
A single
omplete re�nement rule for Z
Abstra
tData re�nement is a well established te
hnique for transforming spe
i�
ations of abstra
tdata types into ones whi
h are
loser to an eventual implementation. The
onditions underwhi
h a transformation is a
orre
t re�nement
an be en
apsulated into two simulation rules:downward and upward simulations. These simulations are known to be sound and jointly
omplete for boundedly-nondeterministi
 spe
i�
ations. In this note we derive a single
om-plete re�nement method and show how it may be formulated in Z, this is a
hieved by usingpossibility mappings. The use of possibility mappings themselves is not new, our aim here isto reformulate them for use within the Z spe
i�
ation language.Keywords: Re�nement; State-based systems; Z.1 Introdu
tionThis paper
on
erns methods by whi
h we
an re�ne systems spe
i�ed in state-based spe
i�
ationlanguages su
h as Z [14℄, B [2℄ and VDM [10℄. We will
on
entrate on Z in this paper, althoughthe remarks we make apply equally to similar languages. Z is a state-based language whosespe
i�
ations are written using set theory and �rst order logi
. Abstra
t data types are spe
i�edin Z using the so
alled \state plus operations" style, where a
olle
tion of operations des
ribe
hanges to the state spa
e. The state spa
e, initialisation and operations are des
ribed as s
hemas,whi
h
an be understood as (total or partial) relations on the underlying state spa
e.Data re�nement is the standard method for transforming spe
i�
ations of abstra
t data types intoones whi
h are
loser to an eventual implementation. The
onditions under whi
h a developmentis a
orre
t re�nement are en
apsulated into two re�nement (or simulation) rules: downward andupward simulations [8, 15℄. To verify a re�nement the simulations use a retrieve relation whi
hrelates the
on
rete to abstra
t states and allow the
omparison between the data types to bemade on a step by step basis by
omparing an abstra
t operation with its
on
rete
ounterpart.Versions of the simulation rules for Z are given in [15℄. These re�nement rules are known to besound and jointly
omplete, that is any upward or downward simulation is a valid re�nement, andany valid re�nement
an be proved
orre
t by appli
ation of appropriate upward and downwardsimulations [9, 16℄. It is also well known that ea
h simulation method is in
omplete on its own,that is, using a retrieve relation that simply links
on
rete to abstra
t states it is not possible toderive a single
omplete simulation rule.However, a single
omplete method
an be derived by using either predi
ate transformers [6℄ orpossibility mappings (instead of retrieve relations) [11℄ in its formulation. In [6℄ predi
ate trans-formers are used instead of relations to derive a single method of re�nement, and it is shown howupward and downward simulations are spe
ial
ases of their method, whi
h is therefore
omplete.1

Possibility mappings are fun
tions from
on
rete states to sets of abstra
t states, and were origi-nally proposed as a method of re�nement for I/O automata in [11℄. By using possibility mappingsinstead of a retrieve relation a single
omplete method of re�nement
an be derived. Soundnessand
ompleteness for possibility mappings for automata are dis
ussed in [13℄. The use of possi-bility mappings in
ontext of transition systems is given in [7℄ where the resultant rule is
alledfailure simulation and is in essen
e the same as the relational
hara
terisation we derive below.Other
omplete re�nement methods in
lude Lamport and Abadi's history and prophesy variableapproa
h [1℄, the relationship between this and possibility mappings is dis
ussed in [13℄. [12℄provides an overview of simulation methods for untimed and timed automata whi
h surveys therelationship between many of these approa
hes.There are pra
ti
al advantages for remaining with a relational approa
h however. One is thatre�nement methods
an be formulated within a parti
ular language, for example the simulationmethods
an be expressed within the Z s
hema
al
ulus. Another is that relational methods areamenable to re�nement by
al
ulation, that is,
on
rete spe
i�
ations
an be
al
ulated from theabstra
t spe
i�
ation together with the retrieve relation.The modest
ontribution we seek to make here is the use of possibility mappings within a relational
ontext. Su
h an approa
h is dis
ussed brie
y in [5℄, and our aim here is to derive a single
