University of

"1l Kent Academic Repository

Alexander, Kaganovsky (1999) Computing with Exact Real Numbers in
a Radix-r System. Technical report. , University of Kent at Canterbury

Downloaded from
https://kar.kent.ac.uk/21757/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

This report is a revised version of the paper presented at the Birmingham COMPROX Workshop
(1997) which appears in Electronic Notes in Theoretical Computer Science, Volume 13 (1998),
doi: 10.1016/S1571-0661(05)80217-8

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21757/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computing with Exact Real Numbers in a
Radix-r System!

Alexander Kaganovsky

15 October, 1999

!This report is a revised version of the paper presented at the Birmingham
COMPROX Workshop (1997) which appears in [7].

Abstract

This paper investigates an arithmetic based upon the representation of com-
putable exact real numbers by lazy infinite sequences of signed digits in a
positional radix-r system. We discuss advantages and problems associated
with this representation, and develop well-behaved algorithms for a compre-
hensive range of numeric operations, including the four basic operations of
arithmetic.

1 Introduction

The standard implementations of real numbers on a computer are approxi-
mately held to some fixed number of significant figures. The accumulation
of rounding errors leads to well-known difficulties calculating accurate nu-
merical results for scientific and engineering problems. Going to double,
quadruple or even multiple precision in no way eliminates these problems,
but merely ameliorates them. No matter how much precision is provided,
there are always problems for which it is insufficient to produce reliable re-
sults. Perhaps one of the worst features of floating point arithmetic is that
the computer can give us no indication of how many of the digits printed are
actually meaningful, so with a poor choice of algorithm it is quite easy to
generate numerical answers that are completely meaningless. An illustrative
example of such rounding anomalies is given in [9] (also in [8]), where com-
putation of a simple function on single precision floating point is shown to
produce completely wrong results after only 14 divisions and 12 subtractions.

As computing power becomes cheaper, it seems reasonable that we may
wish to move to a form of real arithmetic that is perhaps more expensive but
which will generate results to numerical calculations that carry with them
some easily understood guarantee of accuracy. Modern programming lan-
guages provide certain computing abstractions — infinite lists, higher order
functions — which make it possible to represent real numbers exactly as they
are defined in mathematics, using any of several possible methods.

Mathematically a real number is defined as an infinitary object — for ex-
ample, a converging sequence of rationals. Since all our computers are finite,
it stands to reason that only finitely many entries of an infinite sequence can
be instantiated in finite time. It also follows that not all real numbers can
be represented on a computer — only those whose defining sequence can be
determined by a finite amount of information.

The concept of a computable real number was first introduced by Alan
Turing in his classical paper [16]. He defined a computable real as one whose
decimal® expansion can be written down by a Turing machine. Roughly
speaking, a real number is computable if there exists a finite computer pro-
gram that can effectively approximate it to any degree of precision. When
more precision is desired, the computation may take longer, but the pro-
gram itself does not change. Herefrom, it follows that not all real numbers
are computable; at least, because the set of all finite computer programs is
countable, whereas the set of all real numbers is not.

In classical mathematical analysis, real numbers are defined in a variety

! Any other radix r > 1 could be used in exactly the same way.

of ways, all of which are equivalent to each other, so that the choice of a par-
ticular representation is matter of convenience. In constructive mathematics,
however, some functions on the computable reals, and even the four basic
arithmetic operations, are critically dependent on the representation, and
with a poor choice of the latter may become non-computable. For instance,
conventional fixed-radix positional weighted number systems, for which the
weight of the i-th digit is 7% and the range of each digit is {0,1,---,r — 1},
appear to be unsuitable for exact computations, because it is sometimes im-
possible to compute even the first digit of a result without having to inspect
an infinite number of the operands’ digits. A specific example can be found
e.g. in [10].

