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t. One of the results of resear
h into formal system spe
i�
a-tion has been the large number of notations whi
h have been developed.Of these notations, automata have emerged as a promising vehi
le for thespe
i�
ation, and parti
ularly the analysis, of systems. This is espe
iallyso when the systems under 
onsideration in
lude timing requirements,and timed automata model su
h systems as a �nite set of states withtimed transitions between them. However, not all spe
i�
ations involvedeterministi
 timing, and sto
hasti
 automata 
an be used in these 
ir-
umstan
es.In this paper we 
onsider both timed and sto
hasti
 automata, anddemonstrate how they 
an be used in the same design. We will also
onsider what analysis of the spe
i�
ation 
an then be performed. In par-ti
ular, we will des
ribe how to translate sto
hasti
 to timed automata,and look at two approa
hes to model 
he
king the sto
hasti
 
omponentsof an integrated design.Keywords: Timed automata, sto
hasti
 automata, model 
he
king.1 Introdu
tionOne of the results of resear
h into formal system spe
i�
ation has been the largenumber of notations whi
h have been developed. There are now many notationswhi
h 
an be used to spe
ify and design systems. Potential problems with thisare that spe
i�ers working on the same system may be familiar with di�erentnotations, and that di�erent notations may be better suited for di�erent partsof the same design.Even within notations there 
an be variants, and in this paper we will 
on�neourselves to automata. We will demonstrate how di�erent automata notations
an be used in the same design, and how analysis of the spe
i�
ation 
an beperformed a

ording to the parti
ular notation used. This means that designersneed not be restri
ted to a monolithi
 notation, and that the most 
onvenientnotation 
an be 
hosen to des
ribe ea
h 
omponent within the design.



II In this paper we will fo
us on timed automata with deadlines and sto
hasti
automata. Timed automata are now well established as a spe
i�
ation nota-tion, and there has been extensive work on analysis te
hniques for them, and inparti
ular model 
he
king algorithms. Sto
hasti
 automata are a relatively newextension to timed automata, where the emphasis has been shifted from deter-ministi
 timing to timings pi
ked from a probabilisti
 distribution, thus enablinga new range of systems to be spe
i�ed.The stru
ture of the paper is as follows. In Se
tion 2 we present the automata-based notations that we will use throughout the paper, and in parti
ular timedautomata with deadlines and sto
hasti
 automata. Se
tion 3 presents an exampleusing these notations whi
h models 
ars arriving at a port wishing to boarda ferry. Se
tion 4 looks at possible ways to analyse su
h a spe
i�
ation, and
ompares them with ea
h other.Spe
i�
ally we are interested in timed vs sto
hasti
 analysis. For the formerthere is a wide range of te
hniques available and therefore we 
on
entrate on howwe 
an integrate the sto
hasti
 
omponents into this analysis. To this end weshow how a sto
hasti
 automata 
an be translated into a timed automata withdeadlines, as this allows the integrated spe
i�
ation to be interpreted within asingle simpler notation.However this 
learly involves a loss of some sto
hasti
 information, and toperform sto
hasti
 analysis we look at two approa
hes to model 
he
king thesto
hasti
 
omponents of an integrated design. Finally in Se
tion 5 we drawsome 
on
lusions, and mention ongoing and possible future work.2 NotationsFor the purposes of this paper, we 
hoose automata as a \base" notation, and wewill use the timed automata with deadlines (TAD) of [BST98℄, and the sto
hasti
automata (SA) of [DKB98℄ as ne
essary. Although di�erent versions of timedautomata exist, we 
hosen TAD over the others be
ause of the ease of translatingfrom SA to TAD (see Se
tion 4.1.) Both TAD and SA are extensions of ordinaryautomata, and we give de�nitions for them now.De�nition 1 In this paper, a TAD is:{ A dis
rete labelled transition system (U ;!;A) where� U is a �nite set of dis
rete states� A is a �nite set of a
tions� !� U �A� U is an untimed transition relation{ A set X = fx1; : : : ; xng of non-negative real valued variables 
alled 
lo
ks.{ A labelling fun
tion h mapping untimed transitions into timed transitions:h(u; a; u 0) = (u; (a; g ; d ; r); u 0) where� g and d are the guard and deadline of the transition. Guards and dead-lines are predi
ates p de�ned by the following grammar:p ::= x#w j p ^ p j p _ pwhere x 2 X , w 2 R>0 and # 2 f6; <;>;>g.



