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∗School of Computer Science, University of Birmingham, UK
†LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract—Formal methods have proved their usefulness
for analysing the security of protocols. In such a setting,
privacy-type security properties (e.g. vote-privacy, anonymity,
unlinkability) that play an important role in many modern
applications are formalised using a notion of equivalence.

In this paper, we study the notion of trace equivalence
and we show how to establish such an equivalence relation
in a modular way. It is well-known that composition works
well when the processes do not share secrets. However, there
is no result allowing us to compose processes that rely on
some shared secrets such as long term keys. We show that
composition works even when the processes share secrets
provided that they satisfy some reasonable conditions. Our
composition result allows us to prove various equivalence-based
properties in a modular way, and works in a quite general
setting. In particular, we consider arbitrary cryptographic
primitives and processes that use non-trivial else branches.

As an example, we consider the ICAO e-passport standard,
and we show how the privacy guarantees of the whole ap-
plication can be derived from the privacy guarantees of its
sub-protocols.

I. INTRODUCTION

With the emergence of new systems and services like

electronic IDs and passports, electronic payment systems

and loyalty schemes, electronic tickets like the Navigo pass

in Paris or the Oyster card in London, or telecommunica-

tion systems like mobile phones, new privacy and security

concerns arise. Indeed, governments, financial and transport

organisations, or telecommunication companies, all possess

and manage important amounts of information concerning

all of our everyday activities. As often reported by the

media [1], [2], [3], this exposes us to a number of privacy

threats. Security mechanisms should thus secure the offered

services, ensuring the confidentiality of the gathered data

and enhancing the privacy of users’ identity and behaviour.

To this effect, many cryptographic protocols have been

designed to prevent third parties from identifying messages

as coming from a particular user. For example, mobile phone

operators identify mobile phones using temporary identities

that are periodically and securely updated to prevent mobile

phones from being traceable. The electronic passports also

include mechanisms that do not let the passport’s chip

disclose private information to external users. However,

the design of protocols that meet particular security re-

quirements is a notoriously difficult and error prone task.

Indeed, numerous deployed protocols have subsequently

been found to be flawed. For example, the BAC protocol

of electronic passports makes it possible to recognise a

previously observed passport, potentially enabling tracking

passport holders [4], [5].

In this context, formal methods have proved their useful-

ness for precisely analysing the security guarantees provided

by a protocol. Several techniques have been developed

for [6], [7], and successfully applied to the analysis of

cryptographic protocols [8], [5]. For example, a flaw has

been discovered (see [9]) in the Single-Sign-On protocol

used e.g. by Google Apps. It has been shown that a malicious

application could very easily access to any other application

(e.g. Gmail or Google Calendar) of their users. This flaw

has been found when analysing the protocol using formal

methods, abstracting messages by a term algebra and using

the AVISPA platform [10]. However, existing techniques for

analysing protocols with respect to privacy-type properties

(e.g. [11], [7]), consider protocols to be executed in isolation,

i.e. without taking into account other protocols which may

be running in parallel. But in reality many applications run

in parallel and the underlying protocols may interact in

unexpected ways if cryptographic material is shared amongst

them. This situation can arise if, for example, a user chooses

the same password for two different network services, or a

server uses the same key for different protocols.

Furthermore, real life protocols are usually complex

and composed of several sub-protocols that rely on the

same cryptographic material. For example, the UMTS stan-

dard [12], [13], [14] specifies tens of sub-protocols running

in parallel in 3G mobile phone systems. And, while one

may hope to automatically verify each of these sub-protocols

in isolation, it is unrealistic to expect that the whole suite

of protocols can be automatically checked. Indeed, due to

computational constraints, existing tools and techniques do

not scale up well to such large systems, and it is often the

case that the sub-components have do be considered and

analysed independently.

Unfortunately, security proofs of network services or

protocols considered in isolation, do not carry over when

they share keys or passwords. Consider for example the two

naive protocols:

P : A → S : {A}r
pk(S) Q : A → S : {Na}rpk(S)

S → A : Na

In protocol P , the agent A simply identifies himself to the



server S by sending him his identity encrypted under S’s

public key (using a probabilistic encryption scheme). In

protocol Q, the agent sends some fresh nonce Na encrypted

under S’s public key. The server S acknowledges A’s

message by forwarding A’s nonce. While P executed alone

guarantees A’s anonymity, it is not the case when the

protocol Q is run in parallel. Indeed, an adversary may use Q
as an oracle to decrypt any message. More realistic examples

illustrating interactions between protocols can be found in

e.g. [15].

In order to enable verification of complex real life sys-

tems, composition theorems for modular reasoning about

security and privacy are therefore desirable. They may allow

one to deduce security guarantees for a complex protocol,

from the security guarantees of the individual sub-protocols.

The goal of our paper is to study the composition of

protocols with respect to privacy-type properties.

Related work: There are a number of papers studying

the secure composition of security protocols in the symbolic

model (e.g. [16], [17]) and in the computational model

(e.g. [18], [19]). Our result clearly belongs to the first

approach.

Actually, a lot of results have been established for trace-

based security property, e.g. [16], [20], [21]. A result closely

related to ours is the one of S. Ciobaca and V. Cortier [17].

Their result holds for any cryptographic primitives that can

be modelled using equational theories, and their main result

transforms any attack trace of the combined protocol into an

attack trace of one of the individual protocols. This allows

various ways of combining protocols such as sequentially

or in parallel, possibly with inner replications. However,

the major difference with our result is that they consider

trace-based security properties, and more precisely secrecy

(encoded as a reachability property).

Regarding equivalence-based properties, it has been

shown that composition works for resistance against guess-

ing attacks in the passive case without any additional hy-

pothesis [22], and in the active case when the protocols

are tagged [22], [23]. However, these composition results

assume that passwords are the only shared secrets and are

not well-suited to analyse privacy-type properties such as

anonymity and unlinkability.

Our work is also related to those of Canetti et al. who,

in the context of computational models, study universal

composability of protocols [18]. This approach consists of

defining for each sub-protocol an ideal functionality and then

showing that a certain implementation securely emulates

the ideal functionality. Since this initial work, the universal

composability framework has been improved in several

ways, e.g. with joint states [24], without pre-established

session identifiers [19].

Our contributions: While most existing papers study-

ing compositionality of protocols consider trace-based prop-

erties (covering confidentiality and authentication require-

ments), our work tackles the compositionality problem with

respect to privacy-type properties which are usually ex-

pressed as equivalences between processes. Roughly, two

processes P and Q are equivalent (P ≈ Q) if no process O
can observe any difference between the processes P and Q.

We identify sufficient conditions of disjointness under

which protocols can “safely” be executed in parallel. In

particular, we require protocols run in parallel not to use the

same primitives. Our theorems hold for arbitrary primitives

that can be modelled by a set of equations, and can thus

handle composition of protocols relying on symmetric and

asymmetric encryption schemes, hash functions, signatures,

zero knowledge proofs, message authentication codes, des-

ignated verifier proofs, exclusive or, etc.

We first state a composition result that also allows the

protocols considered to share the usual cryptographic primi-

tives of symmetric and asymmetric encryption, hashing, and

signing, provided that these primitives are tagged and that

public and verification keys are not derivable. In this setting,

we are able to establish a strong result that basically says

that the disjoint scenario is equivalent to the shared one. This

allows us to go back to the disjoint case (with no shared key)

for which composition works unsurprisingly well.

Then, we further relax this condition. A second theorem

shows that it is possible to compose protocols that share

public and verification keys even if those are known by

that attacker, provided that they are given to him from the

beginning.

In both cases, we show that whenever processes P and Q
(resp. P ′ and Q′) satisfy the corresponding disjointness

property, we can derive that P and Q running in parallel un-

der the composition context C[ ] are equivalent to P ′ and Q′

running in parallel under the composition context C′[ ], i.e.

C[P | Q] ≈ C′[P ′ | Q′]

from the equivalences C[P ] ≈ C′[P ′] and C[Q] ≈ C′[Q′].
The composition context under which two processes are

composed contains the shared keys possibly under some

replications.

We illustrate the application of our results on a case

study. We consider the protocols specified in the e-passport

application [13], and show how the privacy guarantees of

the whole application can be derived from the privacy

guarantees of the individual e-passport protocols.

II. MODELS FOR SECURITY PROTOCOLS

In this section, we introduce the cryptographic process

calculus that we will use for describing protocols. This

calculus is close to the applied pi calculus as defined in [25].

However, we use a slightly different syntax and we give

a non-compositional semantics that is easier to manipulate

than its compositional counterpart as defined in [25].
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A. Messages

A protocol consists of some agents communicating on

a network. The messages sent by the agents are modelled

using an abstract term algebra. For this, we assume an

infinite set of names N which is split into the set B =
{a, b, k, n, . . .} of names of base type (which are used

for representing keys, nonces, . . . ) and the set Ch =
{c, c1, ch, ch1, . . .} of names of channel type (which are

used to name communication channels). We also consider

a set of variables X = {x, y, . . .}, and a signature Σ
consisting of a finite set of function symbols. We rely on

a sort system for terms. The details of the sort system are

unimportant, as long as the base type differ from the channel

type. Moreover, we consider in addition the type seed. This

is a subsort of base type, and we will assume that this set

only contains atomic data, i.e. variables and names. As in

the applied pi calculus, we suppose that function symbols

only operate on and return terms of base type.

Terms are defined as names, variables, and function sym-

bols applied to other terms. Let N ⊆ N and X ⊆ X , the set

of terms built from N and X by applying function symbols

in Σ is denoted by T (Σ,N∪X). Of course function symbol

application must respect sorts and arities. We write fv (u)
(resp. fn(u)) for the set of variables (resp. names) occurring

in a term u. A term is ground if it does not contain any

variable.

To model algebraic properties of cryptographic primitives,

we define an equational theory by a finite set E of equations

u = v with u, v ∈ T (Σ,X ), i.e. u, v do not contain names.

We define =E to be the smallest equivalence relation on

terms, that contains E and that is closed under application

of function symbols and substitutions of terms for variables.

Example 1: Consider the following signature Σ0:

{sdec, senc, adec, aenc, pk, 〈 〉, proj1, proj2, sign, check, vk, h}

The function symbols sdec, senc (resp. adec and aenc) of

arity 2 represent symmetric (resp. asymmetric) decryption

and encryption. Pairing is modelled using a symbol of

arity 2, denoted 〈 〉, and projection functions denoted

proj1 and proj2. We consider also signatures and hashes. A

signature can be checked using check when the verification

key is known and this operator also allows one to retrieve

the signed message. We denote by pk(sk) (resp. vk(sk))
the public key (resp. the verification key) associated to the

private key sk . Moreover, we consider that the function

symbols pk and vk take as argument a term of type seed.

Then, we consider the equational theory E0, defined by

the following equations (i ∈ {1, 2}):

sdec(senc(x, y), y) = x adec(aenc(x, pk(y)), y) = x
proji(〈x1, x2〉) = xi check(sign(x, y), vk(y)) = x

Let u1 = senc(proj2(〈a, b〉), k) and u2 = senc(b, k). We

have that the terms u1 and u2 are equal modulo E0, written

u1 =E0
u2, while obviously the syntactic equality u1 = u2

does not hold.

B. Processes

Plain processes are built up in a similar way to plain

processes in applied pi calculus. The grammar of the plain

processes is as follows:

P,Q := 0
P | Q
new n.P
!P
if u1 = u2 then P else Q
in(u, x).P
out(u, v).Q

where u is a term of channel type (i.e. a name or a variable),

u1, u2 are terms having the same type, x is a variable, v is a

term, and n is a name. The terms u1, u2 and v may contain

variables.

As usual, names and variables have scopes, which are

delimited by restrictions and by inputs. We write fv (P ),
bv(P ), fn(P ) and bn(P ) for the sets of free and bound

variables, and free and bound names of a plain process P
respectively.

Extended processes add a set of restricted names E , and

a sequence of messages Φ.

Definition 1: An extended process A is a triple (E ;P ; Φ):

• E is a set of names that represents the names that are

restricted in P and Φ;

• P is a multiset of plain processes where null processes

are removed and such that fv (P) = ∅;

• Φ = {w1 ⊲ u1, . . . , wn ⊲ un} where u1, . . . , un are

ground terms, and w1, . . . , wn are variables.

We write dom(Φ) the domain of Φ, i.e. dom(Φ) =
{w1, . . . , wn}. We write fn(A) and bn(A) for the sets of

free and bound names of an extended process A. Given

A = (E ;P ; Φ), we have that fn(A) = fn(P) r E , and

bn(A) = bn(P) ∪ E .

For sake of clarity, we often omit brackets and the null

process. For instance, we write k1, out(c, u) instead of

{k1} and {out(c, u).0}. When there is no “else”, it means

“else 0”; and we sometimes write

if (u1 = u2 ∧ u′
1 = u′

2) then P else Q

instead of nested conditionals. Moreover, we often write P
instead of (∅;P ; ∅).

Example 2: As an illustrative example, consider the pro-

cess Ai = new skS .(Pi | Q) that has been informally

introduced in Section I. We have that:

• Pi = new r.out(c, aenc(〈r, id i〉, pk(skS))), and

• Q = in(c, x).out(c, proj2(adec(x, skS))).
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(E ; {if u = v then Q1 else Q2} ⊎ P ; Φ)
τ
−→ (E ;Q1 ⊎ P ; Φ) if u =E v (THEN)

(E ; {if u = v then Q1 else Q2} ⊎ P ; Φ)
τ
−→ (E ;Q2 ⊎ P ; Φ) if u 6=E v (ELSE)

(E ; {out(p, u).Q1;in(p, x).Q2} ⊎ P ; Φ)
τ
−→ (E ;Q1 ⊎Q2{x 7→ u} ⊎ P ; Φ) (COMM)

(E ; {in(p, x).Q} ⊎ P ; Φ)
in(p,M)
−−−−−→ (E ;Q{x 7→ u} ⊎ P ; Φ) (IN)

if p 6∈ E , MΦ = u, fv(M) ⊆ dom(Φ) and fn(M) ∩ E = ∅

(E ; {out(p, u).Q} ⊎ P ; Φ)
νwn.out(p,wn)
−−−−−−−−−→ (E ;Q ⊎ P ; Φ ∪ {wn ⊲ u}) (OUT-T)

if p 6∈ E , u is a term of base type, and wn is a variable such that n = |Φ|+ 1

(E ; {out(p, c).Q} ⊎ P ; Φ)
out(p,c)
−−−−−→ (E ;Q ⊎ P ; Φ) if p, c 6∈ E (OUT-CH)

(E ; {out(p, c).Q} ⊎ P ; Φ)
νchn.out(p,chn)
−−−−−−−−−−→ (E ; (Q ⊎ P){c 7→ chn}; Φ) (OPEN-CH)

if p 6∈ E , c ∈ E , chn is a fresh channel name

(E ; {new k.Q} ⊎ P ; Φ)
τ
−→ (E ∪ {n};Q{k 7→ n} ⊎ P ; Φ) (NEW)

if n is a fresh name with the same type as k

(E ; {!Q} ⊎ P ; Φ)
τ
−→ (E ; {!Q;Q} ⊎ P ; Φ) (REPL)

(E ; {P1 | P2} ⊎ P ; Φ)
τ
−→ (E ; {P1, P2} ⊎ P ; Φ) (PAR)

where p, c are channel names, u, v are ground terms, and x is a variable.

Figure 1. Semantics

The first component generates a fresh random number r,

publishes the message aenc(〈r, id i〉, pk(skS)) containing its

identity id i by sending it on the public channel c. The second

component receives a message on c, uses the private key skS
to decrypt it, and sends the second part of the resulting

plaintext on c.

The semantics is given by a set of labelled rules (see

Figure 1) that allows one to reason about processes that

interact with their environment. This defines the relation
ℓ
−→

where ℓ is either an input, an output, or a silent action τ .

Note that the sent messages of base type are exclusively

stored in the frame and not in the labels (the outputs are

made by “reference”).

Example 3: Let Ai be the extended process defined in

Example 2. We have that:

Ai
τ
−→

τ
−→

τ
−→

νw1.out(c,w1)
−−−−−−−−−→ ({skS , r};Q;w1 ⊲ aenc(〈r, id i〉, pk(skS)))
in(c,w1)
−−−−−→ ({skS , r};out(c,Mi);w1 ⊲ aenc(〈r, id i〉, pk(skS)))
νw2.out(c,w2)
−−−−−−−−−→ ({skS , r}; 0; Φi)

def
= A′

i

with Mi = proj2(adec(aenc(〈r, id i〉, pk(skS)), skS)) and

Φi = {w1 ⊲ aenc(〈r, id i〉, pk(sk s)), w2 ⊲ Mi}. Note that

Mi =E0
id i.

The three first steps are performed using the rules NEW

and PAR. Then, we used the rules OUT-T and IN. We denote

by A′
i the resulting extended process.

Notations: Let A be the alphabet of actions (in our case

this alphabet is infinite and contains the special symbol τ ).

For every w ∈ A∗, the relation
w
−→ on processes is defined

in the usual way. For s ∈ (A r {τ})∗, the relation
s
⇒ on

processes is defined by: A
s
⇒ B if, and only if there exists

w ∈ A∗ such that A
w
−→ B and s is obtained by erasing all

occurrences of τ .

III. FORMALISING PRIVACY-TYPE SECURITY PROPERTIES

Many interesting security properties, in particular privacy-

type properties such as those studied in [26], [5], [27], are

formalised using behavioural equivalence. We will review

some of them in Section III-B using the notion of trace

equivalence.

A. Trace equivalence

Before defining trace equivalence, we introduce the notion

of static equivalence that compares sequences of messages,

a notion of intruder’s knowledge that has been extensively

studied (e.g. [28]).

To represent the knowledge of an attacker (who may have

observed a sequence of messages u1, . . . , un, we use the

concept of frame. A frame φ = new E .Φ consists of a finite

set E of restricted names (those unknown to the attacker),

and a substitution Φ of the form:

{w1 ⊲ u1, . . . , wn ⊲ un} with dom(Φ) = {w1, . . . , wn}

The variables enable us to refer to each ui and we always

assume that the terms ui are ground. The names E are bound
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in φ and can be renamed. Moreover names that do not appear

in Φ can be added or removed from E . In particular, we

can always assume that two frames share the same set of

restricted names.

Two frames are considered equivalent when the attacker

cannot detect the difference between the two situations they

represent, that is, his ability to distinguish whether two

recipes M and N produce the same term does not depend

on the frame.

Definition 2: We say that two frames φ1 = new E .Φ1 and

φ2 = new E .Φ2 are statically equivalent, φ1 ∼ φ2, when

dom(Φ1) = dom(Φ2), and for all terms M,N such that

fn(M,N) ∩ E = ∅, we have that MΦ1 =E NΦ1, if and

only if, MΦ2 =E NΦ2.

Example 4: Let A′
1 (resp. A′

2) be the extended process

described in Example 3 and φ1 (resp. φ2) be its associated

frame, i.e. φi = new {skS , r}.Φi with i ∈ {1, 2}. We

have that φ1 6∼ φ2. Indeed, the test w2
?
= id1 can be used

to distinguish the two frames. The test holds in φ1 since

w2Φ1 = M1 =E0
id1, whereas it does not hold in φ2 since

w2Φ2 = M2 =E0
= id2 6=E0

id1. However, we have that:

new {sks, r}.{w1 ⊲ aenc(〈r, id1〉, pk(skS))}
∼

new {skS , r}.{w1 ⊲ aenc(〈r, id2〉, pk(skS))}.

For every extended process A = (E ;P ; Φ), we define its

set of traces, each trace consisting in a sequence of actions

together with the sequence of sent messages:

trace(A) = {(tr,new E ′.Φ′) | A
tr
⇒ (E ′;P ′; Φ′)

for some process (E ′;P ′; Φ′)}.

Two processes are trace equivalent if, whatever the mes-

sages they received (built upon previously sent messages),

the resulting sequences of messages are in static equivalence.

Definition 3: Let A and B be two extended processes,

A ⊑ B if for every (tr, φ) ∈ trace(A) such that bn(tr) ∩
fn(B) = ∅, there exists (tr′, φ′) ∈ trace(B) such that

tr = tr′ and φ ∼ φ′. Two closed extended processes A
and B are trace equivalent, denoted by A ≈ B, if A ⊑ B
and B ⊑ A.

Example 5: Consider the following trace:

tr = νw1.out(c, w1) · in(c, w1) · νw2.out(c, w2).

We have that (tr, φ1) ∈ trace(A1), and the only trace

(tr′, φ′) ∈ trace(A2) that satisfies tr = tr′ leads to the

frame φ2 for which we have seen that φ1 6∼ φ2 (see

Example 4). This allows us to conclude that A1 6≈ A2.

B. Some examples

The definitions we present here are informal ones, and

we refer the reader to [5] for detailed formal definitions. In

Section VI, we will illustrate these definitions through the

e-passport application.

Strong anonymity: Anonymity is informally defined by

the ISO/IEC standard 15408 [29] as the property ensuring

that a user may use a service or a resource without disclos-

ing the user’s identity. Formally, strong anonymity has been

defined to hold [5] when an outside observer cannot tell the

difference between a system in which the user with a public

known identity id0 executes the analysed protocol, from the

system where id0 is not present at all.

Following this formal definition of anonymity, the pro-

tocol introduced in Section I considered in isolation, i.e.

P = new r.out(c, aenc(〈r, id〉, pk(skS))), is said to satisfy

strong anonymity if the following equivalence holds:

new skS . ((!new id . !P ) | !P{id0/id})
≈

new skS .(!new id . !P )

In other words, anonymity is satisfied if an observer

cannot tell if the user id0 (known to the attacker) has been

executing the protocol P or not.

Strong unlinkability: Unlinkability is informally de-

fined by the ISO/IEC standard 15408 [29] as the property

ensuring that a user may make multiple uses of a service

or a resource without others being able to link these uses

together. Formally, strong unlinkability has been defined to

hold [5] when a system in which the analysed protocol can

be executed by each user multiple times looks the same to

an outside observer that the system in which the analysed

protocol can be executed by each user at most once.

Again, we can formalise this property for the protocol P
when considered in isolation using an equivalence:

new skS . (!new id . !P ) ≈ new skS .(!new id . P )

In other words, unlinkability is satisfied if an observer cannot

tell if the users can execute multiple or at most once the

protocol P .

IV. COMPOSITION RESULT: A SIMPLE SETTING

Even if a protocol is secure for an unbounded number of

sessions, there is no guarantee if the protocol is executed in

an environment where other protocols sharing some common

keys are executed. The interaction with the other protocols

may dramatically damage the security of the former proto-

col. This is a well-known fact that has been already observed

for trace-based security properties e.g. [16], [17], and that

remains true for privacy-type properties.

An attacker may take advantage of a protocol Q to break

anonymity of another protocol P that has been proved secure
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in isolation. This can happen for instance if the security

of P relies on the secrecy of a particular shared key that is

revealed by the protocol Q.

A. Sharing primitives

Actually, even if shared keys are not revealed, the in-

teraction of two protocols using common primitives may

compromise their security.

Example 6: Consider the processes Pi with i ∈ {1, 2}
as defined in Example 2. The equivalence expressing the

anonymity of P (for one session) holds. We have that

new skS .P1 ≈ new skS .P2 whereas the equivalence ex-

pressing the anonymity of P in presence of Q does not

hold anymore. We have that:

new skS .
(
P1 | Q

)
6≈ new skS .

(
P2 | Q

)

Intuitively, the security of P is ensured by the fact that its

identity id is encrypted using the public key pk(skS) whose

associated private key skS is kept secret. However, Q can

be used as an oracle to decrypt a ciphertext that comes from

the process P , and thus Q can be used to reveal the identity

hidden in the ciphertext.

To avoid a ciphertext from a process to be decrypted by

another one, we can consider processes that use disjoint

primitives. However, this is an unnecessarily restrictive

condition. So, we consider protocols that may share some

cryptographic primitives provided they are tagged.

Tagging is a syntactic transformation that consists in

assigning to each protocol an identifier (e.g. the protocol’s

name) that should appear in any encrypted message. Many

relevant equational theories are not so easy to tag (e.g.

exclusive or). So, we consider the fix common equational

theory (Σ0,E0) defined in Example 1, and we explain how

to transform any process built on a signature Σ (possibly

larger that Σ0) into a well-tagged process. For this, we define

Σtagc
= {tagc, untagc} where tagc and untagc are two

function symbols of arity 1 that we will use for tagging.

The role of the tagc function is to tag its argument with

the tag c. The role of the untagc function is to remove the

tag. To model this interaction between tagc and untagc, we

consider the equational theory:

Etagc
= {untagc(tagc(x)) = x}.

For our composition result, we will assume that the

processes PA and PB that we want to compose are built

on (Σa ∪ Σ0,Ea ∪ E0) and (Σb ∪ Σ0,Eb ∪ E0), where

(Σa,Ea), (Σb,Eb) and (Σ0,E0) are disjoint signatures that

are also disjoint from (Σtaga
,Etaga

) and (Σtagb
,Etagb

). The

signature Σ0 contains the function symbols that can be used

by the two processes and that have to be tagged. We denote

by Σ+
c = Σc ∪ Σtagc

and E+
c = Ec ∪ Etagc

with c ∈ {a, b}.

Definition 4: Let u be a term built on Σc ∪ Σ0 (c ∈
{a, b}). The c-tagged version of u, denoted [u]c is defined

as follows:

[senc(u, v)]c
def
= senc(tagc([u]c), [v]c)

[aenc(u, v)]c
def
= aenc(tagc([u]c), [v]c)

[sign(u, v)]c
def
= sign(tagc([u]c), [v]c)

[h(u)]c
def
= h(tagc([u]c))

[sdec(u, v)]c
def
= untagc(sdec([u]c, [v]c))

[adec(u, v)]c
def
= untagc(adec([u]c, [v]c))

[check(u, v)]c
def
= untagc(check([u]c, [v]c))

[f(u1, . . . , un)]c
def
= f([u1]c, . . . , [un]c) otherwise.

Note that we do not tag the pairing function symbol

(this is actually useless), and we do not tag the pk and vk

function symbols. Actually, tagging pk and vk would greatly

help us to establish our results and would also avoid us to

introduce some additional assumptions, but this would lead

us to consider an unrealistic modelling for asymmetric keys.

Some of the difficulties encountered with asymmetric keys

will be discussed in Section V.

Example 7: Consider ui = aenc(〈r, id i〉, pk(skS)) with

i ∈ {1, 2} and v = proj2(adec(x, skS)). We have that

[ui]a = aenc(taga(〈r, id i〉), pk(skS)), whereas [v]b =
proj2(untagb(adec(x, skS))).

