University of

"1l Kent Academic Repository

Derrick, John and Smith, Graeme (2000) Structural refinement in Object-Z
/| CSP. In: Grieskamp, Wolfgang and Stanten, Thomas and Stoddart, Bill,
eds. Integrated Formal Methods Second International Conference. Lecture
Notes in Computer Science . Springer, Berlin, Germany, pp. 194-213. ISBN
978-3-540-41196-3.

Downloaded from
https://kar.kent.ac.uk/21935/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-40911-4 12

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21935/
https://doi.org/10.1007/3-540-40911-4_12
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Structural refinement in Object-Z / CSP

John Derrick! and Graeme Smith?

! Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK.
2 SQoftware Verification Research Centre, University of Queensland 4072, Australia

Abstract. In this paper we discuss refinements of specifications written using Object-
7 and CSP where we change the structure of the specification when performing the
refinement.

Keywords: Object-Z, CSP, refinement.

1 Introduction

There has been an increasing amount of work recently on combining state based languages
such as Z[?] and Object-Z[?] with process algebras such as CSP[?] and CCS[?]. The motiva-
tion for the work is that these combinations of languages provide a suitable medium for the
description of complex systems which involve aspects of both concurrency and non-trivial
data structures. Indeed, there are many application areas for such an approach including
the obvious area of distributed systems specification.

The combination we are interested in here is the use of Object-Z together with CSP. This
combination of languages has been investigated by a number of researchers including Fischer
[?], Smith [?] and Mahony and Dong [?]. In this paper we work with the integration described
by Smith [?] and Smith and Derrick [?,?], although the concerns we address are relevant to
all combinations of these two languages.

In the integration discussed here Object-Z is used to describe the components of a system,
and these are then combined using CSP operators which describe how the components
synchronise and communicate. For example, an elevator in a building might be described in
this approach as (|||,,. vame Us€rn)|| LiftSys where User, and LiftSys are given as Object-Z
classes describing a user and the lift respectively, and the CSP operators || and ||| describe
the interaction between these components. The combined notation benefits from reusing
existing notations, being relatively simple and having a well-defined meaning given by a
semantics based upon the failures-divergences semantics of CSP.

Of course as well as specifying systems we need a method of developing them, and there has
been considerable work on refinement for both state-based languages and process algebras.
This work has been applied to the combination of Object-Z and CSP by Smith and Derrick
[?,?] who develop state-based refinement relations for use on the Object-Z components within
an integrated specification. Because Object-Z classes have been given a CSP semantics in

the combined language, the refinements are compositional so that when a single Object-Z
component is refined then so is the overall Object-Z / CSP specification. For example, if we
refine the single LiftSys component to LiftSys2 then application of the theory tells us that
(. varme Usera)| | LiftSys2 will be a refinement of (||| Usery,)|| LiftSys.

n:Name

However, the rules presented in [?,?] do not allow the structure of the specification to be
changed in a refinement. That is, only single Object-Z classes can be refined individually and
therefore the structure of the specification, and in particular the use of the CSP operators,
has to be fixed at the initial level of abstraction. This is clearly undesirable and in this paper
we provide a means to refine the very structure of a specification written in the integrated
notation.

In particular, we develop refinement rules that allow us to refine a single Object-Z class into
a number of communicating or interleaved classes. For example, we will show how to refine
the single LiftSys into (Lift||Con) which consists of a Lift operated by a controller Con. This
approach will therefore allow concurrency to be introduced during refinement as and when
appropriate rather than having to fix the eventual structure of the implementation early in
the development life-cycle. Similar concerns have been addressed by Fischer and Wehrheim
[?], however there the emphasis was on using model checking in order to demonstrate re-
finement between specifications with different structures. Our work compliments this work
nicely.

This paper is structured as follows. In Sections 2 and 3 we discuss the integration and
refinement of specifications written using Object-Z and CSP. Then in Section 4 we look
at operation refinements between specifications where we change their structure, and we
develop rules for introducing the CSP parallel operators || and |||. These rules are illustrated
using the elevator case study. In Section 5 we generalise this approach to look at data
refinement where we change the data representation of the classes, and a vending machine
provides a suitable example to illustrate its use. We conclude in Section 6.

2 Combining Object-Z and CSP

In this section we discuss the specification of systems described using a combination of
Object-Z and CSP. In general the specification of a system described using these languages
comprises three phases. The first phase involves specifying the components using Object-Z,
the second involves modifying the class interfaces (e.g. using inheritance) so that they will
communicate and synchronise as desired, and the third phase constructs the final system by
combining the components using CSP operators.

