
Laboratoire Spécification & Vérification

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Proving More Observational
Equivalences with ProVerif

Vincent Cheval and Bruno Blanchet

October 2012

Research report LSV-12-19

Proving More Observational Equivalences with ProVerif

Vincent Cheval1 and Bruno Blanchet2

1 LSV, ENS Cachan & CNRS & INRIA Saclay le-de-France, France
2 INRIA Paris-Rocquencourt, France

Abstract. This paper presents an extension of the automatic protocol verifier
ProVerif in order to prove more observational equivalences. ProVerif can prove
observational equivalence between processes that have the same structure but dif-
fer by the messages they contain. In order to extend the class of equivalences that
ProVerif handles, we extend the language of terms by defining more functions
(destructors) by rewrite rules. In particular, we allow rewrite rules with inequal-
ities as side-conditions, so that we can express tests ”if then else” inside terms.
Finally, we provide an automatic procedure that translates a process into an equiv-
alent process that performs as many actions as possible inside terms, to allow
ProVerif to prove the desired equivalence. These extensions have been imple-
mented in ProVerif and allow us to automatically prove anonymity in the private
authentication protocol by Abadi and Fournet.

1 Introduction

Today, many applications that manipulate private data incorporate a cryptographic pro-
tocol, in order to ensure that such private information is never disclosed to anyone
but the entitled entities. However, it has been shown that some currently used crypto-
graphic protocols are flawed, e.g. the e-passport protocols [5]. It is therefore essential
to obtain as much confidence as possible in the correctness of security protocols. To
this effect, many works have relied on symbolic methods to precisely analyse the secu-
rity of cryptographic protocols. In the case of a bounded number of sessions, secrecy
preservation was shown to be co-NP-complete [21], and for an unbounded number of
sessions, several decidable classes have been identified (e.g. [20]). Moreover, several
tools have been developed to automatically verify security properties on cryptographic
protocols, e.g. CSP/FDR [22], AVISPA [6], ProVerif [8], SCYTHER [14]. Until recently,
most tools focused on reachability properties (or trace properties), such as authentica-
tion and secrecy, which specify that the protocols cannot reach a bad state. However,
privacy-type properties cannot be naturally expressed as reachability property and re-
quire the notion of behavioural equivalence that specifies the indistinguishability of
instances of the protocols. In the literature, the notion of may-testing equivalence was
first introduced in [19] and has been studied for several calculi, e.g. spi-calculus [3,16].
Typically, two processes P and Q are may-testing equivalent if for any process O, the
processes P | O and Q | O can both emit on the same channels. However, the high
difficulty of deciding this equivalence led to the introduction of stronger equivalences
such as observational equivalence that additionally checks the bisimilarity of the pro-
cess P and Q. This notion was the focus of several works, e.g. [9,15]. In this paper, we
focus on the automatisation of the proofs of observational equivalence.

Related Work. The automated verification of equivalence properties for security pro-
tocols was first considered for bounded number of sessions with a fixed set of basic
primitives and without else branches [17,16], but their complexity was too large for
practical implementations. [7] showed that diff-equivalence, a strong equivalence be-
tween processes that have the same structure but differ by the terms they contain, is also
decidable for bounded processes without else-branches; this result applies in particular
to the detection of off-line guessing attacks against password-based protocols and to
the proof of strong secrecy. However, the procedure does not seem to be well-suited
for an implementation. Recently, more practical algorithms were designed for bounded
processes with else branches, non-determinism and a fixed set of primitives [11] but
there is no available implementation. These techniques rely on a symbolic semantics:
in a symbolic semantics, such as [10,15,18], the messages that come from the adversary
are represented by variables, to avoid an unbounded case distinction on these messages.

To our knowledge, only three works resulted in automatic tools for the verifica-
tion of equivalence properties: PROFVERIF [8], SPEC [23] and AKISS [12]. The tool
SPEC provides a decision procedure for observational equivalence for processes in the
spi-calculus. However, the scope is limited to bounded determinate processes without
non-trivial else branches, that is, processes whose executions are entirely determined
by the adversary inputs. The tool AKISS was developed to decide a weaker equiva-
lence close to the may-testing equivalence for a wide variety of primitives. Neverthe-
less, the scope is also limited to bounded determinate processes without non-trivial else
branches. At last, the tool PROVERIF was first a protocol analyser for trace properties
but, since [9], it can also check the diff-equivalence between processes written in the
applied pi calculus [1]. Although the diff-equivalence is stronger than the observational
equivalence, this is the only tool that accepts unbounded processes with else branches
and any cryptographic primitives that can be represented by an equational theory and/or
rewrite rules. Even if PROVERIF does not always terminate, it was shown very efficient
for many case studies (e.g. proving the absence of guessing attacks in EKE, proving the
core security of JFK [9] or proving anonymity and unlinkability of the Active Authen-
tication protocol from the electronic passport protocol [4]). Hence the present paper
focuses on the tool PROVERIF.

Motivation. Since the notion of equivalence used by PROVERIF is stronger than the
observational equivalence, it may yield some false attacks on the protocols. Indeed,
PROVERIF focuses on proving equivalences P ≈ Q in which P and Q are two vari-
ants of the same process obtained by selecting different terms for P and Q. Moreover,
PROVERIF requires that all tests yield the same result in both processes, in particular
the tests of conditional branchings. Thus, for a protocol that does not satisfy this condi-
tion, PROVERIF will fail to prove equivalence. Unfortunately, many indistinguishable
processes do not satisfy this condition. Consider for example the two naives processes:

P
def
= c(x).if x = pk(skA) then c〈{s}pk(skA)〉 else c〈{Np}pk(skA)〉

Q
def
= c(x).if x = pk(skB) then c〈{s}pk(skB)〉 else c〈{Nq}pk(skB)〉

For simplicity, we omitted the name restriction but we assume that all names but c are
private. The protocol P is simply waiting for the public key of the agent A (pk(skA))

2

on a channel c, and if P receives it then he sends some secret s encrypted with A’s
public key else a fresh nonce Np encrypted with A’s public key is sent on the channel
c. On the other hand, the protocol Q does similar actions but is waiting for the public
key of the agent B (pk(skB)) instead of A. Assuming that the attacker does not have
access to the private keys of A and B, then the two protocols are equivalent since the
attacker cannot differentiate {s}pk(skA), {Np}pk(skA), {s}pk(skB) and {Nq}pk(skB).

However, if the intruder sends the public key of the agent A (pk(skA)), then the
test of the conditional branching in P will succeed (pk(skA) = pk(skA)) whereas the
test of the same conditional branching in Q will fail (pk(skA) 6= pk(skB)). Since this
test does not yield the same result in both processes, PROVERIF will fail to prove the
equivalence between P and Q. More realistic examples illustrating this false attack can
be found in several cases studies, e.g. the private authentication protocol [2] and the
e-passport protocol [5].

Our Contribution. Our main contribution consists in addressing the issue of false at-
tacks due to conditional branchings. In particular, we allow function symbols defined
by rewrite rules with inequalities as side-conditions, so that we can express tests of
conditional branchings directly inside terms (Section 2), and we show how the orig-
inal Horn clauses based algorithm of PROVERIF can be adapted to our new calculus
(Sections 3 and 4). Moreover, we provide an automatic procedure that transforms a
process into an equivalent process that contains as few conditional branchings as pos-
sible which allows ProVerif to prove equivalence on a larger class of processes. In
particular, the implementation of our extension in ProVerif allowed us to automati-
cally prove anonymity of the private authentication protocol for an unbounded num-
ber of sessions (Section 5). Our implementation is available as ProVerif 1.87beta, at
http://proverif.inria.fr

2 Model

This section introduces our process calculus, by giving its syntax and semantics. As
mentioned above, our work extends the behaviour of destructor symbols, so our syntax
and semantics of terms change in comparison to the original calculus of PROVERIF [9].
However, we did not modify the syntax of processes thus the semantics of processes
only differs from the changes coming from the modifications in the semantics of terms.

2.1 Syntax

The syntax of our calculus is summarised in Fig. 1. The messages sent on the network
by agents in a protocol are modelled using an abstract term algebra. We assume an
infinite set of names N and an infinite set of variables X . We also consider a signature
Σ consisting of a finite set of function symbols with their arity. We distinguish two
categories of function symbols: constructors f and destructors g. Constructors build
terms; destructors, defined by rewrite rules, manipulate terms, as detailed below. We
denote by h a constructor or a destructor. Messages M are terms built from variables,
names, and constructors applied to terms.

3

M ::= message
x, y, z variables
a, b, c names
f(M1, . . . ,Mn) constructor application

U ::= may-fail message
M message
fail failure
u may-fail variable

D ::= term evaluation
U may-fail message
eval h(D1, . . . , Dn) function evaluation

P,Q,R ::= processes
0 nil
M(x).P input
M〈N〉.P output
P | Q parallel composition
!P replication
(νa).P restriction
let x = D in P else Q term evaluation

Fig. 1. Syntax of terms and processes

We define an equational theory by a finite set of equations M = N , where M,N are
terms without names. The equational theory is then obtained from these equations by
reflexive, symmetric, and transitive closure, closure under application of function sym-
bols, and closure under substitution of terms for variables. By identifying an equational
theory with its signature Σ, we denote M =Σ N an equality modulo the equational the-
ory, and M 6=Σ N an inequality modulo the equational theory. We write M = N and
M 6= N for syntactic equality and inequality, respectively. In this paper, we only con-
sider consistent equational theories, i.e. there exist terms M and N such that M 6=Σ N .

Destructors In [9], the rewrite rules describing the behaviour of destructors follow the
usual definition of a rewrite rule. However, as previously mentioned, we want to intro-
duce tests directly into terms and more specifically into the definition of destructors.
Hence, we introduce formulas on messages in order to express these tests. We con-
sider formulas φ of the form

∧n
i=1 ∀x̃i.Mi 6=Σ Ni, where x̃ stands for a sequence of

variables x1, . . . , xk. We denote by ⊤ and ⊥ the true and false formulas, respectively
corresponding to an empty conjunction (n = 0) and to x 6=Σ x, for instance. Formulas
will be used as side conditions for destructors. We denote by fv(φ) the free variables of
φ, i.e. the variables that are not universally quantified. Let σ be a substitution mapping
variables to ground terms. We define σ � φ as follows: σ �

∧n
i=1 ∀x̃i.Mi 6=Σ Ni if

and only if for i = 1, . . . n, for all σi of domain x̃i, σσiMi 6=Σ σσiNi.
In [9], destructors are partial functions defined by rewrite rules; when no rewrite rule

can be applied, we say that the destructor fails. However, this formalism does not allow

4

destructors to succeed when one of their arguments fails. We shall need this feature in
order to include as many tests as possible in terms. Therefore, we extend the definition
of destructors by defining may-fail messages, denoted by U , which can be messages M ,
the special value fail, or a variable u. We separate fail from ordinary messages M so that
the equational theory does not apply to fail. May-fail messages represent the possible
arguments and result of a destructor. We differentiate variables for may-fail messages,
denoted u, v, w from variables for messages, denoted x, y, z. A may-fail variable u can
be instantiated by a may-fail term while a message variable x can only be instantiated
by a message, and so cannot be instantiated by fail.

For two ground may-fail messages U1 and U2, we say that U1 =Σ U2 if and only if
U1 = U2 = fail or U1, U2 are both messages, denoted M1,M2, and M1 =Σ M2. Given
a signature Σ, a destructor g of arity n is defined by a finite set of rewrite rules g(U1,
. . . , Un) → U || φ where U1, . . . , Un, U are may-fail messages that do not contain any
name, φ is a formula as defined above that does not contain any name, and the variables
of U and fv(φ) are bound in U1, . . . , Un. Note that all variables in fv(φ) are necessarily
message variables. Variables are subject to renaming. We omit the formula φ when it is
⊤. We denote defΣ(g) the set of rewrite rules describing g in the signature Σ.

Example 1. Consider a symmetric encryption scheme where the decryption function
either properly decrypts a ciphertext using the correct private key, or fails. To model this
encryption scheme, we consider, in a signature Σ, the constructor senc for encryption,
the destructor sdec for decryption and the following rewrite rules:

– sdec(senc(x, y), y) → x (decryption succeeds)
– sdec(x, y) → fail || ∀z.x 6=Σ senc(z, y) (decryption fails, because x is not a

ciphertext under the correct key)
– sdec(fail, u) → fail, sdec(u, fail) → fail (the arguments failed, the decryption also

fails)

Consider U1, . . . , Un may-fail messages and consider g a destructor of arity n. We
say that g rewrites U1, . . . , Un into U , denoted g(U1, . . . , Un) → U , if there exist
g(U ′

1, . . . , U
′
n) → U ′ || φ in defΣ(g), and a substitution σ such that σU ′

i =Σ Ui for
all i = 1 . . . n, σU ′ = U and σ � φ. At last, we ask that given a signature Σ, for all
destructors g of arity n, defΣ(g) satisfies the following properties:

P1. For all ground may-fail messages U1, . . . , Un, there exists a may-fail message U
such that g(U1, . . . , Un) → U .