Before extending the notion of tagging to processes, we

have to express the tests that are performed by an agent when

he receives a message that is supposed to be tagged. This

is the purpose of testc(u) that represents the tests which

ensure that every projection and every untagging performed

by an agent during the computation of u is successful.

Definition 5: Let u be a term built on Σ+
c ∪Σ0 with c ∈

{a, b}. We define testc(u) as follows:

testc(u)
def
= testc(u1) ∧ testc(u2) ∧ tagc(untagc(u)) = u

when u = g(u1, u2) with g ∈ {sdec, adec, check}

testc(u)
def
= testc(u1) ∧ u1 = 〈proj1(u1), proj2(u1)〉

when u = proji(u1) with i ∈ {1, 2}

testc(u)
def
= true when u is a name or a variable

testc(u)
def
= testc(u1) ∧ . . . ∧ testc(un) otherwise.

Example 8: Again, consider ui = aenc(〈r, id i〉, pk(skS))
with i ∈ {1, 2} and v = proj2(adec(x, skS)). We have that:

testa([ui]a) = true

testb([v]b) = tagb(untagb(adec(x, skS))) = adec(x, skS)
∧ proj1(v

′), proj2(v
′)〉 = v′

where v′ = untagb(adec(x, skS)).

Let A = (E ;P ; Φ) be a process built on Σc ∪ Σ0 with

c ∈ {a, b} such that P = {P1, . . . , Pℓ}, and Φ = {w1 ⊲
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u1, . . . , wn ⊲ un}. The c-tagged version of the process A,

denoted [A]c, is the process (E ; [P ]c; [Φ]c) where [P ]c =
{[P1]c, . . . , [Pℓ]c}, and

[Φ]c = {w1 ⊲ [u1]c, . . . , wn ⊲ [un]c}.

For plain processes, the transformation [P ]c is defined as

follows:

[0]c
def
= 0 [!P ]c

def
= ![P ]c [new k.P ]c

def
= new k.[P ]c

[P | Q]c
def
= [P ]c | [Q]c [in(u, x).P ]c

def
= in(u, x).[P ]c

[out(u, v).Q]c
def
= if testc([v]c) then out(u, [v]c).[Q]c

[if u1 = u2 then P else Q]c
def
=

if ϕ then (if [u1]c = [u2]c then [P ]c else [Q]c)
else 0

where ϕ = testc([u1]c) ∧ testc([u2]c)

Roughly, instead of simply outputting a term v, a process

will first performed some tests to check that the term is

correctly tagged and he will output its c-tagged version [v]c.

For a conditional, the process will first check that the

terms u1 and u2 are correctly tagged before checking that

the test is satisfied.

Example 9: Consider the processes Pi and Q defined in

Example 2.

[Pi]a = new r.out(c, aenc(taga(〈r, id i〉), pk(skS)))

[Q]b = in(c, x).if testb([v]b) thenout(c, [v]b)

where [v]b (resp. testb([v]b)) have been defined in Example 7

(resp. Example 8).

Note that the tag will prevent the process Q to decrypt the

ciphertext that has been output by Pi. Thus, the equivalence

expressing the anonymity of [Pi]a now holds even in the

presence of [Q]b. We have that:

new skS .
(
[P1]a | [Q]b) ≈ new skS .

(
[P2]a | [Q]b).

This a is non-trivial equivalence that can actually be derived

from the equivalence new skS .[P1]a ≈ new skS .[P2]a using

our composition result (Corollary 1).

B. Composition context

As already mentioned, we want to establish a composition

result between processes that share the signature (Σ0,E0)
and also share some keys. Thus, we introduce the notion of

composition context that will help us to describe under which

keys the composition has to be done. Note that a composition

context may contain several holes, parallel operators, and

nested replications. This is needed to express privacy-type

properties as those described in Section III-B.

Definition 6: A composition context C is defined by the

following grammar where n is a name of base type.

C,C1, C2 := | new n. C | !C | C1|C2

We only allow names of base type (typically keys) to be

shared between processes through the composition context.

In particular, they are not allowed to share a private channel

even if each process can used its own private channels

to communicate internally. We also suppose w.l.o.g. that

names occurring in C are distinct. A composition context

may contain several holes. We can index them to avoid

confusion. We write C[P1, . . . , Pℓ] (or shortly C[P ]) the

process obtained by filling the ith hole with the process Pi

(or the ith process of the sequence P ). We will also use

P | Q to represent the sequence of processes obtained by

putting in parallel the processes of the sequences P and Q
componentwise.

Example 10: In Section III-B, we have seen that unlink-

ability of P can be modelled using the equivalence:

new skS .
(
!new id .!P

)
≈ new skS .

(
!new id .P

)
.

The composition contexts used to express this property are:

• C[ ] = new skS .
(
!new id . !

)
, and

• C′[ ] = new skS .
(
!new id .

)
.

Since the name id does not occur in the process Q (see

Example 2), it is quite easy to see that C[Q] ≈ C′[Q].
Unlinkability of P in presence of the process Q will be

modelled as C[P | Q] ≈ C′[P | Q], which is equivalent to:

new skS .!
(
(new id .!P ) | Q

)
≈ new skS .!

(
(new id .P

)
| Q

)

Note that in a composition context a replication may occur

in the scope of some restrictions and this is needed to express

many interesting privacy-type properties. Considering com-

position in a simpler setting where only a bounded number

of keys k̃ are shared (as done in e.g. [30]), would not allow

us to establish unlinkability in a modular way, but only some

results of the form:

new k̃.P1 ≈ new k̃.P2 ⇒

new k̃. (P1 | Q) ≈ new k̃. (P2 | Q)

assuming that processes P1, P2, and Q satisfy some addi-

tional conditions.

Now, we have introduce composition under replication,

but have to formalise the notion of revealing a shared key.

The names that occur in the composition context represent

the names that are shared between the two processes that

we want to compose. Since those names may occur under

a replication, we have to consider renaming and formalise

this notion of revealing accordingly.

Definition 7: Let C be a composition context, A be an

extended process of the form (E ;C[P1, . . . , Pℓ]; Φ), and

key ∈ {n, pk(n), vk(n) | n ∈ E or n occurs in C}. We say

that the extended process A reveals the shared key key when:

Either fn(key) ∈ E , and

• A
w
⇒ (E ′;P ′; Φ′) for some (E ′;P ′; Φ′); and
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• MΦ′ =E key for some M such that fv(M) ⊆ dom(Φ′)
and fn(M) ∩ E ′ = ∅.

Or, we have that fn(key) occurs in C, the i0
th hole is in the

scope of new fn(key), and

• (E ∪ {s};C[P+
1 , . . . , P+

ℓ ]; Φ)
w
⇒ (E ′;P ′; Φ′) with

P+
i0

def
= Pi0 | in(c, x).if x = key thenout(c, s)

and P+
i

def
= Pi if i 6= i0; and

• MΦ′ =E s for some M such that fv (M) ⊆ dom(Φ′)
and fn(M) ∩ E ′ = ∅.

Example 11: Consider the composition context C[ ] =
new skS . . The extended process (∅;C[P ]; ∅) with P
as described in Section III-B does not reveal the

keys skS , pk(skS) and vk(skS). Indeed, let key ∈
{skS , pk(skS), vk(skS)}, we have that

({s};C[P | in(c, x).if x = key thenout(c, s)]; ∅)

can not reached a configuration from which s will be

derivable by the attacker.

C. Going back to the disjoint case

It is well-know that parallel composition works when

processes do not share any secret, the so-called disjoint case.

A first idea to establish a composition result is to see under

which conditions we can go back to the disjoint case. In

this section, we will see that this is indeed possible provided

that processes are tagged and only share some keys that will

never be revealed.

Theorem 1: Let C be a composition context, and PA

(resp. PB) be two sequences of plain processes built

on the signature Σa ∪ Σ0 (resp Σb ∪ Σ0). Assume

that C[[PA]a] and C[[PB ]b] do not reveal any key in

{k, pk(k), vk(k) | k occurs in C}. We have that:

C[[PA]a | [PB]b] ≈ C[[PA]a] | C[[PB ]b].

Proof: (sketch) Consider S = (∅;C[[PA]a | [PB ]b]; ∅)
and D = (∅;C[[PA]a] | C[[PB ]b]; ∅). Actually, we can show

that any trace (tr, φD) ∈ trace(D) can be mapped to a trace

(tr, φS) ∈ trace(S) such that φD ∼ φS and conversely.

Note that even if the resulting frames φS and φD are not

syntactically equal, we can show that they are in static

equivalence and the computation performed by the attacker

in both executions are exactly the same, namely tr.

For this, we consider the transformation δ (c ∈
{a, b}) on terms whose purpose is to replace the oc-

currences of the shared keys that are used in PB by

some fresh names in order to ensure disjointness. How-

ever, we do not want to replace any occurrence of a

shared key. For instance, assume that the following term

u = senc(tagb(senc(taga(na), k)), k) has been output by

the process PB = in(c, x).out(c, senc(tagb(x), k)). The

purpose of δ is to replace the occurrences of the shared k

that “come from PB” by a fresh key k′. Actually, we have

that:

δ(u) = senc(tagb(senc(taga(na), k)), k
′).

Then the proof can go through thanks to some nice

properties that are enjoyed by this transformation δ. In

particular, we have that:

• this transformation preserves the equality tests per-

formed by each process: “δ(u) = δ(v) ⇔ u = v”.

• this transformation preserves deducibility in the sense

that for any message u that the attacker can obtained

from φS , we can show that its counterpart δ(u) can be

obtained using “δ(φS) = φD” using the same recipe

(and conversely).

This result as well as the way we proceed to prove it are

close to the one proved in [17]. However, we generalise it

in several ways. First, we combine the results of [17] so

that we are able to deal with disjoint equational theories

together with a common equational theory. Moreover, for

the common theory, we consider also pairing and asymmet-

ric primitives. Due to the way tagging is performed, the

asymmetric primitives add some difficulties. Second, since

we want a composition result for trace equivalence, we have

to map any trace of D to a trace of S (and conversely),

and we have also to ensure that the resulting sequence of

messages are in static equivalence. Third, we consider a

process algebra that allows us to express disequality tests

(i.e. non-trivial else branches).

Note that, we have to ensure that shared keys are never

revealed. This is needed for symmetric keys, but as men-

tioned in the hypothesis of the proposition, this is also

required for public keys and verification keys. As we will see

in Example 14, this hypothesis is necessary for this result

to hold, but we will show how to relax it and still get a

composition result (see Section V).

D. A first composition result

The result stated in Theorem 1 allows us to go back to

the disjoint case for which composition works quite well.

Hence, as a corollary, we are now able to state our first

composition result.

Corollary 1: Let C and C′ be two composition con-

texts. Let PA, P ′
A (resp. PB , P ′

B) be two sequences

of plain processes built on the signature Σa ∪ Σ0

(resp. Σb ∪ Σ0). Assume that C[[PA]a] and C[[PB ]b]
(resp. C′[[P ′

A]a] and C′[[P ′
B]b]) do not reveal any

shared key in {k, pk(k), vk(k) | k occurs in C} (resp.

{k, pk(k), vk(k) | k occurs in C′}). We have that:
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C[[PA]a] ≈ C′[[P ′
A]a]

C[[PB ]b] ≈ C′[[P ′
B]b]

C[[PA]a | [PB ]b] ≈ C′[[P ′
A]a | [P ′

B]b]

Proof: (sketch) This composition result is proved in

three main steps.

1) We have that the equivalences C[[PA]a] ≈ C′[[P ′
A]a]

and C[[PB ]b] ≈ C′[[P ′
B]b] hold on the signatures

(Σ+
a ∪ Σ0,E

+
a ∪ E0) and (Σ+

b ∪ Σ0,E
+
b ∪ E0) re-

spectively. It is relatively easy to show that the same

equivalences also hold on the augmented signature

(Σ+
a ∪ Σ+

b ∪ Σ0,E
+
a ∪ E+

b ∪ E0).
2) Then, relying on these two equivalences, we can show

that:

C[[PA]a] | C[[PB ]b] ≈ C′[[P ′
A]a] | C

′[[P ′
B ]b].

This corresponds to composition in the disjoint case

(no shared key). This is a well-know fact that actually

holds in many cryptographic calculus.

3) Then, we apply Theorem 1 on both sides of the

equivalence, and we obtain the expected result:

C[[PA]a | [PB]b] ≈ C′[[P ′
A]a | [P ′

B ]b].

V. COMPOSITION IN PRESENCE OF PROCESSES THAT

REVEAL SHARED KEYS

In the previous section, we presented a first composition

result. However, this result does not hold as soon as some

shared keys are revealed: such a key can be a symmetric

shared key, the private part of an asymmetric key pair, but

also the public part of an asymmetric key pair. In this section,

we will see that we can relax this condition by allowing

shared keys to be revealed from the beginning.

A. Some additional difficulties

First, as shown by the example below, we do not want

public keys to be revealed (for the first time) during the

execution of the protocol.

Example 12: We consider a slightly different version of

the process Pi introduced in Example 2. Basically, we

remove the random r inside the encryption and we consider

its well-tagged version. We consider the following processes:

[P ′
i ]a

def
= out(c, aenc(taga(id i), pk(skS))) i ∈ {1, 2}

Consider the composition context C[ ] = new skS . .

Note that, the equivalence C[[P ′
1]a] ≈ C[[P ′

2]a] still holds in

this setting. Assume now that [P ′
i ]a is executed in presence

of the well-tagged process Qpk = out(c, pk(skS)). Clearly,

the equivalence expressing the anonymity of [P ′
i ]a does not

hold anymore. We have that:

C[[P ′
1]a | Qpk] 6≈ C[[P ′

2]a | Qpk].

Actually, the knowledge of pk(skS) will allow the attacker

to distinguish the message emitted by [P ′
1]a from the one

emitted by [P ′
2]a.

To avoid the problem mentioned above, we will assume

that shared keys that are revealed have to be revealed from

the very beginning. This hypothesis seems indeed reasonable

since the purpose of a public key is in general to be disclosed

at the beginning, or eventually never revealed to an outsider.

Note that the previous example is not a counter-example

anymore if we analyse the equivalence expressing the

anonymity of [P ′
i ]a assuming that pk(skS) is known by

the attacker from the beginning. The fact that pk(skS) is

revealed during the execution of Qpk will not give any

additional power to the attacker.

Example 13: We consider again the process Pi as pre-

sented in Example 2 with an additional output to reveal the

public key pk(skS) at the very beginning. Basically, we con-

sider the well-tagged process P ′′
i

def
= out(c, pk(skS)).[Pi]a.

We have that C[P ′′
1 ] ≈ C[P ′′

2 ] with C[ ] = new skS . .

Now, the presence of Qpk will not prevent this equivalence

to hold. Indeed, we have that:

C[P ′′
1 | Qpk] ≈ C[P ′′

2 | Qpk].

This hypothesis that states that shared keys are either

known from the beginning or never revealed during the

execution of the protocol is reasonable, and seems to be

sufficient to establish a composition result. However, this

complicates a bit the setting. In particular, as illustrated in

Example 14, there is no hope to obtain a result as the one

stated in Theorem 1. The situation where the processes share

some keys is not equivalent in this setting to the situation

where the processes do not share any key.

Example 14: Consider the processes P ′′
i and Qpk used

in Example 13. We have seen that composition works under

the composition context C = new skS . . However, we have

that (i ∈ {1, 2}):

C[P ′′
i | Qpk] 6≈ C[P ′′

i ] | C[Qpk].

Indeed, on the left-hand side, the same public-key will be

output twice whereas the process on the right-hand side will

emit two different public keys. The attacker will observe

such a difference. The strong result stated in Theorem 1

allowing us to easily make the ling between the joint state

case and the disjoint case does not hold anymore.

The problems encountered for composing processes that

reveal shared keys are due to the fact that we do not want to

tag the function symbols pk and vk that are used to model

asymmetric keys: such a tagging scheme would lead us to

an unrealistic modelling of asymmetric keys.
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B. Composition result

We now consider public keys and verifications keys that

can be made public from the beginning through an initial

frame Φ0 that will represent the initial knowledge of the

attacker. As illustrated in Section V-A, we cannot rely on

Theorem 1 anymore to establish our composition result. We

will still go back to the disjoint case but we have to explain

how a trace corresponding to the situation where processes

share some keys is transformed and mapped to a trace

that models the disjoint case. We cannot simply consider

the identity transformation as it was done to establish the

previous result. The sets of traces issued from both situations

are not the same anymore.

Theorem 2: Let PA, P ′
A (resp. PB , P ′

B) be two sequences

of plain processes built Σa ∪Σ0 (resp. Σb ∪Σ0). Let K0 be

a finite set of names of base type, and C and C′ be two

composition contexts. Let Φ0 = {w1 ⊲ f1(k1), . . . , wn ⊲

fn(kn)} with fi ∈ {pk, vk}, and ki ∈ K0 for any i ∈
{1, . . . , n}.

Assume that (K0;C[[PA]a]; Φ0) and (K0;C[[PB ]b]; Φ0)
(resp. (K0;C[[P ′

A]a]; Φ0), and (K0;C[[P ′
B ]b]; Φ0)):

• do not reveal any key in {k, pk(k), vk(k) | k ∈ K0}
unless if the key occurs explicitly in Φ0; and

• do not reveal any shared key in C (resp. C′);

Lastly, we assume that processes PA, P ′
A and PB , P ′

B do

not use variable of channel type. We have that:

(K0;C[[PA]a]; Φ0) ≈ (K0;C
′[[P ′

A]a]; Φ0)

(K0;C[[PB ]b]; Φ0) ≈ (K0;C
′[[P ′

B]b]; Φ0)

(K0;C[[PA]a | [PB ]b]; Φ0) ≈ (K0;C
′[[P ′

A]a | [P ′
B]b]; Φ0)

Proof: (sketch) Actually, the two first steps are quite

similar to the two first steps of the proof of Corollary 1, but

we renamed the channel names that occur in PA, P ′
A (resp.

PB, P ′
B) before to compose these processes. This, together

with our additional hypothesis on the variables of channel

type, will allow us to identify easily whether a given action

has been performed by PA or PB (resp. P ′
A or P ′

B).

Then, consider a trace (tr, φS) issued from S =
(K0;C[[PA]a | [PB ]b]; Φ0). First, we show that a similar

trace (tr′, φD) is also issued from D = (K0;C[[PA]a] |
C[[PB ]b]; Φ0) (where channel names have been renamed).

Actually, the processes along these two traces will be very

similar (up to a transformation similar to the δ transforma-

tion used in the proof of Corollary 1 and a renaming on

the channel names) but the labels involved in tr′ have to be

changed. Indeed, as soon as a message u will involved a pub-

lic key in a “deducible position”, the attacker will not be able

to produce u and δ(u) using the same recipe. The way the

recipe has to be changed depends in particular on whether

the action has been made by PA or PB . Second, relying on

our hypothesis, we know that there exists (tr′, φ′
D) issued

from D′ = (K0;C
′[[P ′

A]a] | C′[[P ′
B]b]; Φ0) (where again

channel names have been renamed). However, to conclude,

we have to go back to the process S′ = (K0;C
′[[P ′

A]a |
[P ′

B ]b]; Φ0). This can be done by applying the reverse of the

transformation δ on each process that occurs in the trace,

but again the labels that occur in tr′ have to be changed.

Moreover, we have to ensure that this change will allow

one to retrieve the original sequence tr. For this, we use the

fact that the actions of PA (resp. PB) are mimicked by P ′
A

(resp. P ′
B) (this is enforced by the way we have renamed

channel names). Actually, some complications appear when

an internal communication is performed on a public channel

(this is indeed allowed by the semantics), but this problem

can be solved by replacing such an internal step with two

visible actions (an output followed by an input) having a

clearly identifiable origin.

VI. APPLICATION: E-PASSPORT

We illustrate the usefulness of our composition results

on the e-passport application. An electronic passport (or e-

passport) is a paper passport with an RFID chip that stores

the critical information printed on the passport. The Inter-

national Civil Aviation Organisation (ICAO) standard [31]

specifies the communication protocols that are used to access

these information.

A. Protocols description

The information stored in the chip is organised in data

groups (dg1 to dg19). For example, dg5 contains a JPEG

copy of the displayed picture, and dg7 contains the displayed

signature. The verification key vk(skP ) of the passport,

together with its certificate sign(vk(skP ), skDS ) issued by

the Document Signer authority are stored in dg15. The

corresponding signing key skP is stored in a tamper resistant

memory, and cannot be read or copied. For authentication

purposes, a hash of all the dgs together with a signature on

this hash value issued by the Document Signer authority are

stored in a separate file, the Security Object Document:

sod
def
= 〈sign(h(dg1, . . . , dg19), skDS ), h(dg1, . . . , dg19)〉.

The ICAO standard specifies several protocols through

which these information can be accessed. First, the Basic

Access Control (BAC) protocol establishes sessions keys

ksenc and ksmac to prevent skimming and eavesdropping

on the subsequent communication with the e-passport. Once

the BAC protocol has been successfully executed, the reader

gains access to the information stored in the RFID tag

through the Passive Authentication and the Active Authen-

tication protocols that can be executed in any order (see

Figure 2).

The Passive Authentication (PA) protocol is an authentica-

tion mechanism that proves that the content of the RFID chip
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Passport Tag

ksenc, ksmac, skP

Reader

ksenc, ksmac, vk(skP )

xenc← senc(read, ksenc)
xmac← mac(xenc, ksmac)

〈xenc, xmac〉

yenc← senc(〈dg
1
, . . . , dg

19
, sod〉, ksenc)

ymac← mac(yenc, ksmac)

〈yenc, ymac〉

Passport Tag

ksenc, ksmac, skP

Reader

ksenc, ksmac, vk(skP )

new rnd
xenc← senc(〈init, rnd〉, ksenc))
xmac← mac(xenc, ksmac)

〈xenc, xmac〉

new nce
sigma ← sign(〈nce , rnd〉, skP )
yenc← senc(sigma, ksenc)
ymac← mac(yenc, ksmac)

〈yenc, ymac〉

Figure 2. Passive and Active Authentication protocols

is authentic. Through PA the reader retrieves the information

stored in the dgs and the sod . It then verifies that the hash

value stored in the sod corresponds to the one signed by the

Document Signer authority. It further checks that this hash

value is consistant with the received dgs.

The Active Authentication (AA) protocol is an authentica-

tion mechanism that prevents cloning of the passport chip.

It relies on the fact that the secret key skP of the passport

cannot be read or copied. The reader sends a random

challenge to the passport, that has to return a signature on

this challenge using its private signature key skP . The reader

can then verify using the verification key vk(skP ) that the

signature was built using the expected passport key.

B. Privacy analysis

Both protocols PA and AA rely on symmetric encryption,

message authentication codes, signatures and the verification

key generation function, to meet their security requirements.

Note that mac(m, k) can be modelled in our setting using the

hash function symbol, i.e. mac(m, k)
def
= h(〈m, k〉). More-

over, the only publicly known verification key is vk(skDS ).
Thus, we can use our composition results, and in particular

Theorem 2, to reason in a modular way about the privacy

guarantees provided by the tagged version of the e-passport

application1.

1We tried to use the ProVerif tool to prove that the e-passport application
as a whole (both PA and AA running in parallel) satisfies anonymity, but
it failed to terminate, reinforcing the need for techniques for modular
reasoning.

According to the ICAO standard, once the keys ksenc

and ksmac have been established (using the BAC protocol),

the reader can decide to execute PA and/or AA in any order.

Formally, this corresponds to the parallel composition of PA

and AA. We consider here that the keys ksenc and ksmac

are “securely” pre-shared. We consider an arbitrary number

of passports, each running an arbitrary number of times the

PA and the AA protocols. This situation can be modelled in

our calculus as follows:

P
def
= new skDS .

!new skP . new id . new sig. new pic. . . .
!new ksenc. new ksmac. (PA | AA)

where id, sig, pic, ... represent the name, the signature, the

displayed picture, etc of the e-passport owner, i.e. the data

stored in the dgs (1-14) and (16-19). The subprocesses PA

and AA model one session of the PA and AA protocol

respectively. The name skDS models the signing key of

the Document Signing authority used in all passports. Each

passport (identified by its signing key skP , the owner’s

name, picture, signature, ...) can run multiple times and in

any order the PA and AA protocols, but with different secret

session keys ksenc and ksmac, that should be established

through execution of the BAC protocol (but that we’ve

abstracted from).

1) Strong anonymity: To express strong anonymity as

formally defined in [5] and briefly discussed at Section III-B,

we will need to consider a victim’s e-passport, whose

name id0, signature sig0, picture pic0, etc. are known to

the attacker. The victim’s e-passport follows like any other e-

11



passport the PA and AA protocols which can be respectively

modelled by the following processes:

PA0
def
= PA{id0/id, sig0/sig, pic0/pic, . . .}

AA0
def
= AA{id0/id, sig0/sig, pic0/pic, . . .}

To formally express strong anonymity, we will consider

the following situation:

C[ 1, 2]
def
= ! new skP . new id. new sig. new pic. . . .

! new ksenc. new ksmac. 1

| new skP . !new ksenc. new ksmac. 2

where the second hole will be filled with the processes

modelling the victim’s e-passport, while the first hole will

be filled with the processes modelling any other e-passport.

This system will be compared to the one where the victim’s

e-passport is not present at all. For this we consider the

following situation:

C′[ ]
def
= ! new skP . new id. new sig. new pic. . . .

! new ksenc. new ksmac.

whose unique hole will be filled with the processes mod-

elling any e-passport but the victim’s. In both situations, we

will consider that the secret key skDS is secret whereas its

associated verification key vk(skDS ) is publicly known to the

attacker from the beginning, i.e. Φ0 = {w1 ⊲ vk(skDS )}.

To check if the tagged version of the-passport application

preserves its users’ strong anonymity, one thus needs to

check if the following equivalence holds:

(skDS ;C[[PA]a | [AA]b, [PA0]a | [AA0]b]; Φ0)
≈

(skDS ;C
′[[PA]a | [AA]b]; Φ0)

Now, according to our Theorem 2, instead of checking the

above equivalence, one can check PA’s and AA’s guarantees

w.r.t. anonymity in isolation. In other words, the above equiv-

alence can be derived from the two following equivalences

that are simpler to check:

(skDS ;C[[PA]a, [PA0]a]; Φ0) ≈ (skDS ;C
′[[PA]a]; Φ0)

(skDS ;C[[AA]a, [AA0]a]; Φ0) ≈ (skDS ;C
′[[AA]a]; Φ0)

2) Strong unlinkability: To express strong unlinkability

as defined in [5] and briefly discussed in Section III-B, we

need on one hand to consider a system in which e-passports

can execute the PA and AA protocols multiple times, and on

the other hand a system in which e-passports can execute

the PA and AA protocols at most once. For this we consider

the two following composition contexts:

C[ ]
def
= !new skP . new id. new sig. new pic. . . .

