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1 Introduction

The aim of this project was to attempt to output a Haskell representation of
the Aldor compiler’s abstract syntax tree. The purpose of this is to enable the
representation to be executed and to give an experimental platform in which to
look at how to circumvent some of the limitations of the Aldor compilers type
checker.

1.1 Overview of this report

Section 2 contains a description of how to setup and use the Haskell Aldor
interpreter.

Section 3 describes how the Aldor compiler was modified to produce Haskell
output.

Section 4 explains how the Aldor compiler represents the various aspects of
the Aldor language.

Section 5 describes how the interpreter works, and also its capabilities and
limitations.

2 Using the Haskell Aldor interpreter

To use the interpreter, you must first setup the HUGSFLAGS environment variable
to include the path where the Haskell source files for the interpreter are stored

e.g.

setenv HUGSFLAGS -P/usr/local/cs/pkg/hugs/share/1ib:
/home/cut/cr6/haskell/stable

Note that this environment variable must also include the directory containing
the standard libraries for Hugs. This is because this path overrides Hugs builtin
path.

During the initial stages of development, Hugs 1.4 was used. This proved
to have a few problems (described later) so Hugs 98 was used instead. Hugs 98
allows command line configuration of some options which are only configurable
by recompiling in Hugs 1.4 (described later). However, apart from this there
appeared to be little difference. This is probably because the interpreter uses
only basic Haskell code.

To use the interpreter, you need to generate a Haskell file from an Aldor
source file. This is done like so

axiomxl -Fhs file.as

which results in a file called file.hs in the same directory (file can be any ar-
bitrary name). To run the interpreter on this file, simply type hugs file.hs.
This will automatically pull in all the necessary modules (assuming HUGSFLAGS
is setup correctly) then present you with a prompt Main>. Type runTree ast
to execute the tree and pretty print the result.

Note that the execution code only executes assignments. To evaluate any
Aldor expression, exp, it is therefore sufficient to include the assignment



main := exp

(main can be any arbitrary choice of legal identifier).
There are two other functions that can be applied to trees. These are :

showTree This pretty prints a tree. The output of this function is much easier
to read than the builtin show mechanism.

executeTree This takes a tree as an argument and returns the executed tree.

Hence, runTree is defined as runTree = showTree . executeTree.

3 A Haskell Representation of the AST

To output the abstract syntax tree as Haskell code, or more correctly as a
Haskell data structure, two steps must be taken. The first step is to derive a
Haskell type to represent abstract syntax trees. The second is to write the code
to output particular abstract syntax trees.

3.1 Deriving a type

As a starting point, the AbSyn structure of the Aldor compiler was translated
into Haskell. All Syme types were represented as Strings and all TForm struc-
tures were ignored. This was because they are empty at the point at which
Haskell code is produced. In addition to those nodes defined in the AbSyn.h
file, a few extra nodes were added:

Null Represents an empty tree

Error String This is used to represent any nodes that haven’t been output
properly. This was used to allow incremental development of the Haskell
output code. It is important to stress that these nodes do not represent
errors, merely nodes which the code in the Aldor compiler does not yet
know how to output correctly.

In addition to these extra nodes, Apply nodes were modified to remove some
duplication. !

The abstract syntax tree was represented as an algebraic type, deriving from
Show. Due to a known limitation in the Haskell interpreter, Hugs 1.4, 2 the tree
could not derive from Eq which is needed to be able to type check the tree. As
a workaround, the following definition was used.

instance Eq AST where
tl == t2 = (show t1)==(show t2)

LTAn Apply node has the form Apply AST [AST] but it appears that the first AST is always
the same as the first element of [AST]. Thus, the form was shortened to Apply [ASTI.

2When attempting to compile the Haskell code in Hugs 1.4, if the AST type derives Eq,
the error ERROR "AldorAST.lhs": Compiled code too complex occurs. There is an internal
limit on the “complexity” of expressions. Hugs98 allows this limit to be adjusted, and hence
allows this to compile. To be able to compile the Haskell code in Hugs98, you must increase
this threshold using the -c option. A value of around 200 seems to work well.



It was also interesting to note that there were some node tags defined in
AbSyn.h which appear not to have corresponding body definitions. They may
use some generic body so, as a precaution, the Haskell output code represents
them as Error nodes. So far, no Error nodes have been found in the output,
which suggests these node tags may not be used.