III{ r is the set of 
lo
ks whi
h are reset to zero when the transition takes pla
e.A transition may o

ur only when the guard is true, and must o

ur if thedeadline is true. (The de�nition of the grammar for de�ning the guard anddeadline predi
ate is slightly modi�ed from the one found in [BST98℄.)The 
lo
ks in TAD always begin 
ounting at zero and 
ount upwards. Thisis in 
ontrast to the 
lo
ks in SA, whi
h are set to some value in R>0 a

ordingto their probability distribution fun
tion, and 
ount downwards.As an example, 
onsider the TAD depi
ted in Figure 1. From state u0, thea
tion a may o

ur provided the 
lo
k x1 is greater than 2, and must o

ur if itis equal to 4. When it does o

ur, the 
lo
k x2 is reset and the automaton movesto state u1. From here, the a
tion b may o

ur provided 
lo
k x1 is in the range[6; 8℄ and 
lo
k x2 is greater than 3. The deadline imposes no restri
tion, andwhen the a
tion does o

ur no 
lo
ks are reset.
&%'$ &%'$ &%'$- -u0 u1 u2ag:x1>2d:x1=4r:x2 bg:x12[6;8℄^x2>3d:falser:;

Fig. 1. A Timed Automaton with DeadlinesSto
hasti
 automata are an extension of timed automata, in whi
h the timeat whi
h a
tions o

ur may be a random variable. In this paper we use thesto
hasti
 automata de�ned in [DKB98℄, whi
h are presented below.De�nition 2 A sto
hasti
 automaton is a stru
ture (S; s0; C;A;�I; �;F ) where:S is a set of lo
ations with s0 2 S being the initial lo
ation, C is the set of all
lo
ks, and A is a set of a
tions.�I� S � (A � C) � S is the set of edges. If s and s 0 are states, a is ana
tion and C is a �nite subset of C, then we denote the edge (s ; a;C ; s 0) 2 �Iby s a;C�I s 0 and we say that C is the trigger set of a
tion a. We use s a�I s 0 as ashorthand notation for 9C :s a;C�I s 0. In this paper we will asso
iate only a single
lo
k with ea
h a
tion.� : S ! P�n(C) is the 
lo
k setting fun
tion, and indi
ates whi
h 
lo
ks areto be set in whi
h states, where P�n(C) is the �nite powerset of 
lo
ks.F : C ! (R ! [0; 1℄) assigns to ea
h 
lo
k a distribution fun
tion su
h that,for any 
lo
k x , F (x )(t) = 0 for t < 0; we write Fx for F (x ) and thus Fx (t)



IVstates the probability that the value sele
ted for the 
lo
k x is less than or equalto t . Ea
h 
lo
k x 2 C is a random variable with distribution Fx .In this paper we will assume that 
lo
ks are only used on transitions em-anating from the states in whi
h they are set. We will also �nd it easier torefer to probability density fun
tions (pdf's), whi
h are the derivatives of thedistribution fun
tions. We will use Px for the pdf of Fx .As an example, of a sto
hasti
 automaton, 
onsider Figure 2. This is written(fs0; s1g; s0; fx ; yg; fa; bg;�I; �; fPx ;Pyg) where�I= f(s0; a; fxg; s1); (s0; b; fyg; s0)g, and the pdf's for 
lo
ks x and y arePx (t)= 4� 2t ; if t 2 [1; 2℄= 0; otherwise Py (t)= 2t � 2; if t 2 [1; 2℄= 0; otherwiseas depi
ted. The horizontal axis measures time, and the verti
al axis measuresthe probability of the 
lo
k being set to a value less than that time.The SA starts in lo
ation s0, and both 
lo
ks x and y are set a

ording tothe fun
tions Fx and Fy . If 
lo
k x expires �rst, then a
tion a is triggered andthe automaton moves to lo
ation s1. This lo
ation has no outgoing transitions,and so nothing further happens. If 
lo
k y expires �rst, then a
tion b is triggeredand the automaton returns to state s0. The 
lo
ks are reset a

ording to theirdistributions, and the pro
ess is repeated.
&%'$ &%'$-?�R s0 s1x ; y a;fxgb;fyg Px (t) = 2 AAAAA1 2 tPy (t) = �����2 t1 2Fig. 2. A Sto
hasti
 AutomatonIn the following Se
tion we will show how we 
an 
ombine both sto
hasti
and timed automata using a larger example.3 Example - A 
ar ferryTo illustrate these ideas, we will spe
ify a system 
onsisting of a number of 
arsat a port, trying to get on to a ferry (see Figure 3.) The 
ars enter the portat the traÆ
 lights, and join the queue in the middle of the port. When theyrea
h the front of the queue they move to the next free kiosk, where they arepro
essed, and then they go on to join the ferry.



