Specification and Analysis of Automata-based
Designs

Jeremy Bryans' and Lynne Blair? and Howard Bowman' and John Derrick’

! Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent,
CT?2 7NF, UK,
2 Computing Department, Faculty of Applied Sciences, Lancaster University,
Lancaster, LA1 4YR, UK

Abstract. One of the results of research into formal system specifica-
tion has been the large number of notations which have been developed.
Of these notations, automata have emerged as a promising vehicle for the
specification, and particularly the analysis, of systems. This is especially
so when the systems under consideration include timing requirements,
and timed automata model such systems as a finite set of states with
timed transitions between them. However, not all specifications involve
deterministic timing, and stochastic automata can be used in these cir-
cumstances.

In this paper we consider both timed and stochastic automata, and
demonstrate how they can be used in the same design. We will also
consider what analysis of the specification can then be performed. In par-
ticular, we will describe how to translate stochastic to timed automata,
and look at two approaches to model checking the stochastic components
of an integrated design.

Keywords: Timed automata, stochastic automata, model checking.

1 Introduction

One of the results of research into formal system specification has been the large
number of notations which have been developed. There are now many notations
which can be used to specify and design systems. Potential problems with this
are that specifiers working on the same system may be familiar with different
notations, and that different notations may be better suited for different parts
of the same design.

Even within notations there can be variants, and in this paper we will confine
ourselves to automata. We will demonstrate how different automata notations
can be used in the same design, and how analysis of the specification can be
performed according to the particular notation used. This means that designers
need not be restricted to a monolithic notation, and that the most convenient
notation can be chosen to describe each component within the design.
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In this paper we will focus on timed automata with deadlines and stochastic
automata. Timed automata are now well established as a specification nota-
tion, and there has been extensive work on analysis techniques for them, and in
particular model checking algorithms. Stochastic automata are a relatively new
extension to timed automata, where the emphasis has been shifted from deter-
ministic timing to timings picked from a probabilistic distribution, thus enabling
a new range of systems to be specified.

The structure of the paper is as follows. In Section 2 we present the automata-
based notations that we will use throughout the paper, and in particular timed
automata with deadlines and stochastic automata. Section 3 presents an example
using these notations which models cars arriving at a port wishing to board
a ferry. Section 4 looks at possible ways to analyse such a specification, and
compares them with each other.

Specifically we are interested in timed vs stochastic analysis. For the former
there is a wide range of techniques available and therefore we concentrate on how
we can integrate the stochastic components into this analysis. To this end we
show how a stochastic automata can be translated into a timed automata with
deadlines, as this allows the integrated specification to be interpreted within a
single simpler notation.

However this clearly involves a loss of some stochastic information, and to
perform stochastic analysis we look at two approaches to model checking the
stochastic components of an integrated design. Finally in Section 5 we draw
some conclusions, and mention ongoing and possible future work.

2 Notations

For the purposes of this paper, we choose automata as a “base” notation, and we
will use the timed automata with deadlines (TAD) of [BST98], and the stochastic
automata (SA) of [DKB98] as necessary. Although different versions of timed
automata exist, we chosen TAD over the others because of the ease of translating
from SA to TAD (see Section 4.1.) Both TAD and SA are extensions of ordinary
automata, and we give definitions for them now.

Definition 1 In this paper, a TAD is:

— A discrete labelled transition system (U, —, A) where

e !/ is a finite set of discrete states

e A is a finite set of actions

e -C U x A XU is an untimed transition relation
— Aset X ={=z,...,z,} of non-negative real valued variables called clocks.
— A labelling function h mapping untimed transitions into timed transitions:

h(“? a’? ul) = (u7 (a'7 g7 d7 r)? ul) Where
e g and d are the guard and deadline of the transition. Guards and dead-
lines are predicates p defined by the following grammar:

pu=z#w|pAp|pVp
where z € X, w € Ry and # € {<,<,>,>}.
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— r is the set of clocks which are reset to zero when the transition takes place.

A transition may occur only when the guard is true, and must occur if the
deadline is true. (The definition of the grammar for defining the guard and
deadline predicate is slightly modified from the one found in [BST98].)