One of the pioneer investigators of this problem was Wiedmer who sug-
gested the use of redundant signed-digit systems to effect computability [20].
Although signed-digit notation was proposed as a means of avoiding carry
propagation chains in hardware arithmetic as early as in 1960’s, and has
been well known among hardware designers, having led to the development
of digit-pipelined or on-line arithmetic [6], it was probably Wiedmer who first
suggested its use in the context of exact computations. His PhD thesis [21]
contains a detailed investigation of the algorithms necessary for exact real
arithmetic on redundant signed-digit sequences.

In 1981-2, Carl Pixley at Burroughs Corporation undertook a study of
Wiedmer’s work, implementing a complete package of functions for exact real
arithmetic in the lazy functional language SASL [18]. Pixley spent some time
analyzing the efficiency of the algorithms, in particular for division, which
is the most subtle of the four basic operations. Although never formally
published, Pixley’s work [11] was privately circulated and stimulated interest
in the topic.

In 1986, Boehm, Cartwright, et al. [3] reported their two implementations
of exact real arithmetic — as lazy infinite sequences of decimal digits, and as
functions mapping rational errors to rational approximations. Having carried
out a comparative study of the two methods, they contended that the lazy
sequence method led to unsatisfactory implementations and performed very
poorly, while the functional method performed surprisingly well. Their claim
was partially based on what they called “the granularity effect” — computa-
tion of arguments to one digit’s more accuracy than necessary, which makes
the evaluation of expressions such as x; + (22 + (x3+ (--- + ,))) highly
inefficient. Since then, an extensive literature has arisen devoted to repre-
sentations of exact reals [4, 5, 8, 13, 19]; yet, no further attempts have been
made to find out whether the claimed advantage of functions over lazy lists
of digits was simply an artifact of a particular class of implementations of
lazy languages, or evidence of something more fundamental.

The purpose of this paper is to investigate the properties of the redundant
signed-digit representation of the reals, and find whether it can be rendered
free from the objections which have caused its rejection by the majority of the
researchers, who have deserted altogether its line of approach. In so doing,
we develop algorithms for a wide range of numerical operations, including
the four basic operations of arithmetic, discuss the complexity issues, and
examine various factors that can affect implementations.

2 Radix-r redundant signed-digit expansions

A number system is said to be redundant if there are at least two distinct
representations that are mapped onto the same number; otherwise, it is non-
redundant. A radix r number system requires at least r digit symbols; if this
number is greater than r, the system becomes redundant.

The following variation of the fixed-radix number system was originally
used by Avizienis [1, 2] to eliminate carry propagation chains in addition and
subtraction.

Definition 1. A radiz-r redundant signed-digit (SD) number system is one
based on a digit set

S,={p,...,1,0,1,...,p},
where T denotes —x, 1 < p<r—1, and p > r/2.

The last condition allows each digit to assume more than r values and
thus gives rise to the redundancy. We can measure the degree of redundancy
of a given SD system by calculating the redundancy coefficient

A digit set is said to be mazimally or minimally redundant if its redun-
dancy coefficient is maximal or minimal for the associated radix. Thus, for
radix-10, the digit set {5,...,1,0,1,...,5} is minimally redundant, while
{g, o, 1,01, 9} is maximally redundant.

Throughout this paper, we shall use the symbols N and N; to denote the
sets of all positive and non-negative integers respectively.

If # € R is a real number, 7 > 1 an integer, and (z;);.y, & sequence of
integers with —p < x; < p for all i € N such that

then the symbol on the right side of

T = (20, 21,22, ,Tny...), (1)

is called an infinite radiz-r redundant signed-digit expansion for x. If x; =0
for all i > p > 1, we also write

x = (29,1, %2, ... ,Tp),

This is a finite or terminating radiz-r expansion for x. In case r = 10 these
are called decimal signed-digit expansions and the subscript 10 is omitted.