V
ferry kioskkioskkiosk queue traÆ
 lights

Fig. 3. The portIn this example, there are two parts of the model over whi
h we do not havedire
t 
ontrol. One is the arrival of the 
ars into the queue, and the other is therate at whi
h individual kiosk workers work. For both of these we use sto
hasti
automata to model the inherent un
ertainty.We will 
onsider that a
tions syn
hronise with other a
tions of the samename, and that in a parallel 
omposition the interse
tion of the alphabets syn-
hronise (as in [Hoa85℄.) For the 
ar arrivals, we use the distribution shown inFigure 4. This 
an be thought of as modelling the behaviour resulting from a setof nearby traÆ
 lights: If one 
ar arrives it is quite likely that another will arrivevery shortly afterwards, (between 5 and 10 se
onds). If no 
ar arrives in this timethen the lights will turn red, and no 
ar will be able to arrive until 30 se
ondshave passed. Whether or not this fun
tion is an a

urate representation of theenvironment in whi
h the system will have to operate 
an only be determinedby observing the a
tual behaviour of the 
ars.
&%'$A1
1�R ? f
1g
ar arrives pdf for 
lo
k 
1

5 10 30 35 55 60 80 85 se
ondsFig. 4. Modelling 
ar arrivals as an SAWe have a little more 
ontrol over the behaviour of the kiosks, in that we
an 
hoose how many are open at a time. However, we 
annot determine therate at whi
h the individual operators work, and so this must be represented asa sto
hasti
 fun
tion.An individual kiosk is modelled as an SA, as shown in Figure 5. We modelthe kiosk as opening immediately, and twelve se
onds after a kiosk opens, a 
ar
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&%'$�R K1 f;gopen jf;g
loseY f
2g
ar leaves&%'$K2
2 j f
3g
ar leavesj&%'$K3
3 f
3g
ar leaves &%'$K4
3?Y f;g
losepdf for 
lo
k 
3���30 60 se
ondsFig. 5. Modelling a single kiosk as an SAleaves the queue to be pro
essed. This is modelled by the 
lo
k 
2, whi
h isdeterministi
ally set to 12 se
onds every time state K2 is entered.The pro
essing takes between 30 and 60 se
onds, and this 
ontinues until thekiosk is 
losed. This is modelled by the 
lo
k 
3, set to a value between 30 and60 se
onds a

ording to the pdf:Px (t)= t�30450 ; if t 2 [30; 60℄= 0; otherwiseHere we are in fa
t modelling the impa
t on the queue (using the 
ar leavesa
tions) rather than on the kiosk dire
tly.We in
lude the state K4 in order to be able to distinguish the state in whi
hthe �rst 
ar has been pro
essed (and the se
ond one has left the queue.) We willmake use of this later in the analysis of the kiosk.The queue that the 
ars form is essentially passive. It does not instigateeither the 
ar arrives or the 
ar leaves a
tions, and it therefore needs no timedeadlines (as TAD) or 
lo
ks (as SA) and 
an be modelled as a simple automaton.This is shown in Figure 6 (where states 3 and 4 and the transitions between themhave been elided).Noti
e that quite general distributions are allowed in our sto
hasti
 au-tomata. Here we have used 
ombinations of uniform and triangular distributions,and in general arbitrary distributions are allowed.4 Analysing the integrated spe
i�
ationsIn order to analyse a spe
i�
ation de�ned using a number of di�erent notations,we have two possibilities. We 
an either re-interpret all the 
omponents withinone notation (and then use whatever analysis that notation permits) or we 
ananalysis the 
omponents of the spe
i�
ation. Here we brie
y 
onsider both ap-proa
hes whi
h are illustrated using the 
ar ferry example.
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&%'$�R q0 
ar leavesY
ar arrivesj 
ar arrivesj
ar leavesY&%'$q1 &%'$q2 
ar arrivesj
ar leavesY &%'$q5Fig. 6. Modelling the queue as an automaton4.1 Translating SA to TADIn this Se
tion we 
onsider the �rst approa
h and show how to interpret sto
has-ti
 automata in terms of timed automata with deadlines. The interpretation mustpreserve the behaviour of the SA within a TAD as far as possible, so for ea
hSA we must be able to generate the TAD whi
h is 
apable of exa
tly the sameset of runs1 as the SA. However, sin
e a TAD 
annot represent probabilisti
information, this translation will ne
essarily lose all probabilisti
 information.To illustrate the ideas we begin by deriving timed automata with deadlinesfrom the sto
hasti
 automata in the example, and then give the formal de�nitionof the translation.Consider the SA (Figure 4) that models the arrivals of 
ars at the 
ar ferry.The 
lo
k 
1 is set (as we may dedu
e from the pdf of 
lo
k 
1) to some value in[5; 10℄[ [30; 35℄[ [55; 60℄[ [80; 85℄, and then pro
eeds to 
ount down. The a
tion
ar arrives o

urs when this 
lo
k expires.We derive an 
orresponding TAD (Figure 7) whi
h must therefore be 
apableof performing the a
tion 
ar arrives at any time in the range [5; 10℄[ [30; 35℄[[55; 60℄ [ [80; 85℄, and the a
tion must be performed by (or at) time 85. We usex1 to 
orrespond to 
lo
k 
1, and set the guard (the permitted o

urren
e times)to x1 2 [5; 10℄ [ [30; 35℄ [ [55; 60℄ [ [80;1) and the deadline to x1 > 85. Settingthe deadline to greater than or equal to 85 means that if this state is enteredwhen x1 > 85 the a
tion must o

ur.In the SA, 
lo
k 
1 is reset every time the state A1 is entered, so in the TADr (whi
h is the set of 
lo
ks being reset to zero when the transition o

urs) isset to fx1g.This turns out to be an automaton with just one state, however, not alltranslations are this simple, for example the kiosk des
ription (Figure 5) be
omesthe TAD in Figure 8.Using the ideas illustrated in these examples we 
an formalise the full de�ni-tion of the translation of sto
hasti
 automata to timed automata with deadlinesas follows.De�nition 3 Translating an SA into a TAD.1 A run is a (�nite or in�nite) sequen
e of timed a
tions.
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&%'$A1�R ? 
ar arrivesg:x12[5;10℄[[30;35℄[[55;60℄[[80;85℄d:x1=85r:x1Fig. 7. The translation of the 
ar arrivals into a TAD