Since all interaction of system components is specified via the CSP operators a restricted
subset of Object-Z is used. In particular, there is no need for object instantiation, polymor-
phism, object containment nor any need for the parallel or enrichment schema operators.
Similarly not all CSP operators are required. For example, neither piping nor the sequen-
tial composition operator are needed. These restrictions help simplify the language and
its semantic basis considerably. Furthermore, a well-definedness condition is placed on the
CSP hiding operator to stop the introduction of unbounded nondeterminism (see [?] for a
discussion of this aspect).

2.1 Example - A lift system

As a simple example we consider the classic lift case study [?]. The components of our system
will be the users and the elevator system, and both are specified by Object-Z classes. To do
so let Name denote the names of all possible users of the system, and suppose the available
floors in a building are described as follows.

‘ minFloor, mazFloor : N

‘ minFloor < maxFloor

Floor == minFloor..mazFloor

A single user is capable of one operation: to request a lift to a different floor, where their
current floor is denoted by position.

_ User

| name : Name

position : Floor

__INIT
position = minFloor

_ Request
r!: Floor

r! # position

Our initial specification also contains the Object-Z class LiftSys which describes an abstract
view of the elevator system. The class consists of four operations: Request models requests
for the lift being made by customers, CloseD and OpenD model the closing and opening
of the lift doors respectively, and Move describes the movement of the lift inside the shaft.
Which request is serviced next is non-deterministic — any valid request is potentially chosen.

Status ::= open | closed | stop

__ LiftSys

req : IP Floor
pos : Floor
door : Status

__INIT
req = @ A pos = minFloor N\ door = open

_ Request _ CloseD
A(req) A(door)
f?: Floor req £ @
req' = req U {f7} door = open A door’ = closed

— OpenD
A(door)

door = stop A door’ = open

— Move
Alreq, pos, door)
f1: Floor

door = closed A door' = stop
pos’ € req
req’ = req \ {pos’}
pos’ = f!

To specify the complete system we combine the components together in a way which captures
their interaction. If we define User, to be the User class with name instantiated to n [?],
then this interaction is given by

Building = (||| Usery,)|| LiftSys

n:Name

which describes a single lift with which a number of users can independently interact.

2.2 The semantic model

Combined Object-Z and CSP specifications are given a well-defined meaning by giving the
Object-Z classes a failures-divergences semantics identical to that of a CSP process. In a
failures-divergences semantics a process is modelled by a triple (A, F, D) where A is its
alphabet, I its failures and D its divergences. The failures of a process are pairs (¢, X)
where ¢ is a finite sequence of events that the process may undergo, and X is a set of events
the process may refuse to perform after undergoing ¢.

To give Object-Z classes a failures-divergences semantics the failures of a class are derived
from its history, that is from the Object-Z semantic model of a class [?].

In doing so Object-Z operations are mapped to CSP events using the following function
which turns an operation op with assignment of values to its parameter p to the appropriate
event:

event((op, p)) = op.B(p)

The meta-function § replaces each parameter name in p by its basename, i.e., it removes
the 7 or I. Thus the event corresponding to an operation (op, p) is a communication event
with the operation name op as the channel and an assignment of values to the basenames
of the operation’s parameters as the value passed on that channel. For example, the event
corresponding to a user requesting a floor f is Request.{(r,f)}.

Since Object-Z does not allow hiding of operations (hiding is only possible at the CSP level),
divergence is not possible within a component. Therefore a class is represented by its failures
together with empty divergences.

As well as giving a well defined meaning to a combined Object-Z / CSP specification, the
semantics also allows a coherent theory of refinement to be developed. We discuss this in
the next section.

3 Refinement in Object-Z and CSP

With our integrated semantics, refinement is based upon CSP failures-divergences. Thus a
specification C' is a refinement of a specification A if

failures C C failures A and divergences C' C divergences A

and if we are considering a single Object-Z component we need consider only the failures
since its divergences will be empty as noted above.

However, calculating the failures of a system is not practical for anything other than small
specifications. To make the verification of refinements tractable we can adapt state-based
verification techniques for use in our combined notation, and in particular adapt the idea of
upward and downward simulations used in Z [?]. This allows refinements to be verified at
the specification level, rather than working explicitly in terms of failures, traces and refusals
at the semantic level.

The use of simulations between Object-Z components in the integrated notation is described
by Smith and Derrick in [?,?]. In a simulation, a retrieve relation Abs links the abstract state
(AState) and the concrete state (CState), and, for example, the definition of a downward
simulation is as follows.