3.2 Outputting Haskell

Continuing from previous work on the Aldor compiler ?, a hook into the com-
mand line to add the option -Fhs was implemented.

The code to output the Haskell representation is a recursive function that
consists mainly of a large case statement. All node types have to have a case,
since they need a different type constructor in the Haskell output. This means
there is very little sharing of code (although it could be optimised a little more
than it is). The first version of the code output the whole abstract syntax as
a single line. This proved difficult for a human to read (indeed, the editor vi
complained about the length of the line), although the Haskell interpreter, Hugs,
had no problems with this format. Later versions of the code format the output
in a slightly more human-readable form, breaking up the line and indenting to
clarify the structure.

The compiler output first has two lines to import the definition of the
AST structure (AldorAST) and definitions of the functions to act on the tree
(AbstractUtils). Thus, the top of the Haskell output file looks something like
this:

{-

Haskell representation of the AST from the Aldor compiler.
Produced from the file "test.as" on Tuesday Jul 27 1999 at 14:31
-}

import AldorAST -- For the types

import AbstractUtils -- For functions that act on the tree
ast :: AST
ast = ...

Haskell code is output on the basis of the abstract syntax tree present after
macro expansion and scope binding but before type inference. A side effect of
this is that the Aldor compiler will still type check a program, but only after
the program has been output as Haskell. Thus, if a type error occurs, the Aldor
compiler will tell you, but will have still produced Haskell code. This provides
a way to compare the Aldor type checker with our own type checker, and also
to work with programs rejected by the Aldor compilers type checker.

3A previous report, describing some of the internal structure of the Aldor compiler is
available at http://www.cs.ukc.ac.uk/people/staff/ep5/Aldor/chris_report.ps



4 The Abstract Syntax Tree

4.1 The Haskell Representation

The Aldor compiler represents the Aldor program as an abstract syntax tree.
Different combinations of nodes are used to describe different aspects of the
language. This section describes some of the interesting nodes and how they
are used.

4.2 How Aldor Uses Nodes
4.2.1 Assign nodes

Assign nodes are used by Aldor to represent assignments. Hence, they have
two sub-trees to represent the left and right hand sides of the assignment. For
example

a =4
is represented as

Assign (Ident "a") (LitInt 4)

4.2.2 Apply nodes

Apply nodes are used by Aldor to represent n-ary applications. Hence, this node
has a variable number of sub-trees. The first sub-tree is always the identifier of
the function. The rest of the sub-trees are the arguments to the function. For
example, the function application

. func(3, 4, 5);
is represented as
Apply [(Ident "func"), (LitInt 3), (LitInt 4), (LitInt 5)]

Apply nodes also have a second purpose. In line with the design philosophy of
Aldor, as few primitives as possible are included in the system. This means that
a function type is not represented as a primitive but rather as the application
of the type constructor, ->, to a tuple of type arguments *. For instance, the
type of the function

func(i:Integer):Integer == i
is represented as

Apply [(Ident "->"),
(Declare (Ident "i") (Ident "Integer")),
(Ident "Integer")]

4This is discussed further in a paper by Simon Thompson and Erik Poll, available at
http://wuw.cs.ukc.ac.uk/people/staff/ep5/Aldor.



This example shows the two representations of types. The simple representation
of the return type Integer as an Ident and the more complex representation of
the type of the function as a whole. This use of Apply nodes to represent types
gets more complicated when functions take more than one argument. The type
is then represented as an application of -> to a Comma list of arguments and the
return type. For example the type of the function

func2(i:Integer,j:Integer):Integer == i+j;
is represented as

Apply [(Ident "->"),
(Comma [(Declare ...),(Declare ...)1),
(Ident "Integer")]

Also, types that take arguments, such as lists, are also represented as Apply
nodes. For instance the type

List Integer
is represented as

Apply [(Ident "List"),(Ident "Integer")]

4.2.3 Define nodes

Define nodes are used to represent the definitions in an Aldor program. Such
a node has two sub-trees, the left and right hand sides of the definition. The
left hand side is normally a Declare node, specifying the identifier and type.
The right hand side is the body of the definition. For function definitions this
is normally a Lambda node (see Section 4.2.5), whereas for simple declarations
that take no arguments (e.g. a:Integer == 3) this is just the abstract syntax
for the right hand side of the declaration. For example

a:Integer ==
is represented like so

Define (Declare (Ident "a") (Ident "Integer")) (LitInt 3)

4.2.4 Declare nodes

A Declare node is used to represent declarations. A Declare node has two
subtrees. The first is the identifier being declared. The second is the default
type of the identifier. For instance, the declaration

a:Integer
would be represented as

Declare (Ident "a") (Ident "Integer")



4.2.5 Lambda

A Lambda node is a description of a function. It has three sub-trees. The first
is a description of the parameters. The second is a representation of the return
type. The third is the body of the function.

