
Derrick, John and Smith, Graeme (2000) Structural refinement in Object-Z
/ CSP. In: Grieskamp, Wolfgang and Stanten, Thomas and Stoddart, Bill,
eds. Integrated Formal Methods Second International Conference. Lecture
Notes in Computer Science . Springer, Berlin, Germany, pp. 194-213. ISBN
978-3-540-41196-3.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21935/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-40911-4_12

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21935/
https://doi.org/10.1007/3-540-40911-4_12
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Structural re�nement in Object-Z / CSPJohn Derrick1 and Graeme Smith21 Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK.2 Software Veri�cation Research Centre, University of Queensland 4072, AustraliaAbstract. In this paper we discuss re�nements of speci�cations written using Object-Z and CSP where we change the structure of the speci�cation when performing there�nement. Keywords: Object-Z, CSP, re�nement.1 IntroductionThere has been an increasing amount of work recently on combining state based languagessuch as Z[?] and Object-Z[?] with process algebras such as CSP[?] and CCS[?]. The motiva-tion for the work is that these combinations of languages provide a suitable medium for thedescription of complex systems which involve aspects of both concurrency and non-trivialdata structures. Indeed, there are many application areas for such an approach includingthe obvious area of distributed systems speci�cation.The combination we are interested in here is the use of Object-Z together with CSP. Thiscombination of languages has been investigated by a number of researchers including Fischer[?], Smith [?] and Mahony and Dong [?]. In this paper we work with the integration describedby Smith [?] and Smith and Derrick [?,?], although the concerns we address are relevant toall combinations of these two languages.In the integration discussed here Object-Z is used to describe the components of a system,and these are then combined using CSP operators which describe how the componentssynchronise and communicate. For example, an elevator in a building might be described inthis approach as (kjn :NameUsern)kLiftSys where Usern and LiftSys are given as Object-Zclasses describing a user and the lift respectively, and the CSP operators k and kj describethe interaction between these components. The combined notation bene�ts from reusingexisting notations, being relatively simple and having a well-de�ned meaning given by asemantics based upon the failures-divergences semantics of CSP.Of course as well as specifying systems we need a method of developing them, and there hasbeen considerable work on re�nement for both state-based languages and process algebras.This work has been applied to the combination of Object-Z and CSP by Smith and Derrick[?,?] who develop state-based re�nement relations for use on the Object-Z components withinan integrated speci�cation. Because Object-Z classes have been given a CSP semantics in

2the combined language, the re�nements are compositional so that when a single Object-Zcomponent is re�ned then so is the overall Object-Z / CSP speci�cation. For example, if were�ne the single LiftSys component to LiftSys2 then application of the theory tells us that(kjn :NameUsern)kLiftSys2 will be a re�nement of (kjn :NameUsern)kLiftSys.However, the rules presented in [?,?] do not allow the structure of the speci�cation to bechanged in a re�nement. That is, only single Object-Z classes can be re�ned individually andtherefore the structure of the speci�cation, and in particular the use of the CSP operators,has to be �xed at the initial level of abstraction. This is clearly undesirable and in this paperwe provide a means to re�ne the very structure of a speci�cation written in the integratednotation.In particular, we develop re�nement rules that allow us to re�ne a single Object-Z class intoa number of communicating or interleaved classes. For example, we will show how to re�nethe single LiftSys into (LiftkCon) which consists of a Lift operated by a controller Con. Thisapproach will therefore allow concurrency to be introduced during re�nement as and whenappropriate rather than having to �x the eventual structure of the implementation early inthe development life-cycle. Similar concerns have been addressed by Fischer and Wehrheim[?], however there the emphasis was on using model checking in order to demonstrate re-�nement between speci�cations with di�erent structures. Our work compliments this worknicely.This paper is structured as follows. In Sections 2 and 3 we discuss the integration andre�nement of speci�cations written using Object-Z and CSP. Then in Section 4 we lookat operation re�nements between speci�cations where we change their structure, and wedevelop rules for introducing the CSP parallel operators k and kj. These rules are illustratedusing the elevator case study. In Section 5 we generalise this approach to look at datare�nement where we change the data representation of the classes, and a vending machineprovides a suitable example to illustrate its use. We conclude in Section 6.2 Combining Object-Z and CSPIn this section we discuss the speci�cation of systems described using a combination ofObject-Z and CSP. In general the speci�cation of a system described using these languagescomprises three phases. The �rst phase involves specifying the components using Object-Z,the second involves modifying the class interfaces (e.g. using inheritance) so that they willcommunicate and synchronise as desired, and the third phase constructs the �nal system bycombining the components using CSP operators.Since all interaction of system components is speci�ed via the CSP operators a restrictedsubset of Object-Z is used. In particular, there is no need for object instantiation, polymor-phism, object containment nor any need for the parallel or enrichment schema operators.Similarly not all CSP operators are required. For example, neither piping nor the sequen-tial composition operator are needed. These restrictions help simplify the language andits semantic basis considerably. Furthermore, a well-de�nedness condition is placed on theCSP hiding operator to stop the introduction of unbounded nondeterminism (see [?] for adiscussion of this aspect).