Definition 1 Downward simulation
An Object-Z class C is a downward simulation of the class A if there is a retrieve relation
Abs such that every abstract operation AOp is recast into a concrete operation COp and the

following hold.

DS.1 V AState; CState @ Abs = (pre AOp <> pre COp)
DS.2 V AState; CState; CState’ @ Abs A COp — (3 AState’ @ Abs’ A AOp)
DS.3 V CInit ¢ A Alnit e Abs

Not all refinements change the state space, those that do not are called operation refinements
as opposed to data refinements and these can be verified with a retrieve relation which is
the identity (thus simplifying the refinement rules).

The simulation rules allow a single Object-Z class to be refined by another. For example,
we might refine the LiftSys component to LiftSys2. This new lift system is identical to the
initial specification except that our Move operation is more deterministic and chooses the
nearest requested floor instead of an arbitrary one.

— LiftSys2

— Move
Alreq, pos, door)
f1: Floor

door = closed A door’ = stop

pos’ € reg A=(3p : req 8| pos — p |<| pos — pos’ |)
req’ = req \ {pos’}

pos’ = f!

This refinement can be verified in the standard way using a downward simulation, and
since simulations are together sound and complete with respect to CSP failures-divergences
refinement, (Usery)|| LiftSys2 is a refinement of (||| Usery, || LiftSys.

|||n:Name n:Name

However, this refinement is between single Object-Z classes and simulations do not allow us
to change the overall structure of the specification. To understand the problem consider the
following example.

3.1 Example - changing the structure of the lift specification

In an implementation we wish to refine the lift system into two separate components (a lift
and a controller) which reflect more accurately the underlying physical configuration. The
Lift class will control the position and movement of the lift, whilst the controller Con will
marshal the requests and determine the next floor that the lift should service.

The Lift class consists of a position (pos), a door and a current target, and the class Con
keeps track of the current requests (reg). The two classes communicate in order to determine
the current position and the new target floor.

The Lift class is as follows.

_ Lift

pos, target : Floor
door : Status
target_received : B

__INIT
pos = muinFloor A door = open

__SetTarget
Altarget, target _received)
f7, post: Floor

7 = target’ A pos! = pos
door = open
= target_received A target_recetved’

_ CloseD
A(door)

target_received
door = open A door’ = closed

— OpenD
A(door)

door = stop A door’ = open

_ MoveOneFloor
A(pos)

door = closed
pos > targel = pos’ = pos — 1
pos < targel = pos’ = pos + 1

— Move
A(door, target _received)
f1: Floor

door = closed A door’ = stop
= target_received’
pos = target A f! = pos

The controller accepts requests and determines which floor the lift should go to next. Now,
instead of being completely non-deterministic, the floor closest to the current position is cho-
sen. To achieve this, the two classes communicate when performing the SetTarget operation.
A similar communication takes place in the Move operation to determine whether the lift
has stopped, and if so which floor has been reached. We have also changed the granularity
of Move from LiftSys by using MoveOneFloor to move the lift one floor at a time.

Note also that neither class contains the complete temporal ordering of operations. This will
be determined by the final synchronisation between the two classes.

__Con
req : IP Floor
target_sent : B
__INIT
req = @ A —close
_ Request _ SetTarget
Alreq) Altarget_sent)
f?: Floor f1, pos? : Floor
req’ = reqU {f7} —target_sent A target_sent’
fl e reg
—(3p: req o| pos? —p |<| pos? — f! |)
_ CloseD _ Move
Altarget_sent) Alreq, target_sent)
, f?: Floor
target_sent A\ —target_sent
req # &
req’ = req \ {f7}
= target_sent’

It is then possible to show (e.g. by a calculation of failures-divergences) that LiftSys is
refined by (Lift||Con) \ {SetTarget, Move OneFloor}t. However, we cannot use simulations
to verify the refinement. Furthermore, if we compare the LiftSys component with those given
by Lift and Con we cannot even claim that individually the latter classes refine LiftSys. In
particular,

— the classes are not conformal, i.e. neither Lift nor Con contain all the operations in
LiftSys, yet they also contain additional operations such as SetTarget;

— the new operations have additional inputs and outputs, and

— the behaviour of the operations is different, e.g. the preconditions have been changed.

Yet clearly (Lift||Con) \ {Set Target, MoveOneFloor} is a refinement of LiftSys, and what we
seek to do is to derive state-based techniques that allow us to verify refinements like these
without having to expand the synchronisation between the two classes and then calculate
their failures. The next section discusses how we can do this.

