University of

"1l Kent Academic Repository

Steen, Maarten and Derrick, John (1999) Formalising ODP Enterprise Policies.
In: Proceedings Third International Enterprise Distributed Object Computing.
IEEE, pp. 84-93. ISBN 0-7803-5784-1.

Downloaded from
https://kar.kent.ac.uk/21770/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/EDOC.1999.792052

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Proceedings paper

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/21770/
https://doi.org/10.1109/EDOC.1999.792052
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Formalising ODP Enterprise Policies

M.W.A. Steen and J. Derrick
Computing Laboratory, University of Kent at Canterbury, UK
{M.W.A.Steen,J.Derrick}@ukc.ac.uk

Abstract— The Open Distributed Processing (ODP) stan-
dardisation initiative has led to a framework by which dis-
tributed systems can be modelled using a number of view-
points. these include an enterprise viewpoint, which focuses
on the objectives and policies of the enterprise that the
system is meant to support. Although the ODP reference
model provides abstract languages of relevant concepts, it
does not prescribe particular techniques that are to be used
in the individual viewpoints. In particular, there is a need
to develop appropriate notations for ODP enterprise spec-
ification, in order to increase the applicability of the ODP
framework.

In this paper we tackle this concern and develop a spec-
ification language to support the enterprise viewpoint. In
doing so we focus on the expression of enterprise policies
that govern the behaviour of enterprise objects. The lan-
guage we develop is a combination of structured english and
simple predicate logic, and is built on top of the formal
object-oriented specification language Object-Z. We illus-
trate its use with a case study that presents an enterprise
specification of a library support system.

Keywords— ODP enterprise viewpoint, formal methods,
enterprise policies, policy specification.

I. INTRODUCTION

The enterprise viewpoint is an important part of the ref-
erence model for open distributed processing (RM-ODP) [1],
[2]. This viewpoint provides a set of concepts and rules for
structuring enterprise descriptions. In this paper, we de-
velop a specification language to support this viewpoint
and in particular to support the expression of enterprise
policies.

The RM-ODP is a framework for specifying and imple-
menting complex distributed systems. The complete spec-
ification of any non-trivial distributed system involves a
very large amount of information. Attempting to capture
all aspects of the design in a single description is gener-
ally unworkable. In order to manage this complexity the
RM-ODP uses multiple viewpoints that enable different par-
ticipants to observe a system from a suitable perspective
and at a suitable level of abstraction [3]. Requirements
and specifications of an ODP system can be made from any
of these viewpoints. In the enterprise viewpoint, one can
specify the purpose, scope and policies for a system and its
environment without having to worry about the details of
its implementation.

Opp is a framework for standardisation rather than a
design methodology. It does not prescribe particular nota-
tions for use in the individual viewpoints. There has thus
been a considerable amount of work developing and adapt-
ing notations for use within particular viewpoints. Due to

This work was partially funded by the EPSRC under grant “opp
viewpoints in a Development Framework”.

the complexity of distributed systems it has been acknowl-
edged that a certain amount of formality in the viewpoint
notations is necessary. Languages such as LOTOS and SDL
have been proposed for the computational viewpoint, and
Object-Z for the information viewpoint. However, there
has been little work on instantiating the enterprise view-
point. Hence, there is a need to develop specification no-
tations that support ODP enterprise description. In this
paper, we focus on the specification of enterprise policies,
i.e., those parts of an enterprise specification that govern
the behaviour of the enterprise under consideration. The
need for more rigorous specification of policies is well recog-
nised [4], and here we develop a simple language as a start-
ing point for formally specifying enterprise policies.

The language we propose allows specifiers to express poli-
cies in a combination of english and simple predicate logic,
and it is built on top of the formal object-oriented specifica-
tion language Object-Z. The use of english and simple pred-
icate logic, on the one hand, facilitates communication with
non-formalists. On the other hand, the approach is rigor-
ous in the sense that policy statements can be translated
to Object-Z to pin down their precise meaning. Moreover,
this link into a formal language enables formal analysis of
policies. we illustrate the use of the language with a case
study that presents an enterprise specification of a library
support system.

The benefits of formalising enterprise policies, as op-
posed to using an informal notation, can be summarised
as follows:

o It enables policies to be specified concisely and pre-
cisely.

o It enables consistency checks to be performed on the
policies themselves.

o It enables verification of actual enterprise behaviour
against a policy specification.

o Ultimately, it enables the automatic derivation of im-
plementation constructs for enforcing policies.

The potential for the last of these arises in ODP via the
links with other viewpoints. Although each viewpoint can
be developed independently of the others, there are nec-
essarily relationships between them, as they ultimately all
describe the same system. correspondence rules identify
where the viewpoints overlap or constrain each other. This
opens, for example, the possibility of checking a compu-
tational viewpoint description for conformance against an
enterprise description. However, for this to be achieved it
is necessary to provide techniques for checking consistency
between viewpoints. Some progress has been made in this



direction, and in particular consistency checking strategies
have been developed for z and Object-Z [5], [6]. Object-Z
has also been suggested as a notation for the information
viewpoint, which could potentially ease this process as both
enterprise and information specifications would be written
in the same language.

The structure of this paper is as follows. In section II
we discuss the ODP enterprise viewpoint and in section III
policy specification in ODP. Section IV then introduces
our case study, the enterprise specification of policies in
a library. This case study is used in section V to define
a policy specification language by example. Section VI
defines the semantics of policy statements by translating
them to Object-Z. We conclude with a discussion of the
open issues in section VII.