The clocks in TAD always begin counting at zero and count upwards. This
is in contrast to the clocks in SA, which are set to some value in Ryq according
to their probability distribution function, and count downwards.

As an example, consider the TAD depicted in Figure 1. From state ug, the
action ¢ may occur provided the clock z; is greater than 2, and must occur if it
is equal to 4. When it does occur, the clock z» is reset and the automaton moves
to state u;. From here, the action b may occur provided clock z; is in the range
[6,8] and clock z is greater than 3. The deadline imposes no restriction, and
when the action does occur no clocks are reset.

a b

gz >2 g:x1 €[6,8]Azy >3
d:false
T:m

Fig.1. A Timed Automaton with Deadlines

Stochastic automata are an extension of timed automata, in which the time
at which actions occur may be a random variable. In this paper we use the
stochastic automata defined in [DKB98], which are presented below.

Definition 2 A stochastic automaton is a structure (S, so,C, A, ¥, k, F') where:
S is a set of locations with sy € S being the initial location, C is the set of all
clocks, and A is a set of actions.
—»C S x (A xC) xS is the set of edges. If s and s’ are states, a is an
action and C is a finite subset of C, then we denote the edge (s,a,C,s") €

a,C a
by s = s’ and we say that C is the trigger set of action a. We use s s’ as a

shorthand notation for 3 C.s a—f s'. In this paper we will associate only a single
clock with each action.
kS = Pgn(C) is the clock setting function, and indicates which clocks are
to be set in which states, where P, (C) is the finite powerset of clocks.
F:C— (R — [0,1]) assigns to each clock a distribution function such that,
for any clock z, F(z)(t) = 0 for ¢t < 0; we write F, for F(z) and thus F,(t)
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states the probability that the value selected for the clock z is less than or equal
to ¢. Each clock z € C is a random variable with distribution F,.

In this paper we will assume that clocks are only used on transitions em-
anating from the states in which they are set. We will also find it easier to
refer to probability density functions (pdf’s), which are the derivatives of the
distribution functions. We will use P, for the pdf of F,.

As an example, of a stochastic automaton, consider Figure 2. This is written
({s0,51},%0,{z,y}, {a, b}, »,k,{Ps,Py}) where
—»={(s0,0a,{z}, 1), (s0,,{y}, s0)}, and the pdf’s for clocks z and y are

Po(t)=4—2t,if t € [1,2] Py (t)= 2t — 2,if ¢t € [1,2]
= 0, otherwise = 0, otherwise

as depicted. The horizontal axis measures time, and the vertical axis measures
the probability of the clock being set to a value less than that time.

The SA starts in location sg, and both clocks z and y are set according to
the functions F, and Fy. If clock = expires first, then action a is triggered and
the automaton moves to location s;. This location has no outgoing transitions,
and so nothing further happens. If clock y expires first, then action b is triggered
and the automaton returns to state sp. The clocks are reset according to their
distributions, and the process is repeated.

b,{y}

a{=}

Fig. 2. A Stochastic Automaton

In the following Section we will show how we can combine both stochastic
and timed automata using a larger example.

3 Example - A car ferry

To illustrate these ideas, we will specify a system consisting of a number of cars
at a port, trying to get on to a ferry (see Figure 3.) The cars enter the port
at the traffic lights, and join the queue in the middle of the port. When they
reach the front of the queue they move to the next free kiosk, where they are
processed, and then they go on to join the ferry.



kiosk

kiosk

Fig. 3. The port

In this example, there are two parts of the model over which we do not have
direct control. One is the arrival of the cars into the queue, and the other is the
rate at which individual kiosk workers work. For both of these we use stochastic
automata to model the inherent uncertainty.

We will consider that actions synchronise with other actions of the same
name, and that in a parallel composition the intersection of the alphabets syn-
chronise (as in [Hoa85].) For the car arrivals, we use the distribution shown in
Figure 4. This can be thought of as modelling the behaviour resulting from a set
of nearby traffic lights: If one car arrives it is quite likely that another will arrive
very shortly afterwards, (between 5 and 10 seconds). If no car arrives in this time
then the lights will turn red, and no car will be able to arrive until 30 seconds
have passed. Whether or not this function is an accurate representation of the
environment in which the system will have to operate can only be determined
by observing the actual behaviour of the cars.