! Throughout this paper we use the shorthand £ \ {Op} to denote the hiding of all events corre-
sponding to the operation Op. In general, the names of these events will consist of a mapping
from the parameters of the operation to their values, as well as the name of the operation.

4 Operation Refinement

In this section, we present simulation rules that allow us to prove operation refinements
between Object-Z classes and CSP expressions involving more than one Object-Z class. The
rules are extended to data refinement in Section 5.

In Smith and Derrick [?,?], simulation rules which correspond to failures-divergences refine-
ment were presented for refining an Object-Z class to another Object-Z class. To build on
this work, we show, in this section, how to construct an Object-Z class which is semantically
equivalent to a CSP expression involving parallel composition and hiding. This constructed
class, and hence the equivalent CSP expression, can be shown to be a refinement of another
class using the existing simulation rules.

From the relationship between the schemas of the constructed class and those of the com-
ponent classes of the CSP expression, we can also re-express the existing simulation rules in
terms of schemas of the component classes.

Figure 1 illustrates the process. We wish to refine a class 4 into (D || B) \ {e1,...,2,}. To
do so we show that (D || B) \ {&1,..., @, } is failures-divergences equivalent to the Object-Z
class (', and then derive simulation rules to show that ' is a downward simulation of A. The
usefulness of the approach is that these simulation rules are expressed in terms of the original
classes B and D, thus these rules allow us to verify the refinement without constructing the
semantically equivalent class C'.

A
refinement via derived refinement via existing
simulation rules simulation rules
OB \{x;.x} = E\{x.x} = C

Figure 1. Approaches to operation refinement

In Section 4.1 we show how to construct the semantically equivalent class and in Section 4.2
we derive the simulation rules in terms of the component classes of the CSP expression.
In Section 4.3 we prove the refinement of the Lift example from Section 3. The ideas are
extended to the CSP interleaving operator ||| in Section 4.4.

4.1 Constructing an equivalent class

Our approach works for refinements of a class A into specifications of the form (D || B) \
{@1,..., 2, } where classes D and B and events 1,...,z, are restricted as follows.

10

1. The variables declared in the state schema of class D are distinct from those declared
in the state schema of class B.

2. Any operations common to D and B (i.e. they have the same operation name) have
parameters with identical basenames (i.e., apart from the ?’s and Vs).

3. Each hidden event #;, i € 1..n, may occur a finite number of times immediately before
a visible event y corresponding to one particular operation and not at any other time.
In such cases, the finite sequence of hidden events followed by the event y represents an
operation refinement of an event y of the abstract specification.

4. When an operation name is shared by D and B, an input in one of the operations with
the same basename as an output in the other cannot be constrained more than the
output. That is, given that Op in D has input #7 and predicate p and Op in B has
output z! and predicate ¢, the following must hold.

3 BState, BState' @ ¢ = 3 DState; DState’ e p[z!/x7?]
where DState and BState are the state schemas of classes D and B respectively, and
pla!/a?] is the predicate p with all free occurrences of #? renamed to z!.

These restrictions are in fact entirely natural consequences of the events 1, ..., 2, acting as
a communication medium between the two classes.

Restriction 1 allows us to derive simulation rules expressed as rules on the two separate
classes. Restriction 2 says that operations common to D and B will communicate on common
channels, and restriction 3 stops divergence due to infinite sequences of hidden events.

The reason for the final restriction can be seen if we consider the following same-named
operations from classes D and B.

—_Op —Op
x?7: N ! N
z?7<b 2! <10

The two operations are intended to communicate via their parameters. The predicate of the
operation from D, that with the input, places a stronger condition on the communicated
value than the predicate of the operation from B (thus restriction 4 is not satisfied). The
result is that the operations can occur with the communicated value less than or equal to 5.

Now consider refining the operation in B to the following.

__Op
z! ' N

h<al <10

This is possible since refinement allows conditions on outputs to be strengthened [?]. How-
ever, now the synchronisation of the operations in D and B cannot occur since there is
no value of the communicated variable which satisfies both. Hence, despite the individual
classes D and B being refined, the resulting composed system is not refined (since we have
effectively increased the refusals for any trace after which Op could have been performed).
Restriction 4 prevents this situation from occurring.

11

We will now show how to construct an equivalent class C for the CSP expression (D ||
B) \ {@1,...,@,} by considering first parallel composition and then hiding.

Parallel composition Consider classes D and B below where i,j,k € N and j < i.

_D _B
DState BState
DINIT BINIT
Opm Opi—jt1
Opi Opy,

When j # 0, the classes share the operation names Op;_;41 ... Op;.

