
Ryder, Chris and Thompson, Simon (1999) Aldor meets Haskell. Technical
report. Computing Laboratory, University of Kent

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21762/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21762/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Aldor meets HaskellChris Ryder (Supervised by Simon Thompson)July/August 1999Contents1 Introdu
tion 21.1 Overview of this report . 22 Using the Haskell Aldor interpreter 23 A Haskell Representation of the AST 33.1 Deriving a type . 33.2 Outputting Haskell . 44 The Abstra
t Syntax Tree 54.1 The Haskell Representation . 54.2 How Aldor Uses Nodes . 54.2.1 Assign nodes . 54.2.2 Apply nodes . 54.2.3 De�ne nodes . 64.2.4 De
lare nodes . 64.2.5 Lambda . 75 The Haskell Aldor interpreter 75.1 Limitations and
apabilities . 75.2 Re
urseAST.hs . 85.3 De�nition.hs . 95.4 Exe
uteAST.hs . 95.4.1 Evaluating user fun
tions 115.5 TypeChe
kAST.hs . 11

1

1 Introdu
tionThe aim of this proje
t was to attempt to output a Haskell representation ofthe Aldor
ompiler's abstra
t syntax tree. The purpose of this is to enable therepresentation to be exe
uted and to give an experimental platform in whi
h tolook at how to
ir
umvent some of the limitations of the Aldor
ompilers type
he
ker.1.1 Overview of this reportSe
tion 2
ontains a des
ription of how to setup and use the Haskell Aldorinterpreter.Se
tion 3 des
ribes how the Aldor
ompiler was modi�ed to produ
e Haskelloutput.Se
tion 4 explains how the Aldor
ompiler represents the various aspe
ts ofthe Aldor language.Se
tion 5 des
ribes how the interpreter works, and also its
apabilities andlimitations.2 Using the Haskell Aldor interpreterTo use the interpreter, you must �rst setup the HUGSFLAGS environment variableto in
lude the path where the Haskell sour
e �les for the interpreter are storede.g.setenv HUGSFLAGS -P/usr/lo
al/
s/pkg/hugs/share/lib:/home/
ut/
r6/haskell/stableNote that this environment variable must also in
lude the dire
tory
ontainingthe standard libraries for Hugs. This is be
ause this path overrides Hugs builtinpath.During the initial stages of development, Hugs 1.4 was used. This provedto have a few problems (des
ribed later) so Hugs 98 was used instead. Hugs 98allows
ommand line
on�guration of some options whi
h are only
on�gurableby re
ompiling in Hugs 1.4 (des
ribed later). However, apart from this thereappeared to be little di�eren
e. This is probably be
ause the interpreter usesonly basi
 Haskell
ode.To use the interpreter, you need to generate a Haskell �le from an Aldorsour
e �le. This is done like soaxiomxl -Fhs �le.aswhi
h results in a �le
alled �le.hs in the same dire
tory (�le
an be any ar-bitrary name). To run the interpreter on this �le, simply type hugs �le.hs.This will automati
ally pull in all the ne
essary modules (assuming HUGSFLAGSis setup
orre
tly) then present you with a prompt Main>. Type runTree astto exe
ute the tree and pretty print the result.Note that the exe
ution
ode only exe
utes assignments. To evaluate anyAldor expression, exp, it is therefore suÆ
ient to in
lude the assignment2

main := exp(main
an be any arbitrary
hoi
e of legal identi�er).There are two other fun
tions that
an be applied to trees. These are :showTree This pretty prints a tree. The output of this fun
tion is mu
h easierto read than the builtin show me
hanism.exe
uteTree This takes a tree as an argument and returns the exe
uted tree.Hen
e, runTree is de�ned as runTree = showTree . exe
uteTree.3 A Haskell Representation of the ASTTo output the abstra
t syntax tree as Haskell
ode, or more
orre
tly as aHaskell data stru
ture, two steps must be taken. The �rst step is to derive aHaskell type to represent abstra
t syntax trees. The se
ond is to write the
odeto output parti
ular abstra
t syntax trees.3.1 Deriving a typeAs a starting point, the AbSyn stru
ture of the Aldor
ompiler was translatedinto Haskell. All Syme types were represented as Strings and all TForm stru
-tures were ignored. This was be
ause they are empty at the point at whi
hHaskell
ode is produ
ed. In addition to those nodes de�ned in the AbSyn.h�le, a few extra nodes were added:Null Represents an empty treeError String This is used to represent any nodes that haven't been outputproperly. This was used to allow in
remental development of the Haskelloutput
ode. It is important to stress that these nodes do not representerrors, merely nodes whi
h the
ode in the Aldor
ompiler does not yetknow how to output
orre
tly.In addition to these extra nodes, Apply nodes were modi�ed to remove somedupli
ation. 1The abstra
t syntax tree was represented as an algebrai
 type, deriving fromShow. Due to a known limitation in the Haskell interpreter, Hugs 1.4, 2 the tree
ould not derive from Eq whi
h is needed to be able to type
he
k the tree. Asa workaround, the following de�nition was used.instan
e Eq AST wheret1 == t2 = (show t1)==(show t2)1An Apply node has the form Apply AST [AST℄ but it appears that the �rst AST is alwaysthe same as the �rst element of [AST℄. Thus, the form was shortened to Apply [AST℄.2When attempting to
ompile the Haskell
ode in Hugs 1.4, if the AST type derives Eq,the error ERROR "AldorAST.lhs": Compiled
ode too
omplex o

