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Re
ursive Fun
tions and Rea
tive Behaviours:The Essen
e of FranAnthony Charles DanielsUniversity of Kent at Canterbury, Canterbury, Kent CT2 7NF, UK,A.C.Daniels�uk
.a
.ukAbstra
t. The fun
tional animation language Fran provides abstra
tdatatypes of \behaviours" to represent time varying values|for exam-ple the position of moving obje
ts|and \events" to represent dis
reteo

urren
es|for example 
ollisions.We introdu
e a small fun
tional language 
alled CONTROL whi
h is de-signed to 
apture the essential operations on behaviours and events butin a minimalisti
 language so that it is easier to de�ne a semanti
s for ourlanguage. Previous semanti
s for Fran have not explained how fun
tionsand behaviours 
ombine, and 
onsequently they 
annot interpret fun
-tions that yield behaviours. In 
ontrast we provide a 
omplete semanti
sfor CONTROL. This is based on an operational-style transition systemfor behaviours that allows fun
tion terms to be redu
ed in the usual way.1 Introdu
tionFran [EH97, PEL98℄ is a Haskell [HJ99, HF92℄ library for 
reating intera
tiveanimations. It provides 
onstants and operations for two datatypes: behavioursand events. Behaviours are used to des
ribe time-varying, or 
ontinuously evolv-ing, values. They may be thought of as abstra
t representations of fun
tions oftime. Events are used to 
apture user a
tions, su
h as mouse 
li
ks, and intera
-tion between behaviours, su
h as when obje
ts 
ollide. Thus behaviours model
ontinuous 
hange and events model dis
rete o

urren
es. Behaviours and events
an be mutually dependent: behaviours may rea
t, or 
hange 
ourse, upon evento

urren
es; and events may be determined by Boolean valued behaviours.An animation using the Fran library is a Haskell program that de�nes animage-valued behaviour. The system uses a presentation engine whi
h evaluatesthis behaviour and then 
reates frames of the animation.Consider the semanti
s of Fran programs. Fran is embedded in Haskell so asemanti
s must begin with a 
omplete semanti
s for Haskell. However, if we tryto add a semanti
s for behaviours and events, an inevitable 
on
i
t arises: thesedatatypes have an implied semanti
s derived from their implementation, butthis is useless for reasoning about programs be
ause it is at the wrong level ofabstra
tion. We want to 
apture the essential abstra
t properties of behavioursand events, and not the details of their implementation in Haskell.One route is to 
onsider behaviours and events as abstra
t types and givethem a semanti
s separate from their implementation. Elliott and Hudak adopted



this approa
h[EH97℄, but their semanti
s does not 
orrespond to the imple-mented language be
ause in pra
ti
e approximation te
hniques are used to 
om-pute behaviours. Furthermore, their semanti
s does not indi
ate how these ab-stra
t values integrate with Haskell 
ode. Cru
ially, their work does not a

