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Modelling Con
urrent Cognitive Ar
hite
tures usingPro
ess Cal
uliHoward BowmanComputing Laboratory,University of Kent at Canterbury,Canterbury, Kent, CT2 7NF, UK+44-1227-764000H.Bowman�uk
.a
.ukABSTRACTTheories of 
on
urrent systems have been exten-sively investigated in the 
omputer s
ien
e domain.However, these theories are very general in natureand hen
e, we would argue, are appli
able to manydis
iplines in whi
h 
on
urren
y arises. Further-more, a number of existing theories of 
ognitives
ien
e are 
on
urrent in nature. Thus, we investi-gate the appli
ation of a (pro
ess 
al
uli based) 
on-
urren
y theory to modelling Intera
ting CognitiveSubsystems, whi
h is su
h a (
on
urrent) 
ognitivetheory. Then we 
onsider the 
apabilities of the
ognitive system to perform 
ombinations of spee
hand gesture in multi-modal human 
omputer inter-a
tion.KeywordsCon
urren
y Theory, Intera
tive Cognitive Subsys-tems, Pro
ess Cal
uliINTRODUCTIONMany di�erent notations have been used to des
ribe
ognitive models. For example, at least three dif-ferent 
lasses of notation have been used to givedes
riptions of the pivotal 
ognitive ar
hite
tureSOAR:� natural language des
riptions augmented withbox and arrow diagrams, e.g. [Newell, 1990℄;� exe
utable implementations, e.g. the Lisp andC programs underlying the standard Soar im-plementation; and� even des
riptions by [Milnes, 1992℄ in the for-mal spe
i�
ation notation Z, whi
h is a 
ombi-nation of set theory, �rst order logi
 and 
on-stru
ts for stru
turing spe
i�
ations.It is 
lear that the 
hoi
e of notation dramati
allya�e
ts the \value" of (even the ability to 
omplete)a des
ription of a 
ognitive model. In a very general

sense, sele
tion of an appropriate modelling nota-tion 
an be a major enabler to problem solving. Totake a familiar illustration, the uptake of the arabi
number system in the middle ages 
ru
ially enabledthe progress of arithmeti
, e.g. the development ofarithmeti
 manipulation te
hniques, su
h as longdivision, whi
h would have been infeasible with, forexample, the roman number system.It is thus natural to believe that the identi�
a-tion of appropriate modelling notations, whi
h o�era suitable level of abstra
tion 
an aid the progressof 
ognitive modelling. It is with su
h identi�
ationin mind that the work reported here has been per-formed. Spe
i�
ally, the underlying tenet for ourwork is that a set of new te
hniques from formal
omputer s
ien
e 
an be advantageously applied todes
ribing and analysing 
ognitive models. Thesete
hniques have arisen out of the �eld of 
on
ur-ren
y theory .Early 
on
urren
y theory work, whi
h yieldedpetri nets, was followed in the 80's by the develop-ment of a wealth of te
hniques, e.g. 
ommuni
atingautomata, further petri nets resear
h, temporal log-i
s and the te
hniques we will be interested in in thispaper - pro
ess 
al
uli [Milner, 1989℄. Althoughdeveloped with 
omputer appli
ations in mind the
ore 
on
epts of 
on
urren
y theory are 
ompletelygeneral and are appli
able to modelling any varietyof 
on
urrent system.The relevan
e of 
on
urren
y theory to 
ognitivemodelling is that most 
ognitive theories are, atsome level, 
on
urrent. For example, Soar 
on-tains elements of 
on
urrent behaviour. Further-more, there has been re
ent interest in de
entral-ized models, where 
ognition is modelled in terms ofa 
olle
tion of independently evolving (and equallystatused) 
omponents, whi
h intera
t. The parti
u-lar su
h ar
hite
ture that we 
onsider is Intera
tingCognitive Subsystems (ICS) [Barnard, 1998℄.We have 
hosen ICS for a number of reasons.