P2. For all ground may-fail messages U1, . . . , Un, V1, V2, if g(U1, . . . , Un) → V1 and
g(U1, . . . , Un) → V2 then V1 =Σ V2.

Property P1 expresses that all destructors are total while Property P2 expresses that
all destructors are deterministic (modulo the equational theory). Note that thanks to
Property P2, a destructor cannot reduce to fail and a message at the same time.

In Example 1, the destructor sdec follows the classical definition of the symmet-
ric decryption. However, thanks to the formulas and the fact that the arguments of a
destructor can fail, we can describe the behaviour of new primitives.

5

Example 2. We define a destructor that tests equality and returns a boolean as follows:

eq(x, x) → true eq(x, y) → false || x 6=Σ y

eq(fail, u) → fail eq(u, fail) → fail

This destructor fails when one of its arguments fails. Such a destructor could not be
defined in PROVERIF without our extension, because one could not test x 6=Σ y.

From Usual Destructors to our Extension More generally, from a destructor defined,
as in [9], by rewrite rules g(M1, . . . ,Mn) → M without side conditions and such that
the destructor is considered to fail when no rewrite rule applies, we can build a destruc-
tor in our formalism. The algorithm is given in Lemma 1 below (proof in Appendix A).

Lemma 1. Consider a signature Σ. Let g be a destructor of arity n described by the set
of rewrite rules S = {g(M i

1, . . . ,M
i
n) → M i | i = 1, . . . ,m}. Assume that g is deter-

ministic, i.e. S satisfies Property P2. The following set defΣ(g) satisfies Properties P1
and P2:

defΣ(g) = S ∪ {g(x1, . . . , xn) → fail || φ}
∪{g(u1, . . . , uk−1, fail, uk+1, . . . , un) → fail | k = 1, . . . , n}

where φ =
∧m

i=1 ∀ỹi.(x1, . . . , xn) 6=Σ (M i
1, . . . ,M

i
n) and ỹi are the variables of (M i

1,
. . . ,M i

n), and x1, . . . , xn are message variables.

The users can therefore continue defining destructors as before in PROVERIF; the
tool checks that the destructors are deterministic and automatically completes the defi-
nition following Lemma 1.

Generation of Deterministic and Total Destructors With our extension, we want
the users to be able to define destructors with side conditions. However, these destruc-
tors must satisfy Properties P1 and P2. Instead of having to verify these properties a
posteriori, we use a method that allows the user to provide precisely the destructors
that satisfy P1 and P2: the user inputs a sequence of rewrite rules g(U1

1 , . . . , U
1
n) →

V 1 otherwise . . . otherwise g(Um
n , . . . , Um

n) → V m where U i
k, V

i are may-fail mes-
sages, for all i, k. Intuitively, this sequence indicates that when reducing terms by the
destructor g, we try to apply the rewrite rules in the order of the sequence, and if no rule
is applicable then the destructors fails. To model the case where no rule is applicable,
we add the rewrite rule g(u1, . . . , un) → fail where u1, . . . , un are distinct may-fail
variables, at the end of the previous sequence of rules. Then, the obtained sequence is
translated into a set S of rewrite rules with side conditions as follows

S def
=

{
g(U i

1, . . . , U
i
n) → V i || ∧j<i ∀ũj .(U i

1, . . . , U
i
n) 6=Σ (U j

1 , . . . , U
j
n)
}
i=1..m+1

where ũj are the variables of U j
1 , . . . , U

j
n. We use side-conditions to make sure that rule

i is not applied if rule j for j < i can be applied. Notice that in the set S defined above,
the formulas may contain may-fail variables or the constant fail. In order to match our
formalism, we instantiate these variables by either a message variable or fail, and then
we simplify the formulas.

6

Term Evaluation A term evaluation represents the evaluation of a series of construc-
tors and destructors. The term evaluation eval h(D1, . . . , Dn) indicates that the func-
tion symbol h will be evaluated. While all destructors must be preceded by eval, some
constructors might also be preceded by eval in a term evaluation. In fact, the reader
may ignore the prefix eval since eval h and h have the same semantics with the ini-
tial definition of constructors with equations. However, eval becomes useful when we
convert equations into rewrite rules (see Section 4.1). Typically, eval is used to in-
dicate when a term has been evaluated or not. Even though we allow may-fail mes-
sages in term evaluations, since no construct binds may-fail variables in processes,
only messages M and fail may in fact occur. In order to avoid distinguishing construc-
tors and destructors in the definition of term evaluation, for f a constructor of arity n,
we let defΣ(f) = {f(x1, . . . , xn) → f(x1, . . . , xn)} ∪ {f(u1, . . . , ui−1, fail, ui+1, . . . ,
un) → fail | i = 1, . . . , n}. The second part of the union corresponds to the failure
cases: the constructor fails if and only if one of its arguments fails.

Processes At last, the syntax of processes corresponds exactly to [9]. A trailing 0 can
be omitted after an input or an output. An else branch can be omitted when it is else 0.

Even if the condition if M = N then P else Q is not included in our calculus, it
can be defined as let x = equals(M,N) in P else Q, where x is a fresh variable and
equals is a binary destructor with the rewrite rules {equals(x, x) → x, equals(x, y) →
fail || x 6=Σ y, equals(fail, u) → fail, equals(u, fail) → fail}. The destructor equals
succeeds if and only if its two arguments are equal messages modulo the equational
theory and different from fail. We always include this destructor in the signature Σ. An
evaluation context C is a closed context built from [], C | P , P | C, and (νa)C.

Example 3. We consider a slightly simplified version of the private authentication pro-
tocol given in [2]. In this protocol, a participant A is willing to engage in communica-
tion and reveal its identity to a participant B, without revealing it to other participants.
The cryptographic primitives used in this protocol are the asymmetric encryption and
pairing. Expressed in ProVerif syntax, the participants A and B proceed as follows:

A(ska, sk b)
def
= (νna)c〈aenc(〈na, pk(ska)〉, pk(sk b))〉.c(x).0

B(sk b, ska)
def
= (νnb)c(y).let x = adec(y, sk b) in

let xna = proj1(x) in
let z = equals(proj2(x), pk(ska)) in
c〈aenc(〈xna, 〈nb, pk(sk b)〉〉, pk(ska)))〉.0

else c〈aenc(nb, pk(sk b)))〉.0
else c〈aenc(nb, pk(sk b)))〉.0

else c〈senc(nb, pk(sk b)))〉.0

System(ska, sk b)
def
= A(ska, sk b) | B(sk b, ska)

where ska and sk b represent the respective private keys of A and B, proj1 and proj2 are
the two projections of a pairing denoted by 〈 , 〉, aenc and adec represent the asymmet-
ric encryption and decryption, and pk represents the public key associated to a private
key.

7

U ⇓Σ U
eval h(D1, . . . , Dn)⇓Σ σU

if h(U1, . . . , Un) → U || φ in defΣ(h), and σ is such
that for all i, Di ⇓Σ Vi, Vi =Σ σUi and σ � φ

N〈M〉.Q | N ′(x).P →Σ Q | P{M/x} if N =Σ N ′ (Red I/O)

let x = D in P else Q →Σ P{M/x} if D ⇓Σ M (Red Fun 1)
let x = D in P else Q →Σ Q if D ⇓Σ fail (Red Fun 2)

!P →Σ P | !P (Red Repl)
P →Σ Q ⇒ P | R →Σ Q | R (Red Par)
P →Σ Q ⇒ νa.P →Σ νa.Q (Red Res)
P ′ ≡ P, P →Σ Q, Q ≡ Q′ ⇒ P ′ →Σ Q′ (Red ≡)

Fig. 2. Semantics of terms and processes

In other words, A first sends to B a nonce na and its own public key pk(ska) en-
crypted with the public key of B, pk(sk b). Then, after receiving the message, B first
checks that the message is of the correct form and that it indeed contains the public
key of A. If so, then B sends back to A the ”correct” message composed of the nonce
na he received, nb a freshly generated nonce and his own public key (pk(sk b)), all this
encrypted with the public key of A. Otherwise, B sends back a ”dummy” message,
aenc(nb, pk(sk b)). From the point of view of the attacker, this dummy message is in-
distinguishable from the ”correct” one since the private keys ska and sk b are unknown
to the attacker, so the attacker should not be able to tell whether A or another is talking
to B. This is what we are going to prove formally.

2.2 Semantics

The semantics for processes and term evaluations is summarised in Fig. 2. The for-
mula D ⇓Σ U means that D evaluates to U . When the term evaluation corresponds to
a function h preceded by eval, the evaluation proceeds recursively by evaluating the
arguments of the function and then by applying the rewrite rules of h in defΣ(h) to
compute U , taking into account the side-conditions in φ.

The semantics for processes in PROVERIF is defined by a structural equivalence,
denoted ≡ and some internal reductions. The structural equivalence ≡ is the smallest
equivalence relation on extended processes that is closed under α-conversion of names
and variables, by application of evaluation contexts, and satisfying some further basic
structural rules such as P | 0 ≡ P , associativity and commutativity of | and scope
extrusion. However, this structural equivalence does not substitute terms equal modulo
the equational theory and does not model the replication. Both properties are in fact
modelled as internal reduction rules for processes. This semantics is different from [9]
by the rule (Red Fun 2) which previously corresponded to the case where the evaluation
term D could not be reduced whereas D is reduced to fail in our semantics.

Both relations ≡ and →Σ are defined only on closed processes. Furthermore, we
denote →∗

Σ the reflexive and transitive closure of →Σ . At last, we denote →∗
Σ≡ for its

union with ≡. When Σ is clear from the context, we abbreviate →Σ to → and ⇓Σ to ⇓.

8

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if fst(N) =Σ fst(N ′) and snd(N) =Σ snd(N ′)

let x = D in P else Q → P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓Σ M1 and snd(D)⇓Σ M2

let x = D in P else Q → Q (Red Fun 2)
if fst(D)⇓Σ fail and snd(D)⇓Σ fail

Fig. 3. Generalized rules for biprocesses

3 Using Biprocesses to Prove Observational Equivalence

In this section, we recall the notions of observational equivalence and biprocesses in-
troduced in [9].

Definition 1. The process P emits on M (P ↓M) if and only if P →∗
Σ≡ C[M ′〈N〉.R]

for some evaluation context C that does not bind fn(M) and M =Σ M ′.
The observational equivalence, denoted ≈ is the largest symmetric relation R be-

tween closed processes with the same domain such that P R Q implies:

1. if P ↓M , then Q ↓M ;
2. if P →∗

Σ P ′, then Q →∗
Σ Q′ and P ′ R Q′ for some Q′;

3. C[P] R C[Q] for all closed evaluation contexts C.

Intuitively, an evaluation context may represent an adversary, and two processes are
observationally equivalent when no adversary can distinguish them. One of the most
difficult parts of deciding the observational equivalence between two processes directly
comes from the second item of Definition 1. Indeed, this condition indicates that each
reduction of a process has to be matched in the second process. However, we consider
a process algebra with replication, hence there are usually an infinite number of candi-
dates for this mapping.

To solve this problem, [9] introduces a calculus that represents pairs of processes,
called biprocesses, that have the same structure and differ only by the terms and term
evaluations that they contain. The grammar of the calculus is a simple extension of the
grammar of Figure 1 with additional cases so that diff[M,M ′] is a term and diff[D,D′]
is a term evaluation.

Given a biprocess P , we define two processes fst(P) and snd(P), as follows: fst(P)
is obtained by replacing all occurrences of diff[M,M ′] with M and diff[D,D′] with
D in P , and similarly, snd(P) is obtained by replacing diff[M,M ′] with M ′ and
diff[D,D′] with D′ in P . We define fst(D), fst(M), snd(D), and snd(M) similarly.
A process or context is said to be plain when it does not contain diff.

Definition 2. Let P be a closed biprocess. We say that P satisfies observational equiv-
alence when fst(P) ≈ snd(P).

The semantics of biprocesses is defined as in Figure 2 with generalized rules (Red
I/O), (Red Fun 1), and (Red Fun 2) given in Figure 3.

The semantics of biprocesses is such that a biprocess reduces if and only if both
sides of the biprocess reduce in the same way: a communication succeeds on both sides;

9

a term evaluation succeeds on both sides or fails on both sides. When the two sides of the
biprocess reduce in different ways, the biprocess blocks. The following lemma shows
that, when both sides of a biprocess always reduce in the same way, then that biprocess
satisfies observational equivalence (proof in Appendix B).

Lemma 2. Let P0 be a closed biprocess. Suppose that, for all plain evaluation contexts
C, all evaluation contexts C ′, and all reductions C[P0] →∗ P ,

1. if P ≡ C ′[N〈M〉.Q | N ′(x).R] then fst(N) =Σ fst(N ′) if and only if snd(N) =Σ

snd(N ′);
2. if P ≡ C ′[let x = D in Q else R] then fst(D)⇓Σ fail if and only if snd(D)⇓Σ fail.

