Communicating Process Architectures — 2000 155
P.H. Welch and A.W.P. Bakkers (Eds.)
10S Press, 2000

Blocking System Callsin KRoC/Linux

Frederick R.M. Barnes
Computing Laboratory, University of Kent, Canterbury, KEICT2 7NF
(frmb2@ukc.ac.uk)

Absgtract. This paper describes an extension to Kent Retargetadtam Com-
piler [1] (KRoC), which enables the execution of a blocking call, witholatcking
the occam-kernel. This allows a process to make a blocking system(egllread,
write), without blocking processes running in parallel with itloBking calls are
implemented using Linux clones which communicate usingeshenemory, and syn-
chronise using kernel level semaphores. The usefulne$gsoistapparent in server
applications with a need to handle multiple clients sinmgiausly. An implemen-
tation of anoccam web-server is described in section 5, which uses standaRl TC
sockets via amccam socket library. The web-server comes with the ability to-exe
cute CGl scripts as well as dispensing static pages, whicfodstrates some level of
OS process management from witloiccam.

However, this mechanism is not limited to blocking in thelirkernel. On multi-
processor machines, the clones are quite free to be scliealulgifferent processors,
allowing computationally heavy processing to be perforrmgide theoccam world,
but still with a reasonable level of interaction with it. dgithem in this way provides
a coarse-grained level of parallelism from within the firraigedoccam world.

1 Introduction and Motivation

The standard way of communicating with a & occam program is via the use of the
three byte channels passed to the top-level process. Thesedito three simple processes
which provide access to the UNIXtdin, stdout andstderr streams. As these aB¥TE
channels, each communication causes a context switch-(ligight), as well as associated
system call to read or write the byte (heavy-weight).

There are two possible alternatives where more elabor&teaction with the outside
world is required. The first is to use th@stio andhostsp libraries [2]. These provide
enough |0 facilities to get jobs done. For exampleanpc? uses these libraries to read and
write files. The second alternative is to write your own in @e&vorld and provideoccam
with an interface to call it.

Writing functions in C has advantages, such as access tredttilities of the operating-
system, in this case Linux. Its usefulness is limited thoughany system call which blocks
in the kernel will suspend the Linux process who made it, is tase, the entireccam
program. A naive solution would be to let eachcam process run as a separate Linux
process, communicating via standard kernel mechanismso@se, this is unfeasible since
the overheads are colossal when compared to the sub miorasperformance of KBC. A

!Extended transputer code[3] to Intel 386 ELF object codeedar

156 F.R.M. Barnes / Blocking System Calls in ISR/Linux

multiprocessor KIRC would relax the problem slightly, as one instance ofdbeam-kernel
could block, while the others (on different CPUs) carriedsshedulingopccam processes.
This is not feasible either, since there is a limit on the nands simultaneous blocking calls
possible; one less than the number of running kernels.

The solution presented here uses Lirdxne () s to hand off the blocking call to another
Linux process. If this call does block, then only the clonevimch it is running will block;
occam processes running in parallel with the blocking call wilhtioue to be scheduled.
Using this method, the number of simultaneous blockinggadissible is limited only by the
user’s process limits, currently 8192. In actual fact wetlsetlimit to a lower value of 256.
This is mainly because we do not want an awcgam program thrashing Linux. The value
can be increased however, and the run-time system re-cednpthere is a specific need for
more.

Since theoccam compiler performs parallel usage checking, any unsafelphtsage
of a blocking call will be rejected. It does not, however, gudee deadlock, livelock or
starvation freedom; that is up to the programmer.

2 Theoccam/C Interface

External functions are introduced t@cam by the use of th&XTERNAL compiler directive.
The standard way of calling an external C function is to declaas aPROC to occam,
then provide the necessary C function by linking it in. Distan how to do this (including
parameter passing mechanisms) are given in [4]. A few exa®{IERNAL declarations
might be:

#PRAGMA EXTERNAL "PROC C.foo (VAL INT x, VAL INT y, INT z) = O"
#PRAGMA EXTERNAL "PROC C.bar ([]1BYTE arry, INT len) = 0"

Whentranpc sees a reference to an external function starting with it generates a special
calling sequence, using the external functiotr11_C_interf’. This function is provided
as part of the standard run-timecam system, in this case CCSP [5].

Blocking calls are declared in a similar way, but insteadtaftsng with ‘C.’, they start
with ‘B.” or ‘BX.’. The calls starting withB.’ identify a normal blocking call; those starting
with ‘BX.’ indicate a blocking call on whose terminati@ccam may ALT. Terminatable
blocking calls are discussed in section 3txanpc has been modified to spot these "
and BX.’ calls, generating similar code to external C calls, bulieglthe interface functions
‘_call B_interf’ and‘_call BX_interf’ respectively. The£ 0” on the end of an external
C declaration indicates the number of workspace words reduor the external procedure.
As C functions do not use anyccam workspace, (except for the parameters they were
passed which has already been accounted for), this is setdo External blocking calls on
the other hand need two words of workspace. These are the twaswised by the scheduler
when the process is waiting on the run queue (instructiontpoand queue link).

For the above example external declaratiaghg6o’ and ‘C.bar’, the C functions ‘foo’
and ‘_bar’ would need to implemented. Blocking versions follow a danhaming scheme in
such a way that one C function can implement all ttoegam versions. Itis quite legitimate,
and often useful, to be able to write:

F.R.M. Barnes / Blocking System Calls in IS&/Linux 157

#PRAGMA EXTERNAL "PROC C.foo (VAL INT x, VAL INT y, INT z)

#PRAGMA EXTERNAL "PROC B.foo (VAL INT x, VAL INT y, INT z)

#PRAGMA EXTERNAL "PROC BX.foo (CHAN OF INT c, VAL INT x,
VAL INT y, INT z) = 2"

Oll
2!!

