval and Véronique Cortier

2.3 Length and time functions

We assume a perfect implementation of primitives and we aim at detecting side-channel
attacks at the protocol level. In standard robust implementations of encryption, the time
for encrypting is constant, that is, it does not depend on the value of the key nor the
value of the message but only on the number of blocks that need to be processed. So
the computation time of a function depends solely on the length of its arguments. For
example, assuming the size of m and k to be a multiple of the size of one block, the
time needed to compute senc(m, k), the encryption of the message m over the key k,
depends on the lengths of m and k. We thus introduce time functions as well as length
functions.

Length function For any primitive f ∈ F of arity n, we associate a length function
from Nn to N. Typically, the length function of f indicates the length of the message
obtained after application of f, based on the length of its arguments. Given a signatureF
and a set of length functions L associated toF , we denote by lenfL the length function in
L associated to f. Moreover we consider that names can have different sizes. Indeed, an
attacker can always create a bitstring of any size. Hence we consider an infinite partition
of N such that N = ∪i∈NNi and each Ni is an infinite set of names of size i. To ease
the reading, we may denote by ni a name of Ni.

The length of a closed message t, denoted lenL(t), is defined as follows:

lenL(n
i) = i when ni ∈ Ni

lenL(f(t1, . . . , tk)) = lenfL(lenL(t1), . . . , lenL(tk))

We say that a set of length functions L is polynomial if for all f ∈ F , there exists a
polynomial P ∈ N[X1, . . . , Xn] (i.e. a polynomial of n variables, with coefficients in
N) such that for all x1, . . . , xn ∈ N, lenfL(x1, . . . , xn) = P (x1, . . . , xn). The class of
polynomial time functions is useful to obtain decidability of (timed) trace equivalence.
A particular case of polynomial length functions are linear length functions, for which
the associated polynomial is linear. Note that the linear length functions are so far the
only functions that have been proved sound w.r.t. symbolic models [27].

Example 3. An example of set of length functions L associated to the signature Fc of
Example 1 is defined as follows.

lensencL (x, y) = x lenaencL (x, y) = x+ y lenpkL (x) = x

len
〈 〉
L (x, y) = 1 + x+ y lensignL (x, y) = x+ y lenvkL (x) = x

In this example, the length of a encrypted message is linear in the size of the original
message and the length of the key. The concatenation of two messages is of length the
sum of the lengths of its arguments, plus some constant size used to code the frontier
between the two messages. Note that these length functions are polynomial and even
linear. These length functions are rather simple and abstract away some implementation
details such as padding but more complex functions may be considered if desired.

Timing attacks in security protocols 7

Time function For each primitive f ∈ F of arity n, we associate a time function
from Nn to N. Given a set of time functions T , we denote timefT the time function
associated to f in T . Intuitively, timefT (x1, . . . , xn) determines the computation time of
the application of f on some terms u1, . . . , un assuming that the terms ui are already
computed and the length of ui is xi. Finally, we define a constant function modelling
the computation time to access data such as the content of a variable in the memory,
usually denoted timeXT .

Example 4. Coming back to the signature Fstand of Example 1, we can define the set T
of time functions as follows:

timeXT = 1 time
proj2
T (x) = 1 time

proj1
T (x) = 1 time

〈 〉
T (x, y) = 1

timeadecT (x, y) = x timeaencT (x, y) = x timeequalsT (x, y) = x+ y

In this example, concatenation and projections have constant computation time (e.g.,
concatenation and projections are done by adding or removing a symbolic link). The
asymetric encryption of m by k linearly depends on the size of m. We ignore here the
complexity due to the size of the key since key size is usually fixed in protocols. Note
it would be easy to add a dependency. Finally the time for an equality test is the sum
of the length of its arguments. This corresponds to a naive implementation. We could
also choose timeequalsT (x, y) = max(x, y). Our framework does not allow to model
efficient implementations where the program stops as soon as one bit differs. However,
such efficient implementations leak information about the data tested for equality and
are therefore not good candidates for an implementation robust against side-channel
attacks. Again, other time functions may of course be considered.

The computation time of a term is defined by applying recursively each correspond-
ing time function. More generally, we define the computation time of a term tσ assum-
ing that the terms in σ are already computed.

Definition 1. Let F be a signature, let L be a set of length functions for F and let T
be a set of time functions for F . Consider a substitution σ from variables to ground
constructor terms. For all terms t ∈ T (F ,N ,X) such that vars(t) ⊆ dom(σ), we
define the computation time of t under the substitution σ and under the sets L and T ,
denoted ctimeL,T (t, σ), as follows:

ctimeL,T (t, σ) = timeXT if t ∈ X ∪N
ctimeL,T (f(u1, . . . , un), σ) = timefT (`1, . . . , `n) +

∑n
i=1 ctimeL,T (ui, σ)

if `i = lenL((uiσ)↓) and Message(uiσ) is true ∀i ∈ {1, . . . , n}
ctimeL,T (f(u1, . . . , un), σ) =

∑k
i=1 ctimeL,T (ui, σ)

if Message(uiσ) is true ∀i ∈ {1, . . . , k − 1} and Message(ukσ) is false

Intuitively, ctimeL,T (t, σ) represents the time needed to compute tσ↓ when the
terms of σ are already computed and stored in some memory. Therefore the compu-
tation time of a variable represents in fact the access time to the memory. We assume in
this paper that all primitives are computed using the call-by-value evaluation strategy
with a lazy evaluation when failure arises. Hence, when computing f(u1, . . . , un) with

8 Vincent Cheval and Véronique Cortier

the memory σ, the terms ui are computed first from left to right. If all computations
succeed then the primitive f is applied. In such a case, we obtain the computation time
timefT (lenL(u1σ↓), . . . , lenL(unσ↓)) +

∑n
i=1 ctimeL,T (ui, σ). Otherwise, the compu-

tation of f(u1, . . . , un) stops at the first uk that does not produce a message. This yields
the computation time

∑k
i=1 ctimeL,T (ui, σ). We assume here that names are already

generated to avoid counting their generation twice. Hence the associated computation
time is also timeXT the access time to the memory. We will see later in this section
how the computation time for the generation of names is counted, when defining the
semantics of processes.

3 Processes

Protocols are modeled through processes, an abstract small programming language. Our
calculus is inspired from the applied-pi calculus [4].

3.1 Syntax

The grammar of plain processes is defined as follows:

P,Q,R := 0 | P +Q | P | Q | νk.P | !P |
let x = u in P else Q | in(u, x).P | out(u, v).P

where u, v are terms, and x is a variable of X . Our calculus contains the nil process 0,
parallel composition P | Q, choice P +Q, input in(u, x).P , output out(u, v), replica-
tion νk.P that typically models nonce or key generation, and unbounded replication !P .
Note that our calculus also contains the assignment of variables let x = u in P else Q.
In many calculus, let x = u in P is considered as syntactic sugar for P{u/x}. However,
since we consider the computation time of messages during the execution of a process,
the operation let x = u in P is not syntactic sugar anymore. For example, the three
following processes do not yield the same computation time even though they send out
the same messages.

– P1 = let x = senc(a, k). in out(c, h(n)).out(c, 〈x, x〉)
– P2 = out(c, h(n)).let x = senc(a, k) in out(c, 〈x, x〉)
– P3 = out(c, h(n)).out(c, 〈senc(a, k), senc(a, k)〉)

P1 first computes senc(a, k), and then outputs h(n) and 〈senc(a, k), senc(a, k)〉. P2 is
very similar but outputs h(n) before computing senc(a, k) meaning that the output of
h(n) will occur faster in P2 than in P1, thus an attacker may observe the difference.
Finally, P3 computes senc(a, k) twice and therefore takes twice more time.

The operation let x = u in P can also be used to change the default evaluation
strategy of terms. As mentioned in the previous section, we assume that all primitives
are computed using the call-by-value evaluation strategy with a lazy evaluation when
a failure arises. For example, the eager evaluation of a message senc(sdec(y, k), u) in
the process let x = senc(sdec(y, k), u) in P else Q can be modelled with the following
process:

let x1 = sdec(y, k) in let x = senc(x1, u) in P else Q else let x2 = u in Q else Q

Timing attacks in security protocols 9

In this process, even if the computation of sdec(y, k) fails (else branch), then u is still
computed.

Note that the else branch in let x = u in P else Q is used in case u cannot be com-
puted. For example, let x = sdec(a, a) in 0 else out(c, ok) would output ok. At last, note
that the traditional conditional branching (If-then-else) is not part of our calculus. We
use instead the assignment of variables and the destructor symbol equals. The traditional
process if u = v then P else Q is thus replaced by let x = equals(u, v) in P else Q
where x does not appear in P nor Q.

The computation time of some operation obviously depends on the machine on
which the computation is performed. For example, a server is much faster than a bio-
metric passport. We defined extended processes to represent different physical machines
that can be running during the execution of a protocol. For example, biometric passports
are distinct physical machines that can be observed independently. In contrast, a server
runs several threads which cannot be distinguished from an external observer.

The grammar for our extended processes is defined as follows:

A,B := [P, i, T] | !A | A ||B

where P is a plain process, i is an integer, and T is a set of time functions. [P, i, T]
represents a machine with program P and computation time induced by T . The integer i
represents the computation time used so far on that machine. Note that inside a machine
[P, i, T], there can be several processes running in parallel, e.g. P1 | . . . | Pn. We
consider that their executions rely on a scheduling on a single computation machine
and so the computation time might differ depending on the scheduling. The situation is
different in the case of a real parallel execution of two machines, e.g. A ||B where the
attacker can observe the execution of A and B independently.

Messages are made available to the attacker through frames. Formally, we assume a
set of variablesAX , disjoint fromX . Variables ofAX are typically denoted ax 1, . . . , axn.
A frame is an expression of the form Φ = {ax 1 B u1; . . . ; axn B un} where ax i ∈
AX and ui are terms. The application of a frameΦ to a termM , denotedMΦ, is defined
as for the application of substitutions.

Definition 2 (time process). A time process is a tuple (E , A, Φ, σ) where:

– E is a set of names that represents the private names of A;
– Φ is a ground frame with domain included inAX . It represents the messages avail-

able to the attacker;
– A is an extended process;
– σ is a substitution of variables to ground terms. It represents the current memory

of the machines in A.

3.2 Semantics

The semantics for time processes explicits the computation time of each operation.
In particular, for each operation, we define a specific time function representing its
computation time standalone, i.e. without considering the computation time required
to generate the messages themselves. Hence, given a set T of time functions associ-
ated a physical machine, t letinT (n) represents the computation time of the assignation

10 Vincent Cheval and Véronique Cortier

of a message of length n to a variable, whereas t letelseT represents the computation
time in the case the computation of the message fails; t inT (n) (resp. t outT (n)) corre-
sponds to the computation time of the input (resp. output) of a message of length n; and
t commT (n) corresponds to the computation time of the transmission of the message
of length n through internal communication. At last, t restrT (n) represents the time
needed to generate a fresh nonce of length n.

The semantics for time processes is similar to the semantics of the applied-pi cal-
culus [4] and is given in Figure 1. For example, the label out(M, axn, j) means that
some message has been sent on a channel corresponding to M after some time j (j
is actually the total computation time until this send action). This message is stored
in variable axn by the attacker. Internal communications within the same machine (or
group of machines connected through a local network) cannot be observed by an at-
tacker, therefore the computation time of the corresponding machine increases but the
transition is silent (τ action). No external machines can communicate secretly since we
assume the attacker can control and monitor all communications (he can at least observe
the encrypted traffic). Lastly, note that the choice, replication and parallel composition
operators do not have associated time functions.

The w−→ relation is the reflexive and transitive closure of `−→, where w is the concate-
nation of all actions. Moreover, tr⇒ is the relation w−→ where tr are the words w without
the non visible actions (τ). The set of traces of a time process P is the set of the possible
sequences of actions together with the resulting frame.

trace(P) =
{
(tr, νE ′.Φ′)

∣∣∣P tr⇒ (E ′, A′, Φ′, σ′) for some E ′, A′, Φ′, σ′
}

Example 5. Consider the signature F , the set L of length functions of Example 3 and
the set T of time functions of Example 4 and assume that for all n ∈ N, t outT (n) = n.
Let a, b ∈ N` and k ∈ N`pk with `, `pk ∈ N. Consider the time process P =
(∅, [out(c, 〈a, b〉), 0, T] ||[out(c, aenc(a, k)), 0, T], ∅, ∅). Since we have lenL(aenc(a, k)) =
`+`pk, lenL(〈a, b〉) = 2`+1, ctimeL,T (aenc(a, b), ∅) = `·`3pk+2 and ctimeL,T (〈a, b〉, ∅) =
3, the set trace(A) is composed of four traces (s, Φ):

1. s = out(c, ax 1, ` · `3pk + `+ `pk + 3) and Φ = {ax 1 B aenc(a, k)}
2. s = out(c, ax 1, 2`+ 5) and Φ = {ax 1 B 〈a, b〉}
3. s = out(c, ax 1, ` · `3pk + ` + `pk + 3).out(c, ax 2, 2` + 5) and Φ = {ax 1 B

aenc(a, k); ax 2 B 〈a, b〉}
4. s = out(c, ax 1, 2` + 5).out(c, ax 2, ` · `3pk + ` + `pk + 3) and Φ = {ax 1 B
〈a, b〉; ax 2 B aenc(a, k)}

Note that since each computation time is local to each machine, the last argument of
the out action is not necessarily increasing globally on the trace, as exemplified by the
third trace.

3.3 Example: the PA protocol

We consider (a simplified version of) the Passive Authentication protocol (PA), pre-
sented in [7]. It is designed for transmitting a secret without revealing the identity of

Timing attacks in security protocols 11

(E , [let x = u in P else Q | R, i, T] ||A,Φ, σ) τ−→ (LET)
(E , [P | R, j, T] ||A,Φ, σ ∪ {uσ↓/x})

if Message(uσ) with j = i+ ctimeL,T (u, σ) + t letinT (lenL(uσ↓))

(E , [let x = u in P else Q | R, i, T] ||A,Φ, σ) τ−→ (E , [Q | R, j, T] ||A,Φ, σ) (ELSE)
if ¬Message(uσ) with j = i+ ctimeL,T (u, σ) + t letelseT

(E , [out(u, t).Q1 | in(v, x).Q2 | R, i, T] ||A,Φ, σ)
τ−→ (COMM)

(E , [Q1 | Q2 | R, j, T] ||A,Φ, σ ∪ {tσ↓/x})
if Message(uσ),Message(vσ),Message(tσ) and uσ↓ = vσ↓ with j = i+

ctimeL,T (u, σ) + ctimeL,T (v, σ) + ctimeL,T (t, σ) + t commT (lenL(tσ↓))

(E , [in(u, x).Q | P, i, T] ||A,Φ, σ) in(N,M)−−−−−−→ (E , [Q | P, j, T] ||A,Φ, σ ∪ {t/x}) (IN)
if MΦ↓ = t, fvars(M,N) ⊆ dom(Φ), fnames(M,N) ∩ E = ∅,
NΦ↓ = uσ↓, Message(MΦ), Message(NΦ), and Message(uσ)

with j = i+ ctimeL,T (u, σ) + t inT (lenL(t))

(E , [out(u, t).Q | P, i, T] ||A,Φ, σ) out(M,axn,j)−−−−−−−−−→ (OUT)
(E , [Q | P, j, T] ||A,Φ ∪ {axn B tσ↓}, σ)

if MΦ↓ = uσ↓, Message(uσ), fvars(M) ⊆ dom(Φ), fnames(M) ∩ E = ∅,
Message(MΦ), Message(tσ) and axn ∈ AX , n = |Φ|+ 1

with j = i+ ctimeL,T (t, σ) + ctimeL,T (u, σ) + t outT (lenL(tσ↓))

(E , [P1 + P2 | R, i, T] ||A,Φ, σ)
τ−→ (E , [P1 | R, i, T] ||A,Φ, σ) (CHOICE-1)

(E , [P1 + P2 | R, i, T] ||A,Φ, σ)
τ−→ (E , [P2 | R, i, T] ||A,Φ, σ) (CHOICE-2)

(E , [νk.P | R, i, T] ||A,Φ, σ) τ−→ (E ∪ {k}, [P | R, j, T] ||A,Φ, σ) (RESTR)
with j = i+ t restrT (`) and k ∈ N`

(E , [!P | R, i, T] ||A,Φ, σ) τ−→ (E , [!P | Pρ | R, i, T] ||A,Φ, σ) (REPL)

(E , !A ||B,Φ, σ) τ−→ (E , !A ||Aρ ||B,Φ, σ) (M-REPL)

where u, v, t are ground terms, x is a variable and ρ is used to rename variables in bvars(P) and
bvars(A) (resp. names in bnames(P) and bnames(A)) with fresh variables (resp. names).

Fig. 1. Semantics

the participants. In this protocol, an agent A wishes to engage in communication with
an agent B that is willing to talk to A. However, A does not want to compromise her
privacy by revealing her identity or the identity of B more broadly. The participants A
and B proceed as follows:

A→ B : aenc(〈Na, pk(skA)〉, pk(skB))
B → A : aenc(〈Na, 〈Nb, pk(skB)〉〉, pk(skA))

else aenc(Nb, pk(skB))

A first sends to B a nonce Na and her public key encrypted with the public key
of B. If the message is of the expected form then B sends to A the nonce Na, a freshly

12 Vincent Cheval and Véronique Cortier

generated nonce Nb and his public key, all of this being encrypted with the public key
of A. If the message is not of the right form or if B is not willing to talk with A, then B
sends out a “decoy” message aenc(Nb, pk(skB)). Intuitively, this message should look
like B’s other message from the point of view of an outsider. This is important since
the protocol is supposed to protect the identity of the participants.

This protocol can be modeled in our process algebra as follows:

B(b, a)
def
= in(c, x).let y = adec(x, skb) in

let z = equals(proj2(y), pk(ska)) in νnb.out(c, aenc(M, pk(ska))).0
else νnerror.out(c, aenc(nerror, pk(ska))).0

else 0.

A(a, b)
def
= νna.out(c, aenc(〈na, pk(ska)〉, pk(skb))).in(c, z).0

whereM = 〈proj1(y), 〈nb, pk(skb)〉〉. The processA(a, b) represents the roleA played
by agent a with b while the process B(b, a) represents the role B played by agent b
with a.

4 Time Equivalence

Privacy properties such as anonymity, unlinkability, or ballot privacy are often stated
as equivalence properties [29,9]. Intuitively, Alice’s identity remains private if an at-
tacker cannot distinguish executions from Alice from executions from Bob. Equiva-
lence properties are also useful to express strong secrecy [19], indistiguishability from
an ideal system [5], or game-based properties [27]. Several definitions of equivalence
have been proposed such as trace equivalence [4], observational equivalence [4], or diff-
equivalence [18]. In this paper, we focus on trace equivalence that we adapt to account
for length and computation times.

The ability of the attacker is now characterized by three parameters: the set of
cryptographic primitives, their corresponding length functions, and their correspond-
ing computation times (w.r.t. the attacker). Later in the paper, for decidability, we will
show that we can restrict the attacker to a finite set of names. So we define a length sig-
nature, usually denoted F`, as a tuple of a symbol functions signature F , a set of names
N ⊆ N , and a set of length functions L, i.e. F` = (F ,N, L). Similarly, we denote a
time signature, usually denoted Fti, as a pair containing a length signature F` and a set
of time functions T corresponding to the signature in F`, i.e. Fti = (F`, T).

4.1 Time static equivalence

The notion of static equivalence has been extensively studied (see e.g., [3]). It cor-
responds to the indistinguishability of sequences of messages from the point of view
of the attacker. In the standard definition of static equivalence [3,14,28], the attacker
can only perform cryptographic operations on messages. [24] introduces length static
equivalence, that provides the attacker with the ability to measure the length of mes-
sages. Intuitively, two frames are in length static equivalence if an attacker cannot see
any difference, even when applying arbitrary primitives and measuring the length of the

Timing attacks in security protocols 13

resulting messages. In this framework, we also provide the attacker with the capability
to measure computation times. We therefore adapt the definition of static equivalence
to account for both length and computation times.

Definition 3. Let Fti = (F`, T) be a time signature with F` = (F ,N, L). Let E , E ′
two sets of names. Let Φ and Φ′ two frames. We say that νE .Φ and νE ′.Φ′ are time
statically equivalent w.r.t. Fti, written νE .Φ ∼Fti

ti νE ′.Φ′, when dom(Φ) = dom(Φ′),
fnames(νE .Φ, νE ′.Φ′) ∩ (E ′ ∪ E) = ∅ and when for all i, j ∈ N, for all M,N ∈
T (F ,N ∪ X) such that fvars(M,N) ⊆ dom(Φ) and fnames(M,N) ∩ (E ∪ E ′) = ∅,
we have:

– Message(MΦ) if and only if Message(MΦ′)
– if Message(MΦ) and Message(NΦ) then

1. MΦ↓ = NΦ↓ if and only MΦ′↓ = NΦ′↓; and
2. lenL(MΦ↓) = i if and only if lenL(MΦ′↓) = i; and
3. ctimeL,T (M,Φ) = j iff ctimeL,T (M,Φ′) = j

Consider the length signature F`, we say that νE .Φ and νE ′.Φ′ are length statically
equivalent w.r.t. F`, written νE .Φ ∼F`

` νE ′.Φ′, when νE .Φ and νE ′.Φ′ satisfy the same
properties as above except Property 3.

