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Abstract

Formal methods have proved their usefulness for analyzing the security of protocols. Most existing
results focus on trace properties like secrecy or authentication. There are however several security
properties, which cannot be defined (or cannot be naturally defined) as trace properties and require
a notion of behavioural equivalence. Typical examples are anonymity, privacy related properties
or statements closer to security properties used in cryptography.

In this paper, we consider three notions of equivalence defined in the applied pi calculus:
observational equivalence, may-testing equivalence, and trace equivalence. First, we study the
relationship between these three notions. We show that for determinate processes, observational
equivalence actually coincides with trace equivalence, a notion simpler to reason with. We exhibit a
large class of determinate processes, called simple processes, that capture most existing protocols
and cryptographic primitives. While trace equivalence and may-testing equivalence seem very
similar, we show that may-testing equivalence is actually strictly stronger than trace equivalence.
We prove that the two notions coincide for image-finite processes, such as processes without
replication.

Second, we reduce the decidability of trace equivalence (for finite processes) to deciding sym-
bolic equivalence between sets of constraint systems. For simple processes without replication and
with trivial else branches, it turns out that it is actually sufficient to decide symbolic equivalence
between pairs of positive constraint systems. Thanks to this reduction and relying on a result first
proved by M. Baudet, this yields the first decidability result of observational equivalence for a
general class of equational theories (for processes without else branch nor replication). Moreover,
based on another decidability result for deciding equivalence between sets of constraint systems,
we get decidability of trace equivalence for processes with else branch for standard primitives.

Keywords: security protocols, formal verification, applied-pi calculus, behavioural equivalences,
constraint systems

1. Introduction

Security protocols aim at securing communications over insecure networks such as the Internet,
where dishonest users may listen to communications and interfere with them. A secure commu-
nication has a different meaning depending on the underlying application. It ranges from the
confidentiality of a data (medical files, secret keys, etc.) to e.g. verifiability in electronic voting
systems. Another example of a security notion is privacy. As soon as personal data are manip-
ulated, security mechanisms should enforce that entities access to some information only when
they are entitled to. For example, passports are no more pure paper documents. Instead, they
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contain a chip that stores additional information such as pictures and fingerprints of its holder.
In order to ensure privacy, these chips include a mechanism that do not let the passport disclose
private information to external users. However, it has been shown that it is nonetheless possible
to recognize a previously observed passport, potentially tracing passport holders [8]. This is just a
single example but of course privacy appears in many other contexts such as RDFIDs technologies
or electronic voting. Protection for privacy typically relies on protocols (and/or access control)
making use of cryptography. It is therefore essential to obtain as much confidence as possible in
their correctness.

Formal methods have proved their usefulness for precisely analyzing the security of protocols.
They rely on symbolic models for protocols, where messages are represented by terms, an algebraic
structure that abstracts away the underlying cryptography. Even if a basic property such as
confidentiality is undecidable in general, many techniques and tools have been proposed. For
example, secrecy preservation is co-NP-complete [6, 43, 48] for the case of a bounded number of
sessions (i.e. assuming the protocol is executed a finite number of times). For an unbounded
number of sessions, several decidable classes have been identified, e.g. when protocols have a
simple structure [41] or when cyphertexts contain a label [15, 47]. Several tools have also been
developed to verify cryptographic protocols. They can automatically find attacks or prove security.
Popular tools are e.g. ProVerif [12], Avispa [9], or Scyther [30].

However most of these results focus on trace properties, that is, statements that something
bad never occurs on any execution trace of a protocol. Secrecy and authentication are typical
examples of trace properties: a data remains confidential if, for any execution, the attacker is
not able to produce the data. But privacy properties cannot be defined (or cannot be naturally
defined) as trace properties. Indeed, consider for example the simple case of anonymity: a user
Alice does not want her identity to be revealed. A first idea would be to request the confidentiality
of the data “Alice”. This is however unrealistic: identities are usually known to the public. And
actually, the confidential information is not the data “Alice” but the fact that Alice did take part in
a particular communication. So anonymity is usually defined as the fact that an observer cannot
distinguish the case where A is talking from the case where B is talking (see [3]). This notion of
indistinguishability requires a notion of behavioural equivalence. Roughly, two processes P and Q
are equivalent (P ≈ Q) if no process O can observe any difference between the processes P and Q.
The notion of behavioural equivalence is crucial when specifying properties like anonymity and
more generally, privacy. Privacy related properties involved in electronic voting protocols (e.g. [32])
also use equivalence as a key notion and cannot be expressed in linear temporal logic. For example,
ballot secrecy is typically defined by the fact that an observer should not observe when two voters
swap their votes: A(yes) | B(no) ≈ A(no) | B(yes). Other examples of privacy properties
are untraceability in the context of RFIDs [17] or confidentiality for cloud computing conference
management systems [7]. All these properties are again modeled using behavioural equivalences.
The use of behavioural equivalences is not limited to privacy properties. Equivalence is also
used for defining a stronger notion of secrecy, called “strong secrecy” [13] or even for defining
authentication [4]. More generally, it is a notion that allows one to express flexible notions of
security by requiring equivalence between a protocol and an idealized version of it, that magically
realizes the desired properties.

Behavioural equivalences. Several definitions of equivalence have been proposed. In this pa-
per, we focus on three main definitions: observational equivalence, may-testing equivalence, and
trace equivalence, in the context of applied pi-calculus [2], which is well-suited for the analy-
sis of security protocols. Roughly, two processes P and Q are may-testing equivalent, denoted
by P ≈m Q, if for any process O the processes P | O and Q | O are equally able to emit on a given
channel. If the processes P | O and Q | O are in addition weakly bisimilar, we say that they are
in observational equivalence (P ≈ Q) . For trace equivalence (P ≈t Q), P and Q must have the
same sets of observable traces and have sent statically equivalent (i.e. indistinguishable for the
attacker) sequences of messages.

Any of these three notions can be used to define privacy-like properties. While the exact
choice of behavioral equivalence does not seem crucial to distinguish between secure and insecure
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protocols in real examples, these three notions are not identical. For example, requiring two
processes to be weakly bisimilar appears often to be too strong with respect to what an attacker
can really observe. Instead, trace equivalence seems better appropriate to capture the ability
of attackers. For example, the proof of [26] indicates that standard cryptographic definitions
for security, based on indistinguishable games, are soundly abstracted by trace equivalence, with
actually no need for observational equivalence. Conversely, two processes may not be weakly
bisimilar and yet be indistinguishable from an attacker that is seen as an external program.
This can be illustrated by the following example: out(a).(out(b) + out(c)) and out(a).out(b) +
out(a).out(c).

Our contributions - in brief. In this paper, we provide two main contributions. First, we
formally compare observational equivalence, may-testing equivalence, and trace equivalence. We
show that observational equivalence and may-testing equivalence are both strictly stronger than
trace equivalence and we provide sufficient conditions for these notions to coincide. Then, focusing
on trace equivalence, we devise a decision procedure for equivalence properties. For protocols
without replication, we show that deciding trace equivalence can be reduced to deciding equivalence
of sets of set constraints, a structure that abstracts the protocol behavior and is easier to reason
with. As a application, we can use two theorems [10, 11, 20] of the literature to deduce two
decidability results for trace equivalence of protocols.

• Trace equivalence is decidable for a bounded number of sessions and for standard crypto-
graphic primitives.

• Trace equivalence is decidable for a bounded number of sessions and for a larger class of
cryptographic primitives (defined by subterm convergent equational theories) provided that
protocols do not use else branches.

We further describe our contributions in the remaining of this section.

Comparing behavioural equivalences. Our first main contribution is to compare trace equiv-
alence with the two other notions. Our results are summarized in Figure 1. As expected, observa-
tional equivalence is strictly stronger than trace equivalence. The converse implication was studied
by J. Engelfriet. He has shown that observational equivalence and trace equivalence actually co-
incide in a general model of parallel computation with atomic actions (e.g. CCS [44], CSP [37]),
when processes are determinate [36]. Intuitively, a process P is determinate if after the same ex-
periment s, the resulting processes are equivalent, that is, if P s⇒ P ′ and P s⇒ P ′′ then P ′ ≈ P ′′.
We generalize this result to a framework well adapted to security protocols, namely the applied
pi calculus, which consists in the pi calculus algebra enriched with terms and equational theories
on terms (input and output actions are not necessarily atomic and may involve complex terms).
We also show that a large class of processes enjoys the determinacy property. More precisely,
we design the class of simple processes and show that simple processes are determinate. Simple
processes allow replication, else branches and arbitrary term algebra modulo an arbitrary equa-
tional theory. Consequently, this class captures most existing security protocols and cryptographic
primitives.

May-testing equivalence and trace equivalence are two very close notions. Intuitively, both
definitions require that equivalent processes have the same sets of traces. We show that while
trace equivalence does imply may-testing equivalence, the converse does not hold. The difference
between the two notions is subtle. We exhibit a counter-example that relies on the fact that may-
testing equivalence requires the attacker to commit in advance on part of its behavior, yielding a
slightly weaker attacker. We further show that may-testing equivalence does imply trace equiva-
lence in case the processes have finitely many successors (e.g for processes without replication):
trace equivalence and may-testing equivalence coincide for image-finite processes.

Towards decidability. Our second main contribution is to propose a proof techniques for de-
ciding equivalence. Since replication very quickly yields to undecidability even in the simpler case
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of trace properties [35, 5] such as secrecy, we focus here on processes without replication for which
we have just seen that trace equivalence and may-testing equivalence coincide. For processes that
are determinate, we have furthermore established that observational equivalence coincides with
trace equivalence. We therefore concentrate our efforts on trace equivalence, which is also more
amendable to automation.

The applied pi calculus is elegant and convenient for expressing security protocols. However,
its syntax and semantics (in particular name restriction and parallel composition) do not ease
the verification task. In contrast, constraint systems are much simpler and capture exactly the
core of protocol executions. They have shown their usefulness for analysing security protocols, at
least for secrecy and authentication properties (e.g. [43, 28, 27, 21]). We show a reduction result
for general processes without replication and for arbitrary equational theories. We reduce the
decidability of trace equivalence (for finite processes) to deciding symbolic equivalence between
sets of constraint systems. For simple processes without replication and with trivial else branches,
it turns out that it is actually sufficient to decide symbolic equivalence between pairs of positive
constraint systems. To transfer executions from the applied pi calculus to constraint systems, we
introduce an intermediate calculus.

Equivalence of constraint systems is easier to analyse and has already been studied:

• Equivalence of sets of constraint systems is decidable for the fixed theory corresponding
to standard cryptographic primitives (symmetric and asymmetric encryption, signatures,
hashes) [20].

• Equivalence of two positive constraint systems is also decidable for any subterm convergent
theory [10, 11] (a large family of equational theories [1]).

Applying our approach, the first result immediately implies that trace equivalence is decidable
for standard primitives (with some technical work to make the two frameworks actually coincide).
The second result does not allow to compare arbitrary sets of constraint systems but only pairs of
constraint systems. This result is however sufficient to deduce decidability of trace equivalence for
simple processes without replication and with trivial else branches, for any subterm convergent
theory.

For the sake of clarity, we provide an overview of all our results in Figure 1.

Related work. In contrast to the case of trace properties (e.g. secrecy, authentication), there are
few results on automating the analysis of equivalence-based properties. The first decidability result
was provided by [38], for a fragment of the spi-calculus (with no replication nor else branches),
and a fixed set of primitives. This approach cannot be implemented due to its complexity. Both
Boreale et. al. [42] and Durante et. al. [34] compare trace equivalence and may-testing equivalence
for processes with no replication nor else branches. They also provide proof techniques for trace
equivalence by developing some proofs on examples.

As already mentioned, Baudet [10, 11] proves decidability of equivalence between positive
constraint systems for subterm convergent theories. In [23], a shorter proof of the result by
Baudet is given. The result is based on an extension of the small attack property. It is shown
that if two processes are not equivalent, then there must exist a small witness of non-equivalence.
A decision of equivalence can be derived by checking every possible small witness. As in Baudet’s
approach, the main issue is the practicality. The number of small witnesses is very large as
all terms of size smaller than a given bound have to be considered. Consequently, this method
has not been implemented. [20] shows decidability of trace equivalence for standard primitives
and processes with no replication (but possibly else branches). An early version of the decision
procedure described in [20] has been implemented in the ADECS tool. Up to our knowledge,
there are no other decidability results for trace nor observational equivalences, at least for process
algebra dedicated to security protocols.

[18] has proposed a procedure based on Horn clauses for the class of optimally reducing the-
ories, which encompasses subterm convergent theories. The procedure is sound and complete
but its termination is not guaranteed. It applies to determinate processes without replication
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A ≈t B
Trace equivalence

A ≈ B
Observational equivalence

A ≈m B
May-testing equivalence

intermediate(A) ≈t intermediate(B)
Trace equivalence of intermediate processes

∀tr, {C | (tr, C) ∈ traces(A)} ≈s {C | (tr, C) ∈ traces(B)}
Symbolic equivalence of sets of constraint systems

Lemma 1
/

if determinate
Lemma 2

if image-finite
Theorem 5

\Theorem 4

without replication
Proposition 3

without replication
Proposition 6

without replication

Decidable for valid processes with
symmetric and asymmetric encryption,

hash functions, pairing, signature
and without replication

Due to Σ ≈valid
s Σ′ decidable (see [20])
and Theorem 8

Decidable for simple processes with
subterm convergent equational theory,

without replication and
with trivial else branches.

Due to {Cm} ≈s {C′m} decidable (see [10])
and Theorem 7

Figure 1: Overview of the results.
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nor else branches. Moreover, when processes are not determinate, the procedure can be used for
both under- and over-approximations of trace equivalence. A slightly different approach consists
in designing and deciding a stronger notion. In particular, B. Blanchet et. al. [14] checks for
diff-equivalence. The procedure has been implemented in ProVerif and works well in practice for
properties such as strong properties. It is however too strong in general. For the particular case of
ballot secrecy for electronic voting protocols, B. Smyth et. al. [33] have proposed a transformation
(implemented in the ProSwapper tool), that helps ProVerif to prove equivalences. [49] proposes
a notion of strong bisimulation that strictly implies trace equivalence. They provide a decision
procedure implemented in a tool named SPEC. [31] similarly proposes a notion of symbolic bisim-
ulation, stronger than trace equivalence. A proof system, sound but incomplete has been proposed
for observational equivalence [39, 40]. Except for [20], none of these results allow one to deal with
processes with non-trivial else branches.

This paper can be seen as an extended and enriched version of [29] and a part of [20]. In [29],
it was shown that observational and trace equivalence coincide for determinate processes, iden-
tifying the class of simple processes, which are always determinate. We retrieve decidability of
trace equivalence for processes without replication and with trivial else branches, for any subterm
convergent theory using [10]. The reduction of checking trace equivalence to checking equivalence
of sets of constraint systems has been presented, for a more limited framework, in [20]. However,
the core of [20] is the decidability proof for equivalence of sets of constraint systems, which is not
studied here. Our result on comparing may-testing equivalence and trace equivalence is completely
new.

Structure of the paper. We have split the paper in two main parts. Part I defines our three
notions of equivalence (Section 2) and compares trace equivalence with observational equivalence
(Section 3) and may-testing equivalence (Section 4). Part II develops techniques for proving
trace equivalence. Reducing trace equivalence to equivalence between sets of constraints require
to introduce an intermediate calculus (Section 5) and a symbolic calculus (Section 6). We then
show in Section 7 how to relate trace equivalence to symbolic trace equivalence (which reduces
to checking equivalence between sets of constraint systems), first for general processes (without
replication) and then for the particular case of simple processes without else branches. We show
how our framework can be applied to [20] and [10] to deduce two decidability results for trace
equivalence of processes in the applied pi calculus.
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Part I

Trace, observational, and may-testing
equivalences
The goal of this first part is to define and compare three notions of equivalence: trace equivalence,
observational equivalence, and may-testing equivalence.

2. The applied pi calculus

The applied pi calculus [2] is a derivative of the pi calculus that is specialized for modeling cryp-
tographic protocols. Participants in a protocol are modeled as processes, and the communication
between them is modeled by means of message passing.

2.1. Syntax
To describe processes in the applied pi calculus, one starts with a set of names, denoted by

N = {a, b, . . . , sk, k, n, . . .}, which is split into the set Nb of names of base types and the set Ch of
names of channel types (which are used to name communication channels). We also consider a set
of variables X = {x, y, . . .}, and a signature F consisting of a finite set of function symbols. We
rely on a sort system for terms. The details of the sort system are unimportant, as long as base
types differ from channel types. We suppose that function symbols only operate on and return
terms of base type.

Terms are defined as names, variables, and function symbols applied to other terms. Let N ⊆ N
and X ⊆ X , the set of terms built from N and X by applying function symbols in F is denoted by
T (N,X). Of course function symbol application must respect sorts and arities. We write fv(T ) for
the set of variables occurring in T . The term T is said to be a ground term if fv(T ) = ∅.

Example 1. Consider the following signature

F = {aenc/2, adec/2, pk/1, 〈 〉/2, π1/1, π2/1}

that contains function symbols for asymmetric encryption, decryption and pairing, each of arity 2,
as well as projection symbols and the function symbol pk, each of arity 1. The ground term pk(sk)
represents the public counterpart of the private key sk.

P,Q,R := 0 plain processes
P | Q
!P
νn.P
if M = N then P else Q
in(u, x).P
out(u,N).P

A,B,C := extended processes
P
A | B
νn.A
νx.A
{M/x}

where M and N are terms, n is a name, x is a variable and u is a term of channel type, i.e. a
name or a variable.

Figure 2: Syntax of processes

The applied pi calculus defines plain processes, denoted P,Q,R and extended processes, denoted
by A,B,C. Plain processes are built up in a similar way to processes in pi calculus except that
messages can contain terms rather than just names. Extended processes add active substitutions
and restriction on variables (see Figure 2).

The substitution {M/x} is an active substitution that replaces the variable x with the termM .
Active substitutions generalize the “let” construct: νx.({M/x} | P ) corresponds exactly to
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“let x = M in P ”.

As usual, names and variables have scopes, which are delimited by restrictions and by inputs. We
write fv(A), bv(A), fn(A) and bn(A) for the sets of free and bound variables and free and bound
names of A, respectively. We say that an extended process is closed if all its variables are either
bound or defined by an active substitution. An evaluation context C[_] is an extended process
with a hole instead of an extended process.

Active substitutions are useful because they allow us to map an extended process A to its
frame, denoted φ(A), by replacing every plain process in A with 0. Hence, a frame is an extended
process built up from 0 and active substitutions by parallel composition and restriction. The
frame φ(A) accounts for the set of terms statically possessed by the intruder (but does not take
into account for A’s dynamic behavior). The domain of a frame ϕ, denoted by dom(ϕ), is the set of
variables for which ϕ defines a substitution (those variables x for which ϕ contains a substitution
{M/x} not under a restriction on x). The domain dom(A) of an extended process A is the domain
of φ(A).

Example 2. Consider the following process A made up of three components in parallel:

νs.νsk.νx1.(out(c1, x1) | in(c1, y).out(c2, adec(y, sk)) | {aenc(s,pk(sk))/x1
}).

Its first component publishes the message aenc(s, pk(sk)) stored in x1 by sending it on c1. The
second receives a message on c1, uses the secret key sk to decrypt it, and forwards the result on c2.
We have φ(A) = νs, sk, x1.{aenc(s,pk(sk))/x1} and dom(φ(A)) = ∅ (since x1 is under a restriction).

2.2. Semantics
We briefly recall the operational semantics of the applied pi calculus (see [2] for details).

First, we associate an equational theory E to the signature F , which can e.g. represent the
behaviour of the cryptographic primitives. An equational theory is a relation on terms that is
closed under substitutions of terms for variables. We further require the equational theory to
be closed under one-to-one renaming, but not necessarily closed under substitutions of arbitrary
terms for names. Usually, an equational theory is generated from a finite set of equations M = N
with M,N ∈ T (∅,X ). In this case, we have that E is closed by substitutions of terms for names.

Example 3. Consider the signature F of Example 1. We define the equational theory Eaenc by
the following equations:

adec(aenc(x, pk(y)), y) = x πi(〈x1, x2〉) = xi for i ∈ {1, 2}.

The first equation represents asymmetric decryption while the second ones represent the first and
second projections of the pair.
For example, we have that π1(adec(aenc(〈n1, n2〉, pk(sk)), sk)) =Eaenc n1.

Structural equivalence, noted ≡, is the smallest equivalence relation on extended processes that
is closed under α-conversion of names and variables, by application of evaluation contexts, and
satisfying some further basic structural rules such as A | 0 ≡ A, associativity and commutativity
of |, binding-operator-like behavior of ν, and when M =E N the equivalences:

νx.{M/x} ≡ 0 {M/x} ≡ {N/x} {M/x} | A ≡ {M/x} | A{M/x}.

Example 4. Let P be the following process:

νs.νsk.
(
out(c1, aenc(s, pk(sk))) | in(c1, y).out(c2, adec(y, sk))

)
.

The process P is structurally equivalent to the process A given in Example 2. We have that
φ(P ) = 0 ≡ φ(A).
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The operational semantics of processes in the applied pi calculus is defined by structural rules
defining two relations: structural equivalence (described above) and internal reduction, noted τ−→.
Internal reduction is the smallest relation on extended processes closed under structural equivalence
and application of evaluation contexts such that:

out(a,M).P | in(a, x).Q
τ−→ P | Q{M/x}

ifM = N then P else Q τ−→ P if M =E N

ifM = N then P else Q τ−→ Q if M,N ground terms such that M 6=E N

The operational semantics is extended by a labeled operational semantics enabling us to reason
about processes that interact with their environment. Labeled operational semantics defines the
relation `→ where ` is either an input or an output. We adopt the following rules in addition to
the internal reduction rules. Below, the names a and c are channel names whereas x is a variable
of base type and y is a variable of any type.

In in(a, y).P
in(a,M)−−−−−→ P{M/y}

Out-Ch out(a, c).P
out(a,c)−−−−−→ P

Open-Ch
A

out(a,c)−−−−−→ A′ c 6= a

νc.A
νc.out(a,c)−−−−−−−→ A′

Out-T out(a,M).P
νx.out(a,x)−−−−−−−→ P | {M/x}
x 6∈ fv(P ) ∪ fv(M)

Scope
A

`−→ A′ u does not occur in `

νu.A
`−→ νu.A′

bn(`) ∩ fn(B) = ∅

Par
A

`−→ A′ bv(`) ∩ fv(B) = ∅

A | B `−→ A′ | B

Struct
A ≡ B B

`−→ B′ B′ ≡ A′

A
`−→ A′

Note that the labeled transition is not closed under application of evaluation contexts. More-
over the output of a term M needs to be made “by reference” using a restricted variable and an
active substitution. The rules differ slightly from those described in [2] but it has been shown
in [31] that the two underlying notions of observational equivalence coincide.

Example 5. Let P be the process defined in Example 4. We have that:

P
out(c1,x1)−−−−−−→ νs.νsk.({aenc(s,pk(sk))/x1

} | in(c1, y).out(c2, adec(y, sk)))
in(c1,x1)−−−−−−→ νs.νsk.({aenc(s,pk(sk))/x1} | out(c2, s))

2.3. Behavioural equivalences
Behavioural equivalences intuitively define the fact that no observer can see the difference

between two processes. They can be used to formalize many interesting security properties, in
particular privacy related properties, such as those studied in [3, 32, 8, 17]. Slightly more specif-
ically, two processes can be said equivalent if an observer, whatever how he behaves, observes
the same (or equivalent) outputs from the two processes. This can be formally defined as trace
equivalence as introduced in [42]. An alternative definition is testing equivalence as defined for
example by M. Abadi and A. Gordon [4]. In the context of the pi calculus, may-testing and trace
equivalences are known to be difficult to prove. Therefore, a stronger notion has been proposed:
observational equivalence, which requires in addition the two processes to be (weakly) bisimilar.

This section is devoted to the definition of these three notions. Sections 3 and 4 then study
their relation in the context of the applied pi calculus.
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Notations:. Let A be the alphabet of actions (in our case this alphabet is infinite) where the
special symbol τ ∈ A represents an unobservable action. For every α ∈ A the relation α−→ has been
defined in Section 2. For every w ∈ A∗ the relation w−→ on extended processes is defined in the
usual way. By convention A ε−→ A where ε denotes the empty word.