II. THE ENTERPRISE VIEWPOINT

The RM-ODP defines a framework for the specification
and development of open distributed systems. In order
to deal with the inherent complexity of such systems, the
RM-ODP defines five different abstractions (referred to as
viewpoints) from which distributed systems may be mod-
elled. For each viewpoint, it provides a viewpoint language
that defines concepts and structuring rules for specifying
ODP systems from the corresponding viewpoint.

Of the five ODP viewpoints, the enterprise viewpoint is
currently the least well defined. Nevertheless, there is a
growing awareness that enterprise specification has an im-
portant role in the development of open distributed sys-
tems. In recognition of this trend, the enterprise viewpoint
language is currently undergoing refinement and extension
within the 150. As all other viewpoint languages, the ODP
enterprise viewpoint language is an abstract language in
the sense that it does not prescribe the use of any particular
notation. Hence our interest in finding suitable notations
for enterprise specification.

Central to the enterprise viewpoint is the concept of a
community. A community is a group of enterprise objects
(comprising both human users and automated systems)
that has been formed for a particular objective. From a
business modelling perspective, on the one hand, a commu-
nity may be viewed as the participants (both people and
systems) in a business process. From a system modelling
perspective, on the other hand, we can view a community
as the system and its environment. The former perspec-
tive may be relevant for analysis of the enterprise before a
system is developed, or for purposes of business process re-
engineering. The latter perspective is useful for identifying
the scope of a system.

A community is specified by means of a contract or com-
munity template, which identifies the different roles that
objects may play in the community and a policy that gov-
erns the behaviour of these objects while fulfilling roles in
the community. In a companion paper [7], we discuss the
structuring of communities in terms of the roles and their
relationships and how the UML can be used to support such
specifications. The current paper focuses on the specifica-

tion of enterprise policies, which are expressed in terms
of obligations, permissions and prohibitions governing the
behaviour of the enterprise.

III. POLICY SPECIFICATION

What is a policy?

Before venturing into the definition of a language for pol-
icy specification, we will need to establish what we mean
by an enterprise policy. Often a policy is seen as “a high-
level overall plan embracing the general goals and accept-
able procedures of an organisation” [8]. An enterprise may
strive, for example, to maximise its profits, or to obtain a
specified market-share. In RM-ODP terminology, however,
these would be classified as objectives. There the purpose
of a policy for a community is to achieve that community’s
objective. Thus, it may be company policy that employees
should not travel first-class when on company business, in
order to maximise profits. In the context of the ODP en-
terprise viewpoint, it is therefore more appropriate to view
a policy as “a definite course [...] of action selected from
amongst alternatives [...] to guide and determine present
and future decisions” [8].

What can be subject of policy specification?

A policy for a community prescribes what choices ob-
jects fulfilling roles in that community may or must make.
Hence, only those actions that enterprise objects actually
have a choice in can be subjected to policy specification.
For example, drivers can decide how fast they drive their
car. Therefore, the road traffic regulations defining mini-
mum and maximum speed limits constitute a policy. How-
ever, drivers have no direct control over the level of carbon
dioxide in their exhaust fumes, but car manufacturers do.
Therefore, regulations limiting the levels of carbon dioxide
cannot be imposed on drivers, only on manufacturers.

What does a policy specify?

In the absense of a policy, enterprise objects are free to
follow their own insights in determining their behaviour.
The purpose of policies, therefore, is to constrain the be-
haviour and membership of communities in such a way as
to achieve the common objective. They prescribe what
behaviour is allowed and what behaviour is required. Like-
wise, policies may specify what objects are allowed or re-
quired to fill certain roles. An example of the latter is that
the role of treasurer and the role of auditor cannot be ful-
filled by the same person. In this paper, we focus mainly
on the specification of policies that constrain or direct be-
haviour.

How are policies specified?

The ODP enterprise viewpoint language introduces the
concepts of obligation, permission and prohibition for speci-
fying the allowable and required behaviour in communities.
An obligation expresses that certain behaviour is required.
The specification of an obligation will usually refer to the
role or group that has the obligation to see to it that the
required behaviour actually occurs.

Permissions and prohibitions together prescribe the al-
lowed behaviour. Which form of specification is more ap-



propriate depends on the default policy in a given context.
For example, when a pilot receives permission to take off,
then he may behave in such a way as to make the plane
take off. Without permission, he would not normally be
allowed to do so; by default, it is forbidden to take off. In
contrast, people are normally allowed to smoke, but they
will be explicitly forbidden to do so during take off.

How to deal with violation?

Policies prescribe the ideal or desired behaviour of the
participants in a community. Especially if we are dealing
with human actors, the actual behaviour may not always
conform to the ideal. In the examples above, the pilot
might attempt to take off without clearance and a pas-
senger might light a cigarette during take off. Although
the former is less likely than the latter, since most pilots
are well aware of the risk involved, a policy specification
is not complete without also specifying how to deal with
such violations. This can be in the form of ’corrective mea-
sures’ to be taken when the actual behaviour of an object
deviates from the ideal behaviour specified for the role it
fulfils. Usually, offenders will incur some ’cost’. Speed of-
fenders risk to be fined; not paying your rent, may result
in eviction, etc. The idea here is that the cost will func-
tion as a deterrent and coerce the subject into fulfilling his
or her obligation. Likewise, there may be punishments for
violating prohibitions.

