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ABSTRACT

Theories of concurrent systems have been exten-
sively investigated in the computer science domain.
However, these theories are very general in nature
and hence, we would argue, are applicable to many
disciplines in which concurrency arises. Further-
more, a number of existing theories of cognitive
science are concurrent in nature. Thus, we investi-
gate the application of a (process calculi based) con-
currency theory to modelling Interacting Cognitive
Subsystems, which is such a (concurrent) cognitive
theory. Then we consider the capabilities of the
cognitive system to perform combinations of speech
and gesture in multi-modal human computer inter-
action.

Keywords
Concurrency Theory, Interactive Cognitive Subsys-
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INTRODUCTION

Many different notations have been used to describe
cognitive models. For example, at least three dif-
ferent classes of notation have been used to give
descriptions of the pivotal cognitive architecture

SOAR:

e natural language descriptions augmented with
box and arrow diagrams, e.g. [Newell, 1990];

e executable implementations, e.g. the Lisp and
C programs underlying the standard Soar im-
plementation; and

e even descriptions by [Milnes, 1992] in the for-
mal specification notation Z, which is a combi-
nation of set theory, first order logic and con-
structs for structuring specifications.

It is clear that the choice of notation dramatically
affects the “value” of (even the ability to complete)
a description of a cognitive model. In a very general

sense, selection of an appropriate modelling nota-
tion can be a major enabler to problem solving. To
take a familiar illustration, the uptake of the arabic
number system in the middle ages crucially enabled
the progress of arithmetic, e.g. the development of
arithmetic manipulation techniques, such as long
division, which would have been infeasible with, for
example, the roman number system.

It is thus natural to believe that the identifica-
tion of appropriate modelling notations, which offer
a suitable level of abstraction can aid the progress
of cognitive modelling. It is with such identification
in mind that the work reported here has been per-
formed. Specifically, the underlying tenet for our
work is that a set of new techniques from formal
computer science can be advantageously applied to
describing and analysing cognitive models. These
techniques have arisen out of the field of concur-
rency theory.

Early concurrency theory work, which yielded
petri nets, was followed in the 80’s by the develop-
ment of a wealth of techniques, e.g. communicating
automata, further petri nets research, temporal log-
ics and the techniques we will be interested in in this
paper - process calculi [Milner, 1989]. Although
developed with computer applications in mind the
core concepts of concurrency theory are completely
general and are applicable to modelling any variety
of concurrent system.

The relevance of concurrency theory to cognitive
modelling is that most cognitive theories are, at
some level, concurrent. For example, Soar con-
tains elements of concurrent behaviour. Further-
more, there has been recent interest in decentral-
ized models, where cognition is modelled in terms of
a collection of independently evolving (and equally
statused) components, which interact. The particu-
lar such architecture that we consider is Interacting
Cognitive Subsystems (ICS) [Barnard, 1998].

We have chosen ICS for a number of reasons.



Firstly, the architecture has been used successfully
to analyse multi-modal human computer interac-
tion, which is the field from which this work has
arisen. Secondly, there has been previous work, e.g.
[Duke and Duce, 1996] on modelling ICS with for-
mal methods'. Thirdly, the concurrent nature of
ICS suggests that from within the formal methods
canon, concurrency theory techniques are an appro-
priate choice.

The particular area of cognitive science our work
focuses on is analysis of combinations of speech and
gesture in multi-modal human computer interac-
tion. In fact, this extended abstract has grown
out of a large body of work we have performed
on describing and analysing such speech/gesture
combinations using ICS and process calculi. The
complete description of this work runs to 90 pages
[Bowman, 1998].  This extended abstract sum-
marises some of the main issues surrounding this
work, without delving into the technical details.

We will first give a very brief outline of ICS. Then
we discuss two reasons for using process calculi to
model ICS - they allow concurrency to be modelled
directly and they support abstract specification. We
then consider how cognitive goals which combine
speech and gesture can be analysed using process
calculi and finally, we present some concluding re-
marks.

