University of

"1l Kent Academic Repository

Chitil, Olaf, Runciman, Colin and Wallace, Malcolm (2000) Tracing and Debugging
of Lazy Functional Programs - A Comparative Evaluation of Three Systems.

In: Mohnen, Markus and Koopman, P., eds. Draft Proceedings of the 12th
International Workshop on Implementation of Functional Languages. . pp.

47-62. , Aachen, Germany

Downloaded from
https://kar.kent.ac.uk/21960/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21960/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Tracing and Debugging of Lazy Functional
Programs — A Comparative Evaluation of
Three Systems

Olaf Chitil, Colin Runciman and Malcolm Wallace

University of York, UK
{olaf,colin,malcolm}@cs.york.ac.uk

Abstract. In this paper we compare three systems for tracing and de-
bugging Haskell programs: Freja, the Redex Trail System and Hood. We
identify the similarities and differences of these systems and we evaluate
their usefulness in practice by applying them to a number of small to
medium programs in which errors had deliberately been introduced.

1 Introduction

The lack of tools for tracing and debugging has deterred software developers from
using functional languages [12]. Conventional debuggers for imperative languages
give the user access to otherwise invisible information about a computation by
allowing the user to step through the program computation, stop at given points
and examine variable contents. This tracing method is unsuitable for lazy func-
tional languages, because their evaluation order is complex, function arguments
are usually unwieldy large unevaluated expressions and generally computation
details do not match the user’s high-level view of functions mapping values to
values.

In the middle of the 1980’s research into tracing methods for lazy functional
languages started and has been increasing since. Today there exist three systems
for practical use, that is, they are publically available and they cover at least
a large subset of a standard lazy functional language, namely Haskell 98 [8].
Frejal [6,5] is a system that creates an evaluation dependency tree as trace, a
structure based on the idea of declarative debugging from the logic programming
community. The Redex Trail System? [11,10] creates a trace that shows the re-
lationships between the redexes (mostly function applications) reduced by the
computation. The most recent system, Hood? [2], permits to observe the data
structures at given program points. It can basically be used like print state-
ments in imperative languages, but the lazy evaluation order is not affected and
functions can be observed as well.

! http://www.ida.liu.se/ henni
2 http://www.cs.york.ac.uk/fp/ART
3 http://www.haskell.org/hood

In this paper we compare the three systems Freja, the Redex Trail Tracer and
Hood, we identify their similarities and differences and we evaluate the usefulness
of the systems in practice. Our aim is to explore the design space of tracers for
lazy functional languages and to improve the understanding of tracing to obtain
new ideas for how the current systems can be improved or even be combined.

The paper is structured as follows. In the next section we give a short intro-
duction to each of the three systems. In Section 3 we compare the systems with
respect to their approach to tracing, design and implementation. In Section 4
we report on our practical experiments and the insights they gave us into the
systems distinguishing properties and their usefulness. We shortly mention other
systems for tracing and debugging in Section 5 before concluding with Section 6.

2 Learn Three Systems in Three Minutes

To give an idea about what the three tracing systems provide and how they are
used we give a short introduction here. Because all systems are still under rapid
development we try to avoid details that may change soon.

2.1 Freja

Freja is a compiler for a subset of Haskell 98. A debugging session consists of the
user answering a sequence of questions. Each question concerns a reduction of
a redex, that is, a function application, to a value. The user has to answer yes,
if the reduction is correct with respect to his intentions, and no otherwise. In
the end the debugger states which reduction is the cause of the observed faulty
behaviour, that is, which function definition is incorrect.

The first question always asks if the reduction of the function main to the
result value of the program is correct. If the question about the reduction of
a function application is answered with no, then the next question concerns a
reduction for evaluating the right-hand-side of the definition of this function.
Freja can be used rather similarly to a conventional debugger. The input no
means “step into current function call” and the input yes means “go on to
next function call”. If the reduction of a function application is incorrect but all
reductions for the evaluation of the function’s right-hand-side are correct, then

the definition of this function must be incorrect for the given arguments.

We demonstrate the use of each system at the hand of the simple program?

given in Figure 1. The following is a debugging session with Freja. The symbol
1 represents an error and the symbol ? represents an expression that has never
been evaluated and whose value hence cannot have influenced the computation.