Only one C function is required for all of thesef6o’. The extra parameter in th@X.foo’
call is used for termination (section 3.5).

3 TheClones

A cloneprocess on Linux is effectively another OS-level processchn share virtual mem-
ory, file descriptors and/or file-system information with garent. Clones maintain their
own stack and process context, as it does not make senser¢éotsbgse. Clones are created
through the use of thelone () system call, which takes arguments describing what wants to
be shared, the clone’s stack, the function where the claresstind an arbitrary parameter
for that function.

3.1 Starting it all

To communicate between the clones and dlceam-kernel process, a number of shared
variables are used. (In actual fact, everything in the heaghared, but the clones only
read/write certain variables, and carefully at that):

e ‘bsc_thread dispatching’ is used to pass information about the new blocking call
between th@ccam-kernel and a clone (section 3.3).

e ‘spl_t dispatch_lock’ is the spin-lock used to protect the above structure. It is
locked by theoccam-kernel, and released by the clone.

e ‘pid_t clone_pids[]’ holds the process IDs (PIDs) of the clones. The first clone
places it's PID at index O, the second clone at index 1, anchsd bis is used by the
clones during termination (section 3.5).

e ‘bsc_thread *clone arry[]’ holds a pointer to each cloneisc_thread structure,
as described in the next section. The clones use this arragnjunction with the ‘tt
clonepid[]’ array, to find themselves during termination.

e ‘word *q_fptr, *q_bptr’ arethe queue pointers on which finished clones place their
occam processes. It is described in section 3.4.

e ‘int num queued’ iS a counter indicating how mangccam processes are on this
queue.

e ‘spl_t queue_lock’is the spin-lock used to protect the three queue and cowater
ables above.

158 F.R.M. Barnes / Blocking System Calls in ISR/Linux

3.2 Creating new clones

Each clone gets created with a stack size of just under 128kiles. At the bottom of this
stack is a structure which holds the state of the clone:

struct _bsc_thread {

int pid; // clone’s process ID

int thr_num; // thread number (0..)

int *ws_ptr; // workspace pointer

int *ws_arg; // arguments pointer

void (*func) (int *); // function to execute

char *raddr; // return address in occam
int terminated; // terminated 7

int cancel; // cancelled ?

int adjustment; // adjustment for parameters
sigjmp_buf *jbuf; // jump buffer

void *user_ptr; // pointer to ‘spare’ space
void (*cleanup) (void *); // cleanup function

};

When KRoC starts up it creates a small pool of clones, currently 3s &ppears to be a
sensible default, as tleecam web-server (section 5) only needed this many under a sensibl
load. Figure 1 shows the startup sequence for two clones.

occam kernel clone O clone 1

'

create clones

initialise
clone () ‘ =l
wait (dsem)

[...] 1 initialise

R

continue startup wait (Fjsem)

| ,

Figure 1: Clone startup

The clones start by entering the functianiéne_entry’, which gets passed the address
of this structure as a parameter. The parent processtdetsiim’, * ad justment’ and ‘jbuf’
before setting the clone off. It also stores a pointer to tbeesbsc_thread structure in
the ‘clone_arry’ array. When the clone starts executing, it puts its prot@ss the ‘pid’
field, and in the ¢lone pids’ array. Once the clone has initialised, it blocks on a kernel
semaphore claim with all the other non-active clones.

F.R.M. Barnes / Blocking System Calls in IS&/Linux 159

3.3 Dispatching calls

When anoccam program calls an externas : xxx’ procedure, the actual call is mangled in
much the same way as external C calls. This involves the usero€ separate glue-code,
namely call B_interf’. This is a simple assembler routine that jumps into the tioe
kernel (CCSP), in much the same way that kernel calts ¢ut, outbyte, etc.) do. This
glue-code handles the workspace much as a nasotam PROC would. The run-time kernel
expects two arguments from tloecam world — the address of the function to call, and a
pointer to the arguments. The kernel calls the dispatchingtion psyscalls_dispatch),
then schedules the nextcam process.

The dispatching function is where the information relevarpgerforming a blocking call
is passed to a clone. The following list summarises the jeo®pned by theccam-kernel
in thebsyscalls_dispatch function:

1. The number of available clones is checked for one of twaiapeases:

(a) There are no clones left. In this case, a new clone isenldatimediately and a
flag ‘deferred_new’ is set to 1. This flag indicates whether or not a new clone
should be created before the function returns.

(b) There is one clone left. In this case, thieferred new’ flag is set to 1, so that
there will definitely be a spare clone if and when the nextalisip occurs.

2. 'spl_lock_or_fail (&dispatch_lock)’is called to lock dispatch_lock’. If the
lock cannot be obtained immediately, it is because a prelyodispatched job has
not been collected by a clone. In such a casshéd_yield()’ is called to yield the
processor in the hope that the clone will be scheduled anpbtheollected. This will
loop until the lock becomes available.

3. Information about the job is placed in thia spatching’ structure. This is a structure
shared by all, and is the way in which the clones receive métion about new jobs.

4. The semaphore on which idle clones wait is notified. Thikoause one of the blocked
clones to return from its semaphore claim operation.

5. Ifthe ‘deferred_new’ flag was set, a new clone is created. This ensures that iéte |
clone was used this time, then there will be a spare one magt ti

From the clone’s point of view, things are slightly simpl&he clone will be blocked in
an OS kernel semaphore claim (wrapped up édaim semaphore’). When this function
returns, either the semaphore was claimed, oottwam-kernel exited. In the latter case, the
clone also exits if theccam-kernel had not already killed it (which it does do on exit).