Firstly, the ar
hite
ture has been used su

essfullyto analyse multi-modal human 
omputer intera
-tion, whi
h is the �eld from whi
h this work hasarisen. Se
ondly, there has been previous work, e.g.[Duke and Du
e, 1996℄ on modelling ICS with for-mal methods1. Thirdly, the 
on
urrent nature ofICS suggests that from within the formal methods
anon, 
on
urren
y theory te
hniques are an appro-priate 
hoi
e.The parti
ular area of 
ognitive s
ien
e our workfo
uses on is analysis of 
ombinations of spee
h andgesture in multi-modal human 
omputer intera
-tion. In fa
t, this extended abstra
t has grownout of a large body of work we have performedon des
ribing and analysing su
h spee
h/gesture
ombinations using ICS and pro
ess 
al
uli. The
omplete des
ription of this work runs to 90 pages[Bowman, 1998℄. This extended abstra
t sum-marises some of the main issues surrounding thiswork, without delving into the te
hni
al details.We will �rst give a very brief outline of ICS. Thenwe dis
uss two reasons for using pro
ess 
al
uli tomodel ICS - they allow 
on
urren
y to be modelleddire
tly and they support abstra
t spe
i�
ation. Wethen 
onsider how 
ognitive goals whi
h 
ombinespee
h and gesture 
an be analysed using pro
ess
al
uli and �nally, we present some 
on
luding re-marks.INTERACTIVE COGNITIVESUBSYSTEMSICS adopts a \top down" approa
h to the design ofa 
ognitive theory by providing a framework 
on-taining a set of 
ore 
omponents and me
hanismsthat, it is argued, give a \potential design of a 
om-plete mental me
hanism" [Barnard, 1998℄.We give a brief review of ICS, for a 
ompletepresentation the interested reader is referred to[Barnard, 1998℄.Representations and Subsystems. The basi
data item in ICS is the representation2. These arepast amongst the 
omponents of the ar
hite
ture,being transformed from one 
ode to another in ea
h
omponent. Thus, the ar
hite
ture 
an be seen asan information 
ow model.The 
omponents of the ar
hite
ture are 
alledsubsystems and all subsystems have the same gen-eral format, whi
h is shown in �gure 1 (above).1This term des
ribes the set ofmathemati
ally based 
om-puter s
ien
e spe
i�
ation and analysis te
hniques, of whi
h
on
urren
y theory te
hniques are an example.2This term embra
es all forms of mental 
odes, from \pat-terns of shapes and 
olour" as found in visual sensory sys-tems; to \des
riptions of entities and relationships in seman-ti
 spa
e" as found in semanti
 subsystems [Barnard, 1998℄.
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Figure 1: Subsystem Format and Reading Con�g.Ea
h subsystem itself 
ontains 
omponents. For ex-ample, representations re
eived by a subsystem arepla
ed in the input array . Ea
h subsystem 
ontainsa set of transformations whi
h take representationsfrom the input array, apply some transformationaloperations to them and then relay a new (trans-formed) representation to a target subsystem. Su
htransformations are also shown in �gure 1 (below).We do not 
onsider the image re
ord here.The Ar
hite
ture. Rather than present the fullICS ar
hite
ture we 
on
entrate on a parti
ular
on�guration of the ar
hite
ture - a reading 
on-�guration, see �gure 1 (below). Ea
h subsystemis a spe
ialization of the general subsystem formatjust highlighted. The roles of the subsystems shownare:-� Visual (VIS) - re
eives representations from theeyes en
oding \patterns of shapes and 
olour",i.e. light wavelength (hue) and brightness;� Morphonolexi
al (MPL) - works with an ab-stra
t stru
tural des
ription of entities and re-lationships in sound spa
e, i.e. lexi
al identitiesof words, their status and order;� Obje
t (OBJ) - works with an abstra
t stru
-tural des
ription of entities and relationships invisual spa
e, e.g. attributes of obje
ts: shapeand relative position;� Propositional (PROP) - works with des
rip-tions of entities and relationships in semanti




spa
e, i.e. gives semanti
 meaning to entitiesand highlights the semanti
 relationships be-tween entities;Also the 
on
urrent nature of the ar
hite
tureshould be be
oming 
lear - subsystems evolve simul-taneously and independently subje
t to intera
tionbetween subsystems when representation 
onvert-ing transformations are performed.Blending. Sensory subsystems, e.g. VIS, are a
ommon sour
e of representation 
ows. Ea
h repre-sentation is then relayed within the ar
hite
ture bythe o