Then P0 satisfies observational equivalence.

Intuitively, the semantics for biprocesses forces that each reduction of a process has
to be matched by the same reduction in the second process. Hence, verifying the second
item of Definition 1 becomes less problematic since we reduce to one the number of
possible candidates Q′.

Example 4. Coming back to the private authentication protocol detailed in Example 3,
we want to verify the anonymity of the participant A. Intuitively, this protocol preserves
anonymity if an attacker cannot distinguish whether B is talking to A or to another
participant A′, assuming that A, A′, and B are honest participants and furthermore
assuming that the intruder knows the public keys of A, A′, and B. Hence, the anonymity
property is modelled by an observational equivalence between two instances of the
protocol: one where B is talking to A and the other where B is talking to A′, which is
modelled as follows:

(νska)(νsk
′
a)(νsk b)c〈pk(ska), pk(sk

′
a), pk(sk b)〉.System(ska, sk b)

≈
(νska)(νsk

′
a)(νsk b)c〈pk(ska), pk(sk

′
a), pk(sk b)〉.System(sk ′

a, sk b)

Thanks to the fact that the ”dummy” message and the ”correct” one are indistinguish-
able from the point of view of the attacker, this equivalence holds. To prove this equiva-
lence using ProVerif, we first have to transform this equivalence into a biprocess. This is
easily done since only the private keys ska and ska′ change between the two processes.
Hence, we define the biprocess P0 as follows:

(νska)(νsk
′
a)(νsk b)c〈pk(ska), pk(sk

′
a), pk(sk b)〉.System(diff[ska, sk

′
a], sk b)

Note that fst(P0) and snd(P0) correspond to the two protocols of the equivalence. For
simplicity, we only consider in this example two sessions but our results also apply to
the anonymity for an unbounded number of sessions (for the definition of [5]).

4 Clause Generation

In [9], observational equivalence is verified by translating the considered biprocess into
a set of Horn clauses, and using a resolution algorithm on these clauses. We adapt this
translation to our new destructors.

10

4.1 From Equational Theories to Rewrite Rules

Equational theories are a very powerful tool for modeling cryptographic primitives.
However, for a practical algorithm, it is easier to work with rewrite rules rather than with
equational theories. Hence in [9], a signature Σ with an equational theory is transformed
into a signature Σ′ with rewrite rules that models Σ, when Σ has the finite variant
property [13]. These rewrite rules may rewrite a term M into several irreducible forms
(the variants), which are all equal modulo Σ, and such that, when M and M ′ are equal
modulo Σ, M and M ′ rewrite to at least one common irreducible form. We reuse the
algorithm from [9] for generating Σ′, adapting it to our formalism by just completing
the rewrite rules of constructors with rewrite rules that reduce to fail when an argument
is fail (see Appendix C for more details).

4.2 Patterns and Facts

In the clauses, the messages are represented by patterns, with the following grammar:

p ::= pattern
x, y, z, i variables
f(p1, . . . , pn) constructor application
a[p1, . . . , pn] name

mp ::= may-fail pattern
p pattern
u, v may-fail variables
fail failure

The patterns p are the same as in [9]. The variable i represents a session identifier for
each replication of a process. A pattern a[p1, . . . , pn] is assigned to each name of a
process P . The arguments p1, . . . , pn allow one to model that a fresh name a is created
at execution of ! (νa). For example, in the process ! c′(x).(νa)P , each name created by
νa is represented by a[i, x] where i is the session identifier for the replication and x is
the message received as input in c′(x). Hence, the name a is represented as a function
of i and x. In two different sessions, (i, x) takes two different values, so the two created
instances of a (a[i, x]) are different.

Since our formalism introduced may-fail messages to describe possible failure of
a destructor, we also define may-fail patterns to represent the failure in clauses. Simi-
larly to messages and may-fail messages, a may-fail variable u can be instantiated by a
pattern or fail, whereas a variable x cannot be instantiated by fail.

Clauses are built from the following predicates:

F ::= facts
att′(mp,mp′) attacker knowledge
msg′(p1, p2, p′1, p

′
2) output message p2 on p1 (resp. p′2 on p′1)

input′(p, p′) input on p (resp. p′)
formula(

∧
i ∀z̃i.pi 6=Σ p′i) formula

bad bad

Intuitively, att′(mp,mp′) means that the attacker may obtain mp in fst(P) and mp′

in snd(P) by the same operations; the fact msg′(p1, p2, p′1, p
′
2) means that message p2

may be output on channel p1 by the process fst(P) while p′2 may be output on channel
p′1 by the process snd(P) after the same reductions; input′(p, p′) means that an input
is possible on channel p in fst(P) and on channel p′ in snd(P). Note that both facts

11

msg′ and input′ contain only patterns and not may-fail patterns. Hence channels and
sent terms are necessarily messages and so cannot be fail. The fact formula(φ) means
that φ has to be satisfied. At last, bad serves in detecting violations of observational
equivalence: when bad is not derivable, we have observational equivalence.

4.3 Clauses for the Attacker

The capabilities of the attacker are represented by clauses such as the ones below. They
are directly inspired from the ones in [9] and correspond to the same semantics adapted
to our formalism. The complete set of clauses is given in Appendix D.

att′(fail, fail) (Rfail)

For each function h, for each pair of rewrite rules
h(U1, . . . , Un) → U || φ and h(U ′

1, . . . , U
′
n) → U ′ || φ′

in defΣ′(h) (after renaming of variables),
att′(U1, U

′
1) ∧ . . . ∧ att′(Un, U

′
n) ∧ formula(φ ∧ φ′) → att′(U,U ′)

(Rf)

input′(x, x′) ∧msg′(x, z, y′, z′) ∧ formula(x′ 6=Σ y′) → bad (Rcom)
att′(x, fail) → bad (Rfailure)

plus symmetric clauses (Rcom′) and (Rfailure′) obtained from (Rcom) and (Rfailure)
by swapping the first and second arguments of att′ and input′, and the first and third
arguments of msg′.

Clauses (Rf) apply a constructor or a destructor on the attacker’s knowledge, given
the definition of the destructor in defΣ′(h). Since our destructors may return fail, by
combining (Rf) with (Rfailure) or (Rfailure′), we can detect when a destructor succeeds
in one variant of the biprocess and not in the other. We stress that, in clauses (Rfailure)
and (Rcom), x, x′, y, y′ are message variables and so they cannot be instantiated by fail.
(The messages sent on the network and the channels are never fail.)

4.4 Clauses for the Protocol

To translate the protocol into clauses, we first need to define evaluation on open terms,
as a relation D ⇓′

Σ′ (U, σ, φ), where σ collects instantiations of D obtained by unifi-
cation and φ collects the side conditions of destructor applications:

U ⇓′
Σ′ (U, ∅,⊤)

eval h(D1, . . . , Dn) ⇓′
Σ′ (σuV, σuσ

′, σuφ
′ ∧ σuφ)

if (D1, . . . , Dn) ⇓′
Σ′ ((U1, . . . , Un), σ

′, φ′),
h(V1, . . . , Vn) → V || φ ∈ defΣ′(h) and
σu is a most general unifier of (U1, V1), . . . , (Un, Vn)

(D1, . . . , Dn) ⇓′
Σ′ ((σnU1, . . . , σnUn−1, Un), σnσ, σnφ ∧ φn)

if (D1, . . . , Dn−1) ⇓′
Σ′ ((U1, . . . , Un−1), σ, φ) and σDn ⇓′ (Un, σn, φn)

The most general unifier of may-fail messages is computed similarly to the most general
unifier of messages, even though specific cases hold due to may-fail variables and mes-
sage variables: there is no unifier of M and fail, for any message M (including variables

12

x, because these variables can be instantiated only by messages); the most general uni-
fier of u and U is {U/u}; the most general unifier of fail and fail is the identity; finally,
the most general unifier of M and M ′ is computed as usual.

The translation [[P]]ρsH of a biprocess P is a set of clauses, where ρ is an environ-
ment that associates a pair of patterns with each name and variable, s is a sequence of
patterns, and H is a sequence of facts. The empty sequence is written ∅; the concatena-
tion of a pattern p to the sequence s is written s, p; the concatenation of a fact F to the
sequence H is written H ∧ F . Intuitively, H represents the hypothesis of the clauses,
ρ represents the names and variables that are already associated with a pattern, and s
represents the current values of session identifiers and inputs.

When ρ associates a pair of patterns with each name and variable, and f is a
constructor, we extend ρ as a substitution by ρ(f(M1, . . . ,Mn)) = (f(p1, . . . , pn),
f(p′1, . . . , p

′
n)) where ρ(Mi) = (pi, p

′
i) for all i ∈ {1, . . . , n}. We denote by ρ(M)1 and

ρ(M)2 the components of the pair ρ(M). We let ρ(diff[M,M ′]) = (ρ(M)1, ρ(M
′)2).

The definition of [[P]]ρsH is directly inspired from [9]. We only present below the
case [[let x = D in P else Q]]ρsH but the full definition of [[P]]ρsH is given in Ap-
pendix D.

[[let x = D in P else Q]]ρsH =
⋃

{[[P]]((σρ)[x 7→ (p, p′)])(σs, p, p′)(σH ∧ formula(φ))

| (ρ(D)1, ρ(D)2) ⇓′ ((p, p′), σ, φ)}
∪
⋃

{[[Q]](σρ)(σs)(σH ∧ formula(φ)) | (ρ(D)1, ρ(D)2) ⇓′ ((fail, fail), σ, φ)}
∪ {σH ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ⇓′ ((p, fail), σ, φ)}
∪ {σH ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ⇓′ ((fail, p′), σ, φ)}

Comparing with the clauses described in [9], we can recognise the same kind of
generated clauses: when both ρ(D)1 and ρ(D)2 succeed, the process P is translated, in-
stantiating terms with the substitution σ and taking into account the side-condition φ, to
make sure that ρ(D)1 and ρ(D)2 succeed ; when both fail, the process Q is translated ;
and at last when one of ρ(D)1, ρ(D)2 succeeds and the other fails, clauses deriving bad
are generated. Since may-fail variables do not occur in D, we can show by induction
on the computation of ⇓′ that, when (ρ(D)1, ρ(D)2) ⇓′ ((mp1,mp2), σ, φ), mp1 and
mp2 are either fail or a pattern, but cannot be a may-fail variable, so our definition of
[[let x = D in P else Q]]ρsH handles all cases.

4.5 Proving Equivalences

Let ρ0 = {a 7→ (a[], a[]) | a ∈ fn(P0)}. We define the set of clauses that corresponds
to biprocess P0 as:

RP0
= [[P0]]ρ0∅∅ ∪ {(Rfail), . . . , (Rfailure′)}

The following theorem enables us to prove equivalences from these clauses.

Theorem 1. If bad is not a logical consequence of RP0
, then P0 satisfies observational

equivalence.

13

This theorem shows the soundness of the translation. The proof of this theorem is
adapted from the proof of Theorem 3 of [9]. Furthermore, since we use almost the same
patterns and facts as in [9], we also use the algorithm proposed in [9] to automatically
check if bad is a logical consequence of RP0

, with the only change that we use the
unification algorithm for may-fail patterns.

5 Automatic Modification of the Protocol

In this section, we first present the kind of false attack that we want to avoid and then
propose an algorithm to automatically generate, from a biprocess P , equivalent bipro-
cesses on which PROVERIF will avoid this kind of false attack.

5.1 Targeted False Attacks

We present a false attack on the anonymity of the private authentication protocol due
to structural conditional branching.

Example 5. Coming back to the private authentication protocol (see Example 4), we
obtained a biprocess P0 on which we would ask PROVERIF to check the equivalence.
Unfortunately, PROVERIF is unable to prove the equivalence of P0 and yields a false
attack. Indeed, consider the evaluation context C defined as follows:

C
def
= | (νni)c(xska).c(xska′).c(xskb

).c〈aenc(〈ni, xska〉, xskb
)〉

The biprocess C[P0] can be derived as follows:

C[P0]→∗
Σ (νni)(νska)(νska′)(νsk b)(

c〈aenc(〈ni, pk(ska)〉, pk(sk b))〉 | System(diff[ska, ska′], sk b)
)

→∗
Σ (νni)(νska)(νska′)(νsk b)(A(diff[ska, ska′], sk b) |

let z = equals(proj2(〈ni, pk(ska)〉)), pk(diff[ska, ska′])) in
c〈aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′]))〉

else c〈aenc(nb, pk(sk b))〉)

However from this point, the biprocess gets stucked, i.e. no internal reduction rule
is applicable. More specifically, neither the internal rule (Red Fun 1) nor (Red Fun 2)
is applicable. Indeed, if we denote D = equals(proj2(〈ni, ska〉)), pk(diff[ska, ska′])),
we have that snd(D)⇓Σ fail and fst(D)⇓Σ pk(ska), which contradicts the item 2 of
Lemma 2. So PROVERIF cannot prove the equivalence. But, although a different branch
of the let is taken, the process outputs the message aenc(〈nb, 〈na, pk(sk b)〉〉, pk(ska))
in the first variant (in branch of the let) and the message aenc(nb, pk(sk b)) in the second
variant (else branch of the let). Intuitively, these two messages are indistinguishable, so
in fact the attacker will not be able to determine which branch of the let is taken, and
observational equivalence still holds.