The clone, after waking-up, simply copies the relevant fi@tl‘dispatching’ into its
own ‘bsc_thread’ structure, unlocksdispatch lock’, then executes the requested func-
tion. The actual business of executing the call is slightignplicated, as the blocking call
can be terminated while in progress. This is discussed iremetail in section 3.5.

Figure 2 shows the main actions of both tieeam-kernel and the receiving clone when
dispatching a call.

160 F.R.M. Barnes / Blocking System Calls in ISR/Linux

occam kernel clone 0
distatch (blocked on éemaphore claim)

get dispatching lock ‘
fill structure
notify on semaphore__,_ (wakeup)

#

schedule next process copy structure

release dispatching loc
execute function

'

Figure 2: Dispatching a clone

3.4 Collecting finished calls

When the clone finishes, it needs to re-schedul@tdmam process that dispatched it. This is
done by means of a shared quegefptr, g_bptr), a spin-lock queue_lock) and, if neces-
sary, a signal to theccam-kernel. The clone acquires the spin-lock, adds the pracebe
queue, incrementsum_queued, then releases the lock. dfim_queued was previously 0, the
occam-kernel process is signalled to collect process(es). letheas already something on
the queue before adding this one, it means thabtmam-kernel has already been signalled,
so should not be signalled again. This is safe sinceotttam-kernel will not be able to
collect the finished calls while the clone holds the lock.

The signal handler on theccam-kernel side sets one of the synchronisation flags, similar
to that set by the keyboard or timer. If tloecam-kernel was insafe_pause (where it
idles), it will be awakened [1]. If not, it will pick up the chge in the synchronisation
flag on the next reschedule. When the next reschedule hapibesccam-kernel locks
queue_lock, moves the processes to the run-queue, adjusts the numdeatref clones, then
unlocksqueue_lock. Figure 3 shows this.

3.5 Terminating{LTing) blocking calls

It is quite possible that a blocking call in the Linux kernelutd block forever, or that a
function executing aside theccam-kernel could get stuck in a loop. For these reasons, a
safe mechanism for terminating them is provided. The implaation of terminating calls is
split into two halves. Section 3.5.1 describes howdheam-kernel goes about terminating

a call, and section 3.5.2 describes how the clone deals witiglierminated. The ability to
terminate a blocking call allows, for example, a socketeviiicluded as aaLT guard. The
occam must, of course, be programmed correctly to avoid deadldgkexample of safe
termination is given in section 3.5.3.

As mentioned earlier, terminatable blocking calls get pds extra channel parameter
as the first argument. This is internal to the terminationimacsm so it is not included in the

F.R.M. Barnes / Blocking System Calls in IS&/Linux 161

clone 0 occam kernel

Y

finish executing function
get queue lock

|

add process to queue
release queue lock

(scheduling occam processes)

signal occam kernel if necessary
loop and block on semaphore h (\iaerrupted) other finishing clones can adc
set blocking-sync flag v.vithout signalling during this
(resumes) time.
reschedule

get queue lock

|

add queued processes to run queue
release queue lock

Y

f schedule next occam process
Y $

Figure 3: Collecting a finished call

arguments given to the C function being called. Théjustment’ element of the clone’s
bsc_thread structure is used here to shift the parameters passed ohe teft. Before
the clone starts executing the call, it places a pointerstownbsc_thread structure in the
channel word. As this is most certaimiptanoccam workspace pointer, theccam program
must not attempt direct communication on it. Tlaricel’ and ‘terminated’ members of
thebsc_thread structure are used to provide race-free terminationaihytbeing set to zero.

3.5.1 Initiating termination fromccam

Once a blocking call (or other computing function) is in pregs, aroccam process running
in parallel with it is able to terminate it. This is done thgbuthe use of a built-in function
declared to theccam world as:

#PRAGMA EXTERNAL "PROC C.killcall (CHAN OF INT c, INT result) = 0"

An occam process can call this function, passing the same chanresneder as was passed
to the blocking call. The second paramet&fT result’ is used to return the result of the

termination, with the following meanings:

-1 the blocking call had already finished

0 the blocking call was successfully terminated
1 the blocking call had only just finished

2 the blocking call is currently finishing

162 F.R.M. Barnes / Blocking System Calls in ISR/Linux

The most common case will be the second (terminated suctig3sfThe other three
cases (-1, 1 and 2) indicate various grades of non-sucd¢dssfoination. The following
algorithm implements theccam-kernel side of the termination:

1. T < contents of channel word
if T'=null then

/[call has either not started or has finished

sched_yield ()

T « contents of channel word

if 7= null then

/[call has finished
return -1

end if
- end if
. if T[terminatedithen
/[call has finished, but has not yet cleared channel word
returnl
- end if
<1
: /latomically swap contents ofdance] with F’

: swap T'[cance], F’

S if F =1then

/lcall is in the process of terminating

return 2

- end if

. /Isend a SIGUSR1 signal to the clone’s OS process
: signal T'[pid], SIGUSR1

: return O

NNNNNRPRERRRRRRERRR
BEWONRPOO®ONO®UMWNIERO

The atomic swap at line 17 indicates the point whereat@am-kernel either commits
to terminating the clone (via a signal), or leaves it alorec@use it is in the process of ter-
minating itself). On a uni-processor machine, it is enyiggbssible that theccam program
attempts termination before the clone has scheduled. $nctise, éched_yield()’ (line
4) is called to reschedule tleccam-kernel OS process. This gives the clone the chance
to execute the call before it is killed, and it is only killedtidoes not complete before the
occam-kernel gets rescheduled. In some situations, this mighbaahe desired behaviour
— we actually might want to terminate the call before it staft is unlikely however, as the
signalling on the semaphore (to dispatch a clone) will cabsd_inux kernel to favour the
first process waiting on that semaphore, in this case, thmealdnich being dispatched.