urs. There is an internallimit on the \
omplexity" of expressions. Hugs98 allows this limit to be adjusted, and hen
eallows this to
ompile. To be able to
ompile the Haskell
ode in Hugs98, you must in
reasethis threshold using the -
 option. A value of around 200 seems to work well.3

It was also interesting to note that there were some node tags de�ned inAbSyn.h whi
h appear not to have
orresponding body de�nitions. They mayuse some generi
 body so, as a pre
aution, the Haskell output
ode representsthem as Error nodes. So far, no Error nodes have been found in the output,whi
h suggests these node tags may not be used.3.2 Outputting HaskellContinuing from previous work on the Aldor
ompiler 3, a hook into the
om-mand line to add the option -Fhs was implemented.The
ode to output the Haskell representation is a re
ursive fun
tion that
onsists mainly of a large
ase statement. All node types have to have a
ase,sin
e they need a di�erent type
onstru
tor in the Haskell output. This meansthere is very little sharing of
ode (although it
ould be optimised a little morethan it is). The �rst version of the
ode output the whole abstra
t syntax asa single line. This proved diÆ
ult for a human to read (indeed, the editor vi
omplained about the length of the line), although the Haskell interpreter, Hugs,had no problems with this format. Later versions of the
ode format the outputin a slightly more human-readable form, breaking up the line and indenting to
larify the stru
ture.The
ompiler output �rst has two lines to import the de�nition of theAST stru
ture (AldorAST) and de�nitions of the fun
tions to a
t on the tree(Abstra
tUtils). Thus, the top of the Haskell output �le looks something likethis:{-Haskell representation of the AST from the Aldor
ompiler.Produ
ed from the file "test.as" on Tuesday Jul 27 1999 at 14:31-}import AldorAST -- For the typesimport Abstra
tUtils -- For fun
tions that a
t on the treeast :: ASTast = ...Haskell
ode is output on the basis of the abstra
t syntax tree present afterma
ro expansion and s
ope binding but before type inferen
e. A side e�e
t ofthis is that the Aldor
ompiler will still type
he
k a program, but only afterthe program has been output as Haskell. Thus, if a type error o

urs, the Aldor
ompiler will tell you, but will have still produ
ed Haskell
ode. This providesa way to
ompare the Aldor type
he
ker with our own type
he
ker, and alsoto work with programs reje
ted by the Aldor
ompilers type
he
ker.3A previous report, des
ribing some of the internal stru
ture of the Aldor
ompiler isavailable at http://www.
s.uk
.a
.uk/people/staff/ep5/Aldor/
hris report.ps
4

