Designing a Trace Format for Heap Allocation Events

Trishul Chilimbi

Microsoft Research

One Microsoft Way
Redmond, WA, 98052 USA

trishulc@microsoft.com

ABSTRACT

Dynamic storage allocation continues to play an important
role in the performance and correctness of systems ranging
from user productivity software to high-performance servers.
While algorithms for dynamic storage allocation have been
studied for decades, much of the literature is based on mea-
suring the performance of benchmark programs unrepre-
sentative of many important allocation-intensive workloads.
Furthermore, to date no standard has emerged or been pro-
posed for publishing and exchanging representative alloca-
tion workloads. In this paper, we describe a preliminary
design of a trace format for such workloads and investigate
its effectiveness at representing large allocation traces. Our
proposal allows for a flexible encoding of information in the
trace to achieve greater compression. We evaluate our pre-
liminary design in two dimensions. First, we measure how
effective these encodings are at reducing trace size. Second
we consider how a meta-level specification language could be
used to describe such formats and to generate trace readers
and writers automatically.

1. INTRODUCTION

Dynamic storage allocation! continues to be an important
part of many computer systems. Algorithms for DSA have
been proposed and evaluated for decades, resulting in highly
effective implementations. New research opportunities con-
tinue to emerge such as the scalability of allocator imple-
mentations in multithreaded systems [1, 14]. Unfortunately,
much of the research in this field is based on the allocation
behavior of relatively short-running benchmarks (for exam-
ple, work by one of the authors [2, 23] and others [12]).
These programs are becoming less appropriate for DSA re-
search for several reasons. First, often DSA performance
only becomes an issue after large amounts of allocation have

We use the terms “dynamic storage allocation,” “DSA,”
and “heap allocation” as synonyms in the text.

Richard Jones
Computing Laboratory
University of Kent
Canterbury, Kent, CT2 7NF

R.E.Jones@ukc.ac.uk

Benjamin Zorn
Microsoft Research
One Microsoft Way

Redmond, WA, 98052 USA

zorn@microsoft.com

been performed. Existing research is often based on pro-
grams in which at most several million objects are allocated,
when actual performance problems may develop after tens or
hundreds of millions of allocations. Second, single-threaded,
single-heap benchmarks are not representative of a large and
important class of multithreaded applications that often rely
heavily on DSA [14]. Consequently, improving DSA perfor-
mance remains a significant challenge for many such pro-
grams.

Large-scale multithreaded benchmarks are not typically used
in research for several reasons. Publicly available versions
of such long-running, allocation-intensive programs are dif-
ficult to find and/or are proprietary. In addition, long-
running programs are inherently more difficult to work with
experimentally. Server programs, an interesting subclass of
such programs, are difficult to create workloads for, because
they require configuring networks and clients, and often ex-
ecute non-deterministically.

To overcome these difficulties, we propose that collecting
and sharing large allocation traces is an attractive alterna-
tive to the ad hoc benchmarking that is currently taking
place. This paper proposes and evaluates one possible for-
mat for such traces, and discusses a meta-language for trace
format specification. Our goal is to encourage broader in-
volvement in this effort. We view this paper as a starting
point in a discussion about whether a trace-based approach
to DSA research is effective and feasible, and if so, what the
most appropriate format for such traces would be. Design-
ing a trace format raises several issues. The following goals
were used to guide the design presented here:

e Expressiveness—The trace format must be able to ex-
press enough information that the resulting traces can
be used to make research contributions in the field.

e Compactness—Compact encodings allow larger, more
representative traces to be created and shared. With
current disk and network technology, we would like to
be able to conveniently create and share traces that
contain 100 million allocation events.

e Flexibility—Our initial design will not meet all the
possible needs of researchers. Perhaps the most im-
portant goal is to design with the understanding that
additional information (and potentially entirely new
formats) will be needed.

‘ Record Type ‘ Description |
alloc Allocation record with fields: size, address, thread, heap, time, and
attributes.
free Deallocation record with fields: address, thread, heap, time, and
attributes.

realloc/no alloc
realloc/alloc free
realloc/alloc
realloc/free

Reallocation record with fields: size, old address, new address,
thread, heap, time, and attributes. Realloc tags encode four pos-
sible outcomes: malloc with no free, free with no malloc, free then
malloc, and no malloc or free. If malloc and/or free are called from
realloc, records for these operations occur in the trace in addition to
the realloc record.

Heap creation/destruction records with fields: heap, thread, time,
and attributes.

createThread/destroyThread | Thread creation/destruction records with fields: thread, time, and

createHeap/destroyHeap

attributes.

comment

Comment record with a varying length string field.

Table 1: HATF Record Types

‘ Metadata operation ‘

Description |

set fieldSize field width

where width indicates size header.

0, 1, 2, 4, or 8 bytes. Attribute fields can be of varying size with a 1- or 2-byte

set fieldInterp field interp ...
where interp indicates

None => use field value directly

Default defaultValue => use default Value, width is 0 bytes

BaseOffset base => use field value plus base

Delta initialValue => use field value plus previous field value

Stride initial Value stride => use previous field value plus stride,
width is 0 bytes

Table 2: HATF Metadata Operations

Keeping these goals in mind, this paper makes the following
contributions:

e We have developed HATF (Heap Allocation Trace For-
mat), version 1.0. HATF is a binary format that in-
cludes inline metadata that can dynamically modify
the encoding of trace events. We see HATF 1.0 as
a starting point in an open discussion about such for-
mats. It has been implemented, and we intend to make
the source code for a reader and writer publicly avail-
able.

e Using our preliminary implementation, we investigate
the effectiveness of mechanisms to reduce trace size.
Specifically, we consider how effective our approach is
at compressing the traces over and above traditional
techniques.

e Based on our experience with HATF, we are now de-
veloping Meta-TF, an easy-to-read meta-level specifi-
cation of formats such as HATF that allows readers
and writers of HATF-like formats to be generated au-
tomatically. By analogy, Meta-TF allows the HATF
trace format to be specified and documented in the
same way that DTDs in XML allow the HTML for-
mat to be specified. Our work with Meta-TF is an
attempt to reduce the effort to design and implement
trace formats while increasing their expressiveness and
shareability.

The remainder of the paper considers these items in turn.
Section 2 describes HATF 1.0. Section 3 presents results
indicating the effectiveness of the HATF 1.0 design at rep-
resenting traces. Section 4 motivates and describes our pre-
liminary design of Meta-TF. Section 5 describes related work

in the areas of trace formats and format specifications. Sec-
tion 6 summarizes the paper.

2. HATF1.0

2.1 Trace contents

A specification of the HATF 1.0 design is provided in Ap-
pendix A. This section describes the general characteristics
of the format and attempts to explain the design.

We begin by stating our assumptions. We believe that long
trace files (representing hours or even days of application
execution) are neccessary to understand the performance
implications of memory allocator design. The implication of
this assumption is that trace compactness is an important
consideration.