4 Freja actually expects main to be of type String and the other two systems expect
it to be of type I0 (). Here we abstract from the details of input/output.

main = (8,1) no
4%2 = § yes
head [8,7] = 8 yes
last [8,7] = 1 no
last [?71 =1 no
last [1 =L yes
Bug located! Erroneous reduction: last [?7] = L

2.2 The Redex Trail System

The Redex Trail System consists of a modified version of the nhc98 Haskell
compiler® and a separate browser program. A program compiled for tracing
executes as usual except that instead of terminating at the end it waits for the
Redex Trail Browser to connect to it. The browser shows the output of the
program. The user selects a part of it and asks the browser for its parent redex.
The parent redex of an expression is the redex that through its own reduction
created the expression. Each part of the redex has again a parent redex which
the browser shows on demand. A trail ends at the function (redex) main, which
has no parent. Debugging with the Redex Trail System works by going from a
faulty output or error message backwards until the error is located.

The Redex Trail Browser has a graphical user interface which we do not
discuss here. Basically the system is used as follows to locate the error in the
program of Figure 1. The program aborts with an error message and the browser
directly shows its parent redex: last []. The user is surprised that the function
last is ever called with an empty list as argument and asks the browser for
the parent redex of last []. The answer, last [3+6], makes clear that the
definition of last is not correct for a single element list. The browser can also
show where in the program text last is called with an empty list in the equation
for last (x:xs).

2.3 Hood

Hood currently is simply a Haskell library. A user annotates some expressions
in a program with the combinator observe, which is defined in the library.
While the program is running, information about the values of the annotated
expressions is recorded. After program termination the user can view for each
annotation the observed values.

We annotate the argument of last in our example program:

main = let xs = [4%2, 3+6]
in (head xs, last (observe "last arg" xs))

When the modified program terminates it gives us the following information:

-- last arg
-
® http://www.cs.york.ac.uk/fp/nhc98

The symbol _ represents an unevaluated expression. Note that the first element
of the list xs is evaluated by the program, but not by the function last.

To gain more insight into how the program works we observe the function
last, including all its recursive calls:

last = observe "last" last’

last’ (x:xs) = last xs
last’ [x] = x

The value of the function is shown as a finite mapping of arguments to results:

-- last
{ (:_: [-> throw <Exception>
, (_: [1) -> throw <Exception>

, [0 -> throw <Exception>

3 Comparison in Principle

At first view the three systems do not seem to have anything in common ex-
cept the goal of aiding debugging. However, all three systems take a 2-phase
approach: while the program is running, information about the computation
process is collected. After termination of the program the collected information
is viewed in some kind of browser. In Freja, the browser is the part that asks the
questions, in the Redex Trail System the program that lets the user view parents
and in Hood the part that prints the observations. This approach should not be
confused with classical post-mortem debugging where only the final state of the
computation can be viewed. Having a trace that describes aspects of a full com-
putation enables new forms of exploring program behavior and locating errors
which should make these systems also interesting for strict functional languages
or even non-functional languages.

All systems® are suitable for programs that show any of the three kinds of
possible faulty observable behaviour: wrong output, abortion with error mes-
sage, non-termination. In the latter case the program can be interrupted and
subsequently the trace be viewed.

3.1 Values and Evaluation

All three systems are source-level tracers. They mostly show Haskell-like ex-
pressions which are built from functions, data constructors and constants of the
program. To improve comprehensibility, all systems show values instead of ar-
bitrary expressions as far as possible. Hood only shows values anyway, marking

5 Hood requires the non-standard exception library supplied with the Glasgow Haskell
compiler to handle programs that abort with an error message or do not terminate.

unevaluated parts by a special symbol _. Both Freja and the Redex Trail System
show the arguments in redexes not as they were passed in the actual computa-
tion but in most evaluated form. Only subexpressions that were never evaluated
are shown as unevaluated redexes in the Redex Trail System but not in Freja,
which represents them by a special symbol ?, similar to Hood. None of the sys-
tems changes the usual observable behaviour of a program, especially they do
not force the evaluation of expressions that are not needed by the program.

However, the systems differ in that Hood shows values as far evaluated as
they are demanded in the context of the observation position whereas both Freja
and the Redex Trail System show how far values are evaluated in the whole
computation, including the effect of sharing.