In order to avoid the false attacks similar to Example 5, we transform term eval-
uations let x = D in c〈M1〉 else c〈M2〉 into a computation that always succeeds

14

let x = D′ in let m = D′′ in c〈m〉. The term evaluation D′ will correspond to the
value of the evaluation of D when the latter succeeds and a new constant when D fails.
Thus we ensure that D′ never fails. Moreover, the term evaluation D′′ computes either
M1 or M2 depending on the value of D′, i.e. depending on whether D succeeds or not.
The omitted else 0 branches are never taken. Since the same branch is always taken,
the false attack disappears. To do that, we introduce three new destructors catchfail,
letin, notfail and a constant cfail, which rely on the side conditions that we have added
to destructors. These new destructors are defined as follows:

defΣ(catchfail) = defΣ(letin) = defΣ(notfail) =
catchfail(x) → x letin(x, u, v) → u || x 6=Σ cfail notfail(x) → fail
catchfail(fail) → cfail letin(cfail, u, v) → v notfail(fail) → cfail

letin(fail, u, v) → fail

One can easily check that defΣ(catchfail), defΣ(letin) and defΣ(notfail) satisfy Prop-
erties P1 and P2. Intuitively, the destructor catchfail evaluates its argument and re-
turns either the result of this evaluation when it did not fail or else returns the new
constant cfail instead of the failure constant fail. The destructor letin will get the re-
sult of catchfail as first argument and return its third argument if catchfail returned
cfail, and its second argument otherwise. Importantly, catchfail never fails: it returns
cfail instead of fail. Hence, let x = D in c〈M1〉 else c〈M2〉 can be transformed into
let x = eval catchfail(D) in let m = eval letin(x,M1,M2) in c〈m〉: if D succeeds, x
has the same value as before, and x 6= cfail, so letin(x,M1,M2) returns M1; if D fails,
x = cfail and letin(x,M1,M2) returns M2. The destructor notfail inverses the status of
a term evaluation: it fails if and only if its argument does not fail. This destructor will
be used in the next section.

Example 6. Coming back to Example 5, the false attack occurs due to the following
term evaluation:

let z = equals(proj2(x), pk(diff[ska, ska
′])) in

c〈aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′]))〉
else c〈aenc(nb, pk(sk b))〉

We transform this term evaluation as explained above:

let z = letin(catchfail(equals(proj2(x), pk(diff[ska, ska
′]))),M,M ′) in c〈z〉

where M = aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′])), M ′ = aenc(nb, pk(sk b)).
Note that with x = 〈ni, pk(ska)〉 (see Example 5), if D is the term evaluation D =
letin(catchfail(equals(proj2(x), pk(diff[ska, ska

′]))),M,M ′), we obtain that:

– fst(D)⇓ aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(ska))
– snd(D)⇓ aenc(nb, pk(sk b))

which corresponds to what fst(P0) and snd(P0) respectively output. Thanks to this, if
we denote by P ′

0 our new biprocess, we obtain that fst(P0) ≈ fst(P ′
0) and snd(P0) ≈

snd(P ′
0). Furthermore, PROVERIF will be able to prove that the biprocess P ′

0 satisfies
equivalence, i.e. fst(P ′

0) ≈ snd(P ′
0) and so fst(P0) ≈ snd(P0).

15

The transformation proposed in the previous example can be generalised to term
evaluations that perform other actions than just a single output. However, it is possible
only if the success branch and the failure branch of the term evaluation both input and
output the same number of terms. For example, the biprocess let x = D in c〈M〉.c〈M ′〉
else c〈N〉 cannot be modified into a biprocess without else branch even with our new
destructors. On the other hand, the success or failure of D can really be observed by
the adversary, by tracking the number of outputs on the channel c, so the failure of the
proof of equivalence corresponds to a real attack in this case.

5.2 Merging and Simplifying Biprocesses

To automatically detect and apply this transformation, we define two functions, denoted
merge and simpl , defined respectively in Fig. 4 and 5. The function merge is partial
whereas simpl is total. Intuitively, the function merge takes two biprocesses as argu-
ments and detects if those two biprocesses can be merged into one biprocess. Further-
more, if the merging is possible, it returns the merged biprocess. This merged biprocess
is expressed using a new operator diff ′, similar to diff, in such a way that diff ′[D,D′]
is a term evaluation. We introduce the functions fst′ and snd′: fst′(P) (resp. snd′(P))
replaces each diff ′[D,D′] with D (resp. D′) in P .

Case (Mout) detects that both biprocesses output a message while case (Min) detects
that both biprocesses input a message. We introduce a let for the channels and messages
so that they can later be replaced by a term evaluation. Case (Mpar) uses the commu-
tativity and associativity of parallel composition to increase the chances of success of
merge . Cases (Mres) and (Mres′) use Q ≈ (νa)Q when a /∈ fn(Q) to allow merging
processes even when a restriction occurs only on one side. Case (Mrepl2) is the basic
merging of replicated processes, while Case (Mrepl1) allows merging ! !P with !P ′

(case n = 0) because !P ≈ ! !P , and furthermore allows restrictions between the two
replications, using Q ≈ (νa)Q. Case (Mlet1) merges two processes that both contain
term evaluations, by merging their success branches together and their failure branches
together. On the other hand, Cases (Mlet2), (Mlet2′) also merge two processes that con-
tain term evaluations, by merging the success branch of one process with the failure
branch of the other process. Cases (Mlet3), (Mlet3′), (Mlet4), (Mlet4′) allow merging a
term evaluation with another process P ′, by merging P ′ with either the success branch
or the failure branch of the term evaluation. This merging is useful when PROVERIF
can prove that the resulting process satisfies equivalence, hence when both sides of the
obtained let succeed simultaneously. Therefore, rule (Mlet3) is helpful when the term
evaluation D always succeeds, and rule (Mlet4) when D always fails. When no such
case applies, merging fails.

The function simpl takes one biprocess as argument and tries to simplify the sub-
processes let x = D in P else Q when P and Q can be merged. The only interesting
case is (Smerge), which performs the transformation of term evaluations outlined above,
when we can merge the success and failure branches. Q′{eval letin(x,D1,D2)/diff′[D1,D2]}
means that we replace in Q′ every instance of diff ′[D1, D2], for some D1, D2, with
eval letin(x,D1, D2).

Note that both functions are non-deterministic; the implementation may try all pos-
sibilities. In the current implementation of PROVERIF, we apply the rules (Mlet3)

16

merge(0, 0)
def
= 0 (Mnil)

merge(M〈N〉.P,M ′〈N ′〉.P ′)
def
=

let x = diff′[M,M ′] in let x′ = diff′[N,N ′] in x〈x′〉.merge(P, P ′)

where x and x′ are fresh variables

(Mout)

merge(M(x).P,M ′(x′).P ′)
def
=

let y = diff′[M,M ′] in y(y′).merge(P{y′
/x}, P ′{y′

/x′})
where y and y′ are fresh variables

(Min)

merge(P1 | . . . | Pn, P
′
1, | . . . | P ′

n)
def
= Q1 | . . . | Q′

n

if (i1, . . . , in) is a permutation of (1, . . . , n)

and for all k ∈ {1, . . . , n}, Qk = merge(Pk, P
′
ik)

(Mpar)

merge(νa.P,Q)
def
= νa.merge(P,Q)

after renaming a such that a 6∈ fn(Q)
(Mres)

merge(! (νa1) . . . (νan)!P, !P
′)

def
= ! (νa1) . . . (νan)merge(!P, !P ′)

after renaming a1, . . . , an such that a1, . . . , an 6∈ fn(P ′)
(Mrepl1)

merge(!P, !P ′)
def
= !merge(P, P ′)

if there is no P1 such that P = !P1 and no P ′
1 such that P ′ = !P ′

1

(Mrepl2)

merge(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2)

def
=

let y = diff′[D,D′] in Q1 else Q2 if y is a fresh variable,

Q1 = merge(P1{y/x}, P ′
1{y/x′}), and Q2 = merge(P2, P

′
2)

(Mlet1)

merge(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2)

def
=

let y = diff′[D, notfail(D′)] in Q1 else Q2 if y is a fresh variable,

x′ 6∈ fv(P ′
1), Q1 = merge(P1{y/x}, P ′

2), and Q2 = merge(P2, P
′
1)

(Mlet2)

merge(let x = D in P1 else P2, P
′)

def
= let y = diff′[D, cfail] in Q else P2

if y is a fresh variable and Q = merge(P1{y/x}, P ′)
(Mlet3)

merge(let x = D in P1 else P2, P
′)

def
= let y = diff′[D, fail] in P1{y/x} else Q

if y is a fresh variable and Q = merge(P2, P
′)

(Mlet4)

plus symmetric cases (Mres′), (Mrepl1′), (Mlet2′), (Mlet3′), and (Mlet4′) obtained from (Mres),
(Mrepl1), (Mlet2), (Mlet3), and (Mlet4) by swapping the first and second arguments of merge
and diff′.

Fig. 4. Definition of the function merge

17

simpl(0)
def
= 0 (Snil)

simpl(M〈N〉.P)
def
= M〈N〉.simpl(P) (Sout)

simpl(M(x).P)
def
= M(x).simpl(P) (Sin)

simpl(P | Q)
def
= simpl(P) | simpl(Q) (Smid)

simpl((νa)P)
def
= νa.simpl(P) (Sres)

simpl(!P)
def
= ! simpl(P) (Srepl)

simpl(let x = D in P else P ′)
def
= let x = eval catchfail(D) in Q else 0

if Q′ = merge(simpl(P), simpl(P ′)) and

Q = Q′{eval letin(x,D1,D2)/diff′[D1,D2]}
(Smerge)

simpl(let x = D in P else P ′)
def
= let x = D in simpl(P) else simpl(P ′)

if there is no Q such that Q = merge(simpl(P), simpl(P ′))
(Slet)

Fig. 5. Definition of the function simpl

and (Mlet4) only if the rules (Mlet1) and (Mlet2) are not applicable. Moreover, we
never merge 0 with a process different from 0. This last restriction is crucial to reduce
the number of biprocesses returned by the functions merge and simpl . Typically, we
avoid that 0 and let x = M in P else 0 are merged by the rule (Mlet4).

5.3 Results

Lemmas 3 and 4 below show how the observational equivalence is preserved by the
functions merge and simpl . In these two lemmas, we consider biprocesses P and P ′

that are not necessarily closed. We say that a context C is closing for P when C[P]
is closed. Moreover, given two biprocesses P and Q, we say that P ≈ Q if, and only
if, fst(P) ≈ fst(Q) and snd(P) ≈ snd(Q). All results of this section are proved in
Appendix E.

Lemma 3 (merge). Let P and P ′ be two biprocesses. If merge(P, P ′) = Q, then:

– for all contexts C closing for P , C[P] ≈ C[fst′(Q)];
– for all contexts C closing for P ′, C[P ′] ≈ C[snd′(Q)].

Lemma 4 (simplify). Let P be a biprocess. For all contexts C closing for P ,

C[P] ≈ C[simpl(P)]

From the two previous lemmas, we can derive the two main results of this section.

Theorem 2. Let P be a closed biprocess. If simpl(P) satisfies observational equiva-
lence then fst(P) ≈ snd(P).

18

From Theorem 2, we can extract our new algorithm. Given a biprocess P as in-
put, we first apply the function simpl on P . Since the function simpl is total but non-
deterministic, we may have several biprocesses as result for simpl(P). If PROVERIF
is able to prove equivalence on at least one of them, then we conclude that fst(P) ≈
snd(P).

Theorem 3. Let P and P ′ be two closed processes that do no contain terms with diff.
Let Q = merge(simpl(P), simpl(P ′)). If the biprocess Q{diff[D,D′]/diff′[D,D′]} satis-
fies observational equivalence, then P ≈ P ′.

The previous version PROVERIF can only take a biprocess as input. However, trans-
forming two processes into a biprocess is usually not as easy as in the private authen-
tication protocol example. Thanks to Theorem 3, we are able to automate this transfor-
mation.

6 Conclusion

In the present paper, we have extended the framework of PROVERIF by allowing the
destructors to be modelled by rewrite rules with inequalities as side-conditions. We have
proposed a procedure relying on these new rewrite rules to automatically transform a
biprocess into equivalent biprocesses on which PROVERIF avoids the possible false
attacks due to conditional branchings.

A beta version of PROVERIF including our extension is available at http://
proverif.inria.fr. Experimentation showed that the automatic transformation
of a biprocess is efficient and returns few biprocesses in practice. In particular, our ex-
tension can automatically prove the anonymity of the private authentication protocol
for an unbounded number of sessions (following the definition of anonymity of [5]).