ountfor the semanti
s of fun
tions that yield behaviours.For example, 
onsider a step behaviour that yields the value 1 initially andthen in
rements by 1 ea
h se
ond. This 
an be a
hieved by writing a fun
tionthat takes an integer n and gives a behaviour that yields n until a se
ond haselapsed, and then 
alls itself with n+1. Naively 
ombining Elliott and Hudak'ssemanti
s with a denotational semanti
s of re
ursive fun
tions requires a CPOfor behaviours su
h that taking �xed points gives the required behaviours. Thishas not been investigated, and some te
hni
al diÆ
ulties with this approa
h aredis
ussed in [Dan99℄.Our approa
h is to study a simple fun
tional language with abstra
t be-haviours built in. Be
ause behaviours are built-in rather than implemented inthe language, we 
an legitimately de�ne their semanti
s to give the idealisedoperations. Furthermore, we avoid unne
essary 
omplexity due to the size ofHaskell and are still able to address the important semanti
 issues arising from
ombining behaviours and events with fun
tions.The language we present here is 
alled CONTROL|CONtinuous Time Re-a
tive Obje
t Language. It is essentially a simpli�
ation of Fran, in
luding onlythe 
ore operators on behaviours and a minimal fun
tional language. Althoughit does not 
ontain a datatype for events, it in
ludes rea
tivity by using Booleanbehaviours to represent events. Thus the 
ru
ial elements of the Fran paradigmare present, but in a language whi
h has a more manageable semanti
s.CONTROL �rst appeared in [Dan99℄ and this paper is a 
on
ise introdu
tionto a useful subset of the full language. The larger publi
ation de�nes a stronglytyped version (here we 
onsider an untyped language) and in
ludes novel fa
ilitiesthat make the `start times' (or `user arguments') in Fran redundant. Related tothis is the important distin
tion made between re
ursive fun
tions and re
ursivebehaviours; we only 
onsider the former in this paper.In this paper we give a semanti
s for CONTROL based on an operational-style transition system whi
h integrates smoothly with the evaluation of fun
tionterms. Consequently we are able to interpret fun
tions that yield behaviours. Weillustrate our language and its semanti
s with a simple example that implements
hess 
lo
ks.2 Chess Clo
ks ExampleWe will introdu
e CONTROL by des
ribing a program that implements 
hess
lo
ks. Chess 
lo
ks have two 
lo
k fa
es whi
h show the amount of time ea
hplayer has remaining in a game of 
hess. At the start of the game both 
lo
ks areset with equal amounts of time and white's 
lo
k begins to 
ount down. Afterwhite has moved they press the white button and bla
k's 
lo
k begins to 
ountdown, and so on alternately.



Before we des
ribe the CONTROL program we will 
onsider a typi
al imple-mentation in an imperative language to illustrate the advantages of our approa
h.The imperative program in Figure 1 uses a loop and a player variable to indi
atewhi
h player is thinking. In ea
h iteration of the loop some time is subtra
tedfrom the 
urrent player's time left and their button is 
he
ked.The timing of this program is somewhat 
onfusing. For example, it is not 
learwhether it is 
orre
t to update the 
lo
ks and then 
he
k for button presses orthe other way around. Similarly, we must de
ide when to get the 
urrent timeand where to pla
e other parts of the 
ode, su
h as the 
ode to 
he
k if eitherplayer has run out of time and the 
ode to draw the 
lo
k fa
es. In pra
ti
e, theusual assumption is that the loop is performed many times ea
h se
ond and soslight timing irregularities are not signi�
ant.timeLeft[white℄ := initialTime; timeLeft[bla
k℄ := initialTime;player := white; t0 := getSystemTime();loopt1 := getSystemTime();timeLeft[player℄ := timeLeft[player℄ - (t1 - t0);if timeLeft[player℄ <= 0 then exitloop;t0 := t1;if buttonPress[player℄ then player := opponent(player);// ...
ode to re-draw the 
lo
k fa
es.endloop; Fig. 1. Imperative 
hess 
lo
ksWe 
an implement 
hess 
lo
ks in CONTROL by using a behaviour to 
apturethe time ea
h player has remaining. Suppose we have a behaviour that yields 1while white is playing and 0 while bla
k is playing; the integral of this behaviourgives the amount of time that white has used up. The equivalent behaviour forbla
k is the opposite, and we de�ne them together as a pair, p, as follows:letre
 p = lift0 (1, 0) until wb thenlift0 (0, 1) until bb then pin : : :Here p is a behaviour whi
h toggles between (1,0) and (0,1) when the buttonsare pressed. Initially p is lift0 (1,0), whi
h is the 
onstant behaviour thatyields (1,0) at all times. It swit
hes to (0,1) immediately when the booleanbehaviour wb yields true. We use boolean behaviours wb and bb to model thebuttons|they give true for times when the appropriate button is held down.The behaviour then restarts when bb yields true, returning to its initial state.Our letre
 