!new ksenc. new ksmac.

C′[ ]
def
= !new skP . new id. new sig. new pic. . . .

new ksenc. new ksmac.

These two composition contexts differ on the replication

before the generation of the session keys ksenc and ksmac,

modelling in the first case an unbounded number of execu-

tions of the process that will fill the unique hole, and in the

second a unique session of the filling process.

To check if the tagged version of the e-passport applica-

tion preserves strong unlinkability, one thus needs to check:

(skDS ;C[[PA]A|[AA]b]; Φ0)≈(skDS ;C
′[[PA]a|[AA]b]; Φ0)

We can instead check whether PA and AA satisfy unlinka-

bility in isolation:

(skDS ;C[[PA]a]; Φ0) ≈ (skDS ;C
′[[PA]a]; Φ0)

(skDS ;C[[AA]b]; Φ0) ≈ (skDS ;C
′[[AA]b]; Φ0)

Then, using Theorem 2, we derive the required equivalence.

VII. CONCLUSION

In this paper, we investigate composition results for

privacy-type properties expressed using trace equivalence.

We have shown that secure protocols can be safely com-

posed. We consider arbitrary equational theories and we

assume that protocols may share some usual primitives

provided they are tagged. Moreover, we have to assume that

the shared keys are not revealed.

When shared keys are kept unknown during the whole

execution, we transform any trace of the composition of

two protocols under shared secrets into a trace on the

composition under no shared secrets. This allows us to go

back to the disjoint case for which composition works quite

well. However, this transformation does not work anymore

as soon as a shared key is revealed even if this key is the

public part of an asymmetric key pair, and thus cannot be

used to decrypt any ciphertext. Nevertheless, we establish

a composition result in this setting by assuming that shared

keys are either never revealed or known by the attacker from

the beginning.

For the sake of simplicity, we only consider composition

assuming that the initial knowledge of the attacker contains a

bunch of names as well as some public keys and verification

keys. We believe that our result can be extended to allow

the attacker to have some non atomic messages in his initial

provided that they are well-tagged. Our composition result

allows one to consider public shared keys by giving them to

the attacker initially (using the frame Φ0). However, in our

setting (and in many others) such a sequence has to be finite

and thus we are only able to deal with a bounded number

of public shared keys. To relax this hypothesis, we probably

need to adapt our model. Lastly, for our composition result

to work, we have to ensure that protocols used disjoint

primitives or at least tagged them. However, real-world

security protocols, typically do not use tags, at least not

explicitly and not necessarily in the particular way stipulated

by our composition result. Thus, it would be interesting to

relax this condition. We could for instance use the implicit

disjointness criterion developed in [19].
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APPENDIX

We consider several equational presentations H1, . . . ,Hn

where Hi = (Σi,Ei), for all i ∈ {1, . . . , n}. Furthermore

we assume that they are disjoint equational presentations

(i.e. for all i, j ∈ {1, . . . , n}, Σi ∩ Σj = ∅) and consistent.

Note that T (Σi,N ∪X ) and T (Σj ,N ∪X ) share symbols,

namely names and variables. Names are used to represent

agent identities, keys or nonces, for i, j ∈ {1, . . . , n}. We

define Σ =
⋃n

i=1 Σi and E =
⋃n

i=1 Ei. The union of

the equational presentations H1, . . . ,Hn is the equational

presentation defined by (Σ,E).

A. Factors

We denote by root(·) the function that associates to

each term M ∈ T (Σ,N ∪ X ) the function symbol at

position ǫ (root position) in M . For M ∈ N ∪ X , we define

root(M) = ⊥, where ⊥ is a new symbol. The term N is

alien to M if root(N) ∈ Σi, root(M) ∈ Σj and i 6= j. We

now introduce our notion of factors. A similar notion is also

used in [32].

Definition 8 (factors): Let M ∈ T (Σ,N ∪ X ). The

factors of M , denoted Fct(M), are the maximal syntactic

subterms of M that are alien to M

Example 15: Let Σ+ be the signature made up of the

constant symbol 0 and the binary function + and E+ be the

following set of equations:

x+ (y + z) = (x+ y) + z x+ 0 = x
x+ y = y + x x+ x = 0

Consider the theories (Σ0,E0) and (Σ+,E+). Let M be the

term sdec(〈n1 + 〈n2, n3〉, proj1(n1 + n2)〉, n3). The term

n1 + 〈n2, n3〉 is a syntactic subterm of M alien to M since

root(n1+ 〈n2, n3〉) ∈ Σ+ and root(M) ∈ Σ0. We have that

Fct(M) = {n1 + 〈n2, n3〉, n1 + n2, n3}

B. Ordered rewriting

Most of the definitions and results in this subsection

are borrowed from [33] and [34] since we use similar

techniques. We consider the notion of ordered rewriting

defined in [35], which is a useful tool that has been used

(e.g. [36]) for proving correctness of combination of uni-

fication algorithms. Let ≺ be a simplification ordering2 on

ground terms assumed to be total and such that the minimum

for ≺ is a name nmin and the constants in Σ are smaller that

any ground term that is neither a constant nor a name. We

define Σ+ to be the set of the function symbols of Σ1, . . . ,

Σn plus the name nmin, i.e. Σ+ = Σ1 ∪· · · ∪Σn ∪{nmin}.

In what follows, we furthermore assume that nmin is never

used under restriction in frames.

2By definition ≺ satisfies that for all ground terms M,N1, N2, and for
any position p 6= ǫ in M , we have N1 ≺ M [N1]p and N1 ≺ N2 implies
M [N1]p ≺ M [N2]p.
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Given a possibly infinite set of equations O we define the

ordered rewriting relation →O by M →O M ′ if and only if

there exists an equation N1 = N2 ∈ O, a position p in M
and a substitution τ such that:

M = M [N1τ ]p, M ′ = M [N2τ ]p and N2τ ≺ N1τ .

It has been shown (see [35]) that by applying the unfailing

completion procedure to a set of equations E we can derive

a (possibly infinite) set of equations O such that on ground

terms:

1) the relations =O and =E are equal,

2) the rewriting system →O is convergent.

It was showed ([36]) that applying unfailing completion to

two disjoints sets of equations E = E1 ∪ E2, yields the

set of generated equations O that is the disjoint union of

the two systems O1 and O2 obtained by applying unfailing

completion procedures to E1 and to E2 respectively. Thus,

we can easily extend this result to E = E1 ∪ . . . ∪ En since

E1, . . . ,En are all disjoint two at a time.

Thus, applying unfailing completion to E = E1∪ . . .∪En

yields the set of generated equations O that is the disjoint

union of O1, . . . ,On obtained by applying unfailing com-

pletion procedures respectively to E1, . . . ,En.

Since the relation →O is convergent on ground terms,

we define M↓E (or briefly M↓) as the unique normal form

of the ground term M for →O . We denote by M↓Ei
(i ∈

{1, . . . , n}) the unique normal form of the ground term M
for →Oi

. These notations are extended as expected to sets

of terms.

Lemma 1: Let M be a ground term such that all its factors

are in normal form and root(M) ∈ Σi. Then

• either M↓ ∈ Fct(M) ∪ {nmin},

• or root(M↓) ∈ Σi and Fct(M↓) ⊆ Fct(M)∪{nmin}.

Example 16: Consider the equational theory (Σ+,E+)
described in Example 15. Let Σf = {f} and Ef = {f(x) =
f(y)}. We have that the theories E+, Ef and E+∪Ef are con-

sistent. Let M = f(n1 + n2). We have that M↓ = f(nmin).
Hence Fct(M↓) contains nmin whereas Fct(M) does not

contain this term.

Lemma 2: Let t be a ground term such that t =
C[u1, . . . , un] where C is a context built on Σi, i ∈
{1, . . . , n} and u1, . . . , un are the factors of t in nor-

mal form. Furthermore, let D be the context built on Σi

(possibly a hole) such that t↓ = D[uj1 , . . . , ujk ] with

j1, . . . , jk ∈ {0 . . . n} and u0 = nmin (the existence is given

by Lemma 1). We have that for all ground terms v1, . . . , vn
in normal form and alien to t, if

∀(p, q) ∈ {1 . . . n}, up = uq ⇔ vp = vq

then C[v1, . . . , vn]↓ = D[vj1 , . . . , vjk ] with v0 = nmin

C. Name replacement

Let ρ be a bijective renaming of name of base type such

that for all k ∈ dom(ρ), k is a “fresh name”. Let δρc (c ∈
{a, b}) be functions on terms that is defined as follows:

• δρa(u) = u when u is a name or a variable;

• δρb (u) = k when u↓ = kρ for some k ∈ dom(ρ) and

root(u) 6∈ Σb ∪Σtagb
∪Σ0; otherwise δρb (u) = u when

u is a name or a variable;

• δρc (f(t1, . . . , tk)) = f(δρd(t1), . . . , δ
ρ
d(tk)) if f ∈ Σd ∪

Σtagd
with d ∈ {a, b}.

• δρc (f(tagd(t1), t2)) = f(tagd(δ
ρ
d(t1)), δ

ρ
d(t2)) if f ∈

{senc, aenc, sign} and d ∈ {a, b}
• δρc (h(tagd(t1))) = h(tagd(δ

ρ
d(t1))) if d ∈ {a, b}

• δρc (f(t1, . . . , tk)) = f(δρc (t1), . . . , δ
ρ
c (tk)) otherwise

The purpose of δρb is to replace the keys used by B but

created by A (i.e. img(ρ)) with fresh names (i.e. dom(ρ)).

Lemma 3: If t1, t2 are terms (that do not use dom(ρ)) in

normal form. For all i ∈ {a, b}, we have

t1 = t2 is equivalent to δρi (t1) = δρi (t2)

Proof: The right implication of the lemma is trivial thus,

we focus on the left implication: for all i ∈ {a, b},δρi (t1) =
δρi (t2) implies t1 = t2. We prove this result by induction on

max(|t1|, |t2|).

Base case max(|t1|, |t2|) = 1: In such a case, we have that

t1, t2 ∈ X ∪N . By definition of δρa, we know that δρa(t1) =
t1 and δρa(t2) = t2. Thus, we can conclude that δρa(t1) =
δρa(t2) implies t1 = t2. For the case i = b, we do a case

analysis on whether δρb (t1) = δρb (t2) = k for some k ∈
dom(ρ) or not.

Case δρb (t1) = k ∈ dom(ρ): By hypothesis, we know that

t2 and t1 do not use dom(ρ). Therefore, by definition of δρb ,

we can deduce that, t2↓ = kρ and t1↓ = kρ. Since t1 and

t2 are in normal form, we can conclude that t1 = t2 = kρ.

Case δρb (t1) 6= k for every k ∈ dom(ρ): By definition

of δρb , we have that δρb (t1) = t1 and δρb (t2) = t2, and thus

t1 = t2.

Inductive step max(|t1|, |t2|) > 1: Assume w.l.o.g. that

|t1| > 1. Thus, there exists a symbol function f and terms

u1, . . . un such that t1 = f(u1, . . . un). Since t1 is in normal

form, we can deduce that t1↓ 6= kρ, for every k ∈ dom(ρ).
We do a case analysis on t1 :

Case f ∈ Σd ∪ Σtagd
and d ∈ {a, b}: In such a

case, we have that δρi (t1) = f(δρd(u1), . . . , δ
ρ
d(un)). But

δρi (t2) = δρi (t1) and by definition of δρi , we know that

it implies that there exists v1, . . . , vn such that t2 =
f(v1, . . . , vn) and δρi (t2) = f(δρd(v1), . . . , δ

ρ
d(vn)). Thus

we have that δρd(vj) = δρd(uj) for all j ∈ {1, . . . , n}.

Furthermore, since t1 and t2 are in normal form, we also

know that uj and vj are in normal form, for every j. But,

max(|t1|, |t2|) > max(|uj |, |vj |), for any j, thus by our
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inductive hypothesis, we can deduce that uj = vj , for all j
and so t1 = f(u1, . . . , un) = f(v1, . . . , vn) = t2.

Case t1 = f(tagd(w1), w2), d ∈ {a, b} and f ∈
{senc, aenc, sign}: In this case, we know that δρi (t1) =
f(tagd(δ

ρ
d(w1)), δ

ρ
d(w2)). But we know that δρi (t2) =

δρi (t1) = f(tagd(δ
ρ
d(w1)), δ

ρ
d(w2)). Thus thanks to t2 being

in normal form and by definition of δρi , it implies that

there exists v1 and v2 such that t2 = f(tagd(v1), v2) and

so δρi (t2) = f(tagd(δ
ρ
d(v1)), δ

ρ
d(v2)). Thus, we have that

δρd(v1) = δρd(u1) and δρd(v2) = δρd(u2). Moreover, t1 and

t2 being in normal form and not using dom(ρ), so are uj

and vj for j ∈ {1, 2}, so we can apply inductive hypothesis

and conclude that v1 = u1 and v2 = u2 and so t1 = t2.

Case t1 = h(tagd(w1)) and d ∈ {a, b}: This case is

analogous to the previous one and can be handled in a similar

way.

Else case: Otherwise, we have that f ∈ Σ0 but the root

symbol of u1 is not taga or tagb. By definition of δρi , we can

deduce that δρi (t1) = f(δρi (u1), . . . , δ
ρ
i (un)). Since δρi (t1) =

δρi (t2), we can deduce that the top symbol of t2 is also f and

so there exists v1, . . . , vn such that t2 = f(v1, . . . , vn). In the

previous cases, we showed that if f ∈ {senc, aenc, sign, h}
and the top symbol of v1 is taga or tagb, then δρi (t1) =
δρi (t2) implies that the top symbol of u1 is also taga or

tagb. Thus, thanks to our hypothesis, we can deduce that

either f 6∈ {senc, aenc, sign, h} or the top symbol of v1 is

different from taga and tagb. Hence by definition of δρi ,

we can deduce that δρi (t2) = f(δρi (v1), . . . , δ
ρ
i (vn)) and so

δρi (vj) = δρi (uj) for all j ∈ {1, . . . , n}. Moreover, t1 and

t2 being in normal form and not using names in dom(ρ),
implies that so are uj and vj for all j ∈ {1, . . . , n}. We

can thus invoke our inductive hypothesis and conclude that

uj = vj for all j ∈ {1, . . . , n} and so t1 = t2.

Lemma 4: Let t1, t2 two terms (that do not use dom(ρ))
in normal form. If δρa(t1) = δρb (t2) then t1 = t2.

Proof: We prove the result by induction on |δρa(t1)|.

Base case |δρa(t1)| = 1: In such a case, we have that δρa(t1) ∈
N ∪ X . Assume first that δρa(t1) ∈ X and so δρb (t2) ∈ X :

By definition of δρa and δρb , we can deduce that δρa(t1) = t1
and δρb (t2) = t2. Thus we conclude that t1 = t2. Assume

now that δρa(t1) ∈ N . We need to distinguish two cases :

Case δρa(t1) ∈ dom(ρ): By definition of δρa, δρa(t1) ∈ N
implies that δρa(t1) = t1. But we assumed that t1, t2 do not

use dom(ρ). Thus this case is impossible.

Case δρa(t1) 6∈ dom(ρ): Once again by definition of δρa,

we have δρa(t1) = t1. Furthermore, since t2 do not use

dom(ρ) and δρb (t2) 6∈ dom(ρ), we also have that δρb (t2) = t2
by definition of δρb . Thus we conclude that t1 = t2.

Inductive step |δρa(t1)| > 1: In that case, we have that

δρa(t1) = f(u1, . . . , un) = δρb (t2). Assume that f ∈ Σd ∪
Σtagd

with d ∈ {a, b}. By definition of δρa and δρb , we can

deduce that root(t1) = f = root(t2). Furthermore, if we

assume that t1 = f(v1, . . . , vn) and t2 = f(w1, . . . , wn), we

would have δρd(vj) = δρd(wj) for all j ∈ {1, . . . , n}. By

Lemma 3, we deduce that vj = wj for all j ∈ {1, . . . , n}.

Hence, we conclude that t1 = t2. Assume now that f ∈ Σ0.

According to the definition of δρa and δρb , there exists

v1, . . . , vn and w1, . . . , wn such that t1 = f(v1, . . . , vn),
t2 = f(w1, . . . , wn) and δρk(vj) = δρℓ (wj), for some

k, ℓ ∈ {a, b}. Moreover, t1 and t2 being in normal form

and not using names in dom(ρ) implies that so are vj and

wj for all j ∈ {1, . . . , n}. Now, either k = ℓ and so by

Lemma 3, we have that vj = wj , else k 6= ℓ but then by

our inductive hypothesis, we also have vj = wj . Hence we

conclude that t1 = t2.

Definition 9 (Factor for Σ0): Let u be a term. We define

FctΣ0
(u) the factors of a term u for Σ0 as the maximal

syntactic subterms of u of the form f(tagi(u1), u2) with f ∈
{senc, aenc, sign} and i ∈ {a, b}; or of the form h(tagi(u1))
with i ∈ {a, b}; or which root symbol is not in Σ0.

Note that the factors for Σ0 of a u are slightly different

from the factors of u defined at Definition 8. Typically, the

difference comes from the fact that we need to differentiate

terms that use properly the tags from those that don’t.

Example 17: Consider the theories (Σa,Ea),
(Σtaga

,Etaga
) and (Σ+,E+) given in Example 15. Let u be

the term 〈senc(taga(n1), 〈n1 + n2, n3〉), sign(n4, n5)〉. We

have:

• Fct(u) = {taga(n1); n1 + n2; n3; n4; n5}
• FctΣ0

(u) = {senc(taga(n1), 〈n1 + n2, n3〉); n4; n5}
• FctΣ0

(n1 + n2) = {n1 + n2}

Lemma 5: Let u be a term, C a context (possibly a

hole) built over Σ0 and v1, . . . , vm terms such that u =
C[v1, . . . , vm] and {v1, . . . , vm} = FctΣ0

(u). If for all

i ∈ {1, . . . ,m}, vi↓ 6= kρ for any k ∈ dom(ρ), then we

have that δρa(u) = δρb (u).

Proof: We prove this lemma by induction on the

syntactic size of |C|.

Base case |C| = 0 : In this case, C is a hole which means

that either root(u) 6∈ Σ0, or u is of the form f(tagi(u1), u2)
with f ∈ {senc, aenc, sign} and i ∈ {a, b}, or u is of the

form h(tagi(u1)) with i ∈ {a, b}. Remember that u↓ 6= kρ
for any k ∈ dom(ρ). We do a case analysis on u :

Case u ∈ N ∪ X : In such a case, since we assume that

u↓ 6= kρ for any k ∈ dom(ρ), then by definition of δρa and

δρb , we have that δρa(u) = u = δρb (u).

Case u = f(u1, . . . , un) with f 6∈ Σ0: f 6∈ Σ0 implies that

f ∈ Σd∪Σtagd
with d ∈ {a, b}. Thus, by definition of δρa and

δρb , we have that δρa(u) = f(δρd(u1), . . . , δ
ρ
d(un)) = δρb (u).

Case u = f(tagd(u1), u2) with d ∈ {a, b} and f ∈
{senc, aenc, sign}: In that case, we have by definition of

δρa and δρb that δρa(u) = f(tagd(δ
ρ
d(u1)), δ

ρ
d(u2)) = δρb (u).
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Case u = h(tagd(u1)) with d ∈ {a, b}: This case is

analogous to the previous one and can be handled in a similar

way.

Inductive step |C| > 1 : In this case, we know that

u = f(u1, . . . , un) with f ∈ Σ0. But |C| > 1 also implies

that for all i ∈ {1, . . . , n}, there exists a sub context Ci

(possibly a hole) of C such that ui = Ci[v
i
1, . . . , v

i
mi

]
and {vi1, . . . , v

i
mi

} = FctΣ0
(ui). Note that FctΣ0

(ui) ⊆
FctΣ0

(u). Since Ci is a sub context of C, then thanks to

our hypothesis, we have that for j ∈ {1, . . . ,mi}, vij↓ 6= kρ
for any k ∈ dom(ρ). Thus we can apply our inductive

hypothesis and deduce that δρa(ui) = δρb (ui). Since C 6= [ ]
and f ∈ Σ0, it must be the case that root(u1) 6= tagk
for any k ∈ {a, b}, thus by definition of δρa and δρb , since

root(u) ∈ Σ0, we have that δρa(u) = f(δρa(u1), . . . , δ
ρ
a(un))

and δρb (u) = f(δρb (u1), . . . , δ
ρ
b (un)). Thanks to the previ-

ously established equalities δρa(ui) = δρb (ui) for all i ∈
{1, . . . , n}, we can conclude that δρa(u) = δρb (u).

Lemma 6: Let u be a term in normal form that do no use

dom(ρ). We have that for all i ∈ {a, b}, δρi (u) is in normal

form and root(δρi (u)) = root(u).

Proof: We prove this result by induction on |u|.
Base case |u| = 1: In such a case, u ∈ X ∪ N . If u ∈ X ,

then for all i ∈ {a, b}, δρi (u) = u. Since u is in normal form

then the result holds. If u ∈ N , by definition, we also have

that δρi (u) ∈ N and so δρi (u) is in normal form with the

same root as u, namely ⊥.

Inductive |u| > 1: In this case, we have that u =
C[u1, . . . , un] with u1, . . . , un factors of u. Assume first

that C is built upon Σj ∪ Σtagj
, for some j ∈ {a, b}.

Since u is in normal form, then for all position p of C,

we have that u|p↓ 6∈ img(ρ) and so for all k ∈ {a, b},

δρk(u) = C[δρj (u1), . . . , δ
ρ
j (un)]. By inductive hypothesis on

u1, . . . , un. We have that δρj (u1), . . . , δ
ρ
j (un) are in normal

form and root(δρj (u1)) = root(u1), . . . root(δρj (un)) =
root(un), thus δρj (u1), . . . , δ

ρ
j (un) are factors of δρi (u).

Thus, since u is in normal form, by Lemmas 3 and 2 ,

we have that δρi (u)↓ = C[δρj (u1), . . . , δ
ρ
j (un)] = δρi (u).

Furthermore, we also have that root(δρi (u)) = root(u).
Assume now that C is built upon Σ0. Thus, assume that

u = f(v1, . . . , vm). By definition of δρa and δρb , there exists

j ∈ {a, b} such that δρi (u) = f(δρj (v1), . . . , δ
ρ
j (vm)). We do

a case analysis on f:

Case f ∈ {senc, aenc, pk, sign, vk, h, 〈 〉}: In this case,

by the equational theory E0, we have that δρi (u)↓ =
f(δρj (v1)↓, . . . , δ

ρ
j (vm)↓). Since by inductive hypothesis,

δρj (vk) is in normal form, for all k ∈ {1, . . . ,m}, we can

deduce that δρi (u) is also in normal form and root(δρi (u)) =
f = root(u).

Case f = sdec: Then m = 2, and by definition of δρa
and δρb , we have that δρi (u) = sdec(δρj (v1), δ

ρ
j (v2)), with

j ∈ {a, b}. By inductive hypothesis, we have that δρj (v1)

and δρj (v2) are both in normal form and have the same root

as v1 and v2 respectively.

Assume first that sdec cannot be reduced, i.e. δρi (u)↓ =
sdec(δρj (v1)↓, δ

ρ
j (v2)↓) = sdec(δρj (v1), δ

ρ
j (v2)). Thus the

result holds. Otherwise, if sdec can be reduced, it implies

that there exists w1, w2 such that δρj (v1) = senc(w1, w2) and

δρj (v2) = w2. But by definition of δρj , there must exist k ∈
{a, b}, and w′

1, w
′
2 such that δρj (v1) = senc(δρk(w

′
1), δ

ρ
k(w

′
2)),

v1 = senc(w′
1, w

′
2), w1 = δρk(w

′
1) and w2 = δρk(w

′
2).

Thus, we have that δρj (v2) = δρk(w
′
2). Thanks to Lem-

mas 3 and 4, we can conclude that v2 = w′
2 and so

u = sdec(senc(w′
1, w

′
2), w

′
2). But in such a case, we would

have that u is not in normal form which contradicts our

hypothesis.

Case f = check: Then m = 2, and by definition of δρa
and δρb , we have that δρi (u) = check(δρj (v1), δ

ρ
j (v2)), with

j ∈ {a, b}. By inductive hypothesis, we have that δρj (v1)
and δρj (v2) are both in normal form and have the same root

as v1 and v2 respectively.

Assume first that check is cannot be reduced: this case

is analogous to the sdec one and can be handled similarly.

Otherwise, if check can be reduced, it implies that there

exist w1, w2 such that δρj (v1) = sign(w1, w2) and δρj (v2) =
vk(w2). But by definition of δρj , there must exist k ∈ {a, b},

and w′
1, w

′
2 such that δρj (v1) = sign(δρk(w

′
1), δ

ρ
k(w

′
2)), v1 =

sign(w′
1, w

′
2), w1 = δρk(w

′
1) and w2 = δρk(w

′
2). Thus, we

have that δρj (v2) = vk(δρk(w
′
2)) = δρk(vk(w

′
2)). Thanks to

Lemmas 3 and 4, we can conclude that v2 = vk(w′
2) and

so u = check(sign(w′
1, w

′
2), vk(w

′
2). But in such a case, we

would have that u is not in normal form which contradicts

our hypothesis.

Case f = adec: Then m = 2, and by definition of δρa
and δρb , we have that δρi (u) = adec(δρj (v1), δ

ρ
j (v2)), with

j ∈ {a, b}. By inductive hypothesis, we have that δρj (v1)
and δρj (v2) are both in normal form and have the same root

as v1 and v2 respectively.

Assume first that adec cannot be reduced: this case is

analogous to the sdec one and can be handled similarly.

Otherwise, if adec can be reduced, it implies that there exist

w1, w2 such that δρj (v1) = aenc(w1, pk(w2)) and δρj (v2) =
w2. But by definition of δρj , there must exist k ∈ {a, b},

and w′
1, w

′
2 such that δρj (v1) = aenc(δρk(w

′
1), pk(δ

ρ
k(w

′
2))),

v1 = aenc(w′
1, pk(w

′
2)), w1 = δρk(w

′
1) and w2 = δρk(w

′
2).

