University of

"1l Kent Academic Repository

Daniels, Anthony C. (2000) Recursive Functions and Reactive Behaviours:
The Essence of Fran. Other. Kent University (Unpublished)

Downloaded from
https://kar.kent.ac.uk/21956/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21956/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Recursive Functions and Reactive Behaviours:
The Essence of Fran

Anthony Charles Daniels

University of Kent at Canterbury, Canterbury, Kent CT2 7NF, UK,
A.C.Daniels@ukc.ac.uk

Abstract. The functional animation language Fran provides abstract
datatypes of “behaviours” to represent time varying values—for exam-
ple the position of moving objects—and “events” to represent discrete
occurrences—for example collisions.

We introduce a small functional language called CONTROL which is de-
signed to capture the essential operations on behaviours and events but
in a minimalistic language so that it is easier to define a semantics for our
language. Previous semantics for Fran have not explained how functions
and behaviours combine, and consequently they cannot interpret func-
tions that yield behaviours. In contrast we provide a complete semantics
for CONTROL. This is based on an operational-style transition system
for behaviours that allows function terms to be reduced in the usual way.

1 Introduction

Fran [EH97, PEL9S] is a Haskell [HJ99, HF92] library for creating interactive
animations. It provides constants and operations for two datatypes: behaviours
and events. Behaviours are used to describe time-varying, or continuously evolv-
ing, values. They may be thought of as abstract representations of functions of
time. Events are used to capture user actions, such as mouse clicks, and interac-
tion between behaviours, such as when objects collide. Thus behaviours model
continuous change and events model discrete occurrences. Behaviours and events
can be mutually dependent: behaviours may react, or change course, upon event
occurrences; and events may be determined by Boolean valued behaviours.

An animation using the Fran library is a Haskell program that defines an
image-valued behaviour. The system uses a presentation engine which evaluates
this behaviour and then creates frames of the animation.

Consider the semantics of Fran programs. Fran is embedded in Haskell so a
semantics must begin with a complete semantics for Haskell. However, if we try
to add a semantics for behaviours and events, an inevitable conflict arises: these
datatypes have an implied semantics derived from their implementation, but
this is useless for reasoning about programs because it is at the wrong level of
abstraction. We want to capture the essential abstract properties of behaviours
and events, and not the details of their implementation in Haskell.

One route is to consider behaviours and events as abstract types and give
them a semantics separate from their implementation. Elliott and Hudak adopted

this approach[EH97], but their semantics does not correspond to the imple-
mented language because in practice approximation techniques are used to com-
pute behaviours. Furthermore, their semantics does not indicate how these ab-
stract values integrate with Haskell code. Crucially, their work does not account
for the semantics of functions that yield behaviours.

For example, consider a step behaviour that yields the value 1 initially and
then increments by 1 each second. This can be achieved by writing a function
that takes an integer n and gives a behaviour that yields n until a second has
elapsed, and then calls itself with n 4 1. Naively combining Elliott and Hudak’s
semantics with a denotational semantics of recursive functions requires a CPO
for behaviours such that taking fixed points gives the required behaviours. This
has not been investigated, and some technical difficulties with this approach are
discussed in [Dan99).

Our approach is to study a simple functional language with abstract be-
haviours built in. Because behaviours are built-in rather than implemented in
the language, we can legitimately define their semantics to give the idealised
operations. Furthermore, we avoid unnecessary complexity due to the size of
Haskell and are still able to address the important semantic issues arising from
combining behaviours and events with functions.

The language we present here is called CONTROL—CONtinuous Time Re-
active Object Language. It is essentially a simplification of Fran, including only
the core operators on behaviours and a minimal functional language. Although
it does not contain a datatype for events, it includes reactivity by using Boolean
behaviours to represent events. Thus the crucial elements of the Fran paradigm
are present, but in a language which has a more manageable semantics.

CONTROL first appeared in [Dan99] and this paper is a concise introduction
to a useful subset of the full language. The larger publication defines a strongly
typed version (here we consider an untyped language) and includes novel facilities
that make the ‘start times’ (or ‘user arguments’) in Fran redundant. Related to
this is the important distinction made between recursive functions and recursive
behaviours; we only consider the former in this paper.

