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Computing with Exa
t Real Numbers in aRadix-r System1
Alexander Kaganovsky15 O
tober, 1999

1This report is a revised version of the paper presented at the BirminghamCOMPROX Workshop (1997) whi
h appears in [7℄.



Abstra
tThis paper investigates an arithmeti
 based upon the representation of 
om-putable exa
t real numbers by lazy in�nite sequen
es of signed digits in apositional radix-r system. We dis
uss advantages and problems asso
iatedwith this representation, and develop well-behaved algorithms for a 
ompre-hensive range of numeri
 operations, in
luding the four basi
 operations ofarithmeti
.



1 Introdu
tionThe standard implementations of real numbers on a 
omputer are approxi-mately held to some �xed number of signi�
ant �gures. The a

umulationof rounding errors leads to well-known diÆ
ulties 
al
ulating a

urate nu-meri
al results for s
ienti�
 and engineering problems. Going to double,quadruple or even multiple pre
ision in no way eliminates these problems,but merely ameliorates them. No matter how mu
h pre
ision is provided,there are always problems for whi
h it is insuÆ
ient to produ
e reliable re-sults. Perhaps one of the worst features of 
oating point arithmeti
 is thatthe 
omputer 
an give us no indi
ation of how many of the digits printed area
tually meaningful, so with a poor 
hoi
e of algorithm it is quite easy togenerate numeri
al answers that are 
ompletely meaningless. An illustrativeexample of su
h rounding anomalies is given in [9℄ (also in [8℄), where 
om-putation of a simple fun
tion on single pre
ision 
oating point is shown toprodu
e 
ompletely wrong results after only 14 divisions and 12 subtra
tions.As 
omputing power be
omes 
heaper, it seems reasonable that we maywish to move to a form of real arithmeti
 that is perhaps more expensive butwhi
h will generate results to numeri
al 
al
ulations that 
arry with themsome easily understood guarantee of a

ura
y. Modern programming lan-guages provide 
ertain 
omputing abstra
tions | in�nite lists, higher orderfun
tions | whi
h make it possible to represent real numbers exa
tly as theyare de�ned in mathemati
s, using any of several possible methods.Mathemati
ally a real number is de�ned as an in�nitary obje
t | for ex-ample, a 
onverging sequen
e of rationals. Sin
e all our 
omputers are �nite,it stands to reason that only �nitely many entries of an in�nite sequen
e 
anbe instantiated in �nite time. It also follows that not all real numbers 
anbe represented on a 
omputer | only those whose de�ning sequen
e 
an bedetermined by a �nite amount of information.The 
on
ept of a 
omputable real number was �rst introdu
ed by AlanTuring in his 
lassi
al paper [16℄. He de�ned a 
omputable real as one whosede
imal1 expansion 
an be written down by a Turing ma
hine. Roughlyspeaking, a real number is 
omputable if there exists a �nite 
omputer pro-gram that 
an e�e
tively approximate it to any degree of pre
ision. Whenmore pre
ision is desired, the 
omputation may take longer, but the pro-gram itself does not 
hange. Herefrom, it follows that not all real numbersare 
omputable; at least, be
ause the set of all �nite 
omputer programs is
ountable, whereas the set of all real numbers is not.In 
lassi
al mathemati
al analysis, real numbers are de�ned in a variety1Any other radix r > 1 
ould be used in exa
tly the same way.1



of ways, all of whi
h are equivalent to ea
h other, so that the 
hoi
e of a par-ti
ular representation is matter of 
onvenien
e. In 
onstru
tive mathemati
s,however, some fun
tions on the 
omputable reals, and even the four basi
arithmeti
 operations, are 
riti
ally dependent on the representation, andwith a poor 
hoi
e of the latter may be
ome non-
omputable. For instan
e,
onventional �xed-radix positional weighted number systems, for whi
h theweight of the i-th digit is r�i and the range of ea
h digit is f0; 1; � � � ; r� 1g,appear to be unsuitable for exa
t 
omputations, be
ause it is sometimes im-possible to 
ompute even the �rst digit of a result without having to inspe
tan in�nite number of the operands' digits. A spe
i�
 example 
an be founde.g. in [10℄.One of the pioneer investigators of this problem was Wiedmer who sug-gested the use of redundant signed-digit systems to e�e
t 
omputability [20℄.Although signed-digit notation was proposed as a means of avoiding 
arrypropagation 
hains in hardware arithmeti
 as early as in 1960's, and hasbeen well known among hardware designers, having led to the developmentof digit-pipelined or on-line arithmeti
 [6℄, it was probably Wiedmer who �rstsuggested its use in the 
ontext of exa
t 
omputations. His PhD thesis [21℄
ontains a detailed investigation of the algorithms ne
essary for exa
t realarithmeti
 on redundant signed-digit sequen
es.In 1981-2, Carl Pixley at Burroughs Corporation undertook a study ofWiedmer's work, implementing a 
omplete pa
kage of fun
tions for exa
t realarithmeti
 in the lazy fun
tional language SASL [18℄. Pixley spent some timeanalyzing the eÆ
ien
y of the algorithms, in parti
ular for division, whi
his the most subtle of the four basi
 operations. Although never formallypublished, Pixley's work [11℄ was privately 
ir
ulated and stimulated interestin the topi
.In 1986, Boehm, Cartwright, et al. [3℄ reported their two implementationsof exa
t real arithmeti
 | as lazy in�nite sequen
es of de
imal digits, and asfun
tions mapping rational errors to rational approximations. Having 
arriedout a 
omparative study of the two methods, they 
ontended that the lazysequen
e method led to unsatisfa
tory implementations and performed verypoorly, while the fun
tional method performed surprisingly well. Their 
laimwas partially based on what they 
alled \the granularity e�e
t" | 
omputa-tion of arguments to one digit's more a

ura
y than ne
essary, whi
h makesthe evaluation of expressions su
h as x1 + (x2 + (x3 + (� � �+ xn))) highlyineÆ
ient. Sin
e then, an extensive literature has arisen devoted to repre-sentations of exa
t reals [4, 5, 8, 13, 19℄; yet, no further attempts have beenmade to �nd out whether the 
laimed advantage of fun
tions over lazy listsof digits was simply an artifa
t of a parti
ular 
lass of implementations oflazy languages, or eviden
e of something more fundamental.2