{e1} pdf for clock c1
car_arrives
H [] —
5 10 30 35 55 60 80 85 seconds

Fig. 4. Modelling car arrivals as an SA

We have a little more control over the behaviour of the kiosks, in that we
can choose how many are open at a time. However, we cannot determine the
rate at which the individual operators work, and so this must be represented as
a stochastic function.

An individual kiosk is modelled as an SA, as shown in Figure 5. We model
the kiosk as opening immediately, and twelve seconds after a kiosk opens, a car
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{0} {e2} {c3} leaves

car_leaves car_leaves

{0}

close

pdf fo%

30 60

seconds

Fig. 5. Modelling a single kiosk as an SA

leaves the queue to be processed. This is modelled by the clock ¢y, which is
deterministically set to 12 seconds every time state K, is entered.

The processing takes between 30 and 60 seconds, and this continues until the
kiosk is closed. This is modelled by the clock cs, set to a value between 30 and
60 seconds according to the pdf:

P.(t)= %, if ¢ € [30, 60]
=0, otherwise

Here we are in fact modelling the impact on the queue (using the car_leaves
actions) rather than on the kiosk directly.

We include the state K4 in order to be able to distinguish the state in which
the first car has been processed (and the second one has left the queue.) We will
make use of this later in the analysis of the kiosk.

The queue that the cars form is essentially passive. It does not instigate
either the car_arrives or the car_leaves actions, and it therefore needs no time
deadlines (as TAD) or clocks (as SA) and can be modelled as a simple automaton.
This is shown in Figure 6 (where states 3 and 4 and the transitions between them
have been elided).

Notice that quite general distributions are allowed in our stochastic au-
tomata. Here we have used combinations of uniform and triangular distributions,
and in general arbitrary distributions are allowed.

4 Analysing the integrated specifications

In order to analyse a specification defined using a number of different notations,
we have two possibilities. We can either re-interpret all the components within
one notation (and then use whatever analysis that notation permits) or we can
analysis the components of the specification. Here we briefly consider both ap-
proaches which are illustrated using the car ferry example.
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car_arrives car_arrives

car_leaves car_leaves car_leaves

Fig. 6. Modelling the queue as an automaton

4.1 Translating SA to TAD

In this Section we consider the first approach and show how to interpret stochas-
tic automata in terms of timed automata with deadlines. The interpretation must
preserve the behaviour of the SA within a TAD as far as possible, so for each
SA we must be able to generate the TAD which is capable of exactly the same
set of runs' as the SA. However, since a TAD cannot represent probabilistic
information, this translation will necessarily lose all probabilistic information.

To illustrate the ideas we begin by deriving timed automata with deadlines
from the stochastic automata in the example, and then give the formal definition
of the translation.

Consider the SA (Figure 4) that models the arrivals of cars at the car ferry.
The clock ¢; is set (as we may deduce from the pdf of clock ¢;) to some value in
[5,10] U [30, 35] U [55,60] U[80,85], and then proceeds to count down. The action
car_arrives occurs when this clock expires.

We derive an corresponding TAD (Figure 7) which must therefore be capable
of performing the action car_arrives at any time in the range [5,10] U [30, 35] U
[55,60] U [80, 85], and the action must be performed by (or at) time 85. We use
z1 to correspond to clock ¢, and set the guard (the permitted occurrence times)
to z; € [5,10] U [30,35] U [55,60] U [80,00) and the deadline to z; > 85. Setting
the deadline to greater than or equal to 85 means that if this state is entered
when z; > 85 the action must occur.

In the SA, clock ¢ is reset every time the state A; is entered, so in the TAD
r (which is the set of clocks being reset to zero when the transition occurs) is
set to {z }.

This turns out to be an automaton with just one state, however, not all
translations are this simple, for example the kiosk description (Figure 5) becomes
the TAD in Figure 8.