4 The Abstra
t Syntax Tree4.1 The Haskell RepresentationThe Aldor
ompiler represents the Aldor program as an abstra
t syntax tree.Di�erent
ombinations of nodes are used to des
ribe di�erent aspe
ts of thelanguage. This se
tion des
ribes some of the interesting nodes and how theyare used.4.2 How Aldor Uses Nodes4.2.1 Assign nodesAssign nodes are used by Aldor to represent assignments. Hen
e, they havetwo sub-trees to represent the left and right hand sides of the assignment. Forexamplea := 4is represented asAssign (Ident "a") (LitInt 4)4.2.2 Apply nodesApply nodes are used by Aldor to represent n-ary appli
ations. Hen
e, this nodehas a variable number of sub-trees. The �rst sub-tree is always the identi�er ofthe fun
tion. The rest of the sub-trees are the arguments to the fun
tion. Forexample, the fun
tion appli
ation... fun
(3, 4, 5);is represented asApply [(Ident "fun
"), (LitInt 3), (LitInt 4), (LitInt 5)℄Apply nodes also have a se
ond purpose. In line with the design philosophy ofAldor, as few primitives as possible are in
luded in the system. This means thata fun
tion type is not represented as a primitive but rather as the appli
ationof the type
onstru
tor, ->, to a tuple of type arguments 4. For instan
e, thetype of the fun
tionfun
(i:Integer):Integer == iis represented asApply [(Ident "->"),(De
lare (Ident "i") (Ident "Integer")),(Ident "Integer")℄4This is dis
ussed further in a paper by Simon Thompson and Erik Poll, available athttp://www.
s.uk
.a
.uk/people/staff/ep5/Aldor.
5

This example shows the two representations of types. The simple representationof the return type Integer as an Ident and the more
omplex representation ofthe type of the fun
tion as a whole. This use of Apply nodes to represent typesgets more
ompli
ated when fun
tions take more than one argument. The typeis then represented as an appli
ation of -> to a Comma list of arguments and thereturn type. For example the type of the fun
tionfun
2(i:Integer,j:Integer):Integer == i+j;is represented asApply [(Ident "->"),(Comma [(De
lare ...),(De
lare ...)℄),(Ident "Integer")℄Also, types that take arguments, su
h as lists, are also represented as Applynodes. For instan
e the typeList Integeris represented asApply [(Ident "List"),(Ident "Integer")℄4.2.3 De�ne nodesDefine nodes are used to represent the de�nitions in an Aldor program. Su
ha node has two sub-trees, the left and right hand sides of the de�nition. Theleft hand side is normally a De
lare node, spe
ifying the identi�er and type.The right hand side is the body of the de�nition. For fun
tion de�nitions thisis normally a Lambda node (see Se
tion 4.2.5), whereas for simple de
larationsthat take no arguments (e.g. a:Integer == 3) this is just the abstra
t syntaxfor the right hand side of the de
laration. For examplea:Integer == 3is represented like soDefine (De
lare (Ident "a") (Ident "Integer")) (LitInt 3)4.2.4 De
lare nodesA De
lare node is used to represent de
larations. A De
lare node has twosubtrees. The �rst is the identi�er being de
lared. The se
ond is the defaulttype of the identi�er. For instan
e, the de
larationa:Integerwould be represented asDe
lare (Ident "a") (Ident "Integer")
6

4.2.5 LambdaA Lambda node is a des
ription of a fun
tion. It has three sub-trees. The �rstis a des
ription of the parameters. The se
ond is a representation of the returntype. The third is the body of the fun
tion.The parameters are represented as a Comma list of De
lare nodes. This iseven true of \no-arg" fun
tions, where the parameters are represented by anempty Comma list.The return type is the abstra
t representation of the fun
tions return type,usually just an Ident node.The body of the fun
tion is represented using a Label node. A label nodehas two sub-trees. The �rst is the identi�er of the fun
tion, the se
ond is thea
tual body of the fun
tion. For instan
e the fun
tionfun
 (i:Integer):Integer == iis represented like soLambda (Comma [(De
lare (Ident "i") (Ident "Integer"))℄)(Ident "Integer")(Label (Ident "fun
") (Ident "i"))5 The Haskell Aldor interpreter5.1 Limitations and
apabilitiesThe Haskell Aldor interpreter has the ability to :� Type
he
k assignments.� Type
he
k arguments to fun
tions, in
luding fun
tions as arguments andtype arguments.� Exe
ute simple arithmeti
 (on Integer and Float).� Exe
ute re
ursive fun
tions (only if the terminating
ondition
an be eval-uated).� Exe
ute fun
tions that have fun
tions and/or types as arguments.The interpreter has a number of limitations (des
ribed below). These limita-tions are not
aused by any fundamental problem. Rather, they are a result ofthe limited time available on this proje
t (8 weeks). Be
ause of the short timeavailable, it was ne
essary to restri
t the fun
tionality to a small subset of thelanguage. This also lead to the de
ision to start with a very small implementa-tion and add fun
tionality as time permitted.� The de�nitions are not
he
ked to ensure that their de
lared type is thesame as their a
tual type.� The
ode to exe
ute Aldor abstra
t syntax trees is
apable of very simpleoperations on lists. However, the type
he
ker does not have support forlists, so fails when it en
ounters a list.7