The purpose of this paper is to investigate the properties of the redundantsigned-digit representation of the reals, and �nd whether it 
an be renderedfree from the obje
tions whi
h have 
aused its reje
tion by the majority of theresear
hers, who have deserted altogether its line of approa
h. In so doing,we develop algorithms for a wide range of numeri
al operations, in
ludingthe four basi
 operations of arithmeti
, dis
uss the 
omplexity issues, andexamine various fa
tors that 
an a�e
t implementations.2 Radix-r redundant signed-digit expansionsA number system is said to be redundant if there are at least two distin
trepresentations that are mapped onto the same number; otherwise, it is non-redundant. A radix r number system requires at least r digit symbols; if thisnumber is greater than r, the system be
omes redundant.The following variation of the �xed-radix number system was originallyused by Avizienis [1, 2℄ to eliminate 
arry propagation 
hains in addition andsubtra
tion.De�nition 1. A radix-r redundant signed-digit (SD) number system is onebased on a digit set S� = ��; : : : ; 1; 0; 1; : : : ; �	 ;where x denotes �x, 1 � � � r � 1, and � � r=2.The last 
ondition allows ea
h digit to assume more than r values andthus gives rise to the redundan
y. We 
an measure the degree of redundan
yof a given SD system by 
al
ulating the redundan
y 
oeÆ
ient�(S�) = �r � 1 :A digit set is said to be maximally or minimally redundant if its redun-dan
y 
oeÆ
ient is maximal or minimal for the asso
iated radix. Thus, forradix-10, the digit set �5; : : : ; 1; 0; 1; : : : ; 5	 is minimally redundant, while�9; : : : ; 1; 0; 1; : : : ; 9	 is maximally redundant.Throughout this paper, we shall use the symbols N and N0 to denote thesets of all positive and non-negative integers respe
tively.If x 2 R is a real number, r > 1 an integer, and (xi)i2N0 a sequen
e ofintegers with �� � xi � � for all i 2 N su
h thatx = 1Xi=0 xir�i;3



then the symbol on the right side ofx = (x0; x1; x2; : : : ; xn; : : : )r (1)is 
alled an in�nite radix-r redundant signed-digit expansion for x. If xi = 0for all i > p � 1, we also writex = (x0; x1; x2; : : : ; xp)rThis is a �nite or terminating radix-r expansion for x. In 
ase r = 10 theseare 
alled de
imal signed-digit expansions and the subs
ript 10 is omitted.If we allow the �rst digit of signed-digit expansions to be unbounded,x0 2 Z, then for every real number x there exist an in�nite number ofdi�erent radix-r redundant signed-digit expansions of the form (1). How areall these expansions related to ea
h other? In order to answer this question,we shall introdu
e a few 
on
epts and de�nitions.De�nition 2. Let (an)n2N0 be a sequen
e of integers su
h that the series1Xn=0 anr�n (2)is 
onvergent. A sequen
e of integers (bn)n2N0 is said to be equivalent to(an)n2N0 if 1Xn=0 anr�n = 1Xn=0 bnr�n(and, in parti
ular, the series on the right is also 
onvergent). To indi
atethe equivalen
e of two sequen
es, we shall use the symbol �.If we denote by S the set of all integer sequen
es (an)n2N0 for whi
h theseries (2) 
onverges, then obviously � is an equivalen
e relation on S, andusing the fa
t that for any number x 2 R there exists at least one expansionof the form (2), the equivalen
e 
lasses are in one-to-one 
orresponden
e withthe reals: R = S= �.We next de�ne a family of fun
tions f : S ! S su
h that f(s) � s for alls 2 S.De�nition 3. Let i 2 Z be an integer, i 6= 0. We de�nef0 �(an)n2N0� = (an)n2N0fi �(an)n2N0� = (bn)n2N0 , where bj = 8<: aj + sgn(i), if j = jij � 1aj � sgn(i) � r, if j = jijaj, otherwise.4



Now let (ik)mk=1 be a �nite sequen
e of integers. We de�nefi1i2���im def= fim Æ : : : Æ fi2 Æ fi1For example, if r = 10, (an)n2N0 = (5; 5; : : : 5; : : : ), we havef1 (5; 5; 5; : : : 5; : : : ) = (6;�5; 5; : : : ; 5; : : : )f�1 (5; 5; 5; : : :5; : : : ) = (4; 15; 5; : : : ; 5; : : : )f1;2 (5; 5; 5; : : :5; : : : ) = (6;�4;�5; 5; : : : ; 5; : : : )f�1;3 (5; 5; 5; : : : 5; : : : ) = (4; 15; 6;�5; : : : ; 5; : : : )One 
an see that the n-th element of a sequen
e 
an only be 
hanged byf�n and f�(n+1), so our next step is to 
arry over the de�nition of f(ik) to the
ase where (ik) is an in�nite sequen
e.De�nition 4. Let (ik)k2N, ik 6= 0 be an unbounded sequen
e of integers su
hthat the sequen
e (jikj)k2N is nonde
reasing. We then de�nef(ik)k2N�(an)n2N0� def= (bn)n2N0 ,where bn = �fi1���ijn �(an)n2N0��n and (jn)n2N0 is any sequen
e of natural num-bers with jijn�1j � n < jijn j (it is easy to verify that the value of bn does notdepend on the 
hoi
e of (jn)n2N0 ).Sin
e f0 is the identity fun
tion, we 
an also allow zeros to appear in thesequen
e (ik)k2N by agreeing to 
al
ulate the value of f(ik)k2N asf(ik)k2N def= f(i0k)k2Nwhere the sequen
e (i0k)k2N is obtained from the original sequen
e (ik)k2N byskipping all en
ountered zeros.One of the main properties of the fun
tions f(ik) is that they do not takeus out of the equivalen
e 
lasses with respe
t to �, i.e. for any (an)n2N0 2 Sfi1i2���im �(an)n2N0� � (an)n2N0f(ik)k2N�(an)n2N0� � (an)n2N0Among other properties, we 
an indi
ate thatfm;�m = f�m;m = f0 for all m 2 N5



Theorem 1. Let r 2 N, r > 1 be a radix value, � be an integer with 1 �r=2 � � � r � 1, and let x 2 R. Then there exists a sequen
e (an)n2N0 ofintegers su
h that �� � an � � for all n 2 N, andx = 1Xn=0 anr�nMoreover, if (bn)n2N0 is any other (aj 6= bj for some j) sequen
e of integerssu
h that �� � bn � � for all n 2 N; bn 6= r�1 (or bn 6= �r+1) for in�nitelymany n (if � = r � 1), and x = 1Xn=0 bnr�n; (3)then there exists a (possibly �nite) integer sequen
e (ik)k2N su
h that (jikj)k2Nis nonde
reasing and (bn)n2N0 = f(ik)k2N�(an)n2N0�.Proof. Let x0:x1x2 : : : xn : : : be the 
onventional radix-r expansion of x, i.e.x0 2 Z, 0 � xi < r for all i 2 N . Then we de�ne(an)n2N0 = f(in)n2N�(xn)n2N0�where in = � n; if � � xn � r � 10; if 0 � xn � �� 1It is quite easy to see that janj � � for all n 2 N: we know that 0 � xn < r,and an is obtained from xn through appli
ation of fi1:::ik for some i1; : : : ik.Thus, if xn 2 [0; �� 1℄, it may only be 
hanged by fn+1, in whi
h 
ase it willbe in
reased by 1; if xn 2 [�; r � 1℄, then fn will redu
e its value by r, andthe resulting value may, in its turn, be also in
reased by 1 by fn+1. In either
ase, we have �� � an � �, and x =P1n=0 anr�n.Now suppose that (3) obtains for some sequen
e (bn)n2N0 of integers wherejbnj � � for all n 2 N , and bj 6= aj for some j. Let k = inf fj 2 N : aj 6= bjg ;then we have 1Xn=k anr�n = 1Xn=k bnr�nor bk = ak + 1Xn=1 (an+k � bn+k) r�n6