3.2 Trace Structures

In Hood a trace is a set of observations. These observations are shown in full to
the user. In contrast, each of Freja and the Redex Trail System create a single
large trace structure for a program run. It is impossible to show such a trace in
full to the user and hence the browser of each system permits to walk through
the structure, always seeing only a small local part of the whole trace.

Freja creates an Evaluation Dependency Tree (EDT) as trace. Each node
of the tree is a reduction as shown in the browser. The tree is basically the
derivation/proof tree for a call-by-value reduction with miraculous stops where
expressions are not needed for the result. The call-by-value structure ensures
that the tree structure reflects the program structure and that arguments are
maximally evaluated. Figure 2 shows the EDT for our program of Figure 1.

The Redex Trail System creates a Redex Trail as trace. A Redex Trail is a
directed graph of value nodes and redex nodes. Each node, except the node for
main, has an arrow to its parent redex node. Because subexpressions of a redex
may have different parents or may be shared, redex nodes may contain arrows to
nodes of their subexpressions. Figure 3 shows the Redex Trail for our program of
Figure 1. Dotted arrows point to subexpressions. Both dashed and solid arrows
denote the parent relationship. Note that browsing the Redex Trail starts with
the marked result value.

The graphs of the two trace structures are layouted to stress their similarity.
We note that all arrows of the EDT are also present in the Redex Trail but point
in the opposite direction. If the Redex Trail held information about which parent
relations correspond to reductions (these are shown as solid arrows), then the
EDT could be constructed from the Redex Trail. In contrast, the Redex Trail is
more complex than the EDT, because it additionally links every value with its
parent redex and describes how expressions are shared.

Because Hood observations contain values as they are demanded in a given
context whereas both the EDT and the Redex Trail contain values in their most
evaluated form, it is not possible to gain Hood observations from either the EDT
or the Redex Trail. Conversely, even observing every subexpression of a program
with Hood would not enable us to construct an EDT or Redex Trail, because
there is no information about the relations between the observations.

4 x 2 = 8

main

head

last
last

= let xs = [4x2, 3+6]
in (head xs, last xs)

(x:x8) = x

(x:xs8) = last xs
[x] =x

Fig. 1. Example program

main = (8,1)

- I ~<
//// I \\\\
-~ * = ~
head [8,7] = 8 last [8,7] = L
I
v
last [?7] = L
I
¥
last [1 = L
Fig. 2. Evaluation Dependency Tree
main j«— (.,o)k—o ’
g .
TSNS
/// // '\.\..\\ \\\
-~ 7/ v\ N S~
- Ve - ~
4 - | \ \\ S <
| \ \\ 3 \\\
head e <—|zr ! \\ \ 3+ 6 last e
. I N g ;
o | \ ’
oy
...... | A
I ‘\ N
\.
! \ W
I \ SN last. e
I \ N L.
| \ \
L \ (N
94 \
A
1zst- e

Fig. 3. Redex Trail

3.3 Implementation

Each system consists of two parts, the browser and a part for the generation of
the trace. We will discuss the browsers in Section 4.

The developers of the three systems made different choices about the level at
which they implemented the creation of the trace. In Freja the trace is created
in the heap directly by the modified instructions of the abstract graph reduction
machine. The Redex Trail System transforms the original Haskell program into
another Haskell program. Running the compiled transformed program yields the
trace in addition to the normal result. Finally, in Hood the trace is created as a
side effect by the combinator observe, which is defined in a Haskell library.

The level of implementation has direct effects on the portability to different
Haskell systems. Hood can be used with different Haskell systems, because the
library only requires a few non-standard functions such as unsafePerformIO
which are provided by every Haskell system. The transformation of the Redex
Trail System is currently integrated into the nhc98 compiler but could be sepa-
rated. A transformed program uses a few non-standard unsafe functions to im-
prove performance. Furthermore, some extensions of the Haskell run-time system
are required to retain access to the result after termination or interruption and
to connect to the browser. Finally, Freja is a Haskell system of its own. Adding
its low-level trace creation mechanism to any other Haskell system would require
a major rewriting of this system.

3.4 Reduction of Trace Size

In Hood the trace consists only of the observations of annotated expressions.
Hence its size can be controlled by the choice of annotations”. In contrast, both
Freja and the Redex Trail System construct traces of the complete computation
in the heap.