IV. AN EXAMPLE ENTERPRISE POLICY

As an example of an enterprise policy, let us look at
the regulations of a university library. The following is
loosely based on the regulations of the Templeman Li-
brary at the University of Kent at Canterbury (also see
http://www.ukc.ac.uk/library /about.htm), but most of it
will apply to any library. At first sight, this may look
like a trivial example, not representative of the large en-
terprise systems that the ODP enterprise viewpoint will be
concerned with. The library policies nevertheless contain
some interesting intricacies and issues that one would en-
counter also on a larger scale.

Anyone will have some idea of what goes on in a li-
brary and there clearly is scope for distributed information
systems to support the processes of the library. Nowa-
days, most libraries have one or more automated systems
in place to keep track of their collection, the outstanding
loans and the borrowers. In our case study we will consider
an ODP enterprise viewpoint description of such a system.
In essence, a library maintains a collection of books, pe-
riodicals, and other items, that may be borrowed by its
members. The primary objective of a library community
thus is to share this collection amongst the members, as
fairly and efficiently as possible. In order to ensure that this
objective is met, a borrowing policy is established, which
documents the permissions, obligations and prohibitions
for the various roles in the library community. Below we
list some fragments of the Templeman Library regulations
that pertain to the borrowing process.

e Borrowing rights are given to all academic staff, and

postgraduate and undergraduate students of the Uni-
versity.

o There are prescribed periods of loan and limits on the
numbers of items allowed on loan to a borrower at any
one time. These limits are detailed below.

— Undergraduates may borrow 8 books. They may not
borrow periodicals. Books may be borrowed for four
weeks.

— Postgraduates may borrow 16 books or periodicals.
Periodicals may be borrowed for one week. Books
may be borrowed for one month.

— Teaching staff may borrow 24 books or periodicals.
Periodicals may be borrowed for one week. Books
may be borrowed for up to one year.

o Items borrowed must be returned by the due day and
time.

e Borrowers who fail to return an item when it is due,
will become liable to a charge at the rates prescribed
until the book or periodical is returned to the Library.

o Failure to pay charges may result in suspension by the
Librarian of borrowing facilities.

Although not explicitly mentioned as such, these rules de-
fine the permissions, obligations and prohibitions for the
people, systems and artefacts playing a role in the library
community. The verb “may” clearly alludes to a permis-
sion. The phrase “Undergraduates may borrow 8 books,”
for example, can be read as: “Undergraduate borrowers
have permission to borrow up to 8 books at a time.” On
the other hand, it could also be seen as an implicit prohibi-
tion that “Undergraduate borrowers are forbidden to bor-
row more than 8 books.” This strengthens our argument
that permissions and prohibitions are opposite sides of the
same coin, together delimiting the allowable behaviour (cf.
the discussion in section III). An explicit prohibition is
that undergraduates are forbidden to borrow periodicals.
Obligations are usually indicated with the verb “must”.
The rule that “Items borrowed must be returned by the
due date and time,” for example, could be read as: “Bor-
rowers have the obligation to return any items that they
borrowed before the due date.” Clearly, there should also
be an implicit permission for borrowers to do so. The last
two rules deal with violations of this obligation.

The first rule above is different from the rest in the sense
that it does not constrain the behaviour of objects fulfill-
ing roles in the library. It is an instantiation rule, stat-
ing that only those people fulfilling a role in the related
university community (academic, postgraduate, or under-
graduate) may fulfil the borrower role. Such instantiation
policies are dealt with in [7], but will not be considered
further here.

V. A POLICY SPECIFICATION LANGUAGE

In this section, we define a language for the specification
of enterprise policies. Our aim in developing this language
was, on the one hand, to provide a language that is suf-
ficiently expressive to capture realistic enterprise policies.
On the other hand, we wanted the language to be suffi-



<<EVcommunity>>
Library

1.x

Librarian

* \+loans

Loan
+borrowers » |issueDate
* .
dueDate +items
5 1 +loans m *
orrower ;
+item
+borrower € ltem
allowance
fines v\
UGBorrower
allowance = 8 Book
ACBorrower PGBorrower Periodical
allowance = 12

allowance = 24

Fig. 1. Library community structure

ciently structured and precise to be able to equip it with
a formal semantics (see section VI). The result is a com-
bination of structured English and simple predicate logic
for formulating policy statements. However, before policy
statements can be made, an enterprise specification must
define the specific vocabulary and structure of the enter-
prise to which the policy applies [4]. A complete enterprise
specification will consist of a number of related community
specifications, each with their own policy. Policies in turn
consist of a number of statements expressing a permission,
a prohibition or an obligation. The language is introduced
by examples drawn from the library case study, which also
serve to illustrate the expressive power of the language.

A. The Policy Context

All policy statements are made in a context. This con-
text is formed by the community or even the specific role
to which the statement applies. The context determines
which attributes and roles the statement may refer to.

Although we are only concerned with the specification
of policies here, we need to describe as much of the struc-
ture of the enterprise as is necessary to express the policies.
In [7], we have described how the structure of communities
may be specified using the UML. Without going into fur-
ther details here, we offer figure 1 as an example of a com-
munity specification. It depicts the roles and relationships
contained in the library community. The (inter)actions the
roles may be involved in can be specified in a UML use case
diagram [7].