However, PROVERIF still unable to prove the unlinkability of the English e-passport
protocol [5] even though we managed to avoid some previously existing false attacks.
This a consequence of the matching by PROVERIF of traces with the same scheduling in
the two variants of the biprocesses. Thus we would like to relax a little bit the matching
of traces, e.g. by modifying the replication identifiers on the left and right parts of
biprocesses. This would allow us to prove even more equivalences with PROVERIF and
in particular the e-passport protocol.

Another direction for future research would be to define equations with inequalities
as side-conditions. It may be possible to convert such equations into rewrite rules with
side-conditions, like we convert equations into rewrite rules.

Acknowledgments This work has been partially supported by the ANR project PROSE
(decision ANR 2010-VERS-004) and JCJC VIP no 11 JS02 006 01, as well as the grant
DIGITEO API from Région Île-de-France. It was partly done while the authors were at
Ecole Normale Supérieure, Paris.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL’01.
pp. 104–115. ACM, New York (2001)

19

2. Abadi, M., Fournet, C.: Private authentication. Theoretical Computer Science 322(3), 427–
476 (2004)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Infor-
mation and Computation 148(1), 1–70 (1999)

4. Arapinis, M., Cheval, V., Delaune, S.: Verifying privacy-type properties in a modular way.
In: CSF’12. pp. 95–109. IEEE Computer Society Press, Los Alamitos (2012)

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using
the applied pi calculus. In: CSF’10. pp. 107–121. IEEE Computer Society Press (2010)

6. Armando, A., et al.: The AVISPA tool for automated validation of Internet security protocols
and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV’05. LNCS, vol. 3576, pp.
281–285. Springer, Heidelberg (2005)

7. Baudet, M.: Sécurité des protocoles cryptographiques: aspects logiques et calculatoires.
Ph.D. thesis, Ecole Normale Supérieure de Cachan (2007)

8. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: CSFW-
14. pp. 82–96. IEEE, Los Alamitos (2001)

9. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for
security protocols. Journal of Logic and Algebraic Programming 75(1), 3–51 (2008)

10. Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus. In: Gard-
ner, P., Yoshida, N. (eds.) CONCUR’04. LNCS, vol. 3170, pp. 161–176. Springer, Heidel-
berg (2004)

11. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: Negative tests and
non-determinism. In: CCS’11. pp. 321–330. ACM, New York (2011)

12. Ciobâcă, Ş.: Automated Verification of Security Protocols with Applications to Electronic
Voting. Ph.D. thesis, Laboratoire Spécification et Vérification, ENS Cachan, France (2011)

13. Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of some algebraic
properties. In: Giesl, J. (ed.) RTA’05. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg
(2005)

14. Cremers, C.J.F.: Scyther - Semantics and Verification of Security Protocols. Ph.D. thesis,
Eindhoven University of Technology (2006)

15. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic bisimulation for the applied pi-calculus. In:
Arvind, V., Prasad, S. (eds.) FSTTCS’07. LNCS, vol. 4855, pp. 133–145. Springer, Heidel-
berg (2007)

16. Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification of spi cal-
culus specifications. ACM TOSEM 12(2), 222–284 (2003)

17. Hüttel, H.: Deciding framed bisimilarity. In: INFINITY’02. pp. 1–20 (2002)
18. Liu, J., Lin, H.: A complete symbolic bisimulation for full applied pi calculus. In: van

Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM’10. LNCS,
vol. 5901, pp. 552–563. Springer, Heidelberg (2010)

19. Nicola, R.D., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Sci-
ence 34, 83–133 (1984)

20. Ramanujam, R., Suresh, S.: Tagging makes secrecy decidable with unbounded nonces as
well. In: Pandya, P., Radhakrishnan, J. (eds.) FSTTCS’03. LNCS, vol. 2914, pp. 363–374.
Springer, Heidelberg (2003)

21. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is NP-
complete. Theoretical Computer Science 299(1–3), 451–475 (2003)

22. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, B.: The Modelling and Analysis
of Security Protocols. Addison Wesley (2000)

23. Tiu, A., Dawson, J.E.: Automating open bisimulation checking for the spi calculus. In:
CSF’10. pp. 307–321. IEEE Computer Society Press (2010)

20

Appendix

A Properties of Destructors

Lemma 1. Consider a signature Σ. Let g be a destructor of arity n described by the set
of rewrite rules S = {g(M i

1, . . . ,M
i
n) → M i | i = 1, . . . ,m}. Assume that g is deter-

ministic, i.e. S satisfies Property P2. The following set defΣ(g) satisfies Properties P1
and P2:

defΣ(g) = S ∪ {g(x1, . . . , xn) → fail || φ}
∪{g(u1, . . . , uk−1, fail, uk+1, . . . , un) → fail | k = 1, . . . , n}

where φ =
∧m

i=1 ∀ỹi.(x1, . . . , xn) 6=Σ (M i
1, . . . ,M

i
n) and ỹi are the variables of (M i

1,
. . . ,M i

n), and x1, . . . , xn are message variables.

Proof. Let U1, . . . , Un be ground may-fail messages. Consider first the case where there
exists i ∈ {1, . . . , n} such that Ui =Σ fail. Since x1, . . . , xn are message variables and
for all i ∈ {1, . . . ,m}, for all j ∈ {1, . . . , n}, M i

j is a message, the only rules that can
rewrite U1, . . . , Un are {g(u1, . . . , uk−1, fail, uk+1, . . . , un) → fail | k = 1, . . . , n}.
Moreover, let σ be the substitution such that σuj = Uj for all j 6= i. We trivially have
that σuj =Σ Uj and by hypothesis Ui =Σ fail. Thus, g(U1, . . . , Un) → fail and there
is no message M such that g(U1, . . . , Un) → M .

Consider now the case where U1, . . . , Un are all messages, that we rename M1, . . . ,
Mn. Thus, M1, . . . ,Mn can only be rewriten by the rules in S ∪ {g(x1, . . . , xn) →
fail || φ}. Let i ∈ {1, . . . ,m}. By definition, we have that M1, . . . ,Mn is rewritten
by the rule g(M i

1, . . . ,M
i
n) → M i if, and only if, there exists a substitution σ such

that σ � ∃ỹi.(x1, . . . , xn) =Σ (M i
1, . . . ,M

i
n) and σxj = Mj for j = 1 . . . n where

ỹi = fv(M i
1, . . . ,M

i
n). Hence, M1, . . . ,Mn can be rewritten by one of the rules in

S if, and only if, there exists a substitution σ such that σ � ¬φ. On the other hand,
M1, . . . ,Mn can be rewritten by g(x1, . . . , xn) → fail || φ if, and only if, σ � φ.
Hence we deduce that defΣ(g) satisfies Property P1. Moreover, since M i is a message
for all i = 1 . . .m, and there is no substitution σ such that σ � φ ∧ ¬φ, we deduce that
defΣ(g) satisfies Property P2. ⊓⊔

B Equivalence Proofs

This section is devoted to the proof of Lemma 2 which is the equivalent in our frame-
work of [9, Corollary 1]. We first show a preliminary result on term evaluations:

Lemma 5. Consider a signature Σ. For all ground term evaluations D,

– there exists a ground may-fail message U such that D ⇓Σ U .
– for all ground may-fail messages U1, U2, if D ⇓Σ U1 and D ⇓Σ U2 then U1 =Σ U2.

Proof. We prove this result by induction on D:

Case D = U : In such a case, we have that D ⇓Σ U hence the result trivially holds.

21

Case D = eval g(D1, . . . , Dn): By inductive hypothesis, there exist U1, . . . , Un

ground may-fail messages such that Di ⇓Σ Ui for all i = 1 . . . n. By Property P1,
we know that there exists g(U ′

1, . . . , U
′
n) → U ′ || φ in defΣ(g) and a substitution

σ such that σU ′
i =Σ Ui for i = 1 . . . n and σ � φ hence D ⇓Σ U ′σ. Moreover, since

fv(U ′) ⊆ fv(U ′
1, . . . , U

′
n), we deduce that σU ′ is ground. Thus the first item is satisfied.

Let V1, V2 two may-fail messages such that D ⇓Σ V1 and D ⇓Σ V2. D ⇓Σ V1 im-
plies that there exist U1, . . . , Un ground may-fail messages such that Di ⇓Σ Ui for
all i = 1 . . . n and g(U1, . . . , Un) → V1. Similarly, D ⇓Σ V2 implies that there ex-
ist W1, . . . ,Wn ground fail-messages such that Di ⇓Σ Wi for all i = 1 . . . n and
g(W1, . . . ,Wn) → V2. By our inductive hypothesis, we deduce that Wi =Σ Ui for
all i = 1 . . . n. Hence, by definition of the reduction of may-fail messages by a destruc-
tor, we deduce that g(U1, . . . , Un) → V2. But defΣ(g) satisfies Property P2, thus we
conclude that V1 =Σ V2. ⊓⊔

The previous lemma indicates that the properties P1 and P2 of destructors can be
extended to term evaluation.

We say that a biprocess P is uniform when fst(P) → Q1 implies that P → Q for
some biprocess Q with fst(Q) ≡ Q1, and symmetrically for snd(P) → Q2. We can
now prove Lemma 2, relying on [9, Theorem 1].

Lemma 2. Let P0 be a closed biprocess. Suppose that, for all plain evaluation contexts
C, all evaluation contexts C ′, and all reductions C[P0] →∗ P ,

1. if P ≡ C ′[N〈M〉.Q | N ′(x).R] then fst(N) =Σ fst(N ′) if and only if snd(N) =Σ

snd(N ′);
2. if P ≡ C ′[let x = D in Q else R] then fst(D)⇓Σ fail if and only if snd(D)⇓Σ fail.

Then P0 satisfies observational equivalence.

Proof. We show that P is uniform, then we conclude by [9, Theorem 1]. Let us show
that, if fst(P) → P ′

1 then there exists a biprocess P ′ such that P → P ′ and fst(P ′) ≡
P ′
1. The case for snd(P) → P ′

2 is symmetric.
By induction on the derivation of fst(P) → P ′

1, we first show that there exist C,
Q, and Q′

1 such that P ≡ C[Q], P ′
1 ≡ fst(C)[Q′

1], and fst(Q) → Q′
1 using one of the

four process rules (Red I/O), (Red Fun 1), (Red Fun 2), or (Red Repl): every step in this
derivation trivially commutes with fst, except for structural steps that involve a parallel
composition and a restriction, in case a ∈ fn(P) but a /∈ fn(fst(P)). In that case, we
use a preliminary renaming from a to some fresh a′ /∈ fn(P).

For each of these four rules, relying on a hypothesis of Lemma 2, we find Q′ such
that fst(Q′) = Q′

1 and Q → Q′ using the corresponding biprocess rule:

(Red I/O): We have Q = N〈M〉.R | N ′(x).R′ with ⊢ fst(N) =Σ fst(N ′) and Q′
1 =

fst(R) | fst(R′){fst(M)/x}. For Q′ = R | R′{M/x}, we have fst(Q′) = Q′
1 and,

by hypothesis 1, snd(N) =Σ snd(N ′), hence Q → Q′.
(Red Fun 1): We have Q = let x = D in R else R′ with fst(D)⇓Σ M1 and Q′

1 =
fst(R){M1/x}. By hypothesis 2 and Lemma 5, snd(D)⇓Σ M2 for some M2. We
take Q′ = R{diff[M1,M2]/x}, so that fst(Q′) = Q′

1 and Q → Q′.

22

(Red Fun 2): We have Q = let x = D in R else R′ with fst(D)⇓Σ fail and Q′
1 =

fst(R′). By hypothesis 2, snd(D)⇓Σ fail. We obtain Q → Q′ for Q′ = R′.
(Red Repl): We have Q =!R and Q′

1 = fst(R) |! fst(R). We take Q′ = R | !R, so
that fst(Q′) = Q′

1 and Q → Q′.

To conclude, we take the biprocess P ′ = C[Q′] and the reduction P → P ′. ⊓⊔

C From Equational Theories to Rewrite Rules

In this section, we explain in detail our we adapted the algorithm from [9] for generating
a signature Σ′ with the empty equational theory that models a signature Σ with an
equational theory

We consider an auxiliary rewriting system on terms, S , that defines partial normal
forms. The rules of S do not contain names and do not have a single variable on the
left-hand side. We say that a term is irreducible by S when none of the rewrite rules of
S applies to it; we say that the set of terms M is in normal form relatively to S and
Σ, and write nfS,Σ(M), if and only if all terms of M are irreducible by S and, for all
subterms N1 and N2 of terms of M, if N1 =Σ N2 then N1 = N2. Typically, while a
term might have several partial normal forms, any equal (sub)terms in M modulo the
equational theory are in the same normal form in nfS,Σ(M). We extend the definition
of nfS,Σ(·) to sets of processes: nfS,Σ(P) if and only if the set of terms that appear in
processes in P is in normal form. At last, we define addeval(U1, . . . , Un) as the tuple
of term evaluation obtained by adding eval before each function symbol of U1, . . . , Un.