For every s ∈ (Ar {τ})∗, the relation s⇒ on extended processes is defined by: A s⇒ B if, and
only if, there exists w ∈ A∗ such that A w−→ B and s is obtained from w by erasing all occurrences
of τ . Intuitively, A s⇒ B means that A transforms into B by experiment s. We also consider the
relation A w7→ B and A sZ⇒ B that are the restriction of the relations w−→ and s⇒ on closed extended
processes.

2.3.1. Trace equivalence
Before defining trace equivalence, we introduce the notion of static equivalence that compares

sequences of messages, a notion of intruder’s knowledge that has been extensively studied (e.g. [1]).

Definition 1 (static equivalence ∼). Two terms M and N are equal in the frame φ, written
(M =E N)φ, if there exists ñ and a substitution σ such that φ ≡ νñ.σ, ñ ∩ (fn(M) ∪ fn(N)) = ∅,
and Mσ =E Nσ.

Two closed frames φ1 and φ2 are statically equivalent, written φ1 ∼ φ2, when:

• dom(φ1) = dom(φ2), and

• for all terms M,N we have that: (M =E N)φ1 if and only if (M =E N)φ2.

Example 6. Consider the theory Eaenc (see Example 3), ϕa = {aenc(a,pk(sk))/x1
}, and ϕb =

{aenc(b,pk(sk))/x1
}. We have that (adec(x1, sk) =Eaenc a)ϕa whereas (adec(x1, sk) 6=Eaenc a)ϕb, thus

we have that ϕa 6∼ ϕb.
However, we have that νsk.ϕ ∼ νsk.ϕ′. This is a non trivial equivalence. Intuitively, there is

no test that allows one to distinguish the two frames since the decryption key and the encryption
key are not available.

For every closed extended process A, we define its set of traces, each trace consisting in a
sequence of actions together with the sequence of sent messages:

trace(A) = {(s, φ(B)) | A sZ⇒ B for some B}.

Note that, in the applied pi calculus, the sent messages of base type are exclusively stored in
the frame and not in the sequence s (the outputs are made by “reference”).

Two processes are trace equivalent if, whatever the messages they received (built upon previ-
ously sent messages), the resulting frames are in static equivalence.

Definition 2 (trace equivalence ≈t). Let A and B be two closed extended processes, A vt B
if for every (s, ϕ) ∈ trace(A) such that bn(s)∩ fn(B) = ∅, there exists (s′, ϕ′) ∈ trace(B) such that
s = s′ and ϕ ∼ ϕ′.

Two closed extended processes A and B are trace equivalent, denoted by A ≈t B, if A vt B
and B vt A.

2.3.2. May-testing equivalence
We write A ⇓ c when A can send a message on c, that is, when A ε⇒ C[out(c,M).P ] for some

evaluation context C that does not bind c. A test consists of any evaluation context C and any
channel name c. A closed extended process A passes the test if and only if C[A]⇓c. The notion of
testing gives rise to a may-testing preorder vm and to a may-testing equivalence ≈m on the set of
closed extended processes.

Definition 3 (may-testing equivalence). Let A and B be two closed extended processes such
that dom(A) = dom(B), A vm B if for any test (C, c) such that C is a closing evaluation context
for A (and B) we have that C[A]⇓c implies that C[B]⇓c. Two closed extended processes A and B
are in may-testing equivalence, denoted by A ≈m B, if A vm B and B vm A.
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The idea of may-testing equivalence comes from the work of R. De Nicola and M. Hennessy [46].
Our definition is similar to their notion of may-testing equivalence. Since then, this notion of may-
testing equivalence has been used in several cryptographic calculi, e.g. spi-calculus [4]. This notion
is usually shown to be equivalent to a notion of trace equivalence (as the one given in Definition 2)
that is easier to manipulate since the universal quantification over all contexts has been removed
(see [34] for a proof of this result for the spi-calculus). We study the relation between these two
relations in Section 4.

2.3.3. Observational equivalence
Intuitively, two processes are observationally equivalent if they cannot be distinguished by any

active attacker represented by any context.

Definition 4 (observational equivalence). Observational equivalence is the largest symmetric
relation R between closed extended processes with the same domain such that A R B implies:

1. if A ⇓ c, then B ⇓ c;
2. if A εZ⇒ A′, then B εZ⇒ B′ and A′ R B′ for some B′;
3. C[A] R C[B] for all closing evaluation contexts C.

However, proofs of observational equivalences are difficult because of the universal quantifica-
tion over all contexts. Therefore, an alternative definition has been proposed, considering labeled
transitions for the processes.

Definition 5 (labeled bisimilarity ≈). Labeled bisimilarity is the largest symmetric relation R
on closed extended processes such that A R B implies

1. φ(A) ∼ φ(B),
2. if A τ7→ A′, then B εZ⇒ B′ and A′ R B′ for some B′,

3. if A `7→ A′ and bn(`) ∩ fn(B) = ∅ then B `Z⇒ B′ and A′ R B′ for some B′.

Example 7. Consider the theory Eaenc and the two processes Pa = out(c, aenc(a, pk(sk))) and
Pb = out(c, aenc(b, pk(sk))). We have that νsk.Pa ≈ νsk.Pb whereas Pa 6≈ Pb. These results are
direct consequences of the static (in)equivalence relations stated and discussed in Example 6.

It has been shown that observational equivalence coincides with labeled bisimilarity [2].

Theorem 1 ([2]). Two processes A and B are observationally equivalent if and only if they are
labeled bisimilar (A ≈ B).

We therefore adopt the same notation (≈) for both relations.

3. Relating observational and trace equivalences

Observational equivalence has been initially introduced as a mean for proving trace equivalence.
In this section, we discuss the relation between these two notions.

It is easy to see that observational equivalence (or labeled bisimilarity) implies trace equivalence
while the converse is false in general (see Example 8).

Lemma 1. Let A and B be two closed extended processes: A ≈ B implies A ≈t B.

Proof. Let (s, ϕ) ∈ trace(A) with bn(s) ∩ fn(B) = ∅. By definition of trace(A) we have that there
exists A′ such that A sZ⇒ A′, and ϕ = φ(A′). By relying on the fact that A ≈ B, we can show
by induction on the length of the derivation A sZ⇒ A′ that there exists B′ such that B sZ⇒ B′ and
A′ ≈ B′. Thus, we have that (s, φ(B′)) ∈ trace(B) and since A′ ≈ B′ we have that φ(A′) ∼ φ(B′).
This allows us to conclude that A vt B. The other direction can be proved in a similar way. �
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Example 8. Consider the two following processes:

A = νc′.(out(c′, ok) | in(c′, x).out(c, a).out(c, b1) | in(c′, x).out(c, a).out(c, b2))

B = out(c, a).νc′.(out(c′, ok) | in(c′, x).out(c, b1) | in(c′, x).out(c, b2)).

We have that A ≈t B whereas A 6≈ B. Intuitively, after B’s first move, B still has the choice of
emitting b1 or b2, while A, trying to follow B’s first move, is forced to choose between two states
from which she can only emit one of the two.

J. Engelfriet has shown that observational and trace equivalence coincide for a process algebra
with atomic actions (processes are only allowed to input and output names) when processes are
determinate [36]. In the remaining of the section, we show a similar result (Section 3.1) in the
context of the applied-pi calculus (where actions are no longer atomic) and we identify a large
family of processes, called simple processes, that enjoy the determinacy property (Section 3.2).

3.1. Determinacy
Definition 6 (determinacy). Let ∼= be an equivalence relation on closed extended processes. A
closed extended process A is ∼=-determinate if whenever A sZ⇒ B, A sZ⇒ B′ and φ(B) ∼ φ(B′) then
B ∼= B′.

Fixing the equivalence relation yields to potentially different notions of determinacy. We define
two of them: observation determinacy (for ∼= := ≈) and trace determinacy (for ∼= := ≈t). By
using the techniques of J. Engelfriet, we can show that these two notions of determinacy actually
coincide. So we say that an extended process is determinate if it satisfies any of these two notions.

Lemma 2. Let A be a closed extended process. The process A is observation determinate if, and
only if, it is trace determinate.

Proof. We prove the two directions separately.
(⇒) Let A be a closed extended process that is observation determinate. Let B and B′ be
two closed extended processes and s be a sequence of actions such that A sZ⇒ B, A sZ⇒ B′ and
φ(B) ∼ φ(B′). In order to show that A is trace determinate, we have to show that B ≈t B′.
Actually, since A is observation determinate, we have that B ≈ B′ and thanks to Lemma 1, we
easily conclude.

(⇐) Let A be a closed extended process that is trace determinate. Let B and B′ be two closed
extended processes and s1 be a sequence of actions such that A s1Z⇒ B, A s1Z⇒ B′ and φ(B) ∼ φ(B′).
By hypothesis we have that B ≈t B′. In order to show that A is observation determinate, we have
to show that B ≈ B′. To prove this, first we define a relation R (which depends on B, B′ and A)
on closed extended processes and then we will show that R is a labeled bisimulation witnessing
B ≈ B′.

(i) Definition of R. B̃ R B̃′ if, and only if, there exists s2 such that B s2Z⇒ B̃, B′ s2Z⇒ B̃′, and
φ(B̃) ∼ φ(B̃′).

(ii) R is a bisimulation relation witnessing B ≈ B′. First note that B R B′. Now, we have to
show that R satisfies the three points of the definition of labeled bisimulation (Definition 5). Let
B̃ and B̃′ be two closed extended processes such that B̃ R B̃′. Note that, by definition of R, we
have that there exists s2 such that B s2Z⇒ B̃, B′ s2Z⇒ B̃′, and φ(B̃) ∼ φ(B̃′).

1. φ(B̃) ∼ φ(B̃′). This is an easy consequence of the definition of R.
2. If B̃ τ7→ Ã then there exists an extended process Ã′ such that B̃′ Z⇒ Ã′ and Ã R Ã′.

Let Ã′ = B̃′. We have that B̃′ Z⇒ Ã′ and Ã R Ã′ since B s2Z⇒ B̃
τ7→ Ã, B′ s2Z⇒ B̃′ = Ã′, and

φ(Ã) ∼ φ(Ã′). This last point is due to the following relations:

φ(Ã) = φ(B̃) ∼ φ(B̃′) = φ(Ã′).
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3. If B̃ `7→ Ã with bn(`) ∩ fn(B̃′) = ∅ then B̃′ `Z⇒ Ã′ and Ã R Ã′ for some extended process Ã′.
Since A is trace determinate, we have that B̃ ≈t B̃′. We have that (`, φ(Ã)) ∈ trace(B̃).
Since, B̃ vt B̃′ and bn(`) ∩ fn(B̃′) = ∅, we deduce that there exists Ã′ such that B̃′ `Z⇒ Ã′

and φ(Ã) ∼ φ(Ã′). We deduce that Ã R Ã′ (by the sequence s2 · `). This allows us to
conclude. �

Example 8 shows that trace and observational equivalences do not always coincide. But it is
important to notice that such an example makes use of a non determinate process.

Example 9. Consider the closed extended process A given in Example 8. We have that A τ7→ A1

and A τ7→ A2 for A1 and A2 given below:

A1 = νc′.(out(c, a).out(c, b1) | in(c′, x).out(c, a).out(c, b2))

A2 = νc′.(in(c′, x).out(c, a).out(c, b1) | out(c, a).out(c, b2)).

The process A1 can output the messages a and then b1 whereas the process A2 can output a and
then b2. Thus, the process A is neither observation determinate, nor trace determinate.

We extend the result of J. Engelfriet [36] to processes of the applied pi calculus, showing that
observational equivalence and trace equivalence coincide when processes are determinate.

Theorem 2. Let A and B be two closed extended processes that are determinate.

A ≈t B implies A ≈ B.

Proof. Let A and B be two closed extended processes that are determinate, and assume that
A ≈t B. We have to show that A ≈ B. Define R as in the proof of Lemma 2:

A′ R B′ iff there exists s such that A sZ⇒ A′, B sZ⇒ B′, and φ(A′) ∼ φ(B′).

First note that A R B. We show that R satisfies the three points of the definition of labeled
bisimulation (Definition 5). Let A′ and B′ be two extended processes such that A′ R B′.

1. φ(A′) ∼ φ(B′). This is an easy consequence of the definition of R.
2. If A′ τ7→ A′′ then there exists an extended process B′′ such that B′ Z⇒ B′′ and A′′ R B′′.

Let B′′ = B′. We have that B′ Z⇒ B′′ and A′′ R B′′ since A
sZ⇒ A′′, B sZ⇒ B′′, and

φ(A′′) ∼ φ(B′′). Indeed, we have that

φ(A′) = φ(A′′) ∼ φ(B′′) = φ(B′).

3. If A′ `7→ A′′ with bn(`) ∩ fn(B′) = ∅ then B′
`Z⇒ B′′ and A′′ R B′′ for some extended pro-

cess B′′.
We have that A sZ⇒ A′

`7→ A′′. Since A ≈t B, we easily deduce that there exist two closed
extended processes D′ and D′′ such that B sZ⇒ D′

`Z⇒ D′′ such that φ(A′′) ∼ φ(D′′). Now,
since B is determinate and B

sZ⇒ B′ and B
sZ⇒ D′, we have that B′ ≈t D′. Hence there

exists B′′ such that B′ `Z⇒ B′′ and φ(D′′) ∼ φ(B′′). We have that A s·`Z⇒ A′′, B s·`Z⇒ B′′ and
φ(A′′) ∼ φ(B′′), i.e. A′′ R B′′. This allows us to conclude. �

3.2. An expressive class of determinate processes
We do not need the full applied pi calculus to represent security protocols. For example, it is

generally assumed that all communications are controlled by the attacker thus private channels
between processes are not accurate (they should rather be implemented using cryptography). In
addition, the attacker schedules the communications between processes thus he knows exactly to
whom he is sending messages and from whom he is listening. Thus we assume that each process
communicates on a personal channel.
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Formally, we consider the fragment of simple processes built on basic processes. A basic process
represents a session of a protocol role where a party waits for a message of a certain form or checks
some equalities and outputs a message accordingly. Then the party waits for another message
or checks for other equalities and so on. Our class of simple processes is close to the fragment
of processes considered in [26] for proving cryptographic indistinguishability using observational
equivalence. However, the fragment of [26] does not enjoy the determinacy property (since it was
not designed for it).

Intuitively, any protocol whose roles have a deterministic behavior can be modeled as a simple
process. Most of the roles are indeed deterministic since an agent should usually exactly know
what to do once he has received a message. In particular, all protocols of the J. Clark and J. Jacob
library [24] can be modeled as simple processes.

Definition 7 (basic process). The set B(c,V) of basic processes built from c ∈ Ch and V ⊆ X
(variables of base type) is the least set of processes that contains 0 and such that

• if B1, B2 ∈ B(c,V), M,N ∈ T (Nb,V), then

if M = N then B1 else B2 ∈ B(c,V).

• if B ∈ B(c,V), u ∈ T (Nb,V), then out(c, u).B ∈ B(c,V).

• if B ∈ B(c,V ] {x}), x of base type (x /∈ V), then in(c, x).B ∈ B(c,V).

Intuitively, in a basic process, depending on the outcome of the test, the process sends on its
channel c a message depending on its inputs. A basic process may also input messages on its
channel c.

Example 10. We consider a protocol given in [3] designed for transmitting a secret without re-
vealing its identity to other participants. In this protocol, A is willing to engage in communication
with B and wants to reveal its identity to B. However, A does not want to compromise its privacy
by revealing its identity or the identity of B more broadly. The participants A and B proceed as
follows:

A→ B : aenc(〈Na, pub(A)〉, pub(B))

B → A : aenc(〈Na, 〈Nb, pub(B)〉〉, pub(A))

First A sends to B a nonce Na and its public key encrypted with the public key of B. If the
message is of the expected form then B sends to A the nonce Na, a freshly generated nonce Nb
and its public key, all of this being encrypted with the public key of A. Otherwise, B sends out
a “decoy” message: aenc(Nb, pub(B)). This message should basically look like B’s other message
from the point of view of an outsider. This is important since the protocol is supposed to protect
the identity of the participants.

A session of role A played by agent a with b can be modeled by the following basic process where
M = adec(x, ska). Note that A is not given the value skb but is directly given the value pk(skb),
that is the public key corresponding to B’s private key.

A(a, b)
def
= out(cA, aenc(〈na, pk(ska)〉, pk(skb))).

in(cA, x).
if 〈π1(M), π2(π2(M))〉 = 〈na, pk(skb)〉 then 0 else 0.

Similarly, a session of role B played by agent b with a can be modeled by the basic process B(b, a)
where N = adec(y, skb).

B(b, a)
def
= in(cB , y).

if π2(N) = pk(ska) then out(cB , aenc(〈π1(N), 〈nb, pk(skb)〉〉, pk(ska))).0
else out(cB , aenc(nb, pk(skb))).0.
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Intuitively, this protocol preserves anonymity if an attacker cannot distinguish whether b is
willing to talk to a (represented by the process B(b, a)) or willing to talk to a′ (represented by the
process B(b, a′)), provided a, a′ and b are honest participants. For illustration purposes, we also
consider the process B−(b, a) obtained from B(b, a) by replacing the else branch by else 0. We
will see that the “decoy” message plays a crucial role to ensure privacy.

Definition 8 (simple process). A simple process is obtained by composing and replicating basic
processes and frames, hiding some names:

νñ. ( νñ1.(B1 | σ1) | !(νc′1, m̃1.out(p1, c
′
1).B′1)

...
...

νñk.(Bk | σk) | !(νc′n, m̃n.out(pn, c
′
n).B′n) )

where Bj ∈ B(cj , ∅), B′j ∈ B(c′j , ∅) and cj are channel names that are pairwise distinct. The
names p1, . . . , pn are distinct channel names that do not appear elsewhere and σ1, . . . , σk are
frames without restricted names (i.e. substitutions).

Each basic process B′j first publishes its channel name c′j on the public channel pj so that an
attacker can communicate with it. Intuitively the public channels p1, . . . , pn indicate from which
role the channel name c′i is emitted. Names of base types may be shared between processes, this
is the purpose of ñ.

It is interesting to notice that protocols with deterministic behavior are usually not modeled
within our fragment (see e.g. [2]) since a single channel is used for all communications. We think
however that using a single channel does not provide enough information to the attacker since he
is not able to schedule exactly the messages to the processes and he does not know from which
process a message comes from while this information is usually available (via e.g. IP adresses).
For example, a role emitting the constant a twice would be modeled by P1 = out(c, a).out(c, a).0
while two roles emitting each the constant a would be modeled by P2 = out(c, a).0 | out(c, a).0.
Then P1 and P2 are observationally equivalent while the two protocols could be distinguished in
practice (since they would use different IP adresses for example), which is reflected in our modeling
in simple processes.

Example 11. Continuing Example 10, a simple process representing an unbounded number of
sessions in which a plays A (with b) and b plays B with a is:

νska, skb. ( !(νna, cA.out(pA, cA).A(a, b)) | !(νnb, cB .out(pB , cB).B(b, a)) )

Simple processes is a large class of processes that are determinate. Indeed, since each basic
process has its own channel to send and receive messages, all the communications are visible to
the attacker. Moreover, the attacker knows exactly who is sending a message or from whom he
is receiving a message. Actually, given a simple process A and a sequence of actions tr, there is a
unique process B (up to some internal reduction steps) such that A trZ⇒ B.

Theorem 3. Any simple process is determinate.

Before proving Theorem 3, we introduce some definitions and notations. Each process of the
form !(νc, ñ.out(p, c).B) with B ∈ B(c, ∅) is called a replicated process for the role p. For every
w ∈ A∗, we denote by s(w) the trace obtained from w by erasing all occurrences of τ . By definition,

we have that A
s(w)
Z⇒ B when A w7→ B.

We say that two processes P1 and P2 are in relation, denoted by P1 ↔ P2, if

• P1 ≡ νñ.(B1 | · · · | Bk | R1 | · · ·Rl | σ),

• P2 ≡ νñ.(B′1 | · · · | B′k | R1 | · · ·Rl | σ),
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where σ is a sequence of active substitutions, the Ri are replicated processes and the Bi, B′i are
basic processes such that either Bi = B′i or Bi

εZ⇒ B′i or B′i
εZ⇒ Bi. It is easy to check that ↔ is an

equivalence relation on simple processes.

We are now ready to prove Theorem 3.

Proof. Let P be a simple process. We show by induction on the length of the trace w that
whenever P w7→ P1 and P

s(w)
Z⇒ P2 then P1 ↔ P2. This implies P1 ≈t P2 thus this would prove

that P is determinate.
Assume that P w7→ P1

α7→ P ′1 and P
s(w.α)

Z⇒ P ′2 where α ∈ A. We have P w′

7→ P2
α7→ P ′′2

w′′

7→ P ′2 for
some w and w′ such that s(w) = s(w′) and w′′ ∈ {τ}∗ or possibly P ′2 = P2 in case α = τ . By
induction hypothesis, we have P1 ↔ P2 thus we have that

• P1 ≡ νñ.(B1 | · · · | Bk | R1 | · · ·Rl | σ),

• P2 ≡ νñ.(B′1 | · · · | B′k | R1 | · · ·Rl | σ),

where the Ri are replicated processes and the Bi, B′i are basic processes such that either Bi = B′i
or Bi

εZ⇒ B′i or B′i
εZ⇒ Bi. Let us show that P ′1 ↔ P ′2 by case analysis on α.

Case α = τ . Then P1
τ7→ P ′1 thus P1 ↔ P ′1. We have also that P2

εZ⇒ P ′2, thus P2 ↔ P ′2. Since ↔
is an equivalence relation, we deduce P ′1 ↔ P ′2.

Case α = νc.out(p, c) where c is a name channel. It must be the case that one process Ri is a
replicated process for the role p and has sent a new channel name for a fresh instance of the
role p. Let Ri ≡!(νc, m̃ · out(p, c).B) with B ∈ B(c, ∅). We must have P ′1 ≡ νñ, m̃.(B1 | · · · |
Bk | B | R1 | · · ·Rl | σ). Similarly, since P2

α−→ P ′′2 , we must have P ′′2 ≡ νñ, m̃.(B′1 | · · · | B′k |
B | R1 | · · ·Rl | σ). Thus P ′1 ↔ P ′′2 . Since P ′′2

εZ⇒ P ′2, we also have P ′′2 ↔ P ′2 thus P ′1 ↔ P ′2.

Case α = νx.out(c, x) where x is a variable. Let Bi the basic process such that Bi = out(c, s).B′′i .
Such a Bi is unique and we must have B′i = Bi. Indeed the other cases, i.e. B′i

τ7→ Bi and
Bi

τ7→ B′i are impossible since Bi and B′i are ready to emit. We deduce that P ′1 ≡ νñ.(B1 |
· · · | B′′i | · · · | Bk | R1 | · · ·Rl | σ | {s/x}) and P ′′2 ≡ νñ.(B′1 | · · · | B′′i | · · · | B′k | B | R1 |
· · ·Rl | σ | {s/x}). We deduce similarly that P ′1 ↔ P ′2.

Case α = in(c,M). Let Bi the basic process such that Bi = in(c, x).B′′i . Such a Bi is unique
and we must have B′i = Bi. Since B′i and Bi get the same input, they both evolved into
B′′i {M/x} thus we have that P ′1 ↔ P ′2. �

Applying Theorems 2 and 3, we get that, on simple processes, observational equivalence and
trace equivalence coincide. Note that these results hold for any signature and equational theory.

Corollary 1. Let A and B be two simple processes: A ≈t B if, and only if, A ≈ B.

4. Relating may-testing and trace equivalences

May-testing and trace equivalences are usually considered as equivalent. Actually, this result
has been proved in two variants of the spi-calculus [42, 34] and is in the spirit of the main theorem
stated in [2]. We tried to adapt their proof, but it happens that the two notions do not coincide in
the applied pi calculus setting. We indeed exhibit two processes that are may-testing equivalent
but not trace equivalent (Section 4.2). However, these two notions are similar and try to capture
the same concept. We show in Section 4.1 that trace equivalence implies may-testing equivalence
(without any additional restriction) and the other implication holds as soon as we consider pro-
cesses without replication (Section 4.3). More precisely, this implication holds for processes that
are image-finite (up to static equivalence).
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4.1. Trace equivalence implies may-testing equivalence
Trace equivalence implies may-testing equivalence in general.

