
Ryder, Chris and Thompson, Simon (1999) Aldor meets Haskell. Technical
report. Computing Laboratory, University of Kent

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21762/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21762/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Aldor meets HaskellChris Ryder (Supervised by Simon Thompson)July/August 1999Contents1 Introdution 21.1 Overview of this report . 22 Using the Haskell Aldor interpreter 23 A Haskell Representation of the AST 33.1 Deriving a type . 33.2 Outputting Haskell . 44 The Abstrat Syntax Tree 54.1 The Haskell Representation . 54.2 How Aldor Uses Nodes . 54.2.1 Assign nodes . 54.2.2 Apply nodes . 54.2.3 De�ne nodes . 64.2.4 Delare nodes . 64.2.5 Lambda . 75 The Haskell Aldor interpreter 75.1 Limitations and apabilities . 75.2 ReurseAST.hs . 85.3 De�nition.hs . 95.4 ExeuteAST.hs . 95.4.1 Evaluating user funtions 115.5 TypeChekAST.hs . 11

1

1 IntrodutionThe aim of this projet was to attempt to output a Haskell representation ofthe Aldor ompiler's abstrat syntax tree. The purpose of this is to enable therepresentation to be exeuted and to give an experimental platform in whih tolook at how to irumvent some of the limitations of the Aldor ompilers typeheker.1.1 Overview of this reportSetion 2 ontains a desription of how to setup and use the Haskell Aldorinterpreter.Setion 3 desribes how the Aldor ompiler was modi�ed to produe Haskelloutput.Setion 4 explains how the Aldor ompiler represents the various aspets ofthe Aldor language.Setion 5 desribes how the interpreter works, and also its apabilities andlimitations.2 Using the Haskell Aldor interpreterTo use the interpreter, you must �rst setup the HUGSFLAGS environment variableto inlude the path where the Haskell soure �les for the interpreter are storede.g.setenv HUGSFLAGS -P/usr/loal/s/pkg/hugs/share/lib:/home/ut/r6/haskell/stableNote that this environment variable must also inlude the diretory ontainingthe standard libraries for Hugs. This is beause this path overrides Hugs builtinpath.During the initial stages of development, Hugs 1.4 was used. This provedto have a few problems (desribed later) so Hugs 98 was used instead. Hugs 98allows ommand line on�guration of some options whih are only on�gurableby reompiling in Hugs 1.4 (desribed later). However, apart from this thereappeared to be little di�erene. This is probably beause the interpreter usesonly basi Haskell ode.To use the interpreter, you need to generate a Haskell �le from an Aldorsoure �le. This is done like soaxiomxl -Fhs �le.aswhih results in a �le alled �le.hs in the same diretory (�le an be any ar-bitrary name). To run the interpreter on this �le, simply type hugs �le.hs.This will automatially pull in all the neessary modules (assuming HUGSFLAGSis setup orretly) then present you with a prompt Main>. Type runTree astto exeute the tree and pretty print the result.Note that the exeution ode only exeutes assignments. To evaluate anyAldor expression, exp, it is therefore suÆient to inlude the assignment2