ompletemethod of re�nement for partial relations and give its expli
it formulation within the Z s
hema
al
ulus. We also show how to
al
ulate re�nements using a relational
ontext. In [3℄ we simplifyexisting
al
ulational methods for downward simulations and derive similar results for upwardsimulations, illustrating their appli
ation in Z. We apply similar methods in this paper to thesingle re�nement rule.The stru
ture of the paper is as follows. We dis
uss the underlying relational view of re�nementin Se
tion 2, and des
ribe how it treats partiality. Se
tion 3 derives the method and se
tion 4applies it to Z. Cal
ulations of re�nement are dis
ussed in se
tion 5 and we
on
lude in se
tion 6.2 Ba
kground on re�nementIn this se
tion we dis
uss the relational view of re�nement whi
h forms the basis for re�nementin language su
h as Z [14, 15℄, and des
ribe how it treats partiality. In doing so we present asummary of results in [8, 9, 15℄.The underlying model of a state based system is a relational model, where the
omponents of anabstra
t data type (ADT) are relations. An ADT is a quadruple A = (Astate; ai ; faopigi2I ; af)whi
h a
ts on a global state spa
e G su
h that� Astate is the spa
e of values;� ai 2 G $ Astate is an initialisation;� af 2 Astate $ G is a �nalisation;� aopi are operations in Astate $ Astate.Notation:We shall need the following relational notation. o9 denotes relational
omposition, C is domainrestri
tion, �B is range subtra
tion, �C is domain subtra
tion, and X is the
omplement of X . IfS is a relation of type X $ Y and A � X , B � Y , then the relational operators are de�nedby: A C S = f(x ; y) j (x ; y) 2 S ^ x 2 Ag, A �C S = f(x ; y) j (x ; y) 2 S ^ x 62 Ag, andS �B B = f(x ; y) j (x ; y) 2 S ^ y 62 Bg. 2

We shall also use the standard notation for the weakest post- and pre- spe
i�
ation [9℄. These arede�ned by X =R = (R�1 o9 X) and L n X = (X o9 L�1) respe
tively and are the approximate leftand right inverses for
omposition (i.e. R o9 T � X i� T � X =R et
).Programs and Re�nementAt this stage we
onsider all relations to be total. A program P is a sequen
e of operations upona data type beginning with an initialisation and ending with a �nalisation, e.g.P(A) = ai o9 aop1 o9 aop2 o9 aop3 o9 afTo
onsider re�nement we assume that the abstra
t and
on
rete data types have the same globalstate spa
e G and that the indexing sets for the operations
oin
ide (i.e., every abstra
t operationhas a
on
rete
ounterpart and vi
e versa). We
an now de�ne re�nement in the usual fashion asbeing the redu
tion of non-determinism when moving from abstra
t to
on
rete data type.De�nition 1 A data type C = (Cstate;
i ; f
opigi2I ;
f) re�nes a data type A if, for every programP, P(C) � P(A).This de�nition of re�nement involves quanti�
ation over all programs, and in order to verify su
hre�nements, simulations are used whi
h
onsider values produ
ed at ea
h step of a program'sexe
ution. Simulations are thus the means to make the veri�
ation of a re�nement feasible. Inorder to
onsider values produ
ed at ea
h step we need a relation r between the two state spa
esAstate and Cstate. Su
h a retrieve relation gives rise to two types of step by step
omparisons:downwards simulation and upwards simulation [8, 9℄.De�nition 2 A downward simulation (denoted vDS) is a relation r from Astate to Cstate su
hthat
i � ai o9 rr o9
f � afr o9
opi � aopi o9 r for ea
h index i 2 IDe�nition 3 An upward simulation (denoted vUS) is a relation l from Cstate to Astate su
hthat
i o9 l � ai
f � l o9 af
opi o9 l � l o9 aopi for ea
h index i 2 IThese simulation relations are the basis for re�nement methods in Z and other state based lan-guages. However in the relational framework we have des
ribed so far the relations were assumedto be total. In Z (and VDM et
) operations (and the relations they represent) are not ne
essarilytotal, and the meaning of an operation � spe
i�ed as a partial relation is that � behaves as spe
i�edwhen used within its pre
ondition (domain), and outside its pre
ondition, anything may happen.PartialityIn order to represent partial operations in our framework (and hen
e de�ne re�nement for partialoperations) the relational theory is extended by totalising partial relations. To do this we add adistinguished element ? to the state spa
e, denoting unde�nedness, and the augmented version ofX is denoted X?. Then if � is a partial relation between X and Y , we add the following sets ofpairs to �fx : X?; y : Y ? j x 62 dom � � x 7! yg 3