To reduce the size of the trace, both Freja and the Redex Trail System enable
marking of functions or whole modules as trusted. The reduction of a trusted
function itself is recorded in the trace, but not the reductions performed to eval-
uate the right-hand-side of its definition. The details of the trusting mechanisms
of both systems are non-trivial, because the evaluation of untrusted functions
which are passed to trusted higher-order functions have to be recorded in the
trace. Usually at least the Haskell Prelude is trusted.

To further reduce the space consumption, both Freja and the Redex Trail
System support the construction of partial traces. In Freja, first only an upper
part of the EDT may be constructed during program execution. When the user
reaches the edge of the constructed part of the EDT in the browser, this part is
deleted and the whole program is re-executed, this time constructing the part

7 A variant of Hood allows the annotated running program to write observed events
directly to a file, so that the trace does not need to be kept in primary memory.
However, to obtain observations, the events in the file need to be sorted. Hence the
browser for displaying observations reads the complete file and thus has problems
with large observations.

of the EDT that can be reached next by the questions. So, except for the time
delay caused by re-execution, the user has the impression that the whole EDT
is present.

The Redex Trail System can produce partial Redex Trails by limiting the
length of the Redex Trails. Because a Redex Trail is browsed backwards, the
system removes those redexes that are further than a certain length away from
the live program data or output (pruning). The Redex Trail System does not
provide any mechanism like re-execution in Freja to recreate a pruned part of
the Redex Trail.

Note that requiring less heap space may reduce garbage collection time, but
the Redex Trail System still spends the time for constructing the whole trace
whereas Freja does not need to spend time on trace construction after construc-
tion of an upper part of an EDT.

4 Evaluation of the Systems

Differences between the systems directly raise several questions. Is it sensible
to add a feature of one system to another system? Does an alternative design
decision make sense? In how far is a distinguishing feature inherent to a system,
possibly determined by its implementation method or its tracing model? Because
the design space for a tracer is huge, it is sensible to evaluate system features in
practice early. We applied the three systems to a number of programs in which
errors had deliberately been introduced. Our experiences from these tests first
made us aware of some distinguishing features of the systems which we had not
noticed before and then enabled us to evaluate the usefulness of system features.

Our evaluation exercise required at least two programmers. First the author
of a correctly working program explains how the program basically works. Then
one programmer secretly introduces several deliberate errors into the program,
of a kind undetected by the compiler. Given the faulty program, the other pro-
grammers use a tracing system to locate and fix all the errors, thinking aloud
and taking notes as they do so. We performed this exercise with several programs
of 100 to 900 lines. The introduced errors caused all three kinds of faulty observ-
able behaviour mentioned earlier: wrong output, abortion with error message
and non-termination.

4.1 Readability of Expressions

In contrast to our preliminary fears that the expressions shown by the browsers,
that is, reductions, redexes and values, would be too large to be comprehensible,
they were mostly of moderate size and well readable in our experiments.

As we will discuss in Section 4.2 the user of a tracing system does not only
view the trace but also the program. We noted however in Freja and the Redex
Trail System that informative variable (function) names, that convey the seman-
tics of the variable well, substantially reduced the need for viewing the program
and thus increased the speed of the debugging process substantially.

Unevaluated Expressions Freja shows unevaluated expressions as 7 and the
undefined value as L. This property made expressions even shorter and more
readable. We made the same observation for Hood. Only in some cases more
information would have been desirable for better orientation. In the Redex Trail
System the display of the unevaluated redexes sometimes obscured higher level
properties, for example the length of a list. All in all our observations suggest
that unevaluated expressions should be collapsed into a symbol by default but
should be viewable on demand.

Hood shows even less of a value than Freja, because it only shows the part
demanded in a given context. Note that this amount of information would suffice
for answering the questions of Freja. Because the Redex Trail System is not based
on questions, it is less clear if showing only demanded values would be suitable
for it. Finally, we note that the fact that Freja and the Redex Trail System
show values to the extend to which they are evaluated in the whole computation
whereas Hood shows them to the extend to which they are demanded is closely
linked to the respective implementations of the systems and thus not easily
changeable.

Functions In Haskell, functions are first-class citizens and hence function values
may appear for example as arguments in redexes or inside data structures.