main := exp(main an be any arbitrary hoie of legal identi�er).There are two other funtions that an be applied to trees. These are :showTree This pretty prints a tree. The output of this funtion is muh easierto read than the builtin show mehanism.exeuteTree This takes a tree as an argument and returns the exeuted tree.Hene, runTree is de�ned as runTree = showTree . exeuteTree.3 A Haskell Representation of the ASTTo output the abstrat syntax tree as Haskell ode, or more orretly as aHaskell data struture, two steps must be taken. The �rst step is to derive aHaskell type to represent abstrat syntax trees. The seond is to write the odeto output partiular abstrat syntax trees.3.1 Deriving a typeAs a starting point, the AbSyn struture of the Aldor ompiler was translatedinto Haskell. All Syme types were represented as Strings and all TForm stru-tures were ignored. This was beause they are empty at the point at whihHaskell ode is produed. In addition to those nodes de�ned in the AbSyn.h�le, a few extra nodes were added:Null Represents an empty treeError String This is used to represent any nodes that haven't been outputproperly. This was used to allow inremental development of the Haskelloutput ode. It is important to stress that these nodes do not representerrors, merely nodes whih the ode in the Aldor ompiler does not yetknow how to output orretly.In addition to these extra nodes, Apply nodes were modi�ed to remove somedupliation. 1The abstrat syntax tree was represented as an algebrai type, deriving fromShow. Due to a known limitation in the Haskell interpreter, Hugs 1.4, 2 the treeould not derive from Eq whih is needed to be able to type hek the tree. Asa workaround, the following de�nition was used.instane Eq AST wheret1 == t2 = (show t1)==(show t2)1An Apply node has the form Apply AST [AST℄ but it appears that the �rst AST is alwaysthe same as the �rst element of [AST℄. Thus, the form was shortened to Apply [AST℄.2When attempting to ompile the Haskell ode in Hugs 1.4, if the AST type derives Eq,the error ERROR "AldorAST.lhs": Compiled ode too omplex ours. There is an internallimit on the \omplexity" of expressions. Hugs98 allows this limit to be adjusted, and heneallows this to ompile. To be able to ompile the Haskell ode in Hugs98, you must inreasethis threshold using the - option. A value of around 200 seems to work well.3

It was also interesting to note that there were some node tags de�ned inAbSyn.h whih appear not to have orresponding body de�nitions. They mayuse some generi body so, as a preaution, the Haskell output ode representsthem as Error nodes. So far, no Error nodes have been found in the output,whih suggests these node tags may not be used.3.2 Outputting HaskellContinuing from previous work on the Aldor ompiler 3, a hook into the om-mand line to add the option -Fhs was implemented.The ode to output the Haskell representation is a reursive funtion thatonsists mainly of a large ase statement. All node types have to have a ase,sine they need a di�erent type onstrutor in the Haskell output. This meansthere is very little sharing of ode (although it ould be optimised a little morethan it is). The �rst version of the ode output the whole abstrat syntax asa single line. This proved diÆult for a human to read (indeed, the editor viomplained about the length of the line), although the Haskell interpreter, Hugs,had no problems with this format. Later versions of the ode format the outputin a slightly more human-readable form, breaking up the line and indenting tolarify the struture.The ompiler output �rst has two lines to import the de�nition of theAST struture (AldorAST) and de�nitions of the funtions to at on the tree(AbstratUtils). Thus, the top of the Haskell output �le looks something likethis:{-Haskell representation of the AST from the Aldor ompiler.Produed from the file "test.as" on Tuesday Jul 27 1999 at 14:31-}import AldorAST -- For the typesimport AbstratUtils -- For funtions that at on the treeast :: ASTast = ...Haskell ode is output on the basis of the abstrat syntax tree present aftermaro expansion and sope binding but before type inferene. A side e�et ofthis is that the Aldor ompiler will still type hek a program, but only afterthe program has been output as Haskell. Thus, if a type error ours, the Aldorompiler will tell you, but will have still produed Haskell ode. This providesa way to ompare the Aldor type heker with our own type heker, and alsoto work with programs rejeted by the Aldor ompilers type heker.3A previous report, desribing some of the internal struture of the Aldor ompiler isavailable at http://www.s.uk.a.uk/people/staff/ep5/Aldor/hris report.ps
4