Our view is that the most important use of trace files will
be to drive an allocator implementation for the purpose of
understanding its performance characteristics. For this pur-
pose, the majority of the trace needs to be read sequentially
and incrementally®. We do not forsee the need to keep the
entire trace in memory at any one time, nor do we see a need
to support random access to parts of the trace. In typical
use, a trace will be stored in a compressed form, decom-
pressed and piped to a program that reads one trace record
at a time and processes it.

2The trace might contain additional information, such as
the set of types allocated or the set of allocation call stacks
observed. Such information is likely to be read entirely and
cached in memory. In general, however, we believe this in-
formation will occupy a small part of the total trace.

We believe that trace accessibility is also an important con-
sideration. By accessibility, we mean the ease with which
a trace can be used by a researcher. Our goal is to pro-
duce traces with a low “barrier-to-entry” for researchers so
that they have more reasons to use them in experiments. A
central decision in trace format design revolves around the
choice of an ASCII or binary representation for the trace.
In an ASCII form, a trace can be easily scrutined or gen-
erated using any text editor. Also, such traces are easily
manipulated using text-oriented scripting languages such as
Perl. A text-based structured representation such as XML
might provide additional benefits, enabling traces to be ma-
nipulated using generic XML tools such as browsers, etc.
Finally, ASCII provides a more portable format, as issues of
byte-order are not relevant as they are in a binary format.

Having explained these benefits of an ASCII encoding, we
have still chosen a binary encoding for our design. The spe-
cific advantage of a binary format is the compactness of the
encoding. We reason that the advantages of an ASCII en-
coding mentioned above mostly do not apply to large DSA
traces. In particular, we see no substantial benefit in allow-
ing traces to be viewed in a text editor, as they will likely
be stored in a compressed format in any case. Furthermore,
we see little motivation to browse or edit traces directly,
as a typical usable trace has millions of events, and mak-
ing meaningful hand-edits to them would be very difficult.
Although a binary format prevents text-oriented scripting
languages, such as Perl, from being used to manipulate the
traces, our solution is to provide a binary-to-ASCII trans-
lator that can be used on our traces. Using a pipe, a trace
can be extracted and processed by Perl with relatively lit-
tle overhead. In a later section, we discuss the performance
cost of reading and writing ASCII traces using Perl.

Prior work in the design of allocation trace formats is typi-
fied by Johnstone’s PhD research on fragmentation in allo-
cators [11]. Johnstone used traces composed of malloc, re-
alloc, and free operations. We call a trace event associated
with these operations a trace record, or simply, a record.
For malloc, Johnstone recorded the size requested and the
address returned, for free the address of the object freed,
and for realloc the address and size passed as arguments.
We refer to these values as fields within each record. John-
stone’s dissertation does not mention the specifics of how
this information was represented in the trace.

To achieve greater expressiveness, HATF expands the num-
ber of record types and the fields within each record beyond
those used by Johnstone. Specifically, we note that sys-
tems sometimes provide an extended storage allocation API
beyond the traditional Unix-specific malloc/free/realloc op-
erations. For example, the Win32 API allows individual
heaps to be created, allocated from, and removed using the
HeapCreate/HeapAlloc/HeapDestroy procedures. Other al-
locators, such as Vo’s vmalloc implementation, also pro-
vide an interface to create multiple heaps [21]. HATF pro-
vides records to identify the creation of such heaps and
the allocation of objects within a particular heap. In ad-
dition, in multithreaded applications, specific heaps may
be associated with individual threads of execution. HATF
provides records that identify the creation and deletion of
threads and allows heap operations to be associated with

specific threads. HATF 1.0 currently defines the follow-
ing field types: size, address, heap, thread, time, and at-
tributes. Each record has an associated variable-length at-
tributes field that allows arbitrary additional information to
be associated with each record. The remaining fields are
interpreted as unsigned numeric data. Table 1 summarizes
the record types supported by HATF.

2.2 Trace representation

The previous section described the contents of a HATF trace
but not its representation. We have attempted to make
HATEF’s representation of data as flexible as possible by al-
lowing metadata records that describe the representation of
data in the fields of subsequent data records. Specifically,
the width and interpretation of each field type can be set
dynamically with metadata records. Table 2 summarizes
the metadata operations supported by HATF.

Before describing the specifics of the design of HATF meta-
data, we discuss the motivation that led to our decisions.
Specifically:

e We wanted to allow the format to represent traces
gathered from different machines, and as a result, wanted
to allow 4- and 8-byte addresses to appear in a given
trace. Thus the need to include metadata indicating
how many bytes a field occupied.

e Often fields would be always empty (e.g., the thread
field in the case where a trace is taken from a single-
threaded application). In these cases, we wanted to be
able to omit the field entirely from the record.

e Some of the fields, such as the size field, have very
skewed distributions. For example, in most cases, a
single byte is sufficient to encode the size of the object
allocated. Likewise, the time field is generally mono-
tonically increasing.

e Often there are regular patterns in the traces, such
as the object address returned from malloc being a
regular increasing sequence of addresses.

These thoughts led us to an approach in which the field
width and interpretation could be defined and changed dy-
namically. A particular setting of field width and interpreta-
tion remains in effect until another metadata record changes
the setting; thus there is no “nesting” of metadata settings.

The field interpretation indicates how the value of a field in
a given record should be interpreted. If the value is stored
directly in the field, the “none” interpretation is used. The
“default” interpretation indicates that the field is entirely
omitted from the record, and the value of the field is the
value provided in the set fieldIntpretation record. The
“BaseOffset” interpretation captures cases where there is
substantial locality in the trace and many addresses can be
encoded as small offsets from a base address (such as the
base of the heap). The “Delta” interpretation encodes val-
ues as offsets from the previous value of a field. The “Stride”
interpretation can encode a series of regularly increasing val-
ues without requiring a field in each record.

The HATF design allows traces to be compressed using
metadata that changes field widths and interpretations. For

Total Total Total Total Max. Max. Avg. Obj.
Program Allocs | Reallocs | Frees Bytes Objects | Bytes Size
(x10%) | (x10%) | (x10%) | (x10%) | (x10%) | (x10%) Bytes
espresso.largest 1675 16 1675 106813 4.45 268 63.8
espresso.test2 4483 48 4483 | 1114462 4.91 375 248.6
vortex 1489 0 1412 700967 157 47956 470.8
twolf 575 0 493 17920 105 2657 31.2

Table 3: Summary information about the memory allocation behavior for each of the test programs.