&%'$�R K1 openg:trued:truer:x2 j
loseg:trued:truer:;

ar leavesg:x2>12d:x2>12r:x3&%'$K2 j 
ar leavesg:x3>30d:x3>60r:x3&%'$K3 
ar leavesg:x3>30d:x3>60r:x3 j ?Y &%'$K4Y 
loseg:trued:truer:;Fig. 8. The translation of a single kiosk into a TADLet (S; s0; C;A;�I; �;F ) be a sto
hasti
 automaton. This automaton ismapped to the timed automaton (Z ;�!T ;A) where{ Z = S{ A = A{ �!T is the transition relation �I with the 
lo
ks removed, i.e.�!T� Z �A� Z where�!T= f(z ; a; z 0) j 9Ca :(s ; a;Ca ; s 0) 2 �I^ s = z ^ s 0 = z 0g{ The set X 
ontains (non-negative real-valued) 
lo
k variables, labelled xiand indexed as the SA variables.8 i :xi 2 X , 
i 2 C{ h(s ; a; s 0) = (s ; (a; g ; d ; r); s 0) where Ca is the trigger set for a
tion a and� g = (V
i2Ca xi > min(
i )Ŵ
i2Ca xi 2 ran(
i ))_V
i2Ca xi > max(
i )� d = V
i2Ca xi > max(
i )where min(
i ), max(
i ) and ran(
i ) are the minimum, maximum andrange respe
tively of the pdf of 
lo
k 
i .� r = �(s 0)We are endebted to Pedro D'Argenio [D'A℄ for this de�nition, and it is dis-
ussed in more detail in [BD99℄.With the sto
hasti
 
omponents turned into timed automata with deadlines,temporal observations of the system 
an be made, for example to address ques-tions su
h as \Is a parti
ular throughput of 
ars possible?", or \With only one



IXkiosk open, what is the minimum/ maximum time before the queue over
ows?".To support this task, work has started on extending the LUSCETA tool [JB99℄.It 
urrently supports the 
reation and editing of timed automata and timedautomata with deadlines. It also supports the 
ompositon of either type of au-tomata providing all automata are of the same type (the 
omposition rules fortimed automata with deadlines are presented in [BS98℄). However, the simulator
urrently only supports timed automata; work is still required to extend this totimed automata with deadlines.This translation provides us with the ability to analyse the temporal proper-ties of a spe
i�
ation that originally in
luded sto
hasti
 information. However,this translation has the obvious drawba
k that the exa
t sto
hasti
 propertiesof the spe
i�
ation 
an no longer be investigated. We move on to 
onsider thisin the next Se
tion.4.2 Model Che
king Sto
hasti
 AutomataThe alternative to translating SA to TAD (and thereby forfeiting the sto
hasti
information) is to keep the sto
hasti
 information by retaining the SA, and per-forming more 
omplex analysis only on the sto
hasti
 
omponents. Mu
h of thework done in sto
hasti
 modelling and performan
e evaluation uses the assump-tion that the random times at whi
h a
tions o

ur are drawn from exponentialdistributions. While this allows many performan
e evaluation results to be de-rived, in pra
ti
e it is unrealisti
 to 
onsider only exponential distributions, andit is ne
essary for arbitrary distributions to be 
onsidered.The analysis te
hnique we 
onsider is model 
he
king [CGP99℄. This hasproved very su

essful in many appli
ations, and applying it to sto
hasti
 sys-tems opens up several new resear
h issues.In this Se
tion we dis
uss two approa
hes to model 
he
king sto
hasti
 au-tomata. The �rst 
al
ulates exa
t answers for sto
hasti
 automata involving ar-bitrary distributions. However, the 
ost of this pre
ision is the 
omplexity of thealgorithm and we also des
ribe a further algorithm whi
h uses a dis
retisationto redu
e this 
omplexity and is dis
ussed in more detail in [BBD00℄.A probabilisti
 real time temporal logi
 The basi
 approa
h we take tomodel 
he
king is to try to show that a temporal logi
 property is satis�ed bya sto
hasti
 automaton des
ription of the system. Here we use a simple proba-bilisti
 real-time temporal logi
. The purpose of the logi
 is to express propertiesthat we wish to 
he
k the sto
hasti
 automaton against and the logi
 we de�neallows us to 
he
k a range of su
h properties.The syntax of our logi
 is ::= tt j ap j :  j  1 ^  2 j [�1 U�
 �2℄ ' p� ::= tt j ap j : � j �1 ^ �2Here ap is an atomi
 proposition, 
 2 N (natural numbers), p 2 [0; 1℄ is aprobability value and ';�2 f<;>;6;>g. The temporal aspe
ts are des
ribed