In this paper we give a semantics for CONTROL based on an operational-
style transition system which integrates smoothly with the evaluation of function
terms. Consequently we are able to interpret functions that yield behaviours. We
illustrate our language and its semantics with a simple example that implements
chess clocks.

2 Chess Clocks Example

We will introduce CONTROL by describing a program that implements chess
clocks. Chess clocks have two clock faces which show the amount of time each
player has remaining in a game of chess. At the start of the game both clocks are
set with equal amounts of time and white’s clock begins to count down. After
white has moved they press the white button and black’s clock begins to count
down, and so on alternately.

Before we describe the CONTROL program we will consider a typical imple-
mentation in an imperative language to illustrate the advantages of our approach.
The imperative program in Figure 1 uses a loop and a player variable to indicate
which player is thinking. In each iteration of the loop some time is subtracted
from the current player’s time left and their button is checked.

The timing of this program is somewhat confusing. For example, it is not clear
whether it is correct to update the clocks and then check for button presses or
the other way around. Similarly, we must decide when to get the current time
and where to place other parts of the code, such as the code to check if either
player has run out of time and the code to draw the clock faces. In practice, the
usual assumption is that the loop is performed many times each second and so
slight timing irregularities are not significant.

timeLeft [white] := initialTime; timeLeft[black] := initialTime;
player := white; tO := getSystemTime();
loop

tl := getSystemTime();
timeLeft[player] := timeLeft[player] - (t1 - t0);
if timeLeft[player] <= O then exitloop;

t0 := t1;
if buttonPress[player] then player := opponent(player);
// ...code to re-draw the clock faces.

endloop;

Fig. 1. Imperative chess clocks

We can implement chess clocks in CONTROL by using a behaviour to capture
the time each player has remaining. Suppose we have a behaviour that yields 1
while white is playing and 0 while black is playing; the integral of this behaviour
gives the amount of time that white has used up. The equivalent behaviour for
black is the opposite, and we define them together as a pair, p, as follows:

letrec p = 1ift0 (1, 0) until wb then
1ift0 (0, 1) until bb then p
in

Here p is a behaviour which toggles between (1,0) and (0,1) when the buttons
are pressed. Initially p is 1ift0 (1,0), which is the constant behaviour that
yields (1,0) at all times. It switches to (0,1) immediately when the boolean
behaviour wb yields true. We use boolean behaviours wb and bb to model the
buttons—they give true for times when the appropriate button is held down.
The behaviour then restarts when bb yields true, returning to its initial state.
Our letrec construct takes the same approach used for recursive definitions as

in other normal order functional languages such as PCF [Plo77, Sco93, Mit96].
Intuitively it ‘unwinds’ the definition as many times as necessary.

The amount of time that white has remaining is the time available at the
start, initialTime, minus the integral of the first component of p,

1ift0 initialTime - integral (1iftl fst p).

The term 1iftl fst p maps the fst function over p for all times, so 1ift1 is
similar to map for lists except that behaviours are continuously evolving. Note
that the - operator is subtraction overloaded for behaviours, defined by applying
1ift2 to the standard subtraction operator. The complete program comprises a
pair of behaviours giving the time white and black have remaining:

letrec p = 1ift0 (1, 0) until wb then
1ift0 (0, 1) until bb then p
in (1iftO initialTime - integral (liftl fst p),
1ift0 initialTime - integral (1iftl snd p))

One advantage of the CONTROL version is that timing is implicit; no vari-
ables for the time are needed and all temporal aspects are dealt with by be-
haviours. Of course, the implementation of behaviours must address certain tim-
ing issues, but the programmer is not burdened with doing so. Consequently, the
semantics of CONTROL can be used to verify that programs are correct at a
higher level of abstraction than for the imperative program.

A second key advantage of the CONTROL program is that it is modular
because behaviours are constructed compositionally. For instance, we can use
the pair of behaviours defined above in a program which displays the times
on clock faces and checks whether either player has ran out of time. In the
imperative program this code has to be inserted into the main loop, resulting in
a monolithic block of code. In contrast, the CONTROL program does not need
to be changed at all.