INTERACTIVE COGNITIVE
SUBSYSTEMS
ICS adopts a “top down” approach to the design of
a cognitive theory by providing a framework con-
taining a set of core components and mechanisms
that, it is argued, give a “potential design of a com-
plete mental mechanism” [Barnard, 1998].

We give a brief review of ICS, for a complete

presentation the interested reader is referred to
[Barnard, 1998].

Representations and Subsystems. The basic
data item in ICS is the representation®. These are
past amongst the components of the architecture,
being transformed from one code to another in each
component. Thus, the architecture can be seen as
an information flow model.

The components of the architecture are called
subsystems and all subsystems have the same gen-
eral format, which is shown in figure 1 (above).

LThis term describes the set of mathematically based com-
puter science specification and analysis techniques, of which
concurrency theory techniques are an example.

2This term embraces all forms of mental codes, from “pat-
terns of shapes and colour” as found in visual sensory sys-
tems; to “descriptions of entities and relationships in seman-
tic space” as found in semantic subsystems [Barnard, 1998].
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Figure 1: Subsystem Format and Reading Config.

Each subsystem itself contains components. For ex-
ample, representations received by a subsystem are
placed in the input array. Each subsystem contains
a set of transformations which take representations
from the input array, apply some transformational
operations to them and then relay a new (trans-
formed) representation to a target subsystem. Such
transformations are also shown in figure 1 (below).
We do not consider the image record here.

The Architecture. Rather than present the full
ICS architecture we concentrate on a particular
configuration of the architecture - a reading con-
figuration, see figure 1 (below). Each subsystem
is a specialization of the general subsystem format
just highlighted. The roles of the subsystems shown
are:-

o Visual (VIS) - receives representations from the
eyes encoding “patterns of shapes and colour”,
i.e. light wavelength (hue) and brightness;

e Morphonolexical (MPL) - works with an ab-
stract structural description of entities and re-
lationships in sound space, i.e. lexical identities
of words, their status and order;

e Object (OBJ) - works with an abstract struc-
tural description of entities and relationships in
visual space, e.g. attributes of objects: shape
and relative position;

e Propositional (PROP) - works with descrip-
tions of entities and relationships in semantic



space, i.e. gives semantic meaning to entities
and highlights the semantic relationships be-
tween entities;

Also the concurrent nature of the architecture
should be becoming clear - subsystems evolve simul-
taneously and independently subject to interaction
between subsystems when representation convert-
ing transformations are performed.

Blending. Sensory subsystems, e.g. VIS, are a
common source of representation flows. Each repre-
sentation is then relayed within the architecture by
the occurrence of transformations®. Multiple flows
can exist in the architecture at the same time. The
architecture accommodates a number of different
outcomes in this situation. However, the interest-
ing one is if an output transformation acts on a rep-
resentation which is a combination of two (or more)
“competing” input representations. This possibil-
ity leads to the concept of blending.

Representations from different flows can be
blended to create a composite representation. How-
ever, the nature of the blending depends upon the
cognitive task being considered. For example blend-
ing might only be possible if the two represen-
tations are, in some appropriate sense, consistent
[Barnard, 1998].

CONCURRENCY
The majority of work on mathematical theories of
computing has focused on systems, which can be
categorised as sequential. Such systems can typi-
cally be viewed as input to output transformers. Al-
though perfectly adequate in the sequential setting,
such transformational interpretations are insuffi-
cient in the concurrent setting. Concurrency theory
has responded to this problem. It studies systems
containing a number of components that evolve si-
multaneously. Such forms of concurrent behaviour
can be found throughout the different bands of cog-
nitive activity, e.g. the neuronal, neural circuit, cog-
nitive operation and task levels [Newell, 1990].
With transformational systems the key issue is
what results the computation terminates with, how-
ever with concurrent systems this is no longer the
case. The interesting aspect of concurrent systems
is rather their ongoing behaviour and how compo-
nents respond to external stimuli throughout the
system’s life-time. Thus, concurrent systems are
modelled in terms of the order in which they can
perform external interactions.

3There is actually a debate concerning how representa-
tions are relayed through the architecture. Here we assume
discrete transformation firing. This is a reasonable abstrac-
tion for our purposes.