Xby [�1 U�
 �2℄ ' p whi
h is an \until" formula. In general we would asso
iate setsof atomi
 propositions with states of automata; however here it will be suÆ
ientto assume a single distin
t proposition for ea
h state, (e�e
tively identifyingstates and propositions) so that ea
h state Ax models the set of propositionsfAx ; ttg. Using this logi
 we 
an also de�ne a number of derived operators, fordetails see [BBD00℄.To understand an \until" formula, it is simplest to begin with an untimed,non-probabilisti
 version. Intuitively, �1 U �2 reads as: �1 holds until �2 does.The subs
ript �
 is the time restri
tion | eg. if � is � then �2 must hold before(or at) time point 
. The addition 'p is a probability restri
tion | e.g. if ' is> then �1 U �
�2 must be true with probability greater than p.The until formulae 
an only be used at the top level | they 
annot be nested.This is be
ause the model 
he
king algorithms we dis
uss 
an only evaluateuntil formulae from the initial state; this is a ne
essary restri
tion of our 
urrentapproa
h.With this syntax, an example of a valid formula that we 
an 
he
k againstthe sto
hasti
 automaton in Figure 5 would be [ttU�60K4℄ > 0:3. This statesthat the probability of rea
hing the state K4 (and therefore having pro
essedthe �rst 
ar) within 60 se
onds is greater than 0.3.It should be 
lear that sin
e we do not allow the until formulae to be nestedwe 
an use the following re
ipe in order to model 
he
k a formula  of our logi
against a sto
hasti
 automaton A.1. For ea
h until subformula (i.e. of the form [�1U �
�2℄ ' p) in  perform anindividual model 
he
k to as
ertain whetherA j= [�1U�
�2℄ ' p2. Repla
e ea
h until formula in  by tt if its 
orresponding model 
he
k wassu

essful, or � (: tt) otherwise.3. Repla
e ea
h atomi
 proposition in  by tt or � depending upon its value inthe initial lo
ation of A.4.  is now a ground term, i.e. truth values 
ombined by a propositional 
onne
-tive (: and ^). Thus, it 
an simply be evaluated to yield a truth value. Theautomaton is a model of  if this evaluation yields tt, and is not otherwise.We assume that when we wish to model 
he
k a property against an au-tomaton, we are also given an adversary [BK98℄ to resolve the nondeterminismwithin the automaton. Without this adversary, enumerative analysis would notbe possible; the provision of an adversary is a prerequisite of model 
he
king.To understand the notion of an adversary here, we must explain in a little moredetail our 
on
eptual model of automata. We 
onsider an automaton to operatewithin an environment, and for this environment (if unspe
i�ed) to be the mostgeneral environment possible, and to permit all behaviours of the automaton2.2 This follows 
losely the CSP [Hoa85℄ notion of pro
ess and environment, where theenvironment, if unspe
i�ed, is taken to be the most nondeterministi
 pro
ess.