4.2 Time trace equivalence

Time trace equivalence is a generalization of time static equivalence to the active case.
It corresponds to the standard trace equivalence [4] except that the attacker can now
observe the execution time of the processes. Intuitively, two extended processes P and
Q are in time trace equivalence if any sequence of actions of P can be matched by the
same sequence of actions in Q such that the resulting frames are time statically equiv-
alent. It is important to note that the sequence of actions now reflects the computation
time of each action. We also recall the definition of length trace equivalence introduced
in [24], which accounts for the ability to measure the length but not the computation
time. We denote by =ti the equality of sequences of labels, where the time parameters
of outputs are ignored. Formally, we define `1 . . . `p =ti `

′
1 . . . `

′
q to hold when p = q

and

– for all N,M , `i = in(N,M) if and only if `′i = in(N,M); and
– for all M, axn, `i = out(M, axn, c) for some c if and only if `′i = out(M, axn, c

′)
for some c′.

Definition 4. Consider a time (resp. length) signature F . Let P and Q be two closed
time processes with fnames(P,Q) ∩ bnames(P,Q) = ∅. P vFti Q (resp. P vF` Q)
if for every (tr, νE .Φ) ∈ trace(P), there exists (tr′, νE .Φ′) ∈ trace(Q) such that
νE .Φ ∼Fti νE ′.Φ′ and tr = tr′ (resp. νE .Φ ∼F` νE ′.Φ′ and tr =ti tr

′).
Two closed time processes P and Q are time (resp. length) trace equivalent w.r.t.

F , denoted by P ≈Fti Q (resp. P ≈F` Q), if P vFti Q and P vFti Q (resp. P vF` Q
and P vF` Q).

14 Vincent Cheval and Véronique Cortier

4.3 Timing attacks against PA

We consider again the PA protocol described in Section 3.3. This protocol should in
particular ensure the anonymity of the senderA. The anonymity ofA can be stated as an
equivalence property: an attacker should not be able to distinguish whether b is willing
to talk to a (represented by the process B(b, a)) or willing to talk to a′ (represented
by the process B(b, a′)), provided that a, a′ and b are honest participants. This can be
modeled by the following equivalence:

(E , [B(b, a′), 0, T] ||[A(a′, b), 0, T], Φ, ∅)
?

≈Fti (E , [B(b, a), 0, T] ||[A(a, b), 0, T], Φ, ∅)
with E = {ska, ska′ , skb}, Φ = {ax 1 B pk(ska); ax 2 B pk(ska′); ax 3 B pk(skb)}.

In the literature, the Private Authentication protocol was proved [23] to preserve
A’s anonymity when considering standard trace equivalence, i.e. without length and
time. However, an attacker can easily break anonymity by measuring the length of the
messages. Indeed, it is easy to notice that the length of the decoy message is smaller
than the size of the regular message. Therefore, an attacker may simply initiate a session
with B in the name of A:

C(A)→ B : aenc(〈Nc, pk(skA)〉, pk(skB))

If the message received in response from B is “long”, the attacker learns that B is
willing to talk with A. If the message is “small”, the attacker learns that A is not one of
B’s friends.

This attack can be easily reflected in our formalism. Consider the sequence of labels
tr(j) = in(c, aenc(〈ni, ax 1〉, ax 3)).out(c, ax 4, j) and the corresponding execution on
B(b, a), where b is indeed willing to talk with a.

(E , [B(b, a), 0, T] ||[A(a, b), 0, T], Φ, ∅) tr(j)⇒ (E ′, [A(a, b), 0, T], Φ ∪ {ax 4 BM}, σ)

with M = aenc(〈ni, 〈nb, pk(skb)〉〉, pk(ska)) and E ′ = E ∪ {nb} for some σ and j.
On the other hand, when the communication is between a′ and b then b detects that the
public key does not correspond to a′ and outputs the decoy message:

(E , [B(b, a′), 0, T] ||[A(a′, b), 0, T], Φ, ∅) tr(j′)⇒ (E ′, [A(a, b), 0, T], Φ∪{ax 4 BM ′}, σ′)

with M ′ = aenc(nerror, pk(ska)) for some σ′ and j′. If the attacker computes the
length of the received message, he gets lenL(aenc(〈ni, 〈nb, pk(skb)〉〉, pk(ska))) =
2` + `pk + 2 and lenL(aenc(nerror, pk(ska))) = ` with ni, nb, nerror ∈ N` and
skb ∈ Npk. Therefore the two resulting frames are not in length static equivalence,
thus
(E , [B(b, a′), 0, T] ||[A(a′, b), 0, T], Φ, ∅) 6≈Fti (E , [B(b, a), 0, T] ||[A(a, b), 0, T], Φ, ∅)

To repair the anonymity of the PA protocol, the decoy message should have the same
length than the regular message.

PA-fix1 A first solution is to include Na in the decoy message which is set to be
aenc(〈Na,Error〉, pk(skA)) where Error is a constant of same length than 〈Nb, pk(skB)〉.
However, this variant does not satisfy even trace equivalence since the attacker can
now reconstruct aenc(〈Na,Error〉, pk(skA)) when Na has been forged by himself.

Timing attacks in security protocols 15

PA-fix2 To fix this attack, a natural variant is to set the decoy message to be
aenc(〈Na, Nd〉, pk(skA)), whereNd is a nonce of same length than 〈Nb, pk(skB)〉.
However, this variant is now subject to a timing attack. Indeed, it takes more time
to generateNd thanNb sinceNd is larger. Therefore an attacker may still notice the
difference. Note that this attack cannot be detected when considering length trace
equivalence only.

PA-fix3 Finally, a third solution is to set the decoy message to be the cipher
aenc(〈Na, 〈Nb,Error〉, pk(skA)〉) where Error is a constant of same length than
pk(skB). We show in Section 6 that due to our main result and thanks to the APTE
tool, we are able to prove this version secure, assuming that public keys are of the
same length (otherwise there is again a straightforward attack on privacy).

We will see in Section 6 that our tool detects all these attacks.

5 Reduction of time trace equivalence to length equivalence

We focus in this section on the key result of this paper: time equivalence reduces to
length equivalence. We show that this holds for arbitrary processes, possibly with repli-
cations and private channels (Theorem 1). This means that, from a decidability point
of view, there is no need to enrich the model with time. We also prove that our result
induces that time trace equivalence for processes without replication can also be re-
duced to length trace equivalence for processes without replication, even if we restrict
the names of the attacker. Finally, applying the decidability result on length trace equiv-
alence of [24], we can deduce decidability of trace equivalence for processes without
replication and for a fixed signature that includes all standard cryptographic primitives
(Theorem 2).

These three results rely on a generic transformation from a time process P to a
process P ′ where the sole observation of the length of the messages exchanged in P ′

reflects both the time and length information leaked by P .

5.1 Representing computation time with messages

The key idea to get rid of computation times is to attach to each term t a special message,
called time message, whose length corresponds to the time needed to compute t. To that
extent, we first need to augment the signature used to describe our processes. Given a
time signature Ft = ((F ,N, L), T), we extend it as Ft

T
= ((FT ,N, LT), TT), which

is defined as follows. We first add, for each function symbol f, a fresh function symbol f
whose length function is the time function of f, meaning that lenf

L
T = timefT . Similarly,

for each action proc in the execution of a process, we add a new function symbol whose
length function represents the computation time of proc, that is len

gproc

L
T = t procT .

Lastly, we consider two new symbol functions plus/1 and hide/2 where the resulting
size of the application of plus is the sum of the size of its arguments, and hide reveals
only the size of its first argument. Since these news function symbols should not yield
information on the computation time other than by their size, we consider that all their
time functions are the null function. With these extended time signature Ft

T
, the time

16 Vincent Cheval and Véronique Cortier

message of a term t, denoted [t]L,T , can be naturally defined. For instance, if t =
f(t1, . . . , tm) then [t]L,T = plus([t1]L,T , . . . plus([tm]L,T , f(t1, . . . , tm)) . . .). Thanks
to the function symbol plus, the length of [t]L,T models exactly the computation time
of t.

5.2 Transformed processes

The computation time of a process becomes visible to an attacker only at some specific
steps of the execution, typically when the process sends out a message. Therefore the
corresponding time message should consider all previous actions since the last output.
In case a machine executes only a sequential process (i.e. that does not include processes
in parallel) then the computation time of internal actions is easy to compute. For exam-
ple, given a processP = in(c, x).νk.out(c, v), the computation time ofP when v is out-
put can be encoded using the following time message plus(min, plus(grestr(k),mout))
where:
min = plus([x]L,T , plus([c]L,T , gin(x))) mout = plus([v]L,T , plus([c]L,T , gout(v)))

However, if a machine executes a process Q in parallel of P , then the time message
m does not correspond anymore to the computation time when v is output since some
actions of Q may have been executed between the actions of P . Therefore, we need
to “store” the computation time that has elapsed so far. To do this, we introduce cells
that can store the time messages of a machine and will be used as time accumula-
tor. Formally, a cell is simply a process with a dedicated private channel defined as
Cell(c, u) = out(c, u) | ! in(c, x).out(c, x). Note that a cell can only alternate between
inputs and outputs (no consecutive outputs can be done). Thanks to those cells, we can
define a transformation for a time process P into an equivalent process w.r.t. to some
cell d and some length and time functions L and T respectively, denoted [P]dL,T , where
the computation time can now be ignored.

Intuitively, each action of a plain process first starts by reading in the cell d and
always ends by writing on the cell the new value of the computation time. For instance,
[νk.P]dL,T = in(d, y).νk.out(d, plus(y, grestr(k))).[P]

d
L,T . Moreover, in the case of an

output, out(u, v) is transformed to out(u, 〈v, hide(t, k)〉) where t is the current value of
the computation time of the plain process and k is a fresh nonce. Hence, the attacker gets
information about the computation time of the process through the size of the second
message of the output. The most technical case is for the process let x = u in P elseQ.
Indeed, if u is not a message then the process executes Q instead of P . The main issue
here is that the computation time of u depends on which subterm makes the compu-
tation fail. This, in turn, may depend on the intruder’s inputs. Therefore we introduce
below the process LetTrT (c, t, [u], y) that determines which cryptographic primitive
fails and then returns on channel c the computation time message that corresponds to
the execution of u, added to the existing computation time message y and t being some
initial parameters.

Timing attacks in security protocols 17

LetTrT (c, t, ∅, u) = out(c, plus(u, t))
LetTrT (c, t, [t1; . . . ; tn], u) = LetTrT (c, t, [t2; . . . ; tn], plus(u, [t1]L,T)) if t1 ∈ N ∪ X
LetTrT (c, t, [t1; . . . ; tn], u) = let x = t1 in
LetTrT (c, t, [t2; . . . ; tn], plus(u, [t1]L,T)) else LetTrT (c, t

′, [v1; . . . ; vm], u)

where t1 = f(v1, . . . , vm), t′ = f(v1, . . . , vm).

Thanks to this process, the transformed process [let x = u in P elseQ]dL,T is defined as
follows where u = f(v1, . . . , vm), t = f(v1, . . . , vm).

in(d, y).let x = u in out(d, plus(plus(y, gletin(x)), [u]L,T)).[P]
d
L,T

else νc.
(
LetTrT (c, t, [v1; . . . ; vm], plus(y, gletelse)) | in(c, z).out(d, z).[Q]dL,T

)
This transformation is naturally adapted to extended processes by introducing a cell for
each extended process A = [P, i, T], that is [A]L = [νd.(Cell(d, ni) | [P]dL,T), i, T]
for some ni ∈ N .

5.3 Main theorem

We can finally state the main results of this paper. First, time equivalence can be reduced
to length equivalence, for any two processes.

Theorem 1. Let Fti = ((F ,N , L), T) be a time signature. Intuitively, T is the set of
time functions for the attacker. Consider two time processes P1 = (E1, A1, Φ1, ∅) and
P2 = (E2, A2, Φ2, ∅) with dom(Φ2) = dom(Φ1), built on (F ,N , L) and time functions
sets T1, . . . , Tn. Let P ′1 = (E1, [A1]L, Φ1, ∅) and P ′2 = (E2, [A2]L, Φ2, ∅). Then

P1 ≈Fti
ti P2 if, and only if, P ′1 ≈

Fti
T,T1,...,Tn

` P ′2

This theorem holds for arbitrary processes and for any signature and associated
rewriting system. It is interesting to note that it also holds for arbitrary time functions.
Moreover, the transformed processes P ′1 and P ′2 only add length functions which are
either linear or are the same than the initial time functions. It therefore does not add any
complexity. Note also that if P1 and P2 are two processes without replication then P ′1
andP ′2 are still processes with replication. For decidability in the case of processes with-
out replication, we need to further restrict the number of names given to the attacker. We
therefore refine our theorem for processes without replication with a slightly different
transformation. Instead of adding cells of the form out(c, u) | ! in(c, x).out(c, x), we
unfold in advance the replication as much as needed in the extended process. As a con-
sequence, and relying on the decidability of time trace equivalence described in [24],
we can immediately deduce decidability of time trace equivalence for processes without
replication and polynomial time functions.

Theorem 2. Let Fti = ((F ,N , L), T) be a time signature such that F = Fstand] Fo
where Fo contains only one-way symbols, that are not involved in any rewrite rules. We
assume that L and T contain only polynomial functions. Then time trace equivalence
is decidable for time processes without replication.

18 Vincent Cheval and Véronique Cortier

Anonymity Status Execution time

PA-Original timing attack 0.01 sec

PA-fix1 timing attack 0.01 sec

PA-fix2 timing attack 0.08 sec

PA-fix3 safe 0.3 sec

Unlinkability Status Execution time

BAC timing attack 0.08 sec

AKA timing attack 0.9 sec

Fig. 2. Timing attacks found with the APTE tool.

6 Application to privacy protocols

The APTE tool [21,22] is a tool dedicated to the automatic proof of trace equivalence
of processes without replication, for the standard cryptographic primitives. It has been
recently extended to length trace equivalence [24]. We have implemented our generic
transformation (Theorem 2) and thanks to this translator from time to length equiva-
lence, APTE can now be used to check time trace equivalence. Using the tool, we have
studied the privacy of three protocols:

PA Our running example is the Private Authentication Protocol, described in Sec-
tion 3.3. As explained in Section 4.3, this protocol suffers from length or time
attacks for several versions of it, depending on the decoy message. With the APTE
tool, we have found privacy attacks against all the fixes we first proposed. The
APTE tool was able to show privacy of our last version of PA.

BAC As explained in the Introduction, several protocols are embedded in biometric
passports, to protects users’ privacy. We have studied the Basic Access Control
protocol (BAC). With the APTE tool, we have retrieved the timing attack reported
in [25]. Note that this attack could not have been detected when considering length
trace equivalence only. Indeed, the returned message does not vary. The only no-
ticeable change is the time needed to reply. Even if APTE is guaranteed to always
terminate (since it implements a decidable procedure [21]), the corrected version
that includes a fake test was unfortunately out of reach of the APTE tool in its
current version (we stopped the computation after two days). This is due to the
fact that the BAC protocol contains several inputs and else branches which causes
state-explosion in APTE.

3G AKA protocol The 3G AKA protocol is deployed in mobile telephony to protect
users from being traced by third parties. To achieve privacy, it makes use of tem-
porary pseudonyms but this was shown to be insufficient [10]. Indeed, thanks to
error messages, an attacker may recognize a user by replaying an old session. The

Timing attacks in security protocols 19

suggested fix proposes to simply use a unique error message. However, the proto-
col then remains subject to potential timing attacks (as for the BAC protocol). The
APTE tool is able to automatically detect this timing privacy attack.

Our study is summarized in Figure 2. The precise specification of the protocols and
their variants can be found in [20].

References

1. http://nacl.cr.yp.to/.
2. Machine readable travel document. Technical Report 9303, International Civil Aviation Or-

ganization, 2008.
3. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational theo-

ries. Theoretical Computer Science, 387(1-2):2–32, 2006.
4. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th

ACM Symp. on Principles of Programming Languages (POPL’01), 2001.
5. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus. In

4th Conference on Computer and Communications Security (CCS’97), pages 36–47. ACM
Press, 1997.

6. Martı́n Abadi and Bruno Blanchet. Analyzing Security Protocols with Secrecy Types and
Logic Programs. Journal of the ACM, 52(1):102–146, January 2005.

7. Martı́n Abadi and Cédric Fournet. Private authentication. Theoretical Computer Science,
322(3):427–476, 2004.

8. Jos Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir. Certi-
fied computer-aided cryptography: Efficient provably secure machine code from high-level
implementations. In 21st ACM Conference on Computer and Communications Security
(CCS’13), 2013.

9. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and anonymity
using the applied pi calculus. In 23rd IEEE Computer Security Foundations Symposium
(CSF’10), 2010.

10. Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin Redon,
and Ravishankar Borgaonkar. New privacy issues in mobile telephony: fix and verification.
In ACM Conference on Computer and Communications Security, pages 205–216, 2012.

11. Michael Backes, Goran Doychev, and Boris Köpf. Preventing side-channel leaks in web traf-
fic: A formal approach. In Network and Distributed System Security Symposium (NDSS’13),
2013.

12. Michael Backes, Markus Duermuth, Sebastian Gerling, Manfred Pinkal, and Caroline
Sporleder. Acoustic emanations of printers. In 19th USENIX Security Symposium, 2010.

13. Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic discovery and quantifi-
cation of information leaks. In Symposium on Security and Privacy (S&P’09), 2009.

14. Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. YAPA: A generic tool for com-
puting intruder knowledge. ACM Transactions on Computational Logic, 14, 2013.

15. G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the secrecy goals. In
5th European Symposium on Research in Computer Security (Esorics’98), volume 1485 of
LNCS. Springer, 1998.

16. Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-time code-based
cryptography. In Cryptographic Hardware and Embedded Systems (CHES 2013), volume
8086 of LNCS, pages 250–272. Springer, 2013.

20 Vincent Cheval and Véronique Cortier

17. Fabrizio Biondi, Axel Legay, Pasquale Malacaria, , and Andrzej Wasowski. Quantifying
information leakage of randomized protocols. In 14th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI’13), 2013.

18. B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected Equivalences
for Security Protocols. In 20th Symposium on Logic in Computer Science (LICS’05, 2005.

19. Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In Symposium on
Security and Privacy (S&P’04), pages 86–100. IEEE Comp. Soc. Press, 2004.

20. V. Cheval. APTE (Algorithm for Proving Trace Equivalence), 2013. http://projects.
lsv.ens-cachan.fr/APTE/.

21. V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative tests
and non-determinism. In 18th ACM Conference on Computer and Communications Security
(CCS’11), 2011.

22. Vincent Cheval. Apte: an algorithm for proving trace equivalence. In Erika Ábrahám and
JKlaus Havelund, editors, Proceedings of the 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’14), LNCS, Grenoble,
France, April 2014. Springer. to appear.

23. Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with proverif.
In 2nd International Conference on Principles of Security and Trust (POST’13), LNCS,
pages 226–246. Springer, 2013.

24. Vincent Cheval, Véronique Cortier, and Antoine Plet. Lengths may break privacy – or how
to check for equivalences with length. In 25th International Conference on Computer Aided
Verification (CAV’13), volume 8043 of LNCS, pages 708–723. Springer, 2013.

25. Tom Chothia and Vitaliy Smirnov. A traceability attack against e-passports. In 14th Interna-
tional Conference on Financial Cryptography and Data Security, 2010.

26. E. Cohen. Taps: A first-order verifier for cryptographic protocols. In 13th IEEE Computer
Security Foundations Workshop (CSFW00). IEEE Computer Society, 2000.

27. H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence. In
15th Conf. on Computer and Communications Security (CCS’08), 2008.

28. Véronique Cortier and Stéphanie Delaune. Decidability and combination results for two
notions of knowledge in security protocols. Journal of Automated Reasoning, 48, 2012.

29. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, (4):435–487, July 2008.

30. N. Evans and S. Schneider. Analysing time dependent security properties in CSP using PVS.
In 6th European Symposium on Research in Computer Security (Esorics’00), 2000.

31. R. Gorrieri, E. Locatelli, and F. Martinelli. A simple language for real-time cryptographic
protocol analysis. In 12th Eur. Symposium on Programming (ESOP’03), page 114128, 2003.

32. Gizela Jakubowska and Wojciech Penczek. Modelling and checking timed authentication of
security protocols. Fundamenta Informaticae, pages 363–378, 2007.

33. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-gcm. In Cryp-
tographic Hardware and Embedded Systems (CHES 2009), volume 5747 of LNCS, pages
1–17. Springer, 2009.

34. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In 16th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO ’96), pages 104–113. Springer-Verlag, 1996.

35. Boris Köpf and David Basin. An information-theoretic model for adaptive side-channel
attacks. In 14th ACM Conf. on Computer and Communications Security (CCS’07), 2007.

36. David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program counter
security model: Automatic detection and removal of control-flow side channel attacks. In
Int. Conference and Information Security and Cryptology (ICISC’05), pages 156–168, 2005.

37. Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Pasareanu. Symbolic
quantitative information flow. In ACM SIGSOFT Software Engineering Notes, 2012.

Timing attacks in security protocols 21

A Preliminaries

A.1 Extended definition

The definition presented in Section 5 fits well for stating the main theorems. However
to prove these results, we need to extend these definitions.

Definition 5. Let F` = (F ,N , L) be a length signature. Let A and B two extended
processes. Let Sc be a set of names. We say that B is a transformed extended process of
A through the cells Sc, denoted B ∈ [A]Sc

L , when :

– if A = [P, i, T] then
• either Sc = ∅ and B = [νd.(Cell(d, ni) | [P]dL,T), i, T] for some ni ∈ Ni
• or Sc = {d} and B = [Cell(d, u) | [P]dL,T , j, T] for some closed term u such

that lenL(u) = i;
– if A = !A′ then B = !B′ and B′ ∈ [A′]∅L;
– if A = A1 ||A2 then B = B1 ||B2 such that B1 (resp. B2) is a computation time

extended process ofA1 (resp.B2) through the cells S1
c (resp. S2

c) with Sc = S1
c∪S2

c

and S1
c ∩ S2

c = ∅.

The main concern of Definition 5 is about the management of cells. Indeed, in an
extended process ![P, i, T], each instance of [P, i, T] represents a new machine with an
independent computation time accumulator i. Hence, when we transform this process,
we have to create a new cell for each instance of [P, i, T] which is expressed as:

![νd.(Cell(d, ni) | [P]dL,T), i, T]

Thus in this case, the identifier of the cell is not defined yet and will be once the
replication is unfolded. However, when the cell is already used then in a time pro-
cess (E , A, Φ, σ), the channels that are used for the cells will be included into E . Hence
an extended process [P, i, T] not under a replication in A would be transformed into
[Cell(d, u) | [P]dL,T , i, T] and d will be included into the set of private set E . Moreover,
the term in the cell, i.e. the term u, cannot be really specified since it will depend on the
execution beforehand of the process. These specificities can be found in the following
definition of transformed time process.

Definition 6. Let F` = (F ,N , L) be a length signature. Let P = (E , A, Φ, σ) be a
time process. We say that P ′ = (E ′, A′, Φ′, σ′) is a transformed time process of P if
there exists a set Sc such that

– E ⊆ E ′, Sc ⊆ E ′ with E ∩ Sc = ∅; and
– A′ ∈ [A]Sc

L ; and
– Φ = {ax 1 B u1; . . . ; axn B un} and Φ′ = {ax 1 B 〈u1, t1〉; . . . ; axn B 〈un, tn〉}

for some ui, ti, i ∈ {1, . . . , n}; and
– σ′|dom(σ) = σ.

Note that given a time processP , there exists an infinite number of transformed time
process, depending on the identifier of the cells we have (i.e. the set Sc) and depending
on the previous outputted computation time (i.e. the terms t1, . . . , tn in Φ′).

22 Vincent Cheval and Véronique Cortier

B The transformation of process

Lemma 1. Let Ft = ((F ,N , L), T) be a time signature. For all terms t ∈ T (F ,N ∪
X), for all substitutions σ of constructor terms, if Message(tσ) then

len
L

T ([t]L,Tσ↓) = ctimeL,T (t, σ).

Proof. We denote by gX the constant in Fe associated to timeXT . Moreover, for all
f ∈ F , we denote by fe the function in Fe associated to timefT . We prove the result by
by induction on |t|:

Base case |t| = 1: In such a case, t ∈ N ∪ X and so [t]L,T = gX . Thus, [t]L,Tσ↓ =
[t]L,T . Moreover, by definition, we have lengX

L
T = timeXT . Therefore, len

L
T ([t]L,Tσ↓) =

len
L

T (gX) = lengX
L

T = timeXT . Since ctimeL,T (t, σ) = timeXT , we conclude that
ctimeL,T (t, σ) = len

L
T (t′σ↓).

Inductive step |t| > 1: In such a case, t = f(t1, . . . , tm) for some terms t1, . . . , tm. Let
σ be a substitution of terms in T (Fc,N) and assume that Message(tσ). But Message(tσ)
implies that for all j ∈ {1, . . . ,m}, Message(tjσ). Moreover, since for all j ∈ {1, . . . ,m},
|tj | < |t| then by inductive hypothesis, we deduce that len

L
T ([tj]L,Tσ↓) = ctimeL,T (tj , σ).

By definition of [t]L,T , we have:

[t]L,T = plus([t1]L,T , . . . plus([tm]L,T , f
e
i (t1, . . . , tm)) . . .)

Let’s now calculate len
L

T ([t]L,Tσ↓). Since plus and fe are functions that does not
appear in the rewriting system, we have:

[t]L,Tσ↓ = plus([t1]L,Tσ↓, . . . plus([tm]L,Tσ↓, u) . . .)

with u = fe(t1σ↓, . . . , tmσ↓). Thus, we obtain that:

len
L

T ([t]L,Tσ↓) = len
L

T (fe(t1σ↓, . . . , tmσ↓))
+
∑m
j=1 lenLT ([tj]L,Tσ↓)

Since we already proved that len
L

T ([tj]L,Tσ↓) = ctimeL,T (tj , σ) for all j ∈ {1, . . . ,m},
we deduce that

len
L

T ([t]L,Tσ↓) = len
L

T (fe(t1σ↓, . . . , tmσ↓))
+
∑m
j=1 ctimeL,T (tj , σ)

Moreover we have that len
L

T (fe(t1σ↓, . . . , tmσ↓)) = lenf
e

L
T (lenLT (t1σ↓), . . . , lenLT (tmσ↓))

and by definition of fe, we have that lenf
e

L
T = timefT . Therefore, we obtain len

L
T (fe(t1σ↓, . . . , tmσ↓)) =

timefT (lenLT (t1σ↓), . . . , lenLT (tmσ↓)). Since L ⊆ LT and t ∈ T (Fc,N ∪X), we can
conclude that len

L
T ([t]L,Tσ↓) = timefT (lenL(t1σ↓), . . . , lenL(tmσ↓)).

At last, by definition of ctimeL,T (t, σ), Message(tσ) implies ctimeL,T (t, σ) =

timefT (lenL(t1σ↓), . . . , lenL(tmσ↓))+
∑m
i=1 ctimeL,T (ti, σ). Hence, we can conclude

that len
L

T ([t]L,Tσ↓) = ctimeL,T (t, σ).

Timing attacks in security protocols 23

Lemma 2. LetFti = ((F ,N , L), T) be a time signature. For all u1, . . . , un ∈ T (F ,N∪
X), for all substitution σ of constructor terms, for all f ∈ F , for all m ≤ n, if
fvars(u1, . . . , un) ⊆ dom(σ), v = f(u1, . . . , un) and for all i{1, . . . ,m−1}, Message(u1σ),
then

(E , [LetTrT (c, v, [um, . . . , un], t) | P, i, T] ||A,Φ, σ)
ε⇒

(E , [out(c, t′) | P, i′, T] ||A,Φ, σ′)

implies that len
L

T (tσ↓) + ctimeL,T (f(u1, . . . , un), σ) −
∑m−1
i=1 ctimeL,T (ui, σ) =

len
L

T (t′σ′↓)

Proof. We prove this property by induction on (max(|ui|, . . . , |un|), n−m).

Base case (N, 0): In such a case, [um; . . . ;un] is in fact the empty sequence. Hence
LetTrT (c, v, [u1; . . . ;un], t) = out(c, plus(v, t)) and t′ = plus(v, t). By hypothesis, we
know that Message(uiσ) for all i ∈ {1, . . . ,m}. Thus we have ctimeL,T (f(u1, . . . , un), σ) =

timefT (lenL(u1), . . . , lenL(un)) +
∑n
i=1 ctimeL,T (ui, σ). But by definition of F in

Fti
T

, we have timefT = lenf
L

T . Therefore we deduce that

ctimeL,T (f(u1, . . . , un), σ)−
n∑
i=1

ctimeL,T (ui, σ) = lenf
L

T

Since len
L

T (t′σ′↓) = lenf
L

T + t, then the result holds.
Base case (1, n−m): In such a case, we have that for all i ∈ {m. . . , n}, ui ∈ X ∪N
and so Message(umσ) is true. Moreover, we have that LetTrT (c, v, [um; . . . ;un], t) =
LetTrT (c, v, [um+1; . . . ;un], plus(t, gX)). By inductive hypothesis, we deduce that len

L
T (plus(t, gX)σ↓)+

ctimeL,T (f(u1, . . . , un), σ)−
∑m
i=1 ctimeL,T (ui, σ) = len

L
T (t′σ′↓). Since ctimeL,T (um, σ) =

timeXT = gX and len
L

T (plus(t, gX)σ↓) = len
L

T (tσ↓) + len
L

T (gX), then the result
holds.

Inductive step (N,n−m): Otherwise, we do a case analysis on the sequence [u1; . . . ;un].
In the first case, u1 ∈ X ∪N . This case is similar to the base case (1, n−m). Otherwise
we have that um = f ′(v1, . . . , vk) and:

LetTrT (c, v, [um; . . . ;un], t) =
let x = um in

LetTrT (c, v, [um+1; . . . ;un], plus(t, [um]L,T))
else
LetTrT (c, v

′, [v1; . . . ; vk], t)

where v′ = f ′(v1, . . . , vk). Depending on whether Message(umσ) is true or not, a
execution of this process is either going into the then branch or the else branch.

Let’s assume first that Message(umσ). In such a case,

(E , [LetTrT (c, v, [um, . . . , un], t) | P, i, T] ||A,Φ, σ)
τ−→

(E , [Q | P, i′, T] ||A,Φ, σ ∪ {umσ↓/x})

24 Vincent Cheval and Véronique Cortier

with Q = LetTrT (c, v, [um+1; . . . ;un], plus(t, [um]L,T)). Thus by application of our
inductive hypothesis, we obtain that

(E , [Q | P, i′, T] ||A,Φ, σ′′) ε⇒
(E , [out(c, t′) | P, i′′, T] ||A,Φ, σ′)

implies len
L

T (plus(t, [um]L,T)σ
′′↓)+ctimeL,T (f(u1, . . . , un), σ)−

∑m
i=1 ctimeL,T (ui, σ) =

len
L

T (t′σ′↓) with σ′′ = σ∪{u1σ↓/x}. But len
L

T (plus(t, [um]L,T)σ
′′↓) = len

L
T (tσ′′↓)+

len
L

T ([um]L,Tσ
′′↓). Since Message(umσ) then we can apply Lemma 1 and obtain that

len
L

T ([um]L,Tσ
′′↓) = ctimeL,T (um, σ

′′). Since x 6∈ fvars(um) and x 6∈ fvars(t)
then len

L
T (tσ′′↓) = len

L
T (tσ↓) and ctimeL,T (um, σ

′′) = ctimeL,T (um, σ). Thus we
conclude that len

L
T (tσ↓) + ctimeL,T (f(u1, . . . , un), σ) −

∑m−1
i=1 ctimeL,T (ui, σ) =

len
L

T (t′σ′↓).

Assume now that ¬Message(umσ). In such a case,

(E , [LetTrT (c, v, [um, . . . , un], t) | P, i, T] ||A,Φ, σ)
τ−→

(E , [LetTrT (c, v′, [v1; . . . ; vk], t) | P, i′, T] ||A,Φ, σ)

But each terms v1 . . . , vk are subterms of um thus we can apply the inductive hypothesis
and obtain that:

(E , [LetTrT (c, v′, [v1; . . . ;uk], t) | P, i′, T] ||A,Φ, σ)
ε⇒

(E , [out(c, t′) | P, i′′, T] ||A,Φ, σ′)

implies len
L

T (tσ′′↓) + ctimeL,T (f
′(v1, . . . , vk), σ) = len

L
T (t′σ′↓).

By our hypothesis Message(ujσ) for all j = 1 . . .m − 1 and ¬Message(um), we
also have ctimeL,T (f(u1, . . . , um), σ) =

∑m
i=1 ctimeL,T (ui,). Since f ′(v1, . . . , vk) =

um, the result holds.

C Replacement of terms

Lemma 3. Consider a length signature (F ,N , L). Consider three messages in nor-
mal form u, v1 and v2. If lenL(v1) = lenL(v2) then lenL(uσ) = lenL(u) where σ =
{v1/v2}.

Proof. The result can easily be proved by induction on the size of |u| by following the
definition of lenL(·).

Lemma 4. Consider a signature F . Consider a function f such that f ∈ F but does not
appear in the rewriting system. For all terms in normal form v1, . . . , vn, for all names
k, for all terms u, i

– if f(v1, . . . , vn) 6∈ st(u)↓ then uσ↓ = u↓σ where σ = {f(v1,...,vn)/k}.
– if k 6∈ fnames(u), then uσ↓ = u↓σ where σ = {k/f(v1,...,vn)}.

Timing attacks in security protocols 25

Proof. In the rewriting system that we consider, each rule is of the form ` → r where
fvars(r) ⊆ fvars(`). Moreover, we consider that fnames(`) = fnames(r) = ∅. Thus
if you consider that f(v1, . . . , vn) 6∈ st(u) then any occurrence of k in u corresponds
to an occurrence of f(v1, . . . , vn) in uσ. Any rule applied on uσ is applicable on u at
the same position. Let’s denote v and v′ such that u → v and uσ → v′ the respective
results of the application of this rule on u and uσ.

Moreover, since f is not a symbol of the rewriting system which also does not con-
tain any name and since all variables of the right hand side of a rule is a variable of the
left hand side of a rewrite rule, we can deduce that k has the same occurrence in u than
f(v1, . . . , vn) in uσ. Thus, we can deduce that v′ = vσ. We conclude by induction of
the length of the reduction u→∗ u↓.

The symmetric proof can be done when k 6∈ fnames(u).

Lemma 5. Consider a time signature ((F ,N , L), T). Consider a function f such that
f ∈ F but does not appear in the rewriting system. Consider terms in normal form
v1, . . . , vn and a name k such that lenL(f(v1, . . . , vn)) = lenL(k).

For all terms u that does not contain f nor k, for all substitutions of constructor
terms σ,

– if f(v1, . . . , vn) 6∈ st(σ) then ctimeL,T (u, σα) = ctimeL,T (u, σ) where α is the
mapping α = {f(v1,...,vn)/k}.

– if k 6∈ fnames(σ), then ctimeL,T (u, σα) = ctimeL,T (u, σ) where α is the mapping
α = {k/f(v1,...,vn)}.

Proof. We prove the result by induction on |u|:

Base case |u| = 1: In such a case, we have that u ∈ N ∪ X and so ctimeL,T (u, σ) =
timeXT and ctimeL,T (u, σα) = timeXT . Hence the result holds.

Inductive case |u| > 1: Otherwise u = g(u1, . . . , un). If there exist j ∈ {1, . . . , n}
such that ¬Message(ujσ) then ctimeL,T (u, σ) =

∑
i=1k ctimeL,T (ui, σ) for some k.

Thus by inductive hypothesis, we deduce that:∑
i=1k

ctimeL,T (ui, σ) =
∑
i=1k

ctimeL,T (ui, σα)

and so ctimeL,T (u, σ) = ctimeL,T (u, σα).
If Message(ujσ) for all j ∈ {1, . . . , n}, then we have that ctimeL,T (u, σ) =

timegT (lenL(u1σ↓), . . . , lenL(unσ↓))+
∑
i=1n ctimeL,T (ui, σ). By Lemma 3, we have

that lenL(ujσ↓) = lenL(ujσ↓α) for all j ∈ {1, . . . , n}. Moreover, by Lemma 4, we
have that ujσ↓α = ujσα↓. Hence lenL(ujσ↓) = lenL(ujσα↓) and so

timegT (lenL(u1σ↓), . . . , lenL(unσ↓))
=

timegT (lenL(u1σα↓), . . . , lenL(unσα↓))

Since we already proved that
∑
i=1n ctimeL,T (ui, σ) =

∑
i=1n ctimeL,T (ui, σα) then

we can conclude that ctimeL,T (u, σ) = ctimeL,T (u, σα).

26 Vincent Cheval and Véronique Cortier

Lemma 6. Consider a signature F . Let E be a set of names and Φ a frame with only
constructor terms such that for all ax i ∈ dom(Φ), ax iΦ = 〈ui, hide(ti, ki)〉 with ui, ti
two messages, ki ∈ E and ki is not deductible in νE .Φ.

Consider a mapping θ = {〈proj1(ax i),k
′
i〉/ax i

}i∈{1,...,n} with n = |Φ| and k′i ∈ N
such that k′i 6∈ fnames(Φ). Consider the mapping σ = {k′i/hide(ti,ki)}. At last, consider
the frame Φ′ such that for all ax i ∈ dom(Φ), ax iΦ′ = 〈uiσ, hide(tiσ, ki)〉

Let M be a term such that fvars(M) ⊆ dom(Φ) and fnames(M) ∩ E = ∅. More-
over, consider that for all i ∈ {1, . . . , n}, k′i 6∈ fnames(M). We have MθΦ′↓ =
(MΦ↓)σ and Message(MθΦ′) if and only if Message(MΦ).

Proof. Let M be a term such that fvars(M) ⊆ dom(Φ), fnames(M) ∩ E = ∅ and for
all i ∈ {1, . . . , n}, k′i 6∈ fnames(M). We show by induction on |M | that MθΦ′↓ =
(MΦ↓)σ and Message(MθΦ′) if and only if Message(MΦ).

Base case |M | = 1: In such a case, we have that M ∈ N ∪ AX . In both cases,
we deduce that Message(MΦ). Moreover, MΦ↓ = MΦ. If M ∈ N , we have that
MΦ = M = MθΦ′↓. Thus the result holds. If M ∈ AX then we deduce that
MΦ = 〈ui, hide(ti, ki)〉 and ax iΦ

′ = 〈uiσ, hide(tiσ, ki)〉 for some i ∈ {1, . . . , n}.
Since Mθ = 〈proj1(ax i), k′i〉, we deduce that MθΦ′↓ = 〈uiσ, k′i〉. Thus, we con-
clude that (MΦ↓)σ = MΦσ = MθΦ′↓. Moreover, we have Message(MθΦ′) and
Message(MΦ). Hence the result holds.

Inductive step |M | > 1: Otherwise, we have M = f(M1, . . . ,Mm). By inductive hy-
pothesis, we have that for all i ∈ {1, . . . ,m},MiθΦ

′↓ = (MiΦ↓)σ and Message(MiθΦ
′)

if and only if Message(MiΦ). Let’s compute MθΦ′↓.
The convergent rewriting system allows us to have f(M1, . . . ,Mm)θΦ′↓ = f(M1θΦ

′↓, . . . ,MnθΦ
′↓)↓.

By inductive hypothesis, we obtain that MθΦ′↓ = f(M1Φ↓σ, . . . ,MmΦ↓σ)↓.
Consider the term t = f(M1Φ↓σ, . . . ,MmΦ↓σ). Since we applied the substitu-

tion σ, we know that for all i ∈ {1, . . . , n}, for all j ∈ {1, . . . ,m}, hide(ti, ki) 6∈
st(MjΦ↓σ). Moreover, since we assume that ki is not deductible for all i ∈ {1, . . . , n},
then we can deduce that for all i ∈ {1, . . . , n}, hide(ti, ki) 6∈ st(t). Thus, since all
k′i are distinct and all hide(ti, ki) are also distinct terms then, by Lemma 4, we have
that tσ−1↓ = t↓σ−1. This leads to f(M1Φ↓σσ−1, . . . ,MmΦ↓σσ−1)↓ = t↓σ−1 =
MθΦ′↓σ−1 and so MΦ↓σ =MθΦ′↓.

Let’s show that Message(MθΦ′) if and only if Message(MΦ). We already know
that for all j ∈ {1, . . . ,m}, Message(MiθΦ

′) if and only if Message(MiΦ) thus it
remains to show that MθΦ′↓ is a constructor term if and only if MΦ↓ is a constructor
term. But we just show that MθΦ′↓ = MΦ↓σ. Since σ is a mapping from constructor
term to constructor terms, we can deduce that MΦ↓ is a constructor term if and only if
MθΦ′↓ is also a constructor term. Hence the result holds.

Lemma 7. Consider a signature F and a function f ∈ F such that f is not used in the
rewriting system. For all u1, . . . , um in constructors terms, for all closed constructor
frame Φ, for all terms ξ such that fvars(ξ) ⊆ dom(Φ), we have ξΦ↓σ = (ξθ)(Φσ)↓
where σ = {k/f(u1,...,um)} and θ = {k/ζ | ζ ∈ st(ξ) ∧ ζΦ↓ = f(u1, . . . , un)}.