Sin
e jan+kj � �, jbn+kj � �, we 
an estimate����� 1Xn=1 (an+k � bn+k) r�n����� � 1Xn=1 jan+k � bn+kj r�n � 1Xn=1 2�r�n = 2�r � 1Generally, we have 1 < 2�=(r � 1) � 2, but the pathologi
al equalitybk = ak � 2 may only hold true in the 
ase where � = r � 1 and x =(a0; a1; : : : ; ak;��;��;�� : : : ) = (b0; b1; : : : ; bk;��;��;��; : : : ), whi
h wehave ex
luded from 
onsideration. Hen
e, we dedu
e thatbk = ak � 1Now we set i1 = � k; if bk = ak + 1�k; if bk = ak � 1and if (a0n)n2N0 = fi1 �(an)n2N0�, then bn = a0n, n 2 f1; : : : ; kg.On
e i1; : : : ; in�1 have been 
hosen, let in = jinj � sgn (in), wherejinj = inf nj 2 N0 : bj 6= �fi1:::in�1 �(an)n2N0��josgn (in) = ( 1; if bjinj = �fi1:::in�1 �(an)n2N0��jinj + 1�1; if bjinj = �fi1:::in�1 �(an)n2N0��jinj � 1It may happen that in = 0 for all n > p, p 2 N . In this 
ase, we shall
onsider the resulting sequen
e (i1; : : : ; ip) to be �nite. This 
on
ludes theproof.3 The representationWe aim to represent real numbers by sequen
es from the representation setS, as de�ned in Se
tion 2. For example, one might de�ne a 
omputableexa
t real number x as a triple (r; E;M), where E 2 Z is an exponent, M isa mantissa whi
h is a sequen
e of numbers (an)n2N0 2 S, and the value of xis 
omputed as x = rE � 1Xn=0 anr�n: (4)Su
h a representation, however, would be too loose a 
on
ept to be usefulby itself. We must also provide some 
onstru
tive 
ondition in order to guar-antee 
onvergen
e of the series in (4) and be able to make useful inferen
esabout a number from a �nite amount of information about its representation.7



In this light, we de�ne a representation of an exa
t real number x to bea quadruple (r; �; E;M), where r 2 N , r > 1 is the radix value, the rangeparameter � is an integer with r=2 � � � r � 1, E 2 Z is a signed exponent,M is a mantissa, whi
h is an e�e
tively given2 sequen
e of integers (an)n2N0su
h that janj � Cn; n 2 N ; (5)where C > 0 is a 
onstant, 
ommon to all real numbers in a given system| we therefore do not in
lude it in the representation3. The representation(r; �; E; (an)n2N0 ) is said to be 
anoni
al or normalized, ifjanj � �; n 2 N0 :The value of x = (r; �; E; (an)n2N0 ) is taken as in (4). Later on we will
entre on the fa
tors that a�e
t the 
hoi
e of appropriate values for theparameters r and �.For brevity and ease of reading, we shall not always distinguish betweena number x and its representation (r; �; E;M), and refer to a number asnormalized if its representation is normalized, and vi
e versa. We shall alsoassume that r and � are �xed and sometimes use the notation (E;M) insteadof (r; �; E;M).Observe that we 
an view a �nite number as being in�nite, by atta
hingan in�nite sequen
e of zeros at the end of its mantissa:rE � NXi=0 air�i = rE � 1Xi=0 air�i,where we have set ai = 0 for i > N . We 
an therefore assume, without anyrestri
tion of generality, that the mantissas of all operands are in�nite, unlessotherwise spe
i�ed.4 NormalizationMost algorithms presented in this and subsequent 
hapters assume that alloperands are normalized, and also require normalization of the results, so2The sequen
e (an)n2N0 
ould in prin
iple be given by an ora
le | it does not ne
essar-ily have to be 
omputable in the sense of being the sequen
e of values g(0); g(1); g(2); : : :of a general re
ursive fun
tion g(x).3The 
onvergen
e 
riterion (5) is somewhat arbitrary and only required to ensure e�e
-tive 
onvergen
e of the sequen
e. If a sequen
e were found to violate (5), an error messagewould be produ
ed at run-time. The value of C = 2 (r � 1)2 
ould be given as a roughestimate that satis�es the algorithmi
 requirements.8



we shall now dis
uss the algorithms for normalizing real numbers. We re
allthat normalization refers to the pro
ess of restoring the individual digits ofa real number's mantissa (ai)i2N0 to the 
anoni
al range [��; �℄.Let (ai)i2N0 be an unnormalized mantissa of a real number a = rE �1Pi=0 air�i. We shall �rst 
on�ne our attention to the 
ase where jaij � r+��1; i 2 N0 , and show how to obtain a new exponent E 0 and mantissa (a0i)i2N0su
h that 1) a = rE � 1Xi=0 air�i = rE0 � 1Xi=0 a0ir�i2) ja0ij � �; i 2 N0 (6)To this end, we �rst 
onsider 1Pi=0 air�i and repeatedly divide ai by r forall i 2 N0 : ai = dir +mi; jmij < r; sgn(mi) = sgn(di) (7)We have: 1Xi=0 air�i = 1Xi=0 (dir +mi) r�i = 1Xi=0 dir�i+1 + 1Xi=0 mir�i= (d0r +m0 + d1) + 1Xi=1 (mi + di+1) r�i (8)Now jaij � r + � � 1 implies jdij � 1, jmij � r � 1 (i 2 N0) and, thus,jmi + di+1j � r. We, however, aim to obtain a value less or equal to � (insteadof r). Let us introdu
e the following notation:d0i = � di; if jmij < �di + sgn (mi) ; if jmij � �m0i = � mi; if jmij < �mi � sgn (mi) � r; if jmij � � (9)a0i = m0i + d0i+1 (i 2 N); a00 = a0 + d01From (9) it 
an be seen that ai = d0ir + m0i. and, similarly to (8), wearrive at 1Xi=0 air�i = (a0 + d01) + 1Xi=1 �m0i + d0i+1� r�i = 1Xi=0 a0ir�i9



Let us now verify that ja0ij � � for all i 2 N . For this purpose we notethat jd0ij � 1 for all i 2 N0 , so if jmij < �, then m0i = mi, jm0ij < �,and ja0ij = ��m0i + d0i+1�� � �. If jmij � �, then m0i = mi � sgn (mi) � r,1 � jm0ij � r � �, and ja0ij = ��m0i + d0i+1�� � r � � + 1. Now we requirer � �+ 1 � � or, equivalently, � � r + 12 (10)whi
h in its turn implies that (r + 1) =2 � r � 1 or r � 3. Using (10), we�nally obtain ja0ij � � for all i 2 N . For i = 0, however, the inequality doesnot ne
essarily hold true. On the other hand, from the de�nition of a00 we
an 
on
lude that a0 � 1 � a00 � a0 + 1.In this manner, we have 
onstru
ted a fun
tion f : N2 � ZN0 ! ZN0 (itwill be referred to as redu
e) whi
h assigns to any triple �r; �; (ai)i2N0� thesequen
e (a0i)i2N0 , 
al
ulated a

ording to formulae (7) and (9). Evaluationof this fun
tion 
an be performed totally in parallel (Fig. 1).? �������?
? �������?