4 The Abstrat Syntax Tree4.1 The Haskell RepresentationThe Aldor ompiler represents the Aldor program as an abstrat syntax tree.Di�erent ombinations of nodes are used to desribe di�erent aspets of thelanguage. This setion desribes some of the interesting nodes and how theyare used.4.2 How Aldor Uses Nodes4.2.1 Assign nodesAssign nodes are used by Aldor to represent assignments. Hene, they havetwo sub-trees to represent the left and right hand sides of the assignment. Forexamplea := 4is represented asAssign (Ident "a") (LitInt 4)4.2.2 Apply nodesApply nodes are used by Aldor to represent n-ary appliations. Hene, this nodehas a variable number of sub-trees. The �rst sub-tree is always the identi�er ofthe funtion. The rest of the sub-trees are the arguments to the funtion. Forexample, the funtion appliation... fun(3, 4, 5);is represented asApply [(Ident "fun"), (LitInt 3), (LitInt 4), (LitInt 5)℄Apply nodes also have a seond purpose. In line with the design philosophy ofAldor, as few primitives as possible are inluded in the system. This means thata funtion type is not represented as a primitive but rather as the appliationof the type onstrutor, ->, to a tuple of type arguments 4. For instane, thetype of the funtionfun(i:Integer):Integer == iis represented asApply [(Ident "->"),(Delare (Ident "i") (Ident "Integer")),(Ident "Integer")℄4This is disussed further in a paper by Simon Thompson and Erik Poll, available athttp://www.s.uk.a.uk/people/staff/ep5/Aldor.
5

This example shows the two representations of types. The simple representationof the return type Integer as an Ident and the more omplex representation ofthe type of the funtion as a whole. This use of Apply nodes to represent typesgets more ompliated when funtions take more than one argument. The typeis then represented as an appliation of -> to a Comma list of arguments and thereturn type. For example the type of the funtionfun2(i:Integer,j:Integer):Integer == i+j;is represented asApply [(Ident "->"),(Comma [(Delare ...),(Delare ...)℄),(Ident "Integer")℄Also, types that take arguments, suh as lists, are also represented as Applynodes. For instane the typeList Integeris represented asApply [(Ident "List"),(Ident "Integer")℄4.2.3 De�ne nodesDefine nodes are used to represent the de�nitions in an Aldor program. Suha node has two sub-trees, the left and right hand sides of the de�nition. Theleft hand side is normally a Delare node, speifying the identi�er and type.The right hand side is the body of the de�nition. For funtion de�nitions thisis normally a Lambda node (see Setion 4.2.5), whereas for simple delarationsthat take no arguments (e.g. a:Integer == 3) this is just the abstrat syntaxfor the right hand side of the delaration. For examplea:Integer == 3is represented like soDefine (Delare (Ident "a") (Ident "Integer")) (LitInt 3)4.2.4 Delare nodesA Delare node is used to represent delarations. A Delare node has twosubtrees. The �rst is the identi�er being delared. The seond is the defaulttype of the identi�er. For instane, the delarationa:Integerwould be represented asDelare (Ident "a") (Ident "Integer")
6

4.2.5 LambdaA Lambda node is a desription of a funtion. It has three sub-trees. The �rstis a desription of the parameters. The seond is a representation of the returntype. The third is the body of the funtion.The parameters are represented as a Comma list of Delare nodes. This iseven true of \no-arg" funtions, where the parameters are represented by anempty Comma list.The return type is the abstrat representation of the funtions return type,usually just an Ident node.The body of the funtion is represented using a Label node. A label nodehas two sub-trees. The �rst is the identi�er of the funtion, the seond is theatual body of the funtion. For instane the funtionfun (i:Integer):Integer == iis represented like soLambda (Comma [(Delare (Ident "i") (Ident "Integer"))℄)(Ident "Integer")(Label (Ident "fun") (Ident "i"))5 The Haskell Aldor interpreter5.1 Limitations and apabilitiesThe Haskell Aldor interpreter has the ability to :� Type hek assignments.� Type hek arguments to funtions, inluding funtions as arguments andtype arguments.� Exeute simple arithmeti (on Integer and Float).� Exeute reursive funtions (only if the terminating ondition an be eval-uated).� Exeute funtions that have funtions and/or types as arguments.The interpreter has a number of limitations (desribed below). These limita-tions are not aused by any fundamental problem. Rather, they are a result ofthe limited time available on this projet (8 weeks). Beause of the short timeavailable, it was neessary to restrit the funtionality to a small subset of thelanguage. This also lead to the deision to start with a very small implementa-tion and add funtionality as time permitted.� The de�nitions are not heked to ensure that their delared type is thesame as their atual type.� The ode to exeute Aldor abstrat syntax trees is apable of very simpleoperations on lists. However, the type heker does not have support forlists, so fails when it enounters a list.7