3 Language and Semantics

In this section we will describe the syntax and semantics of our language. The
syntax has two parts, functional terms,

E:=K|z|X.E|EE|pz.E| (E, E)|fst E|snd E
(K stands for constants such as 0, 1, +, - and >=) and behaviour terms,
E ::=time | 1lift0 E | E $* E | integral E | E until E then E

We allow functions that yield behaviours. However, only non-behaviour terms
may be lifted to constant behaviours using 1ift0. This simplifies our language
because it prevents behaviours of behaviours. Of course, this limits the language
to a degree, but many interesting programs can be expressed without higher-
order behaviours. Although we consider an untyped language here, it is possible

to define a strongly typed variant using a minor extension of the simply typed
lambda calculus [Dan99].

We will describe these behaviour terms informally in the next two sections
and then present our semantics.

3.1 Time, Lifting and Integration

The behaviour time yields the current time. Viewed as a function of time it
is the identity function ¢ — t. In the chess clocks program we saw the lifting
function 1iftO0 for lifting constants—for example 1ift0 (1, 0)—and lift1 for
lifting functions with one argument—for example 1ift1 fst. There are lifting
functions for each arity of function; for example 1ift2 (+) performs pointwise
addition for real-valued behaviours. These can be defined in terms of 1ift0 and
a lifted application operator $*, which applies a behaviour yielding functions to
a behaviour yielding arguments,

liftl £ a = 1ift0 £ $* a
lift2 f a b = 1iftl f a $*x b
lift3 f a b c = 1lift2 f a b $* c

This allows us to treat all the lifting operators by giving a semantics to 1ift0
and $x*.

To see how this works, it is useful to view behaviours abstractly as functions
of time. Then, time, lift0 and $* correspond precisely to I, K and S combina-
tors [Bar84] as follows:

time =ttt > It =t
lift0x =t — x <~ Kzt =z
8 b=t (ft)(bt) <~ Sfot= ft(bt).

The next behaviour operator in the syntax, integral, yields the integral of
its argument from the start time up to the current time.

3.2 Reactive behaviours

The behaviour operator until-then constructs reactive behaviours, that is, be-
haviours which change course when some event occurs. The general form of an
until-then term is

B until C then D

where C' is a Boolean behaviour modelling the event. Such terms act like B until
C yields true for the first time, and then act like D forever.

If B, C and D are non-reactive (i.e., do not contain any until-then sub-
terms) then this description is fairly clear. However, in general we may have
nested until-then terms and in particular when D is reactive the meaning is
somewhat subtle.

Consider the following nested expression where we omit lifting of numbers
and >= to help readability:

1 until (time >= 1.5) then (2 until (time >= 2.5) then 3) (1)

D,

This behaviour should start as the constant behaviour ¢ — 1, and then switch
to Dy at time 1.5. Then it should be the constant behaviour ¢ — 2 until time
2.5 when it should switch to 3. Now consider a slight variation on this example
which is the same except for the second condition labelled CY,

Cy
——
1 until (time >= 1.5) thenL(2 until (time <= 0.5) then 3)J.

D>

Intuitively we expect this behaviour to start as ¢ — 1 and then switch to D, at
time 1.5 as before. Then it should be ¢ — 2 forever because the condition C}
will always be false—we have already passed time 0.5 so (time <= 0.5) must
remain false forever.

The way we capture this interpretation of reactive behaviours is to eval-
uate all behaviours with respect to a set of times. Conditions in until-then
expressions are only tested for times in this set. Initially the overall program is
evaluated over all times, that is, over the set T. In the preceding example the
sub-term D, would be evaluated for times in the set [1.5,00) because this is
when the first until-then switched to Ds. The condition inside D-, labelled
C}, will therefore only be tested for times in this set, and it is false for every
such time as required.