3.5.2 Dealing with termination in the clone

All of the clones install a signal handler for the SIGUSR Insily which is used to ‘interrupt’
them. This signal handler is used in conjunction withigset jmp/siglongjmp pair, SO
that execution can continue at a well-known place when tgeasiis delivered. A call to
sigsetjmp is made by the clone just before the function is executed.' Jhef” member in
the clone’sbsc_thread structure points at the jump buffer, which is located justdrel the
bsc_thread structure in the clone’s stack. Thegset jmp function returns O if it is returning
directly, or 1 if it is coming back from aiglongjmp, in our case from the signal handler.

F.R.M. Barnes / Blocking System Calls in IS&/Linux 163

The following algorithm implements the clone’s half of tleerhination process, starting
before the blocking call is made:

1: T <= pointer to the clone’®sc_thread structure
T|[cance] < 0
Tterminatedl< 0
channel word= T
if sigsetjmp T'[jbuf] = 0 then
[Ireturning directly
unblock SIGUSR1
make blocking system call
Tterminated < 1
block SIGUSR1
S<=0
- else
/lreturning from the SIGUSR1 signal handler
T[terminatedl< 1
S<1
:end if
P&l
. [latomically swap contents ofdance] with F
: swap T'[cance], F’
cif F=1and S = 0then
/lother side committed to terminating, but signal is pending
wait SIGUSR1
:end if
: channel word= null

NN R RRRRRRERRR
PO ®©O©®Ow~NOOUuMAWNLEO

NN
A

N
N

The functionsblock andunblock, block and unblock a signal respectively. If a signal is
delivered while it is blocked, it is marked as pending, anlivdeed when it is unblocked or
waited for. There is a very unlikely case where doeam-kernel terminates a call, just as the
call itself is terminating, but where the signal has not baelivered. In this case SIGUSR1 is
waited for, and when delivered, execution resumes at the pdieresigset jmp was called.

Figure 4 shows the actions of both parties during a ‘norneaithination.

occam kernel clone X
C.killcall() (executing blocking call)

\

signal clone X_ _

v " 7™ interrupted
continue executing process *

jump out of blocking call

Y

(continue with normal clean-up)

Figure 4: Normal termination of a blocking call

164 F.R.M. Barnes / Blocking System Calls in ISR/Linux

3.5.3 Safe termination

Theoccam fragment below shows a method for terminating a blocking eaihout causing
deadlock:

INT kill.result:
BOOL did.kill:
SEQ
CHAN OF INT c:
CHAN OF BOOL signal:

PAR
-—{{{ Dblocking call
SEQ
BX.whatever (c, ...)
signal ! TRUE
--}}}
-—{{{ collection/termination
PRI ALT
BOOL any:
signal 7 any
did.kill := FALSE -- normal finish
. termination condition
SEQ
C.killcall (c, kill.result)
BOOL any:
signal 7 any
did.kill := TRUE
-1}
In this example, the *.. termination condition” could either be an input guard,

or a timer guard. At the end of the code fragmedt,d.kill’ indicates whether or not
the blocking call was terminated, and if s&ill.result’ indicates the outcome of the
termination. The KRC occam socket library [6] uses this technique to provitierable
variants of theread, write, accept andrecvfrom PROCS through a two-channel interface.
This reduces the application’s involvement to:

CHAN OF BOOL kill:
CHAN OF INT response:

PAR
-—{{{ Dblocking call
socket.altable.X (kill, response, ...)
--}}}
-—{{{ wait for response or timeout
TIMER tim:
INT t:
SEQ

tim ? t

F.R.M. Barnes / Blocking System Calls in IS&/Linux 165

PRI ALT
-—-{{{ incoming response for normal termination
INT any:
response 7 any
kill ! TRUE
--}}}

-—{{{ timeout (after 1 second)
tim ? AFTER (t PLUS 1000000)
INT k.result:
SEQ
kill ! TRUE
response 7 k.result
... take action on k.result if necessary
--}}}
——}}}

This fragment demonstrates a killable blocking socketafp@n (‘socket.altable.X’)
using the two channel&ill’ and ‘response’. The design rule is that whatever happens, a
single communication must occur on each channel. This eaghat §ocket.altable.X’
will not deadlock, as it too must communicate once on eaclhedd¢ channels. In the case
where the call terminates of its own willsécket.altable.X’ performs aPARallel in-
put/output, allowing the user to order the communicationg/hatever way is appropriate
to the application.

3.5.4 Cleaning up after termination

In some cases, the C function being executed may need tormesiome cleaning-up op-
erations after termination from theccam world. Thebsc_thread structure provides two
additional members to aid this operation. The firsger_ptr’, is a pointer into the clone’s
stack, just above thesc_thread and jump-buffer structures. The seconelléanup’ is a
pointer to a function which will be called if the call is temaited. To manage this from the C
world, the following C function is provided:

extern void #*bsyscalls_set_cleanup (void (*)(void *));

If the blocking call needs this functionality, it should Ichlis, passing a pointer to a separate
clean-up function. Theu'ser_ptr’ pointer is returned as the result. When the cleanup func-
tion is called, itis givenuser_ptr’ as an argument. If a blocking call needs to clean up after
termination, it will also probably need some of its previstate, which should be stored at
this pointer. The space available startingwater_ptr’ is determined largely by the clone’s
stack size (currently 128 kilobytes), minus the amount aflsthe clone is currently using.