and, following [15℄,
all this new (total) relation ��.Di�erent spe
i�
ation languages have di�erent interpretations for the meaning of a partial rela-tions. For example, in Obje
t-Z [4℄ outside a partial relation's pre
ondition nothing may happen(i.e. pre
onditions denote guards). In order to model these di�erent interpretations we use di�er-ent totalisations. Some languages, su
h as B, have
onstru
ts whi
h enable both interpretationsto be spe
i�ed.It is also ne
essary to restri
t ourselves to �nitary abstra
t level data types and �nitary retrieverelations. Re
all that a non-empty subset of a data type is �nitary if it is either �nite or thewhole type. A relation is �nitary if the image of every element is �nitary [9℄. The restri
tion to�nitary abstra
t level data types ensures that unbounded nondeterminism
annot be introdu
edinto abstra
t level spe
i�
ations, and is ne
essary to preserve soundness and
ompleteness of thesimulations.We also require that the retrieve relation be stri
t, i.e., that r propagates unde�nedness and weensure this by
onsidering the lifted form of r 2 X $ Y :Ær= r [(f?g �Y?)The di�eren
e between the relational operators � and Æ is the following. �makes a relation total byproviding images for every element outside the domain, whereas Æmerely propagates unde�nednessby adding ? to the domain and mapping it to every element in the range. This is needed to ensurethat the relational
omposition of relations whi
h are unde�ned is also unde�ned, a property thatis needed in a retrieve relation.Re�nement of partial operationsRe�nement and simulations
an now be applied to spe
i�
ations involving partial operations by�rst totalising the relations that represent them and lifting the retrieve relation. Thus the require-ments for a downwards simulation are:�
i� �ai o9 ÆrÆr o9 �
f� �afÆr o9 �
opi� �aopi o9 Ær for ea
h index i 2 Iand similarly for upward simulations. Simulations are sound and jointly
omplete in the followingsense [9℄.Theorem 1� If there is a downward simulation from Astate to Cstate, or an upward simulation fromCstate to Astate, then C re�nes A.� Every valid re�nement
an be veri�ed as a sequen
e of downward and upward simulations.Abstra
t �nalisations are also required to terminate weakly [5℄, i.e. it must be the
ase that ? isnot in ran(AstateC af). However, sin
e �nalisations are typi
ally proje
tions into the global statespa
e this assumption is reasonable [6℄. In parti
ular, �nalisations in Z are weakly terminating.To derive a single
omplete simulation we will use the
onstru
tion used in the joint
ompletenessproof. The
ompleteness result is the following: If data type A is re�ned by C, then there is adata type CA = (CAstate;
ai ; f
aopigi2I ;
af) su
h that there is an upward simulation from CAto A and a downward simulation from CA to C. The data type CA is given
onstru
tively and isequivalent to A (there are simulations both ways). It is also
anoni
al, i.e. all operations and theinitialisation are fun
tions, so that all non-determinism present in A has been fa
tored out.4

3 A single simulation ruleTo derive a single
omplete simulation rule, whi
h we
all powersimulation after [6℄, we use the
onstru
tion dis
ussed above as follows. Given a re�nement between data types A and C we �rsttotalise their partial relations then
onstru
t the data type CA. Using the upward simulationbetween A and CA and the downward simulation between CA and C we
an derive equivalent
onditions between A and C (i.e. we eliminate CA). Throughout the remainder of this paperlet A = (Astate; ai ; faopigi2I ; af) and C = (Cstate;
i ; f
opigi2I ;
f) be (partial) data types su
hthat C re�nes A.The
onstru
tion used in the joint
ompleteness proof de�nes an intermediate data type CA =(CAstate;
ai ; f
aopigi2I ;
af) with A vUS CA vDS C.From the data type A the
onstru
tion begins by de�ning the
on
rete state spa
e of CA asCAstate = P(Astate?). It then de�nes a relation l whi
h will de�ne an upward simulation, and isgiven by�(l)� i� � 2 �This relation is then used to de�ne the relations
ai ; f
aopigi2I ;
af in CA as follows. For the sakeof readability let us �x i 2 I , and let aop,
op and
aop be
orresponding operations in the datatypes, where �aop : Astate? $ Astate?, �
op: Cstate? $ Cstate? and
aop : CAstate $ CAstate.Then
ai ;
aop;
af are de�ned as the weakest solutions to the following equations.