The parallel composition of classes D and B, D || B, is semantically equivalent to the
following class.

_C
DState N\ BState
DINIT N\ BINIT
Op

Opy,

where for each n: 1..7—j, Op, is defined as in D, and for each n: i4+1..k, Op, is defined
as in B, and for each n: ¢ —j+ 1..4, Op, is the associative parallel composition [?] of the
definition in D with the definition in B, i.e. D.Opy, |1 B.Op,.

The associative parallel composition operator of Object-Z, ||:, conjoins its argument oper-
ations and renames any inputs in one operation for which there exists a common-named
output in the other operation to an output. The common-named parameters are hence
identified in the conjoined operation and exist as an output.

Therefore, for each n : i —j+1..1, due to the DState and BState declaring distinct variables
(restriction 1), Op, in C transforms those variables from DState according to the operation
Op, of D and those variables in BState according to the operation Op, of B. Furthermore,
Op, in C has parameters with identical basenames to those in Op, of D and B. Therefore,
the alphabet of C' is the union of the alphabets of D and B.

To see why the constructed class C' is equivalent to D || B, consider deriving the failures of
C by the approach outlined in [?]. The failures of C are all traces s and refusal sets X U Y
where

— s is a trace comprising events corresponding to operations Op; ... Opg,
— X and Y are sets of events corresponding to operations in D and B respectively,

12

— after s, since DState is only changed by events corresponding to operations of D (due to
DState and BState declaring distinct variables), X includes only those events that can
be refused by D after undergoing trace s restricted to the alphabet of D,

— similarly, ¥ includes only those events that can be refused by B after undergoing trace
s restricted to the alphabet of B.

Hence,

failures(C) = {5, X U Y | s € alphabet(D) U alphabet(B)
A (s > alphabet(D), X) € failures(D)
A (s> alphabet(B), Y) € failures(B)}

Since an Object-Z class has no divergences, this is equivalent to the failures of (D || B) as
given by Hoare [?].

Hiding Consider the class F below where Opy occurs n : N times before each occurrence
of Ops and not at any other time.

E
EState
FEINIT
Op1
Op2
Ops

The CSP expression which hides Ops in F, i.e., E \ {Op2}, is semantically equivalent to
the following class. (‘Ops’ denotes the name of the operation Ops in E, as opposed to its
definition denoted simply by Ops.)

C
EState

FEINIT

Op

“Ops” = Op2\ (p1y--+,Pn) 8---3 OP2\ (P1+-- -, pn) § Ops

where py,..., p, are the parameters of Ops.

Consider deriving the failures of the constructed class C by the approach outlined in [?,?].
The failures of C are all traces ¢ and refusal sets X where there exists a failure (s,) of E
such that s restricted to the events of C' is ¢, and Y includes, as well as the events in X, all
events corresponding to Ops.

Hence,
failures(C) = {s 1> alphabet(C), X | (s, X U{Op3}) € failures(E)}

Since an Object-Z class has no divergences, this is equivalent to the failures of F \ {Opz2} as
given by Hoare [?]. (The definition can be extended for hiding of multiple operations in the
obvious way.)

13

4.2 Deriving the simulation rules

Given a refinement (D || B)\{ml, ..y & } of A, we could verify the refinement by constructing
an equivalent class as outlined in Section 4.1 and using the simulation rules of Smith and
Derrick [?]. However, it is preferable not to have to construct an equivalent class but to
instead have rules which refer directly to the schemas of the component classes D and B.
We now show how we can derive these rules.

Parallel composition We begin by considering the case where we have parallel composition
only (and no hiding). For operation names occurring in only one component class, the
operation given this name in the constructed class is identical to that in the component
class in which it occurs. Hence, the simulation rules are unchanged.

For shared operations, however, the operation in the constructed class is the associative
parallel composition of the operations in the component classes. In this case to verify the
refinement we can use the downward simulation rules DS.1 and DS.2 which, for the com-
municating operations, require that:

DS.1' V AState; DState; BState @ pre AOp <= pre (DOp ||: BOp)
DS.2' V AState; DState; BState; DState’; BState' o
(DOp ||y BOp) = (3 AState’ « AOp)

where DState and BState, and DOp and BOp are the two component states and operations
respectively.

These rules still involve an operation, DOp ||y BOp, to be constructed from the two classes.
However, we can by-pass the necessity to construct this operation as follows. Consider the
following operations DOp and BOp (p and ¢ are predicates).