32.1 Example - A lift systemAs a simple example we consider the classic lift case study [?]. The components of our systemwill be the users and the elevator system, and both are speci�ed by Object-Z classes. To doso let Name denote the names of all possible users of the system, and suppose the available
oors in a building are described as follows.minFloor ;maxFloor : NminFloor < maxFloorFloor == minFloor ::maxFloorA single user is capable of one operation: to request a lift to a di�erent
oor, where theircurrent
oor is denoted by position.Username : Nameposition : FloorINITposition = minFloorRequestr ! : Floorr ! 6= positionOur initial speci�cation also contains the Object-Z class LiftSys which describes an abstractview of the elevator system. The class consists of four operations: Request models requestsfor the lift being made by customers, CloseD and OpenD model the closing and openingof the lift doors respectively, and Move describes the movement of the lift inside the shaft.Which request is serviced next is non-deterministic { any valid request is potentially chosen.Status ::= open j closed j stop

4 LiftSysreq : PFloorpos : Floordoor : StatusINITreq = ? ^ pos = minFloor ^ door = openRequest�(req)f ? : Floorreq 0 = req [ff ?g CloseD�(door)req 6= ?door = open ^ door 0 = closedOpenD�(door)door = stop ^ door 0 = openMove�(req ; pos; door)f ! : Floordoor = closed ^ door 0 = stoppos0 2 reqreq 0 = req n fpos0gpos0 = f !To specify the complete system we combine the components together in a way which capturestheir interaction. If we de�ne Usern to be the User class with name instantiated to n [?],then this interaction is given byBuilding = (kjn :NameUsern)kLiftSyswhich describes a single lift with which a number of users can independently interact.2.2 The semantic modelCombined Object-Z and CSP speci�cations are given a well-de�ned meaning by giving theObject-Z classes a failures-divergences semantics identical to that of a CSP process. In afailures-divergences semantics a process is modelled by a triple (A;F ;D) where A is itsalphabet, F its failures and D its divergences. The failures of a process are pairs (t ;X)where t is a �nite sequence of events that the process may undergo, and X is a set of eventsthe process may refuse to perform after undergoing t .To give Object-Z classes a failures-divergences semantics the failures of a class are derivedfrom its history , that is from the Object-Z semantic model of a class [?].

5In doing so Object-Z operations are mapped to CSP events using the following functionwhich turns an operation op with assignment of values to its parameter p to the appropriateevent:event((op; p)) = op:�(p)The meta-function � replaces each parameter name in p by its basename, i.e., it removesthe ? or !. Thus the event corresponding to an operation (op; p) is a communication eventwith the operation name op as the channel and an assignment of values to the basenamesof the operation's parameters as the value passed on that channel. For example, the eventcorresponding to a user requesting a
oor f is Request :f(r ; f)g.Since Object-Z does not allow hiding of operations (hiding is only possible at the CSP level),divergence is not possible within a component. Therefore a class is represented by its failurestogether with empty divergences.As well as giving a well de�ned meaning to a combined Object-Z / CSP speci�cation, thesemantics also allows a coherent theory of re�nement to be developed. We discuss this inthe next section.3 Re�nement in Object-Z and CSPWith our integrated semantics, re�nement is based upon CSP failures-divergences. Thus aspeci�cation C is a re�nement of a speci�cation A iffailures C � failures A and divergences C � divergences Aand if we are considering a single Object-Z component we need consider only the failuressince its divergences will be empty as noted above.However, calculating the failures of a system is not practical for anything other than smallspeci�cations. To make the veri�cation of re�nements tractable we can adapt state-basedveri�cation techniques for use in our combined notation, and in particular adapt the idea ofupward and downward simulations used in Z [?]. This allows re�nements to be veri�ed atthe speci�cation level, rather than working explicitly in terms of failures, traces and refusalsat the semantic level.The use of simulations between Object-Z components in the integrated notation is describedby Smith and Derrick in [?,?]. In a simulation, a retrieve relation Abs links the abstract state(AState) and the concrete state (CState), and, for example, the de�nition of a downwardsimulation is as follows.De�nition 1 Downward simulationAn Object-Z class C is a downward simulation of the class A if there is a retrieve relationAbs such that every abstract operation AOp is recast into a concrete operation COp and thefollowing hold.