If we allow the first digit of signed-digit expansions to be unbounded,
xo € Z, then for every real number x there exist an infinite number of
different radix-r redundant signed-digit expansions of the form (1). How are
all these expansions related to each other? In order to answer this question,
we shall introduce a few concepts and definitions.

Definition 2. Let (a,) be a sequence of integers such that the series

> aur ")

is convergent. A sequence of integers (by)
(a’”)nGNO if

neNp

nen, 08 said to be equivalent to

o0 o0
E a,r " = E b,r "
n=0 n=0

(and, in particular, the series on the right is also convergent). To indicate
the equivalence of two sequences, we shall use the symbol ~.

If we denote by S the set of all integer sequences (a,),y, for which the
series (2) converges, then obviously ~ is an equivalence relation on S, and
using the fact that for any number x € R there exists at least one expansion
of the form (2), the equivalence classes are in one-to-one correspondence with
the reals: R = S/ ~.

We next define a family of functions f : S — S such that f(s) ~ s for all
s€S.

Definition 3. Let i € Z be an integer, i # 0. We define
fO ((an)nENo) = (an)nENo
a; + sgn(i), if j=1i| -1

fi ((an)neNO) = (b”)neNo , where b; = ¢ a; —sgn(i) -r, if j = |i
aj, otherwise.

Now let (ix),—, be a finite sequence of integers. We define

def

fili2---im f’Lm -0 fiz © fil
For example, if 7 = 10, (an),cy, = (5,5,...5,...), we have

f1(5,5,5,...5,...)
fa (555 5,..0)
fi2(5,5,5,...5,...)
f13(555)

= (6,-5,5,...,5,...)
(4,1)5,
= (6,— ...,5,...)
= (4, 156)5,.)

One can see that the n-th element of a sequence can only be changed by
fin and fi(,41), SO our next step is to carry over the definition of f;, to the
case where (i) is an infinite sequence.

Definition 4. Let (ix),cy, i 7# 0 be an unbounded sequence of integers such
that the sequence (|ig|),cy %5 nondecreasing. We then define

def
Jeooen ((a”)nGNo) = (b”)nGNO’

where b, = (fil“'ijn ((an)neNO))n and (jn) e, 5 any sequence of natural num-
bers with |i;, 1| < n < |i;,| (it is easy to verify that the value of b, does not
depend on the choice of (jn),en,)-

Since fy is the identity function, we can also allow zeros to appear in the
sequence (i), by agreeing to calculate the value of f4,), ., as

def
f(ik)keN = J(@)ken

where the sequence (i},),.y is obtained from the original sequence (ix),cy by
skipping all encountered zeros.
One of the main properties of the functions f;,) is that they do not take

us out of the equivalence classes with respect to ~, i.e. for any (a,), oy, € S

filiQ---im ((a’”)nGNO) ~ (a’”)neNo

f(ik)keN ((a'”)TlGNo) ~ (a")neNo

Among other properties, we can indicate that

fm,fm - ffm,m = fo for all m N

Theorem 1. Let r € N, r > 1 be a radixz value, p be an integer with 1 <
7/2 < p<r—1, and let x € R. Then there exists a sequence (an),cy, Of
integers such that —p < a,, < p for all n € N, and

Moreover, if (by),cy, i any other (a; # b; for some j) sequence of integers
such that —p < b, < p foralln € N; b, #r—1 (orb, # —r+1) for infinitely
many n (if p=r—1), and

T = anr’", (3)

then there exists a (possibly finite) integer sequence (iy),cn Such that (|ig|),en

is nondecreasing and (bn),en, = fiween ((@n)nen,) -

ke

Proof. Let xg.x1x5...2,... be the conventional radix-r expansion of z, i.e.
o € 7,0 < z; <rforall i € N. Then we define