Normalized Trace Size
Bytes/Data Record (Uncompressed/Compressed)
Program Simple ASCII HATF HATF Split HATF
Binary (naive) (best) Stream SplitAddr
espresso.largest | 16 / 2.61 | 11.56 / 1.74 | 7.03 / 1.57 | 5.64 / 1.47 | 13 / 1.25 | 5.64 / 1.15
espresso.test2 16 / 2.82 | 11.57 / 1.61 | 7.03 / 1.47 | 5.68 / 1.39 | 13 / 1.27 | 5.68 / 1.16
vortex 16 /3.38 | 13.64 / 3.11 | 7.05 / 2.86 | 5.98 / 2.82 | 13 / 2.52 | 5.98 / 2.47
twolf 16 / 1.67 | 12.56 / 2.37 | 7.15 /231 | 5.30 / 1.98 | 13 / 1.31 | 5.30 / 1.39
average 16 /2.62 | 12.33 /2.21 | 7.06 / 2.05 | 5.65 /1.92 | 13 /1.59 | 5.65 / 1.54

Table 4: Compression Factor for Various Encodings

example, because sizes are so highly skewed, traces can be
compressed by using only one byte to encode the size field for
most records. In cases where a larger size field is necessary,
metadata that expands and contracts the width of the size
field can be inserted around the necessary records. Likewise,
in a multithreaded application, if many consecutive records
are related to the same thread, the default interpretation for
the thread field can be set at the point in the trace when
the thread is entered, and changed at the point when the
thread is exited. Note that traditional compression tech-
niques are possible above and beyond metadata encodings.
One may wonder if the flexible encodings provided in HATF
1.0 provide any benefit at all over and above standard com-
pression.

3. EVALUATION OF HATF DESIGN

This section examines the effectiveness of HATF in encoding
traditional allocation traces. We have gathered a collection
of traces summarized in Table 3. Although these programs
do not use multiple heaps or threads, and as a result have
allocation traces that are relatively simple compared to the
kind for which HATF is intended to be used, we still believe
they represent a good starting point for evaluating the ef-
fectiveness of HATF’s encoding, both in terms of trace size
and the cost to read and write a trace. All experiments were
performed on a single processor of a dual-processor 500 MHz
Pentium IIT Xeon system with 512 MB main memory run-
ning Windows 2000 Server. The times shown are the average
of five executions, with a range of variation less than 1%.

In the tables that follow, we compare HATF with several
alternative methods for representing traces. “Simple Bi-
nary” is an unsophisticated binary representation of the
trace where all records have four 4-byte fields. “ASCII” is an
ASCII encoding of the traces. “HATF (naive)” uses HATF
without any effort to compact traces by means of metadata
records, while “HATF (best)” represents the most effective,

albeit simple, combination of compaction techniques that we
considered. We describe the methods used in HATF (best)
in Section 3.3. “Split Stream” attempts to get better com-
pression by separating the 4 data fields in the simple binary
format into different streams that are compressed indepen-
dently. The “HATF SplitAddr” encoding splits all unen-
coded addresses (i.e., addresses not encoded by BaseOffset
or Stride field interpretations) from the rest of the HATF
(best) trace, and compresses the two streams independently.
We consider each approach both with and without Lempel-
Ziv compression, as implemented in the gzip utility [22].

3.1 Trace size

Table 4 presents the effectiveness of the different approaches
to compressing the trace. The table shows that without
gzip compression, the HATF (best) encoding is the most
efficient, requiring 5.6 bytes per record (bpr) on average.
The metadata encodings in HATF (best) result in a 21%
reduction in trace size over HATF (naive). With compres-
sion, the HATF SplitAddr approach is most effective in all
but one of the applications, with 1.5bpr on average. Com-
pressing the HATF address stream independently reduces
HATF traces approximately 25% overall as compared to
compressed HATF (best). Without splitting out the address
stream, the metadata encodings in HATF (best) result in a
7% post-compression reduction in trace size over using naive
HATF.

ASCII is a more compact encoding than simple binary be-
cause the tag and size field in most records are represented
in less than the four bytes used in the binary format. In ad-
dition, the compressed ASCII encoding is smaller than the
compressed binary encoding as well.

This data suggests that splitting allocation traces into in-
dependently compressed streams results in substantial com-

Normalized Trace Processing Time
pus/Data Record (Read/Write)

Program Simple ASCII HATF HATF Split HATF ASCII

Binary (naive) (best) Stream SplitAddr Perl
espresso.largest | 5.29 /0.20 | 8.07 /6.29 | 6.94 /1.05 | 6.91 /1.18 | 6.1 /1.08 | 7.04 / 1.34 | 16.83 / 10.01
espresso.test2 5.15 / 0.21 7.93/6.29 | 679 /1.04 | 6.77 /1.20 | 5.94 / 1.09 | 7.02 / 1.36 | 16.67 / 10.15
vortex 7.85 /0.54 | 10.96 / 7.43 | 9.66 / 1.18 | 9.67 / 1.33 | 8.75 / 1.06 | 9.59 / 1.30 | 16.94 / 10.12
twolf 6.59 /0.34 | 9.51/6.87 | 815/ 1.17 | 8.15/1.43 | 7.42 /1.01 | 8.06 / 1.21 | 17.19 / 9.82
average 622 /032 | 912/6.72 | 788 /1.11 | 7.88 / 1.28 | 7.05 / 1.06 | 7.93 / 1.30 | 16.90 / 10.03

Table 5: Normalized Time to Read/Write Uncompressed Traces
Normalized Compressed Trace Processing Time
us/Data Record (Read/Write)
Program Simple ASCII HATF HATF Split HATF

Binary (naive) (best) Stream SplitAddr

espresso.largest | 6.56 / 7.00 | 8.82 / 11.63 | 7.44 /5.7 | 7.55/6.32 | 7.05 /517 | 7.41/5.30

espresso.test2 60/797 | 867 /1142 | 719 /558 | 7.19/6.09 | 6.84 /548 | 7.42 /555

vortex 9.06 / 8.00 | 11.93 / 14.59 | 10.42 / 9.23 | 10.41 / 9.68 | 10.12 / 5.98 | 10.28 / 5.09

twolf 7.91 /458 | 10.45 /12.58 | 9.11 /852 | 9.0 /9.11 | 8.88 /4.32 | 9.11 / 12.69

average 738 /714 | 9.7 /12.56 | 8.54 /7.28 | 854 /7.80 | 8.22 /524 | 856/ 7.16

average difference | 1.16 / 6.81 0.85 /5.84 | 0.66 /6.17 | 0.66 / 6.52 1.17 /418 | 0.63 / 5.86

Table 6: Normalized Time to Read/Write Gzip Compressed Traces. The final row, “average difference”,
indicates the difference between the average uncompressed time and the average compressed time.

pression benefits, and that the metadata encoding provided
by HATF provides additional reductions.

3.2 The time to process the traces

Tables 5 and 6 present the overhead of reading and writing
the uncompressed and compressed versions of the traces, re-
spectively. In Table 5, we have added the “ASCII/Perl”
encoding column, which indicates the processing time per
record to read and write an ASCII trace using Perl. Several
things are immediately clear from the table. First, the over-
head to write the traces is usually substantially lower than
the overhead to read. We believe this is because the appli-
cation is stalled waiting for the I/O to complete during the
read operation, while the application can proceed without
waiting in the case of writing. In addition, the ASCII encod-
ing has significantly higher time requirements than the other
encodings, due to the need to translate the binary values to
and from ASCII. With the ASCII/Perl combination, we see
even higher overhead. Between the read and write numbers,
the time to read a record is typically more important be-
cause our expectation is that trace files will be written once
and read many times. As a result, due to space limitations,
we limit our discussion to the read times in the remainder
of this section.