It is recommended that no more than 1 page (4096 bytes) be used

One perceived, and investigated, use of this is when a bigatall launches another OS
process, and waits for it to finish. If this functionality veemot used, the OS process started
would not be killed when the blocking call is terminated. W\iis functionality, the blocking
call could arrange for the OS process to be killed on its owmiteation.

166 F.R.M. Barnes / Blocking System Calls in ISR/Linux
4 Performance

The performance of blocking system calls is assessed Yaogdiow much impact the system
takes when dispatching, handling and collecting the caltés in turn provides an indication
of how fine-grained the parallel usage of them may be. Figwkdwvs the arrangement of
the machines involved on the network.

korell konom
dual P3/500 P2/300

100 Mbp 100 Mbps
myrtle
router sun E450
campus network (10 Mbps)
stue08c
P1/180

Figure 5: Test network configuration

Figure 7 shows the impact on computation from communicatigth the corresponding
throughputs in figure 8. The benchmark used was similar tatteedescribed in [7], but
modified to use streaming TCP data, as shown in figure 6. Datssti@amed from the ma-
chineskonom andstue08c to korell, once withkorell using a single processor to handle
the blocking calls, and again wittorell using both processors. Communication between
konom andkorell happened at 100 Mbps, with a routing switch forwarding thekpts in
cut-through mode (a form of worm-hole routing), whereas gamication betweentue08c
andkorell happened at 10 Mbps. In this latter case, the network latenayuch higher,
as the “campus network” includes a 100 Mbps FDDI ring and isgveuters between the
machines.

\
U
c
o
o

sample |

Figure 6: Benchmark process network

For runs betweertue08c andkorell, the difference between single and dual processor
performance is marginal. As would be expected, the dualgssar throughput in this case
is slightly better than the single processor, up to the pshre packet fragmentation occurs
(around 1500 bytes). Runs betwdamom andkorell tell a different story, with the results
for single and dual processor performance being somewtfiatett. In the case dforell

F.R.M. Barnes / Blocking System Calls in IS&/Linux 167

100

80 - —

Background processing capability (%)

konom -> korell/1

stue08c -> korell/l ---- -
stue08c -> korell/2 ----------
0 1 | 1 | 1 | \ | . | , i . f .

1 4 16 64 256 1024 4096 16384 65536
Message Size (bytes)

Figure 7: Impact of communication on computation

having both processors available to schedule the bloclkallg, ¢hroughput is high, causing
a notable hit in background processing capability. In theecahere only one dforell’s
processors is available, throughput is dramatically reduélere, the throughput is less than
that of the 10 Mbps network, up to a packet size of around 90@68sb where the limit
of the 10 Mbps network is reached. One cause of this poor pedoce stems from the
low latency between the two machines. As tieeam-kernel and the blocking calls are
restricted to a single processor, a dispatched clone musfava (Linux) kernel reschedule
before becoming active. At the point where the clone exactliteread () system call, the
sender is likely to have stalled, as the acknowledgemetkgtsavill come back much faster
than in the case of the 10 Mbps network. The difference inuginput on the 100 Mbps
network is around a factor of 250, and this 10 Mbps single ggsor case is the only one
of the four runs which fails to reach maximum theoreticabtilghput. When running at 100
Mbps with both processors available, blocking call dispdimes are much lower than the
single processor times. This is expected, as the Linux keritieschedule the blocking call
immediately if the second processor is inactive.

To provide additional performance metrics, thecam-kernel can be compiled in such a
way that it profiles blocking calls. The pentium CPU cycle ot®u is used to get accurate
time-stamps fodispatch trigger, kill andfinishevents. Thelispatchtime-stamp is set when
the occam-kernel dispatches the call to the clone, andttigger time-stamp is set by the
clone when it picks up the call. If the call is terminated, kiletime-stamp is set at the point
where theoccam-kernel initiates termination (i6. killcall ()). When the call finishes, the
clone sets thénishtime-stamp. It should be noted that profiling the blockinljsodecreases
their performance, as the data is dumped directly to thedatairerror stream.

Figures 9 and 10 show the behaviour of the clones during eadting ofoccwserv
(section 5). Each vertical ‘strip’ represents one of thenelk and in both cases there are 12.

168 F.R.M. Barnes / Blocking System Calls in ISR/Linux

16384 ——T

4096 |- -

1024 |~

256 l‘_;,r-f;‘i""]
64 |- -

16 |- e -

Communication throughput (kilo-bytes/second)

konom -> korell/1

0.25 |~]
stue08c -> korell/l -----]
stue08c -> korell/2 ----------

00625 L I 1 I L | 1 | 1 | 1 | 1 | 1
1 4 16 64 256 1024 4096 16384 65536

Message Size (bytes)

Figure 8: Data throughput rates during communication

At each point where a clone is dispatched fromdheam-kernel, a horizontal line is drawn
from the left-hand margin to the clone. The shaded regiomesent a blocked clone (more
accurately, a clone executing the requested function).

Figure 9 shows the behaviour wheacwserv was benchmarked fromyrtle (figure 5)
using the apache benchmark program This varies greatly from the trace obtained when
occwserv was benchmarking fromstue08c using theoccam benchmark prograrob.

ab benchmarks by making requests to the server, then waits for all the responsesebefo
setting off the next requests. Figure 9 shows this quite clearly. The clone whiobks
until the next ‘barrier’ is the acceptor, as it will block unab dispatches the next set of
calls. This call does not actually make it through the ‘bafras the trace might suggest. The
occam benchmark program on the other hand attempts to maintagguests at all times,
by making a new request as soon as an existing one finishesdifférence can be clearly
seen in figure 10, where dispatching is distributed morelguean in figure 9. Both of the
traces were made whertcwserv was using both processors, in an effort to minimise the
impact of profiling.