6DS.1 8AState; CState � Abs =) (preAOp () preCOp)DS.2 8AState; CState; CState0 � Abs ^ COp =) (9AState 0 � Abs 0 ^AOp)DS.3 8CInit � 9AInit � AbsNot all re�nements change the state space, those that do not are called operation re�nementsas opposed to data re�nements and these can be veri�ed with a retrieve relation which isthe identity (thus simplifying the re�nement rules).The simulation rules allow a single Object-Z class to be re�ned by another. For example,we might re�ne the LiftSys component to LiftSys2. This new lift system is identical to theinitial speci�cation except that our Move operation is more deterministic and chooses thenearest requested
oor instead of an arbitrary one.LiftSys2... Move�(req ; pos; door)f ! : Floordoor = closed ^ door 0 = stoppos0 2 req ^:(9 p : req �j pos � p j<j pos � pos 0 j)req 0 = req n fpos0gpos0 = f !This re�nement can be veri�ed in the standard way using a downward simulation, andsince simulations are together sound and complete with respect to CSP failures-divergencesre�nement, (kjn :NameUsern)kLiftSys2 is a re�nement of (kjn :NameUsern)kLiftSys.However, this re�nement is between single Object-Z classes and simulations do not allow usto change the overall structure of the speci�cation. To understand the problem consider thefollowing example.3.1 Example - changing the structure of the lift speci�cationIn an implementation we wish to re�ne the lift system into two separate components (a liftand a controller) which re
ect more accurately the underlying physical con�guration. TheLift class will control the position and movement of the lift, whilst the controller Con willmarshal the requests and determine the next
oor that the lift should service.The Lift class consists of a position (pos), a door and a current target , and the class Conkeeps track of the current requests (req). The two classes communicate in order to determinethe current position and the new target
oor.The Lift class is as follows.

7Liftpos; target : Floordoor : Statustarget received : BINITpos = minFloor ^ door = openSetTarget�(target ; target received)f ?; pos! : Floorf ? = target 0 ^ pos! = posdoor = open: target received ^ target received 0CloseD�(door)target receiveddoor = open ^ door 0 = closedOpenD�(door)door = stop ^ door 0 = openMoveOneFloor�(pos)door = closedpos > target) pos0 = pos � 1pos < target) pos0 = pos + 1Move�(door ; target received)f ! : Floordoor = closed ^ door 0 = stop: target received 0pos = target ^ f ! = posThe controller accepts requests and determines which
oor the lift should go to next. Now,instead of being completely non-deterministic, the
oor closest to the current position is cho-sen. To achieve this, the two classes communicate when performing the SetTarget operation.A similar communication takes place in the Move operation to determine whether the lifthas stopped, and if so which
oor has been reached. We have also changed the granularityof Move from LiftSys by using MoveOneFloor to move the lift one
oor at a time.

8Note also that neither class contains the complete temporal ordering of operations. This willbe determined by the �nal synchronisation between the two classes.Conreq : PFloortarget sent : BINITreq = ? ^ :closeRequest�(req)f ? : Floorreq 0 = req [ff ?g SetTarget�(target sent)f !; pos? : Floor:target sent ^ target sent 0f ! 2 req:(9 p : req �j pos? � p j<j pos? � f ! j)CloseD�(target sent)target sent ^ :target sent 0 Move�(req ; target sent)f ? : Floorreq 6= ?req 0 = req n ff ?g: target sent 0It is then possible to show (e.g. by a calculation of failures-divergences) that LiftSys isre�ned by (LiftkCon) n fSetTarget ;MoveOneFloorg1. However, we cannot use simulationsto verify the re�nement. Furthermore, if we compare the LiftSys component with those givenby Lift and Con we cannot even claim that individually the latter classes re�ne LiftSys. Inparticular,{ the classes are not conformal , i.e. neither Lift nor Con contain all the operations inLiftSys, yet they also contain additional operations such as SetTarget ;{ the new operations have additional inputs and outputs, and{ the behaviour of the operations is di�erent, e.g. the preconditions have been changed.Yet clearly (LiftkCon)nfSetTarget ;MoveOneFloorg is a re�nement of LiftSys, and what weseek to do is to derive state-based techniques that allow us to verify re�nements like thesewithout having to expand the synchronisation between the two classes and then calculatetheir failures. The next section discusses how we can do this.1 Throughout this paper we use the shorthand E n fOpg to denote the hiding of all events corre-sponding to the operation Op. In general, the names of these events will consist of a mappingfrom the parameters of the operation to their values, as well as the name of the operation.