XIWe 
an then think of an adversary as an environment whi
h is deterministi
 withrespe
t to the automaton, and therefore resolves all nondeterminism within it.If, for example, we were 
he
king a property of a single kiosk, we 
ould 
hoosethe adversary to perform the open a
tion immediately, and to 
lose the kioskagain after three hours.This re
ipe employs standard te
hniques apart from the individual 
he
kingthat A j= [�1U�
�2℄ ' p and this is what our two algorithms address.The �rst algorithm { using region trees The �rst algorithm (
alled theregion tree algorithm) has similarities to the region graph 
onstru
tion of [AD94℄,[ACD93℄, [KNSS00℄. In general for this algorithm, we must assume that the 
lo
kdistribution fun
tions are 
ontinuous within the range3 of the fun
tion, in orderto ensure that the probability of two 
lo
ks expiring at the same time is zero.The algorithm works by unfolding the automaton to 
onstru
t a region tree,and at ea
h stage in the unfolding using the temporal logi
 formula to 
onstru
ta probabilisti
 region tree. The regions are formed using the notion of valuationequivalen
e. A valuation re
ords the values of all the 
lo
ks in a parti
ular stateat a parti
ular moment in time. The unique 
lo
k a 2 C, whi
h we add to theset of 
lo
ks, is used to fa
ilitate the model 
he
king. It keeps tra
k of the totaltime elapsed in the exe
ution of the sto
hasti
 automaton, but plays no part inthe behaviour of the automaton.De�nition 4 A valuation is a fun
tion v : CSfag ! RSf?g su
h that v(x ) =? or v(x ) � xmax , where xmax is the maximum value to whi
h 
lo
k x 
an beset. If d 2 R�0 , v � d is de�ned by 8 x 2 CSfag:(v � d)(x ) def= v(x ) � d . Thefun
tion min(v) returns the value of the smallest de�ned 
lo
k.Sin
e we assume that 
lo
ks are only used in the states in whi
h they are set,there is no need to remember their value on
e the state has been exited. Onlythe 
lo
k a maintains its value; the rest are set to ?. At the initialisation of asto
hasti
 automaton, 
lo
k a is set to the time value of the temporal formula,and all other 
lo
ks are unde�ned. We de�ne this initial valuation as On , ifO(a) = n.We also need a notion of equivalen
e between the valuations, whi
h we willuse to 
onstru
t a �nite number of regions at ea
h node within the probabilisti
region tree.De�nition 5 Two 
lo
k valuations v and v 0 are equivalent (denoted v �= v 0)provided the following 
onditions hold:{ For ea
h 
lo
k x 2 CSfag, either both v(x ) and v 0(x ) are de�ned, orv(x ) =? and v 0(x ) =?.{ For every (de�ned) pair of 
lo
ks x ; y 2 CSfag:v(x ) < v(y) , v 0(x ) <v 0(y).3 The range of a fun
tion Fx is given by the set ft j F 0x (t) > 0g.
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lo
ks are de�ned in ea
h valuation, and the order of the valuesof the de�ned 
lo
ks is all that is important, sin
e the a
tions are triggered bythe �rst 
lo
k to expire. Therefore we only need to know whether one 
lo
k isgreater than or less than another.In building the region tree, ea
h level of unfolding 
omprises two steps. First,the regions within the region tree are formed by distinguishing the equivalen
e
lasses at ea
h node, then the nodes whi
h 
an be rea
hed given these equivalen
e
lasses are 
al
ulated using the SA.The probabilisti
 region tree re
ords the resolution of the nondeterministi

hoi
es and the probabilities at the �nal nodes represent the 
han
es of takingthe parti
ular sequen
e of a
tions that end in that node.At ea
h iteration, we update the information we have on the probability ofa path satisfying the formula. To do this, we de�ne three new propositions, andea
h node of the probabilisti
 region tree is labelled with p, f or u: p, if it haspassed (it is the end of a path whi
h models the bounded until formula  ); f, if ithas failed (it is the end of a path whi
h 
annot model  ), or u, if it is unde
ided.We also have two global variables, �p and �f, whi
h keep running totals of theprobabilities of the pass and fail paths.The basi
 idea of the model 
he
king algorithm is that we 
he
k the values of�p and �f at ea
h stage, and if we 
annot dedu
e from these the truth or falsityof the formula we are 
he
king, we look more 
losely at the unde
ided nodes.That is, we extend the unde
ided paths by ea
h possible subsequent a
tion, labelthese new nodes p, f or u, and 
al
ulate their probabilities. We then add theseprobabilities to �p and �f and repeat.To determine the probabilities on the ar
s, we need to use probability densityfun
tions of the distribution fun
tions, and integrate these in the order given bythe valuation equivalen
e 
lass. It is this integration that is the 
ause of the
omplexity in this region tree algorithm.As an example, 
onsider the formula mentioned earlier: [tt U <60K4℄ > 0:3,whi
h states that the probability of the �rst 
ar pro
essed by the kiosk beingpro
essed within one minute from the kiosk opening is greater than 0:3. Eventhough the kiosk 
ontains a deterministi
ally set 
lo
k (
2 is set to 12), we 
ananalyse it using the region tree algorithm be
ause no other 
lo
ks 
an expire atthe same time.An example of a nondeterministi
 region tree is shown in Figure 10. Consider�rst the SA in Figure 9. When the 
lo
k x �res, both transitions a and b areenabled, be
ause both are governed by x . This gives rise to the nondeterministi
region tree in Figure 10, and if we are to model 
he
k su
h a region tree, thenondetministi
 
hoi
e between a and b must be resolved by an adversary.The region tree for this example is shown in Figure 11. Be
ause there are nonondeterministi
 