ai o9 l = �ai
af = l o9 �af
aop o9 l = l o9 �aopBe
ause A was a partial data type we totalise its relations, however, having done this the relationsin CA are by de�nition total, and therefore the de�ning equations appear as
ai o9 l = �ai et
. We
an employ standard te
hniques to
al
ulate these relations
ompletely.The
onstru
tion also de�nes a downward simulation r between CA and C. That is, the data typessatisfy the following set of equations.�
i �
ai o9 rr o9 �
f �
afr o9 �
op �
aop o9 rThese are in terms of the totalised relations. To make the
onditions pra
ti
al we need to deriveequivalent
onditions on the underlying partial relations. This we do now.To extra
t the
onditions on the underlying partial relations from their totalisations we de�neadditional domain restri
tion and subtra
tion operators CP and �CP . We also de�ne a restri
tionr : PAstate $ Cstate of the retrieve relation r to de�ned values. The de�nitions are as follows.De�nition 4domaop CP
aop = f(�; �) j (�; �) 2
aop ^ � � dom aopgdomaop �CP
aop = f(�; �) j (�; �) 2
aop ^ � 6� dom aopgr = (PAstate)C r B Cstate 5

These are analogous to the standard domain restri
tion and subtra
tion operators C and �C givenabove, however, as our simulation
onstru
tion involves powersets in the state spa
e of CA we areinterested in restri
ting to subsets as opposed to elements (e.g. as in C) of dom aop.We �rst of all
onsider the upward simulation equation
aop o9 l = l o9 �aop .Lemma 1
aop o9 l � l o9 �aop i� dom aop CP
aop � l n (l o9 aop)ProofTo begin we note that
aop o9 l = l o9 �aop= l o9 (aop [dom aop? � Astate?)= l o9 aop [l o9 (dom aop? �Astate?)Therefore
aop o9 l � l o9 �aop i�
aop o9 l � l o9 aop [l o9 (dom aop? �Astate?)i� (dom aop CP
aop) o9 l � l o9 aopi� dom aop CP
aop � l n (l o9 aop) 2In a similar vein we
onsider the downward simulation equation r o9 �
op �
aop o9 r .Lemma 2 r o9 �
op �
aop o9 r is equivalent to the following
onditions:domaop CP (r o9
op) � (dom aop CP
aop) o9 rran(dom aop CP r) � dom
opProofSuppose for the moment that r satis�es a
ondition (*), namely that�(r)?) ? 2 �? 2 �) �(r)� for all � 2 Cstate?Then r o9 �
op �
aop o9 r if and only ifr o9 �
op � (dom aop CP
aop o9 r) [(dom aop �CP
aop o9 r)= (dom aop CP
aop o9 r) [dom(dom aop �CP
aop) � Cstate? by (*)Thereforer o9 �
op �
aop o9 r i� dom aop CP (r o9 �
op) � (dom aop CP
aop) o9 ri� dom aop CP (r o9 �
op) � (dom aop CP
aop) o9 ri� dom aop CP (r o9
op) � (dom aop CP
aop) o9 rand dom aop CP (r o9 (dom
op? � Cstate?)) � (dom aop CP
aop) o9 rand the latter
ondition holds if and only if ran(dom aop CP r) � dom
op.6

We have assumed that r satis�es (*), we have to justify this or show that any simulation relationr
an in fa
t be repla
ed by one whi
h does. It is easy to see that the latter option is alwayspossible. For example, suppose that �(r)?. Then we have (�; �) 2
aop o9 r for all � 2 Cstate?,sin
e r o9 �
op �
aop o9 r . Therefore we
an assume without harm that ? 2 �. The other
ondition
an also shown to be safely assumed in a similar way. 2Corollary 1 The
onditions in the upward and downward simulations r o9 �
op �
aop o9 r and
aop o9 l = l o9 �aop are equivalent todom aop CP (r o9
op) � (l n (l o9 aop)) o9 r (1)ran(dom aop CP r) � dom
op (2)In a similar fashion we
an
onsider the initialisation
onditions
ai o9 l = �ai and �
i �
ai o9 r . We�nd that, sin
e the
on
rete and abstra
t initialisations are total, �
i �
ai o9 r i�
i �
ai o9 r .Therefore the initialisation
onditions in the upward and downward simulations are equivalent to
i � (l n ai) o9 r (3)Similarly the �nalisations