94 Operation Re�nementIn this section, we present simulation rules that allow us to prove operation re�nementsbetween Object-Z classes and CSP expressions involving more than one Object-Z class. Therules are extended to data re�nement in Section 5.In Smith and Derrick [?,?], simulation rules which correspond to failures-divergences re�ne-ment were presented for re�ning an Object-Z class to another Object-Z class. To build onthis work, we show, in this section, how to construct an Object-Z class which is semanticallyequivalent to a CSP expression involving parallel composition and hiding. This constructedclass, and hence the equivalent CSP expression, can be shown to be a re�nement of anotherclass using the existing simulation rules.From the relationship between the schemas of the constructed class and those of the com-ponent classes of the CSP expression, we can also re-express the existing simulation rules interms of schemas of the component classes.Figure 1 illustrates the process. We wish to re�ne a class A into (D k B) n fx1; : : : ; xng. Todo so we show that (D k B) n fx1; : : : ; xng is failures-divergences equivalent to the Object-Zclass C , and then derive simulation rules to show that C is a downward simulation of A. Theusefulness of the approach is that these simulation rules are expressed in terms of the originalclasses B and D , thus these rules allow us to verify the re�nement without constructing thesemantically equivalent class C .
refinement via derived
 simulation rules

(D || B) \ {x ...x } E \ {x ...x } C

A

refinement via existing
 simulation rules

1 nn1 Figure 1. Approaches to operation re�nementIn Section 4.1 we show how to construct the semantically equivalent class and in Section 4.2we derive the simulation rules in terms of the component classes of the CSP expression.In Section 4.3 we prove the re�nement of the Lift example from Section 3. The ideas areextended to the CSP interleaving operator jjj in Section 4.4.4.1 Constructing an equivalent classOur approach works for re�nements of a class A into speci�cations of the form (D k B) nfx1; : : : ; xng where classes D and B and events x1; : : : ; xn are restricted as follows.

101. The variables declared in the state schema of class D are distinct from those declaredin the state schema of class B .2. Any operations common to D and B (i.e. they have the same operation name) haveparameters with identical basenames (i.e., apart from the ?'s and !'s).3. Each hidden event xi , i 2 1 : :n, may occur a �nite number of times immediately beforea visible event y corresponding to one particular operation and not at any other time.In such cases, the �nite sequence of hidden events followed by the event y represents anoperation re�nement of an event y of the abstract speci�cation.4. When an operation name is shared by D and B , an input in one of the operations withthe same basename as an output in the other cannot be constrained more than theoutput. That is, given that Op in D has input x? and predicate p and Op in B hasoutput x ! and predicate q , the following must hold.9BState;BState0 � q) 9DState; DState 0 � p[x !=x?]where DState and BState are the state schemas of classes D and B respectively, andp[x !=x?] is the predicate p with all free occurrences of x? renamed to x !.These restrictions are in fact entirely natural consequences of the events x1; : : : ; xn acting asa communication medium between the two classes.Restriction 1 allows us to derive simulation rules expressed as rules on the two separateclasses. Restriction 2 says that operations common to D and B will communicate on commonchannels, and restriction 3 stops divergence due to in�nite sequences of hidden events.The reason for the �nal restriction can be seen if we consider the following same-namedoperations from classes D and B .Opx? : Nx? 6 5 Opx ! : Nx ! 6 10The two operations are intended to communicate via their parameters. The predicate of theoperation from D , that with the input, places a stronger condition on the communicatedvalue than the predicate of the operation from B (thus restriction 4 is not satis�ed). Theresult is that the operations can occur with the communicated value less than or equal to 5.Now consider re�ning the operation in B to the following.Opx ! : N5 < x ! 6 10This is possible since re�nement allows conditions on outputs to be strengthened [?]. How-ever, now the synchronisation of the operations in D and B cannot occur since there isno value of the communicated variable which satis�es both. Hence, despite the individualclasses D and B being re�ned, the resulting composed system is not re�ned (since we havee�ectively increased the refusals for any trace after which Op could have been performed).Restriction 4 prevents this situation from occurring.