The borrower role may be fulfilled by academic staff, and
postgraduate and undergraduate students. In this role,
they may borrow and return items. In a more elaborate
model we might also consider the possibility for borrowers

to reserve an item or to renew a loan. For each category of
borrower, we introduce a subclass, viz. ACBorrower, PG-
Borrower and UGBorrower. In this way, we can, if neces-
sary, formulate different policy rules for each category of
borrower. The librarian role is fulfilled by the staff of the
library. In this role, they may issue items and receive re-
turned items. Item is an artefact role that is fulfilled by all
books and periodicals in the library’s collection. Items do
not initiate any interactions, but are involved in most in-
teractions between borrowers and librarians. Furthermore,
borrowers and items may be related by a loan relationship.
A loan has two attributes containing, respectively, the date
on which the item was issued to the borrower (issueDate)
and the date on which the item is due for return (dueDate).

B. Enterprise Behaviour

Policies are intimately tied to the behaviour of a commu-
nity. The purpose of a policy is to constrain the behaviour
of the participants in a community in such a way as to
achieve some desired pattern of behaviour. Policy state-
ments may directly reference certain enterprise actions, and
express that they are required or allowed. Another way
of constraining the behaviour of a community is to spec-
ify that certain states of affair are allowed or not. Any
behaviour leading to a forbidden state is then considered
prohibited.

From the above, it may be clear that in the formulation
of policy statements one may want to reference both the
actions roles or communities are able to perform and the
states that roles or communities may be in. This naturally
leads us to a history-based model of enterprise behaviour,
where histories are alternating sequences of states and ac-
tions'. This history-based model of enterprise behaviour is
one naturally supported by Object-Z. An Object-Z speci-
fication is defined in terms of allowable states, which are
altered by the occurrence of actions. This is one of the
reasons why we have selected Object-Z as a vehicle for ex-
pressing policies.

Because of this model of enterprise behaviour, each pol-
icy specification will involve both states and actions, and
in order to formalise policies we need to identify relevant
actions and states from the informal description together
with the community specification. For example, in the li-
brary example it is clear that relevant actions include bor-
row, return, pay off fines, etc., which are drawn directly
from the descriptions of each role.

C. Policy Statements

Each policy consists of a number of statements. The pol-
icy statements are numbered to facilitate cross-referencing.
Each policy statement applies to a role, the subject, and
represents either a permission, an obligation or a prohibi-
tion for that role. The general format is: “A <role> is

IThe history model is consistent with the model of enterprise be-
haviour put forward by Linington et al. in [4]. There, enterprise
behaviour is viewed as a forward-branching tree, where each branch-
ing point represents a future choice of action. Each single complete
branch of such a tree represents a history.



<modality> to ...,” where the modality is one of “permit-
ted”, “forbidden”, or “obliged”.

All three types of policy statements (permissions, obli-
gations and prohibitions) may refer to the execution of an
action. The permission for borrowers to borrow items, for
example, is expressed as follows:

R1 A Borrower is permitted to do Borrow(item:ltem).

Note that role name and action denotation are capitalised
and printed in sans serif font. The action denotation con-
sists of an action name followed by optional parameter
specifications in brackets. The Borrow action takes one
parameter of type ltem. As there is no side-condition, this
rule states that borrowers are allowed to perform the bor-
row action in any state. Of course, there are other rules
that prevent this, for example, in the case where the bor-
rower already has reached the maximum number of loans
allowed. There also is a rule stating that borrowers are
no longer permitted to borrow once their amount of out-
standing fines reaches 5 pounds. This is an example of
a conditional permission, which is expressed using an if-
clause:

R2 A Borrower is permitted to do Borrow(item:ltem), if
(fines < 5*pound).

The prohibition for undergraduate students to borrow pe-
riodicals may be expressed as follows:

R3 A UGBorrower is forbidden to do Borrow(item:ltem),
where Periodical—includes(item).

This statement contains a where-clause that constrains the
parameter of the Borrow action to be also in the set of
periodicals. (Types are sets. Hence, Periodical is a subset
of Item, because it is a subtype.)

Obligations are slightly more complicated. They pre-
scribe some required behaviour, and therefore, often con-
tain some deadline for this behaviour to occur. For this
purpose, we introduce the before-clause, which contains a
condition upon which the obligation should have been ful-
filled. For example, the obligation for borrowers to return
items that they borrowed by the due date is expressed as
follows:

R/ A Borrower is obliged to do Return(item:ltem) before
(today > dueDate), if (loans—exists(loan | loan.item =
item)), where (dueDate = loans—select(loan | loan.item
= item).dueDate), otherwise see R6.

This obligation is conditional upon the item to be re-
turned actually being on loan to the borrower, which is
captured by the if-clause. The where-clause constrains the
logic variable dueDate to be equal to the dueDate of the loan
in question. The logical conditions in the before-, if- and
where-clauses are expressed using the Object Constraint
Language (ocL) [9], originally developed by 1BM and now
incorporated into the UML. The otherwise-clause is used
to indicate what will happen if the obligation is violated,
which is specified in another policy statement, not included
here.

Instead of referring to actions, permissions and prohi-
bition (but not obligations) may alternatively refer to a
condition, which may or may not be satisfied. The per-
mission for borrowers to borrow up to their allowance, for
example, can be expressed as follows:

R5 A Borrower is permitted to satisfy (loans—size <=
allowance).