urren
e of transformations3. Multiple 
ows
an exist in the ar
hite
ture at the same time. Thear
hite
ture a

ommodates a number of di�erentout
omes in this situation. However, the interest-ing one is if an output transformation a
ts on a rep-resentation whi
h is a 
ombination of two (or more)\
ompeting" input representations. This possibil-ity leads to the 
on
ept of blending .Representations from di�erent 
ows 
an beblended to 
reate a 
omposite representation. How-ever, the nature of the blending depends upon the
ognitive task being 
onsidered. For example blend-ing might only be possible if the two represen-tations are, in some appropriate sense, 
onsistent[Barnard, 1998℄.CONCURRENCYThe majority of work on mathemati
al theories of
omputing has fo
used on systems, whi
h 
an be
ategorised as sequential . Su
h systems 
an typi-
ally be viewed as input to output transformers. Al-though perfe
tly adequate in the sequential setting,su
h transformational interpretations are insuÆ-
ient in the 
on
urrent setting. Con
urren
y theoryhas responded to this problem. It studies systems
ontaining a number of 
omponents that evolve si-multaneously. Su
h forms of 
on
urrent behaviour
an be found throughout the di�erent bands of 
og-nitive a
tivity, e.g. the neuronal, neural 
ir
uit, 
og-nitive operation and task levels [Newell, 1990℄.With transformational systems the key issue iswhat results the 
omputation terminates with, how-ever with 
on
urrent systems this is no longer the
ase. The interesting aspe
t of 
on
urrent systemsis rather their ongoing behaviour and how 
ompo-nents respond to external stimuli throughout thesystem's life-time. Thus, 
on
urrent systems aremodelled in terms of the order in whi
h they 
anperform external intera
tions.3There is a
tually a debate 
on
erning how representa-tions are relayed through the ar
hite
ture. Here we assumedis
rete transformation �ring. This is a reasonable abstra
-tion for our purposes.

We have interpreted ICS using a parti
-ular te
hnique from the 
on
urren
y the-ory domain - the pro
ess 
al
ulus LOTOS[Bolognesi and Brinksma, 1988℄. This 
ontainsoperators to des
ribe 
on
urrent 
omponents andintera
tion between 
omponents. Our spe
i�
ationof ICS and a LOTOS introdu
tion 
an be found in[Bowman, 1998℄.The prin
iple stru
turing 
onstru
t in LOTOSis the pro
ess . A pro
ess is an autonomous and
on
urrently evolving entity, e.g. �gure 2 (i) de-pi
ts three pro
esses - the big 
ir
les. Ea
h pro
ess
ontains a number of intera
tion points, the smallsquares, at whi
h it 
an 
ommuni
ate with other
on
urrently evolving pro
essses.Clearly in a model 
onstru
ted with autonomous
omponents a me
hanism needs to be providedwhi
h enables 
omponents to intera
t, e.g. the ar-row in �gure 2 (i). The syn
hronous rendez-vousof pro
ess 
al
uli is su
h a notion of intera
tion.When both pro
esses are ready, a syn
hronisationand asso
iated transfer of data o

urs. Su
h prim-itive intera
tions yield the 
on
ept of an a
tion.Intera
tion in the 
ognitive domain 
an be 
on-stru
ted using the syn
hronous rendez-vous. Forexample, intera
tion in ICS is based on transfor-mation o

uren
es. Su
h events are modelled in theLOTOS interpretation as a
tion exe
utions. For ex-ample, the a
tion instan
e,vis obj?r:Repmodels the OBJ subsystem re
eiving a representa-tion (whi
h will be bound to the variable r) fromVIS on the transformation vis obj.As an illustration of our spe
i�
ation, assumingwe have de�nitions for all subsystems, we 
an buildthe top level behaviour of ICS using parallel 
om-position, i.e. the notation C1 |[a1,...,an℄|C2 statesthat 
omponents C1 and C2 evolve in parallel sub-je
t to intera
tion on a1,...,an. Thus, an event ai
an only be performed when both C1 and C2 areready to perform it. As an illustration, the read-ing sub-
on�gurations of ICS, whi
h we dep
itedin �gure 1 (below), 
an be modelled using parallel
omposition as,(( VISUAL(...) |[vis obj℄| OBJECT(...) )|[obj prop,prop obj℄|PROPOSITIONAL(...) )|[obj mpl,prop mpl,mpl prop℄|MORPHONOLEXICAL(...)This states that the VISUAL and OBJECT sub-systems evolve 
on
urrently, while ex
hanging rep-resentations via the transformation vis obj; whi
h