(a’”)nGNO = f('in)neN ((x”)RGNO)

where

., if p<a, <r-—1
In = 0, if 0<z,<p-—1

[t is quite easy to see that |a,| < pforalln € N: we know that 0 < z, <,
and a, is obtained from z, through application of f;, ; for some %y,...1.
Thus, if x,, € [0, p — 1], it may only be changed by f,,1, in which case it will
be increased by 1; if x, € [p,r — 1], then f, will reduce its value by r, and
the resulting value may, in its turn, be also increased by 1 by f,.1. In either
case, we have —p < a, < p,and =3 a,r "

Now suppose that (3) obtains for some sequence (by,),,, of integers where
|bn| < p for all n € N, and b; # a; for some j. Let k =inf{j € N:qa; # b;},
then we have

o0 o0
E a,r " = g b,r "

or

b, = a; + Z (CL,H_k - bn—l—k) r—"

n=1

Since |an k| < p, |bnik] < p, we can estimate

o0

o0 o0
Z (@nsk = bngr) 77" < Z |k — by 77" < Z2pr_n =
n=1 n=1

n=1

2p
r—1

Generally, we have 1 < 2p/(r — 1) < 2, but the pathological equality
b = a; = 2 may only hold true in the case where p = r — 1 and z =

(aﬂa aly ..., 0k, :I:pa j:pa :I:p :) = (b07 bla s 7bk7 +po,F+p,Fp,- -)7 which we
have excluded from consideration. Hence, we deduce that

bk = Qg +1
Now we set

_— k, if by=a,+1
= —]{?, if bk:ak—l

and if (al,),cn, = fir ((an)neNO), then b, =a,, n € {1,... k}.
Once iy,... ,i, 1 have been chosen, let i, = |i,,| - sgn (4,), where
|Zn| = inf {j c NO : bj 7£ (fil...infl ((an)nENo))j}
1, if by, = (f’il...’in—l ((an)neNo))\in\ +1
—1, if b|2n| = (fil...in—l ((an)nENo))|in| —1

It may happen that i,, = 0 for all n > p, p € N. In this case, we shall
consider the resulting sequence (i, ... ,4,) to be finite. This concludes the
proof. O

sgn (Zn)

3 The representation

We aim to represent real numbers by sequences from the representation set
S, as defined in Section 2. For example, one might define a computable
exact real number x as a triple (r, E, M), where FE € Z is an exponent, M is
a mantissa which is a sequence of numbers (a,), oy, € S, and the value of x
is computed as

r=rP. Z a,r ", (4)
n=0

Such a representation, however, would be too loose a concept to be useful
by itself. We must also provide some constructive condition in order to guar-
antee convergence of the series in (4) and be able to make useful inferences
about a number from a finite amount of information about its representation.

7

In this light, we define a representation of an exact real number x to be
a quadruple (r,p, E, M), where r € N, r > 1 is the radiz value, the range
parameter p is an integer with r/2 < p <r —1, F € Z is a signed ezponent,
M is a mantissa, which is an effectively given? sequence of integers (a,)
such that

neNy

la,| < Cn, n €N, (5)

where C' > 0 is a constant, common to all real numbers in a given system
— we therefore do not include it in the representation®. The representation
(7,0, E, (an),en,) 18 said to be canonical or normalized, if

|an| S p, n & I\IO-

The value of x = (r, p, E, (an),cy,) 18 taken as in (4). Later on we will
centre on the factors that affect the choice of appropriate values for the
parameters r and p.

For brevity and ease of reading, we shall not always distinguish between
a number z and its representation (r,p, F, M), and refer to a number as
normalized if its representation is normalized, and vice versa. We shall also
assume that r and p are fixed and sometimes use the notation (E, M) instead
of (r,p, E, M).

Observe that we can view a finite number as being infinite, by attaching
an infinite sequence of zeros at the end of its mantissa:

N 00
rf. E ar t=rP. E a;r ",

where we have set a; = 0 for ¢ > N. We can therefore assume, without any
restriction of generality, that the mantissas of all operands are infinite, unless
otherwise specified.