� There is very little of the axllib implemented. Only simple arithmeti
on Integer and Float and limited support for Boolean types.� Overloading of identi�ers is not permitted.The Haskell
ode for the interpreter is split into seven �les. A brief des
rip-tion of ea
h �le is shown below.AldorAST.lhs This �le
ontains the de�nition of the Haskell type AST whi
h isthe Haskell representation of Aldor abstra
t syntax trees.Abstra
tUtils.hs This �le is automati
ally imported in the output of theAldor
ompiler. Hen
e, any exports from this module
an be used onthe AST stru
ture. All modules that are used on trees are imported bythis module. By default, it imports all the other �les in this list ex
eptAldorAST.lhs. It is possible to import your own modules in this module,allowing your own routines to be used on the abstra
t syntax trees.Re
urseAST.hs This �le
ontains utility fun
tions to do
ommon tasks likepassing a fun
tion over the AST stru
ture. These are mainly long listsof
ase distin
tions, and thus save a lot of work in the more interestingfun
tions.PrintAST.hs This �le
ontains
ode to pretty print the AST stru
ture. This isa mu
h easier form to read than the builtin show fun
tion.Definitions.hs This �le
ontains the
ode to build a table of all the de�nitionsin a program (e.g. all the fun
tion de�nitions). This is used for both type
he
king and exe
ution.TypeChe
kAST.hs This �le
ontains the
ode to do the type
he
king of theabstra
t syntax tree.Exe
uteAST.hs This �le
ontains the
ode to do the exe
ution of the abstra
tsyntax tree.As far as understanding the operation of the interpreter, the interesting �les areDefinition.hs, TypeChe
kAST.hs and Exe
uteAST.hs. Ea
h of these �les willnow be des
ribed in more detail.5.2 Re
urseAST.hsAlthough this module is not interesting as far as understanding the operationof the interpreter, it is worth mentioning in passing. This module
ontains fourfun
tions. All are used to thread monadi
 fun
tions through the AST stru
-ture. The fun
tion that is passed through has must have the type (a,AST) ->(a,AST). This is a fun
tion that may
hange the stru
ture a as a side e�e
t, andhen
e, is a mondi
 fun
tion. The fun
tions in Re
urseAST.hs make sure thatno
hanges to the stru
ture a are lost (by ensuring the result of one fun
tion
all is passed as an argument to the next fun
tion
all).The four fun
tions are :applyToList This fun
tion applies a monadi
 fun
tion to a list of AST's.8

applyToSubTree This will apply a fun
tion to all the sub-trees of a node. Thisis a large fun
tion due to the large number of node kinds in the ASTstru
ture.applyToTreeBU This applies a fun
tion to all the nodes in a tree in a bottomup pass.applyToTreeTD This applies a fun
tion to all the nodes in a tree in a top downpass.5.3 De�nition.hsThe purpose of the
ode in this �le is to produ
e a table of all the de�nitions inthe Aldor program. Be
ause of the limited time available for the proje
t, it wasde
ided not to allow the use of overloading. There is no fundamental problemwith allowing overloading, but it signi�
antly
ompli
ates both type
he
kingand exe
ution.To make the
ode easier to read, a number of types are de�ned �rst. Thesearetype Type = ASTtype Param = Stringdata Definition = Fun
Def String [Param℄ Type AST |IdDef String Type AST |NotDefinedtype DefTable = [Definition℄The Fun
Def
onstru
tor of Definition is used to des
ribe the de�nitions offun
tions. The String argument is the identi�er of the fun
tion, the [Param℄argument is the list of parameters of the fun
tion, the Type argument is the typeof the fun
tion, and the AST is the body of the fun
tion. The IdDef
onstru
toris used to des
ribe the de�nition of simple identi�ers that take no arguments.The table, DefTable, is implemented as a list to make manipulating the tableeasier, although it may not be the most eÆ
ient method of storage.The main entry point into the
ode in this module is the fun
tion addDef,whi
h takes a table of de�nitions and a pie
e of abstra
t syntax and returns thetable with the de�nition added to to the head of the table. This fun
tion shouldbe passed only Define nodes. For all other node types the table is returnedun
hanged. When a Define node is passed as an argument, addDef then usesthe fun
tion makeDef to build a representation of the de�nition and appends itto the head of the list of de�nitions.makeDef de
ides if the de�nition is the de�nition of a fun
tion or of a simpleidenti�er (e.g. a:Integer==3). If the right hand side of the Define node is aLambda node it is treated as a fun
tion de�nition, otherwise it is treated as ade�nition of a simple identi�er. The fun
tion then builds a representation ofthe appropriate type from parts of the abstra
t syntax (see Se
tion 4.2.3).5.4 Exe
uteAST.hsThe main entry point for exe
uting the program's AST stru
ture is the fun
-tion exe
uteTree. This fun
tion is a wrapper around the fun
tion exe
Tree.9