af = l o9 �af and r o9 �
f �
af are equivalent to
f � (l o9 af)=r (4)We
an draw the
onditions together to de�ne a powersimulation as follows (we drop the unders
oreas we have no further use for it).De�nition 5 A powersimulation between abstra
t data types A and C is a relation r : PAstate $Cstate su
h that for all i 2 I :
i � (l n ai) o9 rdomaop CP (r o9
opi) � (l n (l o9 aopi)) o9 rran(dom aopi CP r) � dom
opi
f � (l o9 af)=rBy its
onstru
tion it is
lear that every valid re�nement
an be veri�ed as by one powersim-ulation, so powersimulations are
omplete. In addition every powersimulation is sound sin
e apowersimulation is just a
ombination of an upward and downward simulation. It thus de�nes asingle
omplete method for re�nement.4 Appli
ation to ZA relational theory of re�nement
an be applied to parti
ular spe
i�
ation languages. For example,the theory of upward and downward simulations for partial relations
an be applied to Z spe
i�-
ations written in the Z s
hema
al
ulus notation. This is a
hieved by
onsidering ea
h operations
hema to be a partial relation on the state spa
e, and the upward and downward simulations
anthen be restated in terms of s
hemas to produ
e the standard presentation of re�nement in Z (see[15, 5℄). 7

In order to derive a single
omplete simulation in Z we will apply the relational
onditions wederived in the previous se
tion to the Z s
hema
al
ulus. To illustrate this let us
onsider a simpleexample written in Z. The abstra
t spe
i�
ation is given byAstatex : 0::5 AinitAstate 0x 0 = 0 Aone�Astate(x = 0 ^ x 0 = 1) _ (x = 1 ^ x 0 = 0)Atwo�Astate(x = 0 ^ x 0 2 f2; 3g) Athree�Astate(x = 2 ^ x 0 = 4) _ (x = 3 ^ x 0 = 5)The state spa
e Astate, initialisation Ainit and operations Aone et
, are given as s
hemas whi
hare used to stru
ture the spe
i�
ation. A s
hema
an be used as a type, predi
ate or de
larationwithin a Z spe
i�
ation depending on the
ontext. A simple relational semanti
s [15℄ allows us toview ea
h spe
i�
ation as a relation, and therefore apply the re�nement theory presented in theprevious se
tions.To see this we need to use the � notation. If S is the name of a s
hema, then �S denotesthe
hara
teristi
 binding of
omponents from S , where
omponents are bound to the valuesof variables. Thus �Astate denotes the
hara
teristi
 binding of
omponents from Astate, i.e.�Astate = hj x ; x ji. In order that s
hemas
an be used as de
larations, in a de
laration thes
hema S is an abbreviation of fS � �Sg. For example, the s
hema Astate is the appropriate setof bindings, i.e. Astate = fhj x ; 0 ji; : : : ; hj x ; 5 jig. PAstate is then the powerset of this set ofbindings. Likewise preAOp des
ribes a s
hema (the pre
ondition of operation AOp), whi
h
anbe
onsidered as a set of bindings, and thus P(preAone) = f?; fhj x ; 0 jig; : : : ; fhj x ; 0 ji; hjx ; 1 jigg.Suppose the data types A and C are des
ribed using s
hemas. To derive the powersimulation
onditions our retrieve relation will be given as a relation r : PAstate $ Cstate. Let us
onsidertwo operations AOp and COp and suppose that the initialisations in A and C are given by Ainitand Cinit respe
tively. Ignoring input and output for the moment the relations
orresponding tothese s
hemas are given byaop = fAOp � �Astate 7! �Astate 0g
op = fCOp � �Cstate 7! �Cstate 0gai = fAinit � �Astate 0g
i = fCinit � �Cstate 0g(the last two are
onsidered as relations where we hide the domain). We
an now express ea
h
ondition in the powersimulation in terms of s
hemas. For example, the initialisation
onditionbe
omes
i � (l n ai) o9 r i� 8
 : Cstate �
 2
i)
 2 (l n ai) o9 ri� 8Cstate � �Cstate 2