Using the ideas illustrated in these examples we can formalise the full defini-
tion of the translation of stochastic automata to timed automata with deadlines
as follows.

Definition 3 Translating an SA into a TAD.

L' A run is a (finite or infinite) sequence of timed actions.
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car_arrives
g:z1 €[5,10]U[30,35]U[55,60]U[80,85]
d:z1 =85

rizTy

Fig. 7. The translation of the car arrivals into a TAD

car_leaves
open car—leaves car—leaves g:x3>30
gizg 212 g:x3 230 d:z3>60
d:zo 212 d:z3 260 TiTg

rizy TiT3

close

g:true

d:true g:true

r:0 d:true
r:

Fig. 8. The translation of a single kiosk into a TAD

Let (S,s0,C,A,—w»,k, F) be a stochastic automaton. This automaton is
mapped to the timed automaton (Z, — 7, A) where

Z =S8
- A=A
— — is the transition relation —» with the clocks removed, i.e.
—7C Z x A x Z where
—rr={(2,0,2") | 3Cs.(s,a,C,,s") € BAs=2Ns"=2'}
— The set X contains (non-negative real-valued) clock variables, labelled z;
and indexed as the SA variables.
Viye X e el
— h(s,a,s") = (s,(a,g,d,r),s") where C, is the trigger set for action ¢ and
* 9= (Acec, % > min(c)
A
V.ec, Ti €ran(c;))
\%
Ae.cc, @i = max(c;)
o d= A, cc, i > max(c;)
where min(¢;), max(¢;) and ran(¢;) are the minimum, maximum and
range respectively of the pdf of clock c;.
o = k(s")
We are endebted to Pedro D’Argenio [D’A] for this definition, and it is dis-
cussed in more detail in [BD99].
With the stochastic components turned into timed automata with deadlines,
temporal observations of the system can be made, for example to address ques-
tions such as “Is a particular throughput of cars possible?”, or “With only one
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kiosk open, what is the minimum/ maximum time before the queue overflows?”.
To support this task, work has started on extending the LUSCETA tool [JB99].
It currently supports the creation and editing of timed automata and timed
automata with deadlines. It also supports the compositon of either type of au-
tomata providing all automata are of the same type (the composition rules for
timed automata with deadlines are presented in [BS98]). However, the simulator
currently only supports timed automata; work is still required to extend this to
timed automata with deadlines.

This translation provides us with the ability to analyse the temporal proper-
ties of a specification that originally included stochastic information. However,
this translation has the obvious drawback that the exact stochastic properties
of the specification can no longer be investigated. We move on to consider this
in the next Section.

4.2 Model Checking Stochastic Automata

The alternative to translating SA to TAD (and thereby forfeiting the stochastic
information) is to keep the stochastic information by retaining the SA, and per-
forming more complex analysis only on the stochastic components. Much of the
work done in stochastic modelling and performance evaluation uses the assump-
tion that the random times at which actions occur are drawn from exponential
distributions. While this allows many performance evaluation results to be de-
rived, in practice it is unrealistic to consider only exponential distributions, and
it is necessary for arbitrary distributions to be considered.

The analysis technique we consider is model checking [CGP99]. This has
proved very successful in many applications, and applying it to stochastic sys-
tems opens up several new research issues.

In this Section we discuss two approaches to model checking stochastic au-
tomata. The first calculates exact answers for stochastic automata involving ar-
bitrary distributions. However, the cost of this precision is the complexity of the
algorithm and we also describe a further algorithm which uses a discretisation
to reduce this complexity and is discussed in more detail in [BBDO00].

A probabilistic real time temporal logic The basic approach we take to
model checking is to try to show that a temporal logic property is satisfied by
a stochastic automaton description of the system. Here we use a simple proba-
bilistic real-time temporal logic. The purpose of the logic is to express properties
that we wish to check the stochastic automaton against and the logic we define
allows us to check a range of such properties.