11We will now show how to construct an equivalent class C for the CSP expression (D kB) n fx1; : : : ; xng by considering �rst parallel composition and then hiding.Parallel composition Consider classes D and B below where i ; j ; k 2 N and j 6 i .DDStateDINITOp1...Opi BBStateBINITOpi�j+1...OpkWhen j 6= 0, the classes share the operation names Opi�j+1 : : :Opi .The parallel composition of classes D and B , D k B , is semantically equivalent to thefollowing class.CDState ^ BStateDINIT ^ BINITOp1...Opkwhere for each n : 1 : : i � j , Opn is de�ned as in D , and for each n : i +1 : : k , Opn is de�nedas in B , and for each n : i � j + 1 : : i , Opn is the associative parallel composition [?] of thede�nition in D with the de�nition in B , i.e. D :Opn k! B :Opn .The associative parallel composition operator of Object-Z, k!, conjoins its argument oper-ations and renames any inputs in one operation for which there exists a common-namedoutput in the other operation to an output. The common-named parameters are henceidenti�ed in the conjoined operation and exist as an output.Therefore, for each n : i� j +1 : : i , due to the DState and BState declaring distinct variables(restriction 1), Opn in C transforms those variables from DState according to the operationOpn of D and those variables in BState according to the operation Opn of B . Furthermore,Opn in C has parameters with identical basenames to those in Opn of D and B . Therefore,the alphabet of C is the union of the alphabets of D and B .To see why the constructed class C is equivalent to D k B , consider deriving the failures ofC by the approach outlined in [?]. The failures of C are all traces s and refusal sets X [Ywhere{ s is a trace comprising events corresponding to operations Op1 : : :Opk ,{ X and Y are sets of events corresponding to operations in D and B respectively,

12{ after s, since DState is only changed by events corresponding to operations of D (due toDState and BState declaring distinct variables), X includes only those events that canbe refused by D after undergoing trace s restricted to the alphabet of D ,{ similarly, Y includes only those events that can be refused by B after undergoing traces restricted to the alphabet of B .Hence,failures(C) = fs;X [Y j s 2 alphabet(D) [alphabet(B)^ (s B alphabet(D);X) 2 failures(D)^ (s B alphabet(B);Y) 2 failures(B)gSince an Object-Z class has no divergences, this is equivalent to the failures of (D k B) asgiven by Hoare [?].Hiding Consider the class E below where Op2 occurs n : N times before each occurrenceof Op3 and not at any other time.EEStateEINITOp1Op2Op3The CSP expression which hides Op2 in E , i.e., E n fOp2g, is semantically equivalent tothe following class. (`Op3' denotes the name of the operation Op3 in E , as opposed to itsde�nition denoted simply by Op3.)CEStateEINITOp1`Op3' b= Op2 n (p1; : : : ; pn) o9 : : : o9Op2 n (p1; : : : ; pn) o9Op3where p1; : : : ; pn are the parameters of Op2.Consider deriving the failures of the constructed class C by the approach outlined in [?,?].The failures of C are all traces t and refusal sets X where there exists a failure (s;Y) of Esuch that s restricted to the events of C is t , and Y includes, as well as the events in X , allevents corresponding to Op2.Hence,failures(C) = fs B alphabet(C);X j (s;X [fOp2g) 2 failures(E)gSince an Object-Z class has no divergences, this is equivalent to the failures of E n fOp2g asgiven by Hoare [?]. (The de�nition can be extended for hiding of multiple operations in theobvious way.)

134.2 Deriving the simulation rulesGiven a re�nement (D k B)nfx1; : : : ; xng ofA, we could verify the re�nement by constructingan equivalent class as outlined in Section 4.1 and using the simulation rules of Smith andDerrick [?]. However, it is preferable not to have to construct an equivalent class but toinstead have rules which refer directly to the schemas of the component classes D and B .We now show how we can derive these rules.Parallel composition We begin by considering the case where we have parallel compositiononly (and no hiding). For operation names occurring in only one component class, theoperation given this name in the constructed class is identical to that in the componentclass in which it occurs. Hence, the simulation rules are unchanged.For shared operations, however, the operation in the constructed class is the associativeparallel composition of the operations in the component classes. In this case to verify there�nement we can use the downward simulation rules DS.1 and DS.2 which, for the com-municating operations, require that:DS:10 8AState; DState; BState � pre AOp () pre (DOp k! BOp)DS:20 8AState; DState; BState; DState 0; BState0 �(DOp k! BOp) =) (9AState 0 � AOp)where DState and BState, and DOp and BOp are the two component states and operationsrespectively.These rules still involve an operation, DOp k! BOp, to be constructed from the two classes.However, we can by-pass the necessity to construct this operation as follows. Consider thefollowing operations DOp and BOp (p and q are predicates).DOp�(x)x ; x 0 : Xz? : Zp BOp�(y)y ; y 0 : Yz ! : Zqwhere x and y are the state variables of the two component classes and are distinct (byrestriction 1).The associative parallel composition of these operations isDOp k! BOp�(x ; y)x ; x 0 : Xy ; y 0 : Yz ! : Zp[z !=z?] ^ q