The condition states that the number of loan relation-
ships that the borrower is involved in should be less or
equal to the borrower’s allowance. This condition should
ideally hold in all states the borrower will be in. Implicitly,
it means that any behaviour that changes this condition
from being true to being false, is forbidden.

To summarise, policy statements should satisfy the
grammar below. Here, non-terminals (role, action, con-
dition) are placed between angled brackets (“<”, “>");
everything between square brackets (“[”, “|”) is optional
and “|” indicates a choice.

R# A <role> is (permitted | obliged | forbidden)
to (do <action> [before <condition>]
| satisfy <condition>)], if <condition>]
[, where <condition>][, otherwise see <number>].

VI. EXPRESSING POLICIES IN OBJECT-Z

In order to provide a formal, and therefore mathemati-
cally tractable, semantics for our policy specification lan-
guage, we show here how to translate policy statements
to the formal specification language Object-Z. This trans-
lation enables us then to analyse the policy specification
using the theory and tools for Object-Z. In addition, it be-
comes possible to compare the actual enterprise behaviour,
which could also be modelled using Object-Z, with the de-
sired behaviour as specified in the policy. It also opens
up the possibility of providing links to the other view-
points, e.g., to the information and computational view-
points, which may also be formally specified using Object-
Z.

Object-Z is an object-oriented extension of the specifi-
cation language Z. It has been developed over a number of
years and is perhaps the most mature of all the proposals to
extend Z in an object-oriented fashion. Like Z, it has been
advocated as one of the languages suitable for use in the
ODP viewpoints, particularly in the information viewpoint.

Object-Z uses a class schema, represented as a named
box, to encapsulate a state schema together with the op-
erations acting upon that state. The class schema may in-
clude local type or constant definitions, at most one state
schema and initial state schema together with zero or more
operation schemas. A class may also inherit a number of
other classes.

Given that the static structure of a community may be
specified using UML one could ask whether it is possible
to use UML together with OCL, say, to describe the policies
formally. However, OCL suffers from two difficiencies which
make it unsuitable for our purposes. The first is that the
description language it contains is not sufficiently expres-



sive (e.g., there are no powersets). The second is that it
lacks a semantics, and our purpose here (and reason for
using Object-Z) is that it has a precise meaning derived
from its formal semantics.

A. Translating the community structure

The static structure of a community, i.e., the identified
roles and their relationships, translates quite naturally to
Object-Z. For each role, we introduce a class definition.
The Borrower role, for example, is represented as follows:

__ Borrower

allowance : N
fines : Money

__Borrow
item? : Item

__ Return
item? : Item

The state schema defines the attributes associated with
the Borrower role. Each borrower has a certain allowance,
and an amount of outstanding fines. These two attributes
are derived directly from the community structure diagram
in figure 1. The operations and their parameters corre-
spond to the enterprise actions that borrowers can be in-
volved in. In addition to the Borrower class, we would also
define an Item class and a Librarian class.

Loans are relationships between borrowers and library
items that have further attributes containing the date of
issue and the due date (see figure 1). In Object-Z role
relationships are also represented by a class:

Loan

borrower : Borrower
item : Item
issueDate : Date
dueDate : Date

Here the first two attributes are references to the bor-
rower and the item that are related by the loan. For pur-
poses of policy specification, we will also add attributes to
the Borrower and Item classes to aid navigation from their
instances to loans. From figure 1, we derive that a borrower
can have zero or more loans, and an item can be involved
in zero or one loan:

Borrower Item

loan : P Loan

loans : P Loan

#loan < 1

Once classes for all roles and their associations have
been derived, we can translate the community itself to an

Object-Z class. The attributes of this class are sets of in-
stances of the role classes (borrowers, items and librarians),
and instances of the association class (loans). The state in-
variant ensures that the loan attributes and the borrower
and item attributes correctly code up the associations in
figure 1.

__ Library

borrowers : P Borrowerg
items : P Itemg
librarians : P Librariang
loans : P Loang

Y loan : loanse loan.borrower € borrowers
A loan.item € items
A loan € loan.borrower.loans
A loan.item.loan = {loan}

The class definitions introduced above provide templates
that will be further refined below. They will be completed
with operations, state invariants, and pre- and postcondi-
tions determined by the policy statements.

B. Translation of policy statements

In this section, we show how the policy statements speci-
fied in the previous section can be translated into Object-Z.
We begin by considering the permissions and prohibitions,
which together describe the allowable behaviour, and then
turn to the obligations, which describe the required be-
haviour. For each action the Object-Z specification will
include an operation with the same name in the class cor-
responding to the appropriate role.

B.1 Permissions and prohibitions

As said before, permissions and prohibitions are different
views on the same concept. They express actions that may
or may not be performed, or conditions that may or may
not be satisfied. Whenever they refer to an action, the
condition upon which they depend translates into a pre-
condition: positive for permissions, and negative for prohi-
bitions. Whenever they refer to a condition, this condition
translates to an invariant on the state space of the role.
An action may be referred to in more than one policy. In
the Object-Z translation the preconditions obtained from
the individual rules are conjoined together in the Object-Z
operation corresponding to that action. With these ideas
in place the permissions and prohibitions from section V-C
are translated as follows:

Rule R1 imposes no restrictions. It translates to the triv-
ial precondition (true) for the Borrow action of Borrower.
Rule R2, on the other hand, is a conditional permission.
The condition in the if-clause maps straightforwardly to a
precondition. The two preconditions generated by rule R1
and R2 are conjoined to obtain the final precondition for
the Borrow action of Borrower:



___ Borrower

__ Borrow
item? : Item

true
fines < 5 % pound

Rule R3 is a prohibition. Therefore, its condition is
negated to obtain a precondition for the Borrow action
of UGBorrower. Note how UGBorrower is obtained from
Borrower through inheritance.