� There is very little of the axllib implemented. Only simple arithmetion Integer and Float and limited support for Boolean types.� Overloading of identi�ers is not permitted.The Haskell ode for the interpreter is split into seven �les. A brief desrip-tion of eah �le is shown below.AldorAST.lhs This �le ontains the de�nition of the Haskell type AST whih isthe Haskell representation of Aldor abstrat syntax trees.AbstratUtils.hs This �le is automatially imported in the output of theAldor ompiler. Hene, any exports from this module an be used onthe AST struture. All modules that are used on trees are imported bythis module. By default, it imports all the other �les in this list exeptAldorAST.lhs. It is possible to import your own modules in this module,allowing your own routines to be used on the abstrat syntax trees.ReurseAST.hs This �le ontains utility funtions to do ommon tasks likepassing a funtion over the AST struture. These are mainly long listsof ase distintions, and thus save a lot of work in the more interestingfuntions.PrintAST.hs This �le ontains ode to pretty print the AST struture. This isa muh easier form to read than the builtin show funtion.Definitions.hs This �le ontains the ode to build a table of all the de�nitionsin a program (e.g. all the funtion de�nitions). This is used for both typeheking and exeution.TypeChekAST.hs This �le ontains the ode to do the type heking of theabstrat syntax tree.ExeuteAST.hs This �le ontains the ode to do the exeution of the abstratsyntax tree.As far as understanding the operation of the interpreter, the interesting �les areDefinition.hs, TypeChekAST.hs and ExeuteAST.hs. Eah of these �les willnow be desribed in more detail.5.2 ReurseAST.hsAlthough this module is not interesting as far as understanding the operationof the interpreter, it is worth mentioning in passing. This module ontains fourfuntions. All are used to thread monadi funtions through the AST stru-ture. The funtion that is passed through has must have the type (a,AST) ->(a,AST). This is a funtion that may hange the struture a as a side e�et, andhene, is a mondi funtion. The funtions in ReurseAST.hs make sure thatno hanges to the struture a are lost (by ensuring the result of one funtionall is passed as an argument to the next funtion all).The four funtions are :applyToList This funtion applies a monadi funtion to a list of AST's.8

applyToSubTree This will apply a funtion to all the sub-trees of a node. Thisis a large funtion due to the large number of node kinds in the ASTstruture.applyToTreeBU This applies a funtion to all the nodes in a tree in a bottomup pass.applyToTreeTD This applies a funtion to all the nodes in a tree in a top downpass.5.3 De�nition.hsThe purpose of the ode in this �le is to produe a table of all the de�nitions inthe Aldor program. Beause of the limited time available for the projet, it wasdeided not to allow the use of overloading. There is no fundamental problemwith allowing overloading, but it signi�antly ompliates both type hekingand exeution.To make the ode easier to read, a number of types are de�ned �rst. Thesearetype Type = ASTtype Param = Stringdata Definition = FunDef String [Param℄ Type AST |IdDef String Type AST |NotDefinedtype DefTable = [Definition℄The FunDef onstrutor of Definition is used to desribe the de�nitions offuntions. The String argument is the identi�er of the funtion, the [Param℄argument is the list of parameters of the funtion, the Type argument is the typeof the funtion, and the AST is the body of the funtion. The IdDef onstrutoris used to desribe the de�nition of simple identi�ers that take no arguments.The table, DefTable, is implemented as a list to make manipulating the tableeasier, although it may not be the most eÆient method of storage.The main entry point into the ode in this module is the funtion addDef,whih takes a table of de�nitions and a piee of abstrat syntax and returns thetable with the de�nition added to to the head of the table. This funtion shouldbe passed only Define nodes. For all other node types the table is returnedunhanged. When a Define node is passed as an argument, addDef then usesthe funtion makeDef to build a representation of the de�nition and appends itto the head of the list of de�nitions.makeDef deides if the de�nition is the de�nition of a funtion or of a simpleidenti�er (e.g. a:Integer==3). If the right hand side of the Define node is aLambda node it is treated as a funtion de�nition, otherwise it is treated as ade�nition of a simple identi�er. The funtion then builds a representation ofthe appropriate type from parts of the abstrat syntax (see Setion 4.2.3).5.4 ExeuteAST.hsThe main entry point for exeuting the program's AST struture is the fun-tion exeuteTree. This funtion is a wrapper around the funtion exeTree.9