Definition 3. Let Σ and Σ′ be two signature on the same function symbols. We say that
Σ′ models Σ if and only if

1. The equational theory of Σ′ is syntactic equality: M =Σ′ N if and only if M = N .
2. The constructors of Σ′ are the constructors of Σ; their definition defΣ′(f) con-

tains the rule f(x1, . . . , xn) → f(x1, . . . , xn), the rewrite rules corresponding to
possible failure, i.e. for all i ∈ {1 . . . n}, f(u1, . . . , ui−1, fail, ui+1, . . . , un) → fail,
and perhaps other rules such that there exists a rewriting system S on terms that
satisfies the following properties:

S1. If M → N is in S , then M =Σ N .
S2. If nfS,Σ(M), then for any term M there exists M ′ such that M ′ =Σ M and

nfS,Σ(M∪ {M ′}).
S3. If f(N1, . . . , Nn) → N || φ is in defΣ′(f), then f(N1, . . . , Nn) =Σ N and

φ = ⊤
S4. If f(M1, . . . ,Mn) =Σ M and nfS,Σ({M1, . . . ,Mn,M}), then there exist σ

and f(N1, . . . , Nn) → N in defΣ′(f) such that M = σN and Mi = σNi for
all i ∈ {1, . . . , n}.

3. The destructors of Σ′ are the destructors of Σ, with a rule g(U ′
1, . . . , U

′
n) →

U ′ || σφ ∧ φ′ in defΣ′(g) for each g(U1, . . . , Un) → U || φ in defΣ(g) and
each addeval(U1, . . . , Un, U) ⇓′

Σ′ ((U ′
1, . . . , U

′
n, U

′), σ, φ′).

23

Stress that, in Item 3, since U1, . . . , Un do not contain any destructor and the side
conditions of constructors are always ⊤, φ′ is necessarily ⊤.

Note that, in Σ′, the side conditions of destructors still rely on the equational theory
of Σ. Moreover, even if the semantics of the function symbols of Σ′ are all defined by
rewrite rules, we still consider the constructors of Σ as the constructors in Σ′.

Example 7. Consider the signature Σ that has the constructors senc and sdec with the
equations

sdec(senc(x, y), y) = x senc(sdec(x, y), y) = x

In Σ′, we adopt the rewrite rules:

sdec(x, y) → sdec(x, y) senc(x, y) → senc(x, y)
sdec(senc(x, y), y) → x senc(sdec(x, y), y) → x
sdec(fail, u) → fail senc(fail, u) → fail
sdec(u, fail) → fail senc(u, fail) → fail

We have that Σ′ models Σ for the rewriting system S with rules sdec(senc(x, y), y) →
x and senc(sdec(x, y), y) → x, and a single normal form for every term.

D Clauses for the Protocol and the Attacker

This section describes the complete set of clauses for the protocol and the attacker. In
particular, the following clauses represent the capabilities of the attacker:

For each a ∈ fn(P0), att′(a[], a[]) (Rinit)
For some b that does not occur in P0, att′(b[x], b[x]) (Rn)
att′(fail, fail) (Rfail)

For each function h, for each pair of rewrite rules
h(U1, . . . , Un) → U || φ and h(U ′

1, . . . , U
′
n) → U ′ || φ′

in defΣ′(h) (after renaming of variables),
att′(U1, U

′
1) ∧ . . . ∧ att′(Un, U

′
n) ∧ formula(φ ∧ φ′) → att′(U,U ′)

(Rf)

msg′(x, y, x′, y′) ∧ att′(x, x′) → att′(y, y′) (Rl)
att′(x, x′) ∧ att′(y, y′) → msg′(x, y, x′, y′) (Rs)
att′(x, x′)∧ → input′(x, x′) (Ri)
input′(x, x′) ∧msg′(x, z, y′, z′) ∧ formula(x′ 6=Σ y′) → bad (Rcom)
att′(x, fail) → bad (Rfailure)

plus symmetric clauses (Rcom′) and (Rfailure′) obtained from (Rcom) and (Rfailure)
by swapping the first and second arguments of att′ and input′, and the first and third
arguments of msg′.

The clauses modelling the behaviour of the biprocess are generated by the trans-
lation [[P]]ρsH of a biprocess P , where ρ is an environment that associates a pair of

24

patterns with each name and variable, s is a sequence of patterns, and H is a sequence
of facts. [[P]]ρsH is defined as follows:

[[0]]ρsH = ∅
[[!P]]ρsH = [[P]]ρ(s, i)H,where i is a fresh variable

[[P | Q]]ρsH = [[P]]ρsH ∪ [[Q]]ρsH

[[(νa)P]]ρsH = [[P]](ρ[a 7→ (a[s], a[s])])sH

[[M(x).P]]ρsH =

[[P]](ρ[x 7→ (x′, x′′)])(s, x′, x′′)(H ∧msg′(ρ(M)1, x
′, ρ(M)2, x

′′))

∪ {H → input′(ρ(M)1, ρ(M)2)}
where x′ and x′′ are fresh variables

[[M〈N〉.P]]ρsH = [[P]]ρsH ∪ {H → msg′(ρ(M)1, ρ(N)1, ρ(M)2, ρ(N)2)}
[[let x = D in P else Q]]ρsH =

⋃
{[[P]]((σρ)[x 7→ (p, p′)])(σs, p, p′)(σH ∧ formula(φ))

| (ρ(D)1, ρ(D)2) ⇓′ ((p, p′), σ, φ)}
∪
⋃

{[[Q]](σρ)(σs)(σH ∧ formula(φ)) | (ρ(D)1, ρ(D)2) ⇓′ ((fail, fail), σ, φ)}
∪ {σH ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ⇓′ ((p, fail), σ, φ)}
∪ {σH ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ⇓′ ((fail, p′), σ, φ)}

E Proof of the Automatic Simplification

This appendix provides the proofs of the results announced in Section 5.

E.1 Preliminary Lemmas

Lemma 6. Let P , Q be processes. Suppose that, for all substitutions σ closing for P
and Q, σP ≈ σQ. Then, for all contexts C closing for P and Q, C[P] ≈ C[Q].

Proof. This lemma is fairly standard in process calculi. For example, [3, Appendix C.3]
shows a similar result for the spi calculus. We give a proof for our calculus.

We rely on Definition 1, and use a relation R defined by P0 R P ′
0 if and only if

P0 ≈ C ′[P1, . . . , Pn] and P ′
0 ≈ C ′[P ′

1, . . . , P
′
n]

for some context C ′ such that no hole of C ′ is in evaluation position and for i =
1, . . . , n, for all substitutions σ closing for Pi and P ′

i , σPi ≈ σP ′
i .

We have that, for contexts C closing for P and Q, C[P] R C[Q]. Indeed, if the hole
of C is not in evaluation position, C[P] ≈ C[P], C[Q] ≈ C[Q], and for all substitutions
σ closing for P and Q, σP ≈ σQ. If the hole of C is in evaluation position, P and Q
are closed, so P ≈ Q by hypothesis, hence C[P] ≈ C[Q], so letting P0 = C[P] and

25

P ′
0 = C ′ = C[Q] (C ′ is a context with no hole), we have P0 ≈ C ′, P ′

0 ≈ C ′, hence
C[P] R C[Q].

We show that R satisfies the three conditions of Definition 1. Moreover R is sym-
metric, so we can then conclude that R⊆≈, which implies the desired equivalence.

Condition 3 of Definition 1: Suppose P0 R P ′
0, and let C be an evaluation context.

P0 R P ′
0 implies that there exists a context C ′, some processes P1, . . . , Pn, P

′
1, . . . , P

′
n

such that P0 ≈ C ′[P1, . . . , Pn] and P ′
0 ≈ C ′[P ′

1, . . . , P
′
n]. Hence, we have C[P0] ≈

C[C ′[P1, . . . , Pn]] and C[P ′
0] ≈ C[C ′[P ′

1, . . . , P
′
n]] by Condition 3 of Definition 1.

Since no hole of C ′ is in evaluation position, then no hole of C[C ′] is also in evaluation
position. Hence, we deduce that C[P0] R C[P ′

0].

Condition 2 of Definition 1: We first show that, if C ′[P1, . . . , Pn] ≡ Q0 where C ′ is
any context such that no hole of C ′ is in evaluation position, then C ′[P ′

1, . . . , P
′
n] ≡

C ′′[P ′
1, . . . , P

′
n] and Q0 = C ′′[P1, . . . , Pn] for some context C ′′ such that no hole

of C ′′ is in evaluation position. The proof is done by induction on the derivation of
C ′[P1, . . . , Pn] ≡ Q0.

Next, we show that, if C ′[P1, . . . , Pn] → Q0 where C ′ is any context such that
no hole of C ′ is in evaluation position, and for i = 1, . . . , n, for all substitutions σ
closing for Pi and P ′

i , σPi ≈ σP ′
i , then C ′[P ′

1, . . . , P
′
n] → Q′

0 ≈ C ′′[Q′
1, . . . , Q

′
n′]

and Q0 = C ′′[Q1, . . . , Qn′] for some context C ′′ and processes Q′
0, Q′

1, . . . , Q′
n′ such

that no hole of C ′′ is in evaluation position and for i = 1, . . . , n′, for all substitutions σ
closing for Qi and Q′

i, σQi ≈ σQ′
i. The proof is done by induction on the derivation of

C ′[P1, . . . , Pn] → Q0.

– Case (Red I/O): We have C ′[P1, . . . , Pn] = N〈M〉.Q | N ′(x).P → Q0 = Q |
P{M/x} with N =Σ N ′. Since no hole of C ′ is in evaluation position, we have
Q = C1[Pi(i ∈ S)], P = C2[Pi(i /∈ S)] for some contexts C1, C2 and some subset
S of {1, . . . , n}, and C ′[P ′

1, . . . , P
′
n] = N〈M〉.C1[P

′
i (i ∈ S)] | N ′(x).C2[Pi(i /∈

S)] → C1[P
′
i (i ∈ S)] | C2[P

′
i (i /∈ S)]{M/x}. We let Qi and Q′

i be the pro-
cesses Pi and P ′

i for i ∈ S and Pi{M/x} and P ′
i{M/x} for i /∈ S, such that

the corresponding hole of C1 or C2 is not in evaluation position. We have for all
substitutions σ closing for Qi and Q′

i, σQi ≈ σQ′
i, since that property is pre-

served by instantiation. We let C ′′ = C1[Pi(i ∈ S, in evaluation position)][] |
C2{M/x}[Pi{M/x}(i /∈ S, in evaluation position)][] where only the holes not in
evaluation position remain. We let Q′

0 = C1[P
′
i (i ∈ S)] | C2[P

′
i (i /∈ S)]{M/x}.

We have Q0 = C ′′[Q1, . . . , Qn′] and C ′[P ′
1, . . . , P

′
n] → Q′

0 ≈ C ′′[Q′
1, . . . , Q

′
n′].

– Case (Red Fun 1): As in the case (Red I/O), the holes in the in branch are instan-
tiated. The holes in the else branch disappear. The holes that become in evaluation
position are handled as in (Red I/O).

– Case (Red Fun 2): The holes in the in branch disappear. The holes that become in
evaluation position are handled as in (Red I/O).

– Case (Red Repl): The holes are duplicated.
– Cases (Red Par) and (Red Res): these cases follow immediately from the induction

hypothesis.
– Case (Red ≡): we use the property shown above for ≡ and the induction hypothesis.

26

Suppose that P0 →∗ Q0 and P0 R P ′
0. We have P0 ≈ C ′[P1, . . . , Pn] and P ′

0 ≈
C ′[P ′

1, . . . , P
′
n] for some context C ′ and processes P1, . . . , Pn, P ′

1, . . . , P
′
n such that no

hole of C ′ is in evaluation position and for i = 1, . . . , n, for all substitutions σ closing
for Pi and P ′

i , σPi ≈ σP ′
i . By Condition 2 of Definition 1, C ′[P1, . . . , Pn] →∗ Q′′

0

and Q0 ≈ Q′′
0 for some Q′′

0 . By the property above, C ′[P ′
1, . . . , P

′
n](→≈)∗C ′′[Q′

1,
. . . , Q′

n′] and Q′′
0 = C ′′[Q1, . . . , Qn′] for some context C ′′ and processes Q′

1, . . . ,
Q′

n′ such that no hole of C ′′ is in evaluation position and for i = 1, . . . , n′, for all
substitutions σ closing for Qi and Q′

i, σQi ≈ σQ′
i. By Condition 2 of Definition 1

again, P ′
0 →∗ Q′

0 and C ′′[Q′
1, . . . , Q

′
n′] ≈ Q′

0 for some Q′
0. Hence Q0 ≈ C ′′[Q1, . . . ,

Qn′] and Q′
0 ≈ C ′′[Q′

1, . . . , Q
′
n′], so Q0 R Q′

0.