Thus, we have that δρj (v2) = δρk(w
′
2). Thanks to Lem-

mas 3 and 4, we can conclude that v2 = w′
2 and so

u = adec(aenc(w′
1, pk(w

′
2)), w

′
2). But in such a case, we

would have that u is not in normal form which contradicts

our hypothesis.

D. δρi and tagged term

Let i ∈ {a, b}. Let u ∈ T (Σi ∪ Σtagi
∪ Σ0,N ∪ X ).

As defined in Section IV, testi(u) is a conjunction of

elementary formulas (equalities between term). Let α be
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a ground substitution such that fv (u) ⊆ dom(α). We

say that α satisfies t1 = t2, denoted α � t1 = t2, if

t1α↓ = t2α↓. Typically, in an execution of a protocol, the

substitution α will represent the value of the inputs that are

inside the term u. In this subsection, we will assume the

existence of a renaming ρ. Furthermore, we will assume

that all terms we consider do not use dom(ρ) (they might

once we apply δρa or δρb on them). For a term u, we will

denote st(u) the set of subterms of u. At last, for a term

substitution α, we will consider for all i ∈ {a, b}, δρi (α) the

substitution such that dom(α) = dom(δρi (α)) and for all

x ∈ dom(α), xδρi (α) = δρi (xα)

Lemma 7: Let i ∈ {a, b}. Let u ∈ T (Σi ∪ Σ0,N ∪ X ).
Let α be a ground substitution such that fv (u) ⊆ dom(α)
and for all x ∈ dom(α), xα is in normal form. We have

that:

• δρi ([u]iα) = δρi ([u]i)δ
ρ
i (α); and

• If α � testi([u]i) then δρi ([u]iα)↓ = δρi ([u]iα↓).

Proof: We prove the two results separately. First of all,

we show by induction on |u| that δρi ([u]iα) = δρi ([u]i)δ
ρ
i (α):

Base case |u| = 1: In this case, u ∈ N ∪X . If u ∈ N then

we have that [u]i = u and so [u]iα = u and δρi (u) ∈ N .

Thus, we have that δρi ([u]iα) = δρi (u) = δρi (u)δ
ρ
i (α) =

δρi ([u]i)δ
ρ
i (α). Else if u ∈ X , then we also have that [u]i = u

and δρi (u) = u. Thus, δρi (u)δ
ρ
i (α) = uδρi (α). Since u ∈ X

and fv (u) ⊆ dom(α), we have that uδρi (α) = δρi (uα),
thus δρi ([u]iα) = δρi (uα) = uδρi (α) = δρi (u)δ

ρ
i (α) =

δρi ([u]i)δ
ρ
i (α).

Inductive step |u| > 1|: In this case, u = f(u1, . . . , un). We

do a case analysis on f.

Case f ∈ Σi: In such a case, we have that [u]i =
f([u1]i, . . . , [un]i). But by definition of δρi , we have that

δρi ([u]iα) = f(δρi ([u1]iα), . . . , δ
ρ
i ([un]iα)) and δρi ([u]i) =

f(δρi ([u1]i), . . . , δ
ρ
i ([un]i)). By our inductive hypothesis,

we can deduce that for all k ∈ {1, . . . , n}, we have

that δρi ([uk]iα) = δρi ([uk]i)δ
ρ
i (α). Thus, we can de-

duce that δρi ([u]iα) = f(δρi ([u1]i), . . . , δ
ρ
i ([un]i))δ

ρ
i (α) =

δρi ([u]i)δ
ρ
i (α).

Case f ∈ {aenc, sign, senc}: In this case n = 2, and by

definition of [u]i, we have that [u]i = f(tagi([u1]i), [u2]i).
Thus, we have that δρi ([u]i) = f(tagi(δ

ρ
i ([u1]i)), δ

ρ
i ([u2]i))

and δρi ([u]iα) = f(tagi(δ
ρ
i ([u1]iα)), δ

ρ
i ([u2]iα)).

But by our inductive hypothesis, we can deduce

that δρi ([uk]iα) = δρi ([uk]i)δ
ρ
i (α), for all

k ∈ {1, 2}. Thus, we can deduce that δρi ([u]iα) =
f(tagi(δ

ρ
i ([u1]iα)), δ

ρ
i ([u2]iα)) and so we conclude that

δρi ([u]iα) = f(tagi(δ
ρ
i ([u1]i)δ

ρ
i (α)), δ

ρ
i ([u2]i)δ

ρ
i (α)) =

δρi ([u]i)δ
ρ
i (α).

Case f = h: This case is analogous to the previous one

and can be handled in a similar way.

Case f ∈ {sdec, adec, check}: In this case

n = 2, and by definition of [u]i, we have that

[u]i = untagi(f([u1]i, [u2]i)). Thus, we have

that δρi ([u]i) = untagi(f(δ
ρ
i ([u1]i), δ

ρ
i ([u2]i))) and

δρi ([u]iα) = untagi(f(δ
ρ
i ([u1]iα), δ

ρ
i ([u2]iα))).

Once again, with our inductive hypothesis, we

can deduce that δρi ([uk]iα) = δρi ([uk]i)δ
ρ
i (α), for

k ∈ {1, 2}, and so we can conclude that δρi ([u]iα) =
untagi(f(δ

ρ
i ([u1]i), δ

ρ
i ([u2]i)))δ

ρ
i (α) = δρi ([u]i)δ

ρ
i (α).

Else case: In this case, by definition of [u]i, we

have that [u]i = f([u1]i, . . . , [un]i) and δρi ([u]i) =
f(δρi ([u1]i), . . . , δ

ρ
i ([un]i)). Thus, this case is similar to the

case f ∈ Σi. Hence the result holds.

We now prove the second property, i.e. if α � testi([u]i),
then δρi ([u]iα)↓ = δρi ([u]iα↓). Once again, we prove the

results by induction on |u|:

Base case |u| = 1: In this case, u ∈ N ∪ X . In both cases,

we have that [u]i = u and testi(u) = true. If u ∈ N ,

we know that δρi (u) ∈ N and so δρi (u)↓ = δρi (u). But we

also have that uα↓ = uα = u. Thus, we conclude that

δρi (uα)↓ = δρi (u)↓ = δρi (u) = δρi (uα↓). Else, if u ∈ X , by

hypothesis on α, we deduce that uα↓ = uα. Furthermore, by

Lemma 6, we also know that δρi (uα↓)↓ = δρi (uα↓). Thus,

we conclude that δρi (uα↓) = δρi (uα↓)↓ = δρi (uα)↓.

Inductive step |u| > 1: In this case, we have u =
f(u1, . . . , un). We do a case analysis on f.

Case f ∈ Σi: In such a case, we have that

[u]i = f([u1]i, . . . , [un]i). Hence, we deduce that

δρi ([u]iα) = f(δρi ([u1]iα), . . . , δ
ρ
i ([un]iα)) and so

δρi ([u]iα)↓ = f(δρi ([u1]iα)↓, . . . , δ
ρ
i ([un]iα)↓)↓.

But testi([u]i) =
∧n

j=1 testi([uj ]i) which means

that α � testi([uj]i), for all j. Thus, By our

inductive hypothesis on u1, . . . , un, we deduce that

δρi ([u]iα)↓ = f(δρi ([u1]iα↓), . . . , δ
ρ
i ([un]iα↓))↓ =

δρi (f([u1]iα↓, . . . , [un]iα↓))↓.

Let’s denote t = f([u1]iα↓, . . . , [un]iα↓). We can assume

that there exists a context C built on Σi such that t =
C[t1, . . . , tm] with Fct(t) = {t1, . . . , tm} and t1, . . . , tm
are in normal form. Thus, by Lemma 1, there exists a

context D (possibly a hole) such that t↓ = D[tj1 , . . . , tjk ]
with j1, . . . , jk ∈ {0, . . . ,m} and t0 = nmin. But since

t1, . . . , tm are all in normal form and thanks to Lemma 6, we

know that for all k ∈ {0, . . . ,m}, δρi (tk) is also in normal

form and its root is not in Σi. Hence, we can apply Lemma 2

such that C[δρi (t1), . . . , δ
ρ
i (tn)]↓ = D[δρi (tj1), . . . , δ

ρ
i (tjk)].

But since C and D are both built upon Σi, we have

that C[δρi (t1), . . . , δ
ρ
i (tn)]↓ = δρi (C[t1, . . . , tn])↓ and

D[δρi (tj1), . . . , δ
ρ
i (tjk )] = δρi (D[tj1 , . . . , tjk ]). Hence, we

can deduce that δρi (t)↓ = δρi (t↓). But we already know

that t↓ = [u]iα↓ and δρi (t)↓ = δρi ([u]iα)↓. Thus, we can

conclude that δρi ([u]iα)↓ = δρi ([u]iα↓).
Case f ∈ {senc, aenc, sign}: In such a case, we have that

[u]i = f(tagi([u1]i), [u2]i) and testi([u]i) = testi([u1]i) ∧
testi([u2]i). By definition of E0, we have that [u]iα↓ =
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f(tagi([u1]iα↓), [u2]iα↓). Furthermore, we also have that

δρi ([u]iα)↓ = f(tagi(δ
ρ
i ([u1]iα)↓), δ

ρ
i ([u2]iα)↓). By our in-

ductive hypothesis on u1 and u2, we have that δρi ([uk]iα)↓ =
δρi ([uk]iα↓), for k ∈ {1, 2}. Hence, we can deduce

that δρi ([u]iα)↓ = f(tagi(δ
ρ
i ([u1]iα↓)), δ

ρ
i ([u2]iα↓)) =

δρi (f(tagi([u1]iα↓), [u2]iα↓)). Thus, we can conclude that

δρi ([u]iα)↓ = δρi ([u]iα↓).
Case f = h: This case is analogous to the previous one

and can be handled in a similar way.

Case f ∈ {pk, vk, 〈 〉}: In this case, we have that

[u]i = f([u1]i, . . . , [un]i) with n ∈ {1, 2}, and testi([u]i) =
∧n
j=1testi([uj ]i). By definition of E0, we have that [u]iα↓ =

f([u1]iα↓, [u2]iα↓). Thus, this case is similar to the senc

case and can be handled similarly.

Case f ∈ {sdec, adec, check}: In such a case,

we have that [u]i = untagi(f([u1]i, [u2]i)) and

testi([u]i) = (tagi(untagi(f([u1]i, [u2]i))) =
f([u1]i, [u2]i)) ∧ testi([u1]i) ∧ testi([u2]i). But by

hypothesis, we know that α � testi([u]i), thus, we have that

tagi(untagi(f([u1]i, [u2]i)))α↓ = f([u1]i, [u2]i)α↓. Hence,

we deduce that the root function symbol f can be reduced

and the root and the plain text is tagi, i.e.: there exists

v1, v2 such that

• f = sdec: [u1]iα↓ = senc(tagi(v1), v2), [u2]iα↓ = v2
and [u]iα↓ = v1. It implies that δρi ([u1]iα↓) =
senc(tagi(δ

ρ
i (v1)), δ

ρ
i (v2)) and so we can deduce that

untagi(sdec(δ
ρ
i ([u1]iα↓), δ

ρ
i ([u2]iα↓)))↓ = δρi (v1) =

δρi ([u]iα↓)
• f = adec: [u1]iα↓ = aenc(tagi(v1), pk(v2)) and

[u2]iα↓ = v2
• f = check: [u1]iα↓ = sign(tagi(v1), v2) and [u2]iα↓ =

vk(v2).

In all cases, the following equality holds:

untagi(f(δ
ρ
i ([u1]iα↓), δ

ρ
i ([u2]iα↓)))↓ = δρi ([u]iα↓).

But by inductive hypothesis, we know that

δρi ([uk]iα↓) = δρi ([uk]iα)↓, for k ∈ {1, 2}.

Thus, since we also have that δρi ([u]iα)↓ =
untagi(f(δ

ρ
i ([u1]iα)↓, δ

ρ
i ([u2]iα)↓))↓, we can conclude

that δρi ([u]iα)↓ = untagi(f(δ
ρ
i ([u1]iα↓), δ

ρ
i ([u2]iα↓)))↓ =

δρi ([u]iα↓).
Case f = projj , j = 1, 2: In this case n = 1, and

[u]i = f([u1]i). Since α � testi([u]i), we have that

there exists v1, v2 such that [u1]iα↓ = 〈v1, v2〉 and so

δρi ([u]iα↓) = δρi (vj). But by inductive hypothesis, we have

that δρi ([u1]iα)↓ = δρi ([u1]iα↓) = 〈δρi (v1), δ
ρ
i (v2)〉. Hence,

δρi ([u]iα)↓ = f(δρi ([u1]iα))↓ = f(δρi ([u1]iα)↓)↓ = δρi (vj)↓.

But we showed that δρi (vj) = δρi ([u]iα↓), thus by Lemma 6,

δρi (vj) is in normal form and which allows us to conclude.

Corollary 2: Let i ∈ {a, b}. Let u, v ∈ T (Σi ∪ Σ0,N ∪
X ). Let α be a ground substitution such that fv(u) ⊆
dom(α) and for all x ∈ dom(α), xα is in normal form.

We have that : If α � testi([u]i)∧ testi([v]i) then [u]iα↓ =

[v]iα↓ is equivalent to δρi ([u]i)δ
ρ
i (α)↓ = δρi ([v]i)δ

ρ
i (α)↓.

Proof: Thanks to Lemma 3, [u]iα↓ = [v]iα↓ is equiv-

alent to δρi ([u]iα↓) = δρi ([v]iα↓). But thanks to Lemma 7,

we have that δρi ([u]iα↓) = δρi ([u]iα)↓ = δρi ([u]i)δ
ρ
i (α)↓ and

δρi ([v]iα↓) = δρi ([v]iα)↓ = δρi ([v]i)δ
ρ
i (α)↓. Thus, the result

holds.

Lemma 8: Let i ∈ {a, b}. Let u, v ∈ T (Σi∪Σ0,N ∪X ).
Let α be a ground substitution such that fv (u) ⊆ dom(α)
and for all x ∈ dom(α), xα is in normal form. We have

that :

α � testi([u]i) is equivalent to δρi (α) � testi(δ
ρ
i ([u]i))

Proof: We prove this result by induction on |u| :

Base case |u| = 1: In this case, we have that u ∈ N ∪ X ,

and thus [u]i, δ
ρ
i ([u]i) ∈ N ∪ X . But then by definition,

testi([u]i) = true and testi(δ
ρ
i ([u]i)) = true. Thus the result

trivially holds.

Inductive step |u| > 1: Then, we have that u =
f(u1, . . . , un). We do a case analysis on f:

Case f ∈ Σi ∪ {pk, vk, 〈 〉}: In this case,

we have that [u]i = f([u1]i, . . . , [un]i) and

δρi ([u]i) = f(δρi ([u1]i), . . . , δ
ρ
i ([un]i)). Thus, we

deduce that testi([u]i) =
∧n

j=1 testi([uj]i) and

testi(δ
ρ
i ([u]i)) =

∧n
j=1 testi(δ

ρ
i ([uj]i)). By inductive

hypothesis on u1, . . . , un, the result holds.

Case f ∈ {senc, aenc, sign}: In this case,

we have that [u]i = f(tagi([u1]i), [u2]i) and

δρi ([u]i) = f(tagi(δ
ρ
i ([u1]i)), δ

ρ
i ([u2]i)). Thus, we

deduce that testi([u]i) = testi([u1]i) ∧ testi([u2]i)
and testi(δ

ρ
i ([u]i)) = testi(δ

ρ
i ([u1]i)) ∧ testi(δ

ρ
i ([u2]i)). By

inductive hypothesis on u1, u2, the result holds.

Case f = h: This case is analogous to de previous one

and can be handled in a similar way.

Case f ∈ {sdec, adec, check}: In this case, we

have that [u]i = untagi(f([u1]i, [u2]i)) and δρi ([u]i) =
untagi(f(δ

ρ
i ([u1]i), δ

ρ
i ([u2]i))). Thus, we deduce that:

• testi([u]i) = testi([u1]i) ∧ testi([u2]i) ∧
tagi(untagi(f([u1]i, [u2]i))) = f([u1]i, [u2]i)

• testi(δ
ρ
i ([u]i)) = testi(δ

ρ
i ([u1]i)) ∧ testi(δ

ρ
i ([u2]i)) ∧

tagi(untagi(f(δ
ρ
i ([u1]i), δ

ρ
i ([u2]i)))) =

f(δρi ([u1]i), δ
ρ
i ([u2]i))

Whether we assume that α � testi([u]i) or δρi (α) �

testi(δ
ρ
i ([u]i)), we have by inductive hypothesis that α �

testi([uk]i) for k ∈ {1, 2}. Thus by Lemma 7, it implies

that δρi ([uk]iα↓) = δρi ([uk]i)δ
ρ
i (α)↓, for k ∈ {1, 2}. We do

a case analysis on f :

• f = sdec: α � tagi(untagi(f([u1]i, [u2]i))) =
f([u1]i, [u2]i) is equivalent to there exists v1, v2
such that [u1]iα↓ = senc(tagi(v1), v2) and

[u2]iα↓ = v2. But by Lemma 3, it is equivalent

to δρi ([u1]iα↓) = senc(tagi(δ
ρ
i (v1)), δ

ρ
i (v2)) and
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δρi ([u2]iα↓) = δρi (v2). Thus, it is equivalent to

δρi ([u1]i)δ
ρ
i (α)↓ = senc(tagi(δ

ρ
i (v1)), δ

ρ
i (v2)) and

δρi ([u2]i)δ
ρ
i (α)↓ = δρi (v2). Hence it is equivalent

to δρi (α) � tagi(untagi(f(δ
ρ
i ([u1]i), δ

ρ
i ([u2]i)))) =

f(δρi ([u1]i), δ
ρ
i ([u2]i))

• f = adec and f = check : Similar to case f = sdec.

Case f ∈ {proj1, proj2}: In this case, we have that [u]i =
f([u1]i) and δρi ([u]i) = f(δρi ([u1]i)). Thus, we deduce that :

• testi([u]i) = testi([u1]i) ∧
〈proj1([u1]i), proj2([u1]i)〉 = [u1]i

• testi(δ
ρ
i ([u]i)) = testi(δ

ρ
i ([u1]i)) ∧

〈proj1(δ
ρ
i ([u1]i)), proj2(δ

ρ
i ([u1]i))〉 = δρi ([u1]i)

Whether we assume that α � testi([u]i) or δρi (α) �

testi(δ
ρ
i ([u]i)), we have by inductive hypothesis that α �

testi([u1]i). Thus by Lemma 7, it implies that δρi ([u1]iα↓) =
δρi ([u1]i)δ

ρ
i (α)↓.

But α � 〈proj1([u1]i), proj2([u1]i)〉 = [u1]i is equiva-

lent to there exists v1, v2 such that [u1]iα↓ = 〈v1, v2〉,
which is equivalent to δρi ([u1]iα↓) = 〈δρi (v1), δ

ρ
i (v2)〉

thanks to Lemma 3. We showed that it is equivalent to

δρi ([u1]i)δ
ρ
i (α)↓ = 〈δρi (v1), δ

ρ
i (v2)〉, which allows us to

conclude that α � 〈proj1([u1]i), proj2([u1]i)〉 = [u1]i is

equivalent δρi (α) � 〈proj1(δ
ρ
i ([u1]i)), proj2(δ

ρ
i ([u1]i))〉 =

δρi ([u1]i).

For a term u that does not contain any tag, we defined in

Section IV, a way to construct a term that is properly tagged

(i.e. [u]i). Hence, for a term properly tagged, we would never

have senc(n, k) where n and k are both nonces, for example.

Instead, we would have senc(tagi(n), k). However, even if

we can force the processes to properly tag their term, we

do not have any control on what the intruder can build.

Typically, if the intruder is able to deduce n and k, he is

allowed to send to a process the term senc(n, k). Thus, we

want to define the notion of flawed tagged term.

Definition 10: Let u be a ground term in normal form. We

define the flawed tagged subterm of u, denoted Flawed(u),
recursively on u :

• u = f(tagi(u1), u2), for f ∈ {senc, aenc, sign} and i ∈
{a, b}: Flawed(u) = Flawed(u1) ∪ Flawed(u2).

• u = h(tagi(v)), for i ∈ {a, b}: Flawed(u) =
Flawed(v).

• u = f(u1, . . . , un) for f ∈ Σa∪Σb∪Σtaga
∪Σtagb

∪{〈 〉}:

Flawed(u) = Flawed(u1) ∪ · · · ∪ Flawed(un).
• u = f(v) for f ∈ {pk, vk}: If v ∈ N then Flawed(u) =

∅ else Flawed(u) = {u} ∪ Flawed(v).
• u ∈ N : Flawed(u) = ∅.

• else we have that u = f(u1, . . . , un) and Flawed(u) =
{u} ∪

⋃n
i=1 Flawed(ui).

Lemma 9: Let i ∈ {a, b}. Let u ∈ T (Σi ∪ Σ0,N ∪ X )
such that for all v ∈ st(u), root(v) = f with f ∈ {pk, vk}
implies that there exists v′ ∈ N such that v = f(v′). Let

α be a ground substitution such that fv (u) ⊆ dom(α) and

for all x ∈ dom(α), xα is in normal form. We have that if

α � testi([u]i) then for all t ∈ Flawed([u]iα↓), there exists

x ∈ fv ([u]i) such that t ∈ Flawed(xα).

Proof: We prove the result by induction on |u|.

Base case |u| = 1: In this case, we have that u ∈ X ∪N and

so [u]i = u. If u ∈ N , then uα ∈ N and [u]iα↓ ∈ N , which

means that Flawed([u]iα↓) = ∅. Thus the results holds. Else

u ∈ X and so [u]i = u ∈ dom(α) which means that the

result trivially holds.

Inductive step |u| > 1: Then, u = f(u1, . . . , un). We do a

case analysis on f.

Case f ∈ Σi: In this case, [u]i = f([u1]i, . . . , [un]i)
and [u]iα↓ = f([u1]iα↓, . . . , [un]iα↓)↓. By definition, we

know that for all t ∈ Flawed([u]iα↓), root(t) 6∈ Σa ∪ Σb.

Thus, thanks to Lemma 1, we can deduce that for all

t ∈ Flawed([u]iα↓), there exists k ∈ {1, . . . , n} such that

t ∈ Flawed([uk]iα↓). By hypothesis, α � testi([u]i) and so

α � testi([uk]i). Thus, by inductive hypothesis, we know

that there exists x ∈ fv ([uk]i) such that t ∈ st(xα). But

x ∈ fv ([uk]i) implies x ∈ fv([u]i), thus the result holds.

Case f ∈ {senc, aenc, sign}: In this case,

[u]i = f(tagi([u1]i), [u2]i). Furthermore, [u]iα↓ =
f(tagi([u1]iα↓), [u2]iα↓). At last, α � testi([u]i) implies

that α � testi([uk]i), for all k = 1, 2. But, by definition,

Flawed([u]iα↓) = Flawed([u1]iα↓) ∪ Flawed([u]iα↓) and

so by our inductive hypothesis on u1 and u2, the result

holds.

Case f = h: This case is analogous to the previous one

and can be handled in a similar way.

Case f = 〈 〉: In this case, [u]i = f([u1]i, [u2]i). Further-

more, [u]iα↓ = f([u1]iα↓, [u2]iα↓). At last, α � testi([u]i)
implies that α � testi([uk]i), for all k = 1, 2. But, by defi-

nition, Flawed([u]iα↓) = Flawed([u1]iα↓)∪Flawed([u]iα↓)
and so by our inductive hypothesis on u1 and u2, the result

holds.

Case f = {vk, pk}: In this case, we know by hypothesis

that u = f(v) with v ∈ N . Thus [u]i = u and Flawed(u) =
∅. Thus the result trivially holds.

Case f ∈ {sdec, adec, check}: In this case, we have that

[u]i = untagi(f([u1]i, [u2]i)) and testi([u]i) = testi([u1]i)∧
testi([u2]i) ∧ tagi(untagi([u]i)) = [u]i. But by hypoth-

esis, we know that α � testi([u]i) and more specifi-

cally tagi(untagi([u]i))α↓ = [u]iα↓. It implies that there

exists v1, v2 such that [u1]iα↓ = g(tagi(v1), v2) and

[u]iα↓ = v1, with g ∈ {senc, aenc, sign}. Thus, for all

t ∈ Flawed([u]iα↓), t ∈ Flawed([u1]iα↓). Since α �

testi([u1]i), the result holds by inductive hypothesis.

Case f = projj , j ∈ {1, 2}: In this case, we have

that [u]i = f([u1]i) and testi([u]i) = testi([u1]i) ∧
〈proj1([u1]i), proj2([u1]i)〉 = [u1]i. Hence, α � testi([u]i)
implies that there exist v1, v2 such that [u1]iα↓ = 〈v1, v2〉
and [u]iα↓ = vj . Thus, for all t ∈ Flawed([u]iα↓),
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t ∈ Flawed([u1]iα↓). Since α � testi([u1]i) by hypothesis,

our inductive hypothesis allows us to conclude.

Corollary 3: Let i ∈ {a, b}. Let u ∈ T (Σi ∪Σ0,N ∪X )
such that for all v ∈ st(u), root(v) = f with f ∈ {pk, vk}
implies that there exists v′ ∈ N such that v = f(v′). Let α be

a ground substitution such that fv (u) ⊆ dom(α) and for all

x ∈ dom(α), xα is in normal form. We have that if δρi (α) �
testi(δ

ρ
i ([u]i)), then for all t ∈ Flawed(δρi ([u]i)δ

ρ
i (α)↓),

there exists x ∈ fv(δρi ([u]i) such that t ∈ Flawed(xδρi (α)).
Proof: (sketch) This result is a corollary of Lemma 9.

Actually, this can be proved in a similar way since the

transformation δρi does not change the structure of the term.

E. Frame of a tagged process

In this subsection, we will focus on the frame of a trace

for a tagged process. Let (E ;P ; Φ) be an extended process

such that Φ = {w1 ⊲ u1, . . . , wn ⊲ un}. We define a

lexicographic measurement on terms M , denoted M(M),
where fv (M) ⊆ dom(Φ) and fn(M) ∩ E = ∅ such that :

M(M) = (max{i | wi ∈ fv (M)}, |M |).

Definition 11: Let (E ;P ; Φ) be a closed extended pro-

cess. Let’s denote Φ = {w1 ⊲ u1, . . . , wn ⊲ un}. We say

that new E .Φ is well-tagged if for all i ∈ {1, . . . , n}, ui is

well-tagged for i, i.e. there exists a term vi, a substitution

α and c ∈ {a, b} such that:

• for all vk(t), pk(t′) ∈ st(vi), t, t
′ ∈ N

• ui = [vi]cα; and

• α � testc([vi]c); and

• for all x ∈ dom(α), either there exists M such that

fv(M) ⊆ {w1, . . . , wi−1}, fn(M)∩ E = ∅ and MΦ =
xα; or vi is not a variable and xα is well-tagged for i.