As expected, Simple Binary is the fastest of the uncom-
pressed traces to read (Table 5). Split Stream is some-
what slower because multiple files need to be opened and
read from simultaneously. Other than ASCII, HATF is the
slowest to read because it requires field interpretation (a
lightweight compression method).

The final row of Table 6 indicates the difference between
the average time to read an uncompressed and compressed
record in each format — a measure of the additional over-
head decompression requires. Simple Binary is still the
fastest but decompressing it takes a large amount of time
since its trace file is the largest. HATF adds the least ad-
ditional overhead due to decompression because its files are
quite compact. Finally, Split Stream benefits from having
a small trace file to read. However, because it requires I/O
operations from 4 independent streams per record, it adds
additional overhead that HATF does not, raising the cost of
decompression to 1.17us/record, on average.

In summary, the overheads to read the compressed and un-
compressed traces are on the order of 6.2-8.6us/record for
the non-ASCII encodings, an encouraging result given that
our HATF implementation is currently untuned. While the
encoding method used makes some difference, we believe
that space costs are the more important factor in determin-
ing which encoding method to use.

3.3 Benefits of different interpretations

This section discusses the methods examined to help re-
duce the size of HATF traces using the metadata records.
We call the most effective combination of these methods
“HATF (best)” in the previous tables. The processing time
is not considered, as it varies little from method to method.
Table 7 presents the effectiveness of heuristic compression
methods that encode the Size field: “Naive” does no encod-
ing; “Small Size” initially sets the size field to 1 byte width,
but inserts metadata records to expand and contract the
field when required; “Same Size” inserts metadata records
at the beginning and end of runs of the same size to switch

between a default value and “none”, provided that the run
is long enough to amortize the additional cost of metadata
records; and “Combined Size” combines both size heuristics.

“Small Size” gains the greatest benefit, reducing the size
field by a factor of four in many cases. “Same Size” provides
less benefit, especially when combined with the “Small Size”
heuristic, since smaller Size records require larger “Same
Size” runs to amortize the cost of the meta-data records.
More detailed data® indicates that the “Same Size” heuris-
tic will benefit from smaller meta-data records (6-8 bytes
rather than the current 12 bytes). With compression, the
“Same Size” encoding actually provides no benefit, presum-
ably because gzip compression is effective at identifying and
compressing the same regularity in the traces.

Table 8 presents the effectiveness of different approaches to
address field encoding. We had two intuitions. First, we
felt that addresses were likely to have locality that a Base-
Offset interpretation could exploit. Second, we suspected
that sequences of allocations of the same size would result
in address sequences that the Stride interpretation could
capture.

Table 8 compares the following approaches. “BaseOffset 1-
byte” encodes addresses with 1 byte width BaseOffset in-
terpretation as appropriate, “BaseOffset 2-bytes” is similar
but uses 2 bytes; “Best BaseOffset” combines the 1 and 2-
byte approaches; “Stride” detects and encodes increasing
sequences of addresses in a zero-width field; and “HATF
(best)” combines the most effective size and address encod-
ings.

Our attempts at compression via address encoding are mostly
ineffective. In some specific cases, such as twolf, compres-
sion benefits are modest (8%) using the Stride and BaseOff-
set 2-bytes methods, but overall the benefits are quite small.
Again, as in the case of Same Size, smaller meta-data records
would permit more compact encodings as many “BaseOff-
set” and “Stride” address runs in the trace are fairly short.
In combination with the size encodings, the address encod-
ings reduce the compressed trace by 3% on average over
that achieved by the size encodings alone. We conclude that
HATF 1.0’s relatively simple interpretations are insufficient
to significantly compact addresses found in the allocation
traces. This explains why “HATF SplitAddr”, which relies
on gzip compression for compacting unencoded addresses,
produces the smallest trace.

3.4 Discussion

Based on the timing and compression results in this section,
we reach several conclusions. First, allowing field interpre-
tations and widths to change based on dynamic metadata is
effective at compressing the size fields in the traces, but less
so for address fields. Further, separation and compression
of the address stream independently from the rest of the
trace results in substantial additional reductions in trace
size. HATF encodings require modest additional overhead
to decode, but we believe the extra processing time is justi-

3Not included due to space constraints.

fied by the expressiveness and flexibility the format provides
as well as the reduction in trace size.

The HATF 1.0 Specification defined in Appendix A does
not include any mechanisms to support splitting out un-
interpreted data addresses. Clearly, however, any number
of domain-specific trace formats could benefit from mecha-
nisms that would allow specific trace fields to be split and
compressed independently. In Section 4, we propose Meta-
TF, a meta-specification language that can be used to spec-
ify HATF 1.0. Meta-TF also provides facilities that allow
arbitrary trace formats to be defined in such a way that
independently compressing different streams of a trace is
directly supported by the format.

4. META-TF SPECIFICATION
4.1 Limitations of HATF

Different researchers will undoubtedly have different require-
ments of traces. Program traces are used for a variety of
purposes: event traces (of which heap events are just one ex-
ample), state snapshots (e.g., capturing a part of the heap),
debugging, profiling and so on. HATF is a domain-specific
format, and hence is limited in a number of dimensions.
Even for traces of heap events, it does not provide all the
facilities that researchers may need. Its fixed set of record
types do not capture such heap events as heap expansion,
read and write barriers, promotion by a generational garbage
collector or object loads and stores. Its records contain a
fixed set of fields (although fields may be omitted from a
record by assigning them a zero width), but there may be
a need for new record fields (e.g., to capture the type of
an object in an allocation event). Although the variable
length ‘attributes’ field provides flexibility, it is a cumber-
some mechanism, especially if it is known a priori precisely
which fields a particular record type requires.

Despite the range of flexible field encodings and interpreta-
tions provided, there will inevitably be others that it does
not support. For example, it would be wasteful to store full
type names in each allocation record but HATF provides no
clean way of enumerating these names more compactly. We
return to this point later.

4.2 A higher level solution

Although HATF does not meet the requirements of a gen-
eral trace format standard (even for heap events), it is a
satisfactory instantiation of such a standard. One solution
might be to allow extra records (and/or fields) to be de-
fined, and to provide a structure for doing this. But, if the
goal is to create a standard format for exchangeable trace
files, who should define additional record types? How are
these formats to be documented? How is the standard to be
maintained as a standard?

Rather than attempt to propose a concrete, if extensible, for-
mat for all possible traces*, we propose a solution inspired
by the structured document community —for a trace is sim-
ply a structured document— that is more flexible yet still al-
lows compact encoding of traces. We propose a higher-level,

40r even all possible traces of heap events.