exe
Tree takes a tuple of the type (DefTable,AST) and returns another tupleof the same type. This argument format is used to allow the use of the fun
tionsin Re
urseAST.hs (see Se
tion 5.2) to thread the exe
Tree fun
tion throughan AST stru
ture. The exe
Tree fun
tion ignores all nodes ex
ept the following:Assign When an Assign node is found, the fun
tion typeChe
k (see Se
tion5.5) is
alled. If this su

eeds the fun
tion evalAssign (des
ribed below)is used to evaluate the node and the result is returned. This returnedresult will repla
e the original Assign node in the AST stru
ture. (Re-member, that a modi�ed
opy of the original AST stru
ture is returned bythe exe
uteTree fun
tion).Apply These nodes are treated just like Assign nodes, ex
ept that if the type
he
k su

eeds then the fun
tion evalApply (des
ribed below) is used toevaluate the node, and the result is returned.Ident For these nodes, the fun
tion evalIdent is used to evaluate the node.Define For these nodes are passed straight to the fun
tion addDef (des
ribedin Se
tion 5.3).Not These nodes are evaluated using the fun
tion evalNot.Test The fun
tion evalTest is used to evaluate these nodes.If These nodes are evaluated using the evalCond fun
tion.There are several spe
ialised fun
tions that are used to evaluate the di�erentnodes. These are des
ribed below:evalAssign The parameters to this fun
tion are a table of de�nitions and theAssign node. If the right hand side of the node is an Ident node, thefun
tion evalIdent is used to evaluate it. If the right hand side is anApply node, the fun
tion evalApply is used. For all other
ases, theAssign node is returned un
hanged.evalApply This fun
tion de
ides what type of operation is being applied, thenuses the appropriate fun
tion to evaluate the given Apply node. Thefun
tion knows about four kinds of fun
tions.� User fun
tions are those fun
tions that have been de�ned in the pro-gram. These are evaluated using the fun
tion evalUserFun
 (seeSe
tion 5.4.1).� Library fun
tions are those operations whi
h are de�ned outside theprogram �le being evaluated. Examples are operations su
h as firstwhi
h are de�ned in axllib. For these types of operation, the fun
-tion evalLibFun
 is used.� Binary operations (su
h as + and -) are evaluated using the fun
tionevalBinOp.� For unary operations, evalUnaryOp is used.10

Before an Apply node is evaluated, the arguments to the appli
ation areevaluated. This is done so that simple de
larations and identi�ers (su
has Ident "1") are resolved before the appli
ation itself is evaluated. Thearguments are evaluated by using the applyToList fun
tion to applyexe
Tree to ea
h element of the list of arguments.evalIdent Simple, builtin identi�ers, su
h as 0 and 1 are
onverted into lit-erals. For any other identi�ers, the identi�er is looked up in the tableof de�nitions and its value is returned as the result of the evaluation. Ifthe identi�er is not in the de�nition table, the Ident node is returnedun
hanged.evalNot This assumes the argument to be inverted is already evaluated. Thefun
tion then uses pattern mat
hing to invert the node.evalTest This, like the evalNot fun
tions, is essentially implemented by a fewpattern mat
hes.evalCond This �rst evaluates the
ondition part of the If node using exe
Tree.If the
ondition evaluates to Ident true, the \then" part of the If nodeis returned. If the
ondition evaluates to Ident false, the \else" part isreturned. If the
ondition
annot be evaluated, the If node is returnedun
hanged. This
an be a problem in a re
ursive fun
tion, sin
e if the Ifnode is returned un
hanged, the interpreter may try to repeatedly evaluatethe node.5.4.1 Evaluating user fun
tionsThe fun
tion evalUserFun
 is used to evaluate user de�ned fun
tions. To dothis, it �rst looks up the de�nition of the user fun
tion. It then extra
ts thede�nitions of the parameters from the de�nition of the user fun
tion. Theseare then
onverted into a list of identi�er/value pairs by passing the parameterde�nitions and the a
tual arguments to the fun
tion mapA
tToForm. The bodyof the fun
tion de�nition is then extra
ted. The fun
tion expandFun
Body isthen used to repla
e all o