The parameters are represented as a Comma list of Declare nodes. This is
even true of “no-arg” functions, where the parameters are represented by an
empty Comma list.

The return type is the abstract representation of the functions return type,
usually just an Ident node.

The body of the function is represented using a Label node. A label node
has two sub-trees. The first is the identifier of the function, the second is the
actual body of the function. For instance the function

func (i:Integer):Integer == i
is represented like so

Lambda (Comma [(Declare (Ident "i") (Ident "Integer"))])
(Ident "Integer")
(Label (Ident "func") (Ident "i"))

5 The Haskell Aldor interpreter

5.1 Limitations and capabilities

The Haskell Aldor interpreter has the ability to :

e Type check assignments.

Type check arguments to functions, including functions as arguments and
type arguments.

Execute simple arithmetic (on Integer and Float).

Execute recursive functions (only if the terminating condition can be eval-
uated).

e Execute functions that have functions and/or types as arguments.

The interpreter has a number of limitations (described below). These limita-
tions are not caused by any fundamental problem. Rather, they are a result of
the limited time available on this project (8 weeks). Because of the short time
available, it was necessary to restrict the functionality to a small subset of the
language. This also lead to the decision to start with a very small implementa-
tion and add functionality as time permitted.

e The definitions are not checked to ensure that their declared type is the
same as their actual type.

e The code to execute Aldor abstract syntax trees is capable of very simple
operations on lists. However, the type checker does not have support for
lists, so fails when it encounters a list.



e There is very little of the ax11ib implemented. Only simple arithmetic
on Integer and Float and limited support for Boolean types.

¢ Overloading of identifiers is not permitted.

The Haskell code for the interpreter is split into seven files. A brief descrip-
tion of each file is shown below.

AldorAST.1lhs This file contains the definition of the Haskell type AST which is
the Haskell representation of Aldor abstract syntax trees.

AbstractUtils.hs This file is automatically imported in the output of the
Aldor compiler. Hence, any exports from this module can be used on
the AST structure. All modules that are used on trees are imported by
this module. By default, it imports all the other files in this list except
A1dorAST.1hs. It is possible to import your own modules in this module,
allowing your own routines to be used on the abstract syntax trees.

RecurseAST.hs This file contains utility functions to do common tasks like
passing a function over the AST structure. These are mainly long lists
of case distinctions, and thus save a lot of work in the more interesting
functions.

PrintAST.hs This file contains code to pretty print the AST structure. This is
a much easier form to read than the builtin show function.

Definitions.hs This file contains the code to build a table of all the definitions
in a program (e.g. all the function definitions). This is used for both type
checking and execution.

TypeCheckAST.hs This file contains the code to do the type checking of the
abstract syntax tree.

ExecuteAST.hs This file contains the code to do the execution of the abstract
syntax tree.

As far as understanding the operation of the interpreter, the interesting files are
Definition.hs, TypeCheckAST.hs and ExecuteAST.hs. Each of these files will
now be described in more detail.

5.2 RecurseAST.hs

Although this module is not interesting as far as understanding the operation
of the interpreter, it is worth mentioning in passing. This module contains four
functions. All are used to thread monadic functions through the AST struc-
ture. The function that is passed through has must have the type (a,AST) ->
(a,AST). This is a function that may change the structure a as a side effect, and
hence, is a mondic function. The functions in RecurseAST.hs make sure that
no changes to the structure a are lost (by ensuring the result of one function
call is passed as an argument to the next function call).
The four functions are :

applyToList This function applies a monadic function to a list of AST’s.



applyToSubTree This will apply a function to all the sub-trees of a node. This
is a large function due to the large number of node kinds in the AST
structure.

applyToTreeBU This applies a function to all the nodes in a tree in a bottom
up pass.

applyToTreeTD This applies a function to all the nodes in a tree in a top down
pass.