Normalized Trace Size
Bytes/Data Record (Uncompressed/Compressed)
Program Naive Small Size | Same Size | Combined Size
espresso.largest | 7.03 / 1.57 | 5.67 / 1.47 | 6.96 / 1.6 5.67 / 1.48
espresso.test2 7.03/1.47 | 5.7 /1.38 | 7.00 /147 5.70 / 1.38
vortex 7.05 / 2.86 | 5.98 / 2.85 | 6.66 / 2.86 5.93 / 2.86
twolf 7.15 /231 | 5.56 / 2.15 | 6.94 / 2.30 5.51 / 2.15
average 7.06 /2.05 | 5.73 /1.96 | 6.89 / 2.06 5.70 / 1.97
Table 7: Effectiveness of Size Encodings
Normalized Trace Size
Bytes/Data Record (Uncompressed/Compressed)
Program BaseOffset | BaseOffset Best Stride HATF
1-byte 2-bytes BaseOffset (best)
espresso.largest | 7.00 / 1.57 | 7.01 / 1.57 | 7.00 / 1.57 | 7.03 / 1.56 | 5.64 / 1.47
espresso.test2 7.01 /147 | 702 /147 | 7.01 /147 | 7.03 /1.47 | 5.68 / 1.39
vortex 7.05/2.86 | 7.05 /285 | 7.05 /2.84 | 7.05 /2.86 | 5.98 / 2.82
twolf 7.15/2.26 | 7.02 /214 | 7.02 /217 | 6.89 / 2.14 | 5.30 / 1.98
average 7.05/2.04 | 7.02 /2.01 | 7.02 / 2.01 | 7.00 / 2.01 | 5.65 / 1.91

Table 8: Effectiveness of Address Encodings

meta-language for trace format specification, Meta-TF, by
distinguishing (i) the trace from (ii) a Document Type Def-
inition (DTD) that specifies the format of that trace.

4.3 A trace meta-specification language

We believe that it is sufficient for trace data simply to com-
prise a list of records and for each record type to be com-
posed of a fixed number of fields. The format of these records
is described by a DTD. A meta-specification language must
therefore define how the DTD should

e enumerate the record types that may appear in a trace,
and the fields that each record type contains.

e define the format and properties (including, in some
cases, the value required) of each field.

In addition, some automated support for the definition of
semantic relationships between the fields of a record is use-
ful. Clearly, it is not possible to define within the DTD all
semantic relationships between fields that a particular ap-
plication may require, but some are certainly useful (e.g., to
encode HATF’s variable length ‘attributes’ field).

A general solution to the specific problem of encoding type
names discussed in the previous section is to write these
details into a table and interpret per record fields as an index
into that table. To this end, Meta-TF provides the notion
of sections. Each section in the DTD specifies those records
that may appear in the corresponding section of the trace,
and a trace may contain records that announce the start of
a new section. It turns out that sections provide powerful
mechanisms for compacting traces, of which this is just one
example. Another is support for independent compression
of field streams.

We reject existing abstract syntax notations such as SGML
[6] or ASN.1 [7] because of their verbosity. Although tags
are necessary to distinguish different record types, no fur-
ther tags are desirable in a trace: as the DTD defines pre-
cisely the structure of each record, neither field tags nor
closing record tags are necessary. Thus our DTDs impose
no cost on the size of the trace. As with HATF 1.0, Meta-
TF provides binary metadata records that modify the for-
mat of fields of subsequent records. However, because the
DTD documents the format of the trace, it should be human
readable, and allow meaningful names for records, fields and
attributes. A further advantage of this approach is that it
simplifies the automatic generation of trace reader/writer
implementations from the DTD®. A full EBNF definition
for trace files and Meta-TF DTDs is given in Appendix B;
an example, encoding HATF 1.0 in Meta-TF, is shown in
Appendix C.

4.3.1 The trace file

A trace file consists of a header, followed by a list of data,
metadata, section and comment records, freely interspersed;
its format is binary. The header specifies the DTD for the
trace. The remainder of the trace file consists of a list of
records, identified by their tag. A record comprises one or
more fields, each of which has an interpretation. A record
may contain application data (such as an allocation event),
identify the start of a new section of the trace, be metadata
that redefines the format of subsequent fields in that section
or be a comment. Section records divide the trace into con-
tiguous sections. Any global data and definitions are placed
before the first section.

5Tt would also be possible to construct a universal
reader/writer that used a DTD to guide its interpretation
of traces associated with that DTD.

4.3.2 TheDTD

The DTD specifies the sections and record types that may
appear in a valid trace. The scope of a record type definition
may be global or local to the section within which the record
is defined. In the latter case, this definition applies only to
records in the corresponding section of the trace.

The DTD defines, for each record, the fields that that record
contains, the interpretations of those fields and, possibly,
their value. Records may be nested. A record may define
a tag value which must be unique within the section defin-
ing that record, and must be set in the record’s definition.
Meta-TF supports a richer syntax than HATF 1.0. For ex-
ample, as well as composite fields using the (field,field,
... ,field) syntax, it provides repeating sequences of fields,
using the fieldxfield syntax where the value found in the
first field indicates the number of occurrences of the second
field that follows.

Properties may be defined for each field of a record. Defini-
tion of a field places an obligation to define, for that field,
a width property and an interpretation property. Other
properties of field may also be defined, e.g., a value (this
is mandatory for tag fields). In addition to the interpre-
tations of HATF, Meta-TF provides sectionOffset and
sectionStride interpretations. The value of a field may
also be used in setting properties. For example, a record
type may define the value of its tag, such as tag.value=4;
Properties may also refer to other fields in the record. In this
way, certain semantics of a record type can be defined (see,
for example, the pre-defined variable length field, vfield, in
Appendix B.)

We noted in Section 3 that Split Stream gave better com-
pression because the compressor is able to exploit the unifor-
mity of certain field streams (such as addresses). Meta-TF
offers the opportunity to achieve the compression of HATF
SplitAddr by placing independently compressed streams in
separate sections. For this purpose, Meta-TF provides two
further interpretations. “sectionOffset sectionNumber” in-
dicates that the per record value is an offset into the given
section. “sectionStride sectionNumber stride” indicates that
the per-record value should be taken from successive ele-
ments of a section. On each occasion a field of this type
is encountered, the offset into that section is incremented
by the stride; thus if the stride is 1, the first item is taken
from offset 0, the next from offset 1 and so on. In order to
ease interleaved access to different sections, the trace record
header provides an index of the sections of the trace (cf.
Unix ELF format [15]).

Four record types are built-in: vfield, comment, metadata and
section. Section records allow the trace to be divided into
sections. Metadata specifies the record in the current section
to be changed (identified by its tag), the field that is to
have its width or interpretation changed (identified by its
position within the record), the property interpretation to
be set and the value of the new setting. For example, the
width of the size field of an alloc record may be changed by
the metadata record® (metadata, alloc, size, width, 8).

SFor clarity, we use symbolic names rather than the octet
values that would be used in practice.