The following table shows the results of profilingcwserv, being benchmarked lyb,
for both single and dual processor instancesofwserv. This quantifies the difference
between executing blocking system calls on a uni-proceasorexecuting them on a dual-
processor.

M easur ed Min (us) Avg (us) Max (us)

occwserv/l | dispatchto trigger 3.28 79.51 2,356.87
—ob trigger to finish 46.92 248,792.19 3,292,883.81

occwserv/2 | dispatchto trigger 3.96 41.14 1,158.79
—ob trigger to finish 17.83 218,370.73 2,745,141.51

F.R.M. Barnes / Blocking System Calls in IS&/Linux

-y —]

Y

Ng
NN

(time)

Figure 9: Execution profile of blocking system calls with (apache benchmark) showing the ‘active’ time of

each clone

== :/ B = B3 ‘f
BT (=221 =k :
CEE 4%,/// e :
S - - - . - -
== == ==
l :‘}//Aj:‘ :‘}//Aj: h %‘}//Aj

: : : / T :/:._: ;%

i g D PR :%::::%: : /

oe g B =
| e e
[A_VA_ _Vﬂ,%

Y
(time)

Figure 10: Execution profile of blocking system calls wif (occam benchmark) showing the ‘active’ time

of each clone

170 F.R.M. Barnes / Blocking System Calls in ISR/Linux

5 Anoccam Web-Server

This section describesccwserv — theoccam web-server. The overall organisation of the
server is shown in figure 11. The vertical dots indicate psegeplication. Currently there
are 128 read.line—switch’ processes, 256file.get’ processes, and 3zZgi.get’
processesoccwserv uses theaccam socket, file and process libraries, as described in [6],
to handle interaction with the OS.

(tcp)

'

acceptor
(tcp) ! T -
_________ | AU S = file.get g
N : R | ‘
> read.line —| switch _ff_'__,i (tcp)
-------------------------------------- [S S B cgi.get =
| | | n
(tcp) " . | " ‘
............................. L tc
ey U e fileget o) -
> read.line | switch _4_'__,: ‘ .
| "
S i o (o)
A S cgi.get >
1
v A $
{ (tcp) -
Y R Y
stats.get | ~| stats = profile

'

(tcp)

Figure 11: Network diagram for theccam web-server

After initialisation, all processes will be blocked on @tlrchannels ooccam3[8] style
shared-channels (implemented via the semaphore abstc{q]), with the exception of
the ‘acceptor’ process, which will be blocked in the Linux kernel on a sdckecept. The
‘acceptor’ process consists of a loop, which accepts an incoming adiore time-stamps
it, then passes it on to one of theehad . 1ine’ processes through@ne-to-anychannel. The
server is constructed such that eaeghad.line’ has an associatedwitch’ process, to
which it is connected. These two processes perform the Bulkta processing in the server.

The function of thetead.line’ process is to read data from the client connection, sepa-
rate it into lines, and pass each line to theitch’ process. After a blank line has been read,
or after an error has occurred, the client connection isqehs the switch’ process and
‘read.line’ loops to wait for another client. Thewitch’ process examines the incoming
data, presumably an HTTP request, and decides where totdeasbd on that request. If the
input is invalid (non-HTTP), the connection is sent to onéhef‘file.get’ processes, with
a request to produce an error file.

F.R.M. Barnes / Blocking System Calls in IS&/Linux 171

600 T T T T T T T T T
occwserv 1024

apache 1024 -----
apache 8192 ---------
500 |~ P

400 | —
300 |- -

P—

200 |- , , .

Average service time (ms)

100

0 5 10 15 20 25 30 35 40 45 50
Concurrency level

Figure 12: Average time to service a request (standard &pach

The collection of processes just described form the ‘fimaif: of the web-server. The rest
of the network deals with returning data to the clients antiécting statistics about the con-
nections. Requests for the special pageats.html” are sent directly to thestats.get’
process, through aany-to-onechannel. stats.get’ interacts with the $tats’ process to
produce a page containing information about connectiodgteserver in general. Once the
data has been sent back to the client, the client connestjpasised toprofile’, along with
other client connections from théile.get’ and ‘cgi.get’ processes.

As mentioned earlier, each client connection is time-stuings it is accepted. Upon
receipt, stats.get’, ‘file.get’ and ‘cgi.get’ add a second time-stamp before process-
ing. Once the connection has been processed, it is passaegl taldprofile’ through an
any-to-onechannel. profile’ takes the interval between these two times, along withrothe
information, and passes it to thetats’ process, which keeps running totals.

The ‘file.get’ and ‘cgi.get’ processes are connected through @vry-to-anychan-
nels respectively.file.get’ dumps the requested file to the client, or dumps an erroffiile i
cannot. Once the output has been written to the client, theexion is passed tprofile’.

The data is copied using tiele.fd.fd.copy procedure, as it keeps the data copying within
a single clone, returning upon completion or erregi . get’ executes the requested script,
with the socket file-descriptors connected directly to tbgat of the script, thus avoiding
any data copying imccwserv. If an error occurs while processing the script (script does
not exist, script dumped core, etc.), then the connectiéed®ack into file.get’ farm to
produce an error for the client. This saves some code dtiolichy re-using the services of
‘file.get’ to handle errors forégi.get’, and anything else if it were added.

If the client connection is thought of as the endpoint of ancted, thenoccwserv ef-
fectively passes that endpoint around the network, dematitgj a use of the channels over
channels idea [10].