onstru
t takes the same approa
h used for re
ursive de�nitions as



in other normal order fun
tional languages su
h as PCF [Plo77, S
o93, Mit96℄.Intuitively it `unwinds' the de�nition as many times as ne
essary.The amount of time that white has remaining is the time available at thestart, initialTime, minus the integral of the �rst 
omponent of p,lift0 initialTime - integral (lift1 fst p):The term lift1 fst p maps the fst fun
tion over p for all times, so lift1 issimilar to map for lists ex
ept that behaviours are 
ontinuously evolving. Notethat the - operator is subtra
tion overloaded for behaviours, de�ned by applyinglift2 to the standard subtra
tion operator. The 
omplete program 
omprises apair of behaviours giving the time white and bla
k have remaining:letre
 p = lift0 (1, 0) until wb thenlift0 (0, 1) until bb then pin (lift0 initialTime - integral (lift1 fst p),lift0 initialTime - integral (lift1 snd p))One advantage of the CONTROL version is that timing is impli
it; no vari-ables for the time are needed and all temporal aspe
ts are dealt with by be-haviours. Of 
ourse, the implementation of behaviours must address 
ertain tim-ing issues, but the programmer is not burdened with doing so. Consequently, thesemanti
s of CONTROL 
an be used to verify that programs are 
orre
t at ahigher level of abstra
tion than for the imperative program.A se
ond key advantage of the CONTROL program is that it is modularbe
ause behaviours are 
onstru
ted 
ompositionally. For instan
e, we 
an usethe pair of behaviours de�ned above in a program whi
h displays the timeson 
lo
k fa
es and 
he
ks whether either player has ran out of time. In theimperative program this 
ode has to be inserted into the main loop, resulting ina monolithi
 blo
k of 
ode. In 
ontrast, the CONTROL program does not needto be 
hanged at all.3 Language and Semanti
sIn this se
tion we will des
ribe the syntax and semanti
s of our language. Thesyntax has two parts, fun
tional terms,E ::= K j x j �x.E j EE j �x.E j (E, E) j fst E j snd E(K stands for 
onstants su
h as 0, 1, +, - and >=) and behaviour terms,E ::= time j lift0 E j E $* E j integral E j E until E then EWe allow fun
tions that yield behaviours. However, only non-behaviour termsmay be lifted to 
onstant behaviours using lift0. This simpli�es our languagebe
ause it prevents behaviours of behaviours. Of 
ourse, this limits the languageto a degree, but many interesting programs 
an be expressed without higher-order behaviours. Although we 
onsider an untyped language here, it is possible



to de�ne a strongly typed variant using a minor extension of the simply typedlambda 
al
ulus [Dan99℄.We will des
ribe these behaviour terms informally in the next two se
tionsand then present our semanti
s.3.1 Time, Lifting and IntegrationThe behaviour time yields the 
urrent time. Viewed as a fun
tion of time itis the identity fun
tion t 7! t. In the 
hess 
lo
ks program we saw the liftingfun
tion lift0 for lifting 
onstants|for example lift0 (1, 0)|and lift1 forlifting fun
tions with one argument|for example lift1 fst. There are liftingfun
tions for ea
h arity of fun
tion; for example lift2 (+) performs pointwiseaddition for real-valued behaviours. These 
an be de�ned in terms of lift0 anda lifted appli
ation operator $*, whi
h applies a behaviour yielding fun
tions toa behaviour yielding arguments,lift1 f a = lift0 f $* alift2 f a b = lift1 f a $* blift3 f a b 
 = lift2 f a b $* 
This allows us to treat all the lifting operators by giving a semanti
s to lift0and $*.To see how this works, it is useful to view behaviours abstra
tly as fun
tionsof time. Then, time, lift0 and $* 
orrespond pre
isely to I , K and S 
ombina-tors [Bar84℄ as follows:time = t 7! t $ I t = tlift0 x = t 7! x $ K x t = xf $* b = t 7! (f t)(b t) $ S f b t = f t (b t):The next behaviour operator in the syntax, integral, yields the integral ofits argument from the start time up to the 
urrent time.3.2 Rea
tive behavioursThe behaviour operator until-then 
onstru
ts rea
tive behaviours, that is, be-haviours whi
h 
hange 
ourse when some event o

urs. The general form of anuntil-then term is B until C then Dwhere C is a Boolean behaviour modelling the event. Su
h terms a
t like B untilC yields true for the �rst time, and then a
t like D forever.If B, C and D are non-rea
tive (i.e., do not 
ontain any until-then sub-terms) then this des
ription is fairly 
lear. However, in general we may havenested until-then terms and in parti
ular when D is rea
tive the meaning issomewhat subtle.