4 Normalization

Most algorithms presented in this and subsequent chapters assume that all
operands are normalized, and also require normalization of the results, so

2The sequence (an)nENO could in principle be given by an oracle — it does not necessar-
ily have to be computable in the sense of being the sequence of values g(0), g(1), g(2), ...
of a general recursive function g(z).

3The convergence criterion (5) is somewhat arbitrary and only required to ensure effec-
tive convergence of the sequence. If a sequence were found to violate (5), an error message
would be produced at run-time. The value of C' = 2 (r — 1)2 could be given as a rough
estimate that satisfies the algorithmic requirements.

we shall now discuss the algorithms for normalizing real numbers. We recall
that normalization refers to the process of restoring the individual digits of
a real number’s mantissa (a;);cy, to the canonical range [—p,).

Let (a;) be an unnormalized mantissa of a real number a = r¥ -

1€Np
o0
> a;r~". We shall first confine our attention to the case where |a;| < r+p—
i=0

1, i € Ny, and show how to obtain a new exponent E’ and mantissa (a;);cy,

such that
) a=r"- Z a;r =" Za;r_i
i—0 i—0
2) lail <p, i €N (6)

0 .
To this end, we first consider > a;r~" and repeatedly divide a; by r for

1=0
all 7 € Np:
a; = dir +m;, |m;| <r, sgn(m;) = sgn(d;) (7)
We have:

Z art = Z (dir +my)r" = Z dir ! 4 Z mir
i—0 i—0 i—0 i—0

= (dor+mo+di)+ Y (mi+disr) ™ (8)

i—1

Now |a;|] < 7+ p— 1 implies |d;|] < 1, |m;|] < r —1 (i € Ny) and, thus,
|m; + d; 1] < r. We, however, aim to obtain a value less or equal to p (instead
of r). Let us introduce the following notation:

: d; +sgn (m;), if |m;| > p
B mi, if |m;| < p
mi = { m; —sgn (m;) - r, if |my| > p (9)
a; = m;+d, (i€N), ay=ao+d
From (9) it can be seen that a; = dir + m!. and, similarly to (8), we
arrive at

o0 o0 o0
Z a;r " = (ag + d}) + Z (m}i+d)r "= Z ajr™’
i=0 i=1 i=0

Let us now verify that |af| < p for all i € N. For this purpose we note
that |di| < 1 for all i € Ny, so if |m;| < p, then m, = m;, |ml| < p,

and |a}| = |m)+dj,| < p. If |my| > p, then m) = m; — sgn(m;) - 7,
L < |mj| < r—p, and |aj] ‘m +d+1‘<r—p+1 Now we require
—p+1<por, equivalently,
1
o> (10)

which in its turn implies that (r+1) /2 < r —1 or r > 3. Using (10), we
finally obtain |a;| < p for all i € N. For i = 0, however, the inequality does
not necessarily hold true. On the other hand, from the definition of af we
can conclude that ag — 1 < ay < ag + 1.

In this manner, we have constructed a function f : N? x ZM — 7N (it
will be referred to as reduce) which assigns to any triple (r, 0, (ai)ieNO) the
sequence (aj);cy,, calculated according to formulae (7) and (9). Evaluation
of this function can be performed totally in parallel (Fig. 1).

Y

Figure 1: Totally parallel normalization

Returning to formula (6), we now construct the promised number as
follows:

F - {5 if lag| <p—1
T L E+1, if fag| > p
ieNy f(ryp,(0,a0,a1,... an,...)), if |ag] > p

Now let us consider a more general case where |a;| < M, i € Ny, where
M > 0 is an arbitrary positive integer. We can now easily show that it is
possible to normalize mantissa (a;),.y, in a finite number of steps. Indeed,

applying reduce, we shall obtain a sequence (a;),.y,, satisfying the following

10

condition:
i = o+ | <]+ o] < p= 14 | 2|41
or
|M§ﬂﬂ@{¥J+ﬂ
Applying reduce again, we get another sequence (a;),.y, , satisfying
o] < M, < {%J +p,

etc. The sequence M, My, Ms, ... is a sequence of decreasing natural num-
bers, and if M = m,r™ 4+ ...+ mqyr 4+ my, the algorithm will terminate in at
most n + 1 steps.