Lemma 10: Let (E ;P ; Φ) be an extended process such

that new E .Φ is well-tagged. Let’s denote Φ = {w1 ⊲

u1; . . . ; wn ⊲ un}. We have that for all i ∈ {1, . . . , n},

for all t ∈ Flawed(ui↓), there exists M such that fv(M) ⊆
{w1, . . . , wi−1}, fn(M) ∩ E = ∅ and t ∈ Flawed(MΦ↓).

Proof: We prove this result for any ground term u well-

tagged for i ∈ {1, . . . , n}. By definition, u being well-tagged

for i ∈ {1, . . . , n} implies that there exists a term v, a

substitution α and c ∈ {a, b} such that:

• for all vk(t), pk(t′) ∈ st(v), t, t′ ∈ N
• u = [v]cα; and

• α � testc([v]c); and

• for all x ∈ dom(α), either there exists M such that

fv(M) ⊆ {w1, . . . , wi−1}, fn(M)∩ E = ∅ and MΦ =
xα; or v is not a variable and xα is well-tagged for i.

The proof is done by induction |u|.

Base case |u| = 1: In this case, u ∈ N which implies

u↓ = u, and thus by definition Flawed(u↓) = ∅. Hence the

result trivially holds.

Inductive step |u| > 1: Let t ∈ Flawed(u↓). Since for

all vk(t), pk(t′) ∈ st(v), t, t′ ∈ N , and u = [v]cα
and α � testc([v]c), we can apply Lemma 9 to v and

α↓. Thus, we have that there exists x ∈ fv ([v]c) such

that t ∈ Flawed(xα↓). But since u is well-tagged for i,
we know that either there exists M such that fv (M) ⊆
{w1, . . . , wi−1}, fn(M) ∩ E = ∅ and MΦ = xα. Hence

t ∈ Flawed(xα↓) = Flawed(MΦ↓) and so the result holds

in such a case. Or, v is not a variable and thus nor is [v]c.

Moreover, xα is well-tagged for i. Now because v is not a

variable and x ∈ fv ([v]c), we have that |xα| < |[v]cα| = |u|,
we conclude by applying our inductive hypothesis.

Lemma 11: Let (E ,P ,Φ) be a closed process such that

new E .Φ is well-tagged. We have that for all M such

that fn(M) ∩ E = ∅ and fv (M) ⊆ dom(Φ), for all

f(u1, . . . , un) ∈ Flawed(MΦ↓), there exists M1, . . . ,Mn

such that fv (Mi) ⊆ dom(Φ), fn(Mi)∩ E = ∅, MiΦ↓ = ui,

and M(Mi) < M(M), for all i ∈ {1, . . . , n}.

Proof: We prove this result by induction on M(M).
Base case M(M) = (0, 0): A term with |M | = 0 is

impossible so the result trivially holds.

Inductive step M(M) = (i, 1): In this case, either we

have that M ∈ N or M = wi. If M ∈ N , then we

have MΦ↓ = M ∈ N and Flawed(MΦ↓) = ∅. Thus

the result holds. If M = wi, then by Lemma 10, for

all f(t1, . . . , tm) ∈ Flawed(wiΦ↓), there exists M ′ such

that fv (M ′) ⊆ {w1, . . . , wi−1}, fn(M) ∩ E = ∅ and

f(t1, . . . , tm) ∈ Flawed(M ′Φ↓). But M(M ′) < M(M),
thus by our inductive hypothesis, we can deduce that there

exists M1, . . . ,Mm such that fv(Mi) ⊆ dom(Φ), fn(Mi)∩
E = ∅, MiΦ↓ = ti and M(Mi) < M(M ′) < M(M), for

i ∈ {1, . . . ,m}.

Inductive step M(M) > (i, 1): We have that M =
f(M1, . . . ,Mn). Let t = g(t1, . . . , tm) ∈ Flawed(MΦ↓).
We do a case analysis on f.

Case f ∈ Σℓ ∪ Σtagℓ
, ℓ ∈ {a, b}: In this case, MΦ↓ =

f(M1Φ↓, . . . ,MnΦ↓)↓. By definition, we know that for all

t ∈ Flawed(MΦ↓), root(t) 6∈ Σℓ ∪ Σtagℓ
. Thus, thanks to

Lemma 1, we can deduce that for all t ∈ Flawed(MΦ↓),
there exists k ∈ {1, . . . , n} such that t ∈ Flawed(MkΦ↓).
But M(Mk) < M(M), thus, by inductive hypothesis, we

know that there exists M ′
1, . . . ,M

′
m such that fv(M ′

j) ⊆ Φ,

fn(M ′
j) ∩ E = ∅, M ′

jΦ↓ = ti and M(M ′
j) < M(Mk) <

M(M), for j ∈ {1, . . . ,m}. Hence the result holds.

Case f = 〈 〉: In such a case, MΦ↓ = f(M1Φ↓,M2Φ↓).
Furthermore by definition, we have Flawed(MΦ↓) =
Flawed(M1Φ↓)∪Flawed(M2Φ↓). Since M(M1) < M(M),
M(M2) < M(M) and t ∈ Flawed(M1Φ↓) ∪
Flawed(M2Φ↓), we conclude by applying our inductive

hypothesis on M1 (or M2).

Case f ∈ {pk, vk}: In this case, MΦ↓ = f(M1Φ↓). If

M1Φ↓ ∈ N , then we have that Flawed(MΦ↓) = ∅, else

21



Flawed(MΦ↓) = {MΦ↓} ∪ Flawed(M1Φ↓). If t = MΦ↓,

then we have t1 = M1Φ↓. Since M(M1) < M(M), then

the result holds; else we conclude by applying our inductive

hypothesis on M1.

Case f ∈ {senc, aenc, sign}: In such a case, MΦ↓ =
f(M1Φ↓,M2Φ↓). We need to distinguish if root(M1Φ↓) ∈
{taga, tagb} or not.

If root(M1Φ↓) ∈ {taga, tagb}, then there exists ℓ ∈
{a, b} and u1 such that M1Φ↓ = tagℓ(u1). Thus,

Flawed(M1Φ↓) = Flawed(u1). But by definition, we have

that Flawed(MΦ↓) = Flawed(u1) ∪ Flawed(M2Φ↓). Thus,

t ∈ Flawed(MΦ↓) implies that t ∈ Flawed(M1Φ↓) or t ∈
Flawed(M2Φ↓). Since M(M1) < M(M) and M(M2) <
M(M), we conclude by applying our inductive hypothesis

on M1 or M2.

Else root(M1Φ↓) 6∈ {taga, tagb}. In such a case,

Flawed(MΦ↓) = Flawed(M1Φ↓) ∪ Flawed(M2Φ↓) ∪
{MΦ↓}. If t = MΦ↓, we have that t1 = M1Φ↓, t2 =
M2Φ↓ and M(M1) < M(M), M(M2) < M(M). Thus

the result holds. If t ∈ Flawed(M1Φ↓) ∪ Flawed(M2Φ↓),
we conclude by applying our inductive hypothesis on M1

or M2.

Case f = h: This case is analogous to the previous one

and can be handled similarly.

Case f ∈ {sdec, adec, check}: For all those functions, we

have to distinguish two cases: Either f is reduced in MΦ↓,

or not.

If f is not reduced, then we have that

MΦ↓ = f(M1↓,M2↓). Thus, by definition we have

that Flawed(MΦ↓) = {MΦ↓} ∪ Flawed(M1Φ↓) ∪
Flawed(M2Φ↓). Thus if t = MΦ↓, we have that

t1 = M1Φ↓, t2 = M2Φ↓ and M(M1) < M(M),
M(M2) < M(M). Thus the result holds. Else if

t ∈ Flawed(M1Φ↓) or t ∈ Flawed(M2Φ↓), since

M(M1) < M(M), M(M2) < M(M), we can conclude

by applying our inductive hypothesis on M1 or M2.

If f is reduced, then we have that M1Φ↓ = f′(u1, u2)
with MΦ↓ = u1 and f′ ∈ {senc, aenc, sign}. If root(u1) =
tagℓ, with ℓ ∈ {a, b} then we have that there exists u′

1

such that u1 = tagℓ(u
′
1), Flawed(MΦ↓) = Flawed(u′

1)
and Flawed(M1Φ↓) = Flawed(u′

1) ∪ Flawed(u2). Thus

Flawed(MΦ↓) ⊆ Flawed(M1Φ↓). If root(u1) 6= tagℓ,

for all ℓ ∈ {a, b}, then we have that Flawed(M1Φ↓) =
{M1Φ↓} ∪ Flawed(u1) ∪ Flawed(u2) and Flawed(MΦ↓) =
Flawed(u1). Thus, we also have that Flawed(MΦ↓) ⊆
Flawed(M1Φ↓). Since in both cases, we have that

Flawed(MΦ↓) ⊆ Flawed(M1Φ↓) and M(M1) < M(M),
we can conclude by applying our inductive hypothesis on

M1.

Lemma 12: Let u be a ground term in normal form. We

have that there exists a context C (possibly a hole) built on

{〈 〉}, and u1, . . . , um such that u = C[u1, . . . , um], and for

all i ∈ {1, . . . ,m},

• either ui ∈ Flawed(u);
• or ui ∈ FctΣ0

(u) and δρa(ui) = δρb (ui),
• or ui = f(n) for some f ∈ {pk, vk} and n ∈ N ,

• or ui ∈ N .

Proof: Let u a ground term in normal form and let

{v1, . . . , vn} = FctΣ0
(u). Thus there exists a context D

(possibly a hole) built on Σ0 such that u = D[v1, . . . , vn].
We prove the result by induction on |D|.

Base case |D| = 0: We show that the result holds with C =
. |D| = 0 implies that FctΣ0

(u) = u. But by Lemma 5,

u↓ 6∈ dom(ρ) implies that δρa(u) = δρb (u). But u is in normal

form which means that u↓ ∈ dom(ρ) implies that u ∈ N .

Hence we have that u ∈ FctΣ0
(u) and either u ∈ N or

δρa(u) = δρb (u) which allows us to conclude.

Inductive step |D| > 0: There exist f ∈ Σ0, and v1, . . . , vk
such that u = f(u1, . . . , uk). We do a case analysis on f.

Case f = 〈 〉: In such a case, there exists D1, D2 context

(possibly holes) built on Σ0 such that D = 〈D1, D2〉, ui =
Di[v

i
1, . . . , v

i
ni
] and {vi1, . . . , v

i
ni
} = FctΣ0

(ui) and |Di| <
|D|, for all i ∈ {1, 2}. By inductive hypothesis on u1 and u2,

we have that there exists C1 and C2 context built on {〈 〉}
such that u1 = C1[u

1
1, . . . , u

1
m1

], u2 = C2[u
2
1, . . . , u

2
m2

] and

for all i, j,

• either ui
j ∈ Flawed(ui), but we have that Flawed(u) =

Flawed(u1) ∪ Flawed(u2) so ui
j ∈ Flawed(u);

• or ui
j ∈ FctΣ0

(ui) and δρa(u
i
j) = δρb (u

i
j), but we have

that FctΣ0
(u) = FctΣ0

(u1) ⊎ FctΣ0
(u2) thus ui

j ∈
FctΣ0

(u)
• or ui

j = f(n) for some f ∈ {pk, vk} and n ∈ N ,

• or ui
j ∈ N .

Thus, with the context C = 〈C1, C2〉, and u =
C[u1

1, . . . , u
1
m1

, u2
1, . . . , u

2
m2

], the result holds.

Case f ∈ {pk, vk} and u = f(n) for some n ∈ N : With

C = as context, the result trivially holds.

Otherwise: By definition, we have that Flawed(u) =
{u} ∪

⋃k
i=1 Flawed(ui). Thus, since u ∈ Flawed(u), then

with C = as context, the result trivially holds.

F. Proof of Theorem 1

In this subsection, we will focus on the proof of Theo-

rem 1. Typically, all previous subsection of the Appendix are

useful for the proofs of both Theorems. Thus, this subsection

is independent of subsection G. We will assume in this

subsection that processes and frames are colored by a or b.
Intuitively, coloring a process by a means that this process

was derived from the original process A. The same way, we

say that a frame element (w ⊲ u) of a frame is colored

by a if u was output by a process derived from the original

process A. We denote col(w) to represent the color of a

frame element (w ⊲ u) in a frame, and col(P ) for the color

of a process. We will assume that processes of different

colors use different channels.
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Lemma 13: let E be a set of names and Φ = {w1 ⊲

u1, . . . , wn ⊲ un} such that new E .Φ is a well-tagged

frame in normal form. Let renaming ρ such that dom(ρ) ∪
img(ρ) ⊆ E and dom(ρ)∩ fn(Φ) = ∅. If one of the two fol-

lowing conditions is satisfied: (a) for all k ∈ img(ρ), Φ 6⊢ k,

Φ 6⊢ pk(k) and Φ 6⊢ vk(k), (b) for all k ∈ img(ρ)∪dom(ρ),
δρ(Φ) 6⊢ k, δρ(Φ) 6⊢ pk(k) and δρ(Φ) 6⊢ vk(k); then we have

for all M such that fv(M) ⊆ dom(Φ) and fn(M)∩ E = ∅,

for all i ∈ {a, b}, δρi (MΦ↓) = Mδρ(Φ)↓.

Proof: We prove this result by induction on M(M):

Base case M(M) = (0, 0): There exists no term M such

that |M | = 0, thus the result holds.

Inductive step M(M) > (0, 0): We first prove there exists

i ∈ {a, b} such that δρi (MΦ↓) = Mδρ(Φ)↓ and then we

show that δρa(MΦ↓) = δρb (MΦ↓)
Assume first that |M | = 1, i.e. either M ∈ N or there

exists j ∈ {1, . . . , n} such that M = wj .

Let us first suppose M ∈ N . In that case, MΞ↓ = M
for any susbsitution. Now, because by hypotheses dom(ρ)∪
img(ρ) ⊆ E , and fn(M)∩E = ∅, we necessarily have M↓ 6=
kρ for any k. Thus, by definition δρj (MΦ↓) = δρj (M) =
M = Mδρ(MΦ)↓ for any d ∈ {a, b}.

Let’s now assume that there exists j ∈ {1, . . . , n} such

that M = wj , and suppose that col(wj) = i ∈ {a, b}. Ac-

cording to the definition of δρ(Φ), we have that wjδ
ρ(Φ) =

δρi (wjΦ). Since uj is in normal form, then by Lemma 6, we

know that δρi (wjΦ) is also in normal form. Thus, we have

that δρi (MΦ↓) = Mδρ(Φ)↓.

Otherwise, if |M | > 1, then there exists a symbol f and

M1, . . . ,Mn such that M = f(M1, . . . ,Mn). We do a case

analysis on f.

Case f ∈ Σℓ ∪ Σtagℓ
, ℓ ∈ {a, b}: In this case, let

t = f(M1Φ↓, . . . ,MnΦ↓). Since f ∈ Σℓ, then there exists a

context C built upon Σℓ such that t = C[u1, . . . , um] and

u1, . . . , um are factor of t in normal form. By Lemma 1, we

know that there exists a context D (possibly a hole) over Σ0

such that t↓ = D[ui1 , . . . , uik ] with i1, . . . , ik ∈ {0, . . . ,m}
and u0 = nmin. But thanks to Lemma 2, 3 and 6, we also

that C[δρℓ (u1), . . . , δ
ρ
ℓ (um)]↓ = D[δρℓ (ui1), . . . , δ

ρ
ℓ (uik)].

But C and D are both built on Σℓ ∪ Σtagℓ
, thus by defi-

nition of δρℓ , we have that δρℓ (t)↓ = C[δρℓ (u1), . . . , δ
ρ
ℓ (um)]

and δρℓ (t↓) = D[δρℓ (ui1), . . . , δ
ρ
ℓ (uik)]. Hence, the equality,

δρℓ (t↓) = δρℓ (t)↓, holds. But t↓ = MΦ↓ which means that

δρℓ (MΦ↓) = δρℓ (t)↓.

At last δρℓ (t)↓ = δρℓ (f(M1Φ↓, . . . ,MnΦ↓))↓ =
f(δρℓ (M1Φ↓), . . . , δ

ρ
ℓ (MnΦ↓))↓. Thanks to M(M1) <

M(M), . . . , M(Mn) < M(M), applying our in-

ductive hypothesis on M1, . . . ,Mn gives us δρℓ (t)↓ =
f(M1δ

ρ(Φ)↓, . . . ,Mnδ
ρ(Φ)↓)↓ = f(M1, . . . ,Mn)δ

ρ(Φ)↓.

Thus we can conclude that δρℓ (MΦ↓) = δρℓ (t)↓ = Mδρ(Φ)↓.

Case f ∈ Σ0\{sdec, adec, check}: In this case, we have

that MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓). By applying our in-

ductive hypothesis on M1, . . . ,Mn, we have δρa(MkΦ↓) =

δρb (MkΦ↓), for all k ∈ {1, . . . , n}. Thus we have that

δρi (MΦ↓) = f(δρj (M1Φ↓), . . . , δ
ρ
j (MnΦ↓)) with j ∈ {a, b},

for all i ∈ {a, b}. Thus by applying again our inductive

hypothesis on M1, . . . ,Mn, we have that δρi (MΦ↓) =
f(M1δ

ρ(Φ)↓, . . . ,Mnδ
ρ(Φ)↓) = Mδρ(Φ)↓.

Case h: This case is analogous to the previous one and

can be handled similarly.

Case f ∈ {sdec, adec, check}: If we first assume that the

root occurence f is not reduced in MΦ↓ then the proof is

similar to the previous case. Thus, we focus on the case

where the root occurence of f is reduced. In this case, there

exists v1, v2 such that

• M1Φ↓ = senc(v1, v2), M2Φ↓ = v2 and MΦ↓ =
v1. According to the definition of δρ, we know that

there exists i ∈ {a, b} such that δρi (senc(v1, v2)) =
senc(δρi (v1), δ

ρ
i (v2)). For such i, we have that

sdec(δρi (M1Φ↓), δ
ρ
i (M2Φ↓))↓ = δρi (MΦ↓). But by

applying our inductive hypothesis on M1 and M2, we

obtain δρi (MΦ↓) = sdec(M1δ
ρ(Φ)↓,M2δ

ρ(Φ)↓)↓ =
Mδρ(Φ)↓.

• M1Φ↓ = aenc(v1, pk(v2)), M2Φ↓ = v2 and MΦ↓ =
v1: According to the definition of δρ, we know that

there exists i ∈ {a, b} such that δρi (aenc(v1, pk(v2))) =
aenc(δρi (v1), pk(δ

ρ
i (v2))). For such i, we have that

adec(δρi (M1Φ↓), δ
ρ
i (M2Φ↓))↓ = δρi (MΦ↓). But by

applying our inductive hypothesis on M1 and M2, we

obtain δρi (MΦ↓) = adec(M1δ
ρ(Φ)↓,M2δ

ρ(Φ)↓)↓ =
Mδρ(Φ)↓.

• M1Φ↓ = sign(v1, v2), M2Φ↓ = vk(v2) and

MΦ↓ = v1: According to the definition of δρ,

we know that there exists i ∈ {a, b} such that

δρi (sign(v1, v2)) = sign(δρi (v1), δ
ρ
i (v2)). For such

i, we have that adec(δρi (M1Φ↓), δ
ρ
i (M2Φ↓))↓ =

δρi (MΦ↓). But by applying our inductive hypoth-

esis on M1 and M2, we obtain δρi (MΦ↓) =
adec(M1δ

ρ(Φ)↓,M2δ
ρ(Φ)↓)↓ = Mδρ(Φ)↓.

It remains to prove that δρa(MΦ↓) = δρb (MΦ↓). We

proved that there exists i0 ∈ {a, b} such that δρi0(MΦ↓) =
Mδρ(Φ)↓. But by Lemma 12, we know that there exists a

context C built over {〈〉}, and v1, . . . , vm terms such that

MΦ↓ = C[v1, . . . , vm] and for all i ∈ {1, . . . ,m}:

• either vi ∈ Flawed(MΦ↓)
• or vi ∈ FctΣ0

(MΦ↓) and δρa(vi) = δρb (vi).
• or vi = f(n) for some f ∈ {pk, vk} and n ∈ N ,

• or vi ∈ N .

First of all, note that C being built upon {〈〉} means

that vi is deducible in Φ, for all i ∈ {1, . . . ,m}.

Furthermore, since C[v1, . . . , vm] is in normal form,

δρi0(MΦ↓) = C[δρi0 (v1), δ
ρ
i0
(vm)]. But we previously proved

that δρi0(MΦ↓) = Mδρ(Φ)↓, thus δρi0(vi) is deducible from

δρ(Φ), for all i ∈ {1, . . . ,m}.

Case vi ∈ Flawed(MΦ↓): There exists w1, . . . , wℓ terms

and a function symbol f such that vi = f(w1, . . . , wℓ). By
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Lemma 11, there exists N1, . . . , Nℓ such that for all k ∈
{1, . . . , ℓ}, M(Nk) < M(M) and NkΦ↓ = uk. Hence,

by applying inductive hypothesis on N1, . . . , Nℓ, we obtain

that δρa(NkΦ↓) = δρb (NkΦ↓), for all k ∈ {1, . . . , ℓ}. Thus,

thanks to vi being in normal form, we can conclude that

δρa(vi) = δρb (vi).
Case vi ∈ FctΣ0

(MΦ↓): we also have δρa(vi) = δρb (vi).
Case vi = f(n) for some f ∈ {pk, vk} and n ∈ N :

By hypothesis, we know that either Φ 6⊢ f(k), for all k ∈
img(ρ); or δρ(Φ) 6⊢ f(k), for all k ∈ img(ρ) ∪ dom(ρ).
Since we showed that vi is deducible from Φ and δρi0(vi)
is deducible from δρ(Φ), both hypotheses imply that n 6∈
img(ρ) and so δρa(vi) = δρb (vi).

Case vi ∈ N : By hypothesis we know that either Φ 6⊢ k,

for all k ∈ img(ρ); or δρ(Φ) 6⊢ k, for all k ∈ img(ρ) ∪
dom(ρ). Since we showed that vi is deducible from Φ and

δρi0(vi) is deducible from δρ(Φ), both hypotheses imply that

vi 6∈ img(ρ) and so δρa(vi) = δρb (vi).

Corollary 4: Let E be a set of names. Let Φ such that

new E .Φ is a well-tagged frame in normal form. Let ρ a

renaming such that dom(ρ) ∪ img(ρ) ⊆ E and dom(ρ) ∩
fn(Φ) = ∅. The two following properties are equivalent:

• for all k ∈ img(ρ) ∪ dom(ρ), new E .δρ(Φ) 6⊢ k,

new E .δρ(Φ) 6⊢ pk(k), new E .δρ(Φ) 6⊢ vk(k)
• for all k ∈ img(ρ), new E .Φ 6⊢ k, new E .Φ 6⊢ pk(k),
new E .Φ 6⊢ vk(k)

Corollary 5: Let E be a set of names. Let Φ such that

new E .Φ is a well-tagged frame in normal form and let E
be a set of names. Let ρ be a renaming such that dom(ρ)∪
img(ρ) ⊆ E and dom(ρ)∩ fn(Φ) = ∅. If for all k ∈ img(ρ),
new E .Φ 6⊢ k, new E .Φ 6⊢ pk(k) and new E .Φ 6⊢ vk(k), then

we have new E .Φ ∼ new E .δρ(Φ).

Proof: The proof directly follows Lemmas 3 and 13. In-

deed, MΦ↓ = NΦ↓ is equivalent to δρi (MΦ↓) = δρi (NΦ↓)
(thanks to Lemma 3), which is equivalent to Mδρ(Φ)↓ =
Nδρ(Φ)↓ (thanks to Lemma 13).

In the following Lemma, we will consider processes

without replication. Hence, we also assume that all nonces

are already created, i.e. no new k. Intuitively, all the nonces

will be in E , in the extended process (E ;P ; Φ).
Definition 12: Let P a colored process and let’s denote

i = col(P ). Let α be a ground substitution in normal form

such that dom(α) ⊆ fv (P ). We will says that (P, α) is an

original well-tagged process if

• either P = [Q]i;
• or P = out(u, [v]i).[Q]i, α � testi([v]i);
• or P = if [u]i = [v]i then [Q1]i else [Q2]i with

α � testi([u]i) ∧ testi([v]i)
• else P = if testi([u]i) then P ′

else 0

where (P ′, α) is an original well-tagged process, Q,Q1, Q2

are processes built on Σi ∪ Σ0, and u, v are some terms.

For a colored multi-set of processes P , we say that (P , α)
is an original well-tagged multi-set of processes if for all

P ∈ P , (P, α) is an original well-tagged process.

Lemma 14: Let S = (ES ;PS ; ΦS), S′ = (E ′
S ;P

′
S ; Φ

′
S)

and D = (ED;PD; ΦD) be three extended processes. As-

sume that S
ℓ
−→ S′ and there exists an original well-tagged

process (P0, α) and a renaming ρ, such that

• dom(ρ) ∪ img(ρ) ⊆ ES , dom(ρ) ∩ fn(PS ,ΦS) = ∅;

• ES = ED, ΦD↓ = δρ(ΦS↓);
• PS = P0α and PD↓ = δρ(P0)δ

ρ(α↓)↓.

• for all trace (tr,Φ) of S, for all k ∈ img(ρ), Φ 6⊢ k,

Φ 6⊢ pk(k) and Φ 6⊢ vk(k)

We have that there exists an intermediate process D′ =
(E ′

D;P ′
D; Φ′

D), an original well tagged process (P ′
0, α′)

such that D
ℓ
−→ D′, E ′

S = ES = E ′
D, Φ′

D↓ = δρ(Φ′
S↓),

P ′
S↓ = P ′

0α
′↓ and P ′

D↓ = δρ(P ′
0)δ

ρ(α′↓)↓.

Proof: We show this result by case-by-case analysis on

the rule:

Case of the rule THEN: In this case, there exists φ for-

mula and Q1, Q2 and Q processes such that PS =
{if φ then Q1 else Q2} ⊎ Q, P ′

S = Q1 ⊎ Q, ES =
E ′
S and ΦS = Φ′

S with i = col(Q1) = col(Q2) and φ a

conjunction of equation u = v. Furthermore, we have that

for all equation u = v of φ, u =E v.