Consider the following nested expression where we omit lifting of numbersand >= to help readability:1 until (time >= 1.5) then(2 until (time >= 2.5) then 3)| {z }D1 (1)This behaviour should start as the 
onstant behaviour t 7! 1, and then swit
hto D1 at time 1:5. Then it should be the 
onstant behaviour t 7! 2 until time2:5 when it should swit
h to 3. Now 
onsider a slight variation on this examplewhi
h is the same ex
ept for the se
ond 
ondition labelled C 02,1 until (time >= 1.5) then(2 until C02z }| {(time <= 0.5 ) then 3)| {z }D2 :Intuitively we expe
t this behaviour to start as t 7! 1 and then swit
h to D2 attime 1:5 as before. Then it should be t 7! 2 forever be
ause the 
ondition C 02will always be false|we have already passed time 0:5 so (time <= 0.5) mustremain false forever.The way we 
apture this interpretation of rea
tive behaviours is to eval-uate all behaviours with respe
t to a set of times. Conditions in until-thenexpressions are only tested for times in this set. Initially the overall program isevaluated over all times, that is, over the set T. In the pre
eding example thesub-term D2 would be evaluated for times in the set [1:5;1) be
ause this iswhen the �rst until-then swit
hed to D2. The 
ondition inside D2, labelledC 02, will therefore only be tested for times in this set, and it is false for everysu
h time as required.3.3 Approa
h to the Semanti
sIn this se
tion we will give a high level overview of our semanti
s. The mostdiÆ
ult operator to 
apture is until-then, so we fo
us our overview on howrea
tivity is dealt with. If we view behaviours as fun
tions of time then a rea
tivebehaviour a
ts like some fun
tion, say a0, until its asso
iated event o

urs, andthen it a
ts like another fun
tion, say a1. Considering the whole program theremay be many rea
tive sub-terms and for ea
h event o

urren
e the behaviour
hanges to a new fun
tion of time. The overall value of the behaviour is thefun
tion obtained by pie
ing together a0; a1; : : : , as illustrated in Figure 2.We 
apture this `pie
ing together' of fun
tions over intervals using a smallstep operational semanti
s[Mit96℄|whenever an event o

urs the rea
tive termit appears in is simpli�ed. These transition steps depend on the order that eventso

ur, and so it is ne
essary to 
al
ulate when events o

ur. Re
all that inCONTROL we use Boolean behaviours to des
ribe events, so we must �nd a
tualfun
tions from times to truth values for all su
h behaviours so that we 
andetermine when events o

ur. This leads us to a hybrid approa
h: an operationalsemanti
s that yields denotations at ea
h step, and these values are used to
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Fig. 2. Pie
ing together a rea
tive behaviourdetermine the next step. Thus evaluating a behaviour term A yields a 
hain ofvalues, ai, over 
onse
utive intervals, Ii. At ea
h step the term is redu
ed by theoperational rules yielding a new term. We write these 
hains asA a0��!I0 A1 a1��!I1 A2 a2��!I2 : : :The pre
ise meaning of these values is as follows:Ai is the behaviour term after i transitionsai is the mathemati
al meaning of Ai over the interval IiIi is the longest (possibly in�nite) interval over whi
h Ai is non-rea
tiveTo obtain the meaning of A for all times we 
on
atenate these parts,[[A℄℄ = t 7! 8><>:a0(t) t 2 I0a1(t) t 2 I1... ...giving a fun
tion like the one illustrated in Figure 2.3.4 DomainsOur language is untyped, so we interpret terms in a universal domain D1(see [Gun92℄). Terms representing real numbers or Boolean values belong tothe 
at CPOs R? = R [ f?Rg and B? = B [ f?Bg respe
tively, where thebottom elements ?R and ?B are ne
essary to a

ount for non-termination.The universal domain in
ludes the fun
tion spa
e T ! D1 of 
ontinuousfun
tions from times to values, where times are positive real numbers; T = fx 2R j x � 0g) . Note that we do not need any 
onditions on this fun
tion spa
e toensure that fun
tions are 
ontinuous be
ause T has a dis
rete topology. We donot need a bottom element for times be
ause behaviours are an abstra
t typeand there are no fa
ilities for applying behaviours to times within the language.The spa
e T! D1 must be a CPO, whi
h it is if we take the least element tobe the fun
tion whi
h maps all times to ?, and then use a dis
rete order.