For the representation of function values, Hood deviates from the principle
of showing Haskell-like expressions. It shows function values as finite mappings
from arguments to results. This representation requires some time to get used to.
However, it permits are rather abstract, denotational view on program semantics
which is useful for determining the correctness of a part of a program. Especially,
the representation shows clearly which (part of an) argument is not demanded
by a function for determining its result. This feature was particularly instructive.
Also, because only demanded parts are shown, the representation is short in most
cases. However, for functions that are called often and especially for higher-order
functions the representation is unwieldy.

In Freja and the Redex Trail System a function value is shown as a function
name, a A-abstraction, or as a partial application of a function name or a A-
abstraction. Function names and their partial applications are well readable but
A-abstractions are not. Both systems do not show a A-abstraction as it is written
in the program but represent it by a new symbol: <lambda#n> for a number n
in Freja and (\) in the Redex Trail System. Both systems can show the full -
abstraction on demand. However, because of the necessary additional step and
because A-abstractions are often large expressions (the main reason why they
are represented by symbols) make reading expressions involving A-abstractions
very hard. One of our test programs used named functions where most Haskell
programmers would have used A-abstractions. During tracing, Freja and the
Redex Trail System showed very readable expressions for this program.

Free Variables Both A-abstractions and the definition bodies of locally defined
functions often contain free variables. To answer a question of Freja the values of

such free variables must be known. Hence Freja shows this information in a where
clause. The following question from our evaluation exercise demonstrates that
this information usually adds to the comprehensibility of a question considerably:

tableRead
llyll
(TableImp
(newTableFunction
where
newIndex = "x",
newEntry 1,

oldTableFunction = implTableEmpty))

=>
Just 1

The correct answer is obviously no.

The Redex Trail System does not show the values of free variables. This
information can be obtained only indirectly by following the chain of parent
redexes of such a function. To realise that a function has free variables and
to see to which arguments of parent redexes they correspond it is furthermore
necessary to study the program.

In Hood an observation of a locally defined function can be misleading. The
observation is really for a family of different functions, with different values for
free variables. In our experiments the observation of a local function moveval
looked as follows

-- moveval
{..., 8 ->Draw, ... , 8 => Win, ... }

4.2 Locating an Error

With all three systems we successfully located all errors in our programs. To
locate an error the number of questions answered in Freja was always larger
than the number of parents looked at in the Redex Trail System which again
was larger than the number of times observe annotations were added for Hood.
For example, for locating an error in our largest program we answered between
10 and 30 questions in Freja, looked at 0 to 6 parents in the Redex Trail System
and added observe up to 3 times. However, these numbers do not imply that
an error was located quickest with Hood.

First of all, the time required in Hood for modifying the program (discussed
further in Section 4.4), recompiling the program and reexecuting it is substan-
tially higher than answering a question or viewing a parent. Furthermore, the
amount of data produced by a single observe annotation is usually substantial.
However, the major difference between the systems is the time the user has to
spend thinking about what to do next.

10

Guidance and Strategies Freja asks questions which the user has to answer
whereas in both other systems the user also has to ask the right questions. Freja
guides the user towards the error.

The Redex Trail System at least starts with the program output, an error
message or the last evaluated redex in an interrupted program and the main
operation is to choose a subexpression and ask for its parent. There are usually
many subexpressions to choose from and the system never states that an error
has been located at a given position in the program. Wrong parts in the output
or wrong arguments in redexes are candidates for further enquiry. Nonetheless,
for the less experienced user it is easy to get lost examining an irrelevant region
of the redex trail. Hood gives the complete freedom to observe any value in
the program. The initial choice of what to observe is difficult and often seemed
arbitrary.

We noticed, however, that Hood users applied a top-down strategy in their
placement of observe combinators when the faulty behaviour did not point to
any program location, for example when the program did not terminate. So the
questions the Hood users asked were similar to those asked by Freja. If, on the
other hand, the position where the observable fault was caused was identified,
for example when the program aborted with an error message occurring only
once in the program, then a bottom-up strategy reminding of the Redex Trail
System was employed.

Our programs contained several errors. Users of the Redex Trail System and
Hood located the errors in the same order, because they always located the error
that caused the observed faulty behaviour. In contrast, the questions of Freja
sometimes lead to the location of a different error. It would be possible to tackle
a specific faulty behaviour by answering some questions incorrectly, but this
certainly requires care to not to get directed to an irrelevant region of the EDT.