Since PS = P0α, then there exists Q0
1, Q0

2 and Q0

processes such that Q0
1α = Q1, Q0

2α = Q2 and Q0α = Q.

Furthermore, either (a) there exists u such that φ is the for-

mula testi([u]i)α, or (b) there exists u1, u2 such that φ is the

formula [u1]iα = [u2]iα and α � testi([u1]i) ∧ testi([u2]i).

But we also have PD↓ = δρ(P0)δ
ρ(α↓)↓, which means

that there exists φ′ formula and Q′
1, Q′

2, and P ′ processes

such that PD = {if φ′
then Q′

1 else Q′
2)}⊎Q

′ with

Q′
1↓ = δρ(Q0

1)δ
ρ(α↓)↓, Q′

2↓ = δρ(Q0
2)δ

ρ(α↓)↓, Q′↓ =
δρ(Q0)δρ(α↓)↓ and ΦD↓ = δρ(ΦS↓). Furthermore, in case

(a) φ′↓ is the formula testi(δ
ρ
i ([u]i))δ

ρ
i (α↓)↓; and in case

(b) φ′ is the formula u′ = v′ where u↓ = δρi ([u1]i)δ
ρ(α↓)↓

and v′↓ = δρi ([u2]i)δ
ρ(α↓)↓.

In case (a), since for all equation in u = v in φ, u =E v,

then u↓ = v↓. Thus it is equivalent to (α↓) � testi([u]i). But

by Lemma 8, we know that this is equivalent to δρi (α↓) �
testi(δ

ρ
i ([u]i)). Thus we have that for all equation u = v

of testi(δ
ρ
i ([u]i)), uδ

ρ
i (α↓)↓ = vδρi (α↓)↓. Since φ′↓ is the

formula testi(δ
ρ
i ([u]i))δ

ρ
i (α↓)↓, we can conclude that for all

equation u = v of φ′, u↓ = v↓ and so u =E v.

In case (b), we know that α↓ � testi([u1]i) ∧ testi([u2]i)
and [u1]iα↓ = [u2]iα↓. Thus by Corollary 2, we can deduce

that δρi ([u1]i)δ
ρ
i (α↓)↓ = δρi ([u2]i)δ

ρ
i (α↓)↓ which means that

u′↓ = v′↓ and so u′ =E v′.

φ′ being satisfied allows us to deduce that D
ℓ
−→ (ED;Q′

1⊎
Q′; ΦD). But we know that on one hand Q0

1α = Q1 and

Q0α = Q, and on the other hand, Q′
1↓ = δρ(Q0

1)δ
ρ(α↓)↓,
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Q′↓ = δρ(Q0)δρ(α↓)↓ and ΦD↓ = δρ(ΦS↓). Thus with

α′ = α and P ′
0 = Q0

1 ⊎ Q0, the result holds.

Case of the rule ELSE: This case similar to the rule THEN.

Case of the rule COMM: In this case, there exists

p, u, x terms, and Q1, Q2, Q processes such that PS =
{out(p, u).Q1;in(p, x).Q2} ⊎ Q, P ′

S = Q1 ⊎ Q2{x 7→
u} ⊎ Q, ES = E ′

S and ΦS = Φ′
S . Assume that

col(out(p, u).Q1) = i and col(in(p, x).Q2) = j. We

distinguish two cases:

Case p ∈ Es: Because processes of different color do not

share private channel, it is necessarily the case that i = j,

Since PS = P0α, then there exists Q0
1, Q0

2 and Q0

processes, v term such that Q0
1α = Q1, Q0

2α = Q2,

Q0α = Q and u = [v]iα. Furthermore, since (P0, α) is an

original well tagged process, we have that α � testi([v]i).

But we also have that PD↓ = δρ(P0)δ
ρ(α↓)↓,

which means that there exists p′′, p′, u′, x′

terms and Q′
1, Q′

2, Q′ processes such that

PD = {out(p′, u′).Q′
1;in(p

′′, x).Q′
2} ⊎ Q′, ED = ES

with Q′
1↓ = δρ(Q0

1)δ
ρ(α↓)↓, Q′

2↓ = δρ(Q0
2)δ

ρ(α↓)↓,

Q′↓ = δρ(Q0)δρ(α↓)↓, ΦD↓ = δρ(ΦS↓), p′′ = δρi (p) = p′

and u′↓ = δρi ([v]i)δ
ρ
i (α↓)↓.

Therefore, we have that (ED;PD; ΦD)
ℓ
−→ (ED;Q′

1 ⊎
Q′

2{x 7→ u′} ⊎ P ′; ΦD).

Let’s denote α′ = α ∪ {x 7→ u}. Since Q2 = Q0
2α,

we have that Q2{x 7→ u} = Q0
2α

′. Furthermore, Q′
2{x 7→

u′}↓ = (Q′
2↓){x 7→ (u′↓)}↓. But thanks to Lemma 7

and α � testi([v]i), δρi ([v]i)δ
ρ
i (α↓)↓ = δρi ([v]i(α↓))↓ =

δρi ([v]iα↓) = δρi (u↓). Thus, we deduce that Q′
2{x 7→ u′}↓ =

δρ(Q0
2)δ

ρ(α↓){x 7→ δρi (u↓)}↓ = δρ(Q0
2)δ

ρ(α′↓)↓.

Let P ′
0 = Q0

1⊎Q
0
2⊎Q

0. Since x doesn’t appears in Q0
1 and

Q0, we conclude that P ′
0α

′ = P ′
S and δρ(P ′

0)δ
ρ(α′↓)↓ =

P ′
D↓. Hence the result holds.

Case p 6∈ Es: First of all, note that δρa(u↓) = δρb (u↓).
Indeed by hypothesis, we know that for all trace (tr,Φ) of

S, Φ 6⊢ k, Φ 6⊢ pk(k) and Φ 6⊢ vk(k), for all k ∈ img(ρ).

But S
new wn.out(p,wn)
−−−−−−−−−−−→ (ES ; {Q1;in(p, x).Q2}; Φ∪{wn ⊲

u}). Thus since wnΦ↓ = u↓, then by Lemma 13, δρa(u↓) =
δρb (u↓).

Since PS = P0α, then there exists Q0
1, Q0

2 and Q0

processes, v term such that Q0
1α = Q1, Q0

2α = Q2,

Q0α = Q and u = [v]iα. Furthermore, since (P0, α) is an

original well tagged process, we have that α � testi([v]i).

But we also have that PD↓ = δρ(P0)δ
ρ(α↓)↓,

which means that there exists p′′, p′, u′, x′

terms and Q′
1, Q′

2, Q′ processes such that

PD = {out(p′, u′).Q′
1;in(p

′′, x).Q′
2} ⊎ Q′, ED = ES

with Q′
1↓ = δρ(Q0

1)δ
ρ(α↓)↓, Q′

2↓ = δρ(Q0
2)δ

ρ(α↓)↓,

Q′↓ = δρ(Q0)δρ(α↓)↓, ΦD↓ = δρ(ΦS↓), p′′ = δρj (p),
p′ = δρi (p) and u′↓ = δρi ([v]i)δ

ρ
i (α↓)↓.

We assumed that all names in dom(ρ) ∪ img(ρ) are of

base type. Thus, we can deduce that δi(p) = δj(p) = p

and so p′′ = p′. Therefore, we have that (ED;PD; ΦD)
ℓ
−→

(ED;Q′
1 ⊎ Q′

2{x 7→ u′} ⊎ P ′; ΦD).

Let’s denote α′ = α ∪ {x 7→ u}. Since Q2 = Q0
2α,

we have that Q2{x 7→ u} = Q0
2α

′. Furthermore, Q′
2{x 7→

u′}↓ = (Q′
2↓){x 7→ (u′↓)}↓. But thanks to Lemma 7

and α � testi([v]i), δρi ([v]i)δ
ρ
i (α↓)↓ = δρi ([v]i(α↓))↓ =

δρi ([v]iα↓) = δρi (u↓). Thus, we deduce that Q′
2{x 7→ u′}↓ =

δρ(Q0
2)δ

ρ(α↓){x 7→ δρi (u↓)}↓ = δρ(Q0
2)δ

ρ(α′↓)↓.

Let P ′
0 = Q0

1⊎Q
0
2⊎Q

0. Since x doesn’t appears in Q0
1 and

Q0, we conclude that P ′
0α

′ = P ′
S and δρ(P ′

0)δ
ρ(α′↓)↓ =

P ′
D↓. Hence the result holds.

Case of the rule IN: In this case, there exists p, x, u,M
terms, and Q, P processes such that p 6∈ ES , MΦS↓ = u,

fv (M) ⊆ dom(ΦS) and fn(M) ∩ ES = ∅. Furthermore, we

have that PS = {in(p, x).Q1}⊎Q, P ′
S = Q1{x 7→ u}⊎Q,

ΦS = Φ′
S , ES = E ′

S and ℓ = in(p,M). Since PS = P0α,

then there exists Q0
1 and Q0 processes such that Q0

1α = Q1

and Q0α = Q.

But we also have that PD↓ = δρ(P0)δ
ρ(α↓)↓, which

means that there exists p′ term and Q′
1, Q′ processes

such that PD = {in(p′, x).Q′
1} ⊎ Q′, ED = ES with

Q′
1↓ = δρ(Q0

1)δ
ρ(α↓)↓, Q′↓ = δρ(Q0)δρ(α↓)↓, p′ = δρi (p)

and ΦD↓ = δρ(ΦS↓).
p′ and p are both channel type term and we assumed

that all the names in img(ρ) ∪ dom(ρ) are names of base

type. Thus we have that p′ = p. Furthermore, ED = ES
which means that p′ 6∈ ED and fn(M) ∩ ED = ∅. We also

have that ΦD↓ = δ(ΦS↓) which means that dom(ΦD) =
dom(ΦS) and so fv (M) ⊆ dom(ΦD). Thus, we can deduce

that (ED;PD; ΦD)
ℓ
−→ (ED;Q′

1{x 7→ u′} ⊎ Q′; ΦD) where

u′ = MΦD.

By hypothesis, we assumed that for all k ∈ img(ρ),
new E .Φ′

S 6⊢ k, new E .Φ′
S 6⊢ pk(k), new E .Φ′

S 6⊢ vk(k).
Thus, thanks to Lemma 13, we have that δρa(M(ΦS↓)↓) =
δρb (M(ΦS↓)↓) = Mδρ(ΦS↓)↓ = MΦD↓. But M(ΦS↓)↓ =
MΦS↓ = u↓ and M(ΦD↓)↓ = u′↓. Thus, we have that

δρ(u↓) = u′↓. Since Q′
1↓ = δρ(Q0

1)δ
ρ(α↓)↓, we deduce

that Q′
1{x 7→ u′}↓ = δρ(q01)δ

ρ(α↓){x 7→ δρ(u↓)}↓.

At last, let P ′
0 = Q0

1 ⊎ Q0 and let α′ = α ∪ {x 7→ u}.

We have that δρ(α′↓) = δρ(α↓) ∪ {x 7→ δρ(u↓)}. Thus,

we conclude that Q′
1{x 7→ u′}↓ = δρ(Q0

1)δ
ρ(α′↓)↓ and

since x does not appear in Q0, Q′↓ = δρ(Q0)δρ(α↓)↓ =
δρ(Q0)δρ(α′↓)↓. Hence the result holds.

Case of the rule OUT-T: In this case, there exists u, p terms

and Q, P processes such that PS = {out(p, u).Q1} ⊎ Q,

P ′
S = Q1 ⊎ Q, ES = E ′

S and Φ′
S = ΦS ∪ {wn ⊲ u}.

Furthermore, we have that ℓ = νwn.out(p, wn), p 6∈ ES
and wn is a variable such that n− 1 = |ΦS |.

First of all, note that δρa(u↓) = δρb (u↓). Indeed by hypoth-

esis, we know that, new ES .Φ
′
S 6⊢ k, ES .Φ

′
S 6⊢ pk(k) and

ES .Φ′
S 6⊢ vk(k), for all k ∈ img(ρ). Hence, by Lemma 13,

δρa(u↓) = δρb (u↓).
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Since PS = P0α, then there exists Q0
1 and Q0 processes

and v term such that Q0
1α = Q1, Q0α = Q and u = [v]iα

where i = col(out(p, u).Q1). Furthermore, since (P0, α) is

an original well tagged process, we have that α � testi([v]i).

But we also have that PD↓ = δρ(P0)δ
ρ(α↓)↓, which

means that there exists p′, u′ terms and Q′
1, Q′ processes

such that P ′
D = {out(p′, u′).Q′

1} ⊎ Q′, ED = ES with

Q′
1↓ = δρ(Q0

1)δ
ρ(α↓)↓, Q′↓ = δρ(Q0)δρ(α↓)↓, ΦD↓ =

δρ(ΦS↓), p
′ = δρi (p) and u′↓ = δρi ([v]i)δ

ρ
i (α↓)↓.

p′ and p are both channel type term and we assumed that

dom(ρ) and img(ρ) only contains name of base type. Thus,

we have that p′ = p. Furthermore, ED = ES which means

that p′ 6∈ ED. We also have that ΦD↓ = δ(ΦS↓) which

means that |ΦD| = |ΦS | = n− 1. Thus, we can deduce that

(ED;PD; ΦD)
ℓ
−→ (ED;Q′

1 ⊎ Q′; ΦD ∪ {wn ⊲ u′}).
Thanks to Lemma 7 and α � testi([v]i),

δρi ([v]i)δ
ρ
i (α↓)↓ = δρi ([v]i(α↓))↓ = δρi ([v]iα↓) = δρi (u↓).

But u′↓ = δρi ([v]i)δ
ρ
i (α↓)↓, which means that u′↓ = δρi (u↓).

Since we already proved that δρa(u↓) = δρb (u↓), we can

conclude that Φ′
D↓ = δρ(Φ′

S↓). Hence the result holds.

Case of the rule OUT-CH: Obvious since dom(ρ) and

img(ρ) only contains name of base type

Case of the rule OPEN-CH: Obvious since dom(ρ) and

img(ρ) only contains name of base type

Case of the rule PAR: In this case, there exists Q1, Q2, Q
processes such that PS = {Q1 | Q2}⊎Q, P ′

S = Q1⊎Q2⊎Q,

ES = E ′
S and ΦS = Φ′

S . Assume that col(Q1) = col(Q2) =
i.

Since PS = P0α, then there exists Q0
1, Q0

2 and Q0

processes such that Q0
1α = Q1, Q0

2α = Q2, and Q0α = Q.

But we also have that PD↓ = δρ(P0)δ
ρ(α↓)↓, which

means that there exists Q′
1, Q′

2, Q′ processes such that P ′
D =

{Q1;Q′
2} ⊎ Q′, ED = ES with Q′

1↓ = δρ(Q0
1)δ

ρ(α↓)↓,

Q′
2↓ = δρ(Q0

2)δ
ρ(α↓)↓, Q′↓ = δρ(Q0)δρ(α↓)↓, and

ΦD↓ = δρ(ΦS↓). Therefore, we have that (ED;PD; ΦD)
ℓ
−→

(ED;Q′
1 ⊎ Q′

2 ⊎ P ′; ΦD).

Let α′ = α and P ′
0 = Q0

1 ⊎ Q0
2 ⊎ Q0. We obviously

conclude that P ′
0α

′ = P ′
S and δρ(P ′

0)δ
ρ(α′↓)↓ = P ′

D↓.

Hence the result holds.

Lemma 15: Let S = (ES ;PS ; ΦS), D = (ED;PD; ΦD)
and D′ = (E ′

D;P ′
D; Φ′

D) and be three extended processes.

Assume that D
ℓ
−→ D′ and there exists an original well-

tagged process (P0, α) and a renaming ρ, such that

• dom(ρ) ∪ img(ρ) ⊆ ES , dom(ρ) ∩ fn(PS ,ΦS) = ∅;

• ES = ED, ΦD↓ = δρ(ΦS↓);
• PS = P0α and PD↓ = δρ(P0)δ

ρ(α↓)↓.

• for all trace (tr,Φ) of D, for all k ∈ img(ρ), Φ 6⊢ k,

Φ 6⊢ pk(k) and Φ 6⊢ vk(k)

We have that there exists an intermediate process S′ =
(E ′

S ;P
′
S ; Φ

′
S), an original well tagged process (P ′

0, α′)

such that S
ℓ
−→ S′, E ′

S = ED = E ′
D, Φ′

D↓ = δρ(Φ′
S↓),

P ′
S↓ = P ′

0α
′↓ and P ′

D↓ = δρ(P ′
0)δ

ρ(α′)↓.

Proof: The proof of this Lemma is almost identical to

the proof of Lemma 14. Indeed, in the proof of Lemma 14,

we used Lemma 7 to show that α � testi([u]i) implies that

δρi (α) � testi(δ
ρ
i ([u]i)). But Lemma 7 shows that those two

properties are equivalent. The same goes for Corollary 2.

At last, the conditions of Lemma 13 are fulfilled in both

lemmas thus, it can be also used in this proof.

G. Proof of Theorem 2

In this subsection, we will focus on the proof of Theo-

rem 2. We will assume, as in Subsection F, that processes

and frames are colored by a or b. Let ρ0 be a renaming on

names. We will consider the two following frames Φa =
{wa

1 ⊲ u1, . . . , w
a
n ⊲ un} and Φb = {wb

1 ⊲ u′
1, . . . , w

b
n ⊲

u′
n} such that for all j ∈ {1, . . . , n}, uj = u′

j = f(k), for

some f ∈ {pk, vk} and k ∈ img(ρ0). Furthermore assume

that Φa (resp. Φb) is colored by a (resp. b).

Lemma 16: Let Φ and Φ′ two frame in normal form such

that dom(Φ) = dom(Φ′). Assume that Φ and Φ′ have the

same colors, i.e. for all (w ⊲ u) ∈ Φ, for all (w′ ⊲ u′) ∈ Φ′,

w = w′ implies col(w ⊲ u) = col(w′ ⊲ u′). Let E be a set

of names and let ρ a renaming such that dom(ρ)∪img(ρ) ⊆
E , dom(ρ)∩fn(Φ,Φ′) = ∅ and ρ| dom(ρ0) = ρ0. Let’s denote

Φ+ = Φa ⊎ Φb ⊎ Φ and Φ′
+ = Φa ⊎ Φb ⊎Φ′.

If new E .Φ+, new E .Φ′
+ are well-tagged,

newE .δρ(Φ+) ∼ newE .δρ(Φ′
+) and for all

u ∈ {k, pk(k), vk(k) | k ∈ img(ρ) ∪ dom(ρ)},

new E .δρ(Φ+) ⊢ u or new E .δρ(Φ′
+) ⊢ u implies

that u ∈ img(δρ(Φa ⊎ Φb)), then we have that : For all

M such that fn(M) ∩ E = ∅ and fv(M) ⊆ dom(Φ+),
there exists Ma and Mb such that fn(Ma,Mb) ∩ E = ∅,

fv (Ma,Mb) ⊆ dom(Φ+) and :

1) δρa(MΦ+↓) = Maδ
ρ(Φ+)↓ and δρa(MΦ′

+↓) =
Maδ

ρ(Φ′
+)↓

2) δρb (MΦ+↓) = Mbδ
ρ(Φ+)↓ and δρb (MΦ′

+↓) =
Mbδ

ρ(Φ′
+)↓

Proof: We prove this lemma by induction on M(M).

Base case M(M) = (0, 0): There exists no term M such

that |M | = 0, thus the result holds.

Inductive step M(M) > (0, 0): The first step of the proof

will be to show that there exists c ∈ {a, b}, a terms

Mc such that fn(Mc) ∩ E = ∅, fv (Mc) ⊆ dom(Φ+),
δρc (MΦ+↓) = Mcδ

ρ(Φ+)↓ and δρc (MΦ′
+↓) = Mcδ

ρ(Φ′
+)↓.

Then the second step will consist in showing that there exists

another term Md, with d ∈ {a, b} and c 6= d that verifies

the wanted properties.

First step: Assume first that |M | = 1. In such a case, we

have that either M ∈ N or there exists w ∈ dom(Φ+)
such that M = w. If M ∈ N , then by hypothesis, we
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know that M 6∈ E . Since dom(ρ) ∪ img(ρ) ⊆ E , we can

deduce that δρi (M) = M , for all i ∈ {a, b}. Furthermore,

M ∈ N also implies that MΦ+↓ = M , MΦ′
+↓ = M ,

Mδρ(Φ+)↓ = M and Mδρ(Φ′
+)↓ = M . Thus, the result

holds. Else if w ∈ dom(Φ+), since dom(Φ+) = dom(Φ′
+),

we know that there exists u, u′ such that (w ⊲ u) ∈ Φ+

and (w ⊲ u′) ∈ Φ′
+. Furthermore, we assumed that Φ and

Φ′ have the same colors, then so do Φ+ and Φ′
+. Hence

we have that col(w ⊲ u) = col(w ⊲ u′). Let’s denote

i = col(w ⊲ u). By definition of δρ(Φ+) and δρ(Φ′
+), we

have that wδρ(Φ+) = δρi (wΦ+) and wδρ(Φ′
+) = δρi (wΦ

′
+).

Note that we assumed that Φ and Φ′ are both in normal

form, thus so are Φ+ and Φ′
+. Hence, we can conclude that

Mδρ(Φ+)↓ = δρi (MΦ+↓) and Mδρ(Φ′
+)↓ = δρi (MΦ′

+↓).
Assume now that |M | > 1. It implies that there exists

M1, . . . ,Mn term and a function symbol f such that M =
f(M1, . . . ,Mn). We do a case analysis on f.

Case f ∈ Σi ∪ Σtagi
, i ∈ {a, b}: In such

a case, let t = f(M1Φ+↓, . . . ,MnΦ+↓) and

t′ = f(M1Φ
′
+↓, . . . ,MnΦ

′
+↓). Since f ∈ Σi, we have

that δρi (t) = f(δρi (M1Φ+↓), . . . , δ
ρ
i (MnΦ+↓)) and

δρi (t
′) = f(δρi (M1Φ

′
+↓), . . . , δ

ρ
i (MnΦ

′
+↓)). But we have

that M(M1) < M(M), . . . , M(Mn) < M(M). Thus

we can apply or inductive hypothesis on M1, . . . ,Mn and

so there exists M i
1, . . . ,M

i
n such that fn(M i

k) ∩ E = ∅,

fv (M i
k) ⊆ dom(Φ+), δρi (MkΦ+↓) = M i

kδ
ρ(Φ+)↓ and

δρi (MkΦ
′
+↓) = M i

kδ
ρ(Φ′

+)↓, for all k ∈ {1, . . . , n}. Hence,

we deduce that δρi (t)↓ = f(M i
1, . . . ,M

i
n)δ

ρ(Φ+)↓ and

δρi (t
′)↓ = f(M i

1, . . . ,M
i
n)δ

ρ(Φ′
+)↓.

On the other hand, t = f(M1Φ+↓, . . . ,MnΦ+↓) implies

that there exists C context built on Σi∪Σtagi
and u1, . . . , um

terms in normal form such that t = C[u1, . . . , um] with

u1, . . . , um factors of t. Thanks to Lemma 1, there exists a

context D (possibly a hole) built on Σi ∪ Σtagi
such that

t↓ = D[uj1 , . . . , ujk ] with j1, . . . , jk ∈ {0, . . . ,m} and

u0 = nmin. But using Lemma 2, 3 and 6, we can deduce

that C[δρi (u1), . . . , δ
ρ
i (um)]↓ = D[δρi (uj1), . . . , δ

ρ
i (ujk)].

Since C and D are both built upon Σi ∪ Σtagi
, we can

conclude that δρi (C[u1, . . . , um])↓ = δρi (D[uj1 , . . . , ujk ])
and so δρi (t)↓ = δρi (t↓).

Similarly, we have that t′ = f(M1Φ
′
+↓, . . . ,MnΦ

′
+↓)

implies that δρi (t
′)↓ = δρi (t

′↓). Since we proved

that δρi (t)↓ = f(M i
1, . . . ,M

i
n)δ

ρ(Φ+)↓, δρi (t
′)↓ =

f(M i
1, . . . ,M

i
n)δ

ρ(Φ′
+)↓, and since t↓ = MΦ+↓, t′↓ =

MΦ′
+↓, we conclude that f(M i

1, . . . ,M
i
n)δ

ρ(Φ+)↓ =
δρi (MΦ+↓) and f(M i

1, . . . ,M
i
n)δ

ρ(Φ′
+)↓ = δρi (MΦ′

+↓).
Case f ∈ {senc, aenc, sign, 〈〉}: By definition of Σ0, we

know that MΦ+↓ = f(M1Φ+↓,M2Φ+↓) and MΦ′
+↓ =

f(M1Φ
′
+↓,M2Φ

′
+↓). Thanks to Lemma 6, we can de-

duce that for all i ∈ {a, b}, root(δρi (M1Φ+↓)) =
root(M1Φ+↓) and root(δρi (M1Φ

′
+↓)) = root(M1Φ

′
+↓).

But M(M1) < M(M), thus by our inductive hy-

pothesis, there exists M i
1 such that δρi (M1Φ+↓) =

M i
1δ

ρ(Φ+)↓ and δρi (M1Φ
′
+↓) = M i

1δ
ρ(Φ′

+)↓. Hence for

all j ∈ {a, b}, root(M1Φ+↓) = tagj is equivalent

to root(M i
1δ

ρ(Φ+)↓) = tagj , which is also equiva-

lent to tagj(untagj(M
i
1))δ

ρ(Φ+)↓ = M i
1δ

ρ(Φ+)↓. But

by hypothesis new E .δρ(Φ+) ∼ new E .δρ(Φ′
+), thus

tagj(untagj(M
i
1))δ

ρ(Φ+)↓ = M i
1δ

ρ(Φ+)↓ is equivalent

to tagj(untagj(M
i
1))δ

ρ(Φ′
+)↓ = M i

1δ
ρ(Φ′

+)↓, which is

equivalent to root(M i
1δ

ρ(Φ′
+)↓) = tagj . Hence, we deduce

that for all j ∈ {a, b}, root(M1Φ+↓) = tagj is equivalent

to root(M1Φ
′
+↓) = tagj .

This equivalence and the definition of δρa and δρb allow

us to deduce that for all i ∈ {a, b}, there exists j ∈ {a, b}
such that δρi (MΦ+↓) = f(δρj (M1Φ+↓), δ

ρ
j (M2Φ+↓)) and

δρi (MΦ′
+↓) = f(δρj (M1Φ

′
+↓), δ

ρ
j (M2Φ

′
+↓)). By our induc-

tive hypothesis on M1 and M2, we deduce that there exists

M j
1 and M j

2 such that δρj (MkΦ+↓) = M j
kδ

ρ(Φ+)↓ and

δρj (MkΦ
′
+↓) = M j

kδ
ρ(Φ′

+)↓, for k ∈ {1, 2}. Hence, we have

that δρi (MΦ+↓) = f(M j
1 ,M

j
2 )δ

ρ(Φ+)↓ and δρi (MΦ′
+↓) =

f(M j
1 ,M

j
2 )δ

ρ(Φ′
+)↓. So the result holds.