More specifically, we can prove the following result.

Theorem 2. Let (a;);cy, be a sequence with |a;| < M, i € N, where M
1s an arbitrary positive integral number. In order that the sequence (al-)iENO
be normalized to an equivalent sequence (b;);oy, with [bif < N, i € N on

applying reduce at most n times, it is sufficient that M < g™ (N), where
g™ (z) =r"z 4+ Cp, C, = (r" — 1)(1 — p).

Proof. To prove the sufficiency of the condition imposed upon M, we need
but note that the functions ¢ (z) satisfy the following recurrence formulae

g™ (x)=r- g(”_l)(x) +Ci, neN,
where ¢\ (z) = z. Equivalently,
9" () =gogo--og(x),
—_
n times

where
g(z) = ¢W(z) = ra+ C,.

Thus, it suffices to show that any sequence (a;);cy, With |a;| < g(7), 7 € N
can be reduced, in a single step, to a sequence (a;);cy, With |aj| <z, i€ N
Let (a;);cy, be any such sequence, i.e. |a;] < rx+Cy, i € N. As indicated
above, |a;| < M implies |af| < M; = ||+ p, and thus picking M = rz +C;
vields My = |2+ (1—p)=t | +p<az+(1—p)+p=x+1, ie.
;| <

which is what had to be proved. O

11

Corollary 1. If (a;),cy, is a sequence satisfying |a;| < g™ (p) for some
n € N and all 1 € N, it can be fully normalized by reduce in at most n steps.

This follows immediately from the theorem: n normalizations give us a
sequence (a;);cy, With |ai| < p.

The converse statement is not necessarily true: even if |a;| > g™ (N) for
some k € N, after n normalizations we may still get a (b;);cy, with [b;] < N
for all 7 € N. Suppose, for instance, that ay = g(N) +1=r(N—p+1)+p
for some k € N and |a;| < g(N) for i # k. This implies that d, = N —p+1,
my, = p and, therefore, di. = N — p+ 2, mj. = p — r. Recalling that

3

aj_y =my_; +dy, k€N,

one can see that the larger-than-usual value of d}, can only affect the (k—1)-st
element of the resulting sequence, and, further still, only if mj ;, = p—1, in
which case aj,_, =p—14+ N — p+2 = N + 1. However, the value of mj_,
depends solely on a;_;, and can be anywhere in the range from —p + 1 to
p — 1, irrespective of the value of the next element, a;. If it so happens that
mj,_, # p— 1, we will have |a}, ;| < N, and consequently — since the a} for
i # k — 1 have remained intact — |a;| < N for all i € N.

This example shows that the functions ¢(™ (x) give us, in fact, the best
upper bound one could possibly have in order that any sequence bounded
by it be safely normalized. More precisely, for any integer function f™ (z) >
g™ (x) there is a sequence (a;);c, with |a;| < f (p) that cannot be fully
normalized in n applications of reduce.

By way of illustration, let us give a few examples.

Example 1. Let r = 6, p = 4, (a;),cy, be a sequence with |a;| < 3500 for
all © € N. How many times does one have to apply reduce to obtain an
equivalent sequence (al),_ with |a;] < 100, i € N?

We have

1€Np

g(100) =6-100 — 15 =585
gP(100) = g(585) = 6- 585 — 15 = 3495
g®(100) = g(3495) = 6 - 3495 — 15 = 20955

Since g (100) < ¢ (100) < 3500 < ¢ (100), 3 normalizations will be suffi-
cient by theorem 2.