? �������?
? �������?

������������
������������

������������
������������

a0 a1 a2 a3 � � �a0 m01 m02 m03 � � �d01 d02 d03 d04 � � �a00 a01 a02 a03 � � �Figure 1: Totally parallel normalizationReturning to formula (6), we now 
onstru
t the promised number asfollows: E 0 = � E; if ja0j � �� 1E + 1; if ja0j � �(a0i)i2N0 = � f �r; �; (ai)i2N0� ; if ja0j � �� 1f (r; �; (0; a0; a1; : : : ; an; : : : )) ; if ja0j � �Now let us 
onsider a more general 
ase where jaij � M; i 2 N0 , whereM > 0 is an arbitrary positive integer. We 
an now easily show that it ispossible to normalize mantissa (ai)i2N0 in a �nite number of steps. Indeed,applying redu
e, we shall obtain a sequen
e (a0i)i2N0 , satisfying the following10




ondition: ja0ij = ��m0i + d0i+1�� � jm0ij+ ��d0i+1�� � �� 1 + �Mr �+ 1;or ja0ij �M1 def= �Mr � + �:Applying redu
e again, we get another sequen
e (a00i )i2N0 , satisfyingja00i j �M2 def= �M1r �+ �;et
. The sequen
e M;M1;M2; : : : is a sequen
e of de
reasing natural num-bers, and if M = mnrn + : : :+m1r +m0, the algorithm will terminate in atmost n + 1 steps.More spe
i�
ally, we 
an prove the following result.Theorem 2. Let (ai)i2N0 be a sequen
e with jaij � M , i 2 N, where Mis an arbitrary positive integral number. In order that the sequen
e (ai)i2N0be normalized to an equivalent sequen
e (bi)i2N0 with jbij � N , i 2 N onapplying redu
e at most n times, it is suÆ
ient that M � g(n)(N), whereg(n)(x) = rnx+ Cn, Cn = (rn � 1)(1� �).Proof. To prove the suÆ
ien
y of the 
ondition imposed upon M , we needbut note that the fun
tions g(n)(x) satisfy the following re
urren
e formulaeg(n)(x) = r � g(n�1)(x) + C1; n 2 N ;where g(0)(x) � x. Equivalently,g(n)(x) = g Æ g Æ � � � Æ g| {z }n times (x);where g(x) = g(1)(x) = rx+ C1:Thus, it suÆ
es to show that any sequen
e (ai)i2N0 with jaij � g(x), i 2 N
an be redu
ed, in a single step, to a sequen
e (a0i)i2N0 with ja0ij � x, i 2 N .Let (ai)i2N0 be any su
h sequen
e, i.e. jaij � rx+C1; i 2 N . As indi
atedabove, jaij �M implies ja0ij �M1 = �Mr �+�, and thus pi
king M = rx+C1yields M1 = �x+ (1� �) r�1r �+ � < x+ (1� �) + � = x+ 1, i.e.ja0ij � x;whi
h is what had to be proved. 11



Corollary 1. If (ai)i2N0 is a sequen
e satisfying jaij � g(n) (�) for somen 2 N and all i 2 N, it 
an be fully normalized by redu
e in at most n steps.This follows immediately from the theorem: n normalizations give us asequen
e (a0i)i2N0 with ja0ij � �.The 
onverse statement is not ne
essarily true: even if jakj > g(n)(N) forsome k 2 N , after n normalizations we may still get a (bi)i2N0 with jbij � Nfor all i 2 N . Suppose, for instan
e, that ak = g(N) + 1 = r(N � � + 1) + �for some k 2 N and jaij � g(N) for i 6= k. This implies that dk = N � �+ 1,mk = � and, therefore, d0k = N � � + 2, m0k = �� r. Re
alling thata0k�1 = m0k�1 + d0k; k 2 N ;one 
an see that the larger-than-usual value of d0k 
an only a�e
t the (k�1)-stelement of the resulting sequen
e, and, further still, only if m0k�1 = �� 1, inwhi
h 
ase a0k�1 = � � 1 +N � � + 2 = N + 1. However, the value of m0k�1depends solely on ak�1, and 
an be anywhere in the range from �� + 1 to�� 1, irrespe
tive of the value of the next element, ak. If it so happens thatm0k�1 6= �� 1, we will have ��a0k�1�� � N , and 
onsequently | sin
e the a0i fori 6= k � 1 have remained inta
t | ja0ij � N for all i 2 N .This example shows that the fun
tions g(n)(x) give us, in fa
t, the bestupper bound one 
ould possibly have in order that any sequen
e boundedby it be safely normalized. More pre
isely, for any integer fun
tion f (n)(x) >g(n)(x) there is a sequen
e (ai)i2N0 with jaij � f (n) (�) that 
annot be fullynormalized in n appli
ations of redu
e.By way of illustration, let us give a few examples.Example 1. Let r = 6, � = 4, (ai)i2N0 be a sequen
e with jaij � 3500 forall i 2 N. How many times does one have to apply redu
e to obtain anequivalent sequen
e (a0i)i2N0with ja0ij � 100, i 2 N?We have g(100) = 6 � 100� 15 = 585g(2)(100) = g(585) = 6 � 585� 15 = 3495g(3)(100) = g(3495) = 6 � 3495� 15 = 20955Sin
e g (100) < g(2)(100) < 3500 < g(3)(100), 3 normalizations will be suÆ-
ient by theorem 2.Example 2. Let r = 10, � = 6. Find the bound for the elements of asequen
e that 
an be fully normalized in 3 appli
ations of redu
e.A

ording to Corollary 1, we need but 
al
ulateg(3)(6) = 1000 � 6 + 999 � (�5) = 1005:12