_ UGBorrower
Borrower

__Borrow
item? : Item

- (item? € Periodical)

Rule R5 specifies a permitted condition. This is trans-
lated into a state invariant for Borrower. An invariant is
a condition that should always be maintained. This cor-
responds to the informal interpretation given to permitted
conditions in section V-C.

__ Borrower

allowance : N
fines : Money
loans : P Loan

#loans < allowance

B.2 Obligations

The translation of obligations is less straightforward. In
general, we can only partly capture the concept of obliga-
tion in Object-Z. There are two issues here. One is that
obligations usually involve timing constraints, for example,
in the form of a deadline before which the obligated be-
haviour must have occurred. Of course, more complicated
permissions may also refer to time. The second is that
within these constraints policy may be implicit, whereas
in an Object-Z specification all behaviour has to be ex-
plicit. Therefore the translation of an obligation produces
an Object-Z template in which further explicit modelling
may be required for certain actions.

The kinds of obligation we consider here express that
a certain action must occur before a certain deadline —
a condition that should not hold until the action is per-
formed (i.e., until the obligation is fulfilled). Rule R4 from
section V-C provides us with a typical example.

R4 A Borrower is obliged to do Return(item:ltem) before
(today > dueDate), if (loans.exists(loan | loan.item =

item)), where (dueDate = loans.select(loan | loan.item
= item).dueDate), otherwise see R6.

Object-Z offers the possibility to express constraints on
the behaviour of objects using temporal logic. These tem-
poral logic constraints can be included in an Object-Z class
description, and are known as history invariants. ODbli-
gations could be seen as eventuality properties, and one
option is to express them as history invariants. However,
the supported fragment of temporal logic is too limited for
our purposes. Another disadvantage of this approach is
that violations cannot be dealt with within the Object-Z
framework, but appear at a meta-level. Whether a history
invariant holds or not can only be established by model
checking or proof. So, one can establish whether an obli-
gation is violated or not, but it is not possible to formulate
corrective measures for violations in the specification itself.

Our solution to this problem is, firstly, to explicitly per-
mit the obliged action and, secondly, to introduce some
cost or penalty for the object that violates an obligation,
as an incentive to comply with the required behaviour. We
feel this is a realistic way of modelling obligations as this is
the way in which most laws and regulations enforce desired
behaviour.

The permission to return a book on loan translates
straightforwardly into a precondition for the Return action
of Borrower:

__ Borrower

__ Return
item? : Item

dloan € loans e loan.item = item?

In the library case, the penalty for not returning items
on time is that the borrower becomes liable to a fine, and
that if the total amount of fines reaches (say) 5 pounds the
permission to borrow will be revoked. This is specified in
policy statements R6 and R7.

R6 The Library is permitted to do UpdateFines(), if (now
= midnight and loans.exists(loan | loan.dueDate < to-
day)).

R7 A Borrower is forbidden to do Borrow(item:ltem), if
(fines > 5*pounds).

As UpdateFines is an action initiated by no one in partic-
ular (it is a community action at this level of abstraction),
it is modelled by an internal operation in Object-Z. Opera-
tions are made internal by not listing them in the visibility
list at the top of the class. As they do not require the co-
operation of other roles, they are executed as soon as their
precondition is satisfied. At the same time, an operation
to pay off outstanding fines is introduced which will be en-
abled whenever the value of outstanding fines is non-zero.

In order to model this policy (and any policy that in-
volves time) we need a formalism that will support the



description of time. Recent work on extensions to Object-
Z have incorporated such a facility [10] by introducing a
variable (which we call now here) which denotes the cur-
rent time. The predicate of an operation can then refer to
this variable. For example, we can model the UpdateFines
operation as follows.

— Borrower
[(Borrow, Return, PayFine)

— UpdateFines
A(fines)

now = midnight
fines'" = fines + 20 x pencex
#{loan : loans | today > loan.dueDate}

__PayF'ine
A(fines)

amount? : Money

fines >0
fines' = fines — amount?

These operations could not directly be derived from the
policy statements, as we had to assume by how much and
how often fines would be increased. Because we are using
a model based notation we have to explicitly model this
aspect of the policy that is implicitly given in the informal
description. However, this model could be viewed as a
refinement of the informal policy statements.

Now, since a borrower is forbidden to borrow further
items once the total amount of outstanding fines reaches
5 pounds, he or she eventually has to return to the de-
sired behaviour. Eventually, his or her only option will be
to return the items and settle his or her fines. Repeated
violation of obligations effectively results in the increasing
restriction of free choices for a borrower, and ultimately
results in only one possible course of action.