Case f ∈ {h, pk, vk}: This case is analogous to the

previous one and can be handled similarly.

Case f = sdec: We have that M = f(M1,M2). Thus,

we can apply our inductive hypothesis on M1 and M2,

which means that for all i ∈ {a, b}, for all k ∈ {1, 2},

there exists M i
kδ

ρ(Φ+)↓ = δρi (MkΦ+↓) and M i
kδ

ρ(Φ′
+)↓ =

δρi (MkΦ
′
+↓). Let’s first focus on MΦ+↓. We need to dis-

tinguish several cases:

(a) If the root occurence of sdec cannot be reduced,

then MΦ+↓ = sdec(M1Φ+↓,M2Φ+↓). Thus for all i ∈
{a, b}, δρi (MΦ+↓) = sdec(δρi (M1Φ+↓), δ

ρ
i (M2Φ+↓)) =

sdec(M i
1δ

ρ(Φ+)↓,M
i
2δ

ρ(Φ+)↓). Thanks to Lemma 6, we

know that δρi (MΦ+↓) is in normal form which means that

δρi (MΦ+↓) = f(M i
1,M

i
2)δ

ρ(Φ+)↓

(b) If the root occurence of sdec can be

reduced and root(MΦ+↓) = tagj , for some

j ∈ {a, b} then there exists u1, u2 such that

M1Φ+↓ = senc(tagj(u1), u2) and M2Φ+↓ = u2.

Hence we have that sdec(δρj (M1Φ+↓), δ
ρ
j (M2Φ+↓))↓ =

δρj (tagj(u1)) = δρj (MΦ+↓). On the other hand,

we also have sdec(δρj (M1Φ+↓), δ
ρ
j (M2Φ+↓))↓ =

sdec(M j
1δ

ρ(Φ+)↓,M
j
2δ

ρ(Φ+)↓)↓. Hence, we have that

δρj (MΦ+↓) = sdec(M j
1 ,M

j
2 )δ

ρ(Φ+)↓.

(c) Else, the root occurence of sdec can be reduced

and for all j ∈ {a, b}, root(MΦ+↓) 6= tagj .

In such a case, there exist u1, u2 such that

M1Φ+↓ = senc(u1, u2), M2Φ+↓ = u2. Moreover,

for all i ∈ {a, b}, δρi (M1Φ+↓) = senc(δρi (u1), δ
ρ
i (u2))

and δρi (M2Φ+↓) = δρi (u2). Hence, we have that for all

i ∈ {a, b}, sdec(δρi (M1Φ+↓), δ
ρ
i (M2Φ+↓))↓ = δρi (MΦ+↓).

At last, since sdec(δρi (M1Φ+↓), δ
ρ
i (M2Φ+↓))↓ =

sdec(M i
1,M

i
2)δ

ρ(Φ+)↓, we conclude that δρi (MΦ+↓) =
sdec(M i

1,M
i
2)δ

ρ(Φ+)↓.

We could do the same case analysis for MΦ′
+↓ and we

would obtain similar results. Since in two cases (a) and (c),
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the result holds for all i ∈ {a, b}, it only remains to show

that for all j ∈ {a, b}, the root occurence of sdec is reduced

in MΦ+↓ and root(MΦ+↓) = tagj , if and only if, the root

occurence of sdec is reduced in MΦ′
+↓ and root(MΦ′

+↓) =
tagj .

We already showed that the root occurence of sdec

is reduced in MΦ+↓ and root(MΦ+↓) = tagj imply

that δρj (MΦ+↓) = sdec(M j
1 ,M

j
2 )δ

ρ(Φ+)↓. Thus

we have tagj(untagj(sdec(M
j
1 ,M

j
2 )))δ

ρ(Φ+)↓ =

sdec(M j
1 ,M

j
2 )δ

ρ(Φ+)↓. But by hypothesis,

new E .δρ(Φ+) ∼ new E .δρ(Φ′
+). Hence

tagj(untagj(sdec(M
j
1 ,M

j
2 )))δ

ρ(Φ′
+)↓ =

sdec(M j
1 ,M

j
2 )δ

ρ(Φ′
+)↓. Thus there exists v1, v2 such that

M j
1δ

ρ(Φ′
+)↓ = senc(tagj(v1), v2) and M j

2δ
ρ(Φ′

+)↓ = v2,

which means that δρj (M1Φ
′
+↓) = senc(tagj(v1), v2)

and δρj (M2Φ
′
+↓) = v2. Thanks to Lemma 3 and 6,

we deduce that there exists v′1 and v′2 such that

M1Φ
′
+↓ = senc(tagj(v

′
1), v

′
2), M2Φ

′
+↓ = v′2, v2 = δρj (v

′
2)

and v1 = δρj (v
′
1). We can conclude that the root occurence

of sdec is reduced in MΦ′
+↓ and root(MΦ′

+↓) = tagj .

The other implication is symmetrical to this one. Hence our

result holds.

Case f ∈ {adec, check}: This case is similar to the case

f = sdec.

Case f ∈ projk, k ∈ {1, 2}: In such a case, we have

M = f(M1). Thus we can apply our inductive hypoth-

esis on M1 which means that for all i ∈ {a, b}, there

exists M i
1δ

ρ(Φ+)↓ = δρi (M1Φ+↓) and M i
1δ

ρ(Φ′
+)↓ =

δρi (M1Φ
′
+↓). Let’s first focus on MΦ+↓. We need to dis-

tinguish two cases:

(a) If the root occurence of f cannot be reduced, then

MΦ+↓ = f(M1Φ+↓). Thus for all i ∈ {a, b}, δρi (MΦ+↓) =
f(δρi (M1Φ+↓)) = f(M i

1δ
ρ(Φ+)↓). Thanks to Lemma 6, we

know that δρi (MΦ+↓) is in normal form which means that

δρi (MΦ+↓) = sdec(M i
1)δ

ρ(Φ+)↓.

(b) Else, the root occurence of f can be reduced. In such

a case there exists u1, u2 such that M1Φ+↓ = 〈u1, u2〉.
Hence for all i ∈ {a, b}, δρi (M1Φ+↓) = 〈δρi (u1), δ

ρ
i (u2)〉

and so f(δρi (M1Φ+↓))↓ = δρi (uk). Thus, we can conclude

that f(M i
1)δ

ρ(Φ+)↓ = δρi (MΦ+↓)
We could do the same case analysis for MΦ′

+↓ and we

would obtain similar results. Since the result holds in both

cases, we can conclude.

Second step: Thanks to the first step, we showed that there

exists c ∈ {a, b}, and a terms Mc such that fn(Mc) ∩ E =
∅, fv (Mc) ⊆ dom(Φ+), δρc (MΦ+↓) = Mcδ

ρ(Φ+)↓ and

δρc (MΦ′
+↓) = Mcδ

ρ(Φ′
+)↓. Let d ∈ {a, b} such that d 6= c.

By Lemma 12, we know that there exists two

contexts C,C′ (possibly holes) built on {〈 〉}, and

u1, . . . , um, v1, . . . , vn such that MΦ+↓ = C[u1, . . . , um]
and MΦ′

+↓ = C′[v1, . . . , vn]. Hence, we have

that δρc (MΦ+↓) = C[δρc (u1), . . . , δ
ρ
c (um)] and

δρc (MΦ′
+↓) = C′[δρc (v1), . . . , δ

ρ
c (vn)]. Our hypothesis

implies that Mcδ
ρ(Φ+)↓ = C[δρc (u1), . . . , δ

ρ
c (um)]

and Mcδ
ρ(Φ′

+)↓ = C′[δρc (v1), . . . , δ
ρ
c (vn)]. But

new E .δρ(Φ+) ∼ new E .δρ(Φ′
+). Thus, since C and

C′ are both built upon {〈 〉}, we deduce that C = C′

and n = m. Note that it also implies that there exists

D1, . . . , Dn context built on {proj1, proj2} such that

for all k ∈ {1, . . . , n}, Dk(Mc)δ
ρ(Φ+)↓ = δρc (uk) and

Dk(Mc)δ
ρ(Φ′

+)↓ = δρc (vk).

Lemma 12 also tells us that for all k ∈ {1, . . . , n},

• either uk ∈ Flawed(MΦ+↓);
• or uk ∈ FctΣ0

(MΦ+↓) and δρa(uk) = δρb (uk),
• or uk = f(n) for some f ∈ {pk, vk} and n ∈ N ,

• or uk ∈ N .

Thus, we build Md such that Md = C[N1, . . . , Nn]
where, for all k ∈ {1, . . . , n},

(a) if δρa(uk) = δρb (uk) then Nk = Dk(Mc)

(b) else if uk ∈ Flawed(MΦ+↓), then by Lemma 11, there

exists f and M1, . . . ,Mℓ such that for all i ∈ {1 . . . , ℓ},

M(Mi) < M(M) and uk = f(M1Φ+↓, . . . ,MℓΦ+↓).
But by our inductive hypothesis on M1, . . . ,Mℓ,

we have that there exists Md
1 , . . . ,M

d
ℓ such that

for all i ∈ {1, . . . , ℓ}, Md
i δ

ρ(Φ+)↓ = δρd(MiΦ+↓)
and Md

i δ
ρ(Φ′

+)↓ = δρd(MiΦ
′
+↓). Hence we have

f(Md
1 , . . . ,M

d
ℓ )δ

ρ(Φ+)↓ = δρd(f(M1Φ+↓, . . . ,MℓΦ+↓))
and f(Md

1 , . . . ,M
d
ℓ )δ

ρ(Φ′
+)↓ =

δρd(f(M1Φ
′
+↓, . . . ,MℓΦ

′
+↓)).

We define Nk = f(Md
1 , . . . ,M

d
ℓ ). We know that

Nkδ
ρ(Φ+)↓ = δρd(uk), thus it remains to show that

Nkδ
ρ(Φ′

+)↓ = δρd(vk). Our inductive hypothesis on

M1, . . . ,Mℓ allows us to show that there exists M c
1 , . . . ,M

c
ℓ

such that f(M c
1 , . . . ,M

c
ℓ )δ

ρ(Φ+)↓ = δρc (uk). But δρc (uk) =
Dk(Mc)δ

ρ(Φ+)↓. Since δρ(Φ+) ∼ δρ(Φ′
+), we deduce that

Dk(Mc)δ
ρ(Φ′

+)↓ = f(M c
1 , . . . ,M

c
ℓ )δ

ρ(Φ′
+)↓. Hence we

have that δρc (vk) = δρc (f(M1Φ
′
+↓, . . . ,MℓΦ

′
+↓)). By apply-

ing Lemma 3, we obtain that f(M1Φ
′
+↓, . . . ,MℓΦ

′
+↓) = vk

and so Nkδ
ρ(Φ′

+)↓ = δρd(vk)

(c) else if uk ∈ f(n) for some f ∈ {pk, vk} and

n ∈ N , then Dk(Mc)δ
ρ(Φ+)↓ = f(δρc (n)), i.e. f(δρc (n))

is deducible. If n 6∈ img(ρ) then δρa(uk) = δρb (uk) and so it

is the same as case (a). Else by hypothesis on δρ(Φ+), we

know that n ∈ img(ρ) implies that f(δρc (n)) ∈ δρ(Φa⊎Φb).
By construction of Φa and Φb, we know that there exist

(wd ⊲ f(δρd(n)), wc ⊲ f(δρc (n))) ∈ δρ(Φa ⊎ Φb) with

col(wd) = d and col(wc) = c.

We define Nk = wd. It remains to show that

wdδ
ρ(Φ′

+)↓ = δρd(vk). But we have wcδ
ρ(Φ+)↓ =

Dk(Mc)δ
ρ(Φ+)↓. Thanks to our hypothesis δρ(Φ+) ∼

δρ(Φ′
+), we deduce that wcδ

ρ(Φ′
+)↓ = Dk(Mc)δ

ρ(Φ′
+)↓.

By definition of Φ′
+, we have that wcδ

ρ(Φ′
+)↓ = f(δρc (n))

which means that δρc (vk) = Dk(Mc)δ
ρ(Φ′

+)↓ = δρc (f(n)).
By applying Lemma 3, we obtain that vk = f(n). At last, by

definition of Φ′
+, we have that wdδ

ρ(Φ′
+)↓ = δρd(f(n)) =

δρd(vk).
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(d) Else uk ∈ N . But by hypothesis on δρ(Φ+), we

know that n ∈ img(ρ) implies δρc (n) is not deducible. Thus

uk 6∈ img(ρ) and so δρa(uk) = δρb (uk), which leads to

Nk = Dk(Mc), i.e. same as case (a).

We showed that for such Md = C[N1, . . . , Nn],
we have that Mdδ

ρ(Φ+)↓ = δρd(C[u1, . . . , un]) and

Mdδ
ρ(Φ′

+)↓ = δρd(C[v1, . . . , vn]), which leads to

Mdδ
ρ(Φ+)↓ = δρd(MΦ+↓) and Mdδ

ρ(Φ′
+)↓ = δρd(MΦ′

+↓).

Corollary 6: Let Φ and Φ′ two frames in normal form

such that dom(Φ) = dom(Φ′). Assume that Φ and Φ′ have

the same colors. Let E be a set of names and let ρ a renaming

such that dom(ρ) ∪ img(ρ) ⊆ E , dom(ρ) ∩ fn(Φ,Φ′) = ∅
and ρ| dom(ρ0) = ρ0. Let’s denote Φ+ = Φa ⊎ Φb ⊎ Φ and

Φ′
+ = Φa ⊎ Φb ⊎ Φ′.

If new E .Φ+, new E .Φ′
+ are well-tagged,

new E .δρ(Φ+) ∼ new E .δρ(Φ′
+) and for all

u ∈ {k, pk(k), vk(k) | k ∈ img(ρ) ∪ dom(ρ)},

new E .δρ(Φ+) ⊢ u or new E .δρ(Φ′
+) ⊢ u implies

that u ∈ fn(δρ(Φa ⊎ Φb)), then we have that

new E .Φ+ ∼ new E .Φ′
+

Corollary 7: Let Φ be a colored frame in normal form.

Let E be a set of names and let ρ a renaming such that

dom(ρ)∪img(ρ) ⊆ E , dom(ρ)∩fn(Φ) = ∅ and ρ| dom(ρ0) =
ρ0. Let’s denote Φ+ = Φa ⊎ Φb ⊎ Φ.

If new E .Φ+ is well-tagged and for all u ∈
{k, pk(k), vk(k) | k ∈ img(ρ) ∪ dom(ρ)}, new E .δρ(Φ+) ⊢
u implies that u ∈ fn(δρ(Φa ⊎ Φb)), then we have that for

all u ∈ {k, pk(k), vk(k) | k ∈ img(ρ)}, new E .Φ+ ⊢ u
implies that u ∈ fn(Φa),

For the next three lemmas, we consider the following:

Let A and B be two closed processes respectively built on

Σa ∪ Σ0 and Σb ∪ Σ0 such that all variables in A and B
are of base type. Moreover, assume that col(A) = a and

col(B) = b. Let E be a set of names and a bijective renaming

ρ on name of base type such that dom(ρ) ∪ img(ρ) ⊆ E ,

ρ| dom(ρ0) = ρ0 and for all k ∈ dom(ρ), k does not appear

in A or B.

Let Cha and Chb be two sets of ’fresh’ names of channel

type such that Cha ∩ Chb = ∅. Let ρCha
(resp ρChb

) be

a bijective renaming from Ch(A)\E (resp. Ch(B)\E) to

Cha (resp. Chb). Furthermore, assume that (Ch(A) ∩ E) ∩
(Ch(B) ∩ E) = ∅.

Let S = (E ;PS ; ΦS) and D = (E ;PD; ΦD) such

that PS = {[A]a, [B]b}, ΦS = Φa ⊎ Φb, PD =
{δρa([A]a)ρCha

, δρb ([B]b)ρChb
} and ΦD = δρ(ΦS).

Lemma 17: Let D′ be an extended process and tr a

trace such that D
tr
−→ D′. If tr = tr1.tr2.tr3 with tr2 ∈

new w.out(c1, w).τ
∗.in(c2,M), c1 ∈ Chi, c2 ∈ Chj

and i 6= j, then there exists two traces tr′, tr′2 such that

tr′ = tr1.tr
′
2.tr3, tr′2 ∈ τ∗.new w.out(c1, w).in(c2,M).τ∗

and D
tr′

−→ D′.

Proof: D
tr
−→ D′ and tr = tr1.tr2.tr3 with tr2 ∈

new w.out(c1, w).τ
∗.in(c2,M) implies that there exists

D1, . . . , Dn such that D
tr1−−→ D1

new w.out(c1,w)
−−−−−−−−−−→ D2

τ
−→

. . .
τ
−→ Dn−1

in(c2,M)
−−−−−−→ Dn. By hypothesis on D, we know

that processes of different colors in D do not share public

nor private channels. Thus, a τ action, i.e. ELSE, THEN and

COMM, can only be applied on processes of same color. But,

applying a τ action on a process of color i does not modify

the processes whom color is j 6= i.

Let S1 = (E ;Pa⊎Pb; Φ) be an extended process such that

for all P ∈ Pa (resp. Pb), col(P ) = a (resp. b). Assume that

we apply a τ action, denoted τa, on S1, i.e. there exists P ′
a

such that S1
τa−→ (E ;P ′

a ⊎ Pb; Φ) = S2. Assume now that

we apply a τ action, denoted τb, on S2, i.e. there exists P ′
b

such that S2
τb−→ (E ;P ′

a ⊎P ′
b; Φ) = S3. Hence we have that

S1
τa−→ S2

τb−→ S3. But we can see that S1
τb−→ (E ;Pa ⊎

P ′
b; Φ)

τa−→ S3. Hence it is possible to swap τ actions.

With a similar proof, we can show that if

S1
new w.out(c1,w)
−−−−−−−−−−→ S2

τb−→ S3, with τb a τ action

initiated by a process of color b, then we also have that

there exists S′
2 such that S1

τb−→ S′
2

new w.out(c1,w)
−−−−−−−−−−→ S3.

In The same way, we can show that if S1
τa−→

S2
in(c2,M)
−−−−−−→ S3, with τa a τ action initiated by a process

of color a, then we also have that there exists S′
2 such that

S1
in(c2,M)
−−−−−−→ S′

2
τa−→ S3.

Hence, a simple induction on the number of τ actions in

the derivation D
tr1.tr2−−−−→ D′ allows us to prove that there

exists D′
2, . . . , D

′
n−1 and an index k ∈ {1, . . . , n − 2}

such that D1
τb−→ D′

2
τb−→ . . .

τb−→ D′
k

new w.out(c1,w)
−−−−−−−−−−→

D′
k+1

in(c2,M)
−−−−−−→ D′

k+1
τa−→ . . .

τa−→ Dn. Hence the result

holds.

Lemma 18: If for all (tr, φ) ∈ trace(D), for all u ∈
{k, vk(k), pk(k) | k ∈ img(ρ) ∪ dom(ρ)}, φ ⊢ u implies

that u ∈ fn(ΦD), then for all S
tr
−→ (E ;P ′

S ; Φ
′
S) such that

tr does not contain any internal communication between

two processes of different colors, we have that Φ′
S is well-

tagged and there exists D
tr′

−→ (E ;P ′
D; Φ′

D) such that

Φ′
D↓ = δρ(Φ′

S↓). Furthermore, if tr = ℓ1. . . . .ℓn then

tr′ = ℓ′1. . . . .ℓ
′
n such that for all k ∈ {1, . . . , n},

• if ℓk = new w.out(c, w) is an output coming

from a process colored by i ∈ {a, b}, then ℓ′k =
new w.out(cρChi

, w)
• if ℓk = in(c,M) is an input coming from a process

colored by i ∈ {a, b}, then ℓ′k = in(cρChi
,Mi) with

MiΦ
′
D↓ = δρi (MΦ′

S↓).
• if ℓk = out(c, d) is an output coming from a process

colored by i ∈ {a, b} with d a channel name, then

ℓ′k = out(cρChi
, dρChi

)
• if ℓk = τ , then ℓ′k = τ .
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Proof: We have that S
tr
−→ (E ;P ′

S ; Φ
′
S). We will show

by induction on |tr| the properties stated in the Lemma but

also that there exists (Pa, αa) and (Pb, αb) two original

well-tagged multi-sets of processes such that col(Pa) = a,

col(Pb) = b, P ′
S = Paαa ⊎Pbαb and P ′

D = Pa
D ⊎Pb

D with

for all i ∈ {a, b}, P i
D↓ = δρi (Pi)ρChi

δρi (αi↓)↓.

Base case |tr| = 0: In this case, we need to verify that S
and D satisfy the wanted properties. By hypothesis on S
and D, we have S = (E ;PS ; ΦS) and D = (E ;PD; ΦD)
such that PS = {[A]a, [B]b}, ΦS = Φa ⊎ Φb, PD =
{δρa([A]a)ρCha

, δρb ([B]b)ρChb
} and ΦD = δρ(ΦS).

Thus by definition of an original well-tagged multi-set of

processes, we define Pa = {[A]a}, αa = id , Pb = {[B]b},

αb = id . Hence, we have δρi (αi↓) = id and so P i
D↓ =

δρi (Pi)ρChi
↓, for all i ∈ {a, b}.

Furthermore, we know by hypothesis that for all (w ⊲

u) ∈ ΦA∪ΦB , u = f(n) for some f ∈ {pk, vk} and n ∈ N .

Hence we have that [u]i = u and testi(u) = true for all

i ∈ {a, b}, which implies that ΦS is well-tagged and in

normal form.

At last, δρa(ΦA) = ΦA and δρb (ΦB) = ΦBρ
−1
0 , hence we

have that δρ(ΦS↓) = ΦD↓.

Inductive case |tr| > 0: In this case, we have that tr =

tr1.ℓ and so S
tr1−−→ (E ;P ′′

S ; Φ
′′
S)

ℓ
−→ (E ;P ′

S ; Φ
′
S) with no

internal communication between two processes of different

colors. Hence, by inductive hypothesis on tr1, we have that

there exists D
tr′

1−−→ (E ;P ′′
D; Φ′′

D), (P ′
a, α

′
a) and (P ′

b, α
′
b) two

original well-tagged multi sets of processes such that:

• Φ′′
D↓ = δρ(Φ′′

S↓)
• Φ′′

S is well-tagged

• P ′′
S = P ′

aα
′
a ⊎P ′

bα
′
b and P ′′

D = Pa
D

′ ⊎Pb
D

′
with for all

i ∈ {a, b}, P i
D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓.

• for all k ∈ {1, . . . , |tr| − 1}, ℓk satisfies the desired

properties.

We proceed by case analysis on the rule applied for the

transition (E ;P ′′
S ; Φ

′′
S)

ℓ
−→ (E ;P ′

S ; Φ
′
S). Since by hypothesis,

we know that there is no internal communication between

two processes of different colors, and P ′′
S = P ′

aα
′
a⊎P

′
bα

′
b we

can assume that a rule is applied on P ′
iα

′
i, with i ∈ {a, b}.

Let j ∈ {a, b} such that i 6= j
Case of the rule THEN: In this case, by definition of (P ′

i, αi),
there exists φ formula and Q1, Q2 processes and Q′

i ⊆ P ′
i

such that P ′′
S = {if φ then [Q1]iα

′
i else [Q2]iα

′
i} ⊎

Q′
iα

′
i ⊎ P ′

jα
′
j , P ′

S = {[Q1]iα
′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j , Φ′

S = Φ′′
S

and φ a conjunction of equations (u = v). By definition,

we have that ([Q1]i, α
′
i) and ([Q2]i, α

′
i) are both original

well-tagged processes.

Furthermore, we have that for all equation (u = v) ∈ φ,

u =E v; and either (a) there exists u such that φ is the

formula testi([u]i)α
′
i, or (b) there exists u1, u2 such that φ

is the formula [u1]iα
′
i = [u2]iα

′
i and α′

i � testi([u1]i) ∧
testi([u2]i).

But we also have P i
D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓,

which means that there exists φ′ formula and

Q′
1, Q′

2 processes and Qi
D ⊆ piD

′
such that

P ′′
D = {if φ′

then Q′
1 else Q′

2)} ⊎ Qi
D ⊎ Pj

D

′

with Q′
1↓ = δρi ([Q1]i)ρChi

δρi (α
′
i↓)↓, Q′

2↓ =
δρi ([Q2]i)ρChi

δρi (α
′
i↓)↓. Furthermore, in case (a) φ′↓

is the formula testi(δ
ρ
i ([u]i))δ

ρ
i (α

′
i↓)↓; and in case (b) φ′ is

the formula (u′ = v′) where u′↓ = δρi ([u1]i)δ
ρ
i (α

′
i↓)↓ and

v′↓ = δρi ([u2]i)δ
ρ
i (α

′
i↓)↓.

In case (a), For all equation (u′ = v′) ∈ φ, u′ =E v′ which

is equivalent to u′↓ = v′↓. Thus it is equivalent to (α′
i↓) �

testi([u]i). But by Lemma 8, we know that this is equivalent

to δρi (α
′
i↓) � testi(δ

ρ
i ([u]i)). Thus we have that for all equa-

tion (u′ = v′) of testi(δ
ρ
i ([u]i)), u

′δρi (α
′
i↓)↓ = v′δρi (α

′
i↓)↓.

Since φ′↓ is the formula testi(δ
ρ
i ([u]i))δ

ρ
i (α

′
i↓)↓, we can

conclude that for all equation (u′ = v′) of φ′, u′↓ = v′↓
and so u′ =E v′.

In case (b), we know that α↓ � testi([u1]i) ∧ testi([u2]i)
and [u1]iα

′
i↓ = [u2]iα↓. Thus by Corollary 2, we can deduce

that δρi ([u1]i)δ
ρ
i (α

′
i↓)↓ = δρi ([u2]i)δ

ρ
i (α

′
i↓)↓ which means

that u′↓ = v′↓ and so u′ =E v′.
φ′ being satisfied in both cases allows us to deduce that

(E ;P ′′
D; Φ′′

D)
ℓ
−→ (E ; {Q′

1} ⊎ Qi
D ⊎ Pj

D

′
; Φ′′

D).
Thus, we have Φ′

D = Φ′′
D, but Φ′

S = Φ′′
S , hence we have

that Φ′
S is well-tagged and Φ′

D↓ = δρ(Φ′
S↓). Furthermore,

let ℓ′ = ℓ and Pi = {[Q1]i} ⊎ Q′
i, αi = α′

i, Pj = P ′
j ,

αj = α′
j . By definition of [Q1]i, we have that (Pi, αi) and

(Pj , αj) are both original well-tagged multisets of processes.