Theorem 4. Let A and B two closed extended processes. We have that:

A ≈t B implies that A ≈m B.

Proof (sketch). The proof of Theorem 4 is quite technical as it requires to characterize any
evolution of the contextualized process A, that is, any evolution of C[A].

Given a closed extended process A and an evaluation context C[_], the proposition below
allows us to map a derivation issued from C[A] to a labeled trace issued from A. Note that we
only consider evaluation contexts having a special shape (there is no restriction in front of the
hole). This additional assumption is actually fulfilled when proving Theorem 4.

Proposition 1. Let A and B be two closed extended process with dom(A) = dom(B), and C[_] =
νñ.(D | _) be an evaluation context closing for A. If C[A] 7→∗ A′′ for some process A′′, then there
exist a closed extended process A′, an evaluation context C ′ = νñ′.(D′ | _) closing for A′, and a
trace tr ∈ (A r {τ})∗ such that A′′ ≡ C ′[A′], A trZ⇒ A′, and for all closed extended process B′, we
have that:

B
trZ⇒ B′ and φ(B′) ∼ φ(A′) implies that C[B] 7→∗ C ′[B′].

Proposition 1 is proved in Appendix A.

The proof of Theorem 4 then works intuitively as follows. Assume that A and B are trace
equivalent. We have to show that they are may-testing equivalent. Assume C[A] 7→∗ A′′ for
some process A′′, then by Proposition 1, there exist a closed extended process A′, an evaluation
context C ′ closing for A′, and a trace tr ∈ (A r {τ})∗ such that A′′ ≡ C ′[A′], A trZ⇒ A′. Since A
and B are trace equivalent, we know that B trZ⇒ B′ with φ(B′) ∼ φ(A′). Proposition 1 allows then
to conclude that C[B] 7→∗ C ′[B′]. This holds provided that C is of the form νñ.(D | _). How
contexts not of this form are handled is described in Appendix A.

It then remains to show that C ′[A′] and C ′[B′] emit on the same channels. This is proved by
distinguishing two cases. Either C ′ can emit on some channel c, in which case both C ′[A′] and
C ′[B′] may emit on c. Or A′ may emit on c, in which case B′ may emit on c too, using trace
equivalence. �

4.2. May-testing equivalence does not imply trace equivalence
While testing and trace equivalences seem to be two very similar notions, may-testing equiva-

lence actually does not imply trace equivalence. Roughly, in may-testing equivalence, the attacker
is allowed to perform a sequence of inputs/outputs followed by a finite number of tests, but he has
to commit on these tests before knowing how the communication actions will be used. In trace
equivalence, all the tests are considered through static equivalence. The attacker does not have
to commit on the tests he wants to use in advance. So, the attacker is more adaptive in trace
equivalence and this gives him more power.

We describe two processes A and B such that A 6≈t B whereas A ≈m B. Let A and B be the
two following processes:

• A = νb.νc1.
(
out(c1, token) | in(c1, x).out(c, b) | in(c1, x).B

)
; and

• B = νc2.
(
out(c2, h(a)) | in(c2, x).out(c, x) | !in(c2, x).out(c2, h(x))

)
.

We consider the empty equational theory and a signature which only contains the symbol h of
arity 1 (with no equation). The private channel c1 in A is used to model the choice operator. The
behavior of A consists of outputting a fresh name b or executing the process B. The processes B
relies also on a private channel, namely c2, whose purpose is to model the choice operator. An
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execution of B will output a message of the form h(h(. . . h(a) . . .)) on the public channel c, for an
arbitrary number of h. In the remaining, we denote by hn(a) the term obtained by applying n
times h on top of a.

Regarding trace equivalence, we have that:

• trace(A) = {(ε, 0); (tr, νb.{b/x}); (tr, {h(a)/x}); . . . ; (tr, {hn(a)/x}); . . .}

• trace(B) = {(ε, 0); (tr, {h(a)/x}); . . . ; (tr, {hn(a)/x}); . . .}

with tr = νx.out(c, x). We can easily see that A 6≈t B: the frame νb.{b/x} is not statically
equivalent to any other frame in trace(B).

On the other hand, we have that A ≈m B. This is a non trivial equivalence that is not easy
to prove. Below, we only give an intuition. First, it seems clear that B vm A since A can easily
mimic the process B by performing first an internal communication and giving the token to the
last part of the process. Regarding the other inclusion, consider a test (C, c0) such that C is a
closing evaluation context for A. The most interesting case is when C[A] outputs the fresh name b
on the channel c and then performs some internal actions until it is ready to emit on c0. In such
a case, we have that:

C[A]→ νx.out(c,x)−−−−−−−→ C[νb.νc1.({b/x} | in(c1, x).B)]→ . . .→ CA[out(c0,MA)]

for some term MA and some evaluation context CA that does not bind c0. However, once the
execution trace is fixed, we know the tests that have been perfomed along this derivation, and
we can compute n0 such that the same tests will be satisfied if the outputted message was hn0(a)
instead of b (for instance, we can choose for n0 the number of occurences of h in the tests plus
one). Typically, those tests will allow one to check that the value stored in x (i.e. b here) is
different from hn1(a), . . . , hnk(a) for some integers n1 ≤, . . . ≤ nk. Regarding the process C[B],
we have to trigger sufficiently many internal communications so that the term outputted on the
public channel c will be of the form hn0(a) with n0 ≥ nk, and thus will allow the resulting process
C[νc2.({hn0(a)/x} |!in(c2, x).out(c2, h(x)))] to pass all the tests and emit on c0. We have that:

C[B]→ . . .→ νx.out(c,x)−−−−−−−→ C[νc2.({hn0(a)/x} |!in(c2, x).out(c2, h(x)))]→ . . .→ CB [out(c0,MB)]

for some term MB and some evaluation context CB that does not bind c0.

4.3. May-testing equivalence implies trace equivalence for image-finite processes
As illustrated in Section 4.2, may-testing equivalence does not imply trace equivalence in

general. However, the implication holds as soon as we consider processes without replication.
More precisely, this implication holds for processes that are image-finite (up to static equivalence).

Definition 9 (image-finite). An extended process A is image-finite if for each trace tr, the set
of equivalence classes {φ(A′) | A tr⇒ A′}/ ∼ is finite.

Theorem 5. Let A and B two closed extended processes with dom(A) = dom(B) and such that
A and B are image-finite. We have that:

A ≈m B implies that A ≈t B

Proof. Assume that A 6≈t B. We assume w.l.o.g. that A 6vt B. In such a case, there exists
a witness for the non equivalence. This means that there exists (tr, φ) ∈ trace(A) such that
bn(tr) ∩ fn(B) = ∅, and

1. either there does not exist φ′ such that (tr, φ′) ∈ trace(B);
2. or for all (tr, φ′) ∈ trace(B), we have that φ′ 6∼ φ.
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Moreover, we assume that no name in tr is bound twice (i.e. νa. can not occur twice in tr) and
bound names in tr are distinct from free names that occur in A, B, and tr.

We build an evaluation context C according to the trace tr and also the tests that witness
the fact that static equivalence does not hold. Let Str = {φ′ | (tr, φ′) ∈ trace(B)}. Since B is
image-finite, we know that S/ ∼ is finite. Let {φ′1, . . . , φ′m} = S/ ∼. If we are in the first case,
i.e. S = ∅, we have that m = 0.

We know that {1, . . . ,m} = T+ ] T− with:

• for each i ∈ T+, there exist two terms Mi and Ni such that fv(Mi) ∪ fv(Ni) ⊆ dom(φ),
(Mi =E Ni)φ, and (Mi 6=E Ni)φ

′
i; and

• for each i ∈ T−, there exist two terms Mi and Ni such that fv(Mi) ∪ fv(Ni) ⊆ dom(φ),
(Mi 6=E Ni)φ, and (Mi =E Ni)φ

′
i.

Let bad be a fresh channel name that does not occur in A and B. Let P1, . . . , Pm, Pm+1 be the
plain processes defined as follows:

• Pm+1
def
= out(bad, bad).0

• for 1 ≤ i ≤ m, we define Pi as follows:

Pi
def
= ifMi = Ni then Pi+1 else 0 when i ∈ T+

Pi
def
= ifMi = Ni then 0 else Pi+1 when i ∈ T−

Let {a1, . . . , ak} be channel names that occur free in A, B, and tr. Let X 0
ch = {xa1 , . . . , xak}

be a set of variables of channel type, and σ = {xa1 7→ a1, . . . , xak 7→ ak}. We define C such that
C = Q(tr,X 0

ch) | _ where Q(tr,Xch) is defined by recurrence on tr as follows:

• if tr = ε then Q(tr,Xch) = P1;

• if tr = in(a,M).tr′ then Q(tr,Xch) = out(xaσ,M).Q(tr′,Xch);

• it tr = out(a, c).tr′ then Q(tr,Xch) = in(xaσ, y). if y = xcσ then Q(tr′,Xch) else 0 where
y is fresh variable of channel type; and

• if tr = νc.out(a, c) then Q(tr,Xch) = in(xaσ, xc). if xc ∈ Xchσ then 0 else Q(tr′,X ′ch)
where X ′ch = Xch ] {xc}.

We use the conditional if u ∈ {u1, . . . , uk} then 0 else P as a shortcut for

if u = u1 then 0 else (if u = u2 then 0 else (.... (if u = uk then 0 else P ))).

We can see that C[A]⇓bad since (tr, φ) ∈ trace(A) and φ satisfies by definition all the tests that
are tested in Pm. However, by construction of C, we have that C[B] can not emit on bad. �
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Part II

Towards deciding trace equivalence
Several procedures for accessibility-based properties rely on solving constraint systems, as intro-
duced by J. Millen & V. Shmatikov and subsequently H. Comon-Lundh & V. Shmatikov [43, 28].

In this part, we provide an alternative framework for reasoning about trace equivalence, based
on constraint systems. Namely, we show that, for process without replication, checking for trace
equivalence amounts into checking equivalence of sets of constraint systems. The advantage of
reasoning directly with constraint systems is to get rid of the process algebra (with non determin-
ism, name passing, restriction, etc.). To illustrate the advantage of our approach, we show how
to apply two existing decidability results for constraint systems to obtain two decidability results
for trace equivalence:

• Trace equivalence is decidable for determinate processes without replication and with trivial
else branches, for any subterm convergent theory. This result relies the decision procedure
developed by M. Baudet in [10] for deciding S-equivalence between two constraint systems.

• Trace equivalence is decidable for processes with non-trivial else branches and without repli-
cation, for the standard theory of symmetric and asymmetric encryption, signatures and
hash. This result was first shown in [20], in a slightly different framework (not the applied
pi calculus).

We first introduce an intermediate calculus (Section 5) and then our symbolic calculus based
constraint systems (Section 6), for mapping step-by-step trace equivalence to equivalence between
sets of constraint systems (Sections 7.1 and 7.2). We illustrate our approach by retrieving (and
unifying) two decidability results (Section 7.3).

5. Intermediate calculus

Reasoning on processes of the applied pi calculus is quite involved. In particular, as mentioned
in [31], the semantics of the applied pi calculus is not well-suited for defining a symbolic semantics.
Thus we use the class of intermediate processes, defined in [31], that is easier to manipulate. These
intermediate processes are a selected (but sufficient) subset of the original processes. One may
think of them as being processes in some kind of normal form. In [31], it has been shown that
observational equivalence of processes without replication is equivalent to observational equivalence
of their corresponding intermediate processes. In a similar way, it is quite easy to establish this
result for trace equivalence.

In this section, we review this class of intermediate processes by using a slightly different
syntax. Moreover, we give a non-compositional semantics that is easier to manipulate than its
compositional counterpart as defined in [31].

5.1. Syntax
The grammar of the plain intermediate processes is as follows:

P,Q,R := 0
if M1 = M2 then P else Q
in(u, x).P
out(u,N).P

where u is a term of channel type, M1,M2 are terms having the same type, x is a variable, N is a
term, and P (resp.Q) is a multiset of plain intermediate processes. Terms M1,M2 and N can also
use variables. For sake of clarity, when the multiset P is a singleton, i.e. P = {P}, we write P
instead of {P}.

Definition 10 (intermediate process). An intermediate process is a triple (E ;P; Φ) where:
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• E is a set of names that represents the names restricted in P;

• Φ = {w1 B t1, . . . , wn B tn} where t1, . . . , tn are ground terms, and w1, . . . , wn are variables;

• P is a multiset of plain intermediate processes where null processes are removed and such
that fv(P) = ∅.

Additionally, we require intermediate processes to be variable distinct, i.e. any variable is at most
bound once.

Given a sequence Φ = {w1 B t1, . . . , wn B tn} where t1, . . . , tn are terms, we also denote by Φ
its associated frame, i.e. {t1/w1} | . . . | {tn/wn}.

Given a closed extended process A of the original applied pi without replication and such that
dom(A) = {w1, . . . , wn} for some n, we can easily transform it into an intermediate process Ã =
(E ;P; Φ) such that ”A ≈ νE .(P | Φ)”. More formally, we can show the following lemma whose
proof can be found in Appendix B.

Proposition 2. Let A be a closed extended process. There exists a plain process P that does not
contain name restriction, and a context evaluation C that only contains name restrictions, parallel
compositions and active substitutions such that P ≈ C[A].

The idea of the transformation is to rename names and variables to avoid clashes, to apply the
active substitutions, to remove the restrictions on variables, and finally to push the restrictions
on names in front of the process. We can also add some restricted names not appearing in the
process in front of it. This will be useful to obtain two intermediate processes with the same set
of restricted names.

Example 12. Consider the extended process A described below (M is a term such that n 6∈ fn(M))
and dom(A) = ∅.

A = νsk.νx.(out(c, aenc(x, pk(sk))).νn.out(c, n) | {M/x}).

An intermediate process A′ associated to A is:

A′ = (E ;P; Φ) = ({sk, n}; out(c, aenc(M, pk(sk))).out(c, n); ∅).

We have that A ≈ νE .(P | Φ). However, note that A and νE .(P | Φ) are not in structural
equivalence. Indeed, structural equivalence does not allow one to push all the restrictions in front
of a process.

Consider the extended process B = νs.νsk.(out(c2, s) | {aenc(s,pk(sk))/w1
}). An intermediate

process B′ associated to B is:

B′ = ({s, sk}; out(c2, s); {w1 B aenc(s, pk(sk))}).

5.2. Semantics
The semantics for intermediate processes is given in Figure 3. Let Ai be the alphabet of actions

for the intermediate semantics. For every w ∈ A∗i the relation w−→i on intermediate processes is
defined in the usual way. For s ∈ (Air{τ})∗, the relation

s⇒i on intermediate processes is defined
by: A s⇒i B if, and only if there exists w ∈ A∗i such that A w−→i B and s is obtained by erasing all
occurrences of τ . Note that by definition, intermediate processes are closed.
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(E ; {if u = v then Q1 else Q2} ] P; Φ)
τ−→i (E ;Q1 ] P; Φ) if u =E v (Theni)

(E ; {if u = v then Q1 else Q2} ] P; Φ)
τ−→i (E ;Q2 ] P; Φ) if u 6=E v (Elsei)

(E ; {out(p, u).Q1; in(p, x).Q2} ] P; Φ)
τ−→i (E ;Q1 ]Q2{x 7→ u} ] P; Φ) (Commi)

(E ; {in(p, x).Q} ] P; Φ)
in(p,M)−−−−−→i (E ;Q{x 7→ u} ] P; Φ) (Ini)
if p 6∈ E , MΦ = u, fv(M) ⊆ dom(Φ) and fn(M) ∩ E = ∅

(E ; {out(p, u).Q} ] P; Φ)
νwn.out(p,wn)−−−−−−−−−→i (E ;Q] P; Φ ∪ {wn B u}) (Out-Ti)

if p 6∈ E , and wn is a variable such that n = |Φ|+ 1

(E ; {out(p, c).Q} ] P; Φ)
out(p,c)−−−−−→i (E ;Q] P; Φ) (Out-Chi)

if p, c 6∈ E

(E ; {out(p, c).Q} ] P; Φ)
νchn.out(p,chn)−−−−−−−−−−→i (E ; (Q] P){c 7→ chn}; Φ) (Open-Chi)

if p 6∈ E , c ∈ E , chn is a fresh channel name

where p, c are channel names, u, v are ground terms, and x is a variable.

Figure 3: Intermediate semantics

5.3. Equivalence
Let A = (E1;P1; Φ1) be an intermediate process. We define the set of its traces as follows:

tracei(A) = {(s, νE2.Φ2) | (E1;P1; Φ1)
s⇒i (E2;P2; Φ2) for some (E2;P2; Φ2)}

Two intermediate processes are in (intermediate trace) equivalence if for any trace, the two
corresponding frames are statically equivalent.

Definition 11 (≈t for intermediate processes). Let A and B be two intermediate processes
having the same set of restricted names, i.e. A = (E ;P1; Φ1) and B = (E ;P2; Φ2).

The processes A and B are intermediate trace equivalent, denoted by A ≈t B, if for every
(s, ϕ) ∈ tracei(A) there exists (s′, ϕ′) ∈ tracei(B) such that s = s′ and ϕ ∼ ϕ′ (and conversely).

Despite the differences between the two semantics, it can be shown (see Proposition 3) that
the two notions of trace equivalence coincide (this is done in [31] for the more involved notion of
observational equivalence).

Proposition 3. Let A and B be two processes without replication. Consider the two associated
intermediate processes: (E ;PA; ΦA) and (E ;PB ; ΦB).

The processes A and B are trace equivalent ( i.e. A ≈t B in the original applied pi calculus
semantics) if, and only if, (E ;PA; ΦA) ≈t (E ;PB ; ΦB).

Example 13. Continuing Example 10, we have that (E ; {B(b, a)}; Φ0) ≈t (E ; {B(b, a′)}; Φ0) where:

• E = {ska, ska′, skb, nb}; and

• Φ0 = {w1 B pk(ska), w2 B pk(ska′), w3 B pk(skb)}.

This is a non-trivial equivalence that illustrates the anonymity property. Intuitively, the protocol
preserves anonymity if an attacker cannot distinguish whether b is willing to talk to a (represented
by the process B(b, a)) or willing to talk to a′ (represented by the process B(b, a′)). For modelling
and verification purposes, we may want to disclose the public keys in order to make them available
to the attacker. This is done by means of the frame Φ0.

However, the “decoy” message plays an important role. Indeed, considering now the process
B−(b, a), we have that: (E ; {B−(b, a)}; Φ0) 6≈t (E ; {B−(b, a′)}; Φ0). This can be easily shown
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by considering the sequence of actions s = in(c, aenc(〈ni, w1〉, w3)) · out(c, w4). We have that
(s, νE .Φ1) ∈ tracei((E ; {B−(b, a)}; Φ0)). However, this sequence s does not exist for the process
(E ; {B−(b, a′)}; Φ0).

6. Symbolic calculus

In this section, we propose a symbolic semantics for our calculus following e.g. [11]. By treating
inputs symbolically, our symbolic semantics avoids potentially infinite branching of execution trees
due to inputs from the environment. Correctness is maintained by associating with each process
a set of constraints on terms.

6.1. Constraint system
Following the notations of [10], we consider a new set X 2 of variables called second order

variables X,Y, . . ., each variable with an arity, denoted ar(X).

A constraint system represents the possible executions of a protocol once an interleaving has
been fixed.

Definition 12 (constraint system). A constraint system is a triple (E ; Φ;D):

• E is a set of names (names that are initially unknown to the attacker);

• Φ is a sequence of the form {w1 B t1, . . . , wn B tn} where ti are terms and wi are variables.
The ti represent the terms sent on the network, their variables represent messages sent by
the attacker.

• D is a set of constraints of the form X B? x with ar(X) ≤ n, or of the form s =?
E s
′ or

s 6=?
E s
′ where s, s′ are first-order terms of same type. Intuitively, the constraint X B? x is

meant to ensure that x will be replaced by a deducible term.

The size of Φ, denoted |Φ| is its length n. Given a set D of constraints, we denote by var1(D)
(resp. var2(D)) the first order (resp. second order) variables of D, that is var1(D) = fv(D) ∩ X
(resp. var2(D) = fv(D) ∩ X 2).

We also assume the following conditions are satisfied on a constraint system:

1. for every x ∈ var1(D), there exists a unique X such that (X B? x) ∈ D, and each variable X
occurs at most once in D.

2. for every 1 ≤ k ≤ n, for every x ∈ var1(tk), there exists (X B? x) ∈ D such that ar(X) < k.

Given a term T with variables w1, . . . , wk and Φ = {w1 B t1, . . . , wn B tn}, n ≥ k, TΦ denotes the
term T where each wi has been replaced by ti. The structure of a constraint system C = (E ; Φ;D)
is given by E , |Φ| and var2(D) with their arity. A positive constraint system is a constraint system
that does not contain any constraint of the form s 6=?

E s
′.

Example 14. The triple C1 = (E ; Φ0 ∪ {w4 B t};D1) where

• E = {ska, ska′, skb, nb},

• Φ0 = {w1 B pk(ska), w2 B pk(ska′), w3 B pk(skb)},

• t = aenc(〈π1(adec(y, skb)), 〈nb, pk(skb)〉〉, pk(ska)),

• D1 = {Z1 B? z1;Y B? y; z1 =?
E cB ;π2(adec(y, skb)) =?

E pk(ska);Z2 B? z2; z2 =?
E cB} with

ar(Z1) = ar(Z2) = ar(Y ) = 3.

is a constraint system. We will see that it corresponds to an execution of the process B(b, a) (and
B−(b, a)) presented in Example 10.
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Definition 13 (solution). A solution of a constraint system C = (E ; Φ;D) is a substitution θ
such that

• dom(θ) = var2(C), and

• Xθ ∈ T (N r {E}, {w1, . . . , wk}) for any X ∈ dom(θ) with ar(X) = k.

Moreover, we require that there exists a closed substitution λ with dom(λ) = var1(C) such that:

1. for every (X B? x) ∈ D, we have that (Xθ)(Φλ) = xλ;
2. for every (s =?

E s
′) ∈ D, we have that sλ =E s

′λ;
3. for every (s 6=?

E s
′) ∈ D, we have that sλ 6=E s

′λ.

The substitution λ is called the first-order solution of C associated to θ. The set of solutions of a
constraint system C is denoted Sol(C). A constraint system C is satisfiable if Sol(C) 6= ∅.

Intuitively, in the preceding definition the substitution θ stores the computation done by the
adversary in order to compute the messages he sends (stored in λ) during the execution.

Example 15. Continuing Example 14, a solution to C1 = (E1; Φ1;D1) is θ where dom(θ) =
{Z1, Z2, Y }, θ(Z1) = θ(Z2) = cB, and θ(Y ) = aenc(〈ni, w1〉, w3) with ni a public name of base
type ( i.e. ni 6∈ E1). The first-order solution λ of C1 associated to θ is a substitution whose domain
is {z1, z2, y} and such that λ(z1) = λ(z2) = cB, and λ(y) = aenc(〈ni, pk(ska)〉, pk(skb)).

6.2. Syntax and semantics
From an intermediate process (E ;P; Φ), we can compute the set of constraint systems capturing

its possible executions, starting from the symbolic process (E ;P; Φ; ∅) and applying the rules
defined in Figure 4.

Definition 14 (symbolic process). A symbolic process is a tuple (E ;P; Φ;D) where:

• E is a set of names;

• P is a multiset of plain intermediate processes where null processes are removed and such
that fv(P) ⊆ {x | X B? x ∈ D};

• (E ,Φ,D) is a constraint system.

The rules of Figure 4 define the semantics of symbolic processes. This relation transforms
a symbolic process into a symbolic process. The aim of this symbolic semantics is to avoid the
infinite branching due to the inputs of the environment. This is achieved by keeping variables
rather than the input terms. The constraint system gives a finite representation of the value that
these variables are allowed to take.