4.4 Discussion of Meta-TF

We are interested in exploring the design decisions of Meta-
TF further. Sections were motivated by the desire to pro-
vide string tables, but also support split stream compres-
sion. Sections of constants in the DTD may guide higher
performance specialized readers. If we allow sections to be
interleaved rather than contiguous, switching sections may
provide shorter and more convenient compaction than meta-
data records. Other questions arise. Should metadata be
used to define new records on-the-fly? Should metadata
change values of fields? One use might be to vary tag widths
and hence values. Would it be useful to allow field proper-
ties to refer to other records (i.e., record.field.property)?
What this would mean? Presumably it would refer to the
last such record encountered, but this would allow invalid
yet type-correct traces if no such record had been encoun-
tered. Unfortunately, metadata records are, in some sense,
magic: the interpretations of its fields are special. While this
lack of uniformity appears to be inevitable, it is nevertheless
somewhat unsatisfactory.

5. RELATED WORK

This paper is about defining a format for allocation traces.
There has been substantial work on defining formats for
other, related, domains, and we mention the most closely
related here. As mentioned, Johnstone collected allocation
traces for his thesis work [11]. Seidl also mentions collecting
trace information about object allocations, but does not pro-
vide details of the format [20]. Humphries et al. define the
POSSE Trace Format (PTF), which they use to capture the
allocation and reference behavior of persistent object sys-
tems [5]. While there are similarities in some of the events
defined, the focus of PTF was not on providing a compact
encoding. Scheuerl et al. developed the MaStA I/O trace
format for studying the I/O costs of various database imple-
mentations [19] but their application domain differs signifi-
cantly from ours and they make no effort to focus on trace
compactness.

We touch on some of the large body of work in the general
problem of compression. Previous work in the area of ad-
dress trace compression includes mache [18] and PDATS [10,
9]. While this work achieves admirable compression of ad-
dress traces, the authors do not consider more complex struc-
tured traces such as allocation traces. The use of mobile
code on the Internet has prompted recent interest in re-
ducing code size through compression, e.g. Ernst et al. [3],
Pugh [17], and Fraser [4]. Code and trace data are very dif-
ferent. No one has yet considered the effectiveness of code
compression techniques on trace data.

Abstract syntax notations to describe data are common-
place, and a number of techniques and standards have evolved.
The best known are ASN.1 [7] and members of the SGML
family [6]. ASN.1 is a formal language for abstractly describ-
ing messages to be exchanged between distributed computer
systems. Although very powerful, its syntax is verbose and
complex. Its Basic Encoding Rules leads to obese output as
every field carries type and length information as well as a
value: for example, a sequence of 64 boolean values encodes
to 196 octets [13]! Packed Encoding Rules (PER) [8] is more
compact as it omits type and length information wherever
possible and can pack octets using its UNALIGNED encoding.

For the same example, PER requires only 9 octets. Even so,
PER does not support metadata, interpretations or sections.

SGML is a markup language for structured document and
data representation. Its notion of DTDs captures precisely
the separation of document structure from the instantiation
of a particular document we require. Furthermore, its notion
of embedded ‘processing instructions’ may be useful, (e.g., to
extract compressed data). However, it is verbose (although
there are ways to compact SGML: single character tags can
be defined with ‘short-refs’ and closing tags can be omitted,
for example) and it provides no way of expressing semantics,
such as “the value of this field gives the size of the next field”
(¢f. vfield above). Indeed, such an embedding of semantics
into a DTD is foreign to the whole philosophy of SGML.

An elegant alternative is to consider a document as an ez-
pression, replacing tags by function calls (say, in a functional
language), and non-tag content by arguments, which may
in turn be sub-expressions, (see, for example, [16]). DTDs
are replaced by a preludes defining each tag-function. By
evaluating an expression using different preludes, a docu-
ment can be displayed or analysed in different ways. Al-
though this technique would permit semantic relationships
between fields (arguments) of records (sub-expressions) to
be declared, its verbosity is even worse than that of SGML.

6. SUMMARY

This paper is about the practical problem of defining the
contents and representation of domain-specific trace data.
Our interest in this area is motivated by a desire to collect,
analyse and distribute substantial allocation traces that can
be used by us and others to do research. In the context of
this concrete task, this paper suggests answers to the follow-
ing questions. What data should allocation traces contain?
How is this data most effectively represented? How should
the content and representation of traces be specified?

We have defined HATF 1.0 and implemented a prototype

reader/writer to investigate its compression and performance.

Our format allows traces to associate allocation operations
with specific heaps and threads, allowing traces from mul-
tithreaded server programs to be collected and analysed.
HATF 1.0 allows, but does not require, metadata records
that change the field encodings of data to be intermingled
with the data records. Our initial experiments with plac-
ing metadata records indicate that such encodings result in
better trace compression even after a general-purpose com-
pressor such as gzip is applied. We also find that splitting
out the address stream in the trace, and compressing it in-
dependently, results in the highest compression, requiring
on average 1.54 bytes per allocation data record.

Because we understand the inherent limitations of any fixed
trace format, we also propose Meta-TF, a language for spec-
ifying a family of trace formats, including HATF. Meta-
TF provides a simple yet powerful method for describing
trace formats. These formats are as compact as those of
ad hoc methods, and readers/writers can be generated au-
tomatically from the Meta-TF DTD. Its notion of sections
and metadata suggest further opportunities for compaction
which we hope others will explore.

We see this paper as the starting point in a discussion about
how to specify, represent, and use large domain-specific traces.
In the future, we will continue to use and gain experience
with our initial HATF implementation, at the same time
working toward a Meta-TF generated implementation of
HATYF. Ideally, our goal is a format in which issues of repre-
sentation and content are entirely dissociated. A trace con-
sumer should be able to extract and manipulate the contents
of a trace without caring whether the format was ASCII or
binary, compressed or uncompressed, etc. Another impor-
tant goal is to avoid a representation that has too many
external dependencies. For example, a delivery format that
does not require a user to have a specialized compression
program installed is preferrable to one that does. One at-
tractive aspect of an ASCII format is that Perl, which is
nearly ubiquitous, can be used to programmatically manip-
ulate traces easily. Our current efforts thus far have not
focused on issues of external dependencies, but we plan to
consider these more carefully in the future.

7. REFERENCES
(1] Emery D. Berger and Robert D. Blumofe. Hoard: A fast,
scalable, and memory-efficient allocator for shared-memory
multiprocessors. Technical Report CS-TR-99-22, University
of Texas, Austin, September 1, 1999.

2

David Detlefs, Al Dosser, and Benjamin Zorn. Memory
allocation costs in large C and C++ programs.
Software— Practice and Ezperience, 24(6):527-542, June
1994.

[3] Jens Ernst, William Evans, Christopher W. Fraser, Steven
Lucco, and Todd A. Proebsting. Code compression. ACM
SIGPLAN Notices, 32(5):358-365, May 1997.

Christopher W. Fraser. Automatic inference of models for
statistical code compression. In Proceedings of the ACM
SIGPLAN ’99 Conference on Programming Language
Design and Implementation, pages 242-246, 1999.