VII. DiscussioN AND CONCLUSION

In this paper, we have provided a simple language for
the specification of enterprise policies in the ODP enterprise
viewpoint. This language enables specifiers to formalise the
enterprise requirements about the allowable and required
behaviour of enterprise objects fulfilling roles in commu-
nities. In the definition of this language, we have mainly
focussed on behavioural aspects. Clearly, there are many
other aspects, such as quality of service, instantiation, secu-
rity and delegation, which could also be subject to policy
specification. Our next step will be to validate the use-
fulness and practicality of our policy language on a more
substantial case study. This case study involves the for-
malisation of the policies for an organisation for air traffic
control.

In the description of enterprise policies, we have made
use of the concepts of permission, obligation and prohi-
bition. These concepts are studied in a branch of philo-

sophical logic called deontic logic — the theory of norms
and normative systems. Various authors have suggested
the use of deontic logic for the specification of enterprise
or information system policies. In particular, see [11] and
other proceedings of the DEON conference series for exam-
ples. Unfortunately, these logics often suffer from para-
doxes, which raise interesting philosophical questions, but
are hardly practical for OoDP specification. Nevertheless,
[12] offers an interesting approach to the specification of
security policies based on deontic logic, which may be rele-
vant also to the enterprise viewpoint. Many issues concern-
ing the specification of the library example using deontic
logic are discussed in [13]. There a method is proposed for
identifying fact- and act-positions, but the method is un-
likely to scale even to a complete description of the library
example.

Another interesting line of work is presented by Lupu and
Sloman [14], who have defined a language for the specifica-
tion of network/system management policies. Compared
to our work, theirs is more down to earth and low-level.
In particular, their concept of obligation is a rather oper-
ational one in that obligated actions have to be executed
immediately. An interesting question for future research
is how this low-level policy framework could be used to
implement the high-level policies from the ODP enterprise
viewpoint.

An important difference and advantage of our approach
over other work in this area is that our policy language is
grounded in a formal model of enterprise behaviour. More-
over, the model we selected — a history model — provides
the formal semantics for a well-established formal specifi-
cation language, viz. Object-Z. Therefore, we could define
the semantics of policy statements by translating them to
Object-Z. Furthermore, this allows us to use tools already
available for Object-Z to analyse policy specifications. We
are currently working on a prototype tool to perform the
translation of policy statements into Object-Z. Future work
will include the integration of such a tool into an environ-
ment for ODP enterprise viewpoint specification and the
development of tools for the analysis of policies.

Although the formalisation of enterprise policies is a use-
ful exercise in its own right, it would be much more valuable
if they could be related to the computational and engi-
neering features implementing them. In future, we should
therefore consider how high-level policies could be mapped
to implementations.

REFERENCES

[1] “Open Distributed Processing — Reference Model: Founda-
tions,” TTU-T Recommendation X.902 | ISO/TEC IS 10746-2,
Jan. 1995.

[2] “Open Distributed Processing — Reference Model: Architec-
ture,” ITU-T Recommendation X.903 | ISO/IEC IS 10746-3,
Jan. 1995.

[3] P.F. Linington, “RM-ODP: The Architecture,” in Open Dis-
tributed Processing II, K. Raymond and L. Armstrong, Eds. Feb.
1995, pp. 15-33, Chapman & Hall.

[4] P. Linington, Z. Milosevic, and K. Raymond, “Policies in com-
munities: Extensing the ODP enterprise viewpoint,” in Proceed-
ings of the Second International Enterprise Distributed Object



Computing workshop (EDOC’98), C. Kobryn, Ed. 1998, IEEE
Com. Soc. Press.

[5] E. Boiten, J. Derrick, H. Bowman, and M. Steen, “Consistency
and refinement for partial specification in Z,” in FME’96: In-
dustrial Benefit of Formal Methods, Third International Sym-
posium of Formal Methods Europe, M.-C. Gaudel and J. Wood-
cock, Eds. Mar. 1996, LNCS 1051, pp. 287-306, Springer-Verlag.

[6] E.A. Boiten, J. Derrick, H. Bowman, and M.W.A. Steen, “Con-
structive consistency checking for partial specification in Z,” Sci-
ence of Computer Programming, December 1999, To appear.

[7] M. W. A. Steen and J. Derrick, “Applying the UML to the ODP
enterprise viewpoint,” Tech. Rep. 8-99, Computing Laboratory,
University of Kent at Canterbury, May 1999.

[8] “Merriam-Webster’s Collegiate Dictionary:
1998.

[9] Jos Warmer and Anneke Kleppe, The Object Constraint Lan-

guage: Precise Modeling with UML, Addison-Wesley, 1998.

G. Smith and I. Hayes, “Towards real-time Object-Z,” in Inter-

grated Formal Methods’99. 1999, LNCS, Springer-Verlag.

J.-J. Ch. Meyer and R. J. Wieringa, Eds., Deontic Logic in

Computer Science: Normative System Specification, Wiley Pro-

fessional Computing Series. John Wiley & Sons, 1993.

F. Cuppens and C. Saurel, “Specifying a security policy: A

case study,” in Proceedings of the 9th IEEE Computer Secu-

rity Foundations Workshop (CSFW9). 1996, pp. 123-135, IEEE

Com. Soc. Press.

A. J. 1. Jones and M. Sergot, On the Characterization of Law

and Computer Systems: The Normative Systems Perspective,

chapter 12, pp. 275-307, Wiley Professional Computing Series.

John Wiley & Sons, Chichester, UK, 1993.

E. Lupu and M. Sloman, “A policy based role object model,”

in Proceedings of the First International Enterprise Distributed

Object Computing Workshop (EDOC’97), Z. Milosevic, Ed.