Thus, if jaij � 1005, i 2 N, (ai)i2N0 
an be fully redu
ed in three passes.The fun
tions g(n)(x) have a mu
h simpler form when x = �: indeed, itis easy to see that gn(�) = rn + �� 1; n 2 N : (11)The right-hand side of equality (11) is solvable for n, whi
h enables usto determine the number of times one has to apply redu
e in order to fullynormalize a given sequen
e (ai)i2N0 . In more exa
t terms, let (ai)i2N0 be asequen
e with jaij �M , i 2 N . By theorem 2,n = min�k 2 N ��M � gk(�)	 :Solving the inequality M � gk(�) for k 2 N , we �nd thatk � logr (M � �+ 1) ;or, n = dlogr (M � �+ 1)e (12)As a 
on
lusion, let us take note of the fa
t that, as it follows from (10),in order for our system to allow totally parallel normalization, i.e. absen
eof 
arry propagation 
hains, it must not be minimally redundant. For r = 2,for instan
e, there is only one possible digit set, �1; 0; 1	; thus, in the binary
ase the 
ondition � � (r + 1) =2 = 3=2 
annot be satis�ed. Hen
eforth, onlynon-minimally redundant systems will be 
onsidered.5 Basi
 arithmeti
 operations5.1 Addition and subtra
tionIn this se
tion, we shall dis
uss algorithms for the operations of exa
t realaddition and subtra
tion. The emphasis will mainly be on the former, sin
esubtra
tion is usually 
arried out as the addition of a negated number. Weshall �rst dis
uss addition of two numbers and then look at multiple numberaddition.5.1.1 Addition of two numbersLet a = rEa � 1Pi=0 air�i and b = rEb � 1Pj=0 bjr�j be the two normalized radix-r numbers to be added. Sin
e the addition operation is 
ommutative, we13




an assume e = Ea � Eb � 0 without loss of generality. The pro
edure foraddition or subtra
tion is as follows:a + b = rEa � 1Xi=0 air�i + rEb � 1Xi=0 bir�i = rEa  1Xi=0 air�i + r�e � 1Xi=0 bir�i!= rEa � 1Xi=0 (ai + b0i) r�i;where (b00; b01; b02; � � � ; b0n; � � � )r = 0�0; 0; � � � ; 0| {z }e zeros ; b0; b1; b2; � � �1Ar :Thus, in order to perform addition, we must �rst adjust the mantissa ofone of the operands to make the two exponents equal (align the radix points),and then add the two sequen
es digit by digit. The resulting sequen
e(a0 + b00; a1 + b01; � � � ; an + b0n; � � � )r
an then be normalized in a single pass, sin
ejan + b0nj � janj+ jb0nj � 2� � r + �� 1:5.1.2 Subtra
tionSubtra
tion is 
arried out in the usual way by negating the minuend andadding the result to the subtrahend. Negation is performed as follows:� 1Xi=0 air�i = 1Xi=0 (�ai) � r�i5.1.3 Addition of several numbersThe above addition algorithm 
an be readily modi�ed to operate with n num-bers, where n > 2. The pro
edure is essentially the same | the mantissas ofall n numbers are �rst aligned to mat
h the one with the largest exponent,and then added digit-by-digit. As it follows from (12), the resulting sequen
e
an be normalized by applying redu
e dlogr (n�� �+ 1)e times.Note that this is 
onsiderably more eÆ
ient than adding the n numberspairwise using (n� 1) nested additions, as we dis
uss later (Se
tion 6.1).14



5.2 Multipli
ationLet the multiplier and multipli
and be denoted by a; b 2 R respe
tively, withthe following normalized sequen
es of signed digits:(a0; a1; a2; � � � ; an; � � � ); (b0; b1; b2; � � � ; bn; � � � );i.e. a = rEa � 1Xi=0 air�i; b = rEb � 1Xj=0 bjr�jThen ab = rEa+Eb � 1Xi=0 air�i! � 1Xj=0 bjr�j!The Cau
hy produ
t of the two series 1Pi=0 air�i and 1Pj=0 bjr�j is the series1Xm=0 
mr�m = 1Xm=0 mXi=0 aibm�i! r�m;where 
m = � mPi=0 aibm�i�. Sin
e both series a = 1Pn=0 anr�n and b = 1Pn=0 bnr�nare absolutely 
onvergent, by Mertens' theorem (see e.g. [15℄) their Cau
hyprodu
t 1Pn=0 
nr�n 
onverges to ab.Sin
e (ai)i2N0 and (bi)i2N0 are 
anoni
al representations of a and b, wehave j
mj � �2 � (m+ 1) ; m 2 N0 :Now we want to �nd the result in the formab = 
 = rE
 � 1Xm=0 
0mr�m;where �� � 
0m � � for all m 2 N0 . However, the sequen
e (
m)m2N0 
annotbe normalized dire
tly, be
ause generally it is not bounded by any positiveinteger. Instead, we 
an re
ursively apply redu
e to small bounded portionsof (
m)m2N0 , as shown in Figures 2 and 3.15



a0b0 a0b1 � � � a0bn�1 a0bn a0bn+1 a0bn+2 � � � a0b2n�1 a0b2na1b0 � � � a1bn�2 a1bn�1 a1bn a1bn+1 � � � a1b2n�2 a1b2n�1. . . ... ... ... ... . . . ... ...an�1b0 an�1b1 an�1b2 an�1b3 � � � an�1bn an�1bn+1anb0 anb1 anb2 � � � anbn�1 anbnan+1b0 an+1b1 � � � an+1bn�2 an+1bn�1an+2b0 � � � an+2bn�3 an+2bn�2. . . ... ...a2n�1b0 a2n�1b1a2nb0Figure 2: Multipli
ation | before normalizing
00 
01 � � � 
0;n�1 
0n 
0;n+1 
0;n+2 � � � 
0;2n�1 
0;2nan+1b0 an+1b1 � � � an+1bn�2 an+1bn�1an+2b0 � � � an+2bn�3 an+2bn�2. . . ... ...a2n�1b0 a2n�1b1a2nb0Figure 3: Multipli
ation | after normalizing �rst (n + 1) linesNamely, let us 
hoose some n 2 N , then for all m > n we write:mXi=0 aibm�i = nXi=0 aibm�i + mXi=n+1 aibm�iWe have:1Xm=0 
mr�m = 1Xm=0 mXi=0 aibm�i! r�m= nXm=0 mXi=0 aibm�i! r�m + 1Xm=n+1 nXi=0 aibm�i + mXi=n+1 aibm�i! r�m= 1Xm=00�min(m;n)Xi=0 aibm�i1A r�m + 1Xm=n+1 mXi=n+1 aibm�i! r�m (13)16



Now the sums min(m;n)Pi=0 aibm�i are bounded for all m 2 N0������min(m;n)Xi=0 aibm�i������ � (n + 1) �2; (14)so we 
an apply redu
e to the sequen
e  min(m;n)Pi=0 aibm�i!m2N0 . Having doneso m(n) times, wherem (n) = �logr �(n+ 1) �2 � � + 1�� ;we shall obtain an equivalent sequen
e (
0m)m2N0 satisfying j
0mj � � for allm 2 N0 , i.e.1Xm=00�min(m;n)Xi=0 aibm�i1A r�m = 1Xm=0 
0mr�m, where j
0mj � �: (15)Returning to (13), we rewrite it in the form1Xm=0 
mr�m = n�1Xm=0 
0mr�m + r�n 1Xm=0 
(1)m r�m;where 
(1)0 = 
0n (16)
(1)m = 
0;n+m + n+mXi=n+1 aibn+m�i; m 2 NPro
eeding re
ursively with the series1Xm=0 
(j)m r�m = n�1Xm=0 
jmr�m + r�n 1Xm=0 
(j+1)m r�m; j 2 N;we obtain an equivalent sequen
e (
0m)m2N0 :1Xm=0 
mr�m = n�1Xm=0 
0mr�m + r�n n�1Xm=0 
1mr�m + r�n n�1Xm=0 
2mr�m + : : := n�1Xm=0 
0mr�m + 2n�1Xm=n 
1;m�nr�m + 3n�1Xm=2n 
2;m�2nr�m + : : := 1Xk=00�(k+1)n�1Xm=kn 
k;m�knr�m1A = 1Xm=0 
0mr�m;17