We have interpreted ICS wusing a partic-
ular technique from the concurrency the-
ory domain - the process calculus LOTOS
[Bolognesi and Brinksma, 1988].  This contains
operators to describe concurrent components and
interaction between components. Qur specification
of ICS and a LOTOS introduction can be found in
[Bowman, 1998].

The principle structuring construct in LOTOS
is the process. A process is an autonomous and
concurrently evolving entity, e.g. figure 2 (i) de-
picts three processes - the big circles. Each process
contains a number of interaction points, the small
squares, at which it can communicate with other
concurrently evolving processses.

Clearly in a model constructed with autonomous
components a mechanism needs to be provided
which enables components to interact, e.g. the ar-
row in figure 2 (i). The synchronous rendez-vous
of process calculi is such a notion of interaction.
When both processes are ready, a synchronisation
and associated transfer of data occurs. Such prim-
itive interactions yield the concept of an action.

Interaction in the cognitive domain can be con-
structed using the synchronous rendez-vous. For
example, interaction in ICS is based on transfor-
mation occurences. Such events are modelled in the
LOTOS interpretation as action executions. For ex-
ample, the action instance,

vis_obj?r:Rep

models the OBJ subsystem receiving a representa-
tion (which will be bound to the variable r) from
VIS on the transformation vis_obj.

As an illustration of our specification, assuming
we have definitions for all subsystems, we can build
the top level behaviour of ICS using parallel com-
position, i.e. the notation C; |[a,...,a,]| Co states
that components C; and Cy evolve in parallel sub-
ject to interaction on ai,...,a,. Thus, an event a;
can only be performed when both C; and Cy are
ready to perform it. As an illustration, the read-
ing sub-configurations of ICS, which we depcited
in figure 1 (below), can be modelled using parallel
composition as,

(( VISUAL(...) |[vis.obj]l OBJECT(..) )
| [obj_prop,prop-obj] |
PROPOSITIONAL(...) )

| [obj_mpl,prop_mpl,mpl_prop] |
MORPHONOLEXICAL(...)

This states that the VISUAL and OBJECT sub-
systems evolve concurrently, while exchanging rep-
resentations via the transformation vis_obj; which



in turn evolve concurrently with the PROPOSI-
TIONAL subsystem while exchanging representa-
tions on obj_prop and prop_obj; and so on.

ABSTRACT SPECIFICATION

Importantly, formal specifications are in nature
very different to computer programs or what we will
more broadly call implementations. A formal speci-
fication is abstract in the sense that it characterises
a set of possible implementations (the implementa-
tions that satisfy it), while a program characterises
a single implementation - itself.

Associated with this aspect is the desire not to
overspecify (or in other terms to provide loose spec-
ification), i.e. that the nature of the specification
language should not force the specifier to rule out
acceptable implementations. We believe this fea-
ture of formal specification is very useful in the cog-
nitive setting.

An important issue in modern cognitive science
is, what has been called, the irrelevant specifi-
cation problem [Newell, 1990]. In order to con-
struct a working simulation program a large num-
ber of assumptions have to be made, leaving it
unclear what aspect of the behaviour of the pro-
gram corresponds to known cognitive behaviour
and what arises from expediency. For example
[Cooper et al., 1996] state,

“Computational models conflate empiri-
cally justified mechanisms with pragmatic
implementation details, and essential the-
oretical aspects of theories are frequently
hard to identify”

In fact, [Cooper et al., 1996] have directly targeted
this issue. Their approach is to use a re-engineered
version of Prolog which keeps the theoretical and
implementation assumptions disjoint, thus enabling
one to observe the consequences of changing partic-
ular implementation assumptions.

The approach we advocate is even more radi-
cal and further from conventional implementation
programming. We would argue that the irrelevant
specification problem arises because cognitive the-
ories are closer to specifications than implementa-
tions/programs. Cognitive theories typically leave
much unexplained since a complete mechanistic in-
terpretation of cognition is not available. Thus, a
cognitive model is an abstract description of be-
haviour, for which the implementation details can
be filled in in many ways. Using the terminology
of abstract specification, a particular programming
implementation of a cognitive model is an imple-
mentation which satisfies the cognitive model. Im-
portantly, it certainly is not the cognitive model it-
self. Thus, our approach has been to specify ICS ab-

stractly, yielding a description which characterises
many possible actual implementations.