hoi
es in this region tree, the probabilisti
 region tree will bestru
turally identi
al, the only di�eren
e being the labelling. For this reason, wedo not present the probabilisti
 region tree.Consider region K1 �rst. Sin
e we are interested in the behaviour of thekiosk after it opens, we have an adversary whi
h makes the a
tion open happen
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Fig. 9. A nondeterministi
 Sto
hasti
 Automatons0 - s0x = x - s1- s2
Fig. 10. A nondeterministi
 region treeimmediately. Thus the automaton moves to state K2, where the 
lo
k 
2 isset. Sin
e 
lo
k 
2 is deterministi
ally set to 12, we only 
onsider the valuationequivalen
e 
12 < a0, and the region graph moves from region 0 to region 1. Thesupers
ript indi
ates that this is the �rst time the 
lo
k has been set.The automaton moves to state K3 when 
lo
k 
2 expires, this is representedby the transition from region 1 to region 2. The 
lo
k a has not expired by thisstate, sin
e it is greater than 
lo
k 
2, whi
h has only just expired, but we havenot yet rea
hed state K4, so in the probabilisti
 region tree we would label thisstate u (unde
ided). In this state 
lo
k 
3 is set, and there are two valuationequivalen
es(where a1 is the value of 
lo
k a at the time of transition): 
3 < a1(represented by region 3) and a1 < 
3 (represented by region 4). Both of thesemoves will move the automaton to state K4 when 
lo
k 
3 expires, but in oneinstan
e (region 4 to region 6) it is too late, be
ause 
lo
k a has already expired,and so more than 60 se
onds have passed. Region 6 is therefore labelled f in theprobabilisti
 region tree. In the other instan
e (region 3 to region 5) state K4has been rea
hed within 60 se
onds, and it is therefore labelled p.To determine the exa
t probability of rea
hing region 5 (and any other regionslabelled with p), we need to use the probability density fun
tions asso
iated withthe 
lo
ks. In our example, sin
e we know that the transition from state K2 tostate K3 o

urs at pre
isely 12 se
onds, a1 is 48, the problem redu
es to solvingthe integrationZ 480 P
3dt



XIVwhi
h, sin
e P
3(t) = 0 when t is less than 30, is equal to1450 Z 4830 (t � 30) dtwhi
h evaluates to 0.36, and so the formula is true.This method 
ould easily be adapted to answer queries su
h as \What is theprobability of rea
hing a 
ertain state within a 
ertain time?" and 
ould returna pre
ise answer.When the time of o

urren
e of one event may be dependent on the timeof o

urren
e of a large number of other events, all the probabilisti
 densityfun
tions must be 
onsidered in order to 
al
ulate the probability of o

urren
eof one event, and the integrals whi
h result be
ome very 
omplex. In order toavoid this, we 
onsider a se
ond algorithm, whi
h uses dis
retisation.
O600 K1 - 
12 < a01 K2 - 2 K3 - 
13 < a13 K3 - 5 K4- a1 < 
134 K3 - 6 K4

Fig. 11. Diagram for region tree algorithmThe se
ond algorithm { approximations using dis
retisation This al-gorithm avoids the 
al
ulation of integrals that the region tree algorithm wasfor
ed to undertake. In order for the dis
retisation to be possible we need tomake a number of assumptions. In parti
ular, we assume that the range of the
lo
k fun
tions is made up of a �nite number of left/right 
losed intervals; thatis, we 
onsider only fun
tions F su
h thatft j F 0(t) > 0g = S16j6n [gj ; hj ℄where [gj ; hj ℄ is a left/right 
losed interval and n is the number of intervalsin the derivative. For example, the distributions on the sto
hasti
 automatagiven in Figures 2 and 3 
onform to this template. The template also allowsdeterministi
 timing sin
e the upper and lower bounds of an interval may be ofthe formula [�0 U�
 �1℄ being satis�ed at this point.4 To build the next snapshot,the algorithm pi
ks out at ea
h time point nÆ the transitions that the automatonis 
apable of during the next interval of length Æ. Be
ause Æ is less than theminimum of all the 
lo
k lower bounds, a maximum of one transition per path
an o

ur in ea
h interval. Re
ording all possible states of the automaton at ea
htime point is therefore enough to re
ord all the possible transitions.4 We also require that 9n:nÆ = 
, whi
h ensures that one of the snapshots will be atexa
tly time 
.



XVA snapshot is built by deriving a matrix for ea
h state s and time t (whi
his a rational number and 
al
ulated as nÆ), denoted matrix (s ; t), and pla
ingin this matrix a re
ord of the probabilities of the various 
ombinations of 
lo
kvalues in state s at time t . Ea
h matrix will have as many dimensions as its statehas 
lo
ks.Ea
h entry in the matrix matrix (s ; t) is the probability that at time pointt , the automaton is in state s , and ea
h 
lo
k is within a parti
ular time range.Thus, the value matrix (s ; t)[k1 : : : kn ℄ is the probability that at time point t , theautomaton is in state s , and v(
i ) 2 (Æ(ki � 1); Æki ℄ for ea
h 
lo
k 
i .The algorithm stops when either enough information has been gathered todetermine the truth or falsity of the formula, or enough time has passed sothat nÆ > 
, and allowing time to pass further will make no di�eren
e to theinformation we already have. In this 
ase the result unde
ided is returned.(K2; 0) (K3; 4Æ)0 110 20 
2 0 19 39 59 0 010 20 30 40 50 60 
3(K2; Æ) (K3; 5Æ)1 010 20 
2 19 39 59 0 0 010 20 30 40 50 60 
3(K3; 2Æ) (K3; 6Æ)0 0 0 19 39 5910 20 30 40 50 60 
3 39 59 0 0 0 010 20 30 40 50 60 
3(K3; 3Æ) (K4; 6Æ)0 0 19 39 59 010 20 30 40 50 60 
3 0 0 0 181 381 98110 20 30 40 50 60 
3Fig. 12. matri
es for the se
ond algorithmConsider again the formula [tt U �60K4℄ > 0:3. We 
hoose Æ to be 10. The�rst matrix to be 
onstru
ted would be m(K1; 0), but the state K1 has no as-so
iated 
lo
ks, therefore the automaton moves immediately to state K2, andmatrix (K2; 0) is 
onstru
ted (see Figure 12).This matrix tells us that the probability of 
lo
k 
2 being somewhere betweenthe values 10 and 20 at time zero is 1.There are two di�erent pro
edures for updating a matrix (that is, to derivematrix (s ; Æ(n + 1)) from the matri
es referring to time Æ(n)), both of whi
h
orrespond to di�erent situations. The �rst 
orresponds to the situation withinthe sto
hasti
 automaton where time passes, but the state remains un
hanged.In this 
ase we must shift the 
lo
k 
on�guration probabilities in the previous