where 
0m = 
m divn;mmodn; j
0mj � �; m 2 N0(
km)m2N0 � 0�0�min(m;n)Xi=0 d(k)i;m�i1Am2N01A ; j
kmj � �d(k+1)ij = � 
k;j+n; i = 0d(k)i+n;j; i 2 Nd(0)ij = aibj
(k+1)m = mXi=0 d(k+1)i;m�i
(0)m = 
mThus, (
0m)m2N0 is the required result of multipli
ation.5.3 DivisionThe intention here is to develop algorithms for division of exa
t real numbers.Let N 2 R be the dividend, D 2 R, D 6= 0 | the divisor, their redundantsigned-digit radix-r representations given byN = rEN � 1Xi=0 nir�i; D = rED � 1Xi=0 dir�i;where jnij � �; jdij � � for i 2 N . The task is to 
ompute a real quotientQ = rEQ � 1Xi=0 qir�isu
h that N = Q �D and jqij � �, i 2 N .A 
onsiderable body of work exists in the literature on the methods ofsigned-digit division, most of whi
h in one way or another owe their originto an algorithm due to Robertson [12℄. The substan
e of the algorithm lieswith an iterative pro
ess that produ
es one digit of the quotient per 
y
lea

ording to the following re
urren
e equationPn+1 = r (Pn � qnD) ; n 2 N0 ; (17)where P0 = N , Pn is the 
urrent partial remainder, Pn+1 is the next partialremainder, and qn is the quotient digit inferred from Pn and D. It is easy tosee that Pn = rn �N � �q0 + q1r�1 + : : :+ qn�1r�n+1�D� ; n 2 N ;18



and so imposing an upper bound on the value of jPnj will ensure 
onvergen
eof the algorithm, provided that sele
tion of the quotient digit qn results inthe next partial remainder Pn+1 adhering to the same allowed range as Pn.The existing signed-digit division algorithms primarily di�er in their se-le
tion of quotient digits, restri
tion of the range of the possible values ofthe divisor, dividend and partial remainders and, �nally, normalization te
h-niques.The 
onventional, non-redundant algorithms also use relation (17) butalways produ
e 
orre
t quotient digits | the multipli
ations of the divisorby the digits of the quotient are done by repeated subtra
tion, and a guesseddigit is known to be in
orre
t if it is either too large and the subsequentsubtra
tion leaves a negative result, or it is too small and the subtra
tionleaves a result that ex
eeds a multiple of the divisor in that digit position.In redundant signed-digit representations, however, the sign of an inter-mediate result may not be readily available for inspe
tion, be
ause a numberof its most signi�
ant digits, generally unknown in advan
e, may happen tobe all zero. The usual way to get around this problem is to make a guessabout qn based on the inspe
tion of several most signi�
ant digits of Pn andD. Even though this 
ould result in some quotient digits qn sele
ted in thisway being in
orre
t, the redundan
y allows re
overy from wrong guesses bytaking an appropriate 
orre
tion step in the next quotient digit. As longas the next q 
an 
orre
t an error in the previous step, 
onvergen
e of thealgorithm is guaranteed.The method of division put forward here is a modi�
ation of the originalRobertson's signed-digit division algorithm and is similar to that re
entlyreported by David Smith [14℄.The algorithm uses the above re
urren
e relation (17) and the followingdigit sele
tion fun
tion: qn = �����pn0d0 ����� � sgn�pn0d0 � ; (18)where pn0 is the �rst digit of the n-th partial remainder Pn, and d0 is the �rstdigit of the divisor D whi
h, being non-zero4, is so s
aled that jd0j � r2. Be-ginning with P0 = N , we have the following sequen
es of digits representingPn+1, n 2 N0 :Pn+1 = r � (pn0 � qnd0; pn1 � qnd1; � � � ; pnk � qndk; � � � )r= (r(pn0 � qnd0) + (pn1 � qnd1); pn2 � qnd2; � � � ; pnk � qndk; � � � )r4Note that sin
eD is represented by an in�nite sequen
e of digits, one 
annot e�e
tively
he
k whether or not it is non-zero. 19



The early algorithms fully normalized Pn, n 2 N at ea
h step in order tokeep the entries of the sequen
e bounded. However, as re
ently shown in [14℄(and also suggested by Carl Pixley in the early 1980's), it is possible to skipthe full normalization of the partial remainders, and instead normalize only afew leading digits. The details of the algorithm analysis are given in [14℄, andalthough 
onsidering the operands to be �nite and given in non-redundantform, readily lend themselves to the elaboration ne
essary to extend themethod to operate with in�nite sequen
es of signed digits.The elimination of most intermediate digit normalizations makes the di-vision algorithm run in double-qui
k time, and at high pre
ision nearly asfast as multipli
ation.6 Complexity analysisThe 
hief and 
omputationally most signi�
ant part of the algorithms pre-sented in this paper is the normalization fun
tion, whi
h is for the greaterpart responsible for the 
omplexity of the four arithmeti
 operations.The normalization pro
edure relies upon unbounded integer arithmeti
for its operation, and hen
e the speed of normalization is 
ru
ially dependenton the speed of same. As seen in Fig. 1, normalization always requires one-digit 
arry-look-ahead | to produ
e N radix-r digits of a normalized result,it is ne
essary to 
ompute N + 1 digits of the number being normalized,whereafter N out of the N +1 digits (ex
luding the �rst one) are divided byr, and the results of the divisions | added, possibly in parallel, resulting ina total of N integer divisions by r, and N integer additions. If r is a powerof 2, the divisions by r 
an be done by simple shifts.Similarly, if normalization is to be performed m times, in order to obtainN digits of the result, we need N +m digits of the original number, as wellas N + (N + 1) + : : :+ (N +m� 1) = m(N + (m� 1)=2) divisions by r andadditions.6.1 Addition and subtra
tionThe 
omputation of N digits of the sum of two numbers requires N + 1digits of the operands, N integer divisions by r and 2N +1 integer additions.Addition of n numbers, where n > 2, requires N +m digits of the operands,m(N + (m� 1)=2) divisions by r and m(N + (m� 1)=2) + (n� 1)(N +m)additions, where m = dlogr (n�� �+ 1)e. This is, of 
ourse, mu
h betterthan the repeated binary addition x1+(x2 + (x3 + (� � �+ xn))), whi
h results20