The Thens (resp. Elses) rule allows the process to pass a conditional. The corresponding
constraint is added in the set of constraints D. When a process is ready to input a term on a public
channel p, a deduction constraint is added in the set D (rule Ins). When a process is ready to
output a term u on a public channel p, the outputted term is added to the frame Φ (rule Out-Ts),
which means that this term is made available to the attacker. Note that when this term is actually
a channel name, say c, the situation is slightly different. We distinguish two cases depending on
whether c is restricted or not. In particular, in case of an output of a bound channel name, the
rule Open-Chs requires renaming the channel name (as this is done in the rule Out-Ts). This is
needed for our symbolic trace equivalence relation since we require both the left- and right-hand
processes to use the same label without allowing α-conversion.

The relations w−→s and s⇒s are defined as for our intermediate semantics.

Example 16. Continuing Example 10, the constraint system C1 = (E ; Φ0 ∪ {w4 B t};D1) (see
Example 14) is one of the constraint systems obtained by applying our symbolic rules on the process
(E ;B(b, a); Φ0; ∅) and considering the symbolic trace trs = in(Z1, Y ) · out(Z2, w4). The other one
(for the same sequence trs) is C2 = (E ; Φ2;D2) where:
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(E ; {if u = v then Q1 else Q2} ] P; Φ;D)
τ−→s (E ;Q1 ] P; Φ;D ∪ {u =?

E v}) (Thens)

(E ; {if u = v then Q1 else Q2} ] P; Φ;D)
τ−→s (E ;Q2 ] P; Φ;D ∪ {u 6=?

E v}) (Elses)

(E ; {out(p, u).Q1; in(q, x).Q2} ] P; Φ;D)
τ−→s (E ;Q1 ]Q2{x 7→ u} ] P; Φ;D ∪ {p =?

E q})
(Comms)

(E ; {in(p, x).Q} ] P; Φ;D)
in(Z,Y )−−−−−→s (E ;Q{x 7→ y} ] P; Φ;D ∪ {Y B? y;Z B? z; z =?

E p})
if Y, y, Z, z are fresh variables, ar(Y ) = ar(Z) = |Φ| (Ins)

(E ; {out(p, u).Q} ] P; Φ;D)
νwn.out(Z,wn)−−−−−−−−−→s (E ;Q] P; Φ ∪ {wn B u};D ∪ {Z B? z ; z =?

E p})
if wn is a variable such that n = |Φ|+ 1, Z, z are fresh variables ar(Z) = |Φ| (Out-Ts)

(E ; {out(p, c).Q} ] P; Φ;D)
out(Z,Y )−−−−−−→s (E ;Q] P; Φ;D ∪ {Z B? z ;Y B? y ; z =?

E p ; y =?
E c})

if c 6∈ E and Y, y, Z, z are fresh variables, ar(Y ) = ar(Z) = |Φ| (Out-Chs)

(E ; {out(p, c).Q} ] P; Φ;D)
νchn.out(Z,chn)−−−−−−−−−−→s (E ; (Q] P){c 7→ chn}; Φ;D ∪ {Z B? z; z =?

E p})
if c ∈ E , Z, z are fresh variables with ar(Z) = |Φ|, chn a fresh channel name (Open-Chs)

u, v are terms having the same type, x is a variable of any type, and p, q, c are terms of channel
type, i.e. names or variables.

Figure 4: Symbolic semantics

• Φ2 = Φ0 ∪ {w4 B aenc(nb, pk(skb))}; and

• D2 = {Z1 B? z1;Y B? y; z1 =E cB ;π2(adec(y, skb)) 6=?
E pk(ska);Z2 B? z2; z2 =E cB}.

For the same sequence trs, similar constraint systems, denoted C′1 and C′2 can be derived for the
process (E ; {B(b, a′)}; Φ0). The occurrences of ska will be replaced by ska′ (except the occurrence
in Φ0).

6.3. Soundness and completeness
We show that the set of symbolic processes obtained from an intermediate process (E ;P; Φ)

exactly captures the set of execution traces of (E ;P; Φ) through θ-concretization.

Definition 15 (θ-concretization). Consider the symbolic process (E1;P1; Φ1;D1) and let θ be a
substitution in Sol((E1; Φ1;D1)). The intermediate process (E1;P1λθ; Φ1λθ) is the θ-concretization
of (E1;P1; Φ1;D1) where λθ is the first order solution of (E1; Φ1;D1) associated to θ.

We now show soundness of αs−→s w.r.t.
α−→i: whenever this relation holds between two symbolic

processes, the relation in the intermediate semantics holds for each θ-concretization.

Proposition 4 (soundness). Let (E1;P1; Φ1;D1), and (E2;P2; Φ2;D2) be two symbolic processes
such that

• (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2), and

• θ2 ∈ Sol((E2; Φ2;D2)).

Let θ1 = θ2|var2(D1). We have that:

1. θ1 ∈ Sol((E1; Φ1;D1)), and

2. (E1;P ′1; Φ′1)
αsθ2−−−→i (E2;P ′2; Φ′2) where (E1;P ′1; Φ′1) (resp. (E2;P ′2; Φ′2) is the θ1-concretization

(resp. θ2) of (E1;P1; Φ1;D1) (resp. (E2;P2; Φ2;D2)).
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We also show completeness of the symbolic semantics w.r.t. the intermediate one: each time
a θ-concretization of a symbolic process reduces to another intermediate process, the symbolic
process also reduces to a corresponding symbolic process.

Proposition 5 (completeness). Let (E1;P1; Φ1;D1) be a symbolic process, (E1;P ′1; Φ′1) its θ1-
concretization where θ1 ∈ Sol((E1; Φ1;D1)). Let (E ;P; Φ) be an intermediate process such that
(E1;P ′1; Φ′1)

α−→i (E ;P; Φ). There exist a symbolic process (E2;P2; Φ2;D2), a substitution θ2, and a
symbolic action αs such that:

1. (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2);

2. θ2 ∈ Sol((E2; Φ2;D2));
3. the process (E ;P; Φ) is the θ2-concretization of (E2;P2; Φ2;D2); and
4. αsθ2 = α.

6.4. Symbolic equivalence of constraint systems
As for processes in the applied-pi calculus, it is also possible to define equivalence of (sets of)

constraint systems. Two sets of constraint systems Σ and Σ′ are in equivalence if for any solution
of a constraint system in Σ, there exists a constraint system in Σ′ that has the same solution and
such that the resulting frames are in static equivalence.

Definition 16 (symbolic equivalence). Let Σ and Σ′ be two sets of constraint systems that
contain constraint systems having the same structure. We say that Σ and Σ′ are in symbolic
equivalence, denoted by Σ ≈s Σ′, if for all C ∈ Σ, for all θ ∈ Sol(C), there exists C′ ∈ Σ′ such that
θ ∈ Sol(C′) and νE .Φλθ ∼ νE .Φλ′θ (and conversely) where:

• C = (E ; Φ;D), and C′ = (E ; Φ′;D′),

• λθ (resp. λ′θ) is the first-order substitution associated to C (resp. C′) and θ.

Example 17. Consider the sets of constraint systems Σ = {C1, C2} and Σ′ = {C′1, C′2} as defined
in Example 16. These two sets are in symbolic equivalence whereas the sets {C1} and {C′1} are
not in symbolic equivalence. Indeed, consider the substitution θ given in Example 14. We have
that θ ∈ Sol(C1) whereas θ 6∈ Sol(C′1). Indeed, we have that θ = {Z1 7→ cB , Z2 7→ cB , Y 7→
aenc(〈ni, w1〉, w3)}. Thus, in order to satisfy item 1 of Definition 13, the substitution λ′ should be
λ′ = {z1 7→ cB , z2 7→ cB , y 7→ aenc(〈ni, pk(ska)〉, pk(skb))}. However, such a substitution λ′ will
not satisfy item 2 since the equality π2(adec(λ′(y), skb)) =E pk(ska′) does not hold. This allows
us to conclude that {C1} 6≈s {C′1}.

The next section will be devoted to proving that grouping traces by constraint systems is sound
w.r.t. trace equivalence.

7. Relating trace equivalence and symbolic trace equivalence

In this section, we reduce the decidability of trace equivalence (for processes without replica-
tion) to symbolic equivalence, i.e. deciding equivalence between sets of constraint systems. This
is a first step towards deciding trace equivalence since symbolic equivalence is easier to manipulate
than trace equivalence. As a first application, we combine our reduction result with the decidability
result of [20] for equivalence between sets of constraint systems and retrieve that trace equivalence
is decidable for processes without replication and with standard primitives (asymmetric and sym-
metric encryption, signatures and hashes). In the particular case of simple processes with trivial
else branches, we further show that we can reduce the decidability of trace equivalence to deciding
symbolic equivalence of sets of positive constraints systems that are reduced to singletons. This
corresponds to the notion of equivalence introduced by M. Baudet in [10], namely S-equivalence,
and for which several decision procedures already exist [10, 23]. We therefore retrieve as a second
application that trace equivalence is decidable for simple processes with trivial else branches and
for subterm-convergent equational theories.
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7.1. General processes
Due to Proposition 3, it is sufficient to establish the link between symbolic equivalence and

intermediate trace equivalence of intermediate processes.
Following the approach of [11], we compute from an intermediate process A = (E ;P; Φ) the set

of constraint systems capturing the possible executions of A, starting from its associated symbolic
process As

def
= (E ;P; Φ; ∅) and applying the rules defined in Figure 4. Formally, we define the set

of traces of a symbolic process as follows:

traces(As) = {(trs, (E2; Φ2;D2)) | As
trs⇒s (E2;P2; Φ2;D2) for some (E2;P2; Φ2;D2)}

When trs is fixed, we also write (trs,Σ) ∈ traces(As) to define the set Σ as the set of constraint
systems {C | (trs, C) ∈ traces(As)}.

Two intermediate processes are in intermediate trace equivalence if and only if, for any symbolic
trace, their corresponding sets of constraints are in symbolic equivalence, which we call symbolic
trace equivalence.

Definition 17 (symbolic trace equivalence). Let A and B be two intermediate processes. They
are in symbolic trace equivalence if for every sequence tr of symbolic actions, we have that:

{C | (tr, C) ∈ traces(As)} ≈s {C | (tr, C) ∈ traces(Bs)}

where As and Bs are the symbolic processes associated to A and B.

Proposition 6. Let A and B be two intermediate processes: A ≈t B if, and only if A and B are
in symbolic trace equivalence.

Proof. We show the two directions separately. Let A = (E ;PA; ΦA) and B = (E ;PB ; ΦB).
(⇐) We have to show that for every (w,ϕA) ∈ tracei(A) there exists (w,ϕB) ∈ tracei(B) such
that ϕA ∼ ϕB (and reciprocally). Let (w,ϕA) ∈ tracei(A). By definition of tracei(A), this
means that there exists (E ;P ′A; Φ′A) such that (E ;PA; ΦA)

w⇒i (E ;P ′A; Φ′A), and ϕA = νE .Φ′A.
Let As = (E ;PA; ΦA; ∅) and θ be the identity. We have that A is the θ-concretization of As
and θ ∈ Sol((E ; ΦA; ∅)). Thanks to Proposition 5, we have that there exist a symbolic process
A′s = (E ;P ′sA ; Φ′sA;D′A), a substitution θ′, and a sequence ws of symbolic actions such that:

1. (E ;PA; ΦA; ∅) ws⇒s (E ;P ′sA ; Φ′sA;D′A);
2. θ′ ∈ Sol((E ; Φ′sA;D′A));
3. (E ;P ′A; Φ′A) is the θ′-concretization of (E ;P ′sA ; Φ′sA;D′A); and
4. wsθ′ = w.

Let C′A = (E ; Φ′sA;D′A). By definition of traces(As), we have that (ws, C′A) ∈ traces(As). Since A
and B are in symbolic trace equivalence, we deduce that there exists C′B = (E ; Φ′sB ;D′B) such that
(ws, C′B) ∈ traces(Bs) with θ′ ∈ Sol(C′B) and νE .Φ′sAλAθ′ ∼ νE .Φ′sBλBθ′ where λAθ′ (resp. λBθ′) is the
first-order solution of C′A (resp. C′B) associated to θ′. By definition of traces(Bs), we have that
(E ;PB ; ΦB ; ∅) ws⇒s (E ;P ′sB ; Φ′sB ;D′B) for some P ′sB . Now, we apply Proposition 4, we have that

(E ;PB ; ΦB)
wsθ

′

⇒ i (E ;P ′sBλBθ′ ; Φ′sBλ
B
θ′). Let ϕB = νE .Φ′sBλBθ′ . Clearly, we have that (wsθ

′, ϕB) ∈
tracei(B). From the fact that νE .Φ′sAλAθ′ ∼ νE .Φ′sBλBθ′ , we deduce that ϕA ∼ ϕB . The other
inclusion can be shown in a similar way.

(⇒) We have to show that A and B are in symbolic trace equivalence, i.e. for every sequence ws
of symbolic actions, we have to show that, for any symbolic trace tr:

{C | (tr, C) ∈ traces(As)} ≈s {C | (tr, C) ∈ traces(Bs)}

Let (ws, C′A) ∈ traces(As) and θ ∈ Sol(C′A). By definition of traces(As), we know that there
exists (E ;P ′sA ; Φ′sA;D′A) such that As

ws⇒s (E ;P ′sA ; Φ′sA;D′A) and C′A = (E ; Φ′sA;D′A). Thanks to
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Proposition 4, we have that A wsθ⇒ i (E ;P ′sAλAθ ; Φ′sAλ
A
θ ) where λAθ is the first-order solution of C′A

associated to θ. Since A and B are in trace equivalence, we deduce that there exists (E ;P ′B ; Φ′B)

such that B wsθ⇒ i (E ;P ′B ; Φ′B) and νE .Φ′sAλAθ ∼ νE .Φ′B . Thanks to Proposition 5, we deduce that
there exists (E ;P ′sB ; Φ′sB ;D′B), a substitution θ′, and a sequence w′s of symbolic actions such that:

1. Bs
w′

s⇒s (E ;P ′sB ; Φ′sB ;D′B);
2. θ′ ∈ Sol((E ; Φ′sB ;D′B));
3. the process (E ;P ′B ; Φ′B) is the θ′-concretization of (E ;P ′sB ; Φ′sB ;D′B); and
4. w′sθ′ = wsθ.

Let C′B = (E ; Φ′sB ;D′B). Actually, we can assume that w′s = ws (by renaming the second order
variables that occur in w′s). Moreover, since wsθ′ = wsθ, we have that θ′ = θ. Lastly, since
νE .Φ′sAλAθ ∼ νE .Φ′B , we easily deduce that νE .Φ′sAλAθ′ ∼ νE .Φ′sBλBθ′ where λAθ′ (resp. λBθ′) is the
first-order solution of C′A (resp. C′B) associated to θ = θ′. �

7.2. Simple processes with trivial else branches
For simple processes with trivial else branches, there is no need to consider sets of constraint

systems, a single constraint system suffices. Intuitively, this is due to the fact that, given a symbolic
action in which the variables of channel type have been instantiated, only one process can move
using an instance of this symbolic action. Roughly, this allows us to ensure that once the symbolic
trace and the communication channels have been fixed, there is only one symbolic execution that
corresponds to this symbolic trace. Actually, because of silent actions, we can not ensure that the
set of contraint systems (in the definition of symbolic trace equivalence) is a singleton but we will
see that the set of constraint systems always contains a most general one (allowing us to forget
the others). Moreover, we can show that such a constraint system is necessarily a positive one.

Definition 18 (constraint system with fixed channels). Let C = (E ; Φ;D) be a constraint
system. We say that C is a constraint system with fixed channels if for all (X B? x) ∈ D
with x a variable of channel type, there exists a unique equation (x =?

E c) ∈ D, where c is a
name of channel type. We denote by θCh(C) the substitution whose domain is {X | (X B? x) ∈
D and x is a variable of channel type} and such that XθCh(C) = c when (x =?

E c) ∈ D.

Note that given a constraint system C with fixed channels, for any θ ∈ Sol(C), we have that
θ|dom(θCh(C)) = θCh(C)

Actually, it is quite easy to see that constraint systems generated during the symbolic execution
of a symbolic process derived from a simple process satisfy this requirement.

Lemma 3. Let A be a simple process without replication and As its associated symbolic process.
Let trs be a sequence of symbolic actions. Let Σ = {C | (trs, C) ∈ traces(As)}. Each constraint
system in Σ has fixed channels.

Proof. Note that for symbolic processes that are obtained from simple processes without replica-
tion, we only need to consider the rules Thens, Elses, Ins, and Out-Ts. The other rules will
never be applied in a symbolic derivation. Relying on Definition 7 of basic process, it is then easy
to see that constraint of the form X B? x can only be introduced by the rules Out-Ts or Ins. In
both case, an equality x =?

E c with c ∈ Ch is added in D (where x is a fresh variable). �

The execution of a simple process may yield to multiple constraint systems. But they are
actually very similar and one of them is actually more general in the sense that it contains less
constraints. Formally, we introduce the notion of most general constraint system.

Definition 19 (most general constraint system). Let C = (E ; Φ;D) and C′ = (E ′; Φ′;D′) be
two constraint systems. The constraint system C is more general than C′, denoted by C′ � C, if
E ′ = E, Φ′ = Φ, and D′ = D ]D0 where D0 only contains equality and disequality constraints.

Given a set of constraint systems Σ, we say that C ∈ Σ is the most general constraint system
of Σ if C′ � C for every C′ ∈ Σ.
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Note that such a most general constraint system does not necessarily exist, but when it exists,
it is unique.

Example 18. Consider the simple process (E ;B(b, a); Φ0) (see Example 13) and the constraint
systems generated through the symbolic trace trs = in(Z1, Y ). We obtain the following constraint
systems:

• C0 = (E ;Z1 B? z1;Y B? y; z1 =?
E cB ; Φ0);

• Ceq = (E ;Z1 B? z1;Y B? y; z1 =?
E cB ;π2(adec(y, skb)) =?

E pk(ska); Φ0);

• Cdeq = (E ;Z1 B? z1;Y B? y; z1 =?
E cB ;π2(adec(y, skb)) 6=?

E pk(ska); Φ0).

These constraint systems have fixed channels. Moreover, we have that C0 is the most general
constraint system of {C0, Ceq, Cdeq}.

We can show that an execution of a simple process admits a most general constraint system.

Proposition 7. Let A be a simple process with trivial else branches and without replication, and
let As be its associated symbolic process. Let trs be a sequence of symbolic actions.

Let Σ = {C | (trs, C) ∈ traces(As)} and C0 ∈ Σ. We have that Σ0 = {C | C ∈ Σ and θCh(C) =
θCh(C0)} admits a most general constraint system and this constraint system is a positive one.

Proof. Note that for symbolic processes that are obtained from simple processes with trivial else
branches, we only need to consider the rules Thens, Elses, Ins, and Out-Ts. The other rules
will never be applied in a symbolic derivation.

Let trs be a sequence of symbolic actions, and let Σ = {C | (trs, C) ∈ traces(As)} and C0 ∈ Σ.
Let Σ0 = {C | C ∈ Σ and θCh(C) = θCh(C0)}. Since the outputs/inputs have been performed in
the same order in each derivation (those have to be done as specified by the symbolic trace) and
since we specified the channels used in the symbolic actions, we have that E1 = E2, Φ1 = Φ2, and
the two sets D1 and D2 contains the same deduction constraints. Then, we consider a symbolic
process such that As

trs⇒ (E ;P; Φ;D), with (E ; Φ;D) ∈ Σ0, using a derivation of minimal length
(including the τ action). In such a derivation, rule Elses has never been applied, and thus C is a
positive constraint system. Moreover, the only symbolic action Thens that have been performed
are those that are mandatory. Hence, we have that C′ � C for any C′ ∈ Σ0. �

Then, it remains to ensure that it is sufficient to consider symbolic equivalence between these
pairs of constraint systems when we want to decide symbolic equivalence between sets of constraint
systems. This is the purpose of the following proposition.

Proposition 8. Let Σ and Σ′ be two sets of constraint systems having the same structure and
fixed channels. We have that Σ ≈s Σ′ if, and only if, {Cm} ≈s {C′m} for every C0 ∈ Σ ∪ Σ′ where:

• Cm is the most general constraint system of Σ0 = {C | C ∈ Σ and θCh(C) = θCh(C0)}, and

• C′m is the most general constraint system of Σ′0 = {C | C ∈ Σ′ and θCh(C) = θCh(C0)}.

Proof. We prove this result in two steps.

1. We show that Σ ≈s Σ′ if, and only if Σ0 ≈s Σ′0 for every C0 ∈ Σ ∪ Σ′.
The converse implication is easy to established. We only consider the direct implication. Let
C0 ∈ Σ∪Σ′, C ∈ Σ0 with C = (E ; Φ;D), and θ ∈ Sol(C). We have that C ∈ Σ. Since Σ ≈s Σ′,
we know that there exists C′ ∈ Σ′ such that θ ∈ Sol(C′) and νE .Φλθ ≈ νE ′.Φ′λ′θ where:

• C′ = (E ′; Φ′;D′), and
• λθ (resp. λ′θ) is the first-order solution associated to C (resp. C′) and θ.
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This implies that θCh(C) = θCh(C′). Indeed, since C and C′ have fixed channels and same struc-
ture, we have that dom(θCh(C)) = dom(θCh(C′)), θ|dom(θCh(C)) = θCh(C), and θ|dom(θCh(C′))

=

θCh(C′). Hence, by definition of Σ′0, we have that C′ ∈ Σ′0.

2. We show that given two sets Σ and Σ′ of constraint systems having a most general constraint
system Cm and C′m, we have that Σ ≈s Σ′ if, and only if, {Cm} ≈s {C′m}.
Relying on Definition 19 (most general constraint system), it is quite easy to see that {Cm} ≈s
{C′m} implies Σ ≈s Σ′. We now consider the other implication. Let Cm = (Em; Φm;Dm) and
C′m = (E ′m; Φ′m;D′m). Let θ ∈ Sol(Cm). Since Cm ∈ Σ, by hypothesis, we know that there
exists C′ ∈ Σ′ such that θ ∈ Sol(Σ′) and νEm.Φmλθ ∼ νE ′.Φ′λ′θ where:

• C′ = (E ′; Φ′;D′), and
• λθ (resp. λ′θ) is the first-order solution associated to C (resp. C′) and θ.

Since C′m is the most general constraint system of Σ′, we have that E ′ = E ′m, Φ′ = Φ′m, and
D′ = D′m ∪D0 where D0 contains only some equality and disequality constraints. Hence, we
have that θ ∈ Sol(C′m) and the first-order solution associated to C′m and θ is also λ′θ. Hence,
we have that νE ′.Φ′λ′θ = νE ′m.Φ′mλ′θ. This allows us to conclude. �

7.3. Decidability results
We have shown that deciding trace equivalence of processes in the applied pi calculus can

be reduced to deciding symbolic equivalence of sets of constraint systems or even just pairs of
constraint systems. We show in this section how this can be applied to retrieve decidability results
of trace equivalence, reusing existing decision procedures.

Theorem 6. Given an algorithm for deciding symbolic equivalence between sets of constraint sys-
tems, we can derive an algorithm for deciding trace equivalence between processes without replica-
tion.

The algorithm for deciding trace equivalence follows from Proposition 6 since there are a finite
number of symbolic traces and each symbolic trace leads to a finite number of constraint systems.

Example 19. We have that:

1. (E ; {B(b, a)}; Φ0) ≈t (E ; {B(b, a′)}; Φ0). Relying on Proposition 6, this non-trivial equiv-
alence can be established by checking symbolic equivalence of several pairs of sets of con-
straint systems. This equivalence requires in particular to check that Σ ≈s Σ′ (see Exam-
ple 17). These two sets Σ and Σ′ are those generated by considering the symbolic trace
trs = in(Z1, Y ) · out(Z2, w4).

2. (E ; {B−(b, a)}; Φ0) 6≈t (E ; {B−(b, a′)}; Φ0). Regarding this equivalence, we have seen that
{C1} 6≈s {C′1}. Since these two sets correspond to those generated by considering the symbolic
trace trs = in(Z1, Y ) ·out(Z2, w4), we conclude that symbolic trace equivalence does not hold
between the two associated symbolic processes. Thus, relying again on Proposition 6, we can
establish that (E ; {B−(b, a)}; Φ0) 6≈t (E ; {B−(b, a′)}; Φ0).