14where p[z !=z?] is the predicate p with all free occurrences of z? renamed to z !.Hence we can simplify the precondition calculation as follows:pre(DOp k! BOp)� 9 x 0 : X ; y 0 : Y ; z ! : Z � p[z !=z?] ^ q� 9 x 0 : X ; y 0 : Y ; z ! : Z ;w ! : Z � p[w !=z?] ^ q[by restriction 4]� (9 x 0 : X ;w ! : Z � p[w !=z?]) ^ (9 y 0 : Y ; z ! : Z � q)[since p[w !=z?] and q refer to distinct variables]� preDOp[w !=z?] ^ preBOpIn addition, we haveDOp k! BOp � DOp[z !=z?]^ BOpExtrapolating to the general case, we have the following.pre(DOp k! BOp) � preDOp[w1!=z1?; : : : ;wn !=zn?]p̂reBOp[wn+1!=zn+1?; : : : ;wn+m!=zn+m?]DOp k! BOp � DOp[z1!=z1?; : : : ; zn !=zn?]B̂Op[zn+1!=zn+1?; : : : ; zn+m !=zn+m?]Hence, the simulation rules can be re-expressed as follows.De�nition 2 Parallel downward simulationA CSP expression D k B is an operation downward simulation of the Object-Z class A if Dand B satisfy restrictions 1-4 (above) and the following hold.PS:1 8AState; DState; BState �preAOp () preDOp[w1!=z1?; : : : ;wn !=zn?]p̂reBOp[wn+1!=zn+1?; : : : ;wn+m!=zn+m?]PS:2 8AState; DState; BState; DState 0; BState0 �DOp[z1!=z1?; : : : ; zn !=zn?]B̂Op[zn+1!=zn+1?; : : : ; zn+m !=zn+m?]=) (9AState 0 � AOp)PS:3 8DInit ^ BInit � (9AInit � true)Hiding When we have hiding (as well as parallel composition), for those particular op-erations which can be preceded by a �nite sequence of hidden operations, we replace theoperation in the simulation rules with a sequential composition comprising the sequence ofhidden operations and the operation. For example, if Op3 can be preceded by n : N occur-rences of a hidden operation Op2 (as in the example of Section 4.1), we replace Op3 in thesimulation rules by Op2 n (p1; : : : ; pn) o9 : : : o9 Op2 n (p1; : : : ; pn) o9Op3.

15There are two cases to consider. The �rst when one of the hidden events xi occurs in bothclasses D and B , and the second when it occurs in just one class. Our lift example illustratesboth: SetTarget occurs in Lift and Con whereas MoveOneFloor only occurs in Lift .Case 1. Suppose, without loss of generality, an event x occurs in just one class D in (DkB)nfxg. Let us denote this operation by Dx . Then Dx is not involved in any communication,and we therefore have to show a simulation between AOp and Dx o9 (DOp k! BOp).Since the state spaces of D and B are disjoint this can be re-written as (Dx o9DOp) k! BOp,and thus the simulation rules for the operations require that (eliding the quanti�cation overthe state spaces):PS:1 preAOp () pre(Dx o9DOp[w1!=z1?; : : : ;wn !=zn?])p̂reBOp[wn+1!=zn+1?; : : : ;wn+m!=zn+m?]PS:2 (Dx o9 DOp[z1!=z1?; : : : ; zn !=zn?])B̂Op[zn+1!=zn+1?; : : : ; zn+m !=zn+m?]=) (9AState 0 � AOp)Case 2. Suppose, without loss of generality, an event x occurs in both classes (e.g. in orderto perform a communication as in SetTarget) in D in (DkB)nfxg and that it communicatesover channel p. Let Dx denote the operation x in class D etc. Then we have to show asimulation between AOp and ((Dx k! Bx) n fp!g) o9 (DOp k! BOp).Since the state spaces of D and B are disjoint this can be re-written as ((Dx o9 DOp) k!(Bx o9BOp))nfp!g. Since hiding distributes through pre, the simulation requirements become:PS:1 preAOp () 9 p! � pre(Dx o9DOp[w1!=z1?; : : : ;wn !=zn?])p̂re(Bx o9 BOp[wn+1!=zn+1?; : : : ;wn+m !=zn+m?])PS:2 9 p! � ((Dx o9DOp[z1!=z1?; : : : ; zn !=zn?])(̂Bx o9 BOp[zn+1!=zn+1?; : : : ; zn+m !=zn+m?])=) (9AState 0 � AOp)These rules easily generalise to multiple events and parameters, as well as to the case whenthe hidden event x occurs more than once before its corresponding visible event. This ap-proach is illustrated in the example of the next section.4.3 ExampleUsing these rules we can now show that LiftSys is re�ned by (LiftkCon)nfSetTarget ;MoveOneFloorg.To do so we must check that the decomposition satis�es the restrictions 1-4 outlined at thestart of Section 4.1, and then verify conditions PS.1-3.