in the evaluation of N + n digits of the operands, (n � 1)(N + (n � 2)=2)divisions by r and 2(n� 1)N + (n� 1)2 additions.Subtra
tion is only di�erent from addition in that negation is performedbeforehand. Negation, of 
ourse, does not require any look-ahead, and its
omplexity is simply that of 
hanging the sign of a number's digits.6.2 Multipli
ationThe 
omplexity of the multipli
ation algorithm depends on the value of theparameter n 2 N that appears in (14). Let us address ourselves to thequestion of 
hoosing an appropriate value for n. In prin
iple, the algorithmwill work 
orre
tly with any n 2 N , so our main 
on
ern here is to minimizethe number of operations needed to 
ompute N digits of the result. Notethat when n = 1, the algorithm is the same as that adopted by Avizienis [2℄.Now let N = pn+ q; 0 � q < n:We have p + 1 partial normalization groups (the �rst two groups are shownin Fig. 2), ea
h of whi
h requires at most m(n) = dlogr ((n+ 1) �2 � �+ 1)eappli
ations of redu
e (see (14)). On a

ount of the granularity e�e
t, to
ompute N digits of the produ
t, the normalization pro
edure requires mextra digits from the last partial normalization group, 2m extra digits fromthe se
ond-last one, and so on; the �rst group requiring as many as pm extradigits, thus making the total number of integer divisions and additionsNdiv = m(N + pm + (m� 1)=2) +m((N � n) + (p� 1)m+ (m� 1)=2) + : : :+m((N � pn) + (m� 1)=2)= m (N + (N � n) + (N � 2n) + : : :+ (N � pn)) +m2(p+ (p� 1) + : : :+ 1) +m(m� 1)(p+ 1)=2= 12m (p+ 1) (N + q +mp +m� 1) :The 
orresponding formula for the number of integer multipli
ations of theoperands' digits isNmult = N(N + 1)2 + (q � 1)m+ n � (2m+ : : :+ (p+ 1)m)= N(N + 1)2 +m�p2 + 3p2 n+ q � 1�21



Thus, we have to 
hoose n su
h as to minimize the two fun
tionsNdiv(n;N) = 12m(n) � (p+ 1) (N + q +m(n) � p+m(n)� 1) ;Nmult(n;N) = 12N(N + 1) +m(n)�p2 + 3p2 n+ q � 1� ;where p = �Nn � ; q = N mod n;m(n) = �logr �(n+ 1) �2 � �+ 1�� :For instan
e, let r = 10, � = 6, thenm(n) = 8>>>><>>>>: 2; if n = 13; if 2 � n � 264; if 27 � n � 2765; if 277 � n � 2776� � � � � � � � �and the 
orresponding minimal values of Ndiv for N = 100 areNdiv(1; 100) = 12 � 2 � 101 � 301 = 30401Ndiv(26; 100) = 12 � 3 � 4 � 133 = 798Ndiv(276; 100) = 12 � 4 � 1 � 203 = 406Ndiv(2776; 100) = 12 � 5 � 1 � 204 = 510These data have been summarized in graphi
al form in Fig. 4 as plots ofNdiv andNmult versus n forN = 100. It is apparent thatNdiv(n) andNmult(n)behave similarly for other values of N , r and �. One 
an see that the optimalvalue of Ndiv is attained when n = N + 1, in whi
h 
ase p = 0, q = N , andthe total number of divisions is Ndiv(N + 1; N) = mN +m(m� 1)=2. Sin
ethe number N of required pre
ision digits is generally unknown in advan
e,it is reasonable to 
hoose some �xed value of n that would ensure reasonableperforman
e of the algorithm for all N . It is also 
lear that we may only
hoose n out of nk = max fn 2 N j m(n) � kg ; k 2 N ;22



Figure 4: Choi
e of n for multipli
ation | the number of integer multi-pli
ations Nmult and divisions Ndiv vs. n 
al
ulated for N = 100 pre
isiondigits
r=10, r=6, N=100
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be
ause if n0 > n00 and m(n0) = m(n00), we have Ndiv(n0) � Ndiv(n00).In prin
iple, the larger the value of n, the better; ex
ept when n is vastlylarger than N , the number of operations Nop will 
ontinue to grow with N(due to the in
reasing of m). On the other hand, 
hoosing a large value ofn would imply large values of the sequen
e entries (up to (n + 1) �2 | see(14)) whi
h, if ex
eeded the threshold for representing integers (usually thesize of the ma
hine word), would result in slower integer operations. Thevalues of n 
orresponding to m = 2 are obviously inadequate, resulting inan unne
essarily large number of operations (e.g. Avizienis's algorithm),but any of the numbers n3; n4; : : : are equally suitable for the value of n (interms of operation 
ounts). Of 
ourse, the larger the m in nm, the morenormalizations (and therefore more spa
e to hold the intermediate results)will be required. In our implementation, we have used n = n3 (e.g. for r = 10and � = 6, n = n3 = 26). 23



6.3 DivisionDivision 
an be analyzed in mu
h the same way as multipli
ation, and is alsoquadrati
. For simpli
ity's sake, we shall assume that the partial remaindersare normalized fully | as remarked above, the a
tual time estimates willonly be better.By (18), to determine the N -th digit qN of the quotient, the division algo-rithm must 
ompute the �rst digit of the N -th partial remainder PN , whi
ha

ording to (17), involves evaluation of PN�1 and D to 3 digits (an extradigit is required be
ause of the multipli
ation by r), that in turn demandsPN�2 and D to 5 digits, and the domino e�e
t applies to the rest of the par-tial remainders, so that P0 will be evaluated to 2N + 1 digits. In summary,we will have N2 = 1+ 3+ : : :+ 2N � 1 integer divisions and additions fromthe normalization of PN ; PN�1; � � � ; P1, plus N more divisions from the digitsele
tion guesswork in (18), as well as N(N + 2) = 3 + 5 + : : : + (2N + 1)additions and multipli
ations of the quotient digits qn by the digits of thedivisor D in (17).7 Elementary fun
tionsIn this se
tion, we shall dis
uss the evaluation of elementary fun
tions on ex-a
t real numbers. Fun
tions of real variables that 
an be de�ned for normal-ized signed-digit radix-r representations are pre
isely those for whi
h thereexist left-to-right algorithms de�ned on representations. These algorithmsmust work in an on-line fashion: digit-by-digit, most signi�
ant digit �rst,inputting digits of the argument(s) and outputting digits of the result withbounded delay. The question one should ask himself when de�ning a fun
-tion on representations is whether, given more digits of the argument, one 
anprodu
e more digits of the result. In parti
ular, only 
ontinuous fun
tionson exa
t reals are 
omputable.7.1 Absolute valueThe absolute value is probably one of the simplest fun
tions de�nable on thereal numbers. In 
oating-point systems, all that is required for its 
ompu-tation is 
hanging a number's sign bit, if need be | an operation so trivialthat it is never even 
onsidered as su
h.In exa
t real arithmeti
 systems, however, there is no algorithm for de-
iding whether or not two in�nite sequen
es represent the same number. Inparti
ular, the predi
ates =, < and > are non-
omputable, and in general24