in turn evolve 
on
urrently with the PROPOSI-TIONAL subsystem while ex
hanging representa-tions on obj prop and prop obj; and so on.ABSTRACT SPECIFICATIONImportantly, formal spe
i�
ations are in naturevery di�erent to 
omputer programs or what we willmore broadly 
all implementations . A formal spe
i-�
ation is abstra
t in the sense that it 
hara
terisesa set of possible implementations (the implementa-tions that satisfy it), while a program 
hara
terisesa single implementation - itself.Asso
iated with this aspe
t is the desire not tooverspe
ify (or in other terms to provide loose spe
-i�
ation), i.e. that the nature of the spe
i�
ationlanguage should not for
e the spe
i�er to rule outa

eptable implementations. We believe this fea-ture of formal spe
i�
ation is very useful in the 
og-nitive setting.An important issue in modern 
ognitive s
ien
eis, what has been 
alled, the irrelevant spe
i�-
ation problem [Newell, 1990℄. In order to 
on-stru
t a working simulation program a large num-ber of assumptions have to be made, leaving itun
lear what aspe
t of the behaviour of the pro-gram 
orresponds to known 
ognitive behaviourand what arises from expedien
y. For example[Cooper et al., 1996℄ state,\Computational models 
on
ate empiri-
ally justi�ed me
hanisms with pragmati
implementation details, and essential the-oreti
al aspe
ts of theories are frequentlyhard to identify"In fa
t, [Cooper et al., 1996℄ have dire
tly targetedthis issue. Their approa
h is to use a re-engineeredversion of Prolog whi
h keeps the theoreti
al andimplementation assumptions disjoint, thus enablingone to observe the 
onsequen
es of 
hanging parti
-ular implementation assumptions.The approa
h we advo
ate is even more radi-
al and further from 
onventional implementationprogramming. We would argue that the irrelevantspe
i�
ation problem arises be
ause 
ognitive the-ories are 
loser to spe
i�
ations than implementa-tions/programs. Cognitive theories typi
ally leavemu
h unexplained sin
e a 
omplete me
hanisti
 in-terpretation of 
ognition is not available. Thus, a
ognitive model is an abstra
t des
ription of be-haviour, for whi
h the implementation details 
anbe �lled in in many ways. Using the terminologyof abstra
t spe
i�
ation, a parti
ular programmingimplementation of a 
ognitive model is an imple-mentation whi
h satis�es the 
ognitive model. Im-portantly, it 
ertainly is not the 
ognitive model it-self. Thus, our approa
h has been to spe
ify ICS ab-

stra
tly, yielding a des
ription whi
h 
hara
terisesmany possible a
tual implementations.A major way in whi
h abstra
t spe
i�
ationis supported in pro
ess 
al
uli is through non-determinism. This allows many possible behavioursto be in
luded in the same spe
i�
ation, with the
hoi
e between them left unspe
i�ed. Su
h non-determinism is used in many pla
es in our LOTOSinterpretation of ICS. For example, we use non-determinism to model the ICS 
on
ept of blending.As an illustration, we 
an de�ne a hiera
hy of in-terpretations of blending ([Bowman, 1998℄ a
tuallypresents a mu
h larger and more detailed hierar-
hy). For example, assuming a set Rep of repre-sentations whi
h 
ontains a null element, denotednull and that obj prop a
ts upon a blend of repre-sentations r1 and r2 (whi
h have been pla
ed in theOBJ input array from VIS and PROP), see �gure 2(ii), there are a number of possible ways of gener-ating the new representation r and these possibleways 
an be pla
ed in a hiera
hy, see �gure 2 (iii),a

ording to their level of non-determinism. Wehighlight three ways here,
(i)

r1

r2

obj_prop

r

OBJ
(ii)

1

2 3
More
Deterministic

(iii)

Figure 2: Assorted Figures1. r2Rep, i.e. randomly 
hosen from the set of allpossible representations;2. r 2 fr1; r2g, i.e. a random 
hoi
e of r1 and r2;3. r = if 
ons(r1; r2) then 
omp(r1; r2) else nullif r1 and r2 are \
onsistent" then 
ompose themtogether otherwise return null.