5.3 Definition.hs

The purpose of the code in this file is to produce a table of all the definitions in
the Aldor program. Because of the limited time available for the project, it was
decided not to allow the use of overloading. There is no fundamental problem
with allowing overloading, but it significantly complicates both type checking
and execution.

To make the code easier to read, a number of types are defined first. These
are

type Type = AST

type Param = String

data Definition = FuncDef String [Param] Type AST |
IdDef String Type AST |
NotDefined

type DefTable = [Definition]

The FuncDef constructor of Definition is used to describe the definitions of
functions. The String argument is the identifier of the function, the [Param]
argument is the list of parameters of the function, the Type argument is the type
of the function, and the AST is the body of the function. The IdDef constructor
is used to describe the definition of simple identifiers that take no arguments.
The table, DefTable, is implemented as a list to make manipulating the table
easier, although it may not be the most efficient method of storage.

The main entry point into the code in this module is the function addDef,
which takes a table of definitions and a piece of abstract syntax and returns the
table with the definition added to to the head of the table. This function should
be passed only Define nodes. For all other node types the table is returned
unchanged. When a Define node is passed as an argument, addDef then uses
the function makeDef to build a representation of the definition and appends it
to the head of the list of definitions.

makeDef decides if the definition is the definition of a function or of a simple
identifier (e.g. a:Integer==3). If the right hand side of the Define node is a
Lambda node it is treated as a function definition, otherwise it is treated as a
definition of a simple identifier. The function then builds a representation of
the appropriate type from parts of the abstract syntax (see Section 4.2.3).

5.4 ExecuteAST.hs

The main entry point for executing the program’s AST structure is the func-
tion executeTree. This function is a wrapper around the function execTree.



execTree takes a tuple of the type (DefTable,AST) and returns another tuple
of the same type. This argument format is used to allow the use of the functions
in RecurseAST.hs (see Section 5.2) to thread the execTree function through
an AST structure. The execTree function ignores all nodes except the following:

Assign When an Assign node is found, the function typeCheck (see Section
5.5) is called. If this succeeds the function evalAssign (described below)
is used to evaluate the node and the result is returned. This returned
result will replace the original Assign node in the AST structure. (Re-
member, that a modified copy of the original AST structure is returned by
the executeTree function).

Apply These nodes are treated just like Assign nodes, except that if the type
check succeeds then the function evalApply (described below) is used to
evaluate the node, and the result is returned.

Ident For these nodes, the function evalIdent is used to evaluate the node.

Define For these nodes are passed straight to the function addDef (described
in Section 5.3).

Not These nodes are evaluated using the function evalNot.
Test The function evalTest is used to evaluate these nodes.

If These nodes are evaluated using the evalCond function.

There are several specialised functions that are used to evaluate the different
nodes. These are described below:

evalAssign The parameters to this function are a table of definitions and the
Assign node. If the right hand side of the node is an Ident node, the
function evalldent is used to evaluate it. If the right hand side is an
Apply node, the function evalApply is used. For all other cases, the
Assign node is returned unchanged.

evalApply This function decides what type of operation is being applied, then
uses the appropriate function to evaluate the given Apply node. The
function knows about four kinds of functions.

e User functions are those functions that have been defined in the pro-
gram. These are evaluated using the function evalUserFunc (see
Section 5.4.1).

e Library functions are those operations which are defined outside the
program file being evaluated. Examples are operations such as first
which are defined in ax11ib. For these types of operation, the func-
tion evallibFunc is used.

e Binary operations (such as + and -) are evaluated using the function
evalBin0p.

e For unary operations, evalUnary0Op is used.
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Before an Apply node is evaluated, the arguments to the application are
evaluated. This is done so that simple declarations and identifiers (such
as Ident "1") are resolved before the application itself is evaluated. The
arguments are evaluated by using the applyToList function to apply
execTree to each element of the list of arguments.

evalldent Simple, builtin identifiers, such as 0 and 1 are converted into lit-
erals. For any other identifiers, the identifier is looked up in the table
of definitions and its value is returned as the result of the evaluation. If
the identifier is not in the definition table, the Ident node is returned
unchanged.

evalNot This assumes the argument to be inverted is already evaluated. The
function then uses pattern matching to invert the node.

evalTest This, like the evalNot functions, is essentially implemented by a few
pattern matches.

evalCond This first evaluates the condition part of the If node using execTree.
If the condition evaluates to Ident true, the “then” part of the If node
is returned. If the condition evaluates to Ident false, the “else” part is
returned. If the condition cannot be evaluated, the If node is returned
unchanged. This can be a problem in a recursive function, since if the If
node is returned unchanged, the interpreter may try to repeatedly evaluate
the node.