Thorna O. Humphries, Artur W. Klauser, Alexander L.
Wolf, and Benjamin G. Zorn. POSSE trace format version
1.0. Technical Report CU-CS-897-00, Department of
Computer Science, University of Colorado, Boulder, CO,
January 2000.

(6] International Standards Organization. ISO 8879: Standard
Generalized Markup Language, 1986.

[7] International Standards Organization. ISO 8824-4:
Abstract Syntax Notation One (ASN.1), 1998.

[8] International Standards Organization. ISO 8825-2: ASN.1
Encoding Rules: Specification of Packed Encoding Rules
(PER), 1998.

Eric E. Johnson. PDATS II: Improved compression of
address traces. In 1999 IEEFE International Performance,
Computing, and Communications Conference, February
1999.

[10] Eric E. Johnson and Jiheng Ha. PDATS: Lossless address
trace compression for reducing file size and access time. In
Proceedings of the 1994 IEEE International Phoeniz
Conference on Computers and Communication, April 1994.

[4

5

[

[11] Mark S. Johnstone. Non-Compacting Memory Allocation
and Real-Time Garbage Collection. PhD thesis, The
University of Texas at Austin, Austin, Texas, 1997.

[12] Mark S. Johnstone and Paul R. Wilson. The memory
fragmentation problem: Solved? In Proceedings of the
International Symposium on Memory Management
(ISMM-98), volume 34, 3 of ACM SIGPLAN Notices,
pages 26-36, New York, October 17-19 1999. ACM Press.

(13]

14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

John Larmouth. Understanding OSI. International
Thompson Computer Press, 1996.

Per-Ake Larson and Murali Krishnan. Memory allocation
for long-running server applications. In Proceedings of the
International Symposium on Memory Management
(ISMM-98), volume 34, 3 of ACM SIGPLAN Notices,
pages 176—-185, New York, October 17-19 1999. ACM Press.

John R. Levine. Linkers and Loaders. Morgan Kaufman,
2000.

Kurt Ngrmack. Programming World Wide Web pages in
Scheme. ACM SIGPLAN Notices, 34(12):37-46, December
1999.

William Pugh. Compressing Java class files. In Proceedings
of the ACM SIGPLAN ’99 Conference on Programming
Language Design and Implementation, pages 247-258,
1999.

Alan Dain Samples. Mache: No-loss trace compaction.
Technical Report CSD-88-446, University of California,
Berkeley, September 15, 1988.

S.J.G. Scheuerl, R.C.H. Connor, R. Morrison, J.E.B. Moss,
and D.S. Munro. The MaStA I/0 trace format. Technical
Report CS/95/4, School of Mathematical and
Computational Sciences, University of St. Andrews, North
Haugh, St Andrews, Fife, Scotland, 1995.

Matthew L. Seidl and Benjamin G. Zorn. Segragating heap
objects by reference behaviour and lifetime. In
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), pages 12-23, 1998.

K. Phong Vo. Vmalloc: A general and efficient memory
allocator. Software Practice € Experience, 1996.

Jacob Ziv and Abraham Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 1T-23(3):337-343, May 1977.

Benjamin Zorn and Dirk Grunwald. Empirical
measurements of six allocation-intensive C programs.
SIGPLAN Notices, 27(12):71-80, December 1992.

APPENDIX
A. HATF 1.0 SPECIFICATION

e Data in a trace comes in two varieties: metadata and data.
e The metadata indicates the size and interpretation of each data field in the data that follows.
e Metadata and data can be freely interleaved.

<trace> ::= {<metadata>* <data>*}*
<metadata> ::=
set fieldSize <field> <size>
set fieldInterpretation <field> <interpretation>
<field> ::= size | address | time | thread | heap | attributes
<size> =01 11214181 vl | v2
<interpretation> ::= none | default <default> |
baseOffset <base> | delta <initialValue> |
stride <initialValue> <stride>
<base> = <hatf data value>
<default> := <hatf data value>
<initialValue> ::= <hatf data value>
<stride> = <hatf data value>
<data> ::= alloc | free | realloc |

createHeap | destroyHeap |
createThread | destroyThread | comment

The <metadata> and <data> binary formats are described below. A <hatf data value> is 8 bytes of unsigned integer data.

Notes

e Arbitrary annotations can be added to traces using two mechanisms. The comment data record can appear anywhere.

In addition, all data records have a variable length field that can contain arbitrary additional data.

o fieldSize

— size indicates the number of bytes that the field will occupy in the binary encoding.

— The v! and v2 choices for fieldSize are legal only for attribute fields. vl and v2 indicate variable-sized attributes
(v1 indicates 1 byte of length info, v2 indicates 2 bytes of length info). Examples of possible attribute data include
immediate caller and the current callstack.

e fieldInterpretation

In each case, metadata record refers to the metadata record in which the fieldInterpretation was set.

— With the “none” interpretation, the value is the value stored directly in the record field.

— With the “default” interpretation, the value is the default associated with the metadata record. The record field has
zero width.

— With the “baseOffset” interpretation, the value is the base associated with the metadata record plus the signed value
stored in the record field.

— With the “delta” interpretation, the value is the value of the same field in the most recent previous record plus the
signed value stored in the record field. The first record that occurs after the metadata record uses the initialValue
associated with the metadata record as the previous value of the field.

— With the “stride” interpretation, the value is the value of the same field in the most recent previous record plus the
signed stride value associated with the metadata record. The first record that occurs after the metadata record uses
the initial Value associated with the metadata record as the previous value of the field.

— Changing the fieldInterpretation automatically changes the fieldSize in the following way. The “stride” and “de-
fault” interpretations always change the fieldSize to zero. The “none”, “baseOffset” and “delta” interpretations
automatically change the fieldSize to the last non-zero width.

Defaults

Here is the standard default configuration. If no metadata is provided, these values are assumed.
set fieldSize size 4 set fieldInterpretation size none

set fieldSize address 4 set fieldInterpretation address none

set fieldSize time 0 set fieldInterpretation time default O

set fieldSize thread 0 set fieldInterpretation thread default O

set fieldSize heap 0 set fieldInterpretation heap default O

set fieldSize attributes 0O set fieldInterpretation attributes default O

This interpretation provides allocation traces with characteristics very similar to those used in previous studies, such as
Johnstone [11].