Timing attacks in security protocols 27

Proof. Let u1, . . . , um constructors terms and Φ a closed constructor terms. Let ξ ∈
T (F ,N ∪ AX) such that fvars(ξ) ⊆ dom(Φ). At last, let σ = {k/f(u1,...,um)} and
θ = {k/ζ | ζ ∈ st(ξ) ∧ ζΦ↓ = f(u1, . . . , un)} for some k 6∈ fnames(Φ) and k 6∈
fnames(u1, . . . , um, ξ). We prove by induction on |ζ| that for all ζ ∈ st(ξ), ζΦ↓σ =
(ζθ)(Φσ)↓.
Base case |ζ| = 1: In such a case, ζ ∈ N ∪ AX . If ζ ∈ N then we trivially have that
ζΦ↓σ = ζσ = ζ = (ζθ)(Φσ)↓. If ζ ∈ AX then we deduce that ζΦ↓ = ζΦ since Φ is
only composed of constructor terms. Let’s now look at ζθ:

If ζ ∈ dom(θ), then it implies that ζΦ↓ = f(u1, . . . , um) and so we have ζΦ↓σ = k.
Moreover, in such a case, ζθ = k and so (ζθ)(Φσ)↓ = k = ζΦ↓σ.

Otherwise, if ζ 6∈ dom(θ) then ζθ = ζ. Moreover, since k 6∈ Φ, we can deduce from
Lemma 4 that ζΦσ↓ = ζΦ↓σ. Hence, we obtain that (ζθ)(Φσ)↓ = ζΦσ↓ = ζΦ↓σ.
Hence the result holds.

Inductive step |ζ| > 1: Otherwise we have ζ = g(ζ1, . . . , ζ`). By inductive hypothesis,
we deduce that for all i ∈ {1, . . . , `}, ζiΦ↓σ = (ζiθ)(Φσ)↓. Let’s consider first if
ζ ∈ dom(θ). In such a case, we have that ζθ = k and ζΦ↓ = f(u1, . . . , um). Thus, we
deduce that (ζθ)(Φσ)↓ = k and ζΦ↓σ = k which allows us to conclude.

Otherwise if ζ 6∈ dom(θ), then ζθ = g(ζ1θ, . . . , ζ`θ). Therefore (ζθ)(Φσ)↓ =
g((ζ1θ)(Φσ)↓, . . . , (ζ`θ)(Φσ)↓)↓. By our inductive hypothesis, we can deduce that
(ζθ)(Φσ)↓ = g(ζ1Φ↓, . . . , ζ`Φ↓)σ↓.

Let’s consider the term t = g(ζ1Φ↓, . . . , ζ`Φ↓). We know that k 6∈ fnames(Φ) and
k 6∈ fnames(ξ) which implies that k 6∈ fnames(t) thus thanks to Lemma 4, we deduce
that tσ↓ = t↓σ. But tσ↓ = (ζθ)(Φσ)↓ and t↓σ = ζΦ↓σ. Thus, we can conclude that
(ζθ)(Φσ)↓ = ζΦ↓σ.

D The static equivalence relations

Lemma 8. Consider a signature F and a function f ∈ F such that f is not used in the
rewriting system. Consider the set of length functions L such that F` = (F ,N , L) is
a length signature. Moreover, consider L′ ⊂ L and F ′ = F r {f} such that F ′` =
(F ′,N , L′) is a length signature.

Consider a set of names E and two constructor frames Φ1 and Φ2 of same do-
main. Consider two sets S1 and S2 such that |S1| = |S2| = `, {t11, . . . , t1`} = S1,
{t21, . . . , t2`} = S2 and for all i ∈ {1, . . . , `}, there exists ξi ∈ T (F ,AX ∪ N) such
that fnames(ξi) ∩ E = ∅, ξiΦ1↓ = t1i , ξiΦ2↓ = t2i and root(ξi) = f. Moreover,
assume that for all t ∈ st(Φj), if root(t) = f then there exists i such that tji . We as-
sume k1 . . . k` distinct names not in fnames(Φ1, Φ2) such that for all i ∈ {1, . . . ,m},
lenL(ki) = lenL(ui) = lenL(vi). At last, let’s denote by σ1 = {k1/t11 ; . . . ;

k` /t1`} and
σ2 = {k1/t21 ; . . . ;

k` /t2`}.
We have that νE .Φ1 ∼F` νE .Φ2 if, and only if, νE .Φ1σ1 ∼F

′

` νE .Φ2σ2.

Proof. We consider that the terms ξi are minimum in term of occurrence of the symbol
f. Let’s assume first that νE .Φ1σ1 ∼F

′

` νE .Φ2σ2. Let ζ, ζ ′ ∈ T (F ,AX ∪N) such that
fvars(ζ, ζ ′) ⊆ dom(Φ1) and fnames(ζ, ζ ′) ∩ E = ∅. We first show by induction on
N(ζ, ζ ′), the max of occurrence of the symbol f in ζ and ζ ′ that

28 Vincent Cheval and Véronique Cortier

– Message(ζΦ1) is equivalent to Message(ζΦ2)
– if Message(ζΦ1) then
• ζΦ1↓ = ζ ′Φ1↓ if and only if ζΦ2↓ = ζ ′Φ2↓; and
• lenL(ζΦ1↓) = n if and only if lenL(ζΦ2↓) = n.

Base case N(ζ, ζ ′) = 0: In such a case, thanks to Lemma 4, we have that (ζΦ1↓)σ1 =
ζΦ1σ1↓, (ζΦ2↓)σ2 = ζΦ2σ2↓. Therefore, thanks to our hypothesis νE .Φ1σ1 ∼F

′

`

νE .Φ2σ2, we have that Message(ζΦ1) is equivalent to Message(ζΦ2). Similarly, we
deduce that (ζ ′Φ1↓)σ1 = ζ ′Φ1σ1↓, (ζ ′Φ2↓)σ2 = ζ ′Φ2σ2↓ and so ζΦ1↓ = ζ ′Φ1↓ if and
only if ζΦ2↓ = ζ ′Φ2↓.

At last, by Lemma 3, we deduce that lenL(ζΦ1↓) = lenL(ζΦ1↓σ1) = lenL(ζΦ1σ1↓)
and lenL(ζΦ2↓) = lenL(ζΦ2↓σ2) = lenL(ζΦ2σ2↓). By our hypothesis νE .Φ1σ1 ∼F

′

`

νE .Φ2σ2, we can then deduce that lenL(ζΦ1↓) = lenL(ζΦ2↓).

Inductive step N(ζ, ζ ′) > 0: Let’s assume w.l.o.g. that ζ has the maximum of oc-
currences of f. N(ζ, ζ ′) > 0 implies that there exists α ∈ st(ζ) such that α =
f(α1, . . . , αn). We do a case analysis on αΦ1↓.

Case 1: If there is no i ∈ {1, . . . , `} such that αΦ1↓ = t1i then let’s define the
substitution θ = {k/γ | γΦ1↓ = αΦ1↓ ∧ root(γ) = f ∧ γ ∈ st(ζ, ζ ′)} and where
k is a fresh name, i.e. k does not occur in Φ1, Φ2, ζ and ζ ′. Moreover, let’s denote by
σ = {k/αΦ1↓}.

Thanks to Lemma 4, we have that (ζΦ1↓)σ = (ζθ)(Φ1σ)↓. But since there is no
i ∈ {1, . . . , `} such that αΦ1↓ = ti then we have that (ζΦ1↓)σ = (ζθ)Φ1↓. Similarly
we have that (ζ ′Φ1↓)σ = (ζ ′θ)Φ1↓

Note that for all γ, γ′ ∈ dom(θ), γ = f(γ1, . . . , γn) and γ′ = f(γ′1, . . . , γ
′
n) with

N(γi, γ
′
i) < N(ζ, ζ ′). Hence by inductive hypothesis, we deduce that γiΦ2↓ = γ′iΦ2↓.

Furthermore, if there exists i ∈ {1, . . . , `} such that αΦ2↓ = t2i then it implies that
ξiΦ2↓ = αΦ2↓. Since we assume that ξi was the minimum on number of occurrence on
the symbol f, we can also apply our inductive hypothesis and deduce that ξiΦ1↓αΦ2↓
which is a contradiction. Thus, we can also apply Lemma 4 and obtain that (ζΦ2↓)σ′ =
(ζθ)Φ2↓ and (ζ ′Φ2↓)σ′ = (ζ ′θ)Φ2↓ with σ′ = {k/αΦ2↓}.

By inductive hypothesis, on ζθ and ζ ′, we deduce that ζθΦ1↓ = ζ ′Φ1↓ is equivalent
to ζθΦ2↓ = ζ ′Φ2↓ and so we conclude that ζΦ1↓ = ζ ′Φ1↓ is equivalent to ζΦ2↓ =
ζ ′Φ2↓.

At last, by Lemma 3, we deduce that lenL(ζΦ1↓) = lenL(ζΦ1↓σ) = lenL(ζθΦ1↓)
and lenL(ζΦ2↓) = lenL(ζΦ2↓σ′) = lenL(ζθΦ2↓). Thus by our hypothesis νE .Φ1σ1 ∼F

′

`

νE .Φ2σ2, we deduce that lenL(ζΦ1↓) = lenL(ζΦ2↓).

Case 2: Otherwise, we define for all i ∈ {1, . . . , `}, θi = {ki/γ | γΦ1↓ = t1i ∧
root(γ) = f ∧ γ ∈ st(ζ, ζ ′)}, and the mapping θ = θ1 . . . θ`. Thanks to Lemma 4, we
have that (ζΦ1↓)σ1 = (ζθ)(Φ1σ1)↓ and (ζ ′Φ1↓)σ1 = (ζ ′θ)(Φ1σ1)↓.

Note that for all γ, γ′ ∈ dom(θ), γ = f(γ1, . . . , γn) and γ′ = f(γ′1, . . . , γ
′
n) with

N(γi, γ
′
i) < N(ζ, ζ ′). Hence by inductive hypothesis, we deduce that γiΦ2↓ = γ′iΦ2↓.

Since we assume that ξi was the minimum on number of occurrence on the symbol
f, we can also apply our inductive hypothesis and deduce that ξiΦ1↓αΦ2↓. Thus, we
can also apply Lemma 4 and obtain that (ζΦ2↓)σ2 = (ζθ)(Φ2σ2)↓ and (ζ ′Φ2↓)σ2 =
(ζ ′θ)(Φ2σ2)↓.

Timing attacks in security protocols 29

Thus, by our hypothesis νE .Φ1σ1 ∼F
′

` νE .Φ2σ2, we can deduce that ζΦ1↓ = ζ ′Φ1↓
if and only if ζθΦ1σ1↓ = ζ ′θΦ1σ1↓ if and only if ζθΦ2σ2↓ = ζ ′θΦ2σ2↓ if and only if
ζ ′Φ2↓ = ζθΦ2↓.

At last, by Lemma 3, we deduce that lenL(ζΦ1↓) = lenL(ζΦ1↓σ1) = lenL(ζθΦ1σ1↓)
and lenL(ζΦ2↓) = lenL(ζΦ2↓σ2) = lenL(ζθΦ2σ2↓). Thus by our hypothesis νE .Φ1σ1 ∼F

′

`

νE .Φ2σ2, we deduce that lenL(ζΦ1↓) = lenL(ζΦ2↓).

The proof of νE .Φ1 ∼F` νE .Φ2 implies νE .Φ1σ1 ∼F
′

` νE .Φ2σ2 can be done sym-
metrically.

Lemma 9. Consider a length signature F` = (F ,N , L) and a time signature Fti
associated to F`. We have that:

νE .Φ ∼Fti
ti νE .Φ′ is equivalent to νE .Φ ∼F`

` νE .Φ′

Proof. The right implication is in fact trivial since Fti is the time signature associated
to F`. Hence by definition of time static equivalence and length static equivalence, we
have that νE .Φ ∼Fti

ti νE .Φ′ implies νE .Φ ∼F`

` νE .Φ′.

We focus on the left implication of the equivalence, i.e. νE .Φ ∼F`

` νE .Φ′ implies
that νE .Φ ∼Fti

ti νE .Φ′. By definition of the time static equivalence, it only remains
to show that for all ξ ∈ T (F ,N ∪ AX), if Message(ξΦ) then ctimeL,T (ξ, Φ) =
ctimeL,T (ξ, Φ

′). We prove this by induction on |ξ|.

Base case |ξ| = 1: In such a case, ξ ∈ N ∪ AX and so ctimeL,T (ξ, Φ) = timeXT and
ctimeL,T (ξ, Φ

′) = timeXT . Thus we deduce that ctimeL,T (ξ, Φ) = ctimeL,T (ξ, Φ
′).

Inductive step |ξ| > 1: Otherwise ξ = f(ξ1, . . . , ξn). Since Message(ξΦ) then by defi-
nition,

ctimeL,T (ξ, Φ) = timefT (lenL(ξ1Φ↓), . . . , lenL(ξnΦ↓))
+
∑n
i=1 ctimeL,T (ξi, Φ)

But νE .Φ ∼F`

` νE .Φ′ implies that lenL(ξiΦ↓) = lenL(ξiΦ
′↓). Hence we have:

timefT (lenL(ξ1Φ↓), . . . , lenL(ξnΦ↓))
=

timefT (lenL(ξ1Φ
′↓), . . . , lenL(ξnΦ′↓))

Moreover by our inductive hypothesis, we have that for all i ∈ {1, . . . , n}, ctimeL,T (ξi, Φ) =
ctimeL,T (ξi, Φ

′). Thus we can conclude that ctimeL,T (ξ, Φ) = ctimeL,T (ξ, Φ
′).

Lemma 10. Consider a length signature F` = (F ,N , L) such that F contains the
functions plus and hide. Let E be a finite set of names. Let Φ and Φ′ be two frames of
same domain built over F`. Let N = {n1} ∪ fnames(Φ) ∪ fnames(Φ′)r E . Consider
the signature F ′` = (F ,N, L). We have that:

νE .Φ ∼F`

` νE .Φ′ is equivalent to νE .Φ ∼F
′
`

` νE .Φ′

30 Vincent Cheval and Véronique Cortier

Proof. One side of this equivalence is trivial. Indeed, by definition of the static equiv-
alence and since N ⊆ N , we have that νE .Φ ∼F`

` νE .Φ′ implies νE .Φ ∼F
′
`

` νE .Φ′.
Hence we focus on the difficult implication.

Consider ξ, ξ′ ∈ T (F ,N ∪AX). For this proof, we want to replace any names in ξ
and ξ′ that are not in N by a term of same length. In particular, given i ∈ N∗, we define
the terms tsize(i) by recursively as follows:

– tsize(1) = n1

– tsize(i) = plus(n1, tsize(i− 1)), for all i > 2.

We can easily show that for all i ∈ N∗, len(tsize(i)) = i. With the terms tsize, we can
model an infinite set of names of size s as the set {hide(tsize(s), tsize(k)) | k ∈ N∗}.
Typically, the first argument of hide gives the length of the term whereas the second
argument allows to have distinct terms.

We now define an injective mapping σ such that : for all s ∈ N∗, if we denote
{n1, . . . , nk} = N ∩Ns then for all i ∈ {1 . . . k} then niσ = hide(tsize(s), tsize(i)).
Note that we can always choose niσ such that niσ 6∈ st(Φ,Φ′, ξ, ξ′) just by chosing
a different term for the second argument of hide. Thus, we will assume that for all
t ∈ img(σ), t 6∈ st(Φ,Φ′, ξ, ξ′). Moreover, note that for all n ∈ dom(σ), nσ is in
normal form and only contain symbol functions that are not in the rewriting system.

With this property on σ, we can now prove the main property of the length static
equivalence. Assume first that Message(ξΦ). In such a case, for all ζ ∈ st(ξ), ζΦ↓
is a constructor term. But ζΦ is a closed term hence ζΦσ↓ = ζΦ↓σ by Lemma 4.
Therefore we deduce that ζΦσ↓ is a constructor term. But by definition of σ, dom(σ)∩
fnames(Φ) = ∅ which implies ζΦσ = ζσΦ and so (ζσ)Φ↓ is a constructor term.
However, by definition of σ, fnames(ζσ) ⊆ N and so ζσ ∈ T (F ,N). Moreover, since
for all n ∈ dom(σ), nσ is in normal form then we can finally deduce that for all γ ∈
st(ξσ), γΦ↓ is a constructor term and so Message(ξσΦ). The same proof allows you to
show that Message(ξσΦ) implies Message(ξΦ). Hence we obtain that Message(ξσΦ)
is equivalent to Message(ξΦ).

Since ξσ ∈ T (F ,N), we can deduce from our inductive hypothesis that Message(ξσΦ)
is equivalent to Message(ξσΦ′) and so Message(ξΦ) is equivalent to Message(ξΦ′).

Consider now that Message(ξΦ) and Message(ξ′Φ). Since σ is an injective mapping
and no term in img(σ) is in st(Φ), ξ or ξ′, we deduce that ξΦ↓ = ξ′Φ↓ is equivalent
to ξΦ↓σ = ξ′Φ↓σ. Hence it is equivalent to ξΦσ↓ = ξΦσ↓ by Lemma 4. Again since
dom(σ) ∩ fnames(Φ) = ∅, then the equality is equivalent to ξσΦ↓ = ξ′σΦ↓. But both
ξσ and ξ′σ are in T (F ,N ∪ AX) hence we can apply our inductive hypothesis and
deduce that the equality is equivalent to ξσΦ′↓ = ξ′σΦ′↓. With a similar reasoning, we
show that ξσΦ′↓ = ξ′σΦ′↓ is equivalent to ξΦ′↓ = ξ′Φ′↓ which allows us to conclude
that ξΦ↓ = ξ′Φ↓ is equivalent to ξΦ′↓ = ξ′Φ′↓.

At last, we know that for all n ∈ dom(σ), len(nσ) = len(n). But by Lemma 3, we
obtain that lenL(ξΦ↓) = lenL(ξΦ↓σ). But ξΦ↓ = ξσΦ↓ with ξσ ∈ T (F ,N ∪ AX).
Thus we can apply our inductive hypothesis and so lenL(ξσΦ↓) = lenL(ξσΦ

′↓). Since
ξσΦ′↓ = ξΦ′↓σ and by Lemma 4, we can conclude that len(ξΦ↓) = len(ξΦ′↓).

Timing attacks in security protocols 31

Lemma 11. Consider a length signature F` = (F ,N , L). Let E be a set of names. Let
Φ1 and Φ2 be two frame of same domain with only constructor terms such that for all
j = 1, 2, for all ax i ∈ dom(Φj), ax iΦj = 〈uji , hide(t

j
i , k

j
i)〉 with uji , t

j
i two messages,

kji ∈ E and kji is not deductible in νE .Φj . Moreover, assume that for all j = 1, 2, for
all i ∈ {1, . . . , |Φj |}, for all hide(u, kji) ∈ st(Φj), u = tji .

Consider a mapping θ = {〈proj1(ax i),k
′
i〉/ax i}i∈{1,...,n} with n = |Φ1| and k′i ∈ N

such that k′i 6∈ fnames(Φ1, Φ2). Second, consider the mappings σ1 = {k′i/hide(t1i ,k1i)}i∈{1,...,n}
and σ2 = {k′i/hide(t2i ,k2i)}i∈{1,...,n}. Furthermore, consider the frames Φ′1 and Φ′2 such
that for j = 1, 2, for all ax i ∈ dom(Φ′j), ax iΦ

′
j = 〈u

j
iσj , hide(t

j
iσj , k

j
i)〉. At last, let’s

assume that lenL(k′i) = lenL(hide(t
1
i , k

1
i)) = lenL(hide(t

2
i , k

2
i)) for all i ∈ {1, . . . , n}.

We have νE .Φ1 ∼F`

` νE .Φ2 if, and only if, νE .Φ′1 ∼
F`

` νE .Φ′2.

Proof. Let M be a term such that fvars(M) ⊆ dom(Φ1) and fnames(M) ∩ E = ∅.
First, assume that νE .Φ′1 ∼

F`

` νE .Φ′2. Since the k′i are not in fnames(Φ1, Φ2),
we can assume w.l.o.g. that the k′i are not in M too (since Message(MΦ1) is equiv-
alent to Message(MΦ1{k

′′
i /k′i}) for any k′′i . Thus, thanks to Lemma 6, we deduce

that Message(MθΦ′1) is equivalent to Message(MΦ1); and Message(MθΦ′2) is equiv-
alent to Message(MΦ2). By our hypothesis νE .Φ′1 ∼

F`

` νE .Φ′2, we can deduce that
Message(MΦ1) is equivalent to Message(MΦ2). If you consider an other termM ′ such
that fvars(M ′) ⊆ dom(Φ1) and fnames(M ′)∩E = ∅, since Message(equals(M,M ′)Φ1)
is equivalent to Message(equals(M,M ′)Φ2), we deduce that MΦ1↓ = M ′Φ1↓ is
equivalent to MΦ2↓ =M ′Φ2↓.