_DOp _BOp
A(z) Aly)
r, o'+ X v,y Y
z7: 7 z1: 7
P q

where # and y are the state variables of the two component classes and are distinct (by
restriction 1).

The associative parallel composition of these operations is

—DOp || BOp
Az, y)
r, o'+ X
Y,y Y
2V Z

plzl/27 A q

14

where p[z1/27] is the predicate p with all free occurrences of z? renamed to z!.

Hence we can simplify the precondition calculation as follows:

pre(DOp || BOp)=3z' : X,y : Y,z!: Z e p[zl/2?] A g
=32 X,y Y, 2l Z,w!: Z e plw!/2?] A g
[by restriction 4]
=3 X, w:Zeplw/z2hANBy :Y; 21:Zegq)
[since p[w!/z?] and ¢ refer to distinct variables]
= pre DOp[w!/z7] A pre BOp

In addition, we have

DOp || BOp = DOplz!/2?) A BOp

Extrapolating to the general case, we have the following.

pre(DOp || BOp) = pre DOplw!/z17, ..., wt/2,7]

A
pre BOp[wn+1!/zn+1?a sy wn+m!/zn+m?]
DOp || BOp = DOplz1l/ =17, ... 201/ 207)
A\
BOp[zn+1!/zn+1?a (ERY) zn+m!/zn+m?]

Hence, the simulation rules can be re-expressed as follows.

Definition 2 Parallel downward simulation
A CSP expression D || B is an operation downward simulation of the Object-Z class A if D
and B satisfy restrictions 1-4 (above) and the following hold.

PS.1 VYV AState; DState; BState
pre AOp <= pre DOp[un!/=17, ..., w1/ 2,7)
A
preBOp[wn+1!/zn+1?a sy wn+m!/zn+m?]
PS.2 V AState; DState; BState; DState’; BState’ e
DOplz1t/ =17, ..o 2/ 2,7)
A
BOp[zn+1!/zn+1?a [ERY) zn+m!/zn+m?]
— (F AState’ @ AOp)
PS.3 ¥V DInit A Blnit e (3 Alnit e true)

Hiding When we have hiding (as well as parallel composition), for those particular op-
erations which can be preceded by a finite sequence of hidden operations, we replace the
operation in the simulation rules with a sequential composition comprising the sequence of
hidden operations and the operation. For example, if Ops can be preceded by n : N occur-
rences of a hidden operation Op; (as in the example of Section 4.1), we replace Ops in the

simulation rules by Ops \ (p1y---sPn)S---3 Op2 \ (p1y---yPn)§ Ops.

15

There are two cases to consider. The first when one of the hidden events z; occurs in both
classes D and B, and the second when it occurs in just one class. Our lift example illustrates
both: SetTarget occurs in Lift and Con whereas MoveOneFloor only occurs in Lift.

Case 1. Suppose, without loss of generality, an event « occurs in just one class D in (D||B)\
{z}. Let us denote this operation by Dxz. Then Dz is not involved in any communication,
and we therefore have to show a simulation between AOp and Dz §(DOp ||» BOp).

Since the state spaces of D and B are disjoint this can be re-written as (Dz § DOp) || BOp,
and thus the simulation rules for the operations require that (eliding the quantification over
the state spaces):

PS.1 pre AOp <= pre(Dz § DOpl[wi!/z17, ..., wal/2,7])

A
pre BOp[wn+1!/zn+1?a sy wn+m!/zn+m?]
PS.2 (Dz g DOp[al/z17,. .., 201 /22 7))
A\
BOp[zn+1!/zn+1?a (ERY) zn+m!/zn+m?]

— (F AState’ @ AOp)

Case 2. Suppose, without loss of generality, an event # occurs in both classes (e.g. in order
to perform a communication as in SetTarget) in D in (D||B)\ {z} and that it communicates
over channel p. Let Dz denote the operation x in class D etc. Then we have to show a

simulation between AOp and ((Dz ||: Bx) \ {p1}) g (DOp ||: BOp).

Since the state spaces of D and B are disjoint this can be re-written as ((Dz § DOp) ||:
(Bz3BOp)) \ {p!}. Since hiding distributes through pre, the simulation requirements become:

PS.1 pre AOp <= Apl e pre(Da § DOp[wi!/z17, ..., wal/2,7])
A
pre(Bx 5 BOp[wn+1!/zn+1?a (ERY) wn+m!/zn+m?])
PS.23ple (Dx3 DOp[al/z17, ... 20! 207])
A
(B;L‘ 5 BOP[Zn+1!/Zn+1?7 sy zn+m!/zn+m?])
— (F AState’ @ AOp)

These rules easily generalise to multiple events and parameters, as well as to the case when
the hidden event z occurs more than once before its corresponding visible event. This ap-
proach is illustrated in the example of the next section.