3.3 Approach to the Semantics

In this section we will give a high level overview of our semantics. The most
difficult operator to capture is until-then, so we focus our overview on how
reactivity is dealt with. If we view behaviours as functions of time then a reactive
behaviour acts like some function, say ag, until its associated event occurs, and
then it acts like another function, say a;. Considering the whole program there
may be many reactive sub-terms and for each event occurrence the behaviour
changes to a new function of time. The overall value of the behaviour is the
function obtained by piecing together ag, ay, ..., as illustrated in Figure 2.

We capture this ‘piecing together’ of functions over intervals using a small
step operational semantics[Mit96]—whenever an event occurs the reactive term
it appears in is simplified. These transition steps depend on the order that events
occur, and so it is necessary to calculate when events occur. Recall that in
CONTROL we use Boolean behaviours to describe events, so we must find actual
functions from times to truth values for all such behaviours so that we can
determine when events occur. This leads us to a hybrid approach: an operational
semantics that yields denotations at each step, and these values are used to

Value

Lo

e—Ig—<—[—<—]—

Time

Fig. 2. Piecing together a reactive behaviour

determine the next step. Thus evaluating a behaviour term A yields a chain of
values, a;, over consecutive intervals, I;. At each step the term is reduced by the
operational rules yielding a new term. We write these chains as

A&Al L}AQ&...
Iy I I

The precise meaning of these values is as follows:

A; is the behaviour term after i transitions

a; is the mathematical meaning of A; over the interval I;

I; is the longest (possibly infinite) interval over which A; is non-reactive
To obtain the meaning of A for all times we concatenate these parts,

ao(t) te IO
[[A]]:t*—) al(t)tell

giving a function like the one illustrated in Figure 2.

3.4 Domains

Our language is untyped, so we interpret terms in a universal domain D
(see [Gun92]). Terms representing real numbers or Boolean values belong to
the flat CPOs Ry = RU {Llr} and By = B U {Llp} respectively, where the
bottom elements Lr and Lp are necessary to account for non-termination.

The universal domain includes the function space T — D of continuous
functions from times to values, where times are positive real numbers; T = {z €
R |z > 0}) . Note that we do not need any conditions on this function space to
ensure that functions are continuous because T has a discrete topology. We do
not need a bottom element for times because behaviours are an abstract type
and there are no facilities for applying behaviours to times within the language.
The space T — D* must be a CPO, which it is if we take the least element to
be the function which maps all times to L, and then use a discrete order.

3.5 Transition Rules

Recall that we use transition steps to capture event occurrences. The following
transition applies when an event occurs (i.e., when C becomes true),

B until C then D SELENNY
To \ 1T

This asserts that the term B until C then D makes a transition to the term
D, as we would expect when C becomes true. The arrow is decorated with some
other values which are as follows:

Ty is the set of times over which we evaluate the term

T is the set of times in Ty when C is true, {t € Ty | ¢(t) = true}
1T is the upperset of T, {s e R | 3s' € T': s' < 5.}

b is the meaning of B, interpreted over Tp\ 1 T'.

The value on top of the arrow—in this case b—is the value of the term over the
interval Tp\ 1 T, which is why we write the sets of times under the arrow as a set
difference. For times after this interval the behaviour will act like D interpreted
for times in 1 7. This is as we described for the nested until-then examples—
the behaviour D is switched to when C' becomes true, so it is evaluated with
respect to the set of times at or after any time when C' is true, that is, for
times in the upperset of T'. (Taking the upperset of T' captures the fact that the
behaviour switches to D permanently.) Taking our earlier example (1) the first
transition is:

t—1

1 until (time >= 1.5) then Dy ————— D,
T\ [1.5,00)
Next D; makes the transition
t2

2 until (time >= 2.5) then 3
[1.5,00) \ [2.5,00)

Chaining together these two steps gives the value of the behaviour up to time
2.5, and for all later times the behaviour yields 3.

The rule for transitions like those above is called the occ rule, short for event
occurrence. This rule and all the others are given in the Appendix. We will now
briefly discuss the remaining rules.