Let’s compute lenL(MΦ1↓). By Lemma 6,MθΦ′1↓ = (MΦ1↓)σ1 and so lenL(MΦ1↓σ1) =
lenL(MθΦ′1↓). Thanks to Lemma 3, lenL(MΦ1↓) = lenL(MΦ1↓σ1) and so lenL(MθΦ′1↓) =
lenL(MΦ1↓). Similarly, we have that lenL(MθΦ′2↓) = lenL(MΦ2↓). Therefore, we
can conclude by our hypothesis νE .Φ′1 ∼

F`

` νE .Φ′2 that lenL(MΦ1↓) = lenL(MΦ2↓).

Let’s now assume that νE .Φ1 ∼F`

` νE .Φ2. Consider a new mapping θ′ = {〈proj1(ax i),k
′′
i 〉/ax i

}i∈{1,...,n}
with n = |Φ1|, k′′i ∈ N and k′i 6∈ fnames(Φ′1, Φ

′
2). Let’s look at the terms in Φ′1

and Φ′2. We have that for all ax i ∈ dom(Φ1), ax iΦ1σ1 = 〈u1iσ, hide(t1iσ, k1i)〉 where
σ1 = {k′i/hide(t1i ,k1i)}i∈{1,...,n}. Moreover, we assumed that for all j = 1, 2, for all
i ∈ {1, . . . , |Φj |}, for all hide(u, kji) ∈ st(Φj), u = tji . Therefore, there can’t any sub-
term of u1iσ1 or t1iσ1 of the form hide(u, kji′) for some u and i′. By applying Lemma 6
on M , we obtain that Mθ′Φ′1↓ = (MΦ′1↓)σ′1 where σ′1 = {k′′i /hide(t1iσ1,k1i)

}i∈{1,...,n}.
Moreover, by applying θ′ on M , we obtain that hide(t1i , k

1
i) 6∈ st(Mθ′Φ′1)↓ and so

by Lemma 4, we deduce thatMθ′Φ′1↓σ−11 =Mθ′θ′′Φ1↓where θ′′ = {proj2(ax i)/k′i}i∈{1,...,n}.
Hence, we obtain that (MΦ′1↓)σ′1σ−11 =Mθ′θ′′Φ1↓.

Similarly, we can prove thatMθ′θ′′Φ2↓ = (MΦ′2↓)σ′2σ−12 where σ′2 is the mapping
{k′′i /hide(t2iσ2,k2i)

}i∈{1,...,n}.
These two equalities allow us to deduce that Message(MΦ′1) if and only if Message(Mθ′θ′′Φ1);

and Message(MΦ′2) if and only if Message(Mθ′θ′′Φ2). Therefore by the hypothesis
νE .Φ1 ∼F`

` νE .Φ2, we conclude that Message(MΦ′1) if and only if Message(MΦ′2).
At last, thanks to Lemma 3, we have lenL(MΦ′1↓) = lenL(Mθ′θ′′Φ1↓) and lenL(MΦ′2↓) =

lenL(Mθ′θ′′Φ2↓). Thus by the hypothesis νE .Φ1 ∼F`

` νE .Φ2, we can conclude that
lenL(MΦ′1↓) = lenL(MΦ′2↓).

32 Vincent Cheval and Véronique Cortier

E Trace equivalence relations

Lemma 12. Consider a time signature Fti = ((F ,N , L), T) and two time process P1

and P2 built on Fti. Consider a function f with an associated length and time function
such that f is not part of the rewriting system of Fti. Let F ′ti = ((F ∪ {f},N , L′), T ′)
be a time signature. We have:

P1 ≈Fti
ti P2 if, and only if, P1 ≈

F ′
ti

ti P2

Proof. To prove this result, we only have to show that P1 ≈Fti
ti P2 implies P1 ≈

F ′
ti

ti P2

since the other implication is trivial by following the definition of time trace equiva-
lence. Let’s denote P1 = (E1, A1, Φ1, σ1).

The soundness: Consider a trace P1
tr⇒ P ′1 = (E ′1, A′1, Φ′1, σ′1) where tr is built

over F ′ti. Consider the set S = {t ∈ st(Φ′1) | root(t) = f}. Assume that S =
{t1, . . . , tn}. Let’s create n fresh names k1, . . . , kn such that lenL(ki) = lenL(ti) for
all i ∈ {1, . . . , n}. Let’s denote θ the mapping that associate any f(ζ1, . . . , ζm) in tr by
ki for some i ∈ {1, . . . , n} when f(ζ1, . . . , ζm)Φ′1↓ = ti. Let γ be the mapping that
associate ti to ki for all i ∈ {1, . . . ,m}.

We prove by induction of the length of the reductionP1
tr⇒ P ′1 thatP1

trθ⇒ (E ′1, A′1, Φ′1γ, σ′1γ).
The base case being trivial, we focus on the inductive step. To do so, we need to do a

case analysis on the rule applied. More specifically, we assume that P1
tr′⇒ P ′′1

`−→ P ′1
withP ′′1 = (E ′′1 , A′′1 , Φ′′1 , σ′′1). By inductive hypothesis, we have thatP1

tr′θ⇒ (E ′′1 , A′′1 , Φ′′1γ, σ′′1γ).

Case of the rule IN: In this case, there exists two extended processes [in(u, x).P |
R, i, T] and B2 where A′′1 = [in(u, x).P | R, i, T] ||B2 and A′1 = [P | R, j, T] ||B2.
Moreover, there exists two terms M and N such that MΦ′′1↓ = uσ′′1↓, NΦ′′1↓ =
t, Message(MΦ′′1), Message(NΦ′′1) and Message(uσ′′1). At last, we have j = i +
ctimeL,T (u, σ

′′
1) + t inT (lenL(t)), E ′1 = E ′′1 , Φ′1 = Φ′′1 , σ′1 = σ′′1 ∪ {t/x} and ` =

in(M,N)
However, by Lemma 7, we have that (Mθ)(Φ′′1γ)↓ = (MΦ′′1↓)γ = uσ′′1↓γ and

(Nθ)(Φ′′1γ)↓ = (NΦ′′1↓)γ = tγ. Since Message(MΦ′′1) and Message(NΦ′′1), we de-
duce that Message((Mθ)(Φ′′1γ)) and Message((Nθ)(Φ′′1γ)). By Lemma 4, we have that
uσ′′1↓γ = uσ′′1γ↓. Hence, we deduce that

(E ′′1 , A′′1 , Φ′′1γ, σ′′1γ)
in(Mθ,Nθ)−−−−−−−→

(E ′′1 , [P | R, j′, T] ||B2, Φ
′′
1γ, σ

′′′
1)

where σ′′′1 = σ′′1γ ∪ {tγ/x} = σ′1γ and j′ = i+ ctimeL,T (u, σ
′′
1γ) + t inT (lenL(tγ)).

Since γ preserves the length, we have that lenL(tγ) = lenL(t). Moreover, by Lemma 5,
we have that ctimeL,T (u, σ

′′
1) = ctimeL,T (u, σ

′′
1γ) and so j = j′. This allows us to

conclude that P1
trθ⇒ (E ′1, A′1, Φ′1γ, σ′1γ). Hence the result holds.

Case of the rule OUT: In such a case, there exists two extended processes [out(u, t).Q |
R, i, T] andB2 such thatA′′1 = [out(u, t).Q | R, i, T] ||B2 andA′1 = [Q | R, j, T] ||B2.
Moreover, E ′1 = E ′′1 , Φ′1 = Φ′′1∪{axn B tσ′′1↓} and σ′1 = σ′′1 . At last, we also have there

Timing attacks in security protocols 33

existsM such that fnames(M)∩E ′1 = ∅, Message(MΦ′′1), Message(uσ′′1),Message(tσ′′1),
MΦ′′1↓ = uσ′′1↓, ` = out(M, axn, j) and j = i+ctimeL,T (t, σ

′′
1)+ctimeL,T (u, σ

′′
1)+

t outT (lenL(tσ
′′
1↓)).

However, by Lemma 7, we have that (Mθ)(Φ′′1γ)↓ = (MΦ′′1↓)γ = uσ′′1↓γ. Since
Message(MΦ′′1), we deduce that Message((Mθ)(Φ′′1γ)). By Lemma 4, we have that
uσ′′1↓γ = uσ′′1γ↓. Hence, we deduce that

(E ′′1 , A′′1 , Φ′′1γ, σ′′1γ)
out(Mθ,axn,j

′)−−−−−−−−−−→
(E ′′1 , [Q | R, j′, T] ||B2, Φ

′′
1γ, σ

′′′
1)

where j′ = i+ ctimeL,T (u, σ
′′
1γ)+ ctimeL,T (t, σ

′′
1γ)+ t outT (lenL(tσ

′′
1γ↓)). Since γ

preserves the length, we have that lenL(tσ′′1γ) = lenL(tσ
′′
1). Moreover, by Lemma 5, we

have that ctimeL,T (u, σ
′′
1) = ctimeL,T (u, σ

′′
1γ) and ctimeL,T (t, σ

′′
1) = ctimeL,T (t, σ

′′
1γ)

which allows us to deduce that j = j′. This allows us to conclude thatP1
trθ⇒ (E ′1, A′1, Φ′1γ, σ′1γ).

Hence the result holds.

Case of the rule LET and ELSE: In such a case, there exists two extended processes
[let x = u in P else Q | R, i, T] and B2 such that A′′1 = [let x = u in P else Q |
R, i, T] ||B2, E ′1 = E ′′1 and Φ′1 = Φ′′1 . Moreover, in the rule LET, we have A′1 =
[P | R, j, T] ||B2 and σ′1 = σ′′1 ∪ {uσ

′′
1 ↓/x}, whereas in case of rule ELSE, we have

A′1 = [Q | R, j, T] ||B2 and σ′1 = σ′′1 . At last, we also have in the case of the rule
LET j = i + ctimeL,T (u, σ

′′
1) + t letinT (lenL(uσ

′′
1↓)) whereas we have j = i +

ctimeL,T (u, σ
′′
1) + t letelseT in the case of the rule ELSE. However, by Lemma 4, we

can deduce that Message(uσ′′1) is equivalent to Message(uσ′′1γ). Thus in the case of
rule LET, we have that

(E ′′1 , A′′1 , Φ′′1γ, σ′′1γ)
τ−→ (E ′′′1 , [P | R, j′, T] ||B2, Φ

′′
1γ, σ

′′′
1)

where σ′′′1 = σ′′1γ∪{uσ
′′
1 γ↓ x} and j′ = i+ctimeL,T (u, σ

′′
1γ)+t letinT (lenL(uσ

′′
1γ↓)).

In the case of rule ELSE, we have that

(E ′′1 , A′′1 , Φ′′1γ, σ′′1γ)
τ−→ (E ′′′1 , [Q | R, j′, T] ||B2, Φ

′′
1γ, σ

′′
1)

where j′ = i + ctimeL,T (u, σ
′′
1γ) + t letelseT . However in both cases, by Lemma 5,

we have that ctimeL,T (u, σ
′′
1) = ctimeL,T (u, σ

′′
1γ). Moreover, γ preserves the length

hence we have t letinT (lenL(uσ
′′
1↓)) = t letinT (lenL(uσ

′′
1γ↓)) and so j = j′. This

allows us to conclude that P1
trθ⇒ (E ′1, A′1, Φ′1γ, σ′1γ). Hence the result holds.

Others rules: The others rules are trivial since they do not involves the frames or terms
and are all τ actions.

The completeness: Consider a sequence of label tr built over F ′ti. Assume that there
exists k1, . . . , kn names that does not occur in P1 and consider a mapping θ that as-
sociate all subterms of tr of the form f(ζ1, . . . , ζm) to ki for some i ∈ {1, . . . , n}.
Consider a trace P1

trθ⇒ P ′1 = (E ′1, A′1, Φ′1, σ′1).
We prove that if for all t, t′ ∈ dom(θ), tΦ′1↓ = t′Φ′1↓ is equivalent tθ = t′θ, then

there exists Φ2
1 and σ2

1 such that P1
tr⇒ (E ′1, A′1, Φ2

1, σ
2
1), Φ

2
1γ = Φ′1 and σ2

1γ = σ′1

34 Vincent Cheval and Véronique Cortier

where γ is the mapping that associate tΦ2↓ to k where tθ = k. We prove the result
by induction on the length of P1

trθ⇒ P ′1. The base case being trivial, we focus on the
inductive step. To do so, we need to do a case analysis on the rule applied. More specif-

ically, we assume that P1
tr′θ⇒ P ′′1

`θ−→ P ′1 with P ′′1 = (E ′′1 , A′′1 , Φ′′1 , σ′′1). By inductive
hypothesis, we have that there exists Φ3

1 and σ3
1 such that Φ′′1 = Φ3

1γ, σ′′1 = σ3
1γ,

P1
tr′⇒ (E ′′1 , A′′1 , Φ3

1, σ
3
1).

Case of the rule IN: In this case, there exists two extended processes [in(u, x).P |
R, i, T] and B2 where A′′1 = [in(u, x).P | R, i, T] ||B2 and A′1 = [P | R, j, T] ||B2.
Moreover, there exists two termsM andN such that (Mθ)Φ′′1↓ = uσ′′1↓ and (Nθ)Φ′′1↓ =
t, Message(MθΦ′′1), Message(NθΦ′′1) and Message(uσ′′1). At last, we have j = i +
ctimeL,T (u, σ

′′
1) + t inT (lenL(t)), E ′1 = E ′′1 , Φ′1 = Φ′′1 , σ′1 = σ′′1 ∪ {t/x} and `θ =

in(Mθ,Nθ).
Since Φ′′1 = Φ3

1γ and σ′′1 = σ3
1γ, we deduce that the equalities (Mθ)(Φ3

1γ)↓ =
uσ3

1γ↓ and (Nθ)(Φ3
1γ)↓ = t are true, and that Message((Mθ)Φ3

1γ), Message((Nθ)Φ3
1γ)

and Message(uσ3
1γ) are true. By Lemma 7, we deduce that (Mθ)(Φ3

1γ)↓ = MΦ3
1↓γ

and (Nθ)(Φ3
1γ)↓ = NΦ3

1↓γ. Moreover, by Lemma 4, we deduce uσ3
1γ↓ = uσ3

1↓γ and
Message(uσ3

1). Thus, we deduce that MΦ3
1↓ = uσ3

1↓. Moreover, by Lemma 7, we also
obtain that Message((Mθ)Φ3

1γ) and Message((Nθ)Φ3
1γ) imply Message(MΦ3

1) and
Message(NΦ3

1). Hence, we deduce that

(E ′′1 , A′′1 , Φ3
1, σ

3
1)

in(M,N)−−−−−→ (E ′′1 , [P | R, j′, T] ||B2, Φ
3
1, σ

4
1)

where σ4
1 = σ3

1 ∪ {t
′
/x}, t′ = NΦ3

1↓ and j′ = i+ ctimeL,T (u, σ
3
1) + t inT (lenL(t

′)).
But by Lemma 7, t′γ = NΦ3

1γ↓ = t. Hence we have that σ4
1γ = σ′1γ. Since

γ preserves the length, we have that t inT (lenL(t)) = t inT (lenL(t
′)). Moreover, by

Lemma 5, we have that ctimeL,T (u, σ
3
1) = ctimeL,T (u, σ

3
1γ) and so j = j′. This

allows us to conclude that P1
tr⇒ (E ′1, A′1, Φ4

1, σ
4
1) with Φ4

1γ = Φ′ and σ4
1γ = σ′. Hence

the result holds.

Case of the rule OUT: There exists two extended processes [out(u, t).Q | R, i, T] and
B2 where A′′1 = [out(u, t).Q | R, i, T] ||B2 and A′1 = [Q | R, j, T] ||B2. Moreover,
E ′1 = E ′′1 , Φ′1 = Φ′′1 ∪ {axn B tσ′′1↓} and σ′1 = σ′′1 . At last, we also have there exists
M such that fnames(M) ∩ E ′1 = ∅, Message(MθΦ′′1), Message(uσ′′1),Message(tσ′′1),
MθΦ′′1↓ = uσ′′1↓, ` = out(Mθ, axn, j) and j = i+ctimeL,T (t, σ

′′
1)+ctimeL,T (u, σ

′′
1)+

t outT (lenL(tσ
′′
1↓)).

SinceΦ′′1 = Φ3
1γ and σ′′1 = σ3

1γ, we deduce that (Mθ)(Φ3
1γ)↓ = uσ3

1γ↓, Message((Mθ)Φ3
1γ),

Message(uσ3
1γ) and Message(tσ3

1γ). By Lemma 7, we deduce that (Mθ)(Φ3
1γ)↓ =

MΦ3
1↓γ. Moreover, by Lemma 4, we deduce uσ3

1γ↓ = uσ3
1↓γ, Message(uσ3

1) and
Message(tσ3

1). Thus, we deduce thatMΦ3
1↓ = uσ3

1↓. Moreover, by applying Lemma 7,
we also obtain that Message((Mθ)Φ3

1γ) implies Message(MΦ3
1). Hence, we deduce

that
(E ′′1 , A′′1 , Φ3

1, σ
3
1)

out(M,axn,j
′)−−−−−−−−−→

(E ′′1 , [P | R, j′, T] ||B2, Φ
4
1, σ

3
1)

where Φ4
1 = Φ3

1 ∪ {axn B tσ3
1↓} and j′ = i + ctimeL,T (u, σ

3
1) + ctimeL,T (t, σ

′′
3) +

t outT (lenL(tσ
′′
3↓)).

Timing attacks in security protocols 35

But by Lemma 7, tσ3
1↓γ = tσ3

1γ↓ thus we have that Φ4
1γ = Φ′1. Furthermore, since

γ preserves length, we have that lenL(tσ′′↓) = lenL(tσ
3
1↓γ) = lenL(tσ

3
1↓). Moreover,

by Lemma 5, we have that ctimeL,T (u, σ
3
1) = ctimeL,T (u, σ

3
1γ) and so j = j′. This

allows us to conclude that P1
tr⇒ (E ′1, A′1, Φ4

1, σ
4
1) with Φ4

1γ = Φ′ and σ4
1γ = σ′. Hence

the result holds.

Case of the rule LET and ELSE: In such a case, there exists two extended processes
[let x = u in P else Q | R, i, T] and B2 such that A′′1 = [let x = u in P else Q |
R, i, T] ||B2, E ′1 = E ′′1 and Φ′1 = Φ′′1 . Moreover, in the rule LET, we have A′1 =
[P | R, j, T] ||B2 and σ′1 = σ′′1 ∪ {uσ

′′
1 ↓/x}, whereas in case of rule ELSE, we have

A′1 = [Q | R, j, T] ||B2 and σ′1 = σ′′1 . At last, we also have j = i+ ctimeL,T (u, σ
′′
1)+

t letinT (lenL(uσ
′′
1)) in the case of the rule LET and j = i + ctimeL,T (u, σ

′′
1) +

t letelseT .
Since σ′′1 = σ3

1γ, we can deduce by Lemma 4, that Message(uσ3
1γ) is equivalent to

Message(uσ3
1). Thus in the case of the rule LET, we have

(E ′′1 , A′′1 , Φ3
1, σ

3
1)

τ−→ (E ′′1 , [P | R, j′, T] ||B2, Φ
3
1, σ

4
1)

where σ4
1 = σ3

1γ ∪ {uσ
3
1↓ x} and j′ = i + ctimeL,T (u, σ

3
1) + t letinT (lenL(uσ

3
1)).

Moreover, uσ3
1↓γ = uσ3

1γ↓ and so σ4
1γ = σ′1. In the case of rule ELSE, we have that

(E ′′1 , A′′1 , Φ3
1, σ

3
1)

τ−→ (E ′′′1 , [Q | R, j′, T] ||B2, Φ
3
1, σ

3
1)

where j′ = i + ctimeL,T (u, σ
3
1) + t letelseT . Since γ preserves the length, we have

that lenL(uσ3
1) = lenL(uσ

3
1γ). Moreover, in both cases, by Lemma 5, we have that

ctimeL,T (u, σ
′′
1) = ctimeL,T (u, σ

′′
1γ) and so j = j′. This allows us to conclude that

P1
tr⇒ (E ′1, A′1, Φ4

1, σ
4
1) with Φ4

1γ = Φ′ and σ4
1γ = σ′. Hence the result holds.

Others rules: The others rules are trivial since they do not involves the frames or terms
and are all τ actions.

Main result: Let P1
tr⇒ P ′1 = (E ′1, A′1, Φ′1, σ′1) where tr is built over F ′ti. Consider

the set S = {t ∈ st(Φ′1) | root(t) = f}. Assume that S = {t1, . . . , tn}. Let’s create n
fresh names k1, . . . , kn such that lenL(ki) = lenL(ti) for all i ∈ {1, . . . , n}. Let’s de-
note θ the mapping that associate any f(ζ1, . . . , ζm) in tr by ki for some i ∈ {1, . . . , n}
when f(ζ1, . . . , ζm)Φ′1↓ = ti. Let γ1 be the mapping that associate ti to ki for all
i ∈ {1, . . . ,m}.