General Usability The Redex Trail System with its complex browser has the
steepest learning curve for a new user. In contrast, the principle of questions and
answers of Freja is easy to grasp and Hood has the advantage of using the idea
of print statements, which are well-known from imperative languages. Hence a
mode that would hide some features from the beginner seems desirable for the
Redex Trail System.

Information Used A Hood user has to modify the program and hence look
at it. Sometimes already searching for a good placement of observe reveals
the error. Users of Freja and the Redex Trail System, especially the former,
tend to neglect the program. As long as the user knows the intended meaning
of functions he can use Freja without ever looking at the program. This does
however imply that the user does not try to follow Freja’s reasoning and to
understand how the finally located error actually caused the observed faulty
behaviour. Redexes as shown by the Redex Trail System are too terse to be
the only source of information for locating an error. Viewing the program part
where a redex is created gives valuable context information and at the end the

11

program is needed to locate the error. Both Freja and the Redex Trail System
provide quick access to the part of the program relating to the current question
or redex. Nonetheless, it seems worthwhile to test, if automatically showing the
relevant part of the program when a new question or parent is shown would
improve usability.

In contrast to the other two systems the Redex Trail System also gives in-
formation about which expressions are shared. This information was useful in
several cases, usually when expressions were shared that were not expected to
be so.

A trace of Hood is a set of observations. The trace unfortunately contains no
information about the relations between these observations. Hence, with a few
exceptions, we observed functions to obtain at least a relation between arguments
and result.

Wrong Subexpressions Often, in the questions posed by Freja, a specific
subexpression of a result was wrong. For example the last element of a list.
There is no way to tell Freja this information. In contrast, the Redex Trail
contains the parent of every subexpression. A user of the Redex Trail system
seldom asked for the parent of a complete expression but usually for the parent
of some subexpression. We believe that this is the major reason why we looked at
far less parents with the Redex Trail System than we answered questions of Freja
for locating the same error. A Hood user obviously also tries to use information
about wrong subexpressions but it is not easy to decide where to place the next
observe combinator.

Reduction of Information In Hood, the user determines the size of the trace
by the placement of observe combinators. It is, however, sometimes not easy to
foresee how large an observation will be. The trusting mechanism in Freja and
the Redex Trail System is not only good for saving space but also for reducing
the amount of information presented to the user. The ability of the Freja browser,
to dynamically trust a function and thus avoid further questions about it, was
useful. For the Redex Trail System a corresponding feature seems desirable.
In Freja, sometimes a question was repeated, because the same reduction was
performed again. Hence memoisation of questions and their answers is desirable.
It would also be useful to be able to generalise an answer, to avoid a series of
very similar questions all requiring the same answer.

Runtime With respect to the time overhead caused by the creation of traces the
low-level implementation of Freja payed off. The overhead was not noticeable.
In contrast, in the Redex Trail System traced computations are more than ten
times slower, too slow for large computations. Once we believed a program to be
non-terminating but it was only slow. We made the same experience for Hood
when we observed at position that were computed very often and that lead to
large observations. So in Hood the time overhead is considerable but it is only
proportional to the amount of observed data.

12

Haskell System We noticed in our experiments that a Haskell system can
reduce the need for a tracer. Both the Glasgow Haskell compiler® and Freja
warned about overlapping patterns in one of our programs whereas nhc98 did
not. If a function is called with an argument for which no matching equation
exists, then the aborting program gives the function name, if it was compiled
with the Glasgow Haskell compiler, but not, if it was compiled with Freja or
nhc98. However, in that case the Redex Trail Browser at least directly shows
the function with its arguments whereas Freja requires the answers to numerous
questions before locating the error.

4.3 Language Constructs

A constant applicative form (caf) is a top-level variable of arity zero. Its value
is computed on demand and then shared by its users. Both Freja and the Redex
Trail System take the view that a caf has no parent. Hence the trace of a program
in Freja is generally not a single EDT but a set of EDTs, an EDT for each caf
including main. These EDTs are sorted so that a caf only uses those cafs about
which questions have already been asked and which are hence known to be free
of errors. Unfortunately one of our test programs contained 35 cafs. We had to
confirm the correctness of evaluation for all cafs before reaching the question
about main, although none of these cafs were related to any of the errors. Freja
permits to directly start with the question about main. However, that implies
stating that the evaluation of all cafs is correct, which may not be the case and
thus lead Freja to give a wrong error location. An alternative definition of the
EDT could imply that all users of a caf are its parents. Then a question about a
caf would be asked only if it were relevant and memoisation of the question and
its answer could avoid asking the same question when another reduction using
the caf were investigated.