1997, pp. 36-47, IEEE Com. Soc. Press.

Tenth edition,”

(13]

[14]

Maarten Steen obtained a PhD in Computer
Science from the University of Kent at Can-
terbury in 1998. The work presented in the
present paper was carried out while he was em-
ployed as a post-doc researcher at UKC. He is
currently employed by the Telematica Instituut
in the Netherlands. His research interests are
in the application of formal methods to dis-
tributed system design.

John Derrick is a senior lecturer at the Uni-
versity of Kent at Canterbury. Previously he
gained a D.Phil from Oxford, and then joined
sTC¢ Technology Ltd to work on the ESPRIT
funded RAISE project. His current interests in-
clude developing specification and design tech-
niques for use within opp and formal defi-
nitions of consistency and performance, and
he has published extensively within this area.
His work has included the following projects:
i PROST (DTI) Study on Conformance Testing for
ODP; (DTI Ec/4346/92) A study into Formal Description Techniques
for Object Management; (EPSRC GR/K13035) Cross Viewpoint Con-
sistency in Open Distributed Processing; FORMOSA (EPSRC/DTI) For-
malisation of the oDP Systems Architecture; (British Telecom) Type
Management in Distributed Systems; (EPSRC) ODP Viewpoints in a
Development Framework, and (EPSRC) A Specification Architecture
for the Validation of Real-time and Stochastic Quality of Service.

APPENDIX
I. THE COMPLETE LIBRARY SPECIFICATION

There are no built-in types for dates, time or money in
Object-Z. Below, we define these as well as some constants
and variables of these types.

[Date, Time, Money]

today : Date
day : Date

week : Date
now : Time
midnight : Time
pound : Money
pence : Money

Item is an artefact role; items never initiate interactions,
but can be referenced in interactions initiated by actor
roles. Its responsibility is to maintain the availability sta-
tus of the physical item it represents. Items can be checked
out or checked in. An item can never be loaned more than
once.

__Ttem

onloan : B
loan : P Loan

#loan <1

_ CheckOut
A(onloan)

= onloan A onloan’

_ Checkln
A(onloan)

onloan A — onloan’

Books and periodicals are kinds of item, which is mod-
elled by inheritance.

Book Periodical

liltem (Item

Loans are associations between borrowers and items (or
subtypes thereof). A loan has an issue date and a due date,
but no operations.

Loan

borrower : | Borrower
item : |Item
issueDate : Date
dueDate : Date

Borrower is an actor role; they may initiate interactions.
Their responsibility is to return items when they are due
and to pay fines when appropriate. Borrowers may borrow
up to a certain allowance. When the amount of outstand-
ing fines is more than 5 pounds, no further items may be
borrowed. An item can only be returned if it was previ-
ously borrowed. The UpdateFines operation is not in the



10

visibility list, which means it can happen as soon as its pre-
condition is true without interaction with the environment.

__ Borrower
[ (Borrow, Return, PayFine)

allowance : N
fines : Money
loans : P Loan

#loans < allowance

__Borrow
item? : Item

fines < 5 % pound

__ Return
item? : Item

dloan : loans e loan.item = item?

__ PayFine
A(fines)

amount? : Money

fines >0
fines' = fines — amount?

— UpdateFines
A(fines)

now = midnight
fines'" = fines + 20 x pencex
#{loan : loans | today > loan.dueDate}

The allowances for the different categories of borrower
are defined as follows.

PGBorrower
Borrower

ACBorrower
Borrower

allowance : N allowance : N

allowance = 24 allowance = 12

_ UGBorrower
Borrower

allowance : N

allowance = 8

__Borrow
item? : LItem

- (item? € Periodical)

Note that undergraduate borrowers may not borrow pe-
riodicals.

The Librarians role is to prevent unauthorised loans and
to maintain the loan records. Librarians may issue and
return items or receive fines from borrowers.

__ Librarian

__Issue
borrower? : | Borrower
item? : LItem

#(borrower?.loans) < borrower?.allowance
borrower? € UGBorrower =

item? & Periodical

borrower?.fines < 5 * pound

— Return

ReceiveFine
amount? : Money

The library community consists of borrowers, items and
librarians. The community actions (borrow, return and pay
fine) are interactions between two or three different roles.
Additional constraints on the borrow and return actions
ensure that appropriate loans are created or destroyed.

__ Library

borrowers : P | Borrower
items : P Item

librarians : P Librarian
loans : P Loan

V loan : loanse loan.borrower € borrowers
A loan.item € items
A loan € loan.borrower.loans
A loan.item.loan = {loan}

Borrow = [ A(loans)b? : borrowers;
i?7 = items; 17 : libmrians] °
(b?.Borrow[i?/item?] ||
i?7.CheckOut ||
17 Issue[b?/borrower?, i?/item?]) o
[EI loan : Loan e loan ¢ loans
A loans’ = loans U {loan} A
loan.borrower = b? A loan.item = i?]
Return = [ A(loans)b? : borrowers;
i? :items; 17 : libmrians] )
(b?.Returnli?/item?] ||
i?.CheckIn || 17.Return) e
[EI loan : loans e loan.borrower = b?
A loan.item = i? A loan & loans' ]
PayFine = [b? : borrowers; 17 : libmrians] .
(b?.PayFine || 17.ReceiveFine)