A major way in which abstract specification
is supported in process calculi is through non-
determinism. This allows many possible behaviours
to be included in the same specification, with the
choice between them left unspecified. Such non-
determinism is used in many places in our LOTOS
interpretation of ICS. For example, we use non-
determinism to model the ICS concept of blending.

As an illustration, we can define a hierachy of in-
terpretations of blending ([Bowman, 1998] actually
presents a much larger and more detailed hierar-
chy). For example, assuming a set Rep of repre-
sentations which contains a null element, denoted
null and that obj_prop acts upon a blend of repre-
sentations r1 and r2 (which have been placed in the
OBJ input array from VIS and PROP), see figure 2
(ii), there are a number of possible ways of gener-
ating the new representation r and these possible
ways can be placed in a hierachy, see figure 2 (iii),
according to their level of non-determinism. We
highlight three ways here,

oN

0OBJ

(if)

obj_prop
>

(iii)

More
Deterministic

Figure 2: Assorted Figures

1. r€Rep, i.e. randomly chosen from the set of all
possible representations;

2. r € {r1,r2}, i.e. a random choice of r1 and r2;

3. r = if cons(rl,r2) then comp(rl, r2) else null
if r1 and r2 are “consistent” then compose them
together otherwise return null.



1. gives an upper bound on the level of non-
determinism - it is a completely non-deterministic
approach. Note that although the extreme non-
determinism inherent in 1. makes the approach cog-
nitively strange, i.e. r has no relation to r1 or r2, this
is still an analytically useful interpretation. Specif-
ically, for analysis of many cognitive properties we
will only be interested (or may only need to be inter-
ested) in the blending which occurs at certain sub-
systems and we can leave all other blending com-
pletely unspecified.

Approach 2. has a similar flavour to approach 1.,
the difference being that the set from which the
representation is chosen is restricted to the two rel-
evant representations.

In contrast, in approach 3. the two input repre-
sentations are compared to determine if they are
consistent, e.g. whether they are representations
with the same psychological subject, if they are con-
sistent, a representation which in some way com-
bines the features of the two input representations
is generated. Of course, there are many ways in
which such a combined representation could be con-
structed and these different approaches will arise
in different cognitive tasks, at different subsystems.
However, the important issue is that all such ap-
proaches can be related according to their level of
non-determinism.

One of the really nice aspects of how non-
determinism behaves in process calculi, is that, not
only does it support abstract specification, it also
allows (simulated) execution and proof based veri-
fication.

Simulated Execution. A difficult problem that
arises with “abstract specifications” is how to pro-
vide “executable” realizations. For example, this
can be a problem if descriptions are given in pure
logic, e.g. in first order or temporal logics. How-
ever, while being abstract, process caculus descrip-
tions are still “algorithmic” and can thus, be exe-
cuted using a simulation engine. The approach is
that the specification is run, with the user of the
simulator interactively resolving choices and non-
determinism, yielding an execution trace.
Furthermore, by composing in parallel a pro-
cess which plays the role of an implementation
environment, i.e. resolves choices in a particu-
lar manner, the specification can be executed
according to a particular implementation policy.
This is equivalent to imposing particular imple-
mentation assumptions, i.e. in the terminology of
[Cooper et al., 1996] enforcing “below the line” as-
sumptions. By changing this implementation envi-
ronment process we can assess the effects of differ-
ent implementation assumptions (e.g. different in-

terpretations of blending) in the same manner as
[Cooper et al., 1996].

Goal Verification. By associating a logic with
our process calculus we can assert properties/goals
of a specification of a cognitive model (as illustrated
in our case study discussion which follows shortly).
Furthermore, non-determinism possesses very nice
mathematical properties in this respect. For exam-
ple, it can be shown that for any negative property
(see [Bowman, 1998] and the next section) that,

if the property holds over a specification S
it will also hold over any specification that
is “more deterministic” than S.