For the Redex Trail System a corresponding modification seems to be more
difficult, because the Redex Trail is browsed by going backwards from an expres-
sion to its unique parent. In our experiments the fact that a caf has no parent
in a Redex Trail was not noticeable, because none of the introduced errors con-
cerned cafs. However, programs can be constructed were this lack of information
would hinder locating an error.

In Haskell the selection of an equation of a definition may not only be deter-
mined by pattern matching but may also depend on the value of a guard:

test :: (a -> Bool) -> a -> Maybe a

test p x | p x Just x

| otherwise = Nothing

In Freja the reduction of a guard (p x) is a child of the reduction of the function
(test). Redex Trails are, however, traversed backwards from the result value
(Just x or Nothing). To hold the information about the reduction of a guard,

8 http://www.haskell.org/ghc

13

Redex Trails have an additional sort of redexes. In the example, if the first equa-
tion were chosen, then the value Just z would have the parent | True < test
p x, and if the second equation were chosen, then the value Nothing would have
the parent | True < | False < test p x. By asking for the parents of the
truth values True and False in the redexes, the user can obtain information
about the evaluation of the guards. On the one hand, this special redex compli-
cates the system. On the other hand, it enables more fine grained tracing up to
the level of a guard, whereas Freja only identifies a whole reduction as faulty.
This feature is useful when a pattern is associated with many guards.

4.4 Modification of the Program

Whereas Freja and the Redex Trail System are applied to the original program,
requiring only special compilation, Hood is based on modifying the program. In
practice these modifications are not neglectable. Already the introduction of the
observe combinator requires modifications which are non-trivial, if an operator
is observed (because of its infix position) or if not a specific call but all calls
of a function are observed as in our example in Section 2.3. Furthermore, the
main function has to be modified and the library has to be imported in every
program module that uses its entities. Most importantly, a data type that shall be
observed has to be an instance of a class Observable. Some of our test programs
defined many data types and, because we wanted to observe most of them, we
had to write many instance definitions. Writing these instance definitions is easy
but time consuming. Additionally, all these modifications potentially introduce
new errors in the program and also make the program less readable.

On the other hand it might be useful to leave the modifications for Hood in
the program. They could be en-/disabled during compilation by a preprocessor
flag for a debug mode. Then most modifications, especially writing instances of
the class Observable, require only a one-time effort. The observe combinator
may even be placed to observe the main data structures of the program. Thus
debugging is integrated more closely into program development. In contrast,
Freja and the Redex Trail System cannot save any information from a tracing
session for future versions of the program.

5 Other Tracers and Debuggers

Buddha [4, 9] is a tracing system which constructs an EDT and is hence used sim-
ilarly to Freja. Its implementation is based on a source-to-source transformation,
but unlike the transformation of the Redex Trail System this transformation is
not purely syntax-directed but requires type information. Buddha can handle
only a subset of the language handled by Freja and is not publically available.
In [3,1] a system is sketched which creates a trace quite similar to an EDT.
The main difference is that a parent node is only connected directly to one child.
All sibling nodes are connected with each other according to the structure of the
definition body of the parent node. Thus the trace has the nice property that

14

all connecting arrows denote equality, unlike the arrows in an EDT or a Redex
Trail. The authors describe a browser which gives more freedom in traversing
the trace than the questions of Freja.

There also exist several systems for showing the actual computation sequence
of a lazy functional program. Section 2.2 of [13], Chapter 11 of [5] and Chapter 2
and Section 7.5 of [7] give overviews over a large number of tracing and debugging
systems for lazy functional languages.

6 Conclusions

In this paper we compared three systems for tracing and debugging Haskell pro-
grams: Freja, the Redex Trail System and Hood. These systems take surprisingly
different approaches to the task. We evaluated the systems by applying them to
a number of programs. We identified distinguishing features and for each sys-
tem we determined which features are most valuable in practice and where the
system is still inadequate. Each system has its virtues and drawbacks but all of
them proved useful for locating errors.