i) �Cstate 2 (l n ai) o9 ri� 8Cstate � �Cstate 2 fCinit � �Cstate 0g) 9
 : PAstate � r(
) = �Cstate ^
 2 (l n ai)i� 8Cstate 0 � Cinit) 9
 : PAinit � r(
) = �CstateIn a similar way the remaining
onditions
an be given in terms of s
hemas, and we have thefollowing derivations:dom aop CP (r o9
op) � (l n (l o9 aop)) o9 r i�8
 : P(preAOp); Cstate; Cstate 0 � r(
) = �Cstate ^ COp)9
2 : PAstate � r(
2) = �Cstate 0 ^ 8Astate 0 :
2 � 9Astate :
 � AOp8

and ran(dom aop CP r) � dom
op i�8Cstate � 8
 : P(preAOp) � r(
) = �Cstate) preCOpBe
ause �nalisations in Z are proje
tions into the global state spa
e, the �nalisation
onditions aretrivially met. We therefore do not need an expli
it �nalisation requirement for powersimulations.Before we pro
eed with an example, a note is in order on the use of the s
hema notation withinthese expressions. Be
ause expressions su
h as Astate, PAstate, preAOp and P(preAOp) denotesets or powersets of bindings, the expli
it
onditions for powersimulations we have derived areformulated within the s
hema
al
ulus itself. S
hema de
orations are ignored in determining thetype of bindings (e.g. hj x ; 5 ji and hj x 0 ; 4 ji are of the same s
hema type, see [15℄). Thisallows r(
) = �Cinit et
 to have the obvious meaning.In order to
onsider operations involving inputs and outputs, the standard approa
h is to embedthem as
omponents in the state spa
e. This approa
h
an be adopted here, and in fa
t we �ndthat the form of the rules remain the same ex
ept we need to quantify over all possible inputs andoutputs. We
an now give the de�nition of powersimulation in Z.De�nition 6 A powersimulation between abstra
t data types A and C written as s
hemas is arelation r : PAstate $ Cstate su
h that the following holds for every operation and initialisation.8Cstate 0 � Cinit) 9
 : PAinit � r(
) = �Cstate8
 : P(preAOp); Cstate; Cstate 0 � r(
) = �Cstate ^ COp)9
2 : PAstate � r(
2) = �Cstate 0 ^ 8Astate 0 :
2 � 9Astate :
 � AOp8Cstate � 8
 : P(preAOp) � r(
) = �Cstate) preCOp4.1 ExampleWe illustrate the re�nement rules with a simple example written in Z. The abstra
t spe
i�
ationwas given above, the
on
rete spe
i�
ation is given byCstatey : f0; 2; 4; 5g CinitCstate 0y 0 = 0 Cone�Cstatey = y 0 = 0Ctwo�Cstate(y = 0 ^ y 0 = 2) Cthree�Cstate(y = 2 ^ y 0 2 f4; 5g)The
on
rete spe
i�
ation is a re�nement of the abstra
t, however, to verify this both downwardand upward simulations are needed. With a powersimulation this
an veri�ed in one step. To doso we need to des
ribe a retrieve relation between PAstate and Cstate, and in this example thefollowing will suÆ
er : PAstate $ Cstater = ffhj x ; 0 ji; hj x ; 1 jig 7! hj y ; 0 ji;fhj x ; 0 jig 7! hj y ; 0 ji;fhj x ; 1 jig 7! hj y ; 0 ji;fhj x ; 4 ji; hj x ; 5 jig 7! hj y ; 4 ji;fhj x ; 4 ji; hj x ; 5 jig 7! hj y ; 5 jig9

we now have to prove that the powersimulation
onditions are satis�ed. That is8Cstate 0 � Cinit) 9
 : PAinit � r(
) = �Cstate8
 : P(preAOp); Cstate; Cstate 0 � r(
) = �Cstate ^ COp)9
2 : PAstate � r(
2) = �Cstate 0 ^ 8Astate 0 :
2 � 9Astate :
 � AOp8Cstate � 8
 : P(preAOp) � r(
) = �Cstate) preCOpfor every operation and initialisation. Proving the initialisation
ondition amounts to showingthat 8 y 0 : f0; 2; 4; 5g � (y 0 = 0)) 9
 : Pf?; fhj x 0 ; 0 jigg � r(
) = hj y 0 ; 0 jiwhi
h is
learly true. Similarly showing that8Cstate � 8
 : P(preAone) � r(
) = �Cstate) preConeamounts to proving that8 y : f0; 2; 4; 5g � 8
 : f?; fhj x ; 0 jig; : : : ; fhj x ; 0 ji; hj x ; 1 jigg � r(
) = �Cstate) (y = 0)This and the remaining
onditions are easily shown to be true. 25 Cal