The sub-terms B or C' may react before the condition C' becomes true, re-
sulting in a transition of the form,

B until C then D %}B' until C' then D
To \ M

This transition, produced by the non-occ rule, asserts that both B and C make
transitions to B’ and C’. The no-change rule allows a behaviour to remain the
same over a subinterval, and together these rules allow just B to react, just C'
to react, or both B and C' to react simultaneously.

The condition C' may yield L before it yields true, and in such cases it is
impossible to determine when the event occurs. The bad-cond rule captures this
case and gives L for times after the condition becomes bad. The side conditions
for occ, non-occ and bad-cond determine which of the three rules applies to
any given until-then term. They are mutually exclusive which ensures that
transition steps are deterministic.

The rules for lifting and integration are relatively straightforward. The term
1ift0 E yields the same value at all times, that is, it equals ¢t — [E] (where
[] is a denotational semantics for non-behaviour terms) over the interval Ty \ 0.
Because it takes the same value for all times in the future, it never makes a
transition. The rule uses the empty term e to signify this, as do other rules
for behaviours that never make another transition. The rule for integral A
gives the integral of the value of A over non-reactive intervals and accumulates
the sum of integrating these non-reactive parts. More detailed descriptions and
examples of all these rules are given in [Dan99].

3.6 Transitions for functions

The rule that allows us to combine the semantics of functions and behaviours is
the reduce rule,

E—-E' E'"——F
To \ M

The short arrow — is a one-step evaluation relation. This rule allows a behaviour
to make a transition if it can be evaluated one step and the resulting term can
make a transition. Thus it may be applied many times to evaluate a term until
it is a behaviour at the top level, and then the transition rule for the appropriate
behaviour operator can be applied.

The evaluation relation has three rules: S-reduction,

) (Az.L)N — L[N/z]

where L[N/z] means that N replaces « in L; reducing the function in an appli-
cation (i.e., normal-order evaluation),

M — M
(norm) M N—-M N

and unwinding recursive definitions,
(1) (uz.L) = L[(uz.L)/x].

To make programs more readable we define syntactic sugar for let and
letrec definitions in the usual way,

let f =F in M = (Af.M)F.
letrec f= F in M = let f = uf.F in M
= M) fE).

4 Semantics of Chess Clocks

We will now illustrate our semantics by applying it to the chess clocks program.
The interpretation is a direct application of the rules in the Appendix.

The complete chess clocks program yields a pair of real-valued behaviours,
so the semantics should give a value from the domain (T — R, ,T — R,). In
fact, the interesting part is the definition of p, so we will start by desugaring the
letrec definition for p,

let p = pp. 1ift0 (1, 0) until wb then
1ift0 (0, 1) until bb then p
in ...

Let P be the term on the right hand side of the above definition of p. We will
deal with P separately, that is, we will construct the chain

po P, p1 s Py b2
TO \ T1 T1 \ T2

5\

7 e
Tz\Tg

where Ty = T, because we begin by evaluating the program over all times, and
the sets T; depend on the button presses.

The term P is a recursive definition so we can unwind it one level using the
u evaluation rule. This gives

1ift0 (1, 0) until wb then
1ift0 (0, 1) until bb then P

In terms of the transition rules, we have used the reduce rule to perform one
evaluation step on the term. We now have an until-then term at the top level.
The occ rule then gives the following transition:

1ift0 (1, 0) 20 .

1lift0 (1, 0) ——= 1ift0 (1, 0) wab)wb

SO0 (no-change)
T\ Ty T\ T

. . t—(1,0) (occ)
1ift0 (1, 0) until wb then P; \4> P
T\ T}

where

T, =1 {teT|wbt) = true}
P, =1ift0 (0, 1) until bb then P

Next the behaviour P, makes a transition, again by the occ rule. Using a
similar derivation to the first transition we obtain:

t—(0,1)
—
T1 \ T2

1ift0 (0, 1) until bb then P P

So far we have found the meaning of P in terms of the first two button presses,

IIP]]:t'—) (,1)tET1\T2

(1,0)|t e T\ T3

The evaluation proceeds by interpreting P over T5. But P is the term we started
with, so the transition for the next interval will be exactly the same except over
the set of times T» instead of T. Thus, by induction we have

[[P]]ztr—){%:?;

where the sets T; depend on the button presses (except Ty which is T),

tE(T\Tl)U(TQ\T3)U
tG(Tl\TQ)U(Tg\T4)U

Toip1 =1 {t € To; | wb(t) = true}
Tg,' = T {t € Tgi_l | bb(t) = true}

As we said earlier, the meaning of the overall chess clocks program is the pair
obtained by integrating the first and second components of the above value for
P. Both these component behaviours are step functions alternating between 1
and 0, so their integrals are straightforward to compute.