exeTree takes a tuple of the type (DefTable,AST) and returns another tupleof the same type. This argument format is used to allow the use of the funtionsin ReurseAST.hs (see Setion 5.2) to thread the exeTree funtion throughan AST struture. The exeTree funtion ignores all nodes exept the following:Assign When an Assign node is found, the funtion typeChek (see Setion5.5) is alled. If this sueeds the funtion evalAssign (desribed below)is used to evaluate the node and the result is returned. This returnedresult will replae the original Assign node in the AST struture. (Re-member, that a modi�ed opy of the original AST struture is returned bythe exeuteTree funtion).Apply These nodes are treated just like Assign nodes, exept that if the typehek sueeds then the funtion evalApply (desribed below) is used toevaluate the node, and the result is returned.Ident For these nodes, the funtion evalIdent is used to evaluate the node.Define For these nodes are passed straight to the funtion addDef (desribedin Setion 5.3).Not These nodes are evaluated using the funtion evalNot.Test The funtion evalTest is used to evaluate these nodes.If These nodes are evaluated using the evalCond funtion.There are several speialised funtions that are used to evaluate the di�erentnodes. These are desribed below:evalAssign The parameters to this funtion are a table of de�nitions and theAssign node. If the right hand side of the node is an Ident node, thefuntion evalIdent is used to evaluate it. If the right hand side is anApply node, the funtion evalApply is used. For all other ases, theAssign node is returned unhanged.evalApply This funtion deides what type of operation is being applied, thenuses the appropriate funtion to evaluate the given Apply node. Thefuntion knows about four kinds of funtions.� User funtions are those funtions that have been de�ned in the pro-gram. These are evaluated using the funtion evalUserFun (seeSetion 5.4.1).� Library funtions are those operations whih are de�ned outside theprogram �le being evaluated. Examples are operations suh as firstwhih are de�ned in axllib. For these types of operation, the fun-tion evalLibFun is used.� Binary operations (suh as + and -) are evaluated using the funtionevalBinOp.� For unary operations, evalUnaryOp is used.10

Before an Apply node is evaluated, the arguments to the appliation areevaluated. This is done so that simple delarations and identi�ers (suhas Ident "1") are resolved before the appliation itself is evaluated. Thearguments are evaluated by using the applyToList funtion to applyexeTree to eah element of the list of arguments.evalIdent Simple, builtin identi�ers, suh as 0 and 1 are onverted into lit-erals. For any other identi�ers, the identi�er is looked up in the tableof de�nitions and its value is returned as the result of the evaluation. Ifthe identi�er is not in the de�nition table, the Ident node is returnedunhanged.evalNot This assumes the argument to be inverted is already evaluated. Thefuntion then uses pattern mathing to invert the node.evalTest This, like the evalNot funtions, is essentially implemented by a fewpattern mathes.evalCond This �rst evaluates the ondition part of the If node using exeTree.If the ondition evaluates to Ident true, the \then" part of the If nodeis returned. If the ondition evaluates to Ident false, the \else" part isreturned. If the ondition annot be evaluated, the If node is returnedunhanged. This an be a problem in a reursive funtion, sine if the Ifnode is returned unhanged, the interpreter may try to repeatedly evaluatethe node.5.4.1 Evaluating user funtionsThe funtion evalUserFun is used to evaluate user de�ned funtions. To dothis, it �rst looks up the de�nition of the user funtion. It then extrats thede�nitions of the parameters from the de�nition of the user funtion. Theseare then onverted into a list of identi�er/value pairs by passing the parameterde�nitions and the atual arguments to the funtion mapAtToForm. The bodyof the funtion de�nition is then extrated. The funtion expandFunBody isthen used to replae all ourrenes of the parameter identi�ers in the bodywith the appropriate values of the parameters. The result is a body that anthen be exeuted using exeTree.5.5 TypeChekAST.hsThe main entry point into the type heking ode is the funtion typeChek.This funtion takes, as arguments, a funtion that is apable of exeuting ASTstrutures, a table of de�nitions and a piee of abstrat syntax to type hek.This funtion returns a Bool whih is True if the abstrat syntax type heksorretly and False otherwise.This funtion only type heks Assign nodes. These nodes were hosenbeause they have a lear left hand side and right hand side, whih must be ofthe same type. Assign nodes get type heked, but only if they are part of anassignment. All other nodes are assumed to type hek.The funtion that is passed as an argument to the typeChek funtion isused by the type heking ode to evaluate some of the abstrat syntax duringtype heking. For instane, the ode 11