1. gives an upper bound on the level of non-determinism - it is a 
ompletely non-deterministi
approa
h. Note that although the extreme non-determinism inherent in 1. makes the approa
h 
og-nitively strange, i.e. r has no relation to r1 or r2, thisis still an analyti
ally useful interpretation. Spe
if-i
ally, for analysis of many 
ognitive properties wewill only be interested (or may only need to be inter-ested) in the blending whi
h o

urs at 
ertain sub-systems and we 
an leave all other blending 
om-pletely unspe
i�ed.Approa
h 2. has a similar 
avour to approa
h 1.,the di�eren
e being that the set from whi
h therepresentation is 
hosen is restri
ted to the two rel-evant representations.In 
ontrast, in approa
h 3. the two input repre-sentations are 
ompared to determine if they are
onsistent, e.g. whether they are representationswith the same psy
hologi
al subje
t , if they are 
on-sistent, a representation whi
h in some way 
om-bines the features of the two input representationsis generated. Of 
ourse, there are many ways inwhi
h su
h a 
ombined representation 
ould be 
on-stru
ted and these di�erent approa
hes will arisein di�erent 
ognitive tasks, at di�erent subsystems.However, the important issue is that all su
h ap-proa
hes 
an be related a

ording to their level ofnon-determinism.One of the really ni
e aspe
ts of how non-determinism behaves in pro
ess 
al
uli, is that, notonly does it support abstra
t spe
i�
ation, it alsoallows (simulated) exe
ution and proof based veri-�
ation.Simulated Exe
ution. A diÆ
ult problem thatarises with \abstra
t spe
i�
ations" is how to pro-vide \exe
utable" realizations. For example, this
an be a problem if des
riptions are given in purelogi
, e.g. in �rst order or temporal logi
s. How-ever, while being abstra
t, pro
ess 
a
ulus des
rip-tions are still \algorithmi
" and 
an thus, be exe-
uted using a simulation engine. The approa
h isthat the spe
i�
ation is run, with the user of thesimulator intera
tively resolving 
hoi
es and non-determinism, yielding an exe
ution tra
e.Furthermore, by 
omposing in parallel a pro-
ess whi
h plays the role of an implementationenvironment, i.e. resolves 
hoi
es in a parti
u-lar manner, the spe
i�
ation 
an be exe
uteda

ording to a parti
ular implementation poli
y.This is equivalent to imposing parti
ular imple-mentation assumptions, i.e. in the terminology of[Cooper et al., 1996℄ enfor
ing \below the line" as-sumptions. By 
hanging this implementation envi-ronment pro
ess we 
an assess the e�e
ts of di�er-ent implementation assumptions (e.g. di�erent in-