ulating re�nementsIn this se
tion we
onsider the
al
ulational aspe
ts of powersimulations. Suppose we are givena spe
i�
ation of an abstra
t data type A = (Astate; ai ; faopigi2I ; af), a
on
rete state spa
eCstate together with a retrieve relation r between PAstate and Cstate. It is possible to
al
ulatethe most general powersimulation of A.We �rst work in the relational setting and then give the
orresponding results in Z. Extra
ting the
al
ulations for the initialisation and �nalisation are easy and the weakest
on
rete initialisationand �nalisation are given by
i = (l n ai) o9 r
f = (l o9 af)=rSimilarly the weakest solution of an operations aop is
op = ran(dom aop CP r)C (((l n (l o9 aop)) o9 r)=(dom aop CP r))However, for a partial relation we also need to
he
k appli
ability, and only if this
on
rete oper-ation satis�es the appli
ability
ondition does a powersimulation exist. We summarise this in thefollowing theorem.Theorem 2 The weakest data type that is a powersimulation of A with respe
t to r is given by
i = (l n ai) o9 r
f = (l o9 af)=r
op = ran(dom aop CP r)C (((l n (l o9 aop)) o9 r)=(domaop CP r))whenever ran((dom aop) CP r) � dom
op. If the latter does not hold then no powersimulation ispossible for this A and r. 10

Under
ertain
ir
umstan
es a simpli�
ation is possible. In parti
ular if the domain of r aresingletons then the
al
ulation simpli�es to
op = r�1 o9 (l n (l o9 aop)) o9 r , and that in this
ase itis not ne
essary to
he
k that ran((dom aop) CP r) � dom
op.Proposition 1 Let
op = ran(dom aop CP r) C (((l n (l o9 aop)) o9 r)=(domaop CP r)). Then
op � r�1 o9 (l n (l o9 aop)) o9 r . Furthermore if ran((dom aop)CP r) � dom
op and the domain of r
onsists of singleton sets then
op = r�1 o9 (l n (l o9 aop)) o9 r .ProofLet (a; b) 2
op. Then (9 s � (s ; a) 2 (dom aop CP r)) ^ (8 s � (s ; a) 62 (dom aop CP r) _(s ; b) 2 ((l n (l o9 aop)) o9 r)). Hen
e there exists an s su
h that (s ; a) 2 (dom aop CP r) and(s ; b) 2 ((l n (l o9 aop)) o9 r), and therefore (a; b) 2 r�1 o9 (l n (l o9 aop)) o9 r .Conversely, let (a; b) 2 r�1 o9 (l n (l o9 aop)) o9 r , and assume the domain of r are singletons andthat ran((dom aop) CP r) � dom
op. Then there exists s1 su
h that (s1; a) 2 r and (s1; b) 2((ln(l o9aop))o9r). The latter is equivalent to 9 s2 � (s2; b) 2 r^8 t � t 62 s2_9 u � u 2 s1^(u; t) 2 aop.The
ondition on the domain of r implies that s1 � dom aop, and therefore that (a; b) 2
op. 2Note that in fa
t the simpli�
ation of
op to
op = r�1 o9 (l n (l o9 aop)) o9 r only requires that8 s 2 dom r � (s \ dom aop = ?) _ (s � dom aop) for every abstra
t operation.We
an now des
ribe these results in the Z s
hema
al
ulus.Corollary 2 Given an abstra
t spe
i�
ation, a
on
rete state spa
e and a retrieve relation rbetween the abstra
t and
on
rete state spa
es, the most general powersimulation
an be
al
ulatedas: Cinit b= 9
 : PAinit � r(
) = �CstateCOp b= 9
1;
2 : PAstate � r(
1) = �Cstate ^ r(
2) = �Cstate 0 ^
1 � preAOp^8Astate 0 :
2 � 9Astate :
1 � AOpwhenever a powersimulation exists. The simpli�
ation of COp, when appropriate, is given byCOp b= 9
1;
2 : PAstate � r(
1) = �Cstate ^ r(
2) = �Cstate 0 ^ 8Astate 0 :
2 � 9Astate :
1 � AOpThe following example shows that the assumption on the domain of r is, in general, ne
essary.Consider an abstra
t data type with state spa
e f0; : : : ; 3g, one operation aop = f(1; 2)g, andinitial states 0 and 1. The
on
rete state spa
e has just two points f0; 1g and we are given arelation r as our retrieve relation, where r = f(f0; 1g; 0); (f2g; 1)g.Then