16Restrictions Restriction 1 clearly holds. For restriction 2 we have to compare parametersin SetTarget , CloseD and Move between the two classes Lift and Con. In each case thebasenames in the pairs of operations are the same (e.g. f in Move).The hidden operations are SetTarget and MoveOneFloor . A boolean variable in each classhas been inserted to ensure that SetTarget happens once, but only once, before each (visible)CloseD operation. Restriction 3 therefore holds for SetTarget .MoveOneFloor is slightly more complicated, because in e�ect the re�nement has decomposedthe Move in LiftSys into a �nite number of MoveOneFloor operations followed by a Movein the classes Lift and Con. However, restriction 3 is still satis�ed because MoveOneFloorcan only happen a �nite number of times (until the lift reaches its target), after which aMove must happen.We also have to check the restrictions on the predicates given by 4. Thus, for example, forthe Move operation we have to check:9 pos; target ; door ; pos0; target 0; door 0 �door = closed ^ door 0 = stoppos = target ^ f ! = pos)9 req ; close; req 0; close 0 � req 6= ? ^ req 0 = req n ff !gWhich, since no constraints are being placed on the input, is trivially satis�ed.Simulation rule PS.1 For each operation in LiftSys we have to show that either it is astandard re�nement if it occurs in just one class, or show that PS.1 holds if it occurs inboth classes.For the former, Request and OpenD are identical in the re�nement, and both operationsappear in just one class.For operations CloseD and Move we are going to have to demonstrate that PS.1 holds, re-membering that we have to take into account the hidden operations SetTarget andMoveOneFloorin doing so.Consider the Move operation. The MoveOneFloor hidden event can occur a �nite number oftimes before it, thus according to the above we need to consider the e�ect ofMoveOneFloorn o9Move where MoveOneFloorn represents n sequential compositions. Although this soundscomplicated, it is not di�cult in practice. Simply looking at the behaviour ofMoveOneFloorand Move together shows us that we have to verify (for some n):pre LiftSys:Move , preLift :(MoveOneFloorn o9 Move) ^ preCon:Moveand this boils down to the trivialdoor = closed ^ req 6= ?, (door = closed) ^ (req 6= ?)

17Simulation rule PS.2 In a similar fashion we must show PS.2 holds for both CloseD andMove. For example, for CloseD we need to show thatCon:(SetTarget o9CloseD [pos!=pos?]) ^ Lift :(SetTarget o9CloseD [f !=f ?])) (9LiftSysState � LiftSys:CloseD)This amounts to showing thatf ! 2 req:(9 p : req �j pos? � p j<j pos? � f ! j)door = open ^ door 0 = closedf ! = target 0 ^ pos! = pos) 9LiftSysState � req 6= ? ^ door = open ^ door 0 = closedwhich again is clearly true.Simulation rule PS.3 This amounts to showing that together the initialisations of Liftand Con imply the initialisation in LiftSys.Therefore LiftSys is re�ned by (LiftkCon)n fSetTarget ;MoveOneFloorg, and since the hid-den events do not occur in Usern we can conclude that (kjn :NameUsern)kLiftSys is re�nedby (kjn :NameUsern)k(LiftkCon) n fSetTarget ;MoveOneFloorg.4.4 Rules for introducing interleavingWe can also derive rules which allow us to re�ne a class A into D jjj B , by a similarderivation to the above. Given a CSP expression involving interleaving of the form D jjjB , an equivalent class can be constructed following the approach for parallel compositionexcept that the Object-Z choice operator[?], denoted, is used in place of associative parallelcomposition to combine common-named operations. (Reasoning in terms of failures similarto that for parallel composition can be used to show why this is the case.) Because there isno communication between the components D and B there is no need to impose any of therestrictions that were needed for the parallel composition operator.The choice operator disjoins its arguments adding �rst to each a predicate stating that vari-ables in the �-list of the other operation which are not also in their�-list remain unchanged.It also has a requirement that the combined operations have the same parameters.Given the operations, DOp and BOp of Section 4.2, therefore, the operation in the equivalentconstructed class is