We are now ready to establish two particular decidability results.

7.3.1. Decidability of trace equivalence for standard primitives
The only result that considers symbolic equivalence between sets of constraint systems is [20].

However, their decision procedure works in a slightly different setting than the one presented
in this paper. In fact, they consider a fixed set of cryptographic primitives, namely signature,
hash function, pairing, symmetric and asymmetric encryptions. Moreover, they split the function
symbols into a set Fc of constructors symbols and a set Fd of destructors symbols. Destructors
are used to model the fact that some operations fail.
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Fc = {senc/2, aenc/2, pub/1, sign/2, vk/1, 〈 〉/2, h/1}
Fd = {sdec/2, adec/2, check/2, proj1/1, proj2/1}.

The behavior of the cryptographic primitives is described by the means of a convergent rewrit-
ing system where t↓ denotes the normal form of a term t.

sdec(senc(x, y), y) → x
adec(aenc(x, pub(y)), y) → x

proj1(〈x, y〉) → x
proj2(〈x, y〉) → y

check(sign(x, y), vk(y)) → x

Moreover, to represent messages, they only consider valid terms. A term t is valid, denoted
valid(t), if for any syntactic subterm u of t, we have that u↓ is a constructor term, i.e. u does
not contain any destructor symbol. For instance, the terms sdec(a, b), proj1(〈a, sdec(a, b)〉), and
proj1(a) are not valid. In order to use their algorithm in the setting presented in this paper, we
first have to fix the equational theory that will allow one to model their rewrite system and the
validity checks. To do this, we consider the signature F0 = Fc ] Fd ] {fail/0}, and the smallest
equivalence relation =E0

that is closed by application of function symbols, and that contains:

• u =E0 v, for any ground terms u, v with valid(u), valid(v), u↓ = v↓; and

• u =E0
fail, for any ground term u and ¬valid(u).

Intuitively, in [20], the messages that are exchanged during an execution have to be valid. In
order to apply the result of [20], we need to restrict the class of processes in order to only consider
processes that exchange valid messages. Formally, we consider processes that are valid, i.e. those
that are generated using the following grammar (which is a special case of the grammar of plain
processes that is given in Section 2).

P,Q,R := 0
| P | Q
| !P
| νn.P
| if M1 = M2 and fail 6= M1 and fail 6= M2 then P else Q
| in(u, x).if x = fail then 0 else P
| if N = fail then 0 else out(u,N).P

where n is a name, u is a metavariable of channel type, M1,M2 are terms having the same type,
x is a variable of any type, N is a term of any type, and P (resp. Q) is a multiset of plain
intermediate processes that are valid. Moreover, we assume that the constant fail does not occur
in M1,M2 and N . The logical connector and and the disequations 6= are syntactic sugar that can
be easily encoded using nested conditionals.

Relying on the algorithm that has been proposed in [20] for deciding a notion of symbolic
equivalence between pair of sets of contraint systems, we get that observational equivalence is
decidable for valid processes under the equational theory E0.

Corollary 2. Let E0 be the equational theory defined above. Let A and B be two valid processes
without replication. The problem whether A and B are observationally (or trace) equivalent is
decidable.

The proof follows from [20] and Theorem 6. The main technicality consists in proving that valid
processes under E0 coincide with the framework developed in [20]. This is detailed in Appendix D.

7.3.2. Decidability of trace equivalence for simple processes
Several procedures have been proposed to decide symbolic equivalence between pair of positive

constraint systems [10, 49, 23]. Those procedures can be used for deciding trace equivalence
between simple processes with trivial else branches.
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Theorem 7. Given an algorithm for deciding symbolic equivalence between two positive constraint
systems, we can derive an algorithm for deciding trace equivalence (and observational equivalence)
between simple processes without replication and with trivial else branches.

Our algorithm consists of generating all the symbolic traces and their associated constraint
systems. The difficult point consists in showing that we can indeed restrict us to consider symbolic
equivalence between two positive constraint systems. This is the purpose of Proposition 7 and
Proposition 8 stated and proved in Section 7.2.

Our decision procedure for trace equivalence works as follows: We consider each symbolic
trace tr in turn (note that there are only finitely many symbolic traces):

• Compute (in polynomial time) the sets of constraint systems Σ and Σ′ such that (tr,Σ) ∈
traces(A) and (tr,Σ′) ∈ traces(B);

• For each C0 ∈ Σ∪Σ′, compute Cm (resp. C′m) the most general constraint system of {C | C ∈
Σ and θCh(C) = θCh(C0)} (resp. {C | C ∈ Σ′ and θCh(C) = θCh(C0)});

• Check whether the two (positive) constraint systems {Cm} and {C′m} are in symbolic equiv-
alence using the oracle.

If our algorithm finds a symbolic trace tr and a constraint system C0 for which the two resulting
positive constraint systems C and C′ are not in symbolic equivalence then it return no (not equiv-
alent), otherwise it returns yes (equivalent). To show the correctness of our algorithm, we have to
show that {C | C ∈ Σ and θCh(C) = θCh(C0)} (resp. {C | C ∈ Σ′ and θCh(C) = θCh(C0)}) has a most
general constraint system which is positive (see Proposition 7)

As already mentioned in Section 6.4, a result by M. Baudet [10] shows that checking whether
two (positive) constraints systems are in symbolic equivalence is NP-complete, for the class of
convergent subterm theories. An equational theory E is a convergent subterm theory if it is
generated by a convergent rewriting system R such that any rule l→ r ∈ R satisfies that either r
is a strict subterm of l or r is a closed term in normal form w.r.t. R. For example, the equational
theory presented in Example 3 is a convergent subterm theory. Many other examples can be found
e.g. in [1]. Since this result has been proved in the same setting as the one of this paper, we can
derive the following result.

Corollary 3. Let E be a subterm convergent equational theory. Let A and B be two simple
processes with trivial else branches and without replication. The problem whether A and B are
observationally (or trace) equivalent is co-NP-complete.

8. Conclusion

Trace equivalence is a central notion for expressing privacy-like properties. We have shown that
it coincides with may-testing equivalence for image-finite processes, thus in particular for processes
without replication. Observational equivalence is a stronger notion (and often too strong to ex-
press privacy). It nevertheless coincides with trace equivalence for determinate processes, thus in
particular for the class of simple processes. We have focused on three behavioral equivalences,
namely trace, may-testing, and observational equivalence. This choice comes from the fact that
they are the three notions that are used in the context of security protocols (up to our knowl-
edge). However, several other behavioral equivalences have been proposed such as must-testing
equivalence [16, 46] or failure-equivalence [36]. It would be interesting to study their relationships
and to understand which ones are the most appropriate in the context of security protocols.

We have proposed a proof technique for trace equivalence, showing that it can be reduced to
checking equivalence between sets of constraint systems. Our reduction result is very general and
holds for arbitrary processes without replication and for arbitrary equational theories. It does
not provide immediately decidability results (trace equivalence being undecidable in general) but
constraint systems are much simpler and more amendable to automation. As an illustration, we
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have reused two existing decidability results on equivalence of constraint systems, getting two
decidability results for trace equivalence in the applied pi calculus.

• Trace equivalence is decidable for general processes without replication and for standard
primitives (symmetric and asymmetric encryption, signatures, hashes).

• Trace equivalence is decidable for simple processes without replication nor else branches and
for subterm-convergent theories.

However, in order to get an efficient procedure for trace equivalence, it is necessary to come
with some optimisations to reduce the number of interleavings that have to be considered, and
so the number of equivalence between sets of constraint systems that have to be checked. This
problem has already been studied in the context of trace properties [25, 45] but seems to be more
challenging for trace equivalence.

We would also like to develop further decision procedures for equivalence between constraint
systems. In particular, less standard primitives such as blind signatures or trapdoor commitment
functions are crucial in the context of e-voting but do not fall in any existing decidability results.
So, we aim at deciding equivalence between sets of constraint systems for more general primitives.
This could be done in a modular way. For this, we have to provide an algorithm to combine the
decision procedures that we will obtain for various cryptographic primitives as it was done for
instance in [22] in the context of accessibility-based properties.

Lastly, it would be nice to provide some composition results in the context of privacy-type
security properties. It is well-known that composition works when the protocols do not share
secrets. However, there is no result allowing us to derive some interesting results when the processes
rely on some shared secrets such as long term keys, in the context of equivalence-based properties.
This kind of composition results will be very useful to analyse a whole system in a modular way.
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A. Testing equivalence vs trace equivalence

Proposition 1. Let A and B be two closed extended process with dom(A) = dom(B), and C[_] =
νñ.(D | _) be an evaluation context closing for A. If C[A] 7→∗ A′′ for some process A′′, then there
exist a closed extended process A′, an evaluation context C ′ = νñ′.(D′ | _) closing for A′, and a
trace tr ∈ (A r {τ})∗ such that A′′ ≡ C ′[A′], A trZ⇒ A′, and for all closed extended process B′, we
have that:

B
trZ⇒ B′ and φ(B′) ∼ φ(A′) implies that C[B] 7→∗ C ′[B′].

Proof. Let A and B be two extended processes with dom(A) = dom(B) and C be an evaluation
context closing for A. Let A′′ be such that C[A] 7→∗ A′′. We prove the result by induction on the
length ` of the derivation.

Base case ` = 0: In such a case, we have that A′′ ≡ C[A]. Let A′ = A, C ′ = C and tr = ε, we
have that A′′ ≡ C ′[A′], and A εZ⇒ A′. Let B′ be a closed extended process such that B εZ⇒ B′ and
Φ(B′) ∼ Φ(A′) for some B′. Clearly, we have that C[B] 7→∗ C ′[B′] since C ′ = C and B −→∗ B′.

Inductive case ` > 0: In such a case, we have that there exists a closed extended process A1 such
that C[A] 7→∗ A1 with a derivation whose length is smaller than `, and A1

τ7→ A′′. Thus, we can
apply our induction hypothesis allowing us to conclude that there exist an extended process A′1,
an evaluation context C ′1[_] = νñ′1.(D

′
1 | _) closing for A′1, and a trace tr1 ∈ (Ar {τ})∗ such that

A1 ≡ C ′1[A′1], A tr1Z⇒ A′1, and for all closed extended processes B′1, we have that:

B
tr1Z⇒ B′1 and Φ(B′1) ∼ Φ(A′1) implies that C[B] 7→∗ C ′1[B′1].

Since A1 ≡ C ′1[A′1] and A1
τ7→ A′′, we have that C ′1[A′1]

τ7→ A′′ (internal reduction is closed
under structural equivalence). We do a case analysis on the rule involved in this reduction.

Case of an internal reduction in A′1, i.e. there exists A′ such that A′1
τ−→ A′ and A′′ ≡ C ′1[A′].

In such a case, we have that C ′1[A′1]
τ−→ C ′1[A′]. Let C ′ = C ′1 and tr = tr1. We have that

A′′ ≡ C ′1[A′] = C ′[A′] and A tr1Z⇒ A′1
τ−→ A′, i.e. A trZ⇒ A′. Lastly, let B′ be a closed extended process

such that B trZ⇒ B′ and Φ(B′) ∼ Φ(A′). We have that B tr1Z⇒ B′ and Φ(B′) ∼ Φ(A′1) ≡ Φ(A′), and
thus relying on our induction hypothesis, we conclude that C[B] 7→∗ C ′1[B′] = C ′[B′]. This allows
us to conclude.

Case of an internal reduction in C ′1, i.e. there exists D′2 such that νñ′1(D′1 | B)
τ−→ νñ′1.(D

′
2 | B)

for any process B such that φ(B) ∼ φ(A′1), and A′′ ≡ νñ′1.(D
′
2 | A′1). In such a case, we have

that C ′1[A′1]
τ−→ νñ′1.(D

′
2 | A′1). Let A′ = A′1, C ′[_] = νñ′1.(D

′
2 | _) and tr = tr1. We have that

A′′ ≡ νñ′1.(D′2 | A′1) = C ′[A′] and A tr1Z⇒ A′1 = A′, i.e. A trZ⇒ A′. Lastly, let B′ be a closed extended
process such that B trZ⇒ B′ and Φ(B′) ∼ Φ(A′). We have that B tr1Z⇒ B′ and Φ(B′) ∼ Φ(A′1) ≡ Φ(A′),
and thus relying on our induction hypothesis, we have that C[B] 7→∗ C ′1[B′]. But by our hypothesis
on the internal reduction, Φ(B′) ∼ Φ(A′1) implies that C ′1[B′]

τ7→ νñ′1.(D
′
2 | B′) = C ′[B′] and so

C[B] 7→∗ C ′[B′]. This allows us to conclude.

Case of a rule (Comm) between C ′1 (output) and A′1 (input), i.e. D′1 ≡ νñ.(out(c,M).P | D),
A′1 ≡ A′2 = νr̃.(in(c, z).Q | A2) for some c, M , P , D, A′2, r̃, z, Q, and A2 such that z is a fresh
variable, fv(M) ⊆ dom(A′2), r̃ ∩ (fn(M)∪ fv(M)) = ∅, and ñ∩ (fn(A′2)∪ fv(A′2)) = ∅. We assume
in addition that names and variables in ñ do not occur in fn(B), fv(B), and tr. In such a case,
we have that

C ′1[A′1] ≡ νñ′1.[νñ.(out(c,M).P | D) | A′2)
≡ νñ′1.νñ.[out(c,M).P | D | νr̃.(in(c, z).Q | A2)]
−→ νñ′1.νñ.[P | D | νr̃.(Q{M/z} | A2)]

and A′′ ≡ νñ′1, ñ.[P | D | νr̃.(Q{M/z} | A2)].
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Let A′ = νr̃.(Q{M/z} | A2), C ′[_] = νñ′1.νñ.(P | D | _), and tr = tr1 ·in(c,M). We have that

A′′ ≡ C ′[A′]. By induction hypothesis, we have that A tr1Z⇒ A′1 and A′1
in(c,M)7→ A′. This allows us to

conclude that A trZ⇒ A′. Note that A′ is a closed extended process (fv(M) ⊆ dom(A′2) = dom(A′1)).
Lastly, let B′ be a closed extended processes such that B trZ⇒ B′ and Φ(B′) ∼ Φ(A′). We

have that there exists B′1 such that B tr1Z⇒ B′1
in(c,M)−−−−−→ B′. Moreover, we can assume w.l.o.g.

that ñ do not occur in fn(B′1) and fv(B′1) since ñ do not occur in fn(B), fv(B) and tr1. Since
Φ(B′) ∼ Φ(A′), we have also that Φ(B′1) ∼ Φ(A′1). Thus, we can apply our induction hypothesis
on B′1. This allows us to deduce that C[B] −→∗ C ′1[B′1] . In order to conclude, it remains to show
that C ′1[B′1] −→ C ′[B′].

We have seen that B′1
in(c,M)−−−−−→ B′. Hence, we know that there exists m̃, P2, B2 such that

B′1 ≡ νm̃.(in(c, z).P2 | B2), B′ ≡ νm̃.(P2{M/z} | B2), and m̃ ∩ (fv(M) ∪ fn(M)) = ∅. Moreover,
we have already seen that ñ ∩ (fn(B′1) ∪ fv(B′1)) = ∅. Hence, we have that:

C ′1[B′1] ≡ νñ′1.[νñ.(out(c,M).P | D) | B′1]
≡ νñ′1.νñ.[out(c,M).P | D | B′1]
≡ νñ′1.νñ.[out(c,M).P | D | νm̃.(in(c, z).P2 | B2)]
−→ νñ′1.νñ.(P | D | νm̃.(P2{M/z} | B2))
≡ C ′[B′]

Case of a rule (Comm) between C ′1 (input) and A′1 (output), i.e. D′1 ≡ νñ.(in(c, z).P | D),
A′1 ≡ A′2 = νr̃.(out(c,M).Q | A2) for some c, M , P , Q, D, A′2, r̃, z, and A2 such that z is a
fresh variable, fv(M) = ∅, ñ∩ (fn(A′2)∪ fv(A′2)) = ∅, r̃∩ (fn(in(c, z).P )∪ fv(in(c, z).P )) = ∅. We
assume in addition that names and variables in ñ do not occur in fn(B), fv(B), and tr. In such
a case, we have that :

C ′1[A′1] ≡ νñ′1.[νñ.(in(c, z).P | D) | A′2]
≡ νñ′1.νñ.(in(c, z).P | D | A′2)
≡ νñ′1.νñ.[in(c, z).P | D | νr̃.(out(c,M).Q | A2)]
≡ νñ′1.νñ.[νr̃.(P{M/z} | Q | A2) | D]

and A′′ ≡ νñ′1.νñ.[νr̃.(P{M/z} | Q | A2) | D].
To determine C ′, A′ and tr, we distinguish several cases depending on the term M :

• M is a name of channel type andM 6∈ r̃. In such a case, we have that A′′ ≡ νñ′1.νñ.[P{M/z} |
D | νr̃.(Q | A2)]. Thus, let C ′[_] = νñ′1.νñ.[P{M/z} | D | _], A′ = νr̃.(Q | A2) and

tr = tr1 · out(c,M). Clearly, we have that A′′ ≡ C ′[A′] and A′1
out(c,M)−−−−−−→ A′.

Lastly, let B′ be a closed process such that B trZ⇒ B′ and Φ(B′) ∼ Φ(A′). We have that there

exists B′1 such that B tr1Z⇒ B′1
out(c,M)−−−−−−→ B′. Moreover, we can assume w.l.o.g. that ñ do not

occur in fn(B′1), fv(B′1), and tr1. We have also that Φ(A′1) ∼ Φ(B′1). Thus, we can apply
our inductive hypothesis on B′1 which means that C[B] −→∗ C ′1[B′1]. In order to conclude, it
remains to show that C ′1[B′1] −→ C ′[B′].

We have seen that B′1
out(c,M)−−−−−−→ B′. Hence, we know that there exists m̃,Q2, B2 such that

B′1 ≡ νm̃.(out(c,M).Q2 | B2), B′ ≡ νm̃.(Q2 | B2), M 6∈ m̃ and m̃ ∩ (fv(D′1) ∪ fn(D′1) = ∅.
Therefore, we have that:

C ′1[B′1] ≡ νñ′1.[νñ.(in(c, z).P | D) | B′1)
≡ νñ′1.νñ.[in(c, z).P | D | B′1]
≡ νñ′1.νñ.[in(c, z).P | D | νm̃.(out(c,M).Q2 | B2)]
−→ νñ′1.νñ.[P{M/z} | D | νm̃.(Q2 | B2)]
≡ C ′[B′]
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• M is a name of channel type that occurs in r̃. Let r̃′ be a sequence such that r̃ = r̃′ ]M .
In such a case, we have that A′′ ≡ νñ′1.νñ.νM ′.[P{M

′
/z} | D | νr̃′.(Q{M

′
/M} | A2{M

′
/M})]

where M̃ ′ is a fresh name of channel type. Let C ′[_] = νñ′1.νñ.νM
′.[P{M ′

/z} | D | _],
A′ = νr̃′.(Q{M ′

/M} | A2{M
′
/M}) and tr = tr1 · νM ′.out(c,M ′). Clearly, we have that

A′1 ≡ νr̃′.νM.(out(c,M).Q | A2)
νM ′.out(c,M ′)−−−−−−−−−→ νr̃′.(Q{M ′

/M} | A2{M
′
/M}) ≡ A′ and

A′′ ≡ C ′[A′].

Lastly, let B′ be a closed process such that B trZ⇒ B′ and Φ(B′) ∼ Φ(A′). We have that there

exists B′1 such that B tr1Z⇒ B′1
νM ′.out(c,M ′)−−−−−−−−−→ B′. Moreover, we can assume w.l.o.g. that ñ do

not occur in fn(B′1), fv(B′1), and tr1. We also have that Φ(A′1) ∼ Φ(B′1). Thus, we can apply
our induction hypothesis on B′1 which means that C[B] −→∗ C ′1[B′1]. In order to conclude, it
remains to show that C ′1[B′1] −→ C ′[B′].

We have seen thatB′1
νM ′.out(c,M ′)−−−−−−−−−→ B′. Hence, we know that there exists m̃,Q2, B2 such that

B′1 ≡ νM ′.νm̃.(out(c,M ′).Q2 | B2), B′ ≡ νm̃.(Q2 | B2),M ′ 6∈ m̃ and m̃∩(fv(D′1)∪fn(D′1) =
∅. Therefore, we have that (where M ′′ is a fresh channel name):

C ′1[B′1] ≡ νñ′1.[νñ.(in(c, z).P | D) | B′1)
≡ νñ′1.νñ.[in(c, z).P | D | B′1]
≡ νñ′1.νñ.[in(c, z).P | D | νM ′.νm̃.(out(c,M ′).Q2 | B2)]

−→ νñ′1.νñ.νM
′′.[P{M ′′

/z} | D | νm̃.(Q2{M
′′
/M ′} | B2{M

′′
/M ′})]

≡ C ′[B′]

• M is a term of base type. In such a case, we have that A′′ ≡ νñ′1.νñ.νz.[P | D | νr̃.(Q |
A2 | {M/z})]. Let C ′[_] = νñ′1.νñ.νz.[P | D | _], A′ = νr̃.(Q | A2 | {M/z}) and tr =

tr1 · νz.out(c, z). Clearly, we have that A′1 ≡ νr̃.(out(c,M).Q | A2)
νz.out(c,z)−−−−−−−→ νr̃.(Q | A2 |

{M/z}) ≡ A′ and A′′ ≡ C ′[A′].

Lastly, let B′ be a closed process such that B trZ⇒ B′ and Φ(B′) ∼ Φ(A′). We have that there

exists B′1 such that B tr1Z⇒ B′1
νz.out(c,z)−−−−−−−→ B′. Moreover, we can assume w.l.o.g. that ñ do not

occur in fn(B′1), fv(B′1), and tr1. We also have that Φ(A′1) ∼ Φ(B′1). Thus, we can apply
our induction hypothesis on B′1 which means that C[B] −→∗ C ′1[B′1]. In order to conclude, it
remains to show that C ′1[B′1] −→ C ′[B′].

We have seen that B′1
νz.out(c,z)−−−−−−−→ B′. Hence, we know that there exists m̃,Q2, B2 such that

B′1 ≡ νm̃.(out(c,M).Q2 | B2), B′ ≡ νm̃.(Q2 | B2 | {M/z}) and m̃ ∩ (fv(D′1) ∪ fn(D′1) = ∅.
Therefore, we have that:

C ′1[B′1] ≡ νñ′1.[νñ.(in(c, z).P | D) | B′1)
≡ νñ′1.νñ.[in(c, z).P | D | B′1]
≡ νñ′1.νñ.[in(c, z).P | D | νm̃.(out(c,M).Q2 | B2)]
−→ νñ′1.νñ.νz.[P | D | νm̃.(Q2 | B2 | {M/z})]
≡ C ′[B′]

�
Trace equivalence is closed by one-to-one renamings of free names. This is formally stated in

the lemma below:

Lemma 4. Let A and B be two closed extended processes such that A ≈t B and u be a name (resp.
variable) that occurs in fn(A)∪ fv(A)∪ fn(B)∪ fv(B) and not in bn(A)∪ bv(A)∪ bn(B)∪ bv(B),
and u′ be a fresh name (resp. variable). We have that A{u′

/u} ≈t B{u
′
/u}.

We are now able to show the following theorem.
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Theorem 4. Let A and B two closed extended processes. We have that:

A ≈t B implies that A ≈m B.

Proof. Let A,B be two closed extended processes such that A ≈t B. Let C[_] be an evaluation
context closing for A (and B), and c be a channel name. We assume w.l.o.g. that C[_] = νñ.(D |
νm̃._) for some extended process D and for some sequences of names and variables ñ, and m̃. We
assume w.l.o.g. that m̃∩(bn(A)∪bv(A)) = ∅ and m̃∩(bn(B)∪bv(B)) = ∅. Let A2 = A{m̃′

/m̃} and
B2 = B{m̃′

/m̃} where m̃′ is a sequence of fresh names and variables. Thanks to Lemma 4, we have
that A2 ≈t B2. Let C2[_] = νñ.νm̃′.(D | _). We have that C[A] ≡ C2[A2] and C[B] ≡ C2[B2].