The syntax of our logic is

Ypu=ttfap| | Y1 A | [ Uucdo] = p
pu=tt]ap| ¢ o1 A ¢

Here ap is an atomic proposition, ¢ € N (natural numbers), p € [0,1] is a
probability value and ~,~€ {<,>,<,>}. The temporal aspects are described
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by [¢1 U~ p2] =~ p which is an “until” formula. In general we would associate sets
of atomic propositions with states of automata; however here it will be sufficient
to assume a single distinct proposition for each state, (effectively identifying
states and propositions) so that each state A, models the set of propositions
{A.,tt}. Using this logic we can also define a number of derived operators, for
details see [BBDOO].

To understand an “until” formula, it is simplest to begin with an untimed,
non-probabilistic version. Intuitively, ¢1 U ¢2 reads as: ¢; holds until ¢, does.
The subscript ~c is the time restriction — eg. if ~ is < then ¢» must hold before
(or at) time point ¢. The addition ~p is a probability restriction — e.g. if ~ is
> then ¢; U . ¢y must be true with probability greater than p.

The until formulae can only be used at the top level — they cannot be nested.
This is because the model checking algorithms we discuss can only evaluate
until formulae from the initial state; this is a necessary restriction of our current
approach.

With this syntax, an example of a valid formula that we can check against
the stochastic automaton in Figure 5 would be [ttl/<go K4] > 0.3. This states
that the probability of reaching the state Ky (and therefore having processed
the first car) within 60 seconds is greater than 0.3.

It should be clear that since we do not allow the until formulae to be nested
we can use the following recipe in order to model check a formula 1) of our logic
against a stochastic automaton A.

1. For each until subformula (i.e. of the form [¢1U ~.¢2] ~ p) in ¢ perform an
individual model check to ascertain whether

AE [p1lUectz] = p

2. Replace each until formula in ¢ by tt if its corresponding model check was
successful, or ff (- tt) otherwise.

3. Replace each atomic proposition in 1 by tt or ff depending upon its value in
the initial location of A.

4. v is now a ground term, i.e. truth values combined by a propositional connec-
tive (- and A). Thus, it can simply be evaluated to yield a truth value. The
automaton is a model of 4 if this evaluation yields tt, and is not otherwise.

We assume that when we wish to model check a property against an au-
tomaton, we are also given an adversary [BK98] to resolve the nondeterminism
within the automaton. Without this adversary, enumerative analysis would not
be possible; the provision of an adversary is a prerequisite of model checking.
To understand the notion of an adversary here, we must explain in a little more
detail our conceptual model of automata. We consider an automaton to operate
within an environment, and for this environment (if unspecified) to be the most
general environment possible, and to permit all behaviours of the automaton?.

% This follows closely the CSP [Hoa85] notion of process and environment, where the
environment, if unspecified, is taken to be the most nondeterministic process.
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We can then think of an adversary as an environment which is deterministic with
respect to the automaton, and therefore resolves all nondeterminism within it.
If, for example, we were checking a property of a single kiosk, we could choose
the adversary to perform the open action immediately, and to close the kiosk
again after three hours.
This recipe employs standard techniques apart from the individual checking
that A = [p1U~.P2] ~ p and this is what our two algorithms address.

The first algorithm — using region trees The first algorithm (called the
region tree algorithm) has similarities to the region graph construction of [AD94],
[ACD93], [KNSS00]. In general for this algorithm, we must assume that the clock
distribution functions are continuous within the range® of the function, in order
to ensure that the probability of two clocks expiring at the same time is zero.

The algorithm works by unfolding the automaton to construct a region tree,
and at each stage in the unfolding using the temporal logic formula to construct
a probabilistic region tree. The regions are formed using the notion of valuation
equivalence. A valuation records the values of all the clocks in a particular state
at a particular moment in time. The unique clock a € C, which we add to the
set of clocks, is used to facilitate the model checking. It keeps track of the total
time elapsed in the execution of the stochastic automaton, but plays no part in
the behaviour of the automaton.