XVImatrix down by one index step (whi
h 
orresponds to Æ time passing) and addthe result to the matrix we are updating.This is the situation here, and matrix (K2; 10) is formed as in Figure 12.The se
ond pro
edure is applied when new states 
an be rea
hed from the
urrent state during the Æ time passing, and involves determining the probabilityof entering these states. We do this by looking at all the probability values inthe matrix where at least one of the indi
es has the lowest possible value (10, inthis example). If this is the 
ase then we know that at least one 
lo
k will expireduring the ensuing Æ timestep.If only one index in the 
on�guration has the value 10 then only one 
lo
k
an expire, and only one state 
an be entered from this 
lo
k 
on�guration, andso the matrix for that state is built.This is the 
ase from matrix (K2; d), and so we get matrix (K3; 2Æ), whi
htells us that the probability of being within state K3 at time 2Æ with 
lo
k 
3between values 30 and 40 is 19 , being within state K3 at time 2Æ with 
lo
k 
3between values 40 and 50 is 39 and being within state K3 at time 2Æ with 
lo
k
3 between values 50 and 60 is 59 .If more than one index has the value 10, then we simply do not explore that
on�guration any further, and the 
on�guration probability is added to error .In the example we are 
onsidering, this possibility does not o

ur.In our example, the matri
es matrix (K3; 3Æ), matrix (K3; 4Æ), matrix (K3; 5Æ)and matrix (K3; 6Æ) 
an all be 
onstru
ted simply by moving the 
lo
k 
on�gu-ration probabilities with the previous matri
es.The se
ond way to update a matrix 
orresponds to a transition from onestate to another within the automaton. For ea
h matrix entry we 
al
ulate the
lo
k 
on�guration probability, multiply it by the probability of moving into thisstate at this time, and add it to the matrix entry we are updating. Thus, in theexample, we get matrix (K4; 6Æ),We have now rea
hed the timepoint 6Æ, whi
h 
orresponds to 60 se
onds, andso the sum of all the probability values in the matrix at this point ( 181+ 381+ 581 =13 ) is a lower bound on the probability that state K4 will have been rea
hed bytime 60. Thus, sin
e we are interested in whether the probability is greater than0.3, we 
an 
on
lude that the formula is true. A smaller Æ would produ
e a morea

urate result, but we do not illustrate that here.5 Con
lusionsIn this paper we have begun to ta
kle the problem of integrating various au-tomaton based notations within a spe
i�
ation. Spe
i�
ally, we have{ given a translation from sto
hasti
 automata to timed automata with dead-lines and shown whi
h properties are retained;{ presented two methods for model 
he
king sto
hasti
 automata, the �rstof whi
h builds regions from the automaton, and uses integration of theprobability density fun
tions and the se
ond of whi
h uses an approximationte
hnique based on dis
retisation.



XVIITranslating sto
hasti
 automata to timed automata with deadlines meansthat, although the sto
hasti
 information is lost, we 
an analyse the 
omposedspe
i�
ation for temporal properties to do with, for example, throughput withina 
ertain time.The model 
he
king methods 
annot 
onsider the 
omposed spe
i�
ation,and must be restri
ted to the individual 
omponents, although the e�e
ts of theenvironment may be represented by the adversary 
hosen.The two model 
he
king methods presented 
omplement ea
h other. Theregion method is best used when the size of the model to be explored is small,be
ause the number of integrations to be performed goes up exponentially withthe number of 
lo
ks. The dis
retisation method is more promising for largermodels. It 
an produ
e upper and lower bounds on the probabilities, and istherefore best suited for queries su
h as \Does the probability of rea
hing astate s by a time t lie within the range [a; b℄?"We are 
urrently seeking to implement the se
ond algorithm, and to integrateit with the LUSCETA [JB99℄ tool. We would also like to 
onsider how to model
he
k more general sto
hasti
 automata, and in parti
ular to allow 
lo
ks to beset and used in any state.A
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