172

Requests per second

Kilobytes per second

F.R.M. Barnes / Blocking System Calls in ISR/Linux

350

300

250

N
o
o

=
a1
o

100

50

800

700

600

500

400

300

200

100

occwserv 1024

apache 1024 ------
apache 8192 ----------
| | | | | | | I :

5 10 15 20 25 30 35 40 45
Concurrency level

Figure 13: Number of requests handled per second (standacthe)

50

occwserv 1024

apache 1024 ------
apache 8192 ----------
| | | | | | : |

5 10 15 20 25 30 35 40 45
Concurrency level

Figure 14: Data throughput rate (standard apache)

50

Average service time (ms)

Requests per second

F.R.M. Barnes / Blocking System Calls in SR/Linux 173

600 T T T T T T T T T
occwserv 1024

apache 1024 ------
apache 8192 ----------
500 - _

N

o

S
1
|

w

o

S
1
|

N

o

S
1
|

100

0 5 10 15 20 25 30 35 40 45 50
Concurrency level

Figure 15: Average time to service a request (tweaked apache

350 T T T T T T T T T

300

250

N
o
o

=
a1
o

100 |~ -

50 |- occwserv 1024 -

apache 1024 ------
apatl:he 8192 o

0]]]]]]
0 5 10 15 20 25 30 35 40 45 50
Concurrency level

Figure 16: Number of requests handled per second (twealkszhap

174 F.R.M. Barnes / Blocking System Calls in ISR/Linux

800 T T T T T T T T T

700 |- ETTTNT =

600 - .
500 |- | —
400 |- . A

300

Kilobytes per second

200

100 occwserv 1024 |

apache 1024 - ----
apa?he 8192 o

0]]]]]]
0 5 10 15 20 25 30 35 40 45 50
Concurrency level

Figure 17: Data throughput rate (tweaked apache)

5.1 Performance afccuserv

The apache benchmark prograah, was used to benchmaskcwserv. This program comes
as part of the standard apache web-server source distributi takes a URL, number of re-
quests and concurrency level as parameters, hitting the $pietified the requested number
of times, and tries to ensure that ‘concurrency level’ retgiare processed simultaneously.
This parallelism is achieved through using tleddv ()’ system call, not through a schedul-
ing mechanism. As the benchmarking was performed over anetatork, real network
factors will bias the results, but hopefully putting (on eage) an equal bias one each of
occwserv and apache. The physical network connectivity can be seéigure 5, where
occwserv and apache were run on korell, asisiwas run on stuE08C.

Figure 12 shows the average service timesolatwserv and apache at varying levels
of concurrency (1 to 50). One pair of lines shows the perforteawhen retrieving a 1
kilo-byte file, and the other pair when retrieving an 8 kilgid file. When retrieving 1k
files, occwserv’s average service time is on the whole faster than apachéh 8Uifiles,
occwserv performed faster up to a concurrency level of about 22, atlwpoint the service
times become comparable with apache.

Figure 13 shows the number of requests handled per secovatyatg levels of concur-
rency, for 1k and 8k files. Surprisinglyccwserv dominates this somewhat, and in the case
of 8k files, this value is almost constant from a concurremsfll of 5 onwards. The likely
causes for this are apache’s additional client processihigh occwserv does not perform,
and apache’s habit of killing its server processes (desdridelow).

F.R.M. Barnes / Blocking System Calls in IS&/Linux 175

Figure 14 shows the corresponding data throughput ratesdoewserv and apache, to
the benchmark prograrb. As can be seemccwserv delivers a higher throughput than
apache when serving 1k static pages. For 8k static pagesserv is initially faster, but
apache quickly catches up, becoming comparable aroundcaicency level of 13.

As can be seen from these three graphs, apache behavesem#imally when com-
pared with the smoother behaviourafcwserv. This behaviour arises from the way apache
handles it's server processes. A configuration option §psdihe number of connections a
server process may respond to before it gets restarted.isTt@ne to stop the server get-
ting thrashed, and to reduce the impact of any memory leaks.dEfault setting in apache
is 30 requests per server process. Figures 15, 16 and 17 bbeawdults of the same tests
when this limit in apache was increased. The limit was sehtnrillion to completely avoid
the restarting of server-processes during benchmarkihgsd additional results show that
apache andccwserv are mostly comparable in terms of performance. Apache whks ab
to transfer 1k files faster thasccwserv (figure 17), butoccwserv handled more requests
for 1k files per second (figure 16). For 8k files, apache atwiserv have a roughly equal
performance.

6 Conclusionsand Future Work

This paper has shown that it is possible to enhance a usartteead scheduler (CCSP [5])
such that individual processes may block inside the OS kewithout stopping other user-
level threads@ccam processes) running in parallel. The work done here centetmd the
KRoC occam system, but it could be ported to other user-level threagdualers such as
MESH [11], which was based initially on CCSP.

The simplicity of theoccam web-server demonstrates tloaicam is a natural language
when it comes to programming multi-threaded internet @pgilbns. In addition to the ease
and low-cost of fine-grained parallelism from withiaccam, required for applications such
as web-servers, thmccam compiler will perform parallel usage checking to ensureapar
safety. Low-cost inoccam’s terms also means lower development, maintanence and en-
hancement costs. The usage checking performed withim¢ham compiler reduces the
number of potential bugs by ensuring that parallel proceaséere to certain design rules.
The web-server is currently 1500 linesaxfcam code and took less than a week to develop,
from design to production. The overall design was, for thetpart, intuative, andccwserv
could easily be extended by “plugging in” more functionallt should also be relatively easy
to call on external programs to perform server-side prangssuch as PHP [12], by using a
strategy similar to the CGI handling processes.