Definition 4 A waluation is a function v : C J{a} — RU{L} such that v(z) =

L or v(z) < ZTmas, Where Z,q, is the maximum value to which clock z can be

set. If d € R>g, v — d is defined by V2 € CJ{a}.(v — d)(z) def v(z) — d. The

function min(v) returns the value of the smallest defined clock.

Since we assume that clocks are only used in the states in which they are set,
there is no need to remember their value once the state has been exited. Only
the clock a maintains its value; the rest are set to L. At the initialisation of a
stochastic automaton, clock a is set to the time value of the temporal formula,
and all other clocks are undefined. We define this initial valuation as O,,, if
O(a) = n.

We also need a notion of equivalence between the valuations, which we will
use to construct a finite number of regions at each node within the probabilistic
region tree.

Definition 5 Two clock valuations v and v’ are equivalent (denoted v = v')
provided the following conditions hold:

— For each clock z € CJ{a}, either both v(z) and v'(z) are defined, or
v(z) =L and v'(z) =L.

— For every (defined) pair of clocks z,y € CJ{a}.v(z) < v(y) & v'(z) <
v'(y)-

% The range of a function F, is given by the set {¢ | F.(¢) > 0}.



XII

The same clocks are defined in each valuation, and the order of the values
of the defined clocks is all that is important, since the actions are triggered by
the first clock to expire. Therefore we only need to know whether one clock is
greater than or less than another.

In building the region tree, each level of unfolding comprises two steps. First,
the regions within the region tree are formed by distinguishing the equivalence
classes at each node, then the nodes which can be reached given these equivalence
classes are calculated using the SA.

The probabilistic region tree records the resolution of the nondeterministic
choices and the probabilities at the final nodes represent the chances of taking
the particular sequence of actions that end in that node.

At each iteration, we update the information we have on the probability of
a path satisfying the formula. To do this, we define three new propositions, and
each node of the probabilistic region tree is labelled with p, f or u: p, if it has
passed (it is the end of a path which models the bounded until formula v); f, if it
has failed (it is the end of a path which cannot model 1), or u, if it is undecided.
We also have two global variables, Xp and Xf, which keep running totals of the
probabilities of the pass and fail paths.

The basic idea of the model checking algorithm is that we check the values of
Xp and Xf at each stage, and if we cannot deduce from these the truth or falsity
of the formula we are checking, we look more closely at the undecided nodes.
That is, we extend the undecided paths by each possible subsequent action, label
these new nodes p, f or u, and calculate their probabilities. We then add these
probabilities to X'p and Xf and repeat.

To determine the probabilities on the arcs, we need to use probability density
functions of the distribution functions, and integrate these in the order given by
the valuation equivalence class. It is this integration that is the cause of the
complexity in this region tree algorithm.

As an example, consider the formula mentioned earlier: [tt U <goK4] > 0.3,
which states that the probability of the first car processed by the kiosk being
processed within one minute from the kiosk opening is greater than 0.3. Even
though the kiosk contains a deterministically set clock (co is set to 12), we can
analyse it using the region tree algorithm because no other clocks can expire at
the same time.

An example of a nondeterministic region tree is shown in Figure 10. Consider
first the SA in Figure 9. When the clock z fires, both transitions e and b are
enabled, because both are governed by z. This gives rise to the nondeterministic
region tree in Figure 10, and if we are to model check such a region tree, the
nondetministic choice between a and b must be resolved by an adversary.

The region tree for this example is shown in Figure 11. Because there are no
nondeterministic choices in this region tree, the probabilistic region tree will be
structurally identical, the only difference being the labelling. For this reason, we
do not present the probabilistic region tree.

Consider region K; first. Since we are interested in the behaviour of the
kiosk after it opens, we have an adversary which makes the action open happen
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Fig. 9. A nondeterministic Stochastic Automaton

52

50 50 51

Fig. 10. A nondeterministic region tree

immediately. Thus the automaton moves to state Ko, where the clock co is
set. Since clock ¢; is deterministically set to 12, we only consider the valuation
equivalence ci < a°, and the region graph moves from region 0 to region 1. The
superscript indicates that this is the first time the clock has been set.