3.5 Transition RulesRe
all that we use transition steps to 
apture event o

urren
es. The followingtransition applies when an event o

urs (i.e., when C be
omes true),B until C then D b�����!T0 n "T DThis asserts that the term B until C then D makes a transition to the termD, as we would expe
t when C be
omes true. The arrow is de
orated with someother values whi
h are as follows:T0 is the set of times over whi
h we evaluate the termT is the set of times in T0 when C is true, ft 2 T0 j 
(t) = trueg" T is the upperset of T , fs 2 R j 9s0 2 T : s0 � s:gb is the meaning of B, interpreted over T0n " T .The value on top of the arrow|in this 
ase b|is the value of the term over theinterval T0n " T , whi
h is why we write the sets of times under the arrow as a setdi�eren
e. For times after this interval the behaviour will a
t like D interpretedfor times in " T . This is as we des
ribed for the nested until-then examples|the behaviour D is swit
hed to when C be
omes true, so it is evaluated withrespe
t to the set of times at or after any time when C is true, that is, fortimes in the upperset of T . (Taking the upperset of T 
aptures the fa
t that thebehaviour swit
hes to D permanently.) Taking our earlier example (1) the �rsttransition is: 1 until (time >= 1.5) then D1 t7!1�������!Tn [1:5;1) D1Next D1 makes the transition2 until (time >= 2.5) then 3 t7!2�����������![1:5;1) n [2:5;1) 3Chaining together these two steps gives the value of the behaviour up to time2.5, and for all later times the behaviour yields 3.The rule for transitions like those above is 
alled the o

 rule, short for evento

urren
e. This rule and all the others are given in the Appendix. We will nowbrie
y dis
uss the remaining rules.The sub-terms B or C may rea
t before the 
ondition C be
omes true, re-sulting in a transition of the form,B until C then D b����!T0 n M B0 until C 0 then DThis transition, produ
ed by the non-o

 rule, asserts that both B and C maketransitions to B0 and C 0. The no-
hange rule allows a behaviour to remain thesame over a subinterval, and together these rules allow just B to rea
t, just Cto rea
t, or both B and C to rea
t simultaneously.



The 
ondition C may yield ? before it yields true, and in su
h 
ases it isimpossible to determine when the event o

urs. The bad-
ond rule 
aptures this
ase and gives ? for times after the 
ondition be
omes bad. The side 
onditionsfor o

, non-o

 and bad-
ond determine whi
h of the three rules applies toany given until-then term. They are mutually ex
lusive whi
h ensures thattransition steps are deterministi
.The rules for lifting and integration are relatively straightforward. The termlift0 E yields the same value at all times, that is, it equals t 7! [[E℄℄ (where[[ ℄℄ is a denotational semanti
s for non-behaviour terms) over the interval T0 n ;.Be
ause it takes the same value for all times in the future, it never makes atransition. The rule uses the empty term " to signify this, as do other rulesfor behaviours that never make another transition. The rule for integral Agives the integral of the value of A over non-rea
tive intervals and a

umulatesthe sum of integrating these non-rea
tive parts. More detailed des
riptions andexamples of all these rules are given in [Dan99℄.3.6 Transitions for fun
tionsThe rule that allows us to 
ombine the semanti
s of fun
tions and behaviours isthe redu
e rule, E ! E00 E00 e����!T0 n M E0E e����!T0 n M E0The short arrow! is a one-step evaluation relation. This rule allows a behaviourto make a transition if it 
an be evaluated one step and the resulting term 
anmake a transition. Thus it may be applied many times to evaluate a term untilit is a behaviour at the top level, and then the transition rule for the appropriatebehaviour operator 
an be applied.The evaluation relation has three rules: �-redu
tion,(�) (�x.L)N ! L[N=x℄where L[N=x℄ means that N repla
es x in L; redu
ing the fun
tion in an appli-
ation (i.e., normal-order evaluation),(norm) M !M 0M N !M 0 Nand unwinding re
ursive de�nitions,(�) (�x.L)! L[(�x.L)=x℄:To make programs more readable we de�ne synta
ti
 sugar for let andletre
 de�nitions in the usual way,let f = F in M � (�f:M)F:letre
 f = F in M � let f = �f:F in M� (�f:M)(�f:F ):