18 DOpBOp�(x ; y)x ; x 0 : Xy ; y 0 : Yz?; z ! : Z(p ^ y 0 = y)_(q ^ x 0 = x)Hence, we can simplify preconditions as follows.pre(DOpBOp)� 9 x 0 : X ; y 0 : Y � (p ^ y 0 = y) _ (q ^ x 0 = x)� (9 x 0 : X ; y 0 : Y � p ^ y 0 = y) _ (9 x 0 : X ; y 0 : Y � q ^ x 0 = x)� (9 x 0 : X � p) _ (9 y 0 : Y � q)[since y is not free in p and x is not free in q]� preDOp _ preBOpIn addition, we haveDOpBOp� (DOp ^ [y 0 = y])_ (BOp ^ [x 0 = x])� DOp _ BOp[since y is not in the �-list of DOp and x is not in the �-list of BOp]Hence, the simulation rules can be re-expressed as follows.De�nition 3 Interleaving downward simulationA CSP expression D jjj B is an operation downward simulation of the Object-Z class A ifthe following hold.IS:1 8AState; DState; BState � preAOp () preDOp _ preBOpIS:2 8AState; DState; BState; DState 0; BState 0 � DOp ^ BOp =) (9AState 0 � AOp)IS:3 8DInit ^ BInit � (9AInit � true)Should that be [] andnot ^ in IS.2? These rules can be modi�ed for hiding in exactly the same way as the parallel compositionrules.5 Data Re�nementIn this section we generalise the results from Section 4 to cover data re�nement. Thatis, we consider the case when the state space of A is changed when re�ning this class to(D k B) n fx1; : : : ; xng, and as noted in Section 3, a retrieve relation Abs is used in thesecircumstances to verify the simulation rules. Our task here then is to determine how thisimpacts on the structural re�nement rules given in De�nitions 2 and 3.

19In taking a change of data into account we �rst note that the construction of the single classC which is semantically identical to (D k B) n fx1; : : : ; xng is unchanged. Hence the impactof data re�nement only occurs in using the simulation rules when verifying the re�nementfrom C to the original component class A.Next we note that for parallel composition restriction 1 allows us to describe the retrieverelation Abs from A to C as AbsD ^AbsB , where AbsD is a retrieve relation from D to A,and similarly for AbsB .With this in place the rules for parallel composition are easily expressed as follows.PS:1 8AState; DState; BState �AbsD ^AbsB =) (preAOp () preDOp[w1!=z1?; : : : ;wn!=zn?]p̂reBOp[wn+1!=zn+1?; : : : ;wn+m!=zn+m?])PS:2 8AState; DState; BState; DState 0; BState0 �AbsD ^DOp[z1!=z1?; : : : ; zn !=zn?]ÂbsB ^ BOp[zn+1!=zn+1?; : : : ; zn+m !=zn+m?]=) (9AState0 � AOp ^Abs0D ^Abs0B)PS:3 8DInit ^ BInit � (9AInit � AbsD ^AbsB)For interleaving we place no restrictions on the classes D and B , and therefore use a singleretrieve relation linking the state of A to DState ^ BState. The requirements then become:IS:1 8AState; DState; BState � Abs =) (preAOp () preDOp _ preBOp)IS:2 8AState; DState; BState; DState 0; BState0 �Abs ^DOp ^ BOp =) (9AState 0 � AOp ^ Abs 0)IS:3 8DInit ^ BInit � (9AInit � Abs)5.1 Example - A Vending MachineThis example illustrates both interleaving and data re�nement, and we decompose a singlevendingmachine into two vending machines acting in parallel. The initial speci�cation allows,for the sake of illustration, up to two coins to be entered and for a co�ee to be served foreach input.2VMmoney : f0; 1; 2gINITmoney = 0Coin�(money)money 0 = money + 1 Co�ee�(money)money 0 = money � 1

20We now re�ne 2VM into DVM kjBVM where each component DVM and BVM is a simplevending machine that allows just one drink to be dispensed at a time. Both components arein fact given by the same class de�nition:coin : BINIT: coinCoin�(coin): coin ^ coin Co�ee�(money)coin ^ : coinIn order to verify the re�nement we need to use data re�nement techniques, and in thisexample the retrieve relation we use is:Abs2VMStateDVMState ^ BVMStatemoney = 0, (: D :coin ^ : B :coin)money = 1, (: D :coin ^ B :coin) _ (D :coin ^ : B :coin)money = 2, (D :coin ^ B :coin)To verify the re�nement we have to prove conditions IS.1 - 3, these are straightforward.For example, IS.1 for the Coin operation requires that we show thatAbs ^ (money 2 f0; 1g), (: D :coin _ : B :coin)The other conditions are equally trivial.Note that when introducing interleaving in the case of data re�nement it is not alwayspossible to split Abs into two retrieve relations AbsD ^AbsB .6 ConclusionsReferences