op = ran(dom aop CP r) C (((l n (l o9 aop)) o9 r)=(dom aop CP r)) = ?. However,
op =r�1 o9 (l n (l o9 aop)) o9 r = f(0; 1)g. Therefore r�1 o9 (l n (l o9 aop)) o9 r is not the most generalpowersimulation with this retrieve relation.6 Con
lusionsIn this paper we have
onsidered both the
al
ulation and veri�
ation of re�nements in state-based systems and in parti
ular the Z spe
i�
ation language. We have derived a single
ompletere�nement method in Z by using possibility mappings.Although the prospe
t of arbitrary re�nements needing several simulations might perhaps appearrather esoteri
 at �rst, it is interesting to note that this has arisen in an industrial
ontext.11

Re
ently an industrial re�nement was
arried out by a leading formal methods
onsultan
y, andthe re�nement that was to be veri�ed needed both a downward and an upward simulation (forvarious reasons). The re�nement was eventually veri�ed by using two simulations, and it wouldhave been interesting to see if the
onstru
tion dis
ussed in this paper would have aided theveri�
ation pro
ess.Referen
es[1℄ M. Abadi and L. Lamport. The existen
e of re�nement mappings. Theoreti
al ComputerS
ien
e, 2(82):253{284, 1991.[2℄ J. R. Abrial. The B-Book: Assigning programs to meanings. CUP, 1996.[3℄ J. Derri
k and E.A. Boiten. Cal
ulating upward and downward simulations of state-basedspe
i�
ations. Information and Software Te
hnology, 1999. To appear.[4℄ R. Duke, G. Rose, and G. Smith. Obje
t-Z: A spe
i�
ation language advo
ated for thedes
ription of standards. Computer Standards and Interfa
es, 17:511{533, September 1995.[5℄ Kai Engelhardt and W-P de Roever. Model-Oriented Data Re�nement. CUP, 1998.[6℄ P.H.B. Gardiner and C. Morgan. A single
omplete rule for data re�nement. Formal Aspe
tsof Computing, 5:367{382, 1993.[7℄ R. Gerth. Foundations of
ompositional program re�nement. In J. W. de Bakker, W.-Pde Roever, and G. Rozenberg, editors, Stepwise re�nement of distributed systems, LNCS 430,pages 777{807. Springer-Verlag, 1990.[8℄ He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data re�nement re�ned. In B. Robinet andR. Wilhelm, editors, Pro
. ESOP 86, volume 213, pages 187{196. Springer-Verlag, 1986.[9℄ He Jifeng and C.A.R. Hoare. Prespe
i�
ation and data re�nement. In Data Re�nement ina Categori
al Setting, Te
hni
al Monograph, number PRG-90. Oxford University ComputingLaboratory, November 1990.[10℄ C. B. Jones. Systemati
 Software Development using VDM. Prenti
e Hall, 1989.[11℄ N.A. Lyn
h. Multivalued possibility mappings. In J. W. de Bakker, W.-P de Roever, andG. Rozenberg, editors, Stepwise re�nement of distributed systems, LNCS 430, pages 519{543.Springer-Verlag, 1990.[12℄ Nan
y Lyn
h and Frits Vaandrager. Forward and ba
kward simulations for timing-basedsystems. In J. W. de Bakker, W. P. de Roever, C. Huizing, and G. Rozenberg, editors, Real-Time: Theory in Pra
ti
e (REX Workshop, Mook, The Netherlands, June 1991), LNCS 600,pages 397{446. Springer-Verlag, 1992.[13℄ M. Merritt. Completeness theorems for automata. In J. W. de Bakker, W.-P de Roever, andG. Rozenberg, editors, Stepwise re�nement of distributed systems, LNCS 430, pages 544{560.Springer-Verlag, 1990.[14℄ J. M. Spivey. The Z notation: A referen
e manual. Prenti
e Hall, 1989.[15℄ J. Wood
o
k and J. Davies. Using Z: Spe
i�
ation, Re�nement, and Proof. Prenti
e Hall,1996.[16℄ J. C. P. Wood
o
k and C. C. Morgan. Re�nement of state-based
on
urrent systems. InD. Bjorner, C. A. R. Hoare, and H. Langmaa
k, editors, VDM '90 VDM and Z - For-mal Methods in Software Development, LNCS 428, pages 340{351, Kiel, FRG, April 1990.Springer-Verlag. 12