Condition 1 of Definition 1: Let P ↓0M if and only if P = C[M ′〈N〉.R] for some
evaluation context C that does not bind fn(M) and M =Σ M ′. We first notice that,
if C ′[P1, . . . , Pn] ↓0M where no hole of C ′ is in evaluation position, then we have
C ′[P ′

1, . . . , P
′
n] ↓0M , since the difference between C ′[P1, . . . , Pn] and C ′[P ′

1, . . . , P
′
n]

is only is non-evaluation positions.
Suppose that P0 ↓M and P0 R P ′

0. We have P0 ≈ C ′[P1, . . . , Pn] and P ′
0 ≈ C ′[P ′

1,
. . . , P ′

n] for some context C ′ and processes P1, . . . , Pn, P ′
1, . . . , P

′
n such that no hole

of C ′ is in evaluation position and for i = 1, . . . , n, for all substitutions σ closing for
Pi and P ′

i , σPi ≈ σP ′
i . By Condition 1 of Definition 1, C ′[P1, . . . , Pn] ↓M , that is,

C ′[P1, . . . , Pn] →∗ ↓0M . By the properties proved regarding Condition 2, C ′[P ′
1, . . . ,

P ′
n](→≈)∗C ′′[Q′

1, . . . , Q
′
n′] and C ′′[Q1, . . . , Qn′] ↓0M for some context C ′′ and pro-

cesses Q′
1, . . . , Q

′
n′ such that no hole of C ′′ is in evaluation position. Hence C ′′[Q′

1,
. . . , Q′

n′] ↓0M , so by Conditions 1 and 2 of Definition 1, C ′[P ′
1, . . . , P

′
n] ↓M . Since

C ′[P ′
1, . . . , P

′
n] ≈ P ′

0, we conclude that P ′
0 ↓M . ⊓⊔

Relying on the previous lemma, we now show that the transformations on the pro-
cesses, applied by the functions merge and simpl , preserve observational equivalence.

Lemma 7. Let P,Q,R be processes. Let a be a name, x a variable, M a term, and D
a term evaluation. We have that:

1. If a /∈ fn(P), then for all contexts C closing for P , C[P] ≈ C[(νa)P].
2. For all contexts C closing for !P , C[!P] ≈ C[! !P].
3. For all contexts C closing for P{M/x}, C[P{M/x}] ≈ C[let x = M in P elseQ].
4. For all contexts C closing for P , C[P] ≈ C[let x = fail in Q else P].
5. For all contexts C closing for P0 = let x = D in fst′(P) else snd′(P), C[P0] ≈

C[let x = eval catchfail(D) in P{eval letin(x,D1,D2)/diff′[D1,D2]} else 0].
6. For all contexts C closing for P | Q, C[P | Q] ≈ C[Q | P].

For all contexts C closing for (P | Q) | R, C[(P | Q) | R] ≈ C[P | (Q | R)].
7. If x 6∈ fv(P) ∪ fv(Q) then for all contexts C closing for let x = D in P else Q,

C[let x = D in P else Q] ≈ C[let x = notfail(D) in Q else P].

Proof. We first prove this result for processes that do not contain diff. By applying the
obtained result twice, once for the component fst and once for the component snd, we
obtain the same equivalence for processes that may contain diff. By Lemma 6, it is
enough to show:

27

1. If a /∈ fn(P), then P ≈ (νa)P .
2. !P ≈ ! !P .
3. P{M/x} ≈ let x = M in P else Q.
4. P ≈ let x = fail in Q else P .
5. let x = D in fst′(P) else snd′(P) ≈

let x = eval catchfail(D) in P{eval letin(x,D1,D2)/diff′[D1,D2]} else 0.
6. P | Q ≈ Q | P and (P | Q) | R ≈ P | (Q | R).
7. let x = D in P else Q ≈ let x = equals(D, fail) in Q else P

where P , Q, R are closed processes, M and D are ground terms and term evaluations,
except for P in Item 3 in which fv(P) ⊆ {x}, for Q in Item 4 in which fv(Q) ⊆ {x},
and for P in Item 5 in which fv(fst′(P)) ⊆ {x} and fv(snd′(P)) = ∅. Item 6 is obvious
since ≡⊆≈. Note that in Item 7, since P and Q are closed, x 6∈ fv(P)∪ fv(Q). Let us
prove the other cases by relying on Definition 1.

Items 3 and 4: we use a relation R defined by P0 R P ′
0 if and only if

P0 = C[P1] and P ′
0 = C[P ′

1]

or
P0 = C[P ′

1] and P ′
0 = C[P1]

or
P0 = P ′

0

for some evaluation context C and processes P1, P ′
1 such that P1 R1 P ′

1 where

– in Item 3, R1 is defined by P{M/x} R1 let x = M in P elseQ for all P,Q, x,M ;
– in Item 4, R1 is defined by P R1 let x = fail in Q else P for all P,Q, x.

We show that R satisfies the three conditions of Definition 1. Moreover R is symmetric,
so we can then conclude that R⊆≈, which implies the desired equivalences.

– R obviously satisfies Condition 3 of Definition 1.
– To show Condition 2 of Definition 1, we show that, if P0 → Q0 and P0 R P ′

0, then
there exists Q′

0 such that Q0 R Q′
0 and P ′

0 →∗ Q′
0.

If P0 = C[P1], P ′
0 = C[P ′

1], and P1 R1 P ′
1, then we first reduce P ′

1 into P1, trans-
forming let x = M in P elseQ into P{M/x} (Item 3) and let x = fail inQ else P
into P (Item 4). In this case, we have P ′

0 = C[P ′
1] → C[P1] = P0 → Q0. Taking

Q′
0 = Q0, we have Q0RQ′

0 and P ′
0 →∗ Q′

0.
If P0 = C[P ′

1], P
′
0 = C[P1], and P1R1P

′
1, we show the following.

1. If C[P ′
1] ≡ P ′, then P ′ = C ′[P ′

1] and C[P1] ≡ C ′[P1] for some evaluation
context C ′, by induction on the derivation of C[P ′

1] ≡ P ′.
2. If C[P ′

1] → P ′, then either P ′ = C ′[P1] and C[P1] ≡ C ′[P1], or P ′ = C ′[P ′
1]

and C[P1] → C ′[P1], for some evaluation context C ′. The proof proceeds by
induction of the derivation of C[P ′

1] → P ′:
Case (Red I/O) is impossible.
Case (Red Fun 1) can be applied only in Item 3. In this case, C[P ′

1] = P ′
1 → P1

and we take C ′ = [].

28

Case (Red Fun 2) can be applied only in Item 4. In this case, C[P ′
1] = P ′

1 → P1

and we take C ′ = [].
In case (Red Par), we have C[P ′

1] = P | R → Q | R = P ′ with P → Q. First
case: R = C ′′[P ′

1], C = P | C ′′. Then P ′ = Q | C ′′[P ′
1]. Let C ′ = Q | C ′′.

Then P ′ = C ′[P ′
1], and C[P1] = P | C ′′[P1] → Q | C ′′[P1] = C ′[P1].

Second case: P = C ′′[P ′
1], C = C ′′ | R. Then C ′′[P ′

1] → Q. By induction
hypothesis, either Q = C ′′′[P1] and C ′′[P1] ≡ C ′′′[P1], or Q = C ′′′[P ′

1]
and C ′′[P1] → C ′′′[P1], for some evaluation context C ′. Let C ′ = C ′′′ | R.
Either P ′ = Q | R = C ′′′[P1] | R = C ′[P1] and C[P1] = C ′′[P1] | R ≡
C ′′′[P1] | R = C ′[P1], or P ′ = Q | R = C ′′′[P ′

1] | R = C ′[P ′
1] and

C[P1] = C ′′[P1] | R → C ′′′[P1] | R = C ′[P1].
Case (Red Res) follows by induction hypothesis, similarly to the second case
of (Red Par).
Case (Red ≡) follows using the property above for ≡ and the induction hy-
pothesis.

We have C[P ′
1] = P0 → Q0, so either Q0 = C ′[P1] and C[P1] ≡ C ′[P1], or Q0 =

C ′[P ′
1] and C[P1] → C ′[P1], for some evaluation context C ′. We let Q′

0 = C ′[P1].
In the first case, we have Q0 = Q′

0 so Q0RQ′
0 and P ′

0 = C[P1] → C ′[P1] = Q′
0.

In the second case, we have Q0 = C ′[P ′
1] and Q′

0 = C ′[P1] so Q0RQ′
0 and

P ′
0 = C[P1] → C ′[P1] = Q′

0.
If P0 = P ′

0, let Q′
0 = Q0. We have Q0 R Q′

0 and P ′
0 = P0 → Q0 = Q′

0.
– To show Condition 1, using Condition 2, it is enough to show that, if P0 R P ′

0 and
P0 ≡ C ′[M ′〈N〉.R] for some evaluation context C ′ that does not bind fn(M) and
M =Σ M ′, then P ′

0 ↓M .
If P0 = C[P1], P ′

0 = C[P ′
1], and P1 R1 P ′

1, we have P ′
0 = C[P ′

1] → C[P1] = P0

hence P ′
0 ↓M .

If P0 = C[P ′
1], P

′
0 = C[P1], and P1 R1 P ′

1, we have P0 ≡ C ′[M ′〈N〉.R]. By
Property 1 shown above for ≡, C ′[M ′〈N〉.R] = C ′′[P ′

1] and C[P1] ≡ C ′′[P1]
for some C ′′. Hence there is an evaluation context C ′′′ that does not bind fn(M)
such that C ′[M ′〈N〉.R] = C ′′[P ′

1] = C ′′′[P ′
1,M

′〈N〉.R], thus we deduce that
P ′
0 ≡ C ′′′[P1,M ′〈N〉.R] and so P ′

0 ↓M .
If P0 = P ′

0, the result is obvious.

Item 5: we define the relation R by P0 R P ′
0 if and only if

P0 = C[let x = D in fst′(P) else snd′(P)] and

P ′
0 = C[let x = eval catchfail(D) in P{eval letin(x,D1,D2)/diff′[D1,D2]} else 0]

for some evaluation context C, variable x, term evaluation D, and process P

or

P0 = fst′(P){M/x} and P ′
0 = P{eval letin(M,D1,D2)/diff′[D1,D2]} for some P and M

or
P0 = snd′(P) and P ′

0 = P{eval letin(cfail,D1,D2)/diff′[D1,D2]} for some P

or the symmetric obtained by swapping P0 and P ′
0. We show let x = D in fst′(P) else

snd′(P) ≈ let x = eval catchfail(D) in P{eval letin(x,D1,D2)/diff′[D1,D2]} else 0, by

29

proving that R satisfies the three conditions of Definition 1, similarly to the proof we
have done for Items 3 and 4.

Item 1: we define the relation R by P0 R P ′
0 if and only if (νa)P0 ≡ P ′

0 or (νa)P ′
0 ≡

P0 for some a /∈ fn(P0) or a 6∈ fn(P ′
0) respectively. We show P ≈ (νa)P , by proving

that R satisfies the three conditions of Definition 1.

Item 2: we define the relation R by P0 R P ′
0 if and only if

P0 ≡ C[!P] and P ′
0 ≡ C[! !P |!P | . . . |!P]

or
P0 ≡ C[! !P |!P | . . . |!P] and P ′

0 ≡ C[!P]

for some evaluation context C and process P . We show !P ≈! !P , by proving that R
satisfies the three conditions of Definition 1.

The proof follows a strategy similar to the proof of Items 3 and 4. For Items 1
and 2, some details are however more complex, because the structural equivalence may
modify (νa)P and ! !P |!P | . . . |!P . For instance, to show Condition 2 of Definition 1
for Item 1, we need to show that, if P0 → Q0 and P0 ≡ (νa)P ′

0, then there exists Q′
0

such that Q0 ≡ (νa)Q′
0 and P ′

0 → Q′
0. Such a result is fairly standard in process calculi

and can be proved by showing a series of lemmas decomposing reduction of (νa)P and
P | Q, using a labeled semantics.

Item 7: we define the relation R by P0 R P ′
0 if and only if

P0 = C[let x = D in P else Q] and
P ′
0 = C[let x = notfail(D) in Q else P]

for some evaluation context C, variable x, term evaluation D, and processes P,Q
such that x 6∈ fv(P) ∪ fv(Q)

or
P0 = P ′

0

or the symmetric obtained by swapping P0 and P ′
0. We show let x = D in P else Q ≈

let x = notfail(D) in Q else P , by proving that R satisfies the three conditions of
Definition 1, similarly to the proof we have done for Items 3 and 4. It relies on the fact
that if D ⇓Σ M then notfail(D)⇓Σ fail, and if D ⇓Σ fail then notfail(D)⇓Σ cfail which
is a message. ⊓⊔

E.2 Proof of Lemma 3

Lemma 3 (merge). Let P and P ′ be two biprocesses. If merge(P, P ′) = Q, then:

– for all contexts C closing for P , C[P] ≈ C[fst′(Q)];
– for all contexts C closing for P ′, C[P ′] ≈ C[snd′(Q)].