Our soundness result allows us to state that P1
trθ⇒ (E ′1, A′1, Φ′1γ1, σ′1γ1). However,

trθ is built over Fti hence by our hypothesis P1 ≈Fti
ti P2, we deduce that there exists

a trace P2
trθ⇒ (E ′2, A′2, Φ′′2 , σ′′2) such that νE ′1.Φ′1γ1 ∼

Fti
ti νE ′2.Φ′′2 . Thus we deduce that

νE ′1.Φ′1γ1 ∼
F`

` νE ′2.Φ′′2 .
Let t, t′ ∈ dom(θ). tΦ′′2↓ = tΦ′′2↓ is equivalent to tΦ′1γ1↓ = t′Φ′1γ1↓. But by defi-

nition of θ, we have that tΦ′1↓γ1 = tθ. But by Lemma 4, we deduce that tΦ′1γ1↓ = tθ.
Similarly, we have that t′Φ′1γ1↓ = tθ. Hence we have that tΦ′′2↓ = tΦ′′2↓ is equivalent
to tθ = t′θ.

Thus by our completeness result, we deduce that exists Φ′2 and σ′2 such that P2
tr⇒

(E ′2, A′2, Φ′2, σ′2), Φ′2γ2 = Φ′′2 and σ′2γ2 = σ′′2 where γ2 is the mapping that associate
tΦ′2↓ to k where tθ = k.

36 Vincent Cheval and Véronique Cortier

At last, by applying Lemma 8, we have that νE ′.Φ′1γ1 ∼
F ′

`

` νE .Φ′2γ2 implies νE .Φ′1 ∼
F`

`

νE .Φ′2. Thanks to Lemma 9, we can conclude that νE .Φ′1 ∼
Fti
ti νE .Φ′2 and so the result

holds.

Lemma 13. Let P1 and P2 be two time processes built on Fti. Consider P1 and P2

two time processes such that P1 (resp. P2) is a transformed time process of P1 (resp.
P2). Let’s consider the time signature Fti = ((F ,N , L), T) on which P1 and P2 are
built.

Let’s denote ≈proj,Fti

ti the trace equivalence where we only consider traces with se-
quence of labels built onFti and for any termsM in the sequence, for all g(M1, . . . ,Mn) ∈
st(M), if there exists i ∈ {1, . . . , n} such thatMi ∈ AX then g = proj1, i.e. parameter
can only be used under the first projection of paring. We have that:

P1 ≈F`

` P2 if, and only if, P1 ≈proj,F`

` P2

Proof. To prove this result, we only have to show that P1 ≈proj,Fti

ti P2 implies P1 ≈Fti
ti

P2 since the other implication is trivial by following the definition of ≈proj,Fti

ti . Indeed,
≈proj,Fti

ti only restrict the traces that are verified compared to ≈Fti
ti . Consider the map-

ping θ = {〈ax i,k
′
i〉/ax i

}i∈{1,...,n}.

Soundness and completeness: We first show that P1
tr⇒ (E1, A1, Φ1, σ1) is equiva-

lent toP1
trθ⇒ (E1, A′1, Φ′1, σ′1) where γ = {k′i/hide(ti,ki)}i∈{1...n}, ax iΦ1 = 〈ui, hide(ti, ki)〉

and ax iΦ
′
1 = 〈uiγ, hide(tiγ, ki)〉 and σ′1 = σ1γ with A′1 is the extended process where

only the time accumulator is different. We prove this result by induction on the reduc-
tion P1

tr⇒ (E1, A1, Φ1, σ1). Since the base case is trivial, we focus on the induction

step, i.e. we consider that P1
tr′⇒ (E ′′1 , A′′1 , Φ′′1 , σ′′1)

`−→ (E1, A1, Φ1, σ1). By induc-

tive hypothesis, we have that P1
tr′θ⇒ (E ′′1 , A′′′1 , Φ′′′1 , σ′′′1) such that σ′′′1 = σ′′1γ, and

ax iΦ
′′′
1 = 〈uiγ, hide(tiγ, ki)〉 if ax iΦ′′1 = 〈ui, hide(ti, ki)〉. Furthermore A′′′1 is A′′1 up

to time accumulator. We do a case analysis on the rule applied last.

Case of rule OUT: There exists two extended processes [out(u, t).Q | R, i, T] and B2

where A′′1 = [out(u, t).Q | R, i, T] ||B2 and A1 = [Q | R, j, T] ||B2. Moreover,
E1 = E ′′1 , Φ1 = Φ′′1 ∪ {axn B tσ′′1↓} and σ1 = σ′′1 . At last, we also have there exists
M such that fnames(M) ∩ E ′1 = ∅, Message(MΦ′′1), Message(uσ′′1),Message(tσ′′1),
MθΦ′′1↓ = uσ′′1↓ and ` = out(Mθ, axn, j).

By Lemma 6,MθΦ′′′1 ↓ = (MΦ′′1)↓γ and Message(MθΦ′′′1) if and only if Message(MΦ′′1).
Moreover, by Lemma 4, Message(uσ′′1) and Message(tσ′′1) are equivalent to Message(uσ′′1γ)
and Message(tσ′′1γ). Furthermore, this lemma also gives us uσ′′1↓γ = uσ′′1γ↓. Hence
we obtain that Message(uσ′′′1), Message(tσ′′′1) andMΦ′′′1 ↓ = uσ′′′1 ↓. Hence, we deduce
that

(E ′′1 , A′′′1 , Φ′′′1 , σ′′′1)
out(Mθ,axn,j

′)−−−−−−−−−−→
(E ′′1 , [P | R, j′, T] ||B2, Φ

4
1, σ
′′′
1)

where Φ4
1 = Φ′′′1 ∪ {axn B tσ′′′1 ↓}. Note that since all relations are equivalence then

the previous transition implies (E ′′1 , A′′1 , Φ′′1 , σ′′1)
`−→ (E1, A1, Φ1, σ1).

Timing attacks in security protocols 37

However, note that since P1 is a transformed time process, we have that t =
〈un, hide(tn, kn)〉. Thus tσ′′′1 ↓ = 〈unσ′′′↓, hide(tnσ′′′↓, kn)〉. But by Lemma 4, unσ′′′↓ =
unσ

′′↓γ and tnσ′′′↓ = tnσ
′′↓γ. Hence the result holds.

Case of rule IN, LET and ELSE: Similar to the rule OUT.

Main result : Let P1
tr⇒ P ′1 = (E1, A1, Φ1, σ1). Thanks to the soundness re-

sult, we have that P1
trθ⇒ (E1, A′1, Φ′1, σ′1) where A′1 is the extended process A1 up

to different time accumulators, σ′1 = σ1γ1 and ax iΦ
′
1 = 〈uiγ1, hide(tiγ1, ki)〉 if

ax iΦ1 = 〈ui, hide(ti, ki)〉. By our hypothesis P1 ≈proj,F`

` P2, we can deduce that

there exists a trace P2
trθ⇒ (E2, A′2, Φ′2, σ′2) such that νE1.Φ′1 ∼

F`

` νE2.Φ′2.
By our completeness result, we obtain that P2

tr⇒ (E2, A2, Φ2, σ2) where σ2γ2 =
σ′2 and for all ax i ∈ dom(Φ′2), ax iΦ

′
2 = 〈uiγ2, hide(tiγ2, ki)〉where ax iΦ2 = 〈ui, hide(ti, ki)〉

and γ2 = {k′i/hide(ti,ki)}i∈{1...n}.
But the equivalence νE1.Φ′1 ∼

F`

` νE2.Φ′2 implies that lenL(hide(t1i γ1, k
1
i)) = lenL(hide(t

2
i γ2, k

2
i))

where ax iΦj = 〈uji , hide(t
j
i , k

j
i)〉. But by Lemma 3, we deduce that lenL(hide(t1i , k

1
i)) =

lenL(hide(t
2
i , k

2
i)) = lenL(k

′
i). Therefore, by Lemma 11, we deduce that νE1.Φ1 ∼F`

`

νE2.Φ2 and so the result holds.

Lemma 14. Let a time signature Fti = ((F ,N , L), T). Let P1 and P2 be two time
processes built on Fti such that P2 is a transformed time process of P1. For all P2

tr⇒
(E , A, Φ, σ), there exists two time processes P ′1 and P ′2 such that P2

tr⇒ P ′2, P ′2 is a
transformed time process of P ′1 and the frame of P ′2 is Φ.

Proof. The proof consist of taking a trace P2
tr⇒ (E , A, Φ, σ) then removing / adding

the τ transition to ensure that no cell are blocked. Once no cell are blocked that the time
process is a transform time process of another time process.

F Main theorem

We consider specific notation for the cells. In particular, we denote by in Cell(d, u),
we will consider that u is the constructor term in normal form. Typically, if the cell is
in a time process with the substitution σ, it implies that σ was already applied on u
and normalised. Note that it is only a syntactic sugar for the proper use of the notation
Cell(d, v) and then using vσ↓ everywhere. Moreover, we denote by Cell(d, u) the cell
waiting to be ”freed”, i.e. it correspond to the process ! in(d, x).out(d, x). The term u is
used to remember what was the previous value of the cell before reading it. Moreover,
we consider the infinite substitution θproj = {proj1(ax1)/ax1

;proj1(ax2) /ax2
; . . .}

Lemma 15 (Soundness). Let P1 = (E1, A1, Φ1, σ1) be a time process. Let P2 =
(E2, A2, Φ2, σ2) such that P2 is a transformed time process of P1. Denote by F` =
(F ,N , L) the signature on which P1 and P2 are built over.

For all P1
`−→ P ′1 with P ′1 = (E ′1, A′1, Φ′1, σ′1), there exists P ′2 = (E ′2, A′2, Φ′2, σ′2)

such that P ′2 is a transformed time process of P2, P2
tr⇒ P ′2 and

38 Vincent Cheval and Véronique Cortier

– if ` = τ then tr = ε.
– if ` = νaxn.out(M, axn, j) then tr = νaxn.out(M

′, axn, j
′) and M ′ = Mθproj

for some integer j′. Moreover, axnΦ′2 = 〈axnΦ′1, t〉 for some term t such that
lenL(t) = j.

– if ` = in(M,N) then tr = in(M ′, N ′) with M ′ = Mθproj and N ′ = 〈Nθproj, k〉
with k ∈ N .

Proof. We do a case analysis on the semantics rule applied in P1
`−→ P ′1. Note that we

considered that F` is the complete signature on which P1 and P2 is built over thus it
includes all the symbol functions introduced from the transformation of P1 into P2. We
will denote by F0 = (F0,N , L0) the initial signature on which P1 is built on.

Case M-REPL: In such a case, there exist B1 and B2 two extended processes such that
A1 = !B1 ||B2 and A′1 = !B1 ||B1ρ ||B2 with ρ a renaming. Moreover, E ′1 = E1,
Φ′1 = Φ1 and σ′1 = σ1. Since we assume that P2 is a transformed time process of P1

then there exists Sc such that E1 ⊆ E2, Sc ⊆ E2 with E1 ∩ Sc = ∅, A2 ∈ [A1]
Sc

L0
,

σ2|dom(σ1) = σ1 and for all ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for some ti.
But A1 = !B1 ||B2, thus by definition of A2 ∈ [A1]

Sc

L0
, we deduce that there exist

B′1, B′2 such that B′1 ∈ [B1]
∅
L0

, B′2 ∈ [B2]
Sc

L0
and A2 = !B′1 ||B′2. Therefore we have

by application of the rule M-REPL

(E2, !B′1 ||B′2, Φ2, σ2)
τ−→ (E2, !B′1 ||B′1ρ ||B′2, Φ2, σ2)

We can choose the same ρ since ρ was supposed to be fresh. By denoting A′2 =
!B′1 ||B′1ρ ||B′2, the properties B′1 ∈ [B1]

∅
L0

and B′2 ∈ [B2]
Sc

L0
imply that A′2 ∈ [A2]

Sc

L0
.

At last, by denoting E ′2 = E2, Φ′2 = Φ2 and σ′2 = σ2, we obtain that (E ′2, A′2, Φ′2, σ′2) is
a transformed time process of (E2, A2, Φ2, σ2) and so the result holds.

Case REPL: In such a case, there exists two extended process A and [!P | R, i, T] such
that A1 = [!P | R, i, T] ||B2 and A′1 = [!P | Pρ | R, i, T] ||B2 with ρ a renaming.
Moreover, E ′1 = E1, Φ′1 = Φ1 and σ′1 = σ1. Since we assume that P2 is a transformed
time process of P1 then there exists Sc such that E1 ⊆ E2, Sc ⊆ E2 with E1 ∩ Sc = ∅,
A2 ∈ [A1]

Sc

L0
, σ2|dom(σ1) = σ1 and for all ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for

some ti.
But A1 = [!P | R, i, T] ||B2, thus by definition of A2 ∈ [A1]

Sc

L0
, we deduce that

there exist B′1, B′2 two extended process and S1
c , S2

c two sets such that A2 = B′1 ||B′2,

B′1 ∈ [[!P | R, i, T]]S
1
c

L , B′2 ∈ [B2]
S2
c

L0
, Sc = S1

c ∪S2
c and S1

c ∩S2
c = ∅. Thus depending

of the set S1
c , we have to distinguish two cases:

1. S1
c = ∅ and B′1 = [νd.(Cell(d, ni) | ![P]dL0,T

| [R]dL0,T
), i, T]

2. S1
c = {d} and B′1 = [Cell(d, u) | ![P]dL0,T

| [R]dL0,T
, i, T]

In both cases, we deduce that

(E2, A2, Φ2, σ2)
ε⇒ (E ′2, [Cell(d, v) | ![P]dL0,T

| [P]dL0,T
| [R]dL0,R

, i, T] ||B′2, Φ2, σ2)

where E ′2 = E2 ∪ {d} and v = ni in the first case or E ′2 = E2 and v = u in the second
case.

Timing attacks in security protocols 39

We already know that B′2 ∈ [B2]
S2
c

L0
and since [Cell(d, v) | ![P]dL0,T

| [P]dL0,T
ρ |

[R]dL0,R
, i.T] ∈ [[!P | Pρ | R, i, T]]{d}L0

. Thus, by denoting A′2 = [Cell(d, v) |
![P]dL0,T

| [P]dL0,T
ρ | [R]dL0,R

, i, T] ||B′2, we can deduce that A′2 ∈ [A′1]
Sc∪{d}
L0

. More-
over, by denoting Φ′2 = Φ2 and σ′2 = σ2, we can conclude that (E ′2, A′2, Φ′2, σ′2) is a
transformed time process of (E2, A2, Φ2, σ2) and so the result holds.

Case RESTR: In such a case, there exists two extended process B2 and [νk.P | R, i, T]
such that A1 = [νk.P | R, i, T] ||B2 and A′1 = [P | R, j, T] ||B2 where j = i +
t restrT (`) and k ∈ N`. Moreover, E ′1 = E1 ∪ {k}, Φ′1 = Φ1 and σ′1 = σ1. Since
we assume that P2 is a transformed time process of P1 then there exists Sc such that
E1 ⊆ E2, Sc ⊆ E2 with E1 ∩ Sc = ∅, A2 ∈ [A1]

Sc

L0
, σ2|dom(σ1) = σ1 and for all

ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for some ti.
But A1 = [νk.P | R, i, T] ||B2, thus by definition of A2 ∈ [A1]

Sc

L0
, we deduce that

there exist B′1, B′2 two extended process and S1
c , S2

c two sets such that A2 = B′1 ||B′2,

B′1 ∈ [[νk.P | R, i, T]]S
1
c

L0
, B′2 ∈ [B2]

S2
c

L0
, Sc = S1

c ∪ S2
c and S1

c ∩ S2
c = ∅. Thus

depending of the set S1
c , we have to distinguish two cases:

1. S1
c = ∅ and B′1 = [νd.(Cell(d,mi) | [νk.P]dL0,T

| [R]dL0,T
), i, T] with mi a fresh

name.
2. S1

c = {d} and B′1 = [Cell(d, u) | [νk.P]dL0,T
| [R]dL0,T

, j′, T] with lenL(u) = i
and some i′.

Moreover, we have that:

[νk.P]dL0,T = in(d, y).νk.out(d, plus(y, grestr(k))).[P]
d
L0,T

In both cases, we deduce that

(E2, A2, Φ2, σ2)
ε⇒ (E ′′2 , [Cell(d, v) | [νk.P]dL0,T

|
[R]dL0,T

, i1, T] ||B′2, Φ2, σ2)

where lenL(v) = i, E ′′2 = E2 ∪ {d} and v = ni in the first case or E ′2 = E2 and v = u
in the second case.

We now apply the τ transition with the cell d:

(E ′′2 , [Cell(d, v) | [νk.P]dL0,T
| [R]dL0,T

, i′, T] ||B′2,
Φ2, σ2)

τ−→ (E ′′2 , [Cell(d, v) | νk.out(d, t).[P]dL0,T
| [R]dL0,T

, i1, T]

||B′2, Φ2, σ
(2)
2)

τ−→ (E ′′2 ∪ {k}, [Cell(d, v) | out(d, t).[P]dL0,T

| [R]dL0,T
, i2, T] ||B′2, Φ2, σ

(2)
2)

ε⇒ (E ′′2 ∪ {k}, [Cell(d, plus(v, fN (k))) | [P]dL0,T

| [R]dL0,T
, i3.T] ||B′2, Φ2, σ

(3)
2)

with t = plus(y, grestr(k)), σ
(2)
2 = σ2 ∪ {v/y} and σ(3)

2 = σ
(2)
2 ∪ {plus(v,grestr(k))/z}

for some fresh variable z and integer i1, i2, i3. Note that lenL(plus(v, grestr(k))) =

40 Vincent Cheval and Véronique Cortier

lenL(v)+lenL(grestr(k)) = i+lengrestrL (`). By definition of grestr, we know that lengrestrL =
t restrT (). Therefore, we deduce that lenL(plus(v, grestr(k))) = i + t restrT (`) = j.
We can thus deduce that [Cell(d, plus(v, grestr(k))) | [P]dL0,T

| [R]dL0,T
, i3, T] ∈ [[P |

R, j, T]]
{d}
L0

. By denotingA′2 the following extended process [Cell(d, plus(v, grestr(k))) |
[P]dL0,T

| [R]dL0,T
, i3, T] ||B′2, we can deduce that A′2 ∈ [A′1]

Sc∪{d}
L0

.

Moreover, by denoting E ′2 = E ′′2 ∪ {k}, Φ′2 = Φ2, σ′2 = σ
(3)
2 , we can conclude

that (E ′2, A′2, Φ′2, σ′2) is a transformed time process of (E2, A2, Φ2, σ2) and so the result
holds.

Case CHOICE-1: In such a case, there exists two extended process [P1 + P2 | R, i, T]
andB2 such thatA1 = [P1+P2 | R, i, T] ||B2 andA′1 = [P1 | R, i, T] ||B2. Moreover,
E ′1 = E1, Φ′1 = Φ1 and σ′1 = σ1. Since we assume that P2 is a transformed time process
of P1 then there exists Sc such that E1 ⊆ E2, Sc ⊆ E2 with E1 ∩ Sc = ∅, A2 ∈ [A1]

Sc

L0
,

σ2|dom(σ1) = σ1 and for all ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for some ti.
But A1 = [P1 + P2 | R, i, T] ||B2, thus by definition of A2 ∈ [A1]

Sc

L , we deduce
that there exist B′1, B′2 two extended process and S1

c , S2
c two sets such that A2 =

B′1 ||B′2, B′1 ∈ [[P1 + P2 | R, i, T]]
S1
c

L , B′2 ∈ [B2]
S2
c

L , Sc = S1
c ∪ S2

c and S1
c ∩ S2

c = ∅.
Thus depending of the set S1

c , we have to distinguish two cases:

1. S1
c = ∅ and B′1 = [νd.(Cell(d,mi) | [P1]

d
L0,T

+[P2]
d
L0,T

| [R]dL0,T
), i, T] with mi

a fresh name.
2. S1

c = {d} and B′1 = [Cell(d, u) | [P1]
d
L0,T

+ [P2]
d
L0,T

| [R]dL0,T
, j′, T] with

lenL(u) = i and some j′.