The automaton moves to state K3 when clock ¢y expires, this is represented
by the transition from region 1 to region 2. The clock a has not expired by this
state, since it is greater than clock c¢o, which has only just expired, but we have
not yet reached state Ky, so in the probabilistic region tree we would label this
state u (undecided). In this state clock ¢ is set, and there are two valuation
equivalences(where g; is the value of clock a at the time of transition): c3 < a*
(represented by region 3) and a' < c3 (represented by region 4). Both of these
moves will move the automaton to state K4 when clock c3 expires, but in one
instance (region 4 to region 6) it is too late, because clock a has already expired,
and so more than 60 seconds have passed. Region 6 is therefore labelled f in the
probabilistic region tree. In the other instance (region 3 to region 5) state Ky
has been reached within 60 seconds, and it is therefore labelled p.

To determine the exact probability of reaching region 5 (and any other regions
labelled with p), we need to use the probability density functions associated with
the clocks. In our example, since we know that the transition from state K5 to
state K3 occurs at precisely 12 seconds, a; is 48, the problem reduces to solving
the integration

48
| Pe
0
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which, since P, (t) = 0 when t is less than 30, is equal to
1 /8

— t— dt

which evaluates to 0.36, and so the formula is true.

This method could easily be adapted to answer queries such as “What is the
probability of reaching a certain state within a certain time?” and could return
a precise answer.

When the time of occurrence of one event may be dependent on the time
of occurrence of a large number of other events, all the probabilistic density
functions must be considered in order to calculate the probability of occurrence
of one event, and the integrals which result become very complex. In order to
avoid this, we consider a second algorithm, which uses discretisation.

£ K3 6 Ky
1 1
a < c3
0 K 1 K, 2 K3 3 K3 D Ky
| .1 o[~ 1 1=
Oso < a cz<a

Fig. 11. Diagram for region tree algorithm

The second algorithm — approximations using discretisation This al-
gorithm avoids the calculation of integrals that the region tree algorithm was
forced to undertake. In order for the discretisation to be possible we need to
make a number of assumptions. In particular, we assume that the range of the
clock functions is made up of a finite number of left/right closed intervals; that
is, we consider only functions F such that

{1 F'(t) > 0} = Uig <nlgis byl

where [g;, h;] is a left/right closed interval and n is the number of intervals
in the derivative. For example, the distributions on the stochastic automata
given in Figures 2 and 3 conform to this template. The template also allows
deterministic timing since the upper and lower bounds of an interval may be of
the formula [ U< ¢1] being satisfied at this point.* To build the next snapshot,
the algorithm picks out at each time point nd the transitions that the automaton
is capable of during the next interval of length §. Because ¢ is less than the
minimum of all the clock lower bounds, a maximum of one transition per path
can occur in each interval. Recording all possible states of the automaton at each
time point is therefore enough to record all the possible transitions.

1 We also require that 37n.nd = ¢, which ensures that one of the snapshots will be at
exactly time c.
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A snapshot is built by deriving a matrix for each state s and time ¢ (which
is a rational number and calculated as nd), denoted matriz(s,t), and placing
in this matrix a record of the probabilities of the various combinations of clock
values in state s at time ¢. Each matrix will have as many dimensions as its state
has clocks.

Each entry in the matrix matriz(s,t) is the probability that at time point
t, the automaton is in state s, and each clock is within a particular time range.
Thus, the value matriz(s, t)[k; ... ky] is the probability that at time point ¢, the
automaton is in state s, and v(¢;) € (6(k; — 1), k;] for each clock ¢;.

The algorithm stops when either enough information has been gathered to
determine the truth or falsity of the formula, or enough time has passed so
that nd > ¢, and allowing time to pass further will make no difference to the
information we already have. In this case the result undecided is returned.