Assume now that C[A]⇓c. This means that there exist a closing evaluation context C1 that
does not bind c, a term M , and a plain process P such that C[A] ≡ C2[A2] −→∗ C1[out(c,M).P ].
Applying Proposition 1 on A2, B2 and C2[_], we know that there exist a closed extended pro-
cess A′2, a closing evaluation context C ′2[_] = νr̃.(E | _) for A′2 and tr ∈ (A r {τ})∗ such
that C1[out(c,M).P ] ≡ C2[A′2], and A2

trZ⇒ A′2, and for all closed extended process B′2 such that
B2

trZ⇒ B′2 and Φ(B′2) ∼ Φ(A′2), we have that C2[B2] 7→∗ C ′2[B′2]. Moreover, we assume w.l.o.g.
that bn(tr) ∩ fn(B2) = ∅.

Since C ′2 = νr̃.(E|_), we can deduce from C1[out(c,M).P ] ≡ C ′2[A′2] that the output out(c,M)
comes either from the process E or from A′2. We distinguish these two cases:

• The output out(c,M) comes from E. Since, we have that A2 ≈t B2, we know that that
there exists B′2 such that B2

trZ⇒ B′2 and Φ(A′2) ∼ Φ(B′2). Therefore, we have that C2[B2] 7→∗
C ′2[B′2] ≡ νr̃.(E | B′2). But by hypothesis, we know that the output out(c,M) comes from
E and c 6∈ r̃. Hence we have that C2[B2]⇓c, and since C[B] ≡ C2[B2], we conclude that
C[B]⇓c.

• The output out(c,M) comes from A′2. Thus, we have that A′2 ≡ νṽ.(out(c,M).P | A3)

with c 6∈ ṽ, r̃. Thus, we have that A′2
νz.out(c,z)−−−−−−−→ νṽ.(P | A3 | {M/z}) (if M is a term of

channel type, the transition is different but the proof can be done in a similar way.) Let

A′′ = νṽ.(P | A3 | {M/z}) and tr′ = tr · νz.out(c, z), we have that A2
tr′Z⇒ A′′. Since we

have that A2 ≈t B2, we have that there exists B′2 such that B2
tr′Z⇒ B′2 and Φ(A′′) ∼ Φ(B′2).

Thus, we can deduce that there exists B′ such that B2
trZ⇒ B′

νz.out(c,z)−−−−−−−→ B′2. Therefore,
we have that there exists a term N , an evaluation context C3 and a process Q such that
B′ ≡ C3[out(c,N).Q] and c is not bind by C3. Furthermore, we have that Φ(A′2) ∼ Φ(B′)
which means that C2[B2] −→∗ C ′2[B′], and thus C2[B2] −→∗ C ′2[C3[out(c,N).Q]]. Hence, we
have that C2[B2]⇓c, and since C[B] ≡ C2[B2], we conclude that C[B]⇓c. �

B. Intermediate calculus

As usual, a context is an expression (a plain process or an extended process) with a hole. A
context C is closing for P when C[P ] is closed. A substitution σ is closing for P when Pσ is
closed. First, we have the following result that is fairly standard in the process calculi. It has
been proved in [19] and also in [4, Appendix C.3] for the spi calculus.

Lemma 5. Let P and Q be two plain processes (not necessarily closed) such that Pσ ≈ Qσ for
any substitution σ closing for P and Q. We have that C[P ] ≈ C[Q] for any context C closing
for P and Q.

Proposition 2. Let A be a closed extended process. There exists a plain process P that does not
contain name restriction, and a context evaluation C that only contains name restrictions, parallel
compositions and active substitutions such that P ≈ C[A].
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Proof. We first define a relation R between closed extended processes and we show that A R B
implies that A ≈ B. We then use this relation to conclude the proof.

Definition of the relation R. We define R as the smallest equivalence relation on closed extended
process such that for any variable x, any terms M,N , any channel name c, any plain processes
P,Q, we have that:

1. C[νa.in(c, x).P ] R C[in(c, x).νa.P ] when a 6= c and C is a closing context for in(c, x).P ;
2. C[νa.out(c,M).P ] R C[out(c,M).νa.P ] when a 6∈ fn(M) ∪ {c} and C is a closing context

for out(c,M).P ;
3. C[if M = N then νa.P else Q] R C[νa.if M = N then P else Q] when a 6∈ fn(Q) ∪

fn(M,N) and C is a closing context for if M = N then P else Q;
4. C[if M = N then P else νa.Q] R C[νa.if M = N then P else Q] when a 6∈ fn(P ) ∪

fn(M,N) and C is a closing context for if M = N then P else Q.
5. A R B when A,B are closed extended processes such that A ≡ B;

Claim: A R B implies A ≈ B. Actually, thanks to Lemma 5, it is sufficient to prove that the
following relations hold (assuming that the processes under study are closed):

1. νa.in(c, x).P ≈ in(c, x).νa.P when a 6= c and
2. νa.out(c,M).P ≈ out(c,M).νa.P when a 6∈ fn(M) ∪ {c};
3. if M = N then νa.Pelse Q ≈ νa.if M = N then P else Q when a 6∈ fn(Q) ∪ fn(M,N);
4. if M = N then P else νa.Q ≈ νa.if M = N then P else Q when a 6∈ fn(P )∪ fn(M,N);

We show each item separately. More precisely, in each case, we define an equivalence relation
R1 (resp. R2, R3, and R4) on closed extended processes that satisfies the three conditions of
Definition 5.

1. Consider the relation R1 such that νa.in(c, x).P R1 in(c, x).νa.P for any plain process P
with fv(P ) ⊆ {x}, any channel name c, and any name a 6= c;

2. Consider the relation R2 such that νa.out(c,M).P R2 out(c,M).νa.P for any closed plain
process P , any channel name c, any term M , and any name a 6∈ fn(M) ∪ {c};

3. Consider the relation R3 such that

if M = N then νa.P else Q R1 νa.if M = N then P else Q

for any closed plain processes P,Q, any ground termsM,N , any name a 6∈ fn(Q)∪fn(M,N);
4. Consider the relation R4 such that

if M = N then P else νa.Q R1 νa.if M = N then P else Q

for any closed plain processes P,Q, any ground termsM,N , any name a 6∈ fn(P )∪fn(M,N).

We can check that R1 (resp. R2, R3, and R4) satisfies the three conditions of Definition 5.

Conclusion: Given an extended process A, by definition of this relation R, it is easy to find a
plain process P that does not contain name restriction, and a context evaluation C, that contains
only name restrictions, parallel compositions and active substitutions, such that A R C[P ], and
thus A ≈ C[P ]. �
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C. Symbolic calculus

Proposition 4 (soundness). Let (E1;P1; Φ1;D1), and (E2;P2; Φ2;D2) be two symbolic processes
such that

• (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2), and

• θ2 ∈ Sol((E2; Φ2;D2)).

Let θ1 = θ2|var2(D1). We have that:

1. θ1 ∈ Sol((E1; Φ1;D1)), and

2. (E1;P ′1; Φ′1)
αsθ2−−−→i (E2;P ′2; Φ′2) where (E1;P ′1; Φ′1) (resp. (E2;P ′2; Φ′2) is the θ1-concretization

(resp. θ2) of (E1;P1; Φ1;D1) (resp. (E2;P2; Φ2;D2)).

Proof. We prove this result by case analysis on the rule involved in the reduction step:

(E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2).

In the following, we will denote by λθ1 (resp. λθ2) the first-order solution associated to θ1
(resp. θ2) and (E1; Φ1;D1) (resp. (E2; Φ2;D2)).

Case Thens. In such a case there exist u, v, Q1, and Q2 such that P1 = {if u = v then Q1 else
Q2} ] P, D2 = D1 ∪ {u =?

E v}, P2 = Q1 ] P, E1 = E2, Φ1 = Φ2, and αs = τ

1. Since var2(D1) = var2(D2), we have θ1 = θ2. Furthermore, θ2 ∈ Sol((E2; Φ2;D2)) implies
that θ2 satisfies the constraints of D2 = D1 ∪ {u =?

E v}, and so satisfies D1. At last, since
Φ1 = Φ2 and E1 = E2, we have that θ1 ∈ Sol((E1; Φ1;D1)).

2. Since θ2 ∈ Sol((E2; Φ2;D1 ∪ {u =?
E v})), θ2 = θ1, Φ2 = Φ1, we have λθ1 = λθ2 and thus

uλθ1 =E vλθ1 . Hence we have that:

(E1; {if uλθ1 = vλθ1 then Q1λθ1 else Q2λθ1}]Pλθ1 ; Φ1λθ1)
τ−→i (E1;Q1λθ2 ]Pλθ2 ; Φ1λθ2),

i.e. (E1;P ′1; Φ′1)
αsθ2−−−→i (E2;P ′2; Φ′2) where (E1;P ′1; Φ′1) (resp. (E2;P ′2; Φ′2) is the θ1-

concretization (resp. θ2-concretization) of (E1;P1; Φ1;D1) (resp. (E2;P2; Φ2;D2)).

The case of the rule Elses can be done in a similar way.

Case Comms. In such a case, there exist p, q, u, x, Q1, Q2, and P such that D2 = D1∪{p =?
E q},

Φ2 = Φ1, E2 = E1, P1 = {out(p, u).Q1; in(q.x).Q2} ] P, P2 = Q1 ]Q2{x 7→ u} ] P, and αs = τ .

1. Since var2(D1) = var2(D2), we have θ1 = θ2. Furthermore, θ2 ∈ Sol((E2; Φ2;D2)) implies
that θ2 satisfies the constraints of D2 = D1 ∪ {p =?

E q}, and so satisfies D1. At last, since
Φ1 = Φ2 and E1 = E2, we have that θ1 ∈ Sol((E1; Φ1;D1)).

2. Since θ2 ∈ Sol((E2; Φ2;D1 ∪ {p =?
E q})), Φ1 = Φ2 and θ1 = θ2, we have that λθ1 = λθ2 thus

pλθ1 = qλθ1 . Hence, we have that:

(E1; {out(pλθ1 , uλθ1).Q1λθ1 ; in(pλθ1 .x).Q2λθ1} ] Pλθ1 ; Φ1λθ1)
τ−→i (E1;Q1λθ2 ]Q2λθ2{x 7→ uλθ2} ] Pλθ2 ; Φ1λθ2).

Since Q2λθ2{x 7→ uλθ2} = (Q2{x 7→ u})λθ2 , we have that (E1;P ′1; Φ′1)
αsθ2−−−→i (E2;P ′2; Φ′2)

where (E1;P ′1; Φ′1) (resp. (E2;P ′2; Φ′2) is the θ1-concretization (resp. θ2-concretization) of
(E1;P1; Φ1;D1) (resp. (E2;P2; Φ2;D2)).

Case Ins. In such a case, there exist p, x, Q, P and fresh variables y, z and Y, Z with ar(Y ) =
ar(Z) = |Φ1| and such that αs = in(Z, Y ), P1 = {in(p, x).Q} ] P, P2 = Q{x 7→ y} ] P,
D2 = D1 ∪ {Y B? y ;Z B? z ; z =?

E p}, E1 = E2 and Φ1 = Φ2.
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1. We have that var2(D1) = var2(D2) r {Y ;Z}, var1(D1) = var1(D2) r {y ; z} and Φ1 = Φ2.
Since θ2 ∈ Sol((E2; Φ2;D2)), we have that θ2 satisfies the constraints of D2 and so satisfies
the constraints of D1. With Φ1 = Φ2 and E1 = E2, it implies that θ1 ∈ Sol((E1; Φ1;D1)) with
λθ1 = λθ2 |var1(D1).

2. Let M = Y θ2 and u = yλθ2 . We have that fn(M) ∩ E1 = ∅ since θ2 ∈ Sol((E2; Φ2;D2))
and E2 = E1. We have also that u = yλθ2 = M(Φ2λθ2). Since y and z are fresh variables,
this means that var1(Φ2) ⊆ var1(D1). Thus, we have that u = M(Φ2λθ2) = M(Φ2λθ1) =
M(Φ1λθ1). Futhermore, by definition of a solution, we have that fv(M) ⊆ dom(Φ′1). Lastly,
since θ2 ∈ Sol((E2; Φ2;D2)), we have that (Zθ2)(Φλθ2) = zλθ2 , zλθ2 =E pλθ2 and Zθ2 ∈
T (N r {E2},dom(Φ2)). But p is a term of type channel, thus so does pλθ2 . Since all the
function symbol operate on and return term of base type and since all terms in Φ2 are base
type, we can deduce that (Zθ2) ∈ N r {E2} and so Zθ2 = pλθ2 with pλθ2 6∈ E1 (E1 = E2).
Furthermore, since λθ1 = λθ2 |var1(D1) and var1(D1) = var1(D2) r {y ; z} where y, z are fresh
variables, then p is either a name or a variable in var1(D1) and we have that pλθ2 = pλθ1 .
Hence, we have that

(E1; {in(pλθ1 , x).Qλθ1} ] Pλθ1 ; Φ1λθ1)
in(Zθ2,M)−−−−−−−→i (E1;Qλθ1{x 7→ u} ] Pλθ1 ; Φ1λθ1),

i.e. (E1;P1λθ1 ; Φ1λθ1)
αsθ2−−−→i (E2; (Q{x 7→ y})λθ2 ] Pλθ2 ; Φ2λθ2) since E2 = E1, Φ2 =

Φ1, var1(Φ1) = var1(Φ2) and λθ2 = λθ1 ∪ {y 7→ u ; z 7→ pλθ1}. Hence, we have that
(E1;P ′1; Φ′1)

αsθ2−−−→i (E2;P ′2; Φ′2) where (E1;P ′1; Φ′1) (resp. (E2;P ′2; Φ′2) is the θ1-concretization
(resp. θ2) of (E1;P1; Φ1;D1) (resp. (E2;P2; Φ2;D2)).

Case Out-Ts. In such a case, there exist p, u, Q, P, fresh variables Z, z with ar(Z) = |Φ1|
and wl such that l = |Φ1| + 1, αs = νwl.out(Z,wl), P1 = {out(p, u).Q} ] P, P2 = Q ] P,
D2 = D1 ∪ {Z B? z ; z =?

E p}, E2 = E1, and Φ2 = Φ1 ∪ {wl B u}.

1. We have that var2(D1) = var2(D2)r{Z} thus θ1 = θ2|var2(D1) and wl does not occur in θ1 since
ar(X) ≤ |Φ1|, for any X ∈ dom(θ1). Furthermore, we have that var1(D1) = var1(D2) r {z}.
Since θ2 ∈ Sol((E2; Φ2;D2)) we have that θ2 satisfies the constraints of D2 and so satisfies
the constraints of D1. In addition, since wl does not occur in θ1, Φ2 = Φ1 ∪ {wl B u} and
E1 = E2, we can conclude that θ1 ∈ Sol((E1; Φ1;D1)) with λθ1 = λθ2 |var1(D1).

2. Since θ2 ∈ Sol((E2; Φ2;D2)), we have that (Zθ2)(Φλθ2) = zλθ2 , zλθ2 =E pλθ2 and (Zθ2) ∈
T (N r {E2},dom(Φ2)). Since all the function symbol operate on and return term of base
type and since all terms of Φ2 are base type, we can deduce that (Zθ2) ∈ N r {E2} and so
Zθ2 = pλθ2 with pλθ2 6∈ E1 (E1 = E2). Furthermore, since λθ1 = λθ2 |var1(D1) and var1(D1) =
var1(D2) r {z} where z is a fresh variable, we have that p is either a name or a variable in
var1(D1) and we have that pλθ2 = pλθ1 .
Let v = uλθ1 . We have that:

(E1; {out(pλθ1 , uλθ1).Qλθ1} ] Pλθ1 ; Φ1λθ1)
νwl.out(Zθ2,wl)−−−−−−−−−−→i

(E1;Qλθ1 ] Pλθ1 ; Φ1λθ1 ∪ {wl B uλθ1}),

i.e. (E1;P ′1; Φ′1)
νwl.out(Zθ2,wl)−−−−−−−−−−→i (E2;P2λθ1 ; Φ2λθ1), and thus (E1;P ′1; Φ′1)

νwl.out(Zθ2,wl)−−−−−−−−−−→i

(E2;P ′2; Φ′2) since λθ2 = λθ1 ∪ {z 7→ pλθ1}.

Case Out-Chs. In such a case, there exist p, c, Q, fresh variables Z, Y, z, y with ar(Y ) = ar(Z) =
|Φ1|, and P1 = {out(p, c).Q} ] P, P2 = Q ] P, E2 = E1, Φ2 = Φ1, D2 = D1 ∪ {Z B? z ;Y B?

y ; z =?
E p ; y =?

E c}, αs = out(Z, Y ) and c 6∈ E1.

1. We have that var2(D1) = var2(D2) r {Z ;Y }, var1(D1) = var1(D2) r {z ; y}. Since θ2 ∈
Sol((E2; Φ2;D2)), we have that θ2 satisfies the constraints ofD2 and so satisfies the constraints
of D1. Since Φ1 = Φ2 and E1 = E2, it implies that θ1 ∈ Sol((E1; Φ1;D1)) with λθ1 =
λθ2 |var1(D1).
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2. Since θ2 ∈ Sol((E2; Φ2;D2)), we have that (Y θ2)(Φ2λθ2) = yλθ2 , yλθ2 = cλθ2 and (Y θ2) ∈
T (N r {E2},dom(Φ2)). Since all the function symbol operate on and return term of base
type and since all terms of Φ2 are base type, we can deduce that (Y θ2) ∈ N r {E2} and so
Y θ2 = cλθ2 with cλθ2 6∈ E1 (E1 = E2). Furthermore, since λθ1 = λθ2 |var1(D1) and var1(D1) =
var1(D2)r{z ; y} where z, y are fresh variables, we have that c is either a name or a variable
in var1(D1) and we have that cλθ2 = cλθ1 .
Lastly, θ2 ∈ Sol((E2; Φ2;D2)) also implies that (Zθ2)(Φ2λθ2) = zλθ2 and zλθ2 =E pλθ2 . We
apply the same reasoning we used with Y θ2 to prove that Zθ2 = pλθ1 with pλθ1 6∈ E1.
Hence, we have that:

(E1; {out(pλθ1 , c).Qλθ1} ] Pλθ1 ; Φ1λθ1)
out(Zθ2,Y θ2)−−−−−−−−→i (E1;Qλθ1 ] Pλθ1 ; Φ1λθ1).

Hence, we have that (E1;P ′1; Φ′1)
αsθ2−−−→i (E2;P ′2; Φ′2) where (E1;P ′1; Φ′1) (resp. (E2;P ′2; Φ′2)

is the θ1-concretization (resp. θ2-concretization) of (E1;P1; Φ1;D1) (resp. (E2;P2; Φ2;D2)).

Case Open-Chs. In such a case, there exist p, c, Q, P and fresh variables Z, z with ar(Z) = |Φ1|
such that p 6∈ E1, c ∈ E1, P1 = {out(p, c).Q}]P, P2 = Q]P, E2 = E1, Φ2 = Φ1, D2 = D1∪{Z B?

z ; z =?
E p}, and αs = out(Z, c).

1. We have that var2(D1) = var2(D2)r{Z}, var1(D1) = var1(D2)r{z}. Since θ2 ∈ Sol((E2; Φ2;D2)),
we have that θ2 satisfies the constraints of D2 and so satisfies the constraints of D1. Since
Φ1 = Φ2 and E1 = E2, it implies that θ1 ∈ Sol((E1; Φ1;D1)) with λθ1 = λθ2 |var1(D1).

2. Since θ2 ∈ Sol((E2; Φ2;D2)), we have that (Zθ2)(Φλθ2) = zλθ2 , zλθ2 = pλθ2 and (Zθ2) ∈
T (N r {E2},dom(Φ2)). Since all the function symbol operate on and return term of base
type and since all terms of Φ2 are base type, we can deduce that (Zθ2) ∈ N r {E2} and so
Zθ2 = pλθ2 with pλθ2 6∈ E1 (E1 = E2). Furthermore, since λθ1 = λθ2 |var1(D1) and var1(D1) =
var1(D2)r {z} where z is a fresh variable, then p is either a name or a variable and we have
that pλθ2 = pλθ1 . Hence, we have that:

(E1; {out(pλθ1 , c).Qλθ1} ] Pλθ1 ; Φ1λθ1)
νchn.out(Zθ2,chn)−−−−−−−−−−−−→i

(E1; (Qλθ1){c 7→ chn} ] Pλθ1 ; Φ1λθ1).

Since chn is fresh name, we have that (Qλθ1){c 7→ chn} = (Q{c 7→ chn})λθ1 . Hence,
we have that (E1;P ′1; Φ′1)

αsθ2−−−→i (E2;P ′2; Φ′2) where (E1;P ′1; Φ′1) (resp. (E2;P ′2; Φ′2) is the
θ1-concretization (resp. θ2-concretization) of (E1;P1; Φ1;D1) (resp. (E2;P2; Φ2;D2)). �

Proposition 5 (completeness). Let (E1;P1; Φ1;D1) be a symbolic process, (E1;P ′1; Φ′1) its θ1-
concretization where θ1 ∈ Sol((E1; Φ1;D1)). Let (E ;P; Φ) be an intermediate process such that
(E1;P ′1; Φ′1)

α−→i (E ;P; Φ). There exist a symbolic process (E2;P2; Φ2;D2), a substitution θ2, and a
symbolic action αs such that:

1. (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2);

2. θ2 ∈ Sol((E2; Φ2;D2));
3. the process (E ;P; Φ) is the θ2-concretization of (E2;P2; Φ2;D2); and
4. αsθ2 = α.

Proof. We prove this result by case analysis on the rule involved in the reduction step:

(E1;P ′1; Φ′1)
α−→i (E ;P; Φ).

In the following, we will denote by λθ1 (resp. λθ2) the first-order solution associated to θ1
(resp. θ2) and (E1; Φ1;D1) (resp. (E2; Φ2;D2)).
Case Theni. In such a case we have that E = E1 and there exist u′, v′, Q′1, Q′2, and P ′
such that u′ =E v′, P ′1 = {if u′ = v′ then Q′1 else Q′2} ] P ′, P = Q′1 ] P ′, Φ = Φ′1, and
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α = τ . Since (E1;P ′1; Φ′1) is the θ1-concretization of (E1;P1; Φ1;D1), we have that P ′1 = P1λθ1
and Φ′1 = Φ1λθ1 . Hence we deduce that that there exist u, v, Q1, Q2, and P0 such that P1 =
{if u = v then Q1 else Q2} ] P0, and thus we have that uλθ1 = u′, vλθ1 = v′, Q1λθ1 = Q′1,
Q2λθ1 = Q′2, and P0λθ1 = P ′. Let E2 = E1, P2 = Q1 ] P0, Φ2 = Φ1, D2 = D1 ∪ {u = v}, αs = τ
and θ2 = θ1. We have that:

1. (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2). Indeed, we have that

(E1; {if u = v then Q1 else Q2} ] P0; Φ1;D1)
αs−→s (E1;Q1 ] P0; Φ1;D1 ∪ {u = v}).

2. We have that var2(D2) = var2(D1), E2 = E1 and Φ2 = Φ1. To check that θ2 is a solution, it
remains to show that λθ2 satisfies the constraints inD2 = D1∪{u = v}. Actually we have that
λθ2 = λθ1 . Moreover, we have that uλθ1 =E vλθ1 , thus we deduce that θ2 ∈ Sol((E2; Φ2;D2)).

3. We have that
(E2;P2λθ2 ; Φ2λθ2) = (E1; (Q1 ] P0)λθ1 ; Φ1λθ1)

= (E ;Q′1 ] P ′; Φ′1)
= (E ;P; Φ).

4. We have that αsθ2 = αs = α.

The case of the rule Elsei can be done in a similar way.