Although Hood arrived latest on the market, it is the only system that covers
the full Haskell, because of its implementation as a library. Unfortunately, this
implementation method seems to be impossible to use for Freja and the Redex
Trail System, because their traces describe reductions, not only values. Hood is
rather different from Freja and the Redex Trail System whereas the latter have
more in common. We noted that the EDT of Freja could be constructed from
a Redex Trail with only minor extensions. Thus the Redex Trail System could
incorporate the question and answer system of Freja. We fear, however, that the
features of a combined system would be overwhelming for the user.

We noted that it is not obvious how to use the Redex Trail System and
especially Hood for locating an error. These systems would benefit considerably,
and even Freja to some extend, from documentation informing the user how to
apply the system for locating errors, which strategies exist and what should be
avoided.

In our experiments we avoided programs that made substantial use of contin-
uation passing, higher-order combinators and monads. Already a limited num-
ber of A-abstractions were disturbing, because Freja and the Redex Trail System
present them so poorly. It would be interesting to investigate, if using named
functions instead of A-abstractions would make tracing and debugging programs
written in the mentioned styles feasible. Especially in this context, it would also
be interesting to see how trusting a tested combinator library would improve
tracing a program that uses it. It is still unclear to us how Hood could be used
for tracing programs using the mentioned styles, because these are based on
effecting the control flow, which is not observable by Hood.

We did not use any programs that performed monadic input/output, be-
cause Freja does not implement it and the Redex Trail System only for a few
operations. It would, however, be interesting to see if Hood’s ability to show the
return value of an executed input/output action is sufficient in practice.

15

We conclude that today useful tracing and debugging systems for Haskell are
available, but that there is still much to do to make them more useful.

Acknowledgments

We thank Henrik Nilsson and Jan Sparud for taking part in the experiments and
making valuable observations.

References

1. Simon P Booth and Simon B Jones. Walk backwards to happiness — debug-
ging by time travel. Technical Report Technical Report CSM-143, Department
of Computer Science and Mathematics, University of Stirling, 1997. This pa-
per was presented at the 3rd International Workshop on Automated Debugging
(AADEBUG’97), hosted by the Department of Computer and Information Science,
Linkoping University, Sweden, May 1997.

2. Andy Gill. Debugging Haskell by observing intermediate data structures. In Pro-
ceedings of the 4th Haskell Workshop, 2000. Technical report of the University of
Nottingham.

3. Simon B. Jones and Simon P. Booth. Towards a purely functional debugger for
functional programs. In Proceedings Glasgow Workshop on Functional Program-
ming 1995, Ullapool, Scotland, July 1995.

4. Lee Naish and Tim Barbour. Towards a portable lazy functional declarative de-
bugger. In Proc. 19th Australasian Computer Science Conference, January 1996.

5. Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis,
Linkoping, Sweden, May 1998.

6. Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for lazy
functional debugging. Automated Software Engineering: An International Journal,
4(2):121-150, April 1997.

7. Alastair Penney. Augmenting Trace-based Functional Debugging. PhD thesis, De-
partment of Computer Science, University of Bristol, September 1999.

8. Simon L. Peyton Jones, John Hughes, et al. Haskell 98: A non-strict, purely
functional language. http://www.haskell.org, February 1999.

9. Bernard Pope. Buddha: A declarative debugger for Haskell. Technical report, Dept.
of Computer Science, University of Melbourne, Australia, June 1998. Honours
Thesis.

10. Jan Sparud and Colin Runciman. Complete and partial redex trails of functional
computations. In C. Clack, K. Hammond, and T. Davie, editors, Selected papers
from 9th Intl. Workshop on the Implementation of Functional Languages (IFL’97),
pages 160-177. Springer LNCS Vol. 1467, September 1997.

11. Jan Sparud and Colin Runciman. Tracing lazy functional computations using redex
trails. In H. Glaser, P. Hartel, and H. Kuchen, editors, Proc. 9th Intl. Symposium
on Programming Languages, Implementations, Logics and Programs (PLILP’97),
pages 291-308. Springer LNCS Vol. 1292, September 1997.

12. Philip Wadler. Functional programming: Why no one uses functional languages.
SIGPLAN Notices, 33(8):23-27, August 1998. Functional programming column.

13. R. D. Watson. Tracing Lazy Evaluation by Program Transformation. PhD thesis,
Southern Cross, Australia, October 1996.

16