5 Related Work

We have discussed our work in relation to Elliott and Hudak’s semantics for
Fran [EH97] elsewhere in this paper. Ling has identified some problems and
suggested extensions to their work [Lin97], but he does not solve the main lim-
itation of their work, namely that it does not account for functions yielding
behaviours. Hudak and Wan address the problem of approximation by defining
a discrete time semantics for behaviours that corresponds to the implementa-
tion, and establishing results that show the convergence of this semantics to an
exact continuous time model under suitable conditions [WHO00]. Again, this only
accounts for behaviours in isolation from functions.

Thompson has suggested a different approach, interpreting Fran programs
by translating them into temporal logic formulas [Tho99]. This is an interest-
ing alternative to Elliott and Hudak’s denotational approach and to our oper-
ational approach, but further work is required to extend this to provide a full
semantics for Fran (or for CONTROL). Other formalisms, such as the modal
p-calculus [Koz83], have been used to specify reactive systems, but they differ
significantly in approach to CONTROL and generally adopt discrete time. CON-
TROL is closer to a language than such calculi because there is a straightforward
implementation for approximate behaviours [EN198].

More widely, there many other languages for programming reactive systems.
However, most languages adopt a discrete notion of time; for example, Es-
terel [Ber97], Lustre [HCRP91], Signal [LGLL91] and Imperative Streams [Sch96].

Programs written in these languages are not able to perform operations like in-
tegration, which is only valid for continuous time, and can be more difficult to
reason about. One continuous-time language is Dannenberg’s Arctic [Dan84],
which has only an informal description. In considering a formal semantics for
Arctic, many of the same issues we have met arise; for example, both languages
describe events using time-varying boolean values, so we must define how to
react to such events. For this reason we expect that a similar approach to ours
could be used to develop a formal semantics for Arctic.

6 Conclusions

We have illustrated CONTROL and its formal semantics with the chess clocks
program. Our semantics assigns a meaning to every valid CONTROL program,
whereas the semantics Elliott and Hudak gave for Fran [EH97] only interprets the
operations on behaviours and events. Moreover, their work describes idealised
abstract behaviours, not the ones implemented in the library. Although we also
describe idealised behaviours, there is no conflict between the implementation
and the semantics because behaviours are built into the language.

Our technique interprets behaviours using transition rules and combines this
with the usual operational rules for normal-order functional languages. It is
possible to treat many variations of the core language using this technique.

Pragmaticallyy, CONTROL is beyond current techniques for exact real in-
tegration and event detection. However, it is possible to implement behaviours
using approximation techniques and floating point arithmetic. An approximate
implementation would require a different semantics—one that accounts for the
errors—but note that this still relies on our idealised semantics otherwise it is
not clear what such implementations are approximating.

In summary, we believe that our theory of CONTROL is useful for studying
Fran-like languages, both retrospectively to analyse Fran and in future work
creating new languages for programming hybrid systems.

Acknowledgements

I would like to thank Conal Elliott for introducing me to this topic during a
fascinating internship at Microsoft Research. Mark P. Jones gave superb guid-
ance as my supervisor at Nottingham, and contributed many useful ideas. Simon
Thompson and Claus Reinke gave me much useful feedback on this paper. This
research was supported by Microsoft Research.