In both cases, we deduce that

P2
ε⇒ (E ′′2 , [Cell(d, v) | [P1]

d
L0,T

+ [P2]
d
L0,T

| [R]dL0,T
, i1, T] ||B′2, Φ2, σ2)

where lenL(v) = i, E ′′2 = E2 ∪ {d} and v = ni in the first case or E ′2 = E2 and v = u
in the second case. We can apply on this new process the rule CHOICE-1 as follows:

(E ′′2 , [Cell(d, v) | [P1]
d
L0,T

+ [P2]
d
L0,T

| [R]dL0,T
, i1, T]

||B′2, Φ2, σ2)
τ−→ (E ′′2 , [Cell(d, v) | [P1]

d
L0,T

| [R]dL0,T
, i1, T] ||B′2, Φ2, σ2)

But since lenL(v) = i, then [Cell(d, v) | [P1]
d
L0,T

| [R]dL0,T
, i1, T] ∈ [[P1 | R, i, T]]{d}L0

.
Hence by denoting A′2 = [Cell(d, v) | [P1]

d
L0,T

| [R]dL0,T
, i1, T] ||B′2, we deduce that

A′2 ∈ [A′1]
Sc∪{d}
L0

.
Moreover, by denoting E ′2 = E ′′2 , Φ′2 = Φ2, σ′2 = σ2, we can conclude that

(E ′2, A′2, Φ′2, σ′2) is a transformed time process of (E2, A2, Φ2, σ2) and so the result
holds.

Case CHOICE-2: Similar to case CHOICE-1.

Case LET: In this case, there exists two extended process [let x = u in P else Q |
R, i, T] and B2 such that A1 = [let x = u in P else Q | R, i, T] ||B2 and A′1 = [P |

Timing attacks in security protocols 41

R, j, T] ||B2. Moreover, E ′1 = E1, Φ′1 = Φ1 and σ′1 = σ1 ∪ {uσ1/x}. At last, we also
have Message(uσ1) and j = i+ ctimeL,T (u, σ1) + t letinT (lenL(uσ1↓)).

Since we assume that P2 is a transformed time process of P1 then there exists Sc
such that E1 ⊆ E2, Sc ⊆ E2 with E1 ∩ Sc = ∅, A2 ∈ [A1]

Sc

L0
, σ2|dom(σ1) = σ1 and for

all ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for some ti.
But A1 = [let x = u in P else Q | R, i, T] ||B2, thus by definition of A2 ∈ [A1]

Sc

L0
,

we deduce that there exist B′1, B′2 two extended process and S1
c , S2

c two sets such that

A2 = B′1 ||B′2, B′1 ∈ [[let x = u in P elseQ | R, i, T]]S
1
c

L0
, B′2 ∈ [B2]

S2
c

L0
, Sc = S1

c ∪S2
c

and S1
c ∩ S2

c = ∅. Thus depending of the set S1
c , we have to distinguish two cases:

1. S1
c = ∅ and B′1 = [νd.(Cell(d,mi) | [let x = u in P else Q]dL0,T

| [R]dL0,T
), i, T]

with mi a fresh name.
2. S1

c = {d} and B′1 = [Cell(d,w) | [let x = u in P else Q]dL0,T
| [R]dL0,T

, j′, T]
with lenL(w) = i and some j′.

In both cases, we deduce that

P2
ε⇒ (E ′′2 , [Cell(d, v) | [let x = u in P else Q]dL0,T

| [R]dL0,T
, i1, T] ||B′2, Φ2, σ2)

where lenL(v) = i, E ′′2 = E2 ∪ {d} and v = ni in the first case or E ′2 = E2 and v = w
in the second case.

Let’s focus now on [let x = u in P else Q]dL0,T
. By definition, we know that this

process is the following process:

in(d, y).let x = u in
out(d, plus(plus(y, gletin(x)), [u]L0,T)).[P]

d
L0,T

else
νc.(LetTrT (c, t, [v1; . . . ; vm], plus(y, gletelse))
| in(c, z).out(d, z).[Q]dL0,T

)

where y, z are fresh variables, u = f(v1, . . . , vm) and t = f(v1, . . . , vm). Since
Message(uσ1) and σ2|dom(σ1) = σ1, we can deduce that Message(uσ2) and we can
also apply the internal communication with the cell d and then the rule LET and again
the release of the cell d:

(E ′′2 , [Cell(d, v) | [let x = u in P else Q]dL0,T

| [R]dL0,T
, i1, T] ||B′2, Φ2, σ2)

ε⇒ (E ′′2 , [Cell(d, v) | out(d, plus(plus(y, gletin(x)), [u]L0,T))

.[P]dL0,T
| [R]dL0,T

, i2, T] ||B′2, Φ2, σ
(2)
2)

τ−→ (E ′′2 , [Cell(d, plus(plus(v, gletin(uσ2↓)), [u]L0,Tσ2↓))
| [P]dL0,T

| [R]dL0,T
, i3, T] ||B′2, Φ2, σ

(3)
2)

with σ(2)
2 = σ2 ∪{v/y;uσ2↓ /x} and σ(3)

2 = σ
(2)
2 ∪{plus(v,[u]L0,Tσ2↓)/z} for some fresh

variable z and some integer i1, i2, i3. Note that lenL(plus(plus(v, gletin(uσ2↓)), [u]L0,Tσ2↓)) =
lenL(v) + lenL([u]L0,Tσ2↓) = i + lenL([u]L0,Tσ2↓) + lenL(gletin(uσ2↓)). By defini-
tion, we have that lenL(gletin(uσ2↓)) = t letinT (lenL(uσ2↓)). Thanks to Lemma 1,

42 Vincent Cheval and Véronique Cortier

since Message(uσ2) then lenL([u]L0,Tσ2↓) = ctimeL,T (u, σ2). Thus, we deduce that
lenL(plus(v, [u]L0,Tσ2↓)) = i+ ctimeL,T (u, σ2)+ t letinT (lenL(uσ2↓)). Once again,
we know that σ2|dom(σ1) = σ1 and fvars(u) ⊆ dom(σ1), hence ctimeL,T (u, σ2) =
ctimeL,T (u, σ1) and so lenL(plus(plus(v, gletin(uσ2↓)), [u]L0,Tσ2↓)) = j.

We can thus deduce that [Cell(d, plus(v, [u]L0,Tσ2↓)) | [P]dL0,T
| [R]dL0,T

, i3, T] ∈
[[P | R, j, T]]{d}L . By denotingA′2 = [Cell(d, plus(plus(v, gletin(uσ2↓)), [u]L0,Tσ2↓)) |
[P]dL0,T

| [R]dL0,T
, i3, T] ||B′2, we can deduce that A′2 ∈ [A′1]

Sc∪{d}
L0

.
Moreover, by denoting E ′2 = E ′′2 , Φ′2 = Φ2, σ′2 = σ(3)2, we can conclude that

(E ′2, A′2, Φ′2, σ′2) is a transformed time process of (E2, A2, Φ2, σ2) and so the result
holds.

Case ELSE: The beginning of the proof is similar to the case LET. In particular, we
have there exists two extended process [let x = u in P else Q | R, i, T] and B2 such
that A1 = [let x = u in P else Q | R, i, T] ||B2 and A′1 = [Q | R, j, T] ||B2.
Moreover, E ′1 = E1, Φ′1 = Φ1 and σ′1 = σ1. At last, we also have ¬Message(uσ1) and
j = i+ ctimeL,T (u, σ1) + t letelseT .

Since we assume that P2 is a transformed time process of P1 then there exists Sc
such that E1 ⊆ E2, Sc ⊆ E2 with E1 ∩ Sc = ∅, A2 ∈ [A1]

Sc

L , σ2|dom(σ1) = σ1 and for
all ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for some ti.

But A1 = [let x = u in P else Q | R, i, T] ||B2, thus by definition of A2 ∈ [A1]
Sc

L ,
we deduce that there exist B′1, B′2 two extended process and S1

c , S2
c two sets such that

A2 = B′1 ||B′2, B′1 ∈ [[let x = u in P else Q | R, i, T]]S
1
c

L , B′2 ∈ [B2]
S2
c

L , Sc = S1
c ∪S2

c

and S1
c ∩ S2

c = ∅. Thus depending of the set S1
c , we have to distinguish two cases:

1. S1
c = ∅ and B′1 = [νd.(Cell(d,mi) | [let x = u in P else Q]dL0,T

| [R]dL0,T
), i, T]

with mi a fresh name.
2. S1

c = {d} and B′1 = [Cell(d,w) | [let x = u in P else Q]dL0,T
| [R]dL0,T

, j′, T]
with lenL(w) = i and some j′.

In both cases, we deduce that

P2
ε⇒ (E ′′2 , [Cell(d, v) | [let x = u in P else Q]dL0,T

| [R]dL0,T
, i1, T] ||B′2, Φ2, σ2)

where lenL(v) = i, E ′′2 = E2 ∪ {d} and v = ni in the first case or E ′2 = E2 and v = w
in the second case.

Let’s focus now on [let x = u in P else Q]dL0,T
. By definition, we know that this

process is the following process:

in(d, y).let x = u in
out(d, plus(plus(y, gletin(x)), [u]L0,T)).[P]

d
L0,T

else
νc.(LetTrT (c, t, [v1; . . . ; vm], plus(y, gletelse))
| in(c, z).out(d, z).[Q]dL0,T

)

where y, z are fresh variables, u = f(v1, . . . , vm) and t = f(v1, . . . , vm). Since
¬Message(uσ1) and σ2|dom(σ1) = σ1, we can deduce that ¬Message(uσ2) and we

Timing attacks in security protocols 43

can also apply the internal communication with the cell d and then the rule ELSE:

(E ′′2 , [Cell(d, v) | [let x = u in P else Q]dL0,T

| [R]dL0,T
, i1, T] ||B′2, Φ2, σ2)

ε⇒ (E ′′2 , [Cell(d, v) | νc.(LetTrT (c, t, [v1; . . . ; vm],
plus(y, gletelse)) | in(c, z).out(d, z).[Q]dL0,T

)

| [R]dL0,T
, i2, T] ||B′2, Φ2, σ

(2)
2)

τ−→ (E ′′′2 , [Cell(d, v) | LetTrT (c, t, [v1; . . . ; vm],
plus(y, gletelse)) | in(c, z).out(d, z).[Q]dL0,T

| [R]dL0,T
, i3, T] ||B′2, Φ2, σ

(2)
2)

with σ(2)
2 = σ2 ∪ {v/y}, E ′′′2 = E ′′2 ∪ {c} and some integer i1, i2.

From this point, we apply Lemma 2 and we deduce that:

(E ′′′2 , [Cell(d, v) | LetTrT (c, t, [v1; . . . ; vm],
plus(y, gletelse)) | in(c, z).out(d, z).[Q]dL,T
| [R]dL,T , i3, T] ||B′2, Φ2, σ

(2)
2)

ε⇒ (E ′′′2 , [Cell(d, v) | out(c, t′) | in(c, z).out(d, z).[Q]dL,T)

| [R]dL,T , i4, T] ||B′2, Φ2, σ
(3)
2)

with lenL0
(plus(y, gletelse)σ

(2)
2 ↓)+ctimeL,T (u, σ

(2)
2) = lenL0

(t′σ
(3)
2 ↓). Since yσ(2)

2 ↓ =
v, lenL(v) = i and t letelseT = gletelse, then lenLe(t′σ(3)) = i + ctimeL,T (u, σ

(2)
2) +

t letelseT . Since fvars(u) ⊆ dom(σ1) and σ(2)
2 |dom(σ1) = σ1, hence lenL0

(t′σ(3)) =
i+ ctimeL,T (u, σ1) + +t letelseT = j.

But we have:

(E ′′′2 , [Cell(d, v) | out(c, t′) | in(c, z).out(d, z).[Q]dL,T
| [R]dL,T , i4, T] ||B′2, Φ2, σ

(3)
2)

ε⇒ (E ′′′2 , [Cell(d, t) | [Q]dL,T | [R]dL,T , i5, T] ||B′2, Φ2, σ
(4)
2)

Since lenLe(t′σ(3)) = j, we can deduce that [Cell(d, t) | [Q]dL,T | [R]dL,T , i5, T] ∈
[[Q | R, j, T]]{d}L . By denoting A′2 = [Cell(d, t) | [Q]dL,T | [R]dL,T , i5, T] ||B′2, we can

deduce that A′2 ∈ [A′1]
Sc∪{d}
L .

Moreover, by denoting E ′2 = E ′′′2 , Φ′2 = Φ2, σ′2 = σ
(4)
2 , we can conclude that

(E ′2, A′2, Φ′2, σ′2) is a transformed time process of (E2, A2, Φ2, σ2) and so the result
holds.

Case OUT: In such a case, there exists two extended process [out(u, t).Q | R, i, T]
and B2 such that A1 = [out(u, t).Q | R, i, T] ||B2 and A′1 = [Q | R, j, T] ||B2.
Moreover, E ′1 = E1, Φ′1 = Φ1 ∪{axn B tσ1↓} and σ′1 = σ1. At last, we also have there
existsM such that Message(MΦ1), Message(uσ1),Message(tσ1),MΦ1↓ = uσ1↓ and
j = i+ ctimeL,T (t, σ1) + ctimeL,T (u, σ1) + t outT (lenL(tσ1↓)).

Since we assume that P2 is a transformed time process of P1 then there exists Sc
such that E1 ⊆ E2, Sc ⊆ E2 with E1 ∩ Sc = ∅, A2 ∈ [A1]

Sc

L , σ2|dom(σ1) = σ1 and for
all ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for some ti.

44 Vincent Cheval and Véronique Cortier

But A1 = [out(u, t).Q | R, i, T] ||B2, thus by definition of A2 ∈ [A1]
Sc

L , we
deduce that there exist B′1, B′2 two extended process and S1

c , S2
c two sets such that

A2 = B′1 ||B′2, B′1 ∈ [[out(u, t).Q | R, i, T]]S
1
c

L , B′2 ∈ [B2]
S2
c

L , Sc = S1
c ∪ S2

c and
S1
c ∩ S2

c = ∅. Thus depending of the set S1
c , we have to distinguish two cases:

1. S1
c = ∅ and B′1 = [νd.(Cell(d,mi) | [out(u, t).Q]dL,T | [R]dL,T), i, T] with mi a

fresh name.
2. S1

c = {d} and B′1 = [Cell(d,w) | [out(u, t).Q]dL,T | [R]dL,T , j′, T] for some j′ and
with lenL(w) = i.

In both cases, we deduce that

(E2, A2, Φ2, σ2)
ε⇒ (E ′′2 , [Cell(d, v) | [out(u, t).Q]dL,T
| [R]dL,T , i1, T] ||B′2, Φ2, σ2)

where lenL(v) = i, E ′′2 = E2 ∪ {d} and v = ni in the first case or E ′2 = E2 and v = w
in the second case.

Let’s focus now on [out(u, t).Q]dL,T . By definition, we know that this process is the
following process:

in(d, y).let z = plus(plus(y, gout(t)), plus([u]L,T , [t]L,T)) in
νk.out(u, 〈t, hide(z, k)〉).out(d, z).[P]dL,T

where y and z are fresh variables. Note that the term plus(plus(y, gout(t)), plus([u]L,T , [t]L,T))
is only made of constructor hence Message(plus(plus(y, gout(t)), plus([u]L,T , [t]L,T))σ2).
Thus, following the communication rule for the Cell(d, v) and we can apply the rule
LET then RESTR and obtain:

(E ′′2 , [Cell(d, v) | [out(u, t).Q]dL,T | [R]dL,T , i1, T]
||B′2, Φ2, σ2)

ε⇒ (E ′′′2 , [Cell(d, v) | out(u, 〈t, hide(z, k)〉).out(d, z).[P]dL,T
| [R]dL,T , i2, T] ||B′2, Φ2, σ

(2)
2)

with σ(2)
2 = σ2 ∪ {v/y;plus(plus(v,gout(t)),plus([u]L,T ,[t]L,T))σ2↓ /z} and E ′′′2 = E ′′2 ∪ {k}.

By hypothesis, we know that MΦ1↓ = uσ1. But for all axk ∈ dom(Φ1), axkΦ2 =
〈axkΦ1, tk〉 for some k. Thus proj1(axk)Φ2↓ = axkΦ1↓ for all axk ∈ dom(Φ1).
Since θproj = {proj1(ax1)/ax1

; . . . ;proj1(axn) /axn
; . . .}, we deduce that MθprojΦ2↓ =

MΦ1↓ = uσ1↓. Since σ(2)
2 |dom(σ1) = σ1, then MθprojΦ2↓ = uσ

(2)
2 ↓.

Moreover, we know that Message(MΦ1). But for all ζ ∈ st(MθprojΦ2), either ζ =
ax i for some ax i ∈ dom(Φ1) or there exists ζ ′ ∈ st(MΦ1) such that ζ = ζ ′θproj. Since
proj1(axk)Φ2↓ = axkΦ1↓ for all axk ∈ dom(Φ1), we deduce that ζ ′Φ1↓ ∈ T (Fc,N)
implies that ζΦ2↓ ∈ T (Fc,N). Therefore, we deduce that Message(MθprojΦ2).

Timing attacks in security protocols 45

Since MθprojΦ2↓ = uσ
(2)
2 ↓ and Message(MθprojΦ2), we can apply the rule OUT as

follows:

(E ′′′2 , [Cell(d, v) | out(u, 〈t, hide(z, k′)〉).out(d, z).[P]dL,T
| [R]dL,T , i2, T] ||B′2, Φ2, σ

(2)
2)

νaxn.out(Mθproj,axn)−−−−−−−−−−−−−→
(E ′′′2 , [Cell(d, v) | out(d, z).[P]dL,T | [R]dL,T , i3, T] ||B′2,

Φ2 ∪ {axn B 〈t, hide(z, k′)〉σ(2)
2 ↓}, σ

(2)
2)

τ−→ (E ′′′2 , [Cell(d, zσ
(2)
2) | [P]dL,T | [R]dL,T , i4, T] ||B′2,

Φ2 ∪ {axn B 〈t, hide(z, k′)〉σ(2)
2 ↓}, σ

(3)
2)

with σ(3)
2 = σ

(2)
2 ∪{zσ

(2)
2 /z′} for some variable z′. We compute lenL(zσ

(2)
2): We know

that zσ(2)
2 = plus(plus(y, gout(t)), plus([u]L,T , [t]L,T))σ2↓. Hence, lenL(zσ

(2)
2) = lenL(yσ2↓)+

lenL0
([u]L,Tσ2↓)+lenL0

([t]L,Tσ2↓)+lenL(gout(tσ2↓)). However, we know that Message(uσ)
and Message(tσ) hence Message(uσ2) and Message(tσ2). Moreover, by definition we
have lenL(gout(tσ2↓)) = t outT (lenL(tσ2↓)). Thus by Lemma 1, lenL0

([u]L,Tσ2↓) =
ctimeL,T (u, σ2) and lenL0

([t]L,Tσ2↓) = ctimeL,T (t, σ2). With yσ2 = v and lenL0
(v) =

i, we deduce that lenL(zσ
(2)
2) = i+ctimeL,T (u, σ2)+ctimeL,T (t, σ2)+t outT (lenL(tσ2↓)) =

j.
This allows us to prove that [Cell(d, zσ(2)

2) | [P]dL,T | [R]dL,T , i4, T] ∈ [[P |
R, j, T]]

{d}
L . By denoting A′2 = [Cell(d, t) | [Q]dL,T | [R]dL,T , i4, T] ||B′2, we can

deduce that A′2 ∈ [A′1]
Sc∪{d}
L .

Moreover, by denoting E ′2 = E ′′′2 , Φ′2 = Φ2 ∪ {axn B 〈t, hide(z, k′)〉σ(2)
2 ↓},

σ′2 = σ
(3)
2 , we can conclude that (E ′2, A′2, Φ′2, σ′2) is a transformed time process of

(E2, A2, Φ2, σ2). At last, we already proved that tr = νaxn.out(M
′, axn) with M ′ =

Mθproj, and since lenL0
(hide(z.k′)σ

(2)
2 ↓) = lenL0

(xσ
(2)
2 ↓) = j, then the result holds.

Case IN: In such a case, there exists two extended process [in(u, x).P | R, i, T] and
B2 such that A1 = [in(u, x).P | R, i, T] ||B2 and A′1 = [P | R, j, T] ||B2. Moreover,
there exists two termsM andN such thatMΦ1↓ = uσ1↓,NΦ1↓ = t, Message(MΦ1),
Message(NΦ1) and Message(uσ1). At last, we have j = i+ctimeL,T (u, σ1)+t inT (lenL(tσ1↓)),
E ′1 = E1, Φ′1 = Φ1 and σ′1 = σ1 ∪ {t/x}.

Since we assume that P2 is a transformed time process of P1 then there exists Sc
such that E1 ⊆ E2, Sc ⊆ E2 with E1 ∩ Sc = ∅, A2 ∈ [A1]

Sc

L , σ2|dom(σ1) = σ1 and for
all ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for some ti.