In terms of the irrelevant specification problem
this implies that any negative property that we can
deduce from our abstract specification of the cog-
nitive model will also hold over its concrete imple-
mentations. This is a very valuable methodologi-
cal device. For example, much of the reasoning we
can make with our “most abstract” interpretation
of blending will hold for all its instantiations.

CASE STUDY

[Bowman, 1998] describes a specification and then
analysis of ICS in the context of a number of such
speech/gesture goals. We summarise this work
here.

Specification. A LOTOS specification of ICS is
given. Semantically, LOTOS specifications can be
interpreted as a set of state sequences, called inter-
vals*. We let Q(S) denote the intervals of a spec-
ification S. Then an interval temporal logic is in-
troduced which can be used to formulate cognitive
goals of ICS. It is interpreted over intervals. Thus,
giving a semantic link to the LOTOS specification.

Goal Formulation. The capabilities of ICS to
perform combined speech and gesture tasks is con-
sidered. Such deictic interaction is a good example
of multi-modal human-computer interaction. Anal-
ysis of such combined speech and gesture modali-
ties is particularly significant since it addresses a
common myth in HCI, which is that since human
to human communication commonly combines such
modes of interaction, it should be beneficial to de-
vise similar combinations of human-computer inter-
actions. The analyse proceeds by first formulating
the cognitive goals that are of interest. These goals
come in two varieties - negative and positive goals.
A typical negative property that is analysed is:

(Vri #r2)
ICS | ~©(speak(r;) A ©located(rs))

4Such an interval can be viewed as a run/execution of the
specification.



where, ICS is the LOTOS specification of ICS;
S = ¢ states that the specification S satisfies the
formula ¢; r; are representations and € ¢ holds over
an interval which contains a subinterval where
holds. Informally, this property states that it is
not possible to speak one representation and locate
(i.e. point at with, say a mouse) a different repre-
sentation at the “same” time®.

A typical positive property which, informally,
states that it is possible to speak and locate the
same representation at the “same” time, would be:

(Vr) (3o € QICS))
o ®(speak(r) A ®located(r))

Analysis. Simulation and deductive reasoning are
used. Properties of the form of the above negative
property are verified using deductive reasoning in
the logic. In contrast, positive properties are ver-
ified by interactively constructing a fulfilling trace
using the simulation tool LOLA.

Using these analysis techniques both the above
properties can be shown to hold.

CONCLUSIONS

There is a spectrum of available modelling tech-
niques with the two extremes being programming
based approaches, such as those typically used to
implement cognitive models, e.g. the LISP pro-
grams underlying SOAR, and abstract uses of
mathematical logic, e.g. temporal logic6. A weak-
ness of the former approaches is that they are of-
ten too prescriptive, forcing a particular “mecha-
nistic” interpretation on the cognitive model, leav-
ing it unclear which aspect of the programs be-
haviour results from the cognitive model and which
arises from implementation decisions. In formal
terms, programs only characterise a single imple-
mentation. In contrast, abstract logical techniques
can characterise a set of possible implementations.
Thus, enabling specification which is not prescrip-
tive about implementation details. However, logical
descriptions typically fail to support execution of a
specification, even in a simulated form.

Process calculi can be seen to sit between these
two extremes. Firstly, the LOTOS specification we
have given enables simulated execution. Secondly,
process calculi provide techniques for avoiding over-
prescriptive description. In particular, they facili-
tate loose specification by allowing descriptions to
contain non-determinism.

5Actually, the use of different representations here is
slightly subtle, to be more precise r; and r2 denote repre-
sentations with different psychological subjects.

6Note that here we do not mean logic programming ap-
proaches, rather we refer to pure abstract logic, which in
contrast to Prolog say, does not contain framing of data.

In conclusion, as stated at the start of this paper,

using an appropriate modelling notation can be a
great enabler to “problem solving”. This extended
abstract has argued that a number of aspects of
process caculi suggest they may be an appropri-
ate modelling notation in the domain of concurrent
cognitive architectures.
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