Metadata binary formats

byte 0 byte 1 byte 2 byte 3
‘ 1 | 1 | | ‘ where op = set fieldSize,
tag OpP al a2 al = field , a2 = fieldWidth

byte 0 byte 1 byte 2 byte 3

‘ 1 | 2 | | ‘ where op = set fieldInterpretation,
tag OP al a2 al = field , a2 = interpretation “none”
byte 0 byte 1 byte 2 byte 3 bytes 4-11
‘ 1 | 2 | | H where op = set fieldInterpretation, al = field
tag OP al a2 a3 a2 = delta, baseoffset, default, a3 = arg
byte 0 byte 1 byte 2 byte 3 bytes 4-11 bytes 12-19
‘ 1 | 2 | | H where op = set fieldInterpretation
tag OpP al a2 a3 ad al = field, a2 = stride, a3,a4d = arg

Data binary formats

alloc ‘ 0 H H
tag size address thread heap time attributes
free ‘ 1 H
tag address thread heap time attributes
realloc ‘ 2-5 H H
tag size old addr new addr thread heap time attributes
createHeap / ‘ 6/7 H
destroyHeap tag heap thread time attributes

createThread / ‘ 8/9 H
destroyThread tag thread time attributes

byte 0 bytes 2-3 byte 0 byte 1

comment ‘ 10 H 2-byte data ‘

tag length string bits bits

byte 0

attributes ‘ H
(width = v1) vl string
bytes 0-1
attributes ‘ |
(width = v2) v2 string

Tag and field encodings
tag: metadata ops:
- alloc 1 - set fieldSize

- free 2 - set fieldInterpretation

- realloc no alloc
- realloc alloc free

0

1

2

3

4 - realloc alloc metadata a2 = <field>
5

6

7

8

9

- realloc free 0 - size
- createHeap 1 - address
- destroyHeap 2 - time
- createThread 3 - thread
- destroyThread 4 - heap
10 - comment 5 - attribute

11 - metadata

B. META-TF 1.0 SYNTAX
The trace file

byte 0 byte 1 byte 2 byte 3
4-byte data | 24-31]16-23] 815 | 0-7 |
bits bits bits bits

byte O byte 7
8-byte data [56-63] | o7 |
bits bits

metadata <fieldWidth>

0-0 8 -8

1 -1 9 - vl
2 -2 10 - v2
4 - 4

metadata <interpretation>

0 - none

1 - default

2 - baseOffset
3 - delta

4 - stride

A trace file consists of a header, followed by a list of records defined by the DTD. The header must include information such
as address size, byte order, the URL of the DTD as well as a section header that provides sufficient information for a reader

to discover the location of each section in the trace.

typedef struct { // section header
int sh_number; // section number
int sh_start; // start of section (byte)
int sh_size; // size of section (bytes)

} sectionhdr;

char magic[4] = "\177MTF";

char class; // address size, 1 = 32-bit, 2 = 64-bit
char byteorder; // 1 = little-endian, 2 = big-endian
char dtdlength; // length of DTD name

char pad [9];

int nsections; // number of sections

int start; // start of data events (byte)

int nrecords; // number of data events

char dtd[]; // URL of DTD

sectionhdr sections[]; // section headers

The DTD

The DTD defines the sections and record types that may appear within a valid trace data file.

<docTypeDef> ::= <defs> { <section>* <comment>* }*
<defs> ::= { <record>* <property>* <comment>* }*

Comments follow the C++/Java style: either multi-line comments delimited by /* and */ or single line comments introduced

by //.

The scope of a record type definition may be global or limited to the named section within which the record is defined. In
the latter case, this definition applies only to records with this tag in this section of the data file. Other than the implied

global section, each section shall have a unique name and a unique ID (a small integer in the range 1-255). The section
name is redundant but aids documentation of the DTD. Section is a reserved name. All names are statically scoped and are
case-sensitive.

<section> ::= "section" <sectionName> <sectionNumber>
n{n <defs> n}u

The DTD defines, for each record, the fields that that record contains. Pronounce ‘.’ as ‘of type’.

<record> ::= <recordName> ":" <field>
[u{n <property>* u}n]

The field name tag is reserved. The width of this tag field can only be set once, globally. Its interpretation (see below) is
always none.

<field> ::= <simpleField> |
<record> |
<fieldName> "x" <simpleField>
<simpleField> :: = <fieldName> |
u(n <field> { u,u <field> }* u)u

The fieldName*simpleField syntax is used to handle a sequence of fields. The value found in the fieldName field of each
record indicates the number of occurrences of simpleField that follow. The (field,field, ... ,field) is used to denote
composite fields (possibly in conjunction with the repeating field syntax above).

<property> ::= <fieldName> "." <propertyName> "=" <value> ";"

Properties may be defined for each field of a record. Property names are local to each record definition. Definition of a field
places an obligation to define, for that field, a width property and an interpretation property. Other properties of field
may also be defined, for example a value (this is mandatory for tag fields). Any non-negative integer is a valid width value.
Standard property names (which are reserved) are: width | interpretation | value.

Standard field interpretations follow those of HATF 1.0 but also include sectionStride <sectionNumber> <stride> to support
split stream encoding. Data for sectionStride fields are acquired by striding through the section specified. The widths of
fields with interpretations default, stride and sectionStride are zero.

none | baseOffset <base> | delta <initialValue> | default <value> | sectionOffset <sectionNumber> |
stride <initialValue> <stride> | sectionStride <sectionNumber> <stride>

Four record types are predefined; their names are reserved. vfield is simply provided as an abbreviation for a common set
of field and property definitions that implement a variable-width field.

vfield : (length,data) {
length.width = 1;
length.interpretation = none;
data.width = length.value;
data.interpretation = none;

}

comment : vfield {
tag.value = 1;
}

section : (tag, number) {
tag.value = 2;
}

metadata : (tag, record, field, property, value) {
tag.value = 3; // record.value = the tag of the record to be changed
record.width = tag.width;
record.interpretation = none; // field.value = field of the record to be changed (0..)
field.width = 1;
field.interpretation = none;
/* property.value = the property of the field to be changed
property.interpretation is special
value.interpretation depends on the propertyName

property.value meaning value

0 width width

1 interpretation=none -

2 interpretation=baseOffset base

3 interpretation=delta initialValue

4 interpretation=default value

5 interpretation=sectionOffset sectionNumber

6 interpretation=stride initialValue, stride
7 interpretation=sectionStride sectionNumber, stride

*/
property.width = 1;
value.width = 4;

The length of a metadata record is encoded in the property field. If the defined interpretation is none, then no value is given;
if the interpretation is stride/sectionStride, then both an initial value/section number and a stride is given; otherwise, a
single value is given.

C. AN EXAMPLE
HATF 1.0, introduced in Section 2, can now be defined with Meta-TF.

// HATF10.dtd: A DTD for HATF 1.0
// Meta-TF wersion 1.0

tag.width=1;

size.width = 4; size.interpretation = none;
address.width = 4; address.interpretation = none;
attributes.width = 0; attributes.interpretation = none;
time.interpretation = default 0; // hence, width=0
thread.interpretation = default O;

heap.interpretation = default O;

section heap 1 {
alloc : (tag, size, address, time, thread, heap, vfield) {
tag.value = 4;

realloc : (tag, address, address, time, thread, heap, vfield) {
tag.value = 5;
}

free : (tag, address, time, thread, heap, vfield) {
tag.value = 6;
}

createHeap : (tag, thread, heap, vfield) {
tag.value = 7;
}

destroyHeap : (tag, thread, heap, vfield) {
tag.value = 8;

createThread : (tag, thread, vfield) {
tag.value = 9;
}

destroyThread : (tag, thread, vfield) {
tag.value = 10;