terpretations of blending) in the same manner as[Cooper et al., 1996℄.Goal Veri�
ation. By asso
iating a logi
 withour pro
ess 
al
ulus we 
an assert properties/goalsof a spe
i�
ation of a 
ognitive model (as illustratedin our 
ase study dis
ussion whi
h follows shortly).Furthermore, non-determinism possesses very ni
emathemati
al properties in this respe
t. For exam-ple, it 
an be shown that for any negative property(see [Bowman, 1998℄ and the next se
tion) that,if the property holds over a spe
i�
ation Sit will also hold over any spe
i�
ation thatis \more deterministi
" than S.In terms of the irrelevant spe
i�
ation problemthis implies that any negative property that we 
andedu
e from our abstra
t spe
i�
ation of the 
og-nitive model will also hold over its 
on
rete imple-mentations. This is a very valuable methodologi-
al devi
e. For example, mu
h of the reasoning we
an make with our \most abstra
t" interpretationof blending will hold for all its instantiations.CASE STUDY[Bowman, 1998℄ des
ribes a spe
i�
ation and thenanalysis of ICS in the 
ontext of a number of su
hspee
h/gesture goals. We summarise this workhere.Spe
i�
ation. A LOTOS spe
i�
ation of ICS isgiven. Semanti
ally, LOTOS spe
i�
ations 
an beinterpreted as a set of state sequen
es, 
alled inter-vals4. We let 
(S) denote the intervals of a spe
-i�
ation S. Then an interval temporal logi
 is in-trodu
ed whi
h 
an be used to formulate 
ognitivegoals of ICS. It is interpreted over intervals. Thus,giving a semanti
 link to the LOTOS spe
i�
ation.Goal Formulation. The 
apabilities of ICS toperform 
ombined spee
h and gesture tasks is 
on-sidered. Su
h dei
ti
 intera
tion is a good exampleof multi-modal human-
omputer intera
tion. Anal-ysis of su
h 
ombined spee
h and gesture modali-ties is parti
ularly signi�
ant sin
e it addresses a
ommon myth in HCI, whi
h is that sin
e humanto human 
ommuni
ation 
ommonly 
ombines su
hmodes of intera
tion, it should be bene�
ial to de-vise similar 
ombinations of human-
omputer inter-a
tions. The analyse pro
eeds by �rst formulatingthe 
ognitive goals that are of interest. These goals
ome in two varieties - negative and positive goals.A typi
al negative property that is analysed is:(8r1 6= r2)ICS j= :3a (speak(r1) ^ 3a lo
ated(r2))4Su
h an interval 
an be viewed as a run/exe
ution of thespe
i�
ation.



where, ICS is the LOTOS spe
i�
ation of ICS;S j= � states that the spe
i�
ation S satis�es theformula �; ri are representations and 3a  holds overan interval whi
h 
ontains a subinterval where  holds. Informally, this property states that it isnot possible to speak one representation and lo
ate(i.e. point at with, say a mouse) a di�erent repre-sentation at the \same" time5.A typi
al positive property whi
h, informally,states that it is possible to speak and lo
ate thesame representation at the \same" time, would be:(8r) (9� 2 
(ICS))� ` 3a (speak(r) ^ 3a lo
ated(r))Analysis. Simulation and dedu
tive reasoning areused. Properties of the form of the above negativeproperty are veri�ed using dedu
tive reasoning inthe logi
. In 
ontrast, positive properties are ver-i�ed by intera
tively 
onstru
ting a ful�lling tra
eusing the simulation tool LOLA.Using these analysis te
hniques both the aboveproperties 
an be shown to hold.CONCLUSIONSThere is a spe
trum of available modelling te
h-niques with the two extremes being programmingbased approa
hes, su
h as those typi
ally used toimplement 
ognitive models, e.g. the LISP pro-grams underlying SOAR, and abstra
t uses ofmathemati
al logi
, e.g. temporal logi
6. A weak-ness of the former approa
hes is that they are of-ten too pres
riptive, for
ing a parti
ular \me
ha-nisti
" interpretation on the 
ognitive model, leav-ing it un
lear whi
h aspe
t of the programs be-haviour results from the 
ognitive model and whi
harises from implementation de
isions. In formalterms, programs only 
hara
terise a single imple-mentation. In 
ontrast, abstra
t logi
al te
hniques
an 
hara
terise a set of possible implementations.Thus, enabling spe
i�
ation whi
h is not pres
rip-tive about implementation details. However, logi
aldes
riptions typi
ally fail to support exe
ution of aspe
i�
ation, even in a simulated form.Pro
ess 
al
uli 
an be seen to sit between thesetwo extremes. Firstly, the LOTOS spe
i�
ation wehave given enables simulated exe
ution. Se
ondly,pro
ess 
al
uli provide te
hniques for avoiding over-pres
riptive des
ription. In parti
ular, they fa
ili-tate loose spe
i�
ation by allowing des
riptions to
ontain non-determinism.5A
tually, the use of di�erent representations here isslightly subtle, to be more pre
ise r1 and r2 denote repre-sentations with di�erent psy
hologi
al subje
ts.6Note that here we do not mean logi
 programming ap-proa
hes, rather we refer to pure abstra
t logi
, whi
h in
ontrast to Prolog say, does not 
ontain framing of data.
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