4.3 Example

Using these rules we can now show that LiftSys is refined by (Lift|| Con)\{SetTarget, MoveOneFloor}.
To do so we must check that the decomposition satisfies the restrictions 1-4 outlined at the
start of Section 4.1, and then verify conditions PS.1-3.

16

Restrictions Restriction 1 clearly holds. For restriction 2 we have to compare parameters
in SetTarget, CloseD and Move between the two classes Lift and Con. In each case the
basenames in the pairs of operations are the same (e.g. f in Move).

The hidden operations are SetTarget and MoveOneFloor. A boolean variable in each class
has been inserted to ensure that SetTarget happens once, but only once, before each (visible)
CloseD operation. Restriction 3 therefore holds for SetTarget.

MoveOneFloor is slightly more complicated, because in effect the refinement has decomposed
the Move in LiftSys into a finite number of MoveOneFloor operations followed by a Move
in the classes Lift and Con. However, restriction 3 is still satisfied because MoveOneFloor
can only happen a finite number of times (until the lift reaches its target), after which a
Move must happen.

We also have to check the restrictions on the predicates given by 4. Thus, for example, for
the Move operation we have to check:

3 pos, target, door, pos’, target’, door’ e
door = closed A door’ = stop
pos = target A f! = pos
=
Areq, close, req’, close’ ® req # @ A req’ = req \ {f!}

Which, since no constraints are being placed on the input, is trivially satisfied.

Simulation rule PS.1 For each operation in LiftSys we have to show that either it is a
standard refinement if it occurs in just one class, or show that PS.1 holds if it occurs in
both classes.

For the former, Request and OpenD are identical in the refinement, and both operations
appear in just one class.

For operations CloseD and Move we are going to have to demonstrate that PS.1 holds, re-
membering that we have to take into account the hidden operations Set Target and MoveOneFloor
in doing so.

Consider the Move operation. The MoveOneFloor hidden event can occur a finite number of
times before it, thus according to the above we need to consider the effect of MoveOneFloor™3
Move where MoveOneFloor™ represents n sequential compositions. Although this sounds
complicated, it is not difficult in practice. Simply looking at the behaviour of MoveOneFloor
and Move together shows us that we have to verify (for some n):

pre LiftSys. Move < pre Lift.(MoveOneFloor™ § Move) A pre Con.Move
and this boils down to the trivial

door = closed A req # & < (door = closed) A (req £ @)

17

Simulation rule PS.2 In a similar fashion we must show PS.2 holds for both CloseD and

Move. For example, for CloseD we need to show that

Con.(SetTarget § CloseD[pos!/pos?]) A Lift.(SetTarget§ CloseD[f!/f?])
= (3 LiftSysState o LiftSys.CloseD)

This amounts to showing that

fle reg

—(3p: req o| pos? —p |<| pos? — f! |)
door = open A door’ = closed

f1 = target’ A pos! = pos

3 LiftSysState o req # @ A door = open A door’ = closed

which again is clearly true.

Simulation rule PS.3 This amounts to showing that together the initialisations of Lift
and Con imply the initialisation in LiftSys.

Therefore LiftSys is refined by (Lift||Con) \ {Set Target, MoveOneFloor}, and since the hid-
Usery)|| LiftSys is refined

den events do not occur in User, we can conclude that (|]|,,. yame

by (Il: Name Usern) || (Lift|| Con) \ {Set Target, MoveOneFloor}.

4.4 Rules for introducing interleaving

We can also derive rules which allow us to refine a class A into D ||| B, by a similar
derivation to the above. Given a CSP expression involving interleaving of the form D |||
B, an equivalent class can be constructed following the approach for parallel composition
except that the Object-Z choice operator[?], denoted is used in place of associative parallel
composition to combine common-named operations. (Reasoning in terms of failures similar
to that for parallel composition can be used to show why this is the case.) Because there is
no communication between the components D and B there is no need to impose any of the
restrictions that were needed for the parallel composition operator.

The choice operator disjoins its arguments adding first to each a predicate stating that vari-
ables in the A-list of the other operation which are not also in their A-list remain unchanged.
It also has a requirement that the combined operations have the same parameters.