We already showed that PS = Piαi⊎Pjαi and thanks to

Q′
1↓ = δρi ([Q1]i)ρChi

δρi (α
′
i↓)↓, we can deduce that PD↓ =

δρi (Pi)ρChi
δρi (αi↓)↓ ⊎ δρj (Pj)ρChj

δρj (αj↓)↓.

Hence the result holds.

Case of the rule ELSE: This case similar to the rule THEN.

Case of the rule COMM: In this case, by def-

inition of (P ′
i, α

′
i), there exists u, x, p terms, Q1,

Q2 processes and Q′
i ⊆ P ′

i such that P ′′
S =

{out(p, [u]iα
′
i).[Q1]iαi;in(p, x).[Q2]iα

′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j ,

P ′
S = {[Q1]iα

′
i; [Q2]iα

′
i{x 7→ [u]iαi}} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j ,

Φ′
S = Φ′′

S and α′
i � testi([u]i).

First of all, we trivially have that Φ′
S is well-tagged.

Furthermore, we have P i
D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓,

which means that there exists p′, u′ terms and Q′
1, Q′

2,

processes such that P ′′
D = {out(p′, u′).Q′

1;in(p
′, x).Q′

2}⊎

Qi
D ⊎ Pj

D

′
with Q′

1↓ = δρi ([Q1]i)ρChi
δρi (α

′
i↓)↓, Q′

2↓ =
δρi ([Q2]i)ρChi

δρi (α
′
i↓)↓, p′ = p′↓ = δρi (p)ρChi

= pρChi
and

u′↓ = δρi ([u]i)δ
ρ
i (α

′
i↓)↓.

Hence for ℓ′ = ℓ = τ , we have that (E ;P ′′
D; Φ′′

D)
ℓ′

−→

(E ;Q′
1 ⊎Q′

2{x 7→ u′} ⊎ Qi
D ⊎ Pj

D

′
; Φ′′

D).
Let Φ′

D = Φ′′
D. Since Φ′

S = Φ′′
S , then by hypothesis, we

have that Φ′
D↓ = δρ(Φ′

S↓).
Let’s denote αi = α′

i{x 7→ [u]iαi}. We already know

that α′
i � testi([u]i). Thus thanks to Lemma 7 and α′

i �

testi([u]i), we deduce that u′↓ = δρi ([u]i)δ
ρ
i (α

′
i↓)↓ =

30



δρi ([u]i(α
′
i↓))↓ = δρi ([u]iα

′
i↓). This implies that δρi (αi↓) =

δρi (α
′
i){x 7→ u′↓}. But Q′

2{x 7→ u′}↓ = (Q′
2↓){x 7→

(u′↓)}↓, hence Q′
2{x 7→ u′}↓ = δρi ([Q2]i)ρChi

δρi (αi↓)↓.

Moreover, since x 6∈ fv([Q1]i) ∪ fv (Q′
i), we can deduce

that [Q1]iα
′
i = [Q1]iαi, Q

′
2↓ = δρi ([Q2]i)ρChi

δρi (αi↓)↓ and

Q′
iα

′
i = Q′

iαi. Thus, we have that ({[Q1]i, [Q2]i} ⊎Q′
i, αi)

is an original well-tagged multi-set of processes. Hence the

result holds.

Case of the rule IN: In this case, by definition of (P ′
i, α

′
i),

there exists x, p,M terms, Q1 process, Q′
i ⊆ P ′

i , MΦ′′
S = u,

fv (M) ⊆ dom(Φ′′
S) and fn(M) ∩ E = ∅ such that P ′′

S =
{in(p, x).[Q1]iα

′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j , P ′

S = {[Q1]iα
′
i{x 7→

u}} ⊎ Q′
iα

′
i ⊎ P ′

jα
′
j , Φ′

S = Φ′′
S and α′

i � testi([u]i).
First of all, we trivially have that Φ′

S is well-tagged.

Furthermore, we have P i
D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓,

which means that there exists p′ term and Q′
1 process

such that P ′′
D = {in(p′, x).Q′

1} ⊎ Qi
D ⊎ Pj

D

′
with Q′

1↓ =
δρi ([Q1]i)ρChi

δρi (α
′
i↓)↓ and p′ = p′↓ = δρi (p)ρChi

= pρChi
.

By hypothesis, we assumed that for all v ∈
{k, vk(k), pk(k) | k ∈ img(ρ) ∪ dom(ρ)}, new E .Φ′′

D 6⊢ v
implies that v ∈ ΦD, where ΦD = δρ(Φa ⊎ Φb).

Thus, thanks to Lemma 16, we have that there exists a

term Mi such that fv(Mi) ⊆ dom(Φ′′
D), fn(Mi)∩E = ∅ and

MiΦ
′′
D↓ = δρi (MΦ′′

S↓). Thus, with ℓ′ = in(pρChi
,Mi), we

can deduce that (E ;P ′′
D; Φ′′

D)
ℓ′

−→ (E ;Q′
1{x 7→ u′} ⊎ Qi

D ⊎

Pj
D

′
; Φ′′

D) where u′ = MiΦ
′′
D.

But MΦ′′
S↓ = u↓ and MiΦ

′′
D↓ = u′↓. Thus, we have that

δρi (u↓) = u′↓. Since Q′
1↓ = δρi ([Q1]i)ρChi

δρi (α
′
i↓)↓, we

deduce that Q′
1{x 7→ u′}↓ = δρi ([Q1]i)ρChi

δρi (α
′
i↓){x 7→

δρi (u↓)}↓.

Let αi = α′
i{x 7→ u}, we have that that δρi (αi↓) =

δρi (α
′
i↓){x 7→ δρi (u↓)} and so Q′

1{x 7→ u′}↓ =
δρi ([Q1]i)ρChi

δρi (αi↓)↓ and [Q1]iα
′
i{x 7→ u} = [Q1]iαi.

Moreover, since x 6∈ fv (Q′
i), we can deduce that , Q′

1↓ =
δρi ([Q1]i)ρChi

δρi (αi↓)↓ and Q′
iα

′
i = Q′

iαi. Thus, we have

that ({[Q1]i} ⊎ Q′
i, αi) is an original well-tagged multi-set

of processes. Hence the result holds.

Case of the rule OUT-T: In such a case, by definition of

(P ′
i, α

′
i), there exists u, p terms and Q1 process, Q′

i ⊆ P ′
i

such that P ′′
S = {out(p, [u]iα′

i).[Q1]iα
′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j ,

P ′
S = {[Q1]iα

′
i} ⊎ Q′

iα
′
i ⊎ P ′

jα
′
j , Φ′

S = Φ′′
S ⊎ {wn ⊲

[u]iα
′
i} and α′

i � testi([u]i). Furthermore, we have that

ℓ = new wn.out(p, wn).
Moreover, we have P i

D

′
↓ = δρi (P

′
i)ρChi

δρi (α
′
i↓)↓, which

means that there exists p′, u′ terms and Q′
1 process such

that P ′′
D = {out(p′, u′).Q′

1} ⊎ Qi
D ⊎ Pj

D

′
with Q′

1↓ =
δρi ([Q1]i)ρChi

δρi (α
′
i↓)↓, p′ = p′↓ = δρi (p)ρChi

= pρChi
and

u′↓ = δρi ([u]i)δ
ρ
i (α

′
i↓)↓.

Hence for ℓ′ = new wn.out(pρChi
, wn), we have that

(E ;P ′′
D; Φ′′

D)
ℓ′

−→ (E ; {Q′
1} ⊎ Qi

D ⊎ Pj
D

′
; Φ′

D).
We first need to show that Φ′

S is well-tagged. Since Φ′′
S

is well tag, we only need to focus on the new term [u]iα
′
i.

Let x ∈ dom(α′
i), we know that x was initially a variable

from S. Thus, x was introduced by an input in(c, x) for

some c and so there exists a transition ℓx in tr1 such that

this transition reduces in(c, x). If ℓx = in(c,M) (i.e. the

rule IN), then we trivially have that the result holds with M ;

else ℓx = τ (i.e. the rule COMM). But in the case ℓx = τ ,

we know that the output comes from a process colored by

i and so there exists v such that xα′
i = [v]iα

′
i. Thus with a

simple induction on the size of tr1, we can show that Φ′
S is

well-tagged.

Since all variables in [u]i are colored by i, then thanks

to Lemma 7 and α′
i � testi([u]i), δρi ([u]i)δ

ρ
i (α

′
i↓)↓ =

δρi ([u]i(α
′
i↓))↓ = δρi ([u]iα

′
i↓) = δρi (u↓). But u′↓ =

δρi ([u]i)δ
ρ
i (α

′
i↓)↓, which means that u′↓ = δρi (u↓). Since

col(wn) = i, we can conclude that Φ′
D↓ = δρ(Φ′

S↓). Hence

the result holds.

At last, let αi = α′
i, we have that ({[Q1]i}⊎Q′

i, αi) is an

original well-tagged multi-set of processes. Hence our result

holds.

Case of the rule OUT-CH: Obvious since dom(ρ) and

img(ρ) only contain names of base type and so if

ℓ = out(c, d), since c and d are public then ℓ′ =
out(cρChi

, dρChi
)

Case of the rule OPEN-CH: Obvious since dom(ρ)
and img(ρ) only contain names of base type and so

if ℓ = new chout(c, ch), since c is public and

dom(ρChi
) is only composed of public channels, then ℓ′ =

new chout(cρChi
, ch)

Case of the rule PAR: Obvious

Lemma 19: Let Φ+ = Φa ⊎ Φb ⊎ Φ be a ground well-

tagged frame. Let tr = ℓ1. . . . .ℓn be a label and Φ′
D a ground

frame. If D
tr
−→ (E ;P ′

D; Φ′
D) such that:

• new E .Φ′
D ∼ new E .δρ(Φ+)

• Φ′
D and Φ+ have the same colors

• for all u ∈ {k, vk(k), pk(k) | k ∈ img(ρ) ∪ dom(ρ)},

Φ+ ⊢ u or Φ′
D ⊢ u implies that u ∈ ΦD

• for all k ∈ {1, . . . , n}, if ℓk = in(c,Mk) with

c ∈ Chi, i ∈ {a, b} then there exists M i
k such that

Mkδ
ρ(Φ+↓)↓ = δρi (M

i
kΦ+↓).

then we have that there exists a label tr′ = ℓ′1. . . . .ℓ
′
n and a

well-tagged frame Φ′
S such that S

tr′

−→ (E ; ø′S ; Φ
′
S), Φ

′
D↓ =

δρ(Φ′
S↓), and for all k ∈ {1, . . . , n},

• if ℓk = new w.out(c, w) with c ∈ Chi, i ∈ {a, b} then

ℓ′k = new w.out(cρ−1
Chi

, w)
• if ℓk = in(c,Mk) with c ∈ Chi, i ∈ {a, b}, then

ℓ′k = in(cρ−1
Chi

,M i
k).

• if ℓk = out(c, d) with c ∈ Chi, i ∈ {a, b} and d a

channel name, then ℓ′k = out(cρ−1
Chi

, dρ−1
Chi

)
• if ℓk = τ then ℓ′k = τ

Proof: The proof of this Lemma is very similar to the

proof of Lemma 18. Indeed, in the proof of Lemma 18, we

used Lemma 7 to show that α � testi([u]i) implies that
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δρi (α) � testi(δ
ρ
i ([u]i)). But Lemma 7 shows that those two

properties are equivalent. The same goes for Corollary 2

The only difference is that in the case of the rule IN,

Lemma 16 cannot be called. Intuitively, Lemma 16 allows

us to show that for all recipes applied on Φ′
S , we can create

an equivalent recipe for Φ′
D; but not the other way around.

On the other hand, the new hypothesis is added in this

lemma (the last one) which is the corresponding result of

Lemma 16.

Indeed we have new E .Φ+ ∼ new E .Φ′
D . But with

our inductive step, we would have Φ′′
D = Φ′

D, Φ′′
S

well tagged and Φ′′
D↓ = δρ(Φ′′

S↓). Thus we have that

new E .(Φ+↓) ∼ new E .(Φ′′
S↓). Let Mk be the recipe

from an input. By hypothesis, we have that Mkδ
ρ(Φ+↓)↓ =

δρi (M
i
kΦ+↓). But by Lemma 16, there exists M such

that Mδρ(Φ+↓)↓ = δρi (M
i
kΦ+↓) and Mδρ(Φ′′

S↓)↓ =
δρi (M

i
kΦ

′′
S↓). But Mkδ

ρ(Φ+↓)↓ = Mδρ(Φ+↓)↓ implies

Mkδ
ρ(Φ′′

S↓)↓ = Mδρ(Φ′′
S↓)↓, which allows us to conclude

that Mkδ
ρ(Φ′′

S↓)↓ = MkΦ
′′
D↓ = δρi (M

i
kΦ

′′
S↓).

Lemma 20: Let C be a composition context. Let PA

(resp. PB) be a sequences of plain processes built on Σa∪Σ0

(resp. Σb ∪Σ0).

Let D = (K0;C[[PA]aρCha
] | C[[PB ]bρ

−1
0 ρChb

]; Φa ⊎
Φbρ

−1
0 ) and S = (K0;C[[PA]a | [PB]b]; Φa ⊎ Φb),

we have that for all (tr,new E .Φ) ∈ trace(D) (resp.

(tr,new E .Φ) ∈ trace(S)), there exists a renaming ρ
and two extended processes S′ = (E ; {Pa, Pb}; Φa ⊎ Φb)
and D′ = (E ; {PaρCha

, Pbρ
−1ρChb

}; Φa ⊎ Φbρ
−1) without

replication or new such that

• ρ| dom(ρ0) = ρ0, dom(ρ) ∪ img(ρ) ⊆ E and dom(ρ)
does not appear in {Pa, Pb}

• for all i ∈ {a, b}, Pi is colored by i and there exists

P ′
i built on Σi ∪ Σ0 such that such that Pi = [P ′

i ]i
• (tr,new E .Φ) ∈ trace(D′) (resp. trace(S′))
• trace(D′) ⊆ trace(D)
• trace(S′) ⊆ trace(S)

Note that δρa(Pa) = Pa and δρb (Pb) = Pbρ
−1

Proof: (of Theorem 2) Before we start the proof, we

rename Φ0 into Φa. We color Φa by a. If we assume that

Φa = {wa
1 ⊲ u1, . . . , w

a
n ⊲ un}, we build the frame Φb,

colored by b such that Φb = {wb
1 ⊲ u1, . . . , w

b
n ⊲ un}. At

last, let ρ0 be the bijective renaming such that img(ρ0) = K0

(so fn(Φa) ⊆ img(ρ0)) and dom(ρ0) are composed of fresh

names.

Let Cha and Chb be two sets of fresh channel type name.

Furthermore, let ρCha
be a bijective renaming from the pub-

lic channel of (K0;C[[PA]a]; Φ0) and (K0;C
′[[P ′

A]a]; Φ0)
to Cha. We define ρChb

in the same way.

We know by hypothesis that (K0;C[[PA]a]; Φ0) ≈
(K0;C

′[[P ′
A]a]; Φ0) and (K0;C[[PB ]b]; Φ0) ≈

(K0;C
′[[P ′

B ]b]; Φ0). But the trace equivalence

is stable under renaming. Thus, we have that

(K0;C[[PA]aρCha
]; Φa) ≈ (K0;C

′[[P ′
A]aρCha

]; Φa)

and (K0ρ
−1
0 ;C[[PB ]bρChb

ρ−1
0 ]; Φbρ

−1
0 ) ≈

(K0ρ
−1
0 ;C′[[P ′

B ]bρChb
ρ−1
0 ]; Φbρ

−1
0 ). Since the sets K0ρ

−1
0

and K0 are disjoint, and dom(Φa) ∩ dom(Φb) = ∅, we

can compose the two equivalences such that if we denote

D = (K0 ⊎ K0ρ
−1
0 ;C[[PA]aρCha

] | C[[PB ]bρChb
ρ−1
0 ]; Φa ⊎

Φbρ
−1
0 ) and D′ = (K0 ⊎ K0ρ

−1
0 ;C′[[P ′

A]aρCha
] |

C′[[P ′
B]bρChb

ρ−1
0 ]; Φa ⊎ Φbρ

−1
0 ), we have that D ≈ D′.

Let’s denote now S = (K0 ⊎ K0ρ
−1
0 ;C[[PA]a |

[PB ]b]; Φa ⊎ Φb) and S′ = (K0 ⊎ K0ρ
−1
0 ;C′[[P ′

A]a |
[P ′

B ]b]; Φa ⊎ Φb).
We will show that S ≈ S′. Indeed, since Φ0 = Φa and

Φb have exactly the same terms and since the names in

K0ρ
−1
0 do not appear in PA, P ′

A, PB or P ′
B , then S ≈ S′ is

equivalent to (K0;C[[PA]a | [PB]b]; Φ0) ≈ (K0;C
′[[P ′

A]a |
[P ′

B ]b]; Φ0).
Let (tr,new E .Φ) ∈ trace(S), by Lemma 20,

there exists a renaming ρ and two extended pro-

cesses S1 = (E ; {Pa, Pb}; Φa ⊎ Φb) and D1 =
(E ; {PaρCha

, Pbρ
−1ρChb

}; Φa ⊎ Φbρ
−1) without replication

or new such that

• ρ| dom(ρ0) = ρ0, dom(ρ) ∪ img(ρ) ⊆ E and dom(ρ)
does not appear in {Pa, Pb}

• for all i ∈ {a, b}, Pi is colored by i and there exists

P ′
i built on Σi ∪ Σ0 such that such that Pi = [P ′

i ]i
• (tr,new E .Φ) ∈ trace(S1)
• trace(D1) ⊆ trace(D)

However, in order to apply Lemma 18, we need to

get rid of the possible internal communications between

two processes of different colors in (tr,new E .Φ). Since

(tr,new E .Φ) ∈ trace(S1) and S1 does not contain any

new, we have that S1
tr
⇒ (E ;P ; Φ), for some P . Let’s

denote t̃r the label from tr with τ actions apparent such that

S1
t̃r
−→ (E ;P ; Φ). We show by induction on #{τ ∈ t̃r} that

there exists t̃r′ such that S1
t̃r′
−→ (E ;P ; Φ ∪ Φ+), for some

Φ+ and t̃r′ does not contain any internal communications

between two processes of different colors:

Base case #{τ ∈ t̃r} = 0: The result trivially holds since

there is no τ action.

Inductive step #{τ ∈ t̃r} > 0: Assume that there is an

internal communication between two processes of different

colors (if not the result holds trivially). Thus there exists

tr1, tr2 such that t̃r = tr1.τ.tr2 and S1
tr1−−→ (E ;P1; Φ1)

τ
−→

(E ;P2; Φ1)
tr2−−→ (E ;P ; Φ). Since τ is an internal commu-

nication, then P1 = {in(c, x).P1;out(c, u).P2} ⊎ Q and

P2 = {P1{x 7→ u};P2} ⊎ Q, for some P1, P2,Q, c, x, u.

But by hypothesis, we know that processes of different

colors do not share private channels. Thus c is a public

channel. Hence, we have that (E ;P1; Φ1)
new w.out(c,w)
−−−−−−−−−−→ P ′

where P ′ = (E ; {in(c, x).P1;P2} ⊎ Q; Φ1 ⊎ {w ⊲ u}).
Once again, since c is a public channel, we now have that

P ′ in(c,w)
−−−−−→ (E ;P2; Φ ⊎ {w ⊲ u}). A simple induction on

the rest of the trace allows us to show that (E ;P2; Φ⊎{w ⊲
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u})
tr2−−→ (E ;P ; Φ ⊎ {w ⊲ u}). Since we removed the τ

action without adding new ones, we can apply our inductive

hypothesis on tr1.new w.out(c, w).in(c, w).tr2 in order to

conclude.

We showed that S1
t̃r′
−→ (E ;P ; Φ∪Φ+), for some Φ+ and

t̃r′ does not contain any internal communication between

two processes of different colors. Let’s denote ΦS = Φ ∪
Φ+, we have that (t̃r′,new E .ΦS) ∈ trace(S1). Thanks to

Lemma 18, we can deduce that ΦS is well-tagged and there

exists D1
t̃r′′
−−→ (E ;PD; ΦD) such that ΦD↓ = δρ(ΦS↓).

Furthermore, if t̃r′ = ℓ1. . . . .ℓn then t̃r′′ = ℓ′1. . . . .ℓ
′
n such

that for all k ∈ {1, . . . , n},

• if ℓk = new w.out(c, w) is an output coming

from a process colored by i ∈ {a, b}, then ℓ′k =
new w.out(cρChi

, w)
• if ℓk = in(c,M) is an input coming from a process

colored by i ∈ {a, b}, then ℓ′k = in(cρChi
,Mi) with

MiΦD↓ = δρi (MΦS↓).
• if ℓk = out(c, d) is an output coming from a process

colored by i ∈ {a, b} with d a channel name, then

ℓ′k = out(cρChi
, dρChi

)
• if ℓk = τ , then ℓ′k = τ .

Hence we have that (t̃r′′,newE .ΦD) ∈ trace(D1). But

we showed earlier that trace(D1) ⊆ trace(D), hence we

have that (t̃r′′,newE .ΦD) ∈ trace(D). Furthermore, we

showed that D ≈ D′, hence we deduce that there exists

φ′
D such that (t̃r′′, φ′

D) ∈ trace(D′) and newE .ΦD ∼ φ′
D .

Once again by Lemma 20, there exists a renaming ρ′

and two extended processes S′
1 = (E ′; {P ′

a, P
′
b}; Φa ⊎ Φb)

and D′
1 = (E ′; {P ′

aρCha
, P ′

bρ
−1ρChb

}; Φa ⊎Φbρ
−1) without

replication or new such that

• ρ′| dom(ρ0)
= ρ0, dom(ρ′) ∪ img(ρ′) ⊆ E ′ and dom(ρ′)

does not appear in {P ′
a, P

′
b}

• for all i ∈ {a, b}, P ′
i is colored by i and there exists

P ′′
i built on Σi ∪ Σ0 msuch that such that P ′

i = [P ′′
i ]i

• (t̃r′′, φ′
D) ∈ trace(D′

1)
• trace(S′

1) ⊆ trace(S′)

Since our processes do not contain new, we can assume

that E = E ′ and ρ = ρ′ (if not we can apply some

renaming on private name in E or E ′ in order to make them

equal). Thus, there exists Φ′
D thus that newE .Φ′

D = φ′
D and

(t̃r′′,new E .Φ′
D) ∈ trace(D′

1).
Let’s summarize what we have proved so far. We had

(tr,Φ) ∈ trace(S). We modified this trace into (t̃r′,Φ⊎Φ+)
where external actions new w.out(c, w).in(c, w) replace

some τ actions. Then Lemma 20 allowed us to build the

trace (t̃r′′,newE .ΦD) ∈ trace(D1) which only modify

the terms in the trace but not the actions themselves.

At last, we know (t̃r′′,newE .Φ′
D) ∈ trace(D′

1). Hence,

D′
1

t̃r′′
⇒ (E ;P ′; Φ′

D) which means that there exists tr′′ such

that D′
1

tr′′

−−→ (E ;P ′; Φ′
D). But, it is possible that there

exists ℓ ∈ τ∗ such that new w.out(ca, w).ℓ.in(cb, w) ∈
tr′′. But, thanks to Lemma 17, we can assume that this

case does not occur and so there is no τ action between

new w.out(ca, w) and in(cb, w), for any w ∈ dom(Φ′
D).

Since new E .ΦD ∼ new E .Φ′
D , ΦS is a well-tagged

frame and ΦD↓ = δρ(ΦS↓), we can apply Lemma 19

on (tr′′,new E .Φ′
D) which allow us to deduce that there

exists a well-tagged frame Φ′
S such that (tr′′′,new E .Φ′

S) ∈
trace(S′

1), Φ
′
D↓ = δρ(Φ′

S↓), and if tr′′ = ℓ1. . . . .ℓn then

tr′′′ = ℓ′1. . . . .ℓ
′
n and for all k ∈ {1, . . . , n},

• if ℓk = new w.out(c, w) with c ∈ Chi, i ∈ {a, b} then

ℓ′k = new w.out(cρ−1
Chi

, w)
• if ℓk = in(c,Mk) with c ∈ Chi, i ∈ {a, b}, then

ℓ′k = in(cρ−1
Chi

,M i
k).

• if ℓk = out(c, d) with c ∈ Chi, i ∈ {a, b} and d a

channel name, then ℓ′k = out(cρ−1
Chi

, dρ−1
Chi

)
• if ℓk = τ then ℓ′k = τ

where tr′′ and tr′′′ are the respective label of tr′′ and tr′′′

with τ actions. Furthermore, the couples (Mk,M
i
k) were

generated by the application of Lemma 18 earlier on the

trace t̃r′. Note that it is possible because the channels (public

and private) of processes with different colors are disjoints

in D1 and D′
1. For example, if we have in(c,M) ∈ t̃r′′ and

c ∈ Cha, then we know for sure that the input was done by

a process colored by a in D′
1 and in D1.

Hence, by construction of t̃r′ and t̃r′′′, we have in fact that

t̃r′ = t̃r′′′ and so (t̃r′,new E .Φ′
S) ∈ trace(S′

1). Thanks to

Corollary 6, we can also deduce that newE .ΦS ∼ newE .Φ′
S .

But ΦS = Φ ⊎ Φ+ and since dom(ΦS) = dom(Φ′
S),

there exists Φ′ and Φ′
+ such that dom(Φ′) = dom(Φ),

dom(Φ+) = dom(Φ′
+) and Φ′

S = Φ′ ⊎ Φ′
+. Since the

transformation between t̃r′ and t̃r′′ only modifies the terms

of the trace and not the actions themselves, and since we

assume that there is no τ action between new w.out(ca, w)
and in(cb, w) in tr′′, for any w ∈ dom(Φ′

+), a sim-

ple induction on | dom(Φ′
+)| allows us to show that

(tr,newE .Φ′) ∈ trace(S′
1) ⊆ trace(S′). Lastly, since we

have that newE .(Φ⊎Φ+) ∼ newE .(Φ′⊎Φ′
+), we can deduce

that newE .Φ ∼ newE .Φ′. Hence the result holds.
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