urren
es of the parameter identi�ers in the bodywith the appropriate values of the parameters. The result is a body that
anthen be exe
uted using exe
Tree.5.5 TypeChe
kAST.hsThe main entry point into the type
he
king
ode is the fun
tion typeChe
k.This fun
tion takes, as arguments, a fun
tion that is
apable of exe
uting ASTstru
tures, a table of de�nitions and a pie
e of abstra
t syntax to type
he
k.This fun
tion returns a Bool whi
h is True if the abstra
t syntax type
he
ks
orre
tly and False otherwise.This fun
tion only type
he
ks Assign nodes. These nodes were
hosenbe
ause they have a
lear left hand side and right hand side, whi
h must be ofthe same type. Assign nodes get type
he
ked, but only if they are part of anassignment. All other nodes are assumed to type
he
k.The fun
tion that is passed as an argument to the typeChe
k fun
tion isused by the type
he
king
ode to evaluate some of the abstra
t syntax duringtype
he
king. For instan
e, the
ode 11

idType(T:Type):Type == T;a:idType(Integer) := 4;needs to have idType(Integer) evaluated before the assignment
an be type
he
ked. The type
he
king
ode
annot
all the exe
Tree fun
tion from theExe
uteAST.hs module dire
tly be
ause the Exe
uteAST.hs module importsthe TypeChe
kAST.hs module (to be able to use the typeChe
k fun
tion).Hen
e, the TypeChe
kAST.hs module
annot import the Exe
uteAST.hs mod-ule, as this would
ause a re
ursive dependen
y in the two modules. Be
ause ofthis, the exe
ution fun
tion is passed as an argument to all the type
he
king
ode that may need it.The essen
e of type
he
king is to build a list of possible types for ea
h sideof an expression, then
ompare the two lists to see if there is a
ommon type.If there is no
ommon type, the type
he
k has failed. If there is more thanone
ommon type, the expression is ambiguous. The expression passes the type
he
k when there is exa
tly one
ommon type.Perhaps the most important fun
tion in this module is the fun
tion mat
heswhi
h takes two lists of types as arguments and returns True if there are anytype mat
hes in them. This fun
tion is the heart of the type
he
ker. All otherfun
tions are used to build the lists of possible types.To build a list of possible types of an expression, the fun
tion getTypeListis used. This fun
tion has the types of the literals (LitInt,LitFloat, et
)builtin. For De
lare nodes, the right hand side of the de
laration (the righthand side of the
olon) is returned. For Ident nodes, if the identi�er is inthe table of de�nitions, the fun
tion getUserIdType is used to build the list oftypes. Otherwise the Ident node is assumed to be a type and thus the typeType is returned. The �nal node type for whi
h this fun
tion produ
es a list oftypes is Apply nodes. If the operation being applied is de�ned in the table ofde�nitions, the fun
tion getUserFun
Type is used to get the type list. If theoperation is one of the builtin operations, the fun
tion getBuiltInType is used.The fun
tion getUserIdType is used to return the list of possible types for auser de�ned identi�er. This involves looking up the identi�er and retrieving theappropriate entry. From this entry the type of the identi�er is obtained, whi
his then returned as a list.The fun
tion getUserFun
Type returns the list of possible types for a userde�ned fun
tion. This starts by looking up the de�nition for the fun
tion. Whenit is found, the stored type of the fun
tion is retrieved. This type, however, mayhave type variables, so these must be repla
ed with their a
tual values. Tofa
ilitate this, the type (whi
h is represented by a single AST) is broken up intoa list of types,
orresponding to the arguments and return type of the fun
tion.The fun
tion getInstan
eType is then used to
onvert the list of types into thelist of a
tual types. That is, any type arguments are repla
ed by the appropriatevalue from the parameters of the fun
tion. The expe
ted types of the parametersare then determined, along with the a
tual types of the arguments. These typesare
ompared, and, if they are the same, are returned as the type of the fun
tion.The fun
tion getBuiltInType is used to determine the types of builtin op-erations su
h as +. This is a
hieved by looking up the operation in a hard
odedtable of builtin operations and their types. This lookup will return a list oftypes, be
ause the builtin operations work on many types. To determine whi
htype is the
orre
t type, the types of the arguments to the operation must be12

determined. On
e the types of the arguments are determined, the type of theoperation is
hosen and returned.

13