But A1 = [in(u, x).P | R, i, T] ||B2, thus by definition of A2 ∈ [A1]
Sc

L , we deduce
that there exist B′1, B′2 two extended process and S1

c , S2
c two sets such that A2 =

B′1 ||B′2,B′1 ∈ [[in(u, x).P | R, i, T]]S
1
c

L ,B′2 ∈ [B2]
S2
c

L , Sc = S1
c ∪S2

c and S1
c ∩S2

c = ∅.
Thus depending of the set S1

c , we have to distinguish two cases:

1. S1
c = ∅ and B′1 = [νd.(Cell(d,mi) | [in(u, x).P]dL,T | [R]dL,T), i, T] with mi a

fresh name.
2. S1

c = {d} and B′1 = [Cell(d,w) | [in(u, x).P]dL,T | [R]dL,T , j′, T] with lenL(w) =
i and some j′.

46 Vincent Cheval and Véronique Cortier

In both cases, we deduce that

(E2, A2, Φ2, σ2)
ε⇒ (E ′′2 , [Cell(d, v) | [in(u, x).P]dL,T

| [R]dL,T , i1, T] ||B′2, Φ2, σ2)

where lenL(v) = i, E ′′2 = E2 ∪ {d} and v = ni in the first case or E ′2 = E2 and v = w
in the second case.

Let’s focus now on [in(u, x).P]dL,T . By definition, we know that this process is the
following process:

in(d, y).in(u, z).
let x = proj1(z) in
out(d, plus(plus(y, gin(x)), [u]L,T)).[P]

d
L,T

else 0

where y and z are fresh variables.
Consider the term M ′ = Mθproj and N ′ = 〈Nθproj, k〉 with k ∈ N . We know by

hypothesis that Message(MΦ1), Message(NΦ1) and for all ax i ∈ dom(Φ1), ax iΦ2 =
〈ax iΦ1, ti〉 for some term ti. Thus, for all ζ ∈ st(MθprojΦ2), either ζ = ax iΦ2 for
some ax i ∈ dom(Φ2) or there exists ζ ′ ∈ st(M) such that ζ = ζ ′θprojΦ2. Since
proj1(axk)Φ2↓ = axkΦ1↓ for all axk ∈ dom(Φ1), we deduce that ζ ′Φ1↓ ∈ T (Fc,N)
implies that ζΦ2↓ ∈ T (Fc,N). Therefore, we deduce that Message(MθprojΦ2). Simi-
larly, we can deduce that Message(NθprojΦ2) and so Message(N ′Φ2).

Moreover, proj1(axk)Φ2↓ = axkΦ1↓ for all axk ∈ dom(Φ1) also imply that
MθprojΦ2↓ = MΦ1↓ = uσ1↓. Similarly, we deduce that NθprojΦ2↓ = NΦ1↓ = t
and so N ′Φ2↓ = 〈t, k〉.

Hence, following the communication rule for the Cell(d, v) and we can apply the
rule IN. Note that the variable z will be instantiated by 〈t, k〉. Thus the term proj1(z)
will become a message which allow us to follow by an application of the rule LET and
obtain:

(E ′′2 , [Cell(d, v) | [in(u, x).P]dL,T | [R]dL,T , i1, T]
||B′2, Φ2, σ2)

in(M ′,N ′)⇒
(E ′′2 , [Cell(d, v) | out(u, plus(plus(y, gin(x)), [u]L,T)).
[P]dL,T | [R]dL,T , i2, T] ||B′2, Φ2, σ

(2)
2)

τ−→ (E ′′2 , [Cell(d, plus(plus(v, gin(t)), [u]L,Tσ
(2)
2 ↓))

| [P]dL,T | [R]dL,T , i3, T] ||B′2, Φ2, σ
(3)
2)

with E ′′′2 = E ′′2 ∪ {k′}, k′ is a fresh name, σ(2)
2 = σ2 ∪ {v/y;〈t,k〉 /z;t /x} and σ(3)

2 ⊇
σ
(2)
2 .

Let’s compute lenL(plusplus(v, gin(t)), [u]L,Tσ
(2)
2 ↓)). We already know that lenL(v) =

i and Message(uσ2). Thus by Lemma 1, we deduce that lenL0([u]L,Tσ
(2)
2 ↓) = ctimeL,T (u, σ

(2)
2) =

ctimeL,T (u, σ1). Moreover, by definition, lenL(gin(tσ
(2)
2 ↓)) = t inT (lenL(tσ

(2)
2 ↓)).

Hence we deduce that lenL(plus(v, [u]L,Tσ
(2)
2 ↓)) = i+ctimeL,T (u, σ1)+t inT (lenL(tσ1↓)) =

j.

Timing attacks in security protocols 47

This allows us to prove that [Cell(d, plus(v, [u]L,Tσ
(2)
2 ↓) | [P]dL,T | [R]dL,T , i3, T] ∈

[[P | R, j, T]]{d}L . By denoting A′2 = [Cell(d, t) | [Q]dL,T | [R]dL,T , i3, T] ||B′2, we can

deduce that A′2 ∈ [A′1]
Sc∪{d}
L .

Moreover, by denoting E ′2 = E ′′2 , Φ′2 = Φ2, σ′2 = σ
(3)
2 , we can conclude that

(E ′2, A′2, Φ′2, σ′2) is a transformed time process of (E2, A2, Φ2, σ2). At last, we already
proved that tr = in(M ′, N ′) with M ′ = Mθproj, N ′ = 〈Nθproj, k〉 and k ∈ N hence
the result holds.

Lemma 16 (Completeness). Let P1 and P2 be two time processes such that P2 is a
transformed time process of P1. For all P2

tr2⇒ (E , A, Φ, σ), if for all f(ξ1, . . . , ξn) ∈
st(tr2), for all k ∈ {1, . . . , n}, ξk ∈ AX implies that f = proj1, then there exists two
time processes P ′1 and P ′2 = (E ′2, A′2, Φ′2, σ′2), a sequence of label tr1 such that P ′2 is a
transformed time process of P ′1, Φ = Φ′2, P2

tr2⇒ P ′2, P1
tr1⇒ P ′1 and if tr2 = `′1.`

′
m

then tr1 = `1.`m such that for all j ∈ {1, . . . ,m},

– if `′j = νaxp.out(M
′, axp, j

′) then there existsM such that `j = νaxp.out(M, axp, j),
Mθproj =M ′ and j = lenL(proj2(axp)Φ

′
2↓); and

– if `′j = in(M ′, N ′) then there exists M,N such that `j = in(M,N), Nθproj = N ′

and Mθproj =M ′.

Proof. To prove this result, we first need to order the actions in the trace that we con-
sider, i.e. P2

tr2⇒ (E , A, Φ, σ). In particular, we know that P2 is a transformed time
process of P1. Hence, if we denote P2 = (E2, A2, Φ2, σ2) and P1 = (E1, A1, Φ1, σ1),
then we deduce that A2 ∈ [A1]

Sc

L for some set Sc.
Thus, A2 verifies same specific properties. First of all, since there is no internal

communication possible between two extended process in parallel, e.g. A ||B, any τ
transition on A and B can be done in any order, e.g. the τ transitions can be first all
done on A and then on B. Moreover, any process νk, let x = u in P else Q, in(x, v)
and out(u, v) of A1 are all modified in A2 to first start by an input on a cell and ends by
an output on this same cell. However, the property of cells indicates that it is impossible
to execute two consecutives inputs (or outputs) on the same cell. Thus, we can order the
actions of the trace such that all actions between an input and output of a cell are of the
same extended process should be done consecutively.

We know prove the result by induction on the size N of the reduction P2
tr2⇒

(E , A, Φ, σ).

Case of action out(u, v) in A1: Consider P2
τ−→ P(1) `1−→ . . .

`n−→ P(n) tr′2⇒ (E , A, Φ, σ)
such that either the first τ action is the internal input on a cell build from the transfor-
mation of a process out(u, v) in A1. Moreover, consider that P(n) is the result after the
internal output on the cell, or else P(n) is the last action of the trace on this particular
extended process.

In such a case, since P2 is a transformed time process of P1, we have that A1 =

[out(u, t).Q | R, i, T] ||B2 and A2 = [Cell(d, v) | P | [d]TLR, j, T] ||[B2]
S′
c

L with

48 Vincent Cheval and Véronique Cortier

Sc = S′c ∪ {d} with P being the following process:

P = in(d, y).
let z = plus(plus(y, gout(t)), plus([u]L,T , [t]L,T)) in
νk.out(u, 〈t, hide(z, k)〉).out(d, z).[Q]dL,T

Moreover, we have that lenL(v) = i.
Since we considered traces where we order the actions where the actions between

input and output on a cell are done consecutively, we can deduce that rule applied here
between P2 and P(n) should be the rules COMM, LET, RESTR, OUT and then finally
COMM.

Assume first that the rule ELSE is applied instead of the rule LET. It means that
the cell d will never be released, which means that in the trace tr2, this two rules were
the only actions on this extended process. Thus we can deduce that A = [Cell(d, v) |
0 | [d]TLR, j′, T] ||C for some C. It also implies that P2

tr2⇒ (E , A′, Φ, σ′) such that
A′ = [Cell(d, v) | P | [d]TLR, j, T] ||C, σ′ = σ|dom(σ′) and the size of the reduction is
strictly smaller than N . By applying our inductive hypothesis, the result trivially holds.

Assume now that the rule LET is applied. In such a case, we have that

P(2) = (E2, [νk.out(u, 〈t, hide(z, k)〉).out(d, z).
[Q]dL,T , j1, T] ||[B2]

S′
c

L , Φ, σ
(1)
2)

with σ(1)
2 = σ2 ∪ {v/y;plus(plus(v,gout(t)),plus([u]L,T ,[t]L,T))σ2↓ /z}.

Similarly to the case of the rule ELSE, we only consider the case where the rule OUT
is applied (else the cell is never released). Thus, we can deduce that `2 = νaxn.out(M, axn)
for some termM withMΦ2↓ = uσ2↓, Message(uσ2), Message(Mσ2), Message(tσ2),
fvars(M) ⊆ dom(Φ2) and E2 ∩ fnames(M) = ∅. Moreover, we have:

P(5) = (E ′2, [Cell(d, zσ
(1)
2) | [Q]dL,T , j2, T] ||[B2]

S′
c

L , Φ
′, σ

(2)
2)

where E ′2 = E2∪{k′}, Φ′ = Φ2∪{axn B 〈tσ2, hide(zσ(1)
2 , k′)〉}, σ(2)

2 |dom(σ
(1)
2)

= σ
(1)
2

and both k, k′ have the same length.
Let’s compute lenL(zσ

(1)
2): Thanks to Lemma 1, Message(uσ2) and Message(tσ2)

imply that lenLe([u]L,Tσ2↓) = ctimeL,T (u, σ2) and lenLe([t]L,Tσ2↓) = ctimeL,T (t, σ2).
By definition, we know that lenL(gout(tσ2↓)) = t outT (lenL(tσ2↓)). Thus, by defi-
nition of lenplusLe , we deduce that lenL(zσ

(1)
2) = ctimeL,T (u, σ2) + ctimeL,T (t, σ2) +

lenL(v)+t outT (lenL(tσ2↓)) = ctimeL,T (u, σ2)+ctimeL,T (t, σ2)+t outT (lenL(tσ2↓))+
i.

At last, we know that for all ax i ∈ dom(Φ1), ax iΦ2 = 〈ax iΦ1, ti〉 for some ti,
which implies that proj1(ax i)Φ2↓ = ax iΦ1σ0↓. Since we assumed that only first pro-
jection is applied on any parameter in M , we deduce that there exists M ′ such that
M ′θproj = M and M ′Φ1↓ = MΦ2↓. Thus we can apply the rule OUT on P1 such that

P1
νaxn.out(M

′,axn,j)−−−−−−−−−−−−−→ P ′1 and:

P ′1 = (E1, [Q | R, j, T] ||B2, Φ1 ∪ {axn B t}, σ1)

Timing attacks in security protocols 49

with j = i+ ctimeL,T (u, σ1) + ctimeL,T (t, σ1) + t outT (lenL(tσ1↓)).
But we already proved that lenL(zσ

(1)
2) = i+ ctimeL,T (u, σ2)+ ctimeL,T (t, σ2)+

t outT (lenL(tσ2↓)) and with σ2|dom(σ1) = σ1, we can deduce that len
zσ

(1)
2

(=)j. At

last, we have that axnΦ′ = 〈tσ2, hide(zσ(1)
2 , k′)〉. Thus by definition of lenhideLe , we

deduce that lenL(hide(zσ
(1)
2 , k′)) = lenL(zσ

(1)
2) = j. Thus, we conclude that P(5) is

a transformed time process of P ′1. Thus we can apply our inductive hypothesis on P(5)

and P ′1 which yields the result.

Case of rule IN, LET and ELSE: Similar to the rule OUT.

Theorem 1. Let Fti = ((F ,N , L), T) be a time signature. Intuitively, T is the set of
time functions for the attacker. Consider two time processes P1 = (E1, A1, Φ1, ∅) and
P2 = (E2, A2, Φ2, ∅) with dom(Φ2) = dom(Φ1), built on (F ,N , L) and time functions
sets T1, . . . , Tn. Let P ′1 = (E1, [A1]L, Φ1, ∅) and P ′2 = (E2, [A2]L, Φ2, ∅). Then

P1 ≈Fti
ti P2 if, and only if, P ′1 ≈

Fti
T,T1,...,Tn

` P ′2

Proof. Let’s denote Fti
T1...Tn

= ((F ,N , L), T). We know by definition of Fti
T1...Tn

that F ⊆ F ′ where the symbol in F r F are not in the rewriting system. Moreover,
their time function are all the constant null. Thus, by Lemma 12, we can deduce that
P1 ≈Fti

ti P2 if, and only if P1 ≈Fti
T1...Tn

ti P2. Moreover, by relying on Lemma 13, we

have that P ′1 ≈
Fti

T1...Tn

` P ′2 if and only if P ′1 ≈
proj,Fti

T1...Tn

` P ′2
Thus we just have to show that will show that P1 ≈Fti

T1...Tn

ti P2 is equivalent to

P ′1 ≈
proj,Fti

T1...Tn

` P ′2. To simplify the notation, we will denote from now on Fti
T1...Tn

by Fti and (F ,N , L) by F`.
Let’s start with the right implication of this equivalence, i.e. P1 ≈Fti

ti P2 implies
that P ′1 ≈

F`
ti P ′2. Consider P ′1

tr⇒ (E1, A1, Φ1, σ1) such that for any terms M in tr,
if there exists g(. . . , ax i, . . .) = M then M = proj1(ax i). By applying Lemma 16,
we deduce that there exists two time processes Q1 and Q′1 = (E ′1, A′1, Φ′1, σ′1), and a
sequence of label tr′ such that Q′1 is a transformed time process of Q1, P ′1

tr⇒ Q′1,

P1
tr′⇒ Q1 and if tr = `1 . . . `m then tr = `′1 . . . `

′
m such that for all j ∈ {1, . . . ,m},

– if `j = νaxp.out(M, axp, jp) then `′j = νaxp.out(Mθ−1proj, axp, j
′
p) and j′p =

lenL(proj2(axp)Φ
′
1)↓); and

– if `j = in(M,N) then `′j = in(Mθ−1proj, proj1(Nθ
−1
proj)).

We assumed that P1 ≈Fti
ti P2. Thus there exists a derivation P2

tr′⇒ Q2 such that
Q2 = (E2, A2, Φ2, σ2) with νE1.Φ1 ∼Fti

ti νE2.Φ2. Let’s denote byQ′2 = (E ′2, A′2, Φ′2, σ′2)
a transformed time process ofQ2. Thus by Lemma 15, we deduced that P ′2

tr′′⇒ Q′2 such
that if tr′′ = `′′1 . . . `

′′
m then for all j ∈ {1, . . . ,m},

– if `′j = νaxp.out(M
′, axp, j

′
p) then `′′j = νaxp.out(M

′θproj, axp, j
′′
p) with axpΦ

′
2 =

〈axpΦ2, t〉 and lenL(t) = j′p.
– if `′j = in(M ′, N ′) then `′′j = in(M ′θproj, 〈N ′θproj, k〉) for some k ∈ N .

50 Vincent Cheval and Véronique Cortier

But we already show that for all j ∈ {1, . . . ,m}, if `j = νaxp.out(M, axp, jp) then
`′j = νaxp.out(Mθ−1proj, axp, j

′
p) thus `′′j = νaxp.(Mθ−1projθproj, axp, j

′′
p) withMθ−1projθproj =

M . Moreover, if `j = in(M,N) then `′j = in(Mθ−1proj, proj1(Nθ
−1
proj)) thus `′′j =

in(M, 〈proj1(N), k〉). Since P ′2
tr′′⇒ Q′2, then Message(〈proj1(N), k〉Φ′2). However due

to the particular shape of the transformed time processes, the second component of a
pair given as input never matter hence we conclude that P ′2

tr⇒ Q′2.
We now focus on the static equivalence of νE ′2.Φ′2 and νE ′1.Φ′1. We already know

that νE1.Φ1 ∼Fti
ti νE2.Φ2 hence νE ′1.Φ1 ∼Fti

ti νE ′2.Φ2. By Lemma 9, we deduce that
νE ′1.Φ1 ∼F`

` νE ′2.Φ2 Moreover, by definition of Q′2 (resp. Q′1) being transformed pro-
cess ofQ2 (resp.Q1), we have that for all axp ∈ dom(Φ′j), axpΦ

′
j = 〈axpΦj , hide(up, kp)〉

where kp is a private names that is not deducible and hide is a one-way function that
does not appear in the up. Thus by relying on Lemma 7, we can easily prove that
νE ′1.Φ1 ∼F`

` νE ′2.Φ2 implies νE ′1.Φ′1 ∼
F`

` νE ′2.Φ′2 and so the result holds.

The other direction of the proof is done similarly.

Theorem 3. Let Fti = ((F ,N , L), T) be a time signature. Consider two time pro-
cesses without replicationP1 = (E1, A1, Φ1, ∅) andP2 = (E2, A2, Φ2, ∅), with dom(Φ2) =
dom(Φ1), and built on (F ,N , L) and time functions sets T1, . . . , Tn. LetP ′1 = (E1, [A1]

bound
L , Φ1, ∅)

andP ′2 = (E2, [A2]
bound
L , Φ2, ∅). We define the length signatureF` = (FT,T1,...,Tn

,N, L
T,T1,...,Tn

)
where N = fnames(P1) ∪ fnames(P2) ∪ {n1} for some name n1. Then,

P1 ≈Fti
ti P2 if, and only if, P ′1 ≈

F`

` P
′
2

Proof. This proof is done in two parts. The first part consist of proving that P1 ≈Fti
ti P2

if, and only if, P ′1 ≈
F ′

`

` P ′2 with F ′` = (FT,T1,...,Tn
,N , LT,T1,...,Tn

). Then the second

part consist of proving that P ′1 ≈
F ′

`

` P ′2 if and only if P ′1 ≈
F`

` P ′2. Note that the first part
was already done in Theorem 1. Therefore we focus on the second part of the proof,
that is proving that P ′1 ≈

F ′
`

` P ′2 if and only if P ′1 ≈
F`

` P ′2. Note of course that only the

implication P ′1 ≈
F`

` P ′2 implies P ′1 ≈
F ′

`

` P ′2 is interesting since non trivial.
This can in fact be proved thanks to Lemma 10 in one hand for the static equivalence

part, and also from Lemma 7 and 4 for the transformation of traces. Indeed, as for the
proof of Lemma 10, the idea of this proof is to replace any name of length i in tr
introduced by the attacker by a term of the form hide(tsize(i), tsize(j)) for some j
where tsize(i) is recursively defined as follows:

– tsize(1) = n1

– tsize(i) = plus(n1, tsize(i− 1)), for all i > 2.

We can easily show that for all i ∈ N∗, len(tsize(i)) = i. With the terms tsize, we can
model an infinite set of names of size s as the set {hide(tsize(s), tsize(k)) | k ∈ N∗}.
Typically, the first argument of hide gives the length of the term whereas the second
argument allows to have distinct terms. This allows us to replace any names by a term
in the signature F`. Thus by relying on Lemma 4 and Lemma 7, we can show that
having a trace P ′1

tr⇒ (E1, A1, Φ1, σ1) (resp. P ′2
tr⇒ (E2, A2, Φ2, σ2)) is equivalent to

Timing attacks in security protocols 51

having a trace P ′1
trα⇒ (E1, A1, Φ1α, σ1α) (resp. P ′2

trα⇒ (E2, A2, Φ2α, σ2α)) where α is
a substitution

α = {hide(tsize(`1,i1))/k1`1 ; . . . ;
hide(tsize(`m,im)) /km`m}

where each k1, . . . , km are names in tr but not in N, i.e. not in P ′1 and P ′2 and is not n1.
Moreover, each i1, . . . , im are distinct and chosen such that the terms hide(tsize(`p, ip))
is not in tr, for all p ∈ {1, . . . ,m}.

Thus, by applying our hypothesisP ′1 ≈
F`

` P ′2, we obtain that νE1.Φ1α ∼F`

` νE2.Φ2α.
It remains to apply Lemma 10 with the substitution σ1 and σ2 of the Lemma being equal
to α−1. This allows us to conclude that νE1.Φ1 ∼F`

` νE2.Φ2 and so the result holds.