The general technique of handling blocking system callhiénway need not be tied to
Linux at all. However, one of the features which this teclmeigses quite heavily is the ability
to share memory and file-system context between differenpi©&esses. This removes the
problem of data copying betweencam and the C world when a blocking call is made. Most
major UNIX variants include the ability to share memory be#w threads and/or processes,
usually through the use @hap () or System-V style shared-memory (SHM). The structures
used to pass information to and from the clones, anadtoam workspace could be placed
in this shared region, yielding the same functionality ashaee implemented. Two state-
of-the-art Real-Time Operating Systems (RTOSs), Lynx-0&@NX also have a notion of

2153ns context switch on an Intel P3 500Mhz machine

176 F.R.M. Barnes / Blocking System Calls in ISR/Linux

threads, so this technique could be applied to them alseeftvisaged that operating-systems
on which this technique could be used would provide sufficeymchronisation primatives
to control the threads.

Sharing the file-system context is necessary to allow a ékedptor opened in one clone
to be used in another clone. In systems without explicitditstem context sharing, the de-
scriptors can be passed between the processes using a pipéeehnique is non-trivial how-
ever. If a clone opens a descriptor, then passes it to andtie, both clones mustiose ()
the descriptor to dispose of it. One solution to this wouldderovide a mapping of file-
descriptors to clones, forcing blocking calls involvingapcular descriptor to be executed
by the clone which holds that descriptor. The mapping wowedcareful construction, as
two (or more) clones could refer to different files by the sammeric file-descriptor value.

With some kernel modifications, it would be possible to remthe need for the clones,
and let the Linux kernel handle the blocking of user-levee#tis. This of course would
require the kernel to know explitictly about the threads] anobably require the kernel to
schedule them as well. This would mean that each user wowe teapatch their Linux
kernel — which may not be convienient. The potential pertomoe benifits of this approach
are quite attractive however, as the Intel Pentium 2 pracessid above, provide speedy
instructions to enter and leave the OS kernglsenter andsysexit) [13]. Theoccam
processes would execute in user-space, much as they do nbwphld call on CSP [14]
functionality in the Linux kernel to handle communicatiggnchronisation and parallelism.
Such an approach also eliminates many implementationwlifés, such as idling (currently
with safe_pause ()[1]), I/O, and multi-processor management.

Acknowledgements

I would like to express my thanks to Peter Welch for providicgas and supervision during
the construction of this paper, to Jim Moores, David Wood lichael Poole for explaining
various aspects of the transputer, s®Randtranpc, and to Jeff Cordova who pointed me to
the feature in apache which caused the erratic behaviotnoagsin figures 12, 13 and 14.

References

[1] P.H. Welch and D.C. Wood. The Kent Retargetable occam @iem In Brian O’Neill,
editor, Parallel Processing Developments — Proceedings of WoTUGp&afes 143—
166, Nottingham-Trent University, UK, March 1996. Worldcaen and Transputer User
Group, I0S Press, Netherlands. ISBN 90-5199-261-0.

[2] SGS-Thompson Microelectronics Limited:9000 occam 2 Toolset Handboo8GS-
Thompson Microelectronics Limited, 1994. Document numiB@rTDS 457 00.

[3] M.D.Poole. Extended Transputer Code - a Target-InddpehRepresentation of Paral-
lel Programs. In P.H.Welch and A.W.P.Bakkers, editérshitectures, Languages and
Patterns for Parallel and Distributed Applicationgolume 52 ofConcurrent Systems
Engineering Address, April 1998. WoTUG, IOS Press.

[4] David C. Wood. KRC — Calling C Functions frommccam. Technical report, Comput-
ing Laboratory, University of Kent at Canterbury, Augus®89

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

F.R.M. Barnes / Blocking System Calls in IS&/Linux 177

J.Moores. CCSP — a Portable CSP-based Run-time Systppo8ing C and occam.
In B.M.Cook, editorArchitectures, Languages and Techniques for Concurrestegs
volume 57 ofConcurrent Systems Engineering serigages 147-168, Amsterdam, the
Netherlands, April 1999. WoTUG, IOS Press.

Fred Barnes.Socket, File and Process Libraries for occal@omputing Laboratory,
University of Kent at Canterbury, June 2000. Available at:
http://www.cs.ukc.ac.uk/people/rpg/frmb2/documents/.

Peter H. Welch and Michael D. Poole. occam for Multi-Ressor DEC Alphas. In
A. Bakkers, editorParallel Programming and Java, Proceedings of WoTUG \&il-
ume 50 ofConcurrent Systems Engineerjngages 152-174, University of Twente,
Netherlands, April 1997. World occam and Transputer Useu@r(WoTUG), 10S
Press, Netherlands.

Geoff Barrett. occam 3 Reference Manual. Technical regomos Limited, March
1992. Available at:

http://wotug.ukc.ac.uk/parallel/occam/documentation/.

Peter H. Welch and David C. Wood. Higher Levels of ProcBgachronisation. In
A. Bakkers, editorParallel Programming and Java, Proceedings of WoTUG \&il-
ume 50 ofConcurrent Systems Engineerjngages 104-129, University of Twente,
Netherlands, April 1997. World occam and Transputer Useu@r(WoTUG), 10S
Press, Netherlands.

Henk L. Muller and David May. A Simple Protocol to Commaate Channels over
Channels. Technical report, University of Bristol, Depaght of Computer Science,
January 1998.

R.W. Dobinson M. Boosten and P.D.V. van der Stok. Finmai#GParallel Processing on
Commodity Platforms. IWWoTUG 22 volume 57 ofConcurrent Systems Engineerjng
pages 263—-276. I0S Press, April 1999.

PHP Group. PHP: Hypertext Preprocessor. Available at:
http://www.php.net/.

Intel Corporation.Intel Architecture Software Developer’'s Manual, Voluméristruc-
tion Set Referencd999. Available at:
http://developer.intel.com/design/PentiumIII/manuals/.

C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, 1985.

178 F.R.M. Barnes / Blocking System Calls in ISR/Linux