K»,0) K3, 46)

|01 02300
10 20 c2 10 20 30 40 50 60 cs
K>, 0) K3, 56)

|t o 122000
10 20 c2 10 20 30 40 50 60 cs
K3, 20) K3, 66)

0003 32 320000
10 20 30 40 50 60 c3 |10 20 30 40 50 60 c3
K3, 36) K4,66)
005220 0004 &=
10 20 30 40 50 60 cs |10 20 30 40 50 60 cs

Fig. 12. matrices for the second algorithm

Consider again the formula [tt ¢/ <60K4] > 0.3. We choose § to be 10. The
first matrix to be constructed would be m(Kj,0), but the state K; has no as-
sociated clocks, therefore the automaton moves immediately to state K, and
matriz(Ks,0) is constructed (see Figure 12).

This matrix tells us that the probability of clock ¢, being somewhere between
the values 10 and 20 at time zero is 1.

There are two different procedures for updating a matrix (that is, to derive
matriz(s,0(n + 1)) from the matrices referring to time Jd(n)), both of which
correspond to different situations. The first corresponds to the situation within
the stochastic automaton where time passes, but the state remains unchanged.
In this case we must shift the clock configuration probabilities in the previous
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matrix down by one index step (which corresponds to § time passing) and add
the result to the matrix we are updating.

This is the situation here, and matriz (K>, 10) is formed as in Figure 12.

The second procedure is applied when new states can be reached from the
current state during the d time passing, and involves determining the probability
of entering these states. We do this by looking at all the probability values in
the matrix where at least one of the indices has the lowest possible value (10, in
this example). If this is the case then we know that at least one clock will expire
during the ensuing ¢ timestep.

If only one index in the configuration has the value 10 then only one clock
can expire, and only one state can be entered from this clock configuration, and
so the matrix for that state is built.

This is the case from matriz (K>, d), and so we get matriz(Ks,2d), which
tells us that the probability of being within state K3 at time 2§ with clock ¢3
between values 30 and 40 is l, being within state K3 at time 26 with clock c¢3
between values 40 and 50 is § and being within state K3 at time 2§ with clock
c3 between values 50 and 60 is 2.

If more than one index has the value 10, then we simply do not explore that
configuration any further, and the configuration probability is added to error.
In the example we are considering, this possibility does not occur.

In our example, the matrices matriz(Ks,30), matriz(Ks,40), matriz(Ks,50)
and matriz (K3, 60) can all be constructed simply by moving the clock configu-
ration probabilities with the previous matrices.

The second way to update a matrix corresponds to a transition from one
state to another within the automaton. For each matrix entry we calculate the
clock configuration probability, multiply it by the probability of moving into this
state at this time, and add it to the matrix entry we are updating. Thus, in the
example, we get matriz(Ky,60),

We have now reached the timepoint 69, which corresponds to 60 seconds, and
so the sum of all the probability values in the matrix at this point (81—1 + 8% + 8% =
%) is a lower bound on the probability that state K, will have been reached by
time 60. Thus, since we are interested in whether the probability is greater than
0.3, we can conclude that the formula is true. A smaller § would produce a more
accurate result, but we do not illustrate that here.

5 Conclusions

In this paper we have begun to tackle the problem of integrating various au-
tomaton based notations within a specification. Specifically, we have

— given a translation from stochastic automata to timed automata with dead-
lines and shown which properties are retained;

— presented two methods for model checking stochastic automata, the first
of which builds regions from the automaton, and uses integration of the
probability density functions and the second of which uses an approximation
technique based on discretisation.



XVII

Translating stochastic automata to timed automata with deadlines means
that, although the stochastic information is lost, we can analyse the composed
specification for temporal properties to do with, for example, throughput within
a certain time.

The model checking methods cannot consider the composed specification,
and must be restricted to the individual components, although the effects of the
environment may be represented by the adversary chosen.

The two model checking methods presented complement each other. The
region method is best used when the size of the model to be explored is small,
because the number of integrations to be performed goes up exponentially with
the number of clocks. The discretisation method is more promising for larger
models. It can produce upper and lower bounds on the probabilities, and is
therefore best suited for queries such as “Does the probability of reaching a
state s by a time ¢ lie within the range [a, b]?”

We are currently seeking to implement the second algorithm, and to integrate
it with the LUSCETA [JB99] tool. We would also like to consider how to model
check more general stochastic automata, and in particular to allow clocks to be
set and used in any state.
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