Appendix: Formal semantics

time

lift0

no-change

integral

bad-integral

. tst
time — ¢
To \ 0

lifto B 2L o
To \ 0

F—L s p

To \ M

B—>,p
To \ M

P g« B 2UOCON bo by

To \ M

B—" ,p
Ty \ M

integral B —L K+ integral B’
To \ M
K= Real(f.inf(M) b(s).ds)

: inf(Ty)
I=t— finf(TO) b(s).ds

B—" ,p
Ty \ M

. L"S—);LL
integral B ———= ¢
To \ 0

X D Ts
X=1X

f b exists

no [b exists

Fig. 3. Transition rules I : Time, lifting, no-change and integral

Formulas for occ, non-occ and bad-cond rules:

T ={teTo]c(t)=true}
Bad = {t (S To | C(t) = J_Ia,}

Transition rules:

c—==cC
To \ M

B—"> B
To \ M

oce B until C then D —2 s D
To \ 1T

c——cc
To \ M

B—> ,p
TO\M

B until C then D — > » E
Ty \ M

non-occ

E =B’ until C' then D

c—==cC
To \ M

B—> B
To \ M

B until C then D —% ¢
To \ M

H:th+{MQV¢TBmi

bad-cond

1

E—>E' E'— L F
Ty \ M

E— S FE
To \ M

reduce

+TDOM
+T 21 Bad

MptT
M Q1 Bad

+BadD MU 1T

Fig. 4. Transition rules II : Reactive behaviours and reduce

References

[Bar84]
[Ber97]
[Dang4]
[Dan99]

[EH97]

[E1198]
[Gun92]
[HCRPI1]
[HF92]
[ELJ99]
[Koz83]
[LGLLO1]
[Lin97]
[Mit96]

[PELOS]

[Plo77]
[Sch96]
[Sco93]
[Tho99]

[WHO0]

H. P. Barendregt. The Lambda Calculus, Its Syntaz and Semantics. North-
Holland, Amsterdam, 1984.

G. Berry. The foundations of Esterel, 1997.

R. B. Dannenberg. Arctic: A functional language for real-time control.
In ACM Symposium on LISP and Functional Programming, pages 96-103,
1984.

Anthony C. Daniels. A semantics for functions and behaviours.
PhD thesis, The University of Nottingham, 1999. Available from
http://www.cs.ukc.ac.uk/people/staff/acd/thesis.ps.

Conal Elliott and Paul Hudak. Functional reactive animation. In The pro-
ceedings of the 1997 ACM SIGPLAN International Conference on Func-
tional Programming, 1997.

Conal Elliott. Functional implementations of continuous modeled anima-
tion. In Proceedings of PLILP/ALP 98, 1998.

Carl Gunter. Semantics of programming languages. MIT Press, 1992.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language LUSTRE. In Proceedings IEEE, vol-
ume 79, pages 1305-1305, 1991.

P. Hudak and J. Fasel. A gentle introduction to Haskell. SIGPLAN Notices,
27(5):Section T, 1992.

John Hughes and Simon Peyton Jones. Report on the programming lan-
guage Haskell 98. Available from http://www.haskell.org/definition/,
1999.

D. Kozen. Results on the propositional p-calculus. Technical report, 1983.
P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMarire. Programming
real times applications with Signal. In Proceedings IEEE, pages 1321-1336,
1991.

Gary Shu Ling. Fran: Its semantics and existing problems. Available from
http://pantheon.yale.edu/~ sling/research/690Report.ps.zip, 1997.
John C. Mitchell. Foundations for programming languages. MIT Press,
1996.

John Peterson, Conal Elliott, and Gary Shu Ling. Fran user’s man-
ual. http://www.research.microsoft.com/~ conal/Fran/UsersMan.htm,
1998.

Gordon Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(3):223-255, December 1977.

Enno Scholz. A monad of imperative streams. In Glasgow FP workshop,
1996.

Dana S. Scott. A type-theorectical alternative to ISWIM, CUCH, OWHY.
Theorectical computer science, 121:441-440, 1993.

Simon Thompson. Verifying Fran programs. Available from
http://www.cs.ukc.ac.uk/people/staff/sjt/Fran, April 1999.
Zhanyong Wan and Paul Hudak. Functional reactive programming from
first principles. In SIGPLAN ’00 Conference on Programming Language
Design and Implementation. ACM Press, June 2000.