idType(T:Type):Type == T;a:idType(Integer) := 4;needs to have idType(Integer) evaluated before the assignment an be typeheked. The type heking ode annot all the exeTree funtion from theExeuteAST.hs module diretly beause the ExeuteAST.hs module importsthe TypeChekAST.hs module (to be able to use the typeChek funtion).Hene, the TypeChekAST.hs module annot import the ExeuteAST.hs mod-ule, as this would ause a reursive dependeny in the two modules. Beause ofthis, the exeution funtion is passed as an argument to all the type hekingode that may need it.The essene of type heking is to build a list of possible types for eah sideof an expression, then ompare the two lists to see if there is a ommon type.If there is no ommon type, the type hek has failed. If there is more thanone ommon type, the expression is ambiguous. The expression passes the typehek when there is exatly one ommon type.Perhaps the most important funtion in this module is the funtion matheswhih takes two lists of types as arguments and returns True if there are anytype mathes in them. This funtion is the heart of the type heker. All otherfuntions are used to build the lists of possible types.To build a list of possible types of an expression, the funtion getTypeListis used. This funtion has the types of the literals (LitInt,LitFloat, et)builtin. For Delare nodes, the right hand side of the delaration (the righthand side of the olon) is returned. For Ident nodes, if the identi�er is inthe table of de�nitions, the funtion getUserIdType is used to build the list oftypes. Otherwise the Ident node is assumed to be a type and thus the typeType is returned. The �nal node type for whih this funtion produes a list oftypes is Apply nodes. If the operation being applied is de�ned in the table ofde�nitions, the funtion getUserFunType is used to get the type list. If theoperation is one of the builtin operations, the funtion getBuiltInType is used.The funtion getUserIdType is used to return the list of possible types for auser de�ned identi�er. This involves looking up the identi�er and retrieving theappropriate entry. From this entry the type of the identi�er is obtained, whihis then returned as a list.The funtion getUserFunType returns the list of possible types for a userde�ned funtion. This starts by looking up the de�nition for the funtion. Whenit is found, the stored type of the funtion is retrieved. This type, however, mayhave type variables, so these must be replaed with their atual values. Tofailitate this, the type (whih is represented by a single AST) is broken up intoa list of types, orresponding to the arguments and return type of the funtion.The funtion getInstaneType is then used to onvert the list of types into thelist of atual types. That is, any type arguments are replaed by the appropriatevalue from the parameters of the funtion. The expeted types of the parametersare then determined, along with the atual types of the arguments. These typesare ompared, and, if they are the same, are returned as the type of the funtion.The funtion getBuiltInType is used to determine the types of builtin op-erations suh as +. This is ahieved by looking up the operation in a hard odedtable of builtin operations and their types. This lookup will return a list oftypes, beause the builtin operations work on many types. To determine whihtype is the orret type, the types of the arguments to the operation must be12

determined. One the types of the arguments are determined, the type of theoperation is hosen and returned.

13