4 Semanti
s of Chess Clo
ksWe will now illustrate our semanti
s by applying it to the 
hess 
lo
ks program.The interpretation is a dire
t appli
ation of the rules in the Appendix.The 
omplete 
hess 
lo
ks program yields a pair of real-valued behaviours,so the semanti
s should give a value from the domain (T ! R? ;T ! R? ). Infa
t, the interesting part is the de�nition of p, so we will start by desugaring theletre
 de�nition for p,let p = �p. lift0 (1, 0) until wb thenlift0 (0, 1) until bb then pin ...Let P be the term on the right hand side of the above de�nition of p. We willdeal with P separately, that is, we will 
onstru
t the 
hainP p0����!T0 n T1 P1 p1����!T1 n T2 P2 p2����!T2 n T3 : : :where T0 = T, be
ause we begin by evaluating the program over all times, andthe sets Ti depend on the button presses.The term P is a re
ursive de�nition so we 
an unwind it one level using the� evaluation rule. This giveslift0 (1, 0) until wb thenlift0 (0, 1) until bb then PIn terms of the transition rules, we have used the redu
e rule to perform oneevaluation step on the term. We now have an until-then term at the top level.The o

 rule then gives the following transition:lift0 (1, 0) t7!(1;0)�����!Tn ; "lift0 (1, 0) t7!(1;0)�����!Tn T1 lift0 (1, 0) hno-
hangei wb wb����!Tn T1 wblift0 (1, 0) until wb then P1 t7!(1;0)�����!Tn T1 P1 ho

iwhere T1 = " ft 2 T j wb(t) = truegP1 = lift0 (0, 1) until bb then PNext the behaviour P1 makes a transition, again by the o

 rule. Using asimilar derivation to the �rst transition we obtain:lift0 (0, 1) until bb then P t7!(0;1)�����!T1 n T2 P



So far we have found the meaning of P in terms of the �rst two button presses,[[P ℄℄ = t 7! 8<: (1; 0) t 2 T n T1(0; 1) t 2 T1 n T2: : :The evaluation pro
eeds by interpreting P over T2. But P is the term we startedwith, so the transition for the next interval will be exa
tly the same ex
ept overthe set of times T2 instead of T. Thus, by indu
tion we have[[P ℄℄ = t 7! � (1; 0) t 2 (T n T1) [ (T2 n T3) [ : : :(0; 1) t 2 (T1 n T2) [ (T3 n T4) [ : : :where the sets Ti depend on the button presses (ex
ept T0 whi
h is T),T2i+1 = " ft 2 T2i j wb(t) = truegT2i = " ft 2 T2i�1 j bb(t) = truegAs we said earlier, the meaning of the overall 
hess 
lo
ks program is the pairobtained by integrating the �rst and se
ond 
omponents of the above value forP . Both these 
omponent behaviours are step fun
tions alternating between 1and 0, so their integrals are straightforward to 
ompute.5 Related WorkWe have dis
ussed our work in relation to Elliott and Hudak's semanti
s forFran [EH97℄ elsewhere in this paper. Ling has identi�ed some problems andsuggested extensions to their work [Lin97℄, but he does not solve the main lim-itation of their work, namely that it does not a

ount for fun
tions yieldingbehaviours. Hudak and Wan address the problem of approximation by de�ninga dis
rete time semanti
s for behaviours that 
orresponds to the implementa-tion, and establishing results that show the 
onvergen
e of this semanti
s to anexa
t 
ontinuous time model under suitable 
onditions [WH00℄. Again, this onlya