Case Commi. In such a case we have that E = E1 and there exist p′, u′, x, Q′1, Q′2, and P ′
such that P ′1 = {out(p′, u′).Q′1; in(p′, x).Q′2} ] P ′, P = Q′1 ] Q′2{x 7→ u′} ] P ′, Φ = Φ′1, and
α = τ . Since (E1;P ′1; Φ′1) is the θ1-concretization of (E1;P1; Φ1;D1), we have that P ′1 = P1λθ1
and Φ′1 = Φ1λθ1 . Hence we deduce that that there exist u, p, q, Q1, Q2, and P0 such that
P1 = {out(p, u).Q1; in(q, x).Q2} ] P0, and thus we have that uλθ1 = u′, qλθ1 = pλθ1 = p′,
Q1λθ1 = Q′1, Q2λθ1 = Q′2, and P0λθ1 = P ′. Let E2 = E1, P2 = Q1 ] Q2{x 7→ u} ] P0, Φ2 = Φ1,
D2 = D1 ∪ {p =?

E q}, αs = τ , θ2 = θ1 and λθ2 = λθ1 . We have that:

1. (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2). Indeed, we have that

(E1; {out(p, u).Q1; in(q, x).Q2}]P0; Φ1;D1)
αs−→s (E1;Q1]Q2{x 7→ u}]P0; Φ1;D1∪{p =?

E q}).

2. Since E2 = E1, D2 = D1 ∪ {p =?
E q}, pλθ2 = qλθ2 and Φ2 = Φ1, we deduce that θ2 ∈

Sol((E2; Φ2;D2)).
3. We have that

(E2;P2λθ2 ; Φ2λθ2) = (E1; (Q1 ]Q2{x 7→ u} ] P0)λθ1 ; Φ1λθ1)
= (E ;Q′1 ]Q′2{x 7→ u′} ] P ′; Φ′1)
= (E ;P; Φ).

4. We have that αsθ2 = αs = α.

Case Ini. In such a case we have that E = E1, Φ = Φ′1 and there exist p′, x, Q′, P ′, M and u
such that p′ 6∈ E1, P ′1 = {in(p′, x).Q′} ] P ′, P = Q′{x 7→ u} ] P ′, MΦ′1 = u, fv(M) ⊆ dom(Φ′1),
fn(M) ∩ E1 = ∅, and α = in(p′,M). Since (E1;P ′1; Φ′1) is the θ1-concretization of (E1;P1; Φ1;D1),
we have that P ′1 = P1λθ1 , and Φ′1 = Φ1λθ1 . Hence, we deduce that there exist p, Q, P0 such that
P1 = {in(p, x).Q} ] P0 with pλθ1 = p′, Qλθ1 = Q′ and P0λθ1 = P ′.

Let Y and Z be two second order variables with ar(Y ) = ar(Z) = |Φ1| and y, z be two fresh
first-order variables. Let E2 = E1, P2 = Q{x 7→ y} ] P0, Φ2 = Φ1, D2 = D1 ∪ {Y B? y ;Z B?

z ; z =?
E p} and αs = in(Z, Y ). Let θ2 be the substitution such that θ2 = θ1 ∪ {Y 7→M ;Z 7→ p′}.

We have that:

1. (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2). Indeed, we have that

(E1; {in(p, x).Q} ] P0; Φ1;D1)
in(Z,Y )−−−−−→s

(E1;Q{x 7→ y} ] P0; Φ1;D1 ∪ {Y B? y ;Z B? z ; z =?
E p}).
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2. We have dom(θ2) = var2(D2) and fn(θ2) ∩ E2 = ∅ since fn(θ1) ∩ E1 = ∅, fn(M) ∩ E1 = ∅ and
p′ 6∈ E1. Furthermore, since fv(M) ⊂ dom(Φ1), p′ is a channel name and ar(Z) = ar(Y ) =
|Φ1|, we have that Zθ2, Y θ2 ∈ T (N r E2,dom(Φ1)).
Now, it remains to show that λθ2 satisfies the constraints in D2. Actually, we have that
λθ2 = λθ1 ∪ {y 7→ u ; z 7→ p′} where y, z were fresh variable. Thus it implies that Φ2λθ2 =
Φ2λθ1 , pλθ2 = pλθ1 which allows us to conclude since (Y θ2)(Φ2λθ2) = M(Φ2λθ1) = u = yλθ2 ,
(Zθ2)(Φ1λθ2) = Zθ2 = p′ = zλθ2 = pλθ2 .

3. We have that

(E2;P2λθ2 ; Φ2λθ2) = (E1;Q{x 7→ y}λθ2 ] P0λθ2 ; Φ1λθ1)
= (E1;Qλθ1{x 7→ u} ] P ′; Φ′1)
= (E ;Q′{x 7→ u} ] P ′; Φ)
= (E ;P; Φ).

4. We have that αsθ2 = in(Z, Y )θ2 = in(p′,M) = α.

Case Out-Ti. In such a case we have that E = E1 and there exist p′, u′, Q′, and P ′ such that
p′ 6∈ E1, P ′1 = {out(p′, u′).Q′} ] P ′, Φ = Φ′1 ∪ {wl B u′} where l = |Φ′1| + 1, P = Q′ ] P ′,
and α = νwl.out(p′, wl). Since (E1;P ′1; Φ′1) is the θ1-concretization of (E1;P1; Φ1;D1), we have
that P ′1 = P1λθ1 and Φ′1 = Φ1λθ1 . Hence, we deduce that there exist u, p, Q and P0 such that
P1 = {out(p, u).Q} ] P0, with uλθ1 = u′, pλθ1 = p′, Qλθ1 = Q′, and P0λθ1 = P ′.

Let Z be a second order variable with ar(Z) = |Φ1| and z be a fresh first order variable. Let
E2 = E1, P2 = Q ] P0, Φ2 = Φ1 ∪ {wl B u}, D2 = D1 ∪ {Z B? z ; z =?

E p}, αs = νwl.out(Z,wl)
and θ2 = θ1 ∪ {Z 7→ p′}. We have that:

1. (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2). Indeed, we have that

(E1; {out(p, u).Q} ] P0; Φ1;D1)
νwl.out(Z,wl)−−−−−−−−−→s

(E1;Q] P0; Φ1 ∪ {wl B u};D1 ∪ {Z B? z ; z =?
E p}).

2. We have dom(θ2) = var2(D2) and fn(θ2) ∩ E2 = ∅ since fn(θ1) ∩ E1 = ∅ and p′ 6∈ E1. Fur-
thermore, for all X ∈ var2(D1), we have that ar(X) ≤ |Φ1|. At last, since ar(Z) = |Φ1|
and Zθ2 = p′, we deduce that λθ2 = λθ1 ∪ {z 7→ p′}, zλθ2 = p′ = pλθ1 = pλθ2 and so
θ2 ∈ Sol((E2; Φ2;D2)).

3. We have that

(E2;P2λθ2 ; Φ2λθ2) = (E1;Qλθ1 ] P0λθ1 ; Φ1λθ1 ∪ {wl B uλθ1})
= (E ;Q′ ] P ′; Φ′1 ∪ {wl B u′})
= (E ;P; Φ)

4. We have that αsθ2 = νwl.out(Z,wl)θ2 = νwl.out(p′, wl) = α.

Case Out-Chi. In such a case we have that E = E1, Φ = Φ′1 and there exist p′, c′, Q′, and P ′
such that P ′1 = {out(p′, c′).Q′} ] P ′, P = Q′ ] P ′, Φ = Φ′1, p′, c′ 6∈ E1, and α = out(p′, c′). Since
(E1;P ′1; Φ′1) is the θ1-concretization of (E1;P1; Φ1;D1), we have that P ′1 = P1λθ1 and Φ′1 = Φ1λθ1 .
Hence, we deduce that there exist p, c, Q and P0 such that P1 = {out(p, c).Q}]P0 with cλθ1 = c′,
pλθ1 = p′, P0λθ1 = P ′ and Qλθ1 = Q′.

Let Z and Y be second order variables with ar(Y ) = ar(Z) = |Φ1| and z, y be fresh first order
variables. Let E2 = E1, P2 = Q ] P0, Φ2 = Φ1, D2 = D1 ∪ {Z B? z ;Y B? y ; z =?

E p ; y =?
E c},

αs = out(Z, Y ), and θ2 = θ1 ∪ {Z 7→ p′ ;Y 7→ c′}. We have that:

1. (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2). Indeed, we have that

(E1; {out(p, c).Q} ] P0; Φ1;D1)
out(Z,Y )−−−−−−→s

(E2;Q] P0; Φ1;D1 ∪ {Z B? z ;Y B? y ; z =?
E p ; y =?

E c}).
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2. First of all, we have dom(θ2) = var2(D2). Second, we know that p′ and c′ are both channel
names such that p′, c′ 6∈ E2 (E1 = E2). Thus, it implies that Zθ2, Y θ2 ∈ T (N rE2,dom(Φ2)).
Now, it remains to show that λθ2 satisfies the constraints in D2. Actually, we have that
λθ2 = λθ1 ∪ {y 7→ c′ ; z 7→ p′} where y,z were fresh variables. Thus it implies that Φ2λθ2 =
Φ2λθ1 , pλθ2 = pλθ1 and cλθ2 = cλθ1 which allows us to conclude since

• (Y θ2)(Φ2λθ2) = c′(Φ2λθ1) = c′ = yλθ2 and so yλθ2 = c′ = cλθ1 = cλθ2 ;

• (Zθ2)(Φ2λθ2) = p′(Φ2λθ1) = p′ = zλθ2 and so zλθ2 = p′ = pλθ1 = pλθ2 .

3. We have that
(E2;P2λθ2 ; Φ2λθ2) = (E1;Qλθ1 ] P0λθ1 ; Φ1λθ1)

= (E ;Q′ ] P ′; Φ′1)
= (E ;P; Φ)

4. We have that αsθ2 = out(Z, Y )θ2 = out(p′, c′) = α.

Case Open-Chi. In such a case we have that E = E1, Φ = Φ′1 and there exist p′, c, Q′, P ′
and a fresh channel name chn such that P ′1 = {out(p′, c).Q′} ] P ′, P = (Q′ ] P ′){c 7→ chn},
Φ = Φ′1, p′ 6∈ E1, c ∈ E1, and α = νchn.out(p, chn). Since (E1;P ′1; Φ′1) is the θ1-concretization of
(E1;P1; Φ1;D1), we have that P ′1 = P1λθ1 and Φ′1 = Φ1λθ1 . Hence, we deduce that there exist p,
Q and P0 such that P1 = {out(p, c).Q} ] P0 with pλθ1 = p′, P0λθ1 = P ′ and Qλθ1 = Q′.

Let Z be a second order variable with ar(Z) = |Φ1| and z be a fresh first order variable. Let
E2 = E1, P2 = (Q]P0){c 7→ chn}, Φ2 = Φ1, D2 = D1 ∪{Z B? z ; z =?

E p}, αs = νchn.out(Z, chn),
and θ2 = θ1 ∪ {Z 7→ p′}. We have that:

1. (E1;P1; Φ1;D1)
αs−→s (E2;P2; Φ2;D2). Indeed, we have that

(E1; {out(p, c).Q} ] P0; Φ1;D1)
νchn.out(Z,chn)−−−−−−−−−−→s

(E2; (Q] P0){c 7→ chn)}; Φ1;D1 ∪ {Z B? z ; z =?
E p}).

2. First of all, we have dom(θ2) = var2(D2). Second, we know that p′ is a channel name such
that p′ 6∈ E2 (E1 = E2). Thus, it implies that Zθ2 ∈ T (N r E2,dom(Φ2)). Now, it remains
to show that λθ2 satisfies the constraints in D2. Actually, we have that λθ2 = λθ1 ∪{z 7→ p′}
where z is a fresh variables. Thus it implies that Φ1λθ2 = Φ1λθ1 and pλθ2 = pλθ1 which allows
us to conclude since (Zθ2)(Φ1λθ2) = p′(Φ1λθ1) = p′ = zλθ2 and so zλθ2 = p′ = pλθ1 = pλθ2 .

3. We have that

(E2;P2λθ2 ; Φ2λθ2) = (E1; (Qλθ1 ] P0λθ1){c 7→ chn}; Φ1λθ1)
= (E ; (Q′ ] P ′){c 7→ chn}; Φ′1)
= (E ;P; Φ)

4. We have that αsθ2 = νchn.out(Z, chn)θ2 = νchn.out(p′, chn) = α. �

D. Decidability of trace equivalence for standard primitives

We denote by st(t) the subterms of t. The equationnal theory E0 defined in Section 7.3 satisfies
the following properties:

Proposition 9. Let u and v be two ground terms, we have that:

1. fail ∈ st(u) implies u =E0
fail

2. fail 6∈ st(u) and valid(u), if and only if, u 6=E0
fail

3. if valid(u),valid(v) and fail 6∈ st(u, v) then u↓ = v↓, if and only if, u =E0
v.
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Intuitively, in [20], the messages that are exchanged during an execution have to be valid. In
order to fall into the class of constraint systems they consider, we have to restrict the class of
processes we consider. From now on, we only consider plain intermediate processes that are valid,
i.e. those that are generated using the following grammar (instead of using the grammar of plain
intermediate processes that is given in Section 5.1).

P,Q,R := 0
| if M1 = M2 and fail 6= M1 and fail 6= M2 then P else Q
| in(u, x).if x = fail then 0 else P
| if N = fail then 0 else out(u,N).P

where u is a metavariable of channel type, M1,M2 are terms having the same type, x is a variable
of any type, N is a term of any type, and P (resp.Q) is a multiset of plain intermediate processes
that are valid. Moreover, we assume that the constant fail does not occur in M1,M2 and N .
Then, a valid intermediate processes is defined in a similar way as an intermediate processes
but considering plain intermediate processes that are valid. The logical connector and and the
disequations 6= are syntactic sugar that can be easily encoded using nested conditionals. However,
when such an instruction is transformed into constraint systems, we obtain four constraint systems
instead of the more usual two (one when the test fails and one when it succeeds). Thus, for
sake of clarity in the proof, we will assume that if u = v and u 6= fail and v 6= fail adds the
formula (u =?

E0
v ∧ u 6=?

E0
fail ∧ v 6=?

E0
fail) in the constraint system for the rule Thens and

(u 6=?
E0
v ∨ u =?

E0
fail ∨ v =?

E0
fail) for the rule Elses.

We can now state some properties that are satisfied by any constraint system issued from a
valid intermediate process.

Proposition 10. Let A be a valid intermediate process. Let tr be a trace and let Σ be the set of
constraint systems such that (tr,Σ) ∈ traces(As) where As is the symbolic process associated to A.
For all C = (E ,Φ,D) ∈ Σ, we have that:

• for every (X B? x) ∈ D, either (x 6=?
E0

fail) ∈ D or x does not appear anywhere else in C
unless possibly in an equation (x =?

E0
fail) ∈ D;

• for every (wi B u) ∈ Φ, we have (u 6=?
E0

fail) ∈ D and fail 6∈ st(u);

• the element in D are either deducibility constraints, or are of the form (x =?
E0

fail), (u 6=?
E0

fail), (u =?
E0

v ∧ u 6=?
E0

fail ∧ v 6=?
E0

fail) or (u 6=?
E0

v ∨ u =?
E0

fail ∨ v =?
E0

fail), for some
variable x and some terms u,v that do not contain fail;

Since the algorithm in [20] does not consider constants, the idea is to represent the constant
fail as a public nonce. For this purpose, we introduce a special nonce nfail that will be used for
defining our transformation Tr(·) that will allows us to transform two sets of constraint systems
Σ and Σ′ issued from valid intermediate processes into two sets Tr(Σ) and Tr(Σ′) of constraint
systems such that:

Σ ≈s Σ′ in E0 ⇔ Tr(Σ) ≈s Tr(Σ′) using the algorithm in [20]

Let C = (E ; Φ;D) be a constraint system issued from a valid intermediate process. The trans-
formation Tr(C) consists of removing or replacing (dis)equations of the form u =?

E0
fail (resp.

u 6=?
E0

fail). More precisely,

• we remove from C each equation (resp. disequation) of the form u =?
E0

fail (resp. u 6=?
E0

fail)
that corresponds to the additional check performed before an output;

• we remove from C the two disequations of the form u 6=?
E0

fail that correspond to the addi-
tional checks performed to pass a positive test;
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• we remove from C the two equations of the form u =?
E0

fail that correspond to the checks
performed to pass a negative test (more formally the equations are replaced by “false”);

• we remove from C each equation of the form x =?
E0

fail that corresponds to the additional
check performed after an input.

• we replace each disequation of the form x 6=?
E0

fail that corresponds to the additional check
performed after an input with x 6=? nfail.

We will denote Tr(Σ) the sets of constraint systems obtained by applying the transformation
on each constraint system in Σ.

Therefore, the decision procedure for deciding trace equivalence on valid processes works as
follows: We consider each symbolic trace trs

• Compute (in polynomial time) the sets of constraint systems Σ and Σ′ such that (trs,Σ) ∈
traces(As) and (trs,Σ

′) ∈ traces(Bs);

• Check whether Tr(Σ) and Tr(Σ′) are in symbolic equivalence using the algorithm in [20].

If there is a symbolic trace for which the two resulting sets of constraint systems are not in symbolic
equivalence then return no, otherwise return yes.

We have already shown in Section 7.1 that two intermediate processes A and B are in trace
equivalence if, and only if A and B are in symbolic trace equivalence (see Proposition 6). It
remains to show that the algorithm proposed in [20] allows one to decide symbolic equivalence
between our sets of constraint systems.

Actually, the algorithm proposed in [20] allows one to decide a notion of symbolic equivalence
that is defined in the same way than ≈s replacing Sol(C) with Solvalid(C) and ∼ with ∼valid. We
denote ≈valid

s this notion of symbolic equivalence (namely valid symbolic equivalence) and the
definitions of Solvalid(C) and ∼valid are given below:

Definition 20. A valid solution of a constraint system C = (E ; Φ;D) is a substitution θ such that:

• dom(θ) = var2(C), and

• Xθ ∈ T (N+ r {E}, {w1, . . . , wk}) using function symbols in Fc ] Fd for any X ∈ dom(θ)
with ar(X) = k.

Moreover, we require that there exists a closed substitution λ with dom(λ) = var1(C) such that:

1. for every (X B? x) ∈ D, (Xθ)(Φλ) = xλ and valid(xλ);
2. for every (wi B u) ∈ Φ, valid(uλ);
3. for every (s =? s′) ∈ D, sλ↓ = s′λ↓, valid(sλ) and valid(s′λ);
4. for every (s 6=? s′) ∈ D, sλ↓ 6= s′λ↓, or ¬valid(sλ), or ¬valid(s′λ).

where N+ = N ] {nfail}. The set of valid solutions of a constraint system C is denoted Solvalid(C).

Definition 21. A term M is valid in a frame φ, written (valid(M))φ, if there exists ñ and a
substitution σ such that φ ≡ νñ.σ, ñ ∩ fn(M) = ∅, and valid(Mσ).

Two terms M and N are equal in a frame φ, written (M =↓ N)φ, if there exists ñ and a
substitution σ such that φ ≡ νñ.σ, ñ ∩ (fn(M) ∪ fn(N)) = ∅, and Mσ↓ = Nσ↓.

Two closed frames φ1 and φ2 are in valid static equivalence, denoted φ1 ∼valid φ2, when:

• dom(φ1) = dom(φ2), and

• for all term M , we have that valid(M)φ1, if and only if, valid(M)φ2, and

• for all term M,N such that valid(M)φ1, valid(N)φ1, we have that (M =↓ N)φ1, if and only
if, (M =↓ N)φ2.
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We first establish a lemma that allows us to show that static equivalence coincides with
valid static equivalence when the frames do not involved the special constant fail and the spe-
cial name nfail.

Lemma 6. Let φ1 and φ2 be two closed frames in which the constant fail and the name nfail do
not occur. We have that:

φ1 ∼ φ2, if and only if, φ1 ∼valid φ2

Proof. We prove the two implications separately.

First implication: φ1 ∼ φ2 implies φ1 ∼valid φ2. Since φ1 ∼ φ2, we have that dom(φ1) = dom(φ2).
Let M be a term such that valid(M)φ1. We assume w.l.o.g. that nfail 6∈ fn(M). Indeed, since

nfail does not occur in φ1 and φ2, we have that valid(M)φ1 ⇔ valid(M ′)φ1 and valid(M)φ2 ⇔
valid(M ′)φ2 where M ′ = M{a/nfail

} for some fresh name a. So, we can assume w.l.o.g. that
nfail 6∈ fn(M). By definition of valid(M)φ1, we have that there exists ñ1 and a substitution σ1 such
that φ1 ≡ νñ1.σ1, ñ1 ∩ fn(M) = ∅ and valid(Mσ1). Moreover, we can assume that the constant
fail and the name nfail do not occur in νñ1.σ1. Hence, we have that nfail 6∈ fn(Mσ1). Furthermore,
valid(Mσ1) implies that Mσ1 is a ground term. Thus, by Proposition 9 (item 2), we have that
¬(M =E0

fail)φ1.

By hypothesis, we can deduce that ¬(M =E0
fail)φ2 and so for any ñ2 and substitution σ2 such

that φ2 ≡ νñ2.σ2, and ñ2 ∩ fn(M) = ∅, we have that valid(Mσ2) and so valid(M)φ2.
Let M and N two terms such that valid(M)φ1 and valid(N)φ1. Assume that (M =↓ N)φ1.

Once again, we assume w.l.o.g. that nfail 6∈ fn(M,N). In such a case, there exists ñ1 and a
substitution σ1 such that φ1 ≡ νñ1.σ1, ñ1 ∩ (fn(M) ∪ fn(N)) = ∅ and Mσ1↓ = Nσ1↓. Hence,
we have that valid(Mσ1), valid(Nσ1), and Mσ1↓ = Nσ1↓ which means that (M =E0 N)φ1. Thus
our hypothesis implies that (M =E0

N)φ2 and so there exists ñ2, a substitution σ2 such that
φ2 ≡ νñ2.σ2, ñ2∩(fn(M)∪ fn(N)) = ∅ andMσ2 =E0

Nσ2. Moreover, we can assume w.l.o.g. that
fail does not occur in σ2. We have that Mσ2 and Nσ2 are ground terms and fail does not occur in
these terms. But by our hypothesis, we know that valid(M)Φ1 and valid(N)Φ1. We already proved
that it implies valid(M)Φ2 and valid(N)Φ2, thus we have valid(Mσ2) and valid(Nσ2). Thanks to
Proposition 9 (item 3), we deduce that: Mσ2 =E0

Nσ2 implies that Mσ2↓ = Nσ2↓. We can
conclude that (M =↓ N)φ2.

Second implication: φ1 ∼valid φ2 implies φ1 ∼ φ2. Let M , N two terms such that (M =E0 N)φ1.
By definition, there exists ñ and a substitution σ1 such that φ1 ≡ νñ1.σ1, ñ1∩(fn(M)∪fn(N)) = ∅
and Mσ1 =E0

Nσ1. We can assume w.l.o.g. that the constant fail and the name nfail do not occur
in νñ1.σ1. We prove that (M =E0

N)φ1 implies that (M =E0
N)φ2 by induction on the proof tree

witnessing the equality Mσ1 =E0 Nσ1.

• Case Mσ1 and Nσ1 are ground term such that valid(Mσ1), valid(Nσ1), and Mσ1↓ = Nσ1↓.
Thus we have that valid(M)φ1, valid(M)φ1 and (M =↓ N)φ1. Thanks to our hypothesis,
we can deduce that valid(M)φ2, valid(M)φ2 and (M =↓ N)φ2, so there exists ñ2 and a
substitution σ2 such that φ2 ≡ νñ2.σ2, ñ2 ∩ (fn(M) ∪ fn(N) ∪ {nfail}) = ∅, Mσ2↓ = Nσ2↓,
valid(Mσ2) and valid(Nσ2). Therefore, by definition of =E0 , we have that Mσ2 =E0 Nσ2,
and so (M =E0 N)φ2.

• Case Mσ1 is a ground term with ¬valid(Mσ1) and N = fail. If fail occurs inMσ1, then since
fail does not occur in σ1, we have that fail occur in M . Thus, for any ñ2 and substitution
σ2 such that φ2 ≡ νñ2.σ2 and ñ2 ∩ fn(M) = ∅, we have that fail occurs in Mσ2 and so
(M =E0 fail)φ2, by Proposition 9 (item 1). Otherwise ¬valid(Mσ1) and so ¬valid(M)φ1.
Thus by our hypothesis, we deduce that ¬valid(M)φ2 and so for any ñ2 and substitution
σ2 such that ñ2 ∩ fn(M) = ∅, we have that ¬valid(Mσ2) and Mσ2 is a ground term, which
means that Mσ2 =E0

fail, and so (M =E0
fail)φ2.