30

Proof. Let P0, P
′
0 be two biprocesses. We prove the result by induction on P0 and P ′

0.
We do a case analysis on the rules of Figure 4:

Case (Mnil): Trivial.

Case (Mout): We have P0 = M〈N〉.P and P ′
0 = M ′〈N ′〉.P ′. Let C be a context clos-

ing for P0. We show that C[P0] ≈ C[fst′(merge(P0, P
′
0)], that is, C[M〈N〉.P] ≈

C[let x = M in let x′ = N in x〈x′〉.fst′(merge(P, P ′))]. Let C1 = C[let x =
M in let x′ = N in x〈x′〉.[]]. By induction hypothesis on merge(P, P ′), C1[P] ≈
C1[fst

′(merge(P, P ′))], so we just have to show that C[M〈N〉.P] ≈ C[let x = M in
let x′ = N in x〈x′〉.P]. This follows by two applications of Lemma 7, Item 3.

By symmetry, for all contexts C closing for P ′
0, C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

Case (Min): This case is similar to the case (Mout).

Case (Mpar): We have P0 = P1 | . . . | Pn and P ′
0 = P ′

1 | . . . | P ′
n. Furthermore,

there exists a permutation (ik)k=1..n of (1, . . . , n) such that merge(P0, P
′
0) = Q1 |

. . . | Qn with Qk = merge(Pk, P
′
ik
), for k = 1..n. Let C a context closing for P0. Let

Ck = C[fst′(Q1) | . . . | fst′(Qk−1) | [] | Pk+1 | . . . | Pn]. Since C is closing for
P0, we have that Ck is closing for Pk. By induction hypothesis on Qk, we deduce that
Ck[Pk] ≈ Ck[fst

′(Qk)]. Moreover, Ck[fst
′(Qk)] = Ck+1[Pk+1]. Hence, with a simple

induction on n, we deduce that C[P0] ≈ C[fst′(merge(P0, P
′
0))].

Using a similar proof and Lemma 7, Item 6 to permute the elements of the paral-
lel composition, we obtain that C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))], for all contexts C

closing for P ′
0.

Case (Mres): We have P0 = (νa)P and a 6∈ fn(P ′
0). Let C a context closing for (νa)P .

By induction hypothesis on merge(P, P ′
0), C[(νa)P] ≈ C1[(νa)fst

′(merge(P, P ′
0))].

Hence, C[P0] ≈ C[fst′(merge(P0, P
′
0))].

Let C be a context closing for P ′
0. Since a 6∈ fn(P ′

0), by Lemma 7, Item 1, C[P ′
0] ≈

C[(νa)P ′
0]. By induction hypothesis on merge(P, P ′

0), we deduce that C[(νa)P ′
0] ≈

C[(νa)snd′(merge(P, P ′
0))]. Hence C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

Case (Mrepl1): We have P0 = ! (νa1) . . . (νan)!P and P ′
0 = !P ′. Thanks to our in-

duction hypothesis on merge(!P, P ′
0), we have that, for all contexts C closing for P0,

C[P0] ≈ C[fst′(merge(P0, P
′
0))].

Let C be a context closing for P ′
0. We have C[P ′

0] = C[!P ′] ≈ C[! !P ′] by
Lemma 7, Item 2, so C[P ′

0] ≈ C[! (νa1) . . . (νan)!P
′] by n applications of Lemma 7,

Item 1. Let C1 = C[! (νa1) . . . (νan)[]]. By induction hypothesis on merge(!P, !P ′),
we deduce that C1[!P

′] ≈ C1[snd
′(merge(!P, !P ′))], so C[P ′

0] ≈ C[! (νa1) . . . (νan)
snd′(merge(!P, !P ′))] = C[snd′(merge(P0, P

′
0))].

Case (Mrepl2): This case follows immediately by induction hypothesis.

Case (Mlet1): In this case, we have P0 = let x = D in P1 else P2 and P ′
0 =

let x′ = D′ in P ′
1 else P ′

2. Let C be a context closing for P0. Since y is a fresh
variable, we have that C[P0] ≈ C[let y = D in P1{y/x} else P2]. By induction hy-
pothesis on both Q1 = merge(P1{y/x}, P ′

1{y/x′}) and Q2 = merge(P2, P
′
2), we

obtain that C[let y = D in P1{y/x} else P2] ≈ C[let y = D in fst′(Q1) else P2]
≈ C[let y = D in fst′(Q1) else fst′(Q2)]. Since fst′(diff ′[D,D′]) = D, we obtain

31

that C[P0] ≈ C[fst′(merge(P0, P
′
0))]. By symmetry, we obtain that, for all contexts C

closing for P ′
0, C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

Case (Mlet2): We have P0 = let x = D in P1 else P2 and P ′
0 = let x′ = D′ in P ′

1 else
P ′
2. Let C be a context closing for P0. Since y is a fresh variable, we have that C[P0] ≈

C[let y = D in P1{y/x} else P2]. By induction hypothesis on merge(P1{y/x}, P ′
2) =

Q1 and merge(P2, P
′
1) = Q2, we obtain that C[let y = D in P1{y/x} else P2] ≈

C[let y = D in fst′(Q1) else P2] ≈ C[let y = D in fst′(Q1) else fst′(Q2)]. Since
fst′(diff ′[D, notfail(D′)]) = D, we obtain that C[P0] ≈ C[fst′(merge(P0, P

′
0))].

Consider C a context closing for P ′
0. Thanks to Lemma 7, Item 7, we have that

C[P ′
0] ≈ C[let x′ = notfail(D′) in P ′

2 else P
′
1]. By inductive hypothesis on both Q1 =

merge(P1{y/x}, P ′
2) and Q2 = merge(P2, P

′
1), we have C[let x′ = notfail(D′) in P ′

2

else P ′
1] ≈ C[let x′ = notfail(D′) in snd′(Q1) else P

′
1] ≈ C[let x′ = notfail(D′) in

snd′(Q1) else snd′(Q2)]. Since snd′(diff ′[D, notfail(D′)]) = notfail(D′), we obtain
that C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

Case (Mlet3): We have P0 = let x = D in P1 else P2. Let C be a closing con-
text for P0. Since ≈ is closed under renaming and y is a fresh variable, we have
that C[P0] ≈ C[let y = D in P1{y/x} else P2]. By induction hypothesis on Q =
merge(P1{y/x}, P ′

0) with the context C[let y = D in [] else P2], we obtain that
C[P0] ≈ C[let y = D in fst′(Q) else P2]. Since C[let y = D in fst′(Q) else P2] =
C[fst′(let y = diff ′[D, cfail] inQ else P2)], we obtain C[P0] ≈ C[fst′(merge(P0, P

′
0))].

Let C be a context closing for P ′
0. Since y is a fresh variable and so not a variable

of P ′
0, by Lemma 7, Item 3, C[P ′

0] ≈ C[let y = cfail in P ′
0 else P2]. By induction

hypothesis on Q = merge(P{y/x}, P ′
0) with the context C[let y = cfail in [] else P2],

we obtain that C[let y = cfail in P ′
0 else P2] ≈ C[let y = cfail in snd′(Q) else P2]. Since

C[let y = cfail in snd′(Q) else P2] = C[snd′(let y = diff ′[D, cfail] in Q else P2)], we
conclude that C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))].

Case (Mlet4): We have P0 = let x = D in P1 else P2. Let C be a closing context for
P0. Since ≈ is closed under renaming and y is a fresh variable, we have that C[P0] ≈
C[let y = D in P1{y/x} else P2]. By induction hypothesis on Q = merge(P2, P

′
0)

with the context C[let y = D in P1{y/x} else []], we obtain that C[P0] ≈ C[let y =
D in P1{y/x} else fst′(Q)] = C[fst′(let y = diff ′[D, fail] in P1{y/x} else Q)], we
obtain the desired result: C[P0] ≈ C[fst′(merge(P0, P

′
0))].

Let C be a context closing for P ′
0. Thanks to Lemma 7, Item 4, we deduce that

C[P ′
0] ≈ C[let y = fail in P1{y/x} else P ′

0]. By induction hypothesis on merge(P2, P
′
0)

= Q with the context C[let y = fail in P1{y/x} else []], we obtain that C[let y =
fail in P1{y/x} else P ′

0] ≈ C[let y = fail in P1{y/x} else snd′(Q)] = C[snd′(let y =
diff ′[D, fail] in P1{y/x} else Q)]. Hence C[P ′

0] ≈ C[snd′(merge(P0, P
′
0))]. ⊓⊔

E.3 Proof of Lemma 4

Lemma 4 (simplify). Let P be a biprocess. For all contexts C closing for P ,

C[P] ≈ C[simpl(P)]

32

Proof. Let P0 be a biprocess. We prove by induction on P0 that, for all contexts C
closing for P0, C[P0] ≈ C[simpl [P0]. We do a case analysis on the rules of Figure 5.

Case (Snil): Trivial.

Case (Sout): We have P0 = M〈N〉.P and simpl(P0) = M〈N〉.simpl(P). Let C be
a context closing for P0. Let C1 = C[M〈N〉.[]]. We have that C[P0] = C1[P] with
C1 closing for P . By induction hypothesis on simpl(P), we can deduce that C1[P] ≈
C1[simpl(P))] = C[M〈N〉.simpl(P)] = C[simpl(P0)].

Cases (Sin), (Sres) and (Srepl): Proof similar to case (Sout).

Case (Smid): We have P0 = P | Q. Let C be a context closing for P0. Let C1 =
[] | Q and C2 = simpl(P) | []. By induction hypothesis on simpl(P), we obtain
that C1[P] ≈ C1[simpl(P)]. Moreover, C1[simpl(P)] = C2[Q]. By induction hy-
pothesis on simpl(Q), we have that C2[Q] ≈ C2[simpl(Q)]. With C2[simpl(Q)] =
C[simpl(P0)], we conclude that C[P0] ≈ C[simpl(P0)].

Case (Slet): Proof similar to case (Smid).

Case (Smerge): We have P0 = let x = D in P else P ′. Let Q′ = merge(simpl(P),
simpl(P ′)) and Q = Q′{eval letin(x,D1,D2)/diff′[D1,D2]}. Thanks to Lemma 7, Item 5,
we deduce that C[let x = D in fst′(Q′) else snd′(Q′)] ≈ C[let x = eval catchfail(D) in
Q else 0].

Furthermore, by induction hypothesis on P and Lemma 3 with the context C1 =
C[let x = D in [] else P ′], we obtain C1[fst

′(Q′)] ≈ C1[simpl(P)] ≈ C1[P]. Hence
C[let x = D in fst′(Q′) else P ′] ≈ C[let x = D in P else P ′] = C[P0]. By induc-
tion hypothesis on P ′ and Lemma 3 with C2 = C[let x = D in fst′(Q′) else []],
we obtain similarly C2[snd

′(Q′)] ≈ C2[simpl(P ′)] ≈ C2[P
′], that is, C[let x =

D in fst′(Q′) else snd′(Q′)] ≈ C[let x = D in fst′(Q′) else P ′], so we deduce that
C[P0] ≈ C[let x = D in fst′(Q′) else snd′(Q′)]].

By combining the two equivalences, we conclude that C[P0] ≈ C[simpl(P0)]

E.4 Proofs of the Main Results

Theorem 2. Let P be a closed biprocess. If simpl(P) satisfies observational equiva-
lence then fst(P) ≈ snd(P).

Proof. We know, by definition 2, simpl(P) satisfies observational equivalence implies
that fst(simpl(P)) ≈ snd(simpl(P)). Since P is closed, we can apply Lemma 4 with
the empty context C. Hence fst(P) ≈ fst(simpl(P)) and snd(P) ≈ snd(simpl(P)).
Therefore, we conclude that fst(P) ≈ snd(P). ⊓⊔

Theorem 3. Let P and P ′ be two closed processes that do no contain terms with diff.
Let Q = merge(simpl(P), simpl(P ′)). If the biprocess Q{diff[D,D′]/diff′[D,D′]} satis-
fies observational equivalence, then P ≈ P ′.

Proof. According to Fig. 4 and 5, if P and P ′ do not contain any diff then so do
simpl(P), simpl(P ′), and merge(P, P ′). Hence, Q does not contain any diff. Hence,
the biprocess Q′ = Q{diff[D,D′]/diff′[D,D′]} satisfies fst(Q′) = fst′(Q) and snd(Q′) =

33

snd′(Q). Since Q′ satisfies observational equivalence, we have that fst(Q′) ≈ snd(Q′)
thus fst′(Q) ≈ snd′(Q). Since P and P ′ are closed processes, by Lemma 4, we have
P ≈ simpl(P) and P ′ ≈ simpl(P ′). Furthermore, by Lemma 3, we deduce that
simpl(P) ≈ fst′(Q) and simpl(P ′) ≈ snd′(Q). We conclude that P ≈ P ′.

34