Given the operations, DOp and BOp of Section 4.2, therefore, the operation in the equivalent
constructed class is

Should that be [] and
not A in 1S.27

18

— DOpBOp
Az, y)
r, o'+ X
v,y Y
20,21 7

PNy =y)
v
(g Na' =2)

Hence, we can simplify preconditions as follows.

pre(DOpBOp)=32' : Xy : Y e (pAy =y) V(gAd =)
=32 X5y :YepAy =y vVE:X;y:Yegha' =ux)
=32 Xep)V(3y :Yegq)
[since y is not free in p and z is not free in ¢]
= pre DOp V pre BOp

In addition, we have

DOpBOp= (DOp N[y = y]) V (BOp A\ [=z])
= DOpV BOp
[since y is not in the A-list of DOp and z is not in the A-list of BOp]

Hence, the simulation rules can be re-expressed as follows.

Definition 3 Interleaving downward simulation
A CSP expression D ||| B is an operation downward simulation of the Object-Z class A if
the following hold.

IS.1 V AState; DState; BState o pre AOp <= pre DOp V pre BOp
IS.2 V AState; DState; BState; DState’; BState’ @ DOp A BOp —> (3 AState’ o AOp)
IS.3 V DInit N\ Blnit e (3 Alnit e true)

These rules can be modified for hiding in exactly the same way as the parallel composition
rules.

5 Data Refinement

In this section we generalise the results from Section 4 to cover data refinement. That
is, we consider the case when the state space of A is changed when refining this class to
(D || B) \ {#1,...,2,}, and as noted in Section 3, a retrieve relation Abs is used in these
circumstances to verify the simulation rules. Our task here then is to determine how this
impacts on the structural refinement rules given in Definitions 2 and 3.

19

In taking a change of data into account we first note that the construction of the single class
C which is semantically identical to (D || B) \ {#1,...,@,} is unchanged. Hence the impact
of data refinement only occurs in using the simulation rules when verifying the refinement
from C to the original component class A.

Next we note that for parallel composition restriction 1 allows us to describe the retrieve
relation Abs from A to C' as Absp A Absg, where Absp is a retrieve relation from D to A,
and similarly for Absg.

With this in place the rules for parallel composition are easily expressed as follows.

PS.1V AState; DState; BState o
Absp A Absp = (pre AOp <= pre DOplun!/z17,. .., wy!/2,7]
A
pre BOp[wn+1!/zn+1?a sy wn+m!/zn+m?])
PS.2 V AState; DState; BState; DState’; BState' o
Absp AN DOplz11/ 217, ..o, 20!/ 207]
A
Absg A BOp[zns1!/ 204175+ oy Zntm!/ Znem?)
= (T AState’ @ AOp A Abs, A Absh)
PS.3 V DInit A\ BInit @ (3 AInit @ Absp A Absg)

For interleaving we place no restrictions on the classes D and B, and therefore use a single
retrieve relation linking the state of A to DState A BState. The requirements then become:

IS.1 V AState; DState; BState @ Abs —> (pre AOp <= pre DOp V pre BOp)
IS.2 V AState; DState; BState; DState’; BState' e

Abs A DOp A BOp — (3 AState’ @ AOp A Abs')
1S.3 V DInit A Blnit ¢ (3 AlInit e Abs)

5.1 Example - A Vending Machine

This example illustrates both interleaving and data refinement, and we decompose a single
vending machine into two vending machines acting in parallel. The initial specification allows,
for the sake of illustration, up to two coins to be entered and for a coffee to be served for
each input.

— 2VM

money : {0,1,2}

__INIT
money = 0
_ Coin _ Coffee
A(money) A(money)

money’ = money + 1 money’ = money — 1

20

We now refine 2VM into DVM|||BVM where each component DVM and BVM is a simple
vending machine that allows just one drink to be dispensed at a time. Both components are
in fact given by the same class definition:

coin : B
__INIT
= coin
_Coin _ Coffee
A(coin) A(money)
= coin A\ coin cotn A\ = coin

In order to verify the refinement we need to use data refinement techniques, and in this
example the retrieve relation we use is:

__ Abs
2VMState
DVMState N BVMState

money = 0 < (= D.coin A = B.coin)
money = 1 < (= D.coin A B.coin) V (D.coin A = B.coin)
money = 2 < (D.coin A B.coin)

To verify the refinement we have to prove conditions IS.1 - 3, these are straightforward.
For example, IS.1 for the Coin operation requires that we show that

Abs A (money € {0,1}) < (= D.coin V = B.coin)
The other conditions are equally trivial.

Note that when introducing interleaving in the case of data refinement it is not always
possible to split Abs into two retrieve relations Absp A Absp.

6 Conclusions

References