ounts for behaviours in isolation from fun
tions.Thompson has suggested a di�erent approa
h, interpreting Fran programsby translating them into temporal logi
 formulas [Tho99℄. This is an interest-ing alternative to Elliott and Hudak's denotational approa
h and to our oper-ational approa
h, but further work is required to extend this to provide a fullsemanti
s for Fran (or for CONTROL). Other formalisms, su
h as the modal�-
al
ulus [Koz83℄, have been used to spe
ify rea
tive systems, but they di�ersigni�
antly in approa
h to CONTROL and generally adopt dis
rete time. CON-TROL is 
loser to a language than su
h 
al
uli be
ause there is a straightforwardimplementation for approximate behaviours [Ell98℄.More widely, there many other languages for programming rea
tive systems.However, most languages adopt a dis
rete notion of time; for example, Es-terel [Ber97℄, Lustre [HCRP91℄, Signal [LGLL91℄ and Imperative Streams [S
h96℄.



Programs written in these languages are not able to perform operations like in-tegration, whi
h is only valid for 
ontinuous time, and 
an be more diÆ
ult toreason about. One 
ontinuous-time language is Dannenberg's Ar
ti
 [Dan84℄,whi
h has only an informal des
ription. In 
onsidering a formal semanti
s forAr
ti
, many of the same issues we have met arise; for example, both languagesdes
ribe events using time-varying boolean values, so we must de�ne how torea
t to su
h events. For this reason we expe
t that a similar approa
h to ours
ould be used to develop a formal semanti
s for Ar
ti
.6 Con
lusionsWe have illustrated CONTROL and its formal semanti
s with the 
hess 
lo
ksprogram. Our semanti
s assigns a meaning to every valid CONTROL program,whereas the semanti
s Elliott and Hudak gave for Fran [EH97℄ only interprets theoperations on behaviours and events. Moreover, their work des
ribes idealisedabstra
t behaviours, not the ones implemented in the library. Although we alsodes
ribe idealised behaviours, there is no 
on
i
t between the implementationand the semanti
s be
ause behaviours are built into the language.Our te
hnique interprets behaviours using transition rules and 
ombines thiswith the usual operational rules for normal-order fun
tional languages. It ispossible to treat many variations of the 
ore language using this te
hnique.Pragmati
ally, CONTROL is beyond 
urrent te
hniques for exa
t real in-tegration and event dete
tion. However, it is possible to implement behavioursusing approximation te
hniques and 
oating point arithmeti
. An approximateimplementation would require a di�erent semanti
s|one that a

ounts for theerrors|but note that this still relies on our idealised semanti
s otherwise it isnot 
lear what su
h implementations are approximating.In summary, we believe that our theory of CONTROL is useful for studyingFran-like languages, both retrospe
tively to analyse Fran and in future work
reating new languages for programming hybrid systems.A
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time time t 7!t����!T0 n ; "lift0 lift0 E t 7![[E℄℄����!T0 n ; "
$* F f����!T0 nM F 0 B b����!T0 nM B0F $* B t 7!(f(t))(b(t))���������!T0 nM F 0 $* B0
no-
hange B b�����!T0 n TB B0B b����!T0 n X B X ! TBX = " X
integral B b����!T0 nM B0integral B I����!T0 nM K + integral B0 R b existsK � Real(R inf(M)inf(T0) b(s):ds)I = t 7! R tinf(T0) b(s):ds
bad-integral B b����!T0 nM B0integral B ?T!R?�����!T0 n ; " no R b existsFig. 3. Transition rules I : Time, lifting, no-
hange and integral



Formulas for o

, non-o

 and bad-
ond rules:T = ft 2 T0 j 
(t) = truegBad = ft 2 T0 j 
(t) = ?BgTransition rules:o

 B b����!T0 n M B0 C 
����!T0 n M C0B until C then D b�����!T0 n "T D " T �M" T ! " Bad
non-o

 B b����!T0 n M B0 C 
����!T0 n M C0B until C then D b����!T0 nM E M ! " TM ! " BadE � B0 until C0 then D
bad-
ond B b����!T0 n M B0 C 
����!T0 n M C0B until C then D b0����!T0 n M " " Bad �M [ " Tb0 = t 7! � b(t) t =2 " Bad?
redu
e E ! E00 E00 e����!T0 nM E0E e����!T0 n M E0Fig. 4. Transition rules II : Rea
tive behaviours and redu
e
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