one 
annot even 
he
k a number to see whether it is positive, negative, orzero.Nonetheless, the absolute value fun
tion is de�nable on exa
t reals. Let usshow that if the signed-digit radix-r system used is not maximally redundant,i.e. � < r � 1, the sign of a number is determined by the sign of the �rstnon-zero entry of its mantissa. Indeed, if ak is the �rst non-zero element of(an)n2N0 , thenr�k�ak � �r � 1� � 1Xn=0 anr�n � r�k �ak + �r � 1� ;and if the system is not maximally redundant, all of these numbers have thesame sign as ak (provided ak 6= 0). From this also results the 
on
lusionthat in non-maximally-redundant systems zero is represented uniquely (upto di�eren
es in exponents).The algorithm for evaluation of the absolute value is now obvious:abs (a0; a1; � � � ; an; � � � ) = 8<: 0 : abs (a1; a2; � � � ; an; � � � ) ; if a0 = 0(a0; a1; � � � ; an; � � � ) ; if a0 > 0(�a0; �a1; � � � ; �an; � � � ) ; otherwiseand its 
omplexity is that of negation.7.2 Minimum and maximumIt may 
ome as a surprise to some to learn that while the 
omparison op-erators < and > are 
learly non-
omputable on exa
t reals, the fun
tionsminimum and maximum are. This is most readily seen from the relationsmin (a; b) = a+ b� ja� bj2 ;max (a; b) = a+ b + ja� bj2 ;whi
h involve only 
omputable fun
tions: addition, subtra
tion, absolutevalue, and division by 2.The impli
ations of 
omputability of min and max are non-trivial: forexample, we 
an sort lists of exa
t real numbers using sorting algorithmsbased upon max and min, rather than upon < and > (su
h as Bat
her'smerge sort).
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7.3 Square rootThe square root fun
tion is singled out be
ause of its simpli
ity and amenabil-ity to implementation with little additional overhead beyond that of the ba-si
 arithmeti
 operations. It is also almost the only 
ommonly used fun
tionthat is evaluated iteratively. The algorithm that we will des
ribe is the dire
tanalogue of that for division and produ
es n digits of the result in n 
y
les,at a rate of one digit per 
y
le. Su
h pseudo-division methods 
an also beextensible to higher degrees, although roots of order greater than three areusually evaluated by the same methods as xy for arbitrary y, using exponentsand logarithms, and even 
ube-root fun
tions are somewhat un
ommon infun
tion libraries. Our primary emphasis will therefore be on evaluation ofpx.Suppose that we want to evaluate y = px in radix r. Let x be given bya normalized signed-digit sequen
e X = (x0; x1; : : : ; xn; : : : )r with x0 > 0;jxnj � �, n 2 N , and exponent e, so that x = re � 1Pn=0 xnr�n, x > 0. Theny = � re=2 � pX; if e is evenr(e�1)=2 � prX; if e is oddLet Y = (y0; y1; : : : ; yn; : : : ) be a mantissa of y su
h that jynj � �, n 2 N .Denote Yn = y0 + y1r�1 + : : :+ ynr�nso that Y = limn!1Yn. Consider the s
aled partial remaindersP0 = X; Pn = rn �X � Y 2n�1� ; n 2 N :Observing that Yn = Yn�1+ynr�n, we 
an rewrite the next partial remainderas Pn+1 = rn+1 �X � Y 2n � = r �Pn � 2ynYn�1 � y2nr�n�The square root algorithm is based on the above re
urren
e relation, ea
hiteration of whi
h 
onsists of two sub
omputations:1) Determination of the result digit yn using a digit sele
tion fun
tion s,whi
h has Pn and Yn�1 as arguments:yn = s(Pn; Yn�1)2) Formation of Pn+1 from Pn, Yn�1 and yn:Pn+1 = r �Pn � 2ynYn�1 � y2nr�n�26



If 
are is exer
ised in 
hoosing y0 and the sele
tion fun
tion s is su
h that: : : � jPn+1j � jPnj � : : : � jP1j � jXj ;the algorithm will 
onverge as��X � Y 2n �� = 1rn+1 jPn+1j � 1rn+1 jXj :As in the 
ase of division, we make guesses about the digits yn basedon the most signi�
ant digits of the 
urrent remainder Pn and the 
urrentapproximation Yn�1. Although the guessed digits may be in
orre
t in some
ases, no 
orre
tion steps would be needed if a redundant signed-digit repre-sentation of Pn was used. In parti
ular, it 
an be shown that the followingdigit sele
tion fun
tion yn = � jpn0j2y0 � � sgn pn0;where pn0 is the integer part of Pn and y0 = �px0� the �rst digit of Y , isreliable enough as long as y0 � bpr
, i.e. x0 � r.8 SummaryThe foregoing analysis suggests that, notwithstanding the 
laim made byBoehm and Cartwright, the representation of exa
t real numbers by lazyin�nite sequen
es of signed digits in a radix-r system 
an lead to reasonablyeÆ
ient implementations of 
onstru
tive real arithmeti
. In parti
ular, thealgorithms presented here largely over
ome what they 
alled the granularitye�e
t. For the sake of simpli
ity, our implementation used r = 10 and� = 6, and was written in the fun
tional programming language Miranda5[17℄. Choosing the radix to be a large number, and using a 
ompiled languagesu
h as C/C++ or Java, would yield a large dividend in eÆ
ien
y, whi
h
ould be improved even further on a multi-pro
essor system if normalizationand other fun
tions were multi-threaded.What are the advantages and short
omings of positional arithmeti
 sys-tems as opposed to others, e.g. fun
tional ones? Laziness is 
ertainly anadvantage | a demand-driven system only 
omputes those numbers thatare needed, and only to the pre
ision required. It also avoids re
omputingthe elements 
al
ulated earlier, so that ea
h digit gives a better approxima-tion to the number being 
omputed. Conversion of numbers into redundant5Miranda is a produ
t and trademark of Resear
h Software Limited.27



form and de
oding them ba
k into 
onventional form is also very simple, asthe \
onventional" systems are also positional radix-r systems.Among the short
omings we 
an name the problem of 
hoosing the subsetof �nitely representable numbers. The availability of a subset in whi
h num-bers are represented �nitely is important for many reasons, not least of whi
his the need to 
ompute equality tests. For example, it is 
lear that all inte-gers must be �nitely represented. After the integers, the rationals seem to bethe best 
andidate for su
h subset, but any eÆ
ient implementation basedon the representation of the rationals as repeating radix-r numbers mustover
ome nontrivial te
hni
al 
hallenges, su
h as being able to re
ognize astate of 
omputation that has o

urred before, or having to deal with �niterepresentations of very great lengths. Evaluation of trans
endental fun
tionsin radix-r systems is also problemati
, as there are no obvious digit-by-digitalgorithms that are both simple and eÆ
ient.All these fa
tors must be 
onsidered prior to 
hoosing a representation ofthe exa
t reals most suitable for a given problem. Situations where one mightwant to use in�nite pre
ision arithmeti
 in
lude e.g. testing an algorithmto determine whether it su�ers from a numeri
al instability, or 
omputingsome numbers to high pre
ision to serve as referen
e values for 
onventionalmethods.A
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