5.4.1 Evaluating user functions

The function evalUserFunc is used to evaluate user defined functions. To do
this, it first looks up the definition of the user function. It then extracts the
definitions of the parameters from the definition of the user function. These
are then converted into a list of identifier /value pairs by passing the parameter
definitions and the actual arguments to the function mapActToForm. The body
of the function definition is then extracted. The function expandFuncBody is
then used to replace all occurrences of the parameter identifiers in the body
with the appropriate values of the parameters. The result is a body that can
then be executed using execTree.

5.5 TypeCheckAST.hs

The main entry point into the type checking code is the function typeCheck.
This function takes, as arguments, a function that is capable of executing AST
structures, a table of definitions and a piece of abstract syntax to type check.
This function returns a Bool which is True if the abstract syntax type checks
correctly and False otherwise.

This function only type checks Assign nodes. These nodes were chosen
because they have a clear left hand side and right hand side, which must be of
the same type. Assign nodes get type checked, but only if they are part of an
assignment. All other nodes are assumed to type check.

The function that is passed as an argument to the typeCheck function is
used by the type checking code to evaluate some of the abstract syntax during
type checking. For instance, the code

11



idType(T:Type) : Type == T;
a:idType(Integer) := 4;

needs to have idType(Integer) evaluated before the assignment can be type
checked. The type checking code cannot call the execTree function from the
ExecuteAST.hs module directly because the ExecuteAST.hs module imports
the TypeCheckAST.hs module (to be able to use the typeCheck function).
Hence, the TypeCheckAST.hs module cannot import the ExecuteAST.hs mod-
ule, as this would cause a recursive dependency in the two modules. Because of
this, the execution function is passed as an argument to all the type checking
code that may need it.

The essence of type checking is to build a list of possible types for each side
of an expression, then compare the two lists to see if there is a common type.
If there is no common type, the type check has failed. If there is more than
one common type, the expression is ambiguous. The expression passes the type
check when there is exactly one common type.

Perhaps the most important function in this module is the function matches
which takes two lists of types as arguments and returns True if there are any
type matches in them. This function is the heart of the type checker. All other
functions are used to build the lists of possible types.

To build a list of possible types of an expression, the function getTypeList
is used. This function has the types of the literals (LitInt,LitFloat, etc)
builtin. For Declare nodes, the right hand side of the declaration (the right
hand side of the colon) is returned. For Ident nodes, if the identifier is in
the table of definitions, the function getUserIdType is used to build the list of
types. Otherwise the Ident node is assumed to be a type and thus the type
Type is returned. The final node type for which this function produces a list of
types is Apply nodes. If the operation being applied is defined in the table of
definitions, the function getUserFuncType is used to get the type list. If the
operation is one of the builtin operations, the function getBuiltInType is used.

The function getUserIdType is used to return the list of possible types for a
user defined identifier. This involves looking up the identifier and retrieving the
appropriate entry. From this entry the type of the identifier is obtained, which
is then returned as a list.

The function getUserFuncType returns the list of possible types for a user
defined function. This starts by looking up the definition for the function. When
it is found, the stored type of the function is retrieved. This type, however, may
have type variables, so these must be replaced with their actual values. To
facilitate this, the type (which is represented by a single AST) is broken up into
a list of types, corresponding to the arguments and return type of the function.
The function getInstanceType is then used to convert the list of types into the
list of actual types. That is, any type arguments are replaced by the appropriate
value from the parameters of the function. The expected types of the parameters
are then determined, along with the actual types of the arguments. These types
are compared, and, if they are the same, are returned as the type of the function.

The function getBuiltInType is used to determine the types of builtin op-
erations such as +. This is achieved by looking up the operation in a hard coded
table of builtin operations and their types. This lookup will return a list of
types, because the builtin operations work on many types. To determine which
type is the correct type, the types of the arguments to the operation must be
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determined. Once the types of the arguments are determined, the type of the
operation is chosen and returned.
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