The inductive cases (transitivity, closure by application of a context) are straightforward. �
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Now, it remains to establish the link between the two definitions of solution of a constraint
system. Proposition 10 gives us several properties that are satisfied by the constraint systems
we are considering. Actually, we can consider constraint systems that satisfy stronger proper-
ties. Consider, for example, the process P = in(u, x).if x = fail then 0 else P, for the symbolic
labeled trace in(X,Y ), our algorithm produces (at least) the following constraint systems:

• C1 with D1 = {X B? u};

• C2 with D2 = {X B? u; x =?
E0

fail}; and

• C3 with D3 = {X B? u; x 6=?
E0

fail}.

The only difference between D2 and D1 is the addition of x =?
E0

fail, thus we have that Sol(C2) ⊆
Sol(C1). Furthermore, by definition of the transformation, we have that Tr(C1) = Tr(C2). For
these reasons, we will not consider constraint system like D2. This is formally stated below:

Proposition 11. Let A be a valid intermediate process, tr be a trace and Σ be the set of constraint
systems such that (tr,Σ) ∈ traces(As) where As is the symbolic process associated to A. For all
C ∈ Σ, there exists a constraint system C′ = (E ′; Φ′;D′) such that Tr(C) = Tr(C′) and Sol(C) ⊆
Sol(C′) that satisfies the following properties:

• for every (X B? x) ∈ D′, either (x 6=?
E0

fail) ∈ D′ or x does not appear anywhere else in C′;

• for every (wi B u) ∈ Φ′, we have (u 6=?
E0

fail) ∈ D and fail 6∈ st(u);

• the element in D′ are either deducibility constraints, or are of the form (u 6=?
E0

fail), (u =?
E0

v∧u 6=?
E0

fail∧ v 6=?
E0

fail) or (u 6=?
E0
v∨u =?

E0
fail∨ v =?

E0
fail), for some variable x and some

terms u,v that do not contain fail;

• for all (u 6=?
E0

fail) ∈ D′, either u is a variable and there exists (X B? u) ∈ D′, or there exist
(wi B u) ∈ Φ′.

A constraint system that satisfies the four properties stated above is a valid constraint system.

With this notion of valid constraint system, we can now state and prove the two following
lemmas that allow us to establish the link between the two notions of solutions.

Lemma 7. Let C = (E ; Φ;D) be a valid constraint system (satisfies all the properties given in
Proposition 11). Let θ ∈ Sol(C), λ be the first-order solution associated to θ and C, and θ′ be the
substitution defined as follows:

• dom(θ) = dom(θ′), and

• Xθ′ = nfail, for every X such that (Xθ)(Φλ) =E0
fail, and

• Xθ′ = Xθ otherwise.

We have that θ′ ∈ Solvalid(Tr(C)) and if λ′ is the first order solution associated to Tr(C) and θ′,
then xλ′ = nfail for every x ∈ vars(C) such that xλ =E0

fail, and xλ′ = xλ otherwise. Moreover,
we have that Φλ = Φλ′.

Proof. We have that for all X ∈ dom(θ) with ar(X) = k, Xθ ∈ T (F ∪ N r {E}, {w1, . . . , wk}).
We first show that Xθ′ is built using function symbols in Fc ∪ Fd, names in (N ∪ {nfail}) r {E},
and variables in {w1, . . . , wk}. Assume that the constant fail occurs in Xθ. In such a case, by
Proposition 9 (item 1), we have that (Xθ)(Φλ) =E0 fail which means that Xθ′ = nfail. Thus, if
(Xθ)(Φλ) 6=E0

fail, we have that fail does not occur in Xθ which allows us to conclude.

Let λ′ the substitution such that xλ′ = xλ if xλ 6=E0
fail, and xλ′ = nfail otherwise. By

Proposition 11, we know that for all (X B? x) ∈ D, either x does not occur in Φ, or there exists
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(x 6=?
E0

fail) ∈ D, and in such a case, we have that xλ 6=E0
fail. Thus, for all (X B? x) ∈ D,

xλ =E0 fail implies that x 6∈ vars(Φ). Thus, for all x 6∈ vars(Φ), we have that xλ = xλ′ and so
we deduce that Φλ = Φλ′. From this, we can deduce that for all X such that (Xθ)(Φλ) 6=E0 fail,
we have (Xθ′)(Φλ′) = (Xθ)(Φλ) = xλ = xλ′. At last, xλ 6=E0

fail implies that valid(xλ) and so
valid(xλ′).

By definition of θ′, we have that Xθ′(Φλ′) = nfail = xλ′ when xλ =E0 fail and we have that
valid(xλ′), for all (X B? x) ∈ D.

Let (wi B u) ∈ Φ. By Proposition 11, there exists (u 6=?
E0

fail) ∈ D. Since θ ∈ Sol(C), we
deduce that valid(uλ). For each x ∈ vars(u), we have that x 6=E0

fail in D, and so we have that
xλ′ = xλ. This allows us to conclude that valid(uλ′).

Let (u =? v) ∈ Tr(C). By definition of Tr(C), either v = nfail and u is a variable, or else there
exists (u =?

E0
v ∧ u 6=?

E0
fail ∧ v 6=?

E0
fail) ∈ D. If v = nfail and u is a variable, then there exists

(X B? u) ∈ D with Xθ′ = nfail and uλ′ = nfail (indeed, in such a situation, we have that u =?
E0

fail
in D, and so (Xθ)(Φλ) = uλ = fail). Hence, we have that uλ′ = nfail and valid(uλ′). Assume
now that there exists (u =?

E0
v ∧ u 6=?

E0
fail ∧ v 6=?

E0
fail) ∈ D. Since θ ∈ Sol(C), we deduce that

uλ =E0 vλ, uλ 6=E0 fail and vλ 6=E0 fail. By Proposition 9 (item 2), we uλ 6=E0 fail and vλ 6=E0 fail
imply that valid(uλ) and valid(vλ). Thus, by Proposition 9 (item3) and since uλ =E0 vλ, we
deduce that uλ′↓ = vλ′↓.

Let (u 6=? v) ∈ Tr(D). By definition of Tr(C), either v = nfail and u is a variable, or else there
exist (u 6=?

E0
v ∨ u =?

E0
fail ∨ v =?

E0
fail) ∈ D. If v = nfail and u is a variable, then there exists

(X B? u) ∈ D with Xθ′ = Xθ and uλ′ = uλ. Since nfail 6∈ st(uλ), we can deduce that uλ′↓ 6= nfail.
Assume now that there exists (u 6=?

E0
v ∨ u =?

E0
fail ∨ v =?

E0
fail) ∈ D. In such a case, θ ∈ Sol(C)

implies that uλ 6=E0
vλ, or uλ =E0

fail or vλ =E0
fail. Once again, by Proposition 9 (item 2) and 9

(item 3), we have that uλ′↓ 6= vλ′↓, or ¬valid(uλ′) or ¬valid(uλ′).
This conclude the proof of θ′ ∈ Solvalid(Tr(C)) and Φλ = Φλ′. �

Lemma 8. Let C = (E ,Φ,D) be a valid constraint system (satisfies all the properties given in
Proposition 11). Let θ ∈ Solvalid(Tr(C)) and let λ be the first order solution associated to θ and
Tr(C). Let θ′ be the substitution that is defined as follows (where a is a fresh name in N ):

• dom(θ) = dom(θ′), and

• Xθ′ = fail, for every X such that (Xθ)(Φλ)↓ = nfail, and

• Xθ′ = Xθ{a/nfail
} otherwise.

We have that θ′ ∈ Sol(C) and if λ′ is the first order solution associated to θ′ and C, we have that
xλ′ = xλ{a/nfail

} for every x such that xλ↓ 6= nfail, and xλ′ = fail otherwise. Moreover, we have
that Φλ′ = Φλ{a/nfail

}.

Proof. Since θ ∈ Sol(Tr(C)), we have that for all X ∈ dom(θ) with ar(X) = k, we have Xθ is built
using function symbols in Fc ∪ Fd, names in (N ∪ {nfail}) r {E}, and variables in {w1, . . . , wk}.
By definition of θ′, for all X, we have that each occurence of nfail in Xθ is either replace with the
fresh name a, or else Xθ′ = fail. Hence, we have that Xθ′ is built using function symbols in F ,
names in N r {E}, and variables in {w1, . . . , wk}.

Let λ′ be the substitution such that xλ′ = xλ{a/nfail
} for every x such that xλ↓ 6= nfail, and

xλ′ = fail otherwise. We know that nfail does not occur in C. Furthermore, by Proposition 11
and the definition of Tr(C), we know that for all (X B? x) ∈ Tr(D), either x does not occur
in Φ or there exists (x 6=?

E0
nfail) ∈ Tr(D). But θ ∈ Sol(C) which means that for each x that

occurs in Φ, we have that xλ↓ 6= nfail and so xλ′ = xλ{a/nfail
}. Hence, we can conclude that

Φλ′ = Φλ{a/nfail
} and for all (X B? x) ∈ Tr(D), (Xθ)(Φλ)↓ 6= nfail implies that (Xθ′)(Φλ′) =

(Xθ{a/nfail
})(Φλ{a/nfail

}) = (Xθ)(Φλ){a/nfail
} = xλ{a/nfail

} = xλ′.
By definition of our transformation, we know that the element of D are either constraints, or

are of the form (u =?
E0

fail), (u 6=?
E0

fail), (u =?
E0
v ∧ u 6=?

E0
fail ∧ v 6=?

E0
fail) or (u 6=?

E0
v ∨ u =?

E0

fail ∨ v =?
E0

fail), for some terms u,v that do not contain fail. We consider each case separately:
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• (u 6=?
E0

fail) ∈ D. In such a case, we have that either u is a variable and there exists
(X B? u) ∈ D, or there exist (wi B u) ∈ Φ, thanks to Proposition 11. In both cases,
θ ∈ Solvalid(Tr(C)) implies valid(uλ). In the first case, the definition of Tr(C) tells us that
there exists (u 6=? nfail) ∈ Tr(D) which means that uλ↓ 6= nfail and so uλ′ = uλ{a/nfail

}. In
the case where (wi B u) ∈ D, we have already proved that uλ′ = uλ{a/nfail

}. Thus, in both
cases, we have that uλ′ = uλ{a/nfail

}. We know that uλ 6=E fail, and thus uλ′ 6=E fail.

• (u =?
E0
v∧u 6=?

E0
fail∧v 6=?

E0
fail) ∈ D. By definition of Tr(C), we know that there exists (u =?

v) ∈ Tr(D). Since θ ∈ Solvalid(Tr(C)), we can deduce that uλ↓ = vλ↓ ∧ valid(uλ)∧ valid(vλ).
Hence, we deduce that uλ{a/nfail

}↓ = vλ{a/nfail
}↓, valid(uλ{a/nfail

}), and valid(vλ{a/nfail
}).

Hence, we have that uλ′↓ = vλ′↓ ∧ valid(uλ′) ∧ valid(vλ′).

By Proposition 11, we have that fail 6∈ st(u, v) and since for all x ∈ st(u, v), we have
xλ′ = xλ{a/nfail

}, we can deduce that nfail 6∈ st(uλ′, vλ′). Furthermore, by Proposition 9
(item 3), we can deduce that uλ′ =E vλ

′. At last, by Proposition 9 (item 2), we deduce that
uλ′ 6=E fail and vλ′ 6=E fail.

• (u 6=?
E0
v ∨ u =?

E0
fail ∨ v =?

E0
fail) ∈ D. The proof is similar to the previous case.

This conclude our proof that θ ∈ Sol(C) and Φλ′ = Φλ{a/nfail
}. �

Theorem 8. Let A and B two valid intermediate processes, and tr be a sequence of actions. Let
Σ and Σ′ be two sets of constraint systems such that (tr,Σ) ∈ traces(As) and (tr,Σ′) ∈ traces(Bs)
where As and Bs are the symbolic processes associated to A and B. We have that:

Σ ≈s Σ′, if and only if, Tr(Σ) ≈valid
s Tr(Σ′)

Proof. We prove the two directions separately.

First implication: Tr(Σ) ≈valid
s Tr(Σ′) implies that Σ ≈s Σ′. Let C = (E ; Φ;D) be a constraint

system such that C ∈ Σ. Let θ ∈ Sol(C). By Proposition 11, we can assume w.l.o.g. that C is a
valid constraint system. Let λ be the first order solution associated to θ and C. Let θvalid be the
substitution that is defined as follows:

• dom(θvalid) = dom(θ), and

• Xθvalid = nfail, for every X such that (Xθ)(Φλ) =E0 fail, and

• Xθvalid = Xθ otherwise.

By Lemma 7, we know that θvalid ∈ Solvalid(Tr(C)) and if λvalid is the first order solution associated
to θvalid and Tr(C), then we have xλvalid = nfail for every x ∈ vars(C) such that xλ =E0 fail,
and xλvalid = xλ otherwise. Moreover, we have that Φλ = Φλvalid. Since by hypothesis we
know that Tr(Σ) ≈valid

s Tr(Σ′), we deduce that there exists C′ = (E ′; Φ′;D′) ∈ Σ′ such that
θvalid ∈ Solvalid(Tr(C′)) and if λ′valid is the first order solution associated to θvalid and Tr(C′), then
Φλvalid ∼valid Φ′λ′valid. By Proposition 11, we can assume w.l.o.g. that C′ is a valid constraint
system By definition of θvalid, we know that for all (X B? x) ∈ D′, either Xθvalid = nfail or nfail does
not occur in Xθvalid. If Xθvalid = nfail, it implies that there is no disequation x 6=?

E0
nfail in D′. Thus

by definition of Tr(C′) and by Proposition 11, we deduce that if Xθvalid = nfail, then x only occurs
once in C′, which means that x 6∈ st(Φ′). Furthermore, by Proposition 11 and definition of Tr(C′),
we know that for all (wi B u) ∈ Φ′, nfail 6∈ st(u). Thus, we can deduce that xλ′valid{a/nfail

} = xλ′valid,
for every x such that xλ′valid 6= nfail; and Φ′λ′valid{a/nfail

} = Φ′λ′valid. At last, it allows us to prove
that (Xθvalid)(Φ

′λ′valid)↓ = nfail implies that Xθvalid = nfail.
Thus, by Lemma 8, we deduce that θ′ ∈ Sol(C′) where θ′ is defined such that:

• dom(θvalid) = dom(θ′)

• Xθ′ = fail for every X such that Xθvalid = nfail, and
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• Xθ′ = Xθvalid{a/nfail
} = Xθvalid.

Furthermore, if λ′ is the first order solution associated to θ′ and C′, we have that

xλ′ = xλ′valid{a/nfail
} = xλ′valid, for every xλ

′
valid 6= nfail, and xλ′ = fail otherwise.

Moreover, we have Φ′λ′ = Φ′λ′valid{a/nfail
} = Φ′λ′valid.

Thus Φλvalid ∼valid Φ′λ′valid implies that Φλ ∼valid Φ′λ′. We know that nfail 6∈ st(Φ′λ′) ∪ st(Φλ).
But by Proposition 11, we also know that for all (X B? x) ∈ D (resp D′) such that x ∈ st(Φ)
(resp. st(Φ′)), there exists x 6=?

E0
fail ∈ D (resp. D′). Since θ (resp θ′) is solution of C (resp. C′),

we can deduce that xλ 6=E0
fail (resp. xλ′ 6=E0

fail). Thus, by Proposition 9 (item 2), we can
deduce that fail 6∈ st(xλ) (resp. st(xλ′)) and so fail 6∈ st(Φ′λ′) ∪ st(Φλ). By applying Lemma 6,
we deduce that Φλ ∼ Φ′λ′.

Let (X B? x) ∈ D′. We know that either x only occur once in C′ or there exists (x 6=?
E0

fail) ∈ D′.
But when Xθ′ = fail and θ′ ∈ Sol(C′) implies xλ′ =E0 fail and so x only occurs once in C′. Thus, in
such a case, since there is no restriction on x other than the recipe Xθ′, we can replace Xθ′ = fail
by any other recipe and the replacement will still be a solution of C′. Thus, we can replace fail by
Xθ, which means that if we denote λ′′ the substitution such that xλ′′ = xλ′ for every x such that
xλ′ 6=E0 fail, and xλ′′ = (Xθ)(Φ′λ′) otherwise, then we have that θ ∈ Sol(C′) and λ′′ is the first
order solution associated to θ and C′, and we have also that Φ′λ′′ = Φ′λ′. We can now conclude
that θ ∈ Sol(C′) and Φλ ∼ Φ′λ′′.

Second implication: Σ ≈s Σ′ implies Tr(Σ) ≈valid
s Tr(Σ′). Let C = (E ; Φ;D) be a constraint system

in Σ and θvalid ∈ Solvalid(Tr(C)) and λvalid be the first order solution associated to θvalid and Tr(C).
By Proposition 11, we can assume w.l.o.g. that C is a valid constraint system. Let a be a fresh
name in N (i.e. a doesn’t appears in Σ or Σ′) and let θ be the substitution such that:

• dom(θ) = dom(θvalid), and

• Xθ = fail, for every X such that (Xθvalid)(Φλvalid)↓ = nfail, and

• Xθ = Xθvalid{a/nfail
} otherwise.

By Lemma 8, we have that θ ∈ Sol(C) and if λ is the first order solution associated to θ and C,
we have that xλ = xλvalid{a/nfail

} for every x such that xλvalid↓ 6= nfail, and xλ = fail otherwise.
Moreover, we have that Φλ = Φλvalid{a/nfail

}.
Since Σ ≈s Σ′, we know that there exists C′ = (E ′; Φ′;D′) ∈ Σ′ such that θ ∈ Sol(C′) and

if λ′ is the first order solution associated to C′ and θ, then Φλ ∼ Φ′λ′. By Proposition 11, we
can assume w.l.o.g. that C′ is a valid constraint system. But by Proposition 11, we know that
fail, nfail 6∈ st(Φ′). Furthermore, for all x ∈ st(Φ′), we also know that there exists (x 6=?

E0
fail) ∈ D′

and so xλ′ 6=E0 fail. Thus, by Proposition 9 (item 1), we have that fail 6∈ st(xλ′). Thus, we can
apply Lemma 6 to deduce that Φλ ∼valid Φ′λ′. But a does not appear in Φ′ (a was fresh) and
a, nfail are public names in Φλ and Φ′λ′. Since the static equivalence is closed under one-to-one
renaming, we can deduce that Φ(λ{nfail/a}) ∼valid Φ′(λ′{nfail/a}) and so Φλvalid ∼valid Φ′(λ′{nfail/a}).

Applying Lemma 7, we know that θ′valid ∈ Solvalid(Tr(C′)) where θ′valid is defined as follows:

• dom(θ′valid) = dom(θ);

• Xθ′valid = nfail, for every X such that (Xθ)(Φ′λ′) =E0
fail, and

• Xθ′valid = Xθ otherwise.

Furthermore, if λ′valid is the first order solution associated to θ′valid and Tr(C′), we have that xλ′valid =
nfail for every x ∈ vars(C′) such that xλ′ =E0 fail, and xλ′valid = xλ′ otherwise. Moreover, we have
that Φ′λ′valid = Φ′λ′.

Let (X B? x) ∈ D and (X B? y) ∈ D′ such that (Xθ)(Φ′λ′) =E0
fail. Since Φλ ∼ Φ′λ′, we have

that (Xθ)(Φλ) =E0
fail. By definition of θ, we know that either Xθ = fail or Xθ = Xθvalid{a/nfail

}.
We show that in fact the case Xθ = Xθvalid{a/nfail

} is not possible:
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Assume that Xθ = Xθvalid{a/nfail
} and Xθ 6= fail. Since θvalid ∈ Solvalid(Tr(C)), we can deduce

that valid(xλvalid). Moreover our rewrite rule doesn’t contain any name, which means that we
also have valid(xλvalid{a/nfail

}). Since we assumed that Xθ 6= fail, we have that xλvalid↓ 6= nfail
by definition of θ and so xλ = xλvalid{a/nfail

}. Thus, we have that valid(xλ). At last, since
fail 6∈ st(Xθ) and fail 6∈ st(Φλvalid{a/nfail

}) = st(Φλ), we can conclude, thanks to Proposition 9
(item 2), that xλ 6=E0

fail. Since by hypothesis, we assumed that xλ = (Xθ)(Φλ) =E0
fail, there is

a contradiction.
We deduce that (Xθ)(Φ′λ′) =E0 fail implies that Xθ = fail and so (Xθvalid)(Φλvalid)↓ = nfail. By

the construction of θ and θ′valid, it implies that Xθ′valid = Xθvalid{a/nfail
}, when (Xθvalid)(Φλvalid)↓ 6=

nfail. On the other hand, we have that Xθ′valid = nfail when (Xθvalid)(Φλvalid)↓ = nfail.
We want to show that θvalid ∈ Solv(Tr(C′)) and if λ′′valid is the first order solution associated to

Tr(C′) and θvalid, we have that xλ′′valid = xλ′valid{nfail/a}, for every x such that xλvalid↓ 6= nfail.
Let (X B? x) ∈ Tr(C′) such that (x 6=? nfail) ∈ Tr(C′). We showed earlier that either

Xθ′valid = Xθvalid{a/nfail
} or Xθ′valid = nfail. Since θ′valid is solution of Tr(C′), we can deduce that

Xθ′valid = Xθvalid{a/nfail
}.

But a does not occur in Σ′, nfail does not occur in Φ′ and by Proposition 11, for all x ∈ st(Φ′),
(x 6=? nfail) ∈ Tr(C′). Thus for all (X B? x) ∈ Tr(C′) such that x 6=? nfail ∈ Tr(C′), we have
that xλ′valid{nfail/a} = (Xθ′valid)(Φ

′λ′valid){nfail/a} and so xλ′valid{nfail/a} = (Xθvalid)(Φ
′λ′valid{nfail/a}) =

(Xθvalid)(Φ
′λ′′valid).

It remains to show that θvalid and λ′′valid satisfies the disequations. We know that nfail only occurs
in the disequations of the form x 6=? nfail. Since θ′valid ∈ Sol(Tr(C′)), we know that xλ′valid↓ 6= nfail
but it doesn’t implies that xλ′valid{nfail/a}↓ 6= nfail. However, we have that Φλvalid ∼valid Φ′λ′{nfail/a}
and so Φλvalid ∼valid Φ′λ′′valid. Thus, (Xθvalid)(Φλvalid)↓ 6= nfail implies that (Xθvalid)(Φ

′λ′′valid)↓ 6= nfail.
For any constraint (X B? x) ∈ Tr(C′) such that (x 6=? nfail) 6∈ Tr(C′), thanks to Proposition 11,

we know that x occurs once in Tr(C′) and so there is no constraint on x other than the recipe
Xθvalid.

It conclude our proof that θvalid ∈ Solvalid(Tr(C′)) and Φλvalid ∼valid Φ′λ′′valid. �

Corollary 2. Let E0 be the equational theory defined above. Let A and B be two valid processes
without replication. The problem whether A and B are observationally (or trace) equivalent is
decidable.

Proof. Let A and B be two valid processes without replication. They can easily be transformed
into valid intermediate processes Ã and B̃.

Thanks to Proposition 3, we have that A ≈t B if, and only if, Ã ≈t B̃, and relying on
Proposition 6, we have that Ã ≈t B̃ if, and only if, Ãs and B̃s are in symbolic trace equivalence,
i.e. if for every sequence tr of symbolic actions, we have that:

{C | (tr, C) ∈ traces(Ãs)} ≈s {C | (tr, C) ∈ traces(B̃s)}.

We have show in Theorem 8 that deciding this symbolic equivalence amounts to decide whether

Tr({C | (tr, C) ∈ traces(Ãs)}) ≈valid
s Tr({C | (tr, C) ∈ traces(B̃s)})

and this can be done by using the algorithm provided in [20]. �
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