Example 2. Let r = 10, p = 6. Find the bound for the elements of a
sequence that can be fully normalized in 3 applications of reduce.
According to Corollary 1, we need but calculate

g®(6) = 1000 - 6 + 999 - (—5) = 1005.

12

Thus, if |a;| <1005, i € N, (a;);cy, can be fully reduced in three passes.

The functions ¢ (z) have a much simpler form when 2 = p: indeed, it
is easy to see that

g"(p)=r"+p—1,neN (11)

The right-hand side of equality (11) is solvable for n, which enables us
to determine the number of times one has to apply reduce in order to fully

normalize a given sequence (a;);cy,- In more exact terms, let (a;);cy, be a
sequence with |a;| < M, i € N. By theorem 2,
n=min{keN | M <g*p)}.
Solving the inequality M < ¢*(p) for k € N, we find that
k>log, (M —p+1),
or,
n = [log, (M — p-+ 1) (12

As a conclusion, let us take note of the fact that, as it follows from (10),
in order for our system to allow totally parallel normalization, i.e. absence
of carry propagation chains, it must not be minimally redundant. For r = 2,
for instance, there is only one possible digit set, {T, 0, 1}; thus, in the binary
case the condition p > (r + 1) /2 = 3/2 cannot be satisfied. Henceforth, only
non-minimally redundant systems will be considered.

5 Basic arithmetic operations

5.1 Addition and subtraction

In this section, we shall discuss algorithms for the operations of exact real
addition and subtraction. The emphasis will mainly be on the former, since
subtraction is usually carried out as the addition of a negated number. We
shall first discuss addition of two numbers and then look at multiple number
addition.

5.1.1 Addition of two numbers
o0 . o i

Let a = rP - Y a;r™" and b = r - 3" b;r™7 be the two normalized radix-
i=0

Jj=0
r numbers to be added. Since the addition operation is commutative, we

13

can assume e = FE, — Fj > 0 without loss of generality. The procedure for
addition or subtraction is as follows:

[o 0] o0 o0 o0
a+b = rfe. E a;r~t 4+ r . E br—t = pPe g a;r " +r7¢. g br™"
i=0 i=0 i=0 i=0

o0

= rE“-Z(ai—l-b;)r_i,
=0
where
(67 117 éa"'ab;za"')r: 0707"'101170761762;"'

e 7Zeros ,

Thus, in order to perform addition, we must first adjust the mantissa of
one of the operands to make the two exponents equal (align the radix points),
and then add the two sequences digit by digit. The resulting sequence

(a0+b6; a'1+b117"') an—i_b;za)r
can then be normalized in a single pass, since

|an + b, < lan| + 10, <2p <r+p—1.

5.1.2 Subtraction

Subtraction is carried out in the usual way by negating the minuend and
adding the result to the subtrahend. Negation is performed as follows:

o0 o0

St = (o
1=0 =0

5.1.3 Addition of several numbers

The above addition algorithm can be readily modified to operate with n num-
bers, where n > 2. The procedure is essentially the same — the mantissas of
all n numbers are first aligned to match the one with the largest exponent,
and then added digit-by-digit. As it follows from (12), the resulting sequence
can be normalized by applying reduce [log, (np — p+ 1)] times.

Note that this is considerably more efficient than adding the n numbers
pairwise using (n — 1) nested additions, as we discuss later (Section 6.1).

14

5.2 Multiplication

Let the multiplier and multiplicand be denoted by a, b € R respectively, with
the following normalized sequences of signed digits:

(a(]aa'l;a?J"' 7an7"')7 (bU;blab%"' ana"')a

1.e.
o0 o0
a=rP. E a;r~t, b=rl. E bjr™
i=0 §=0
Then

[M]8

ab = rP . (Z aﬁ“i> . < bjrj>
i=0 §=0

o0 o0 i
The Cauchy product of the two series Y a;r" and) b;r~7 is the series
i=0 j=0

i Cmrim = i (i azbmz> rima
m=0

m=0 =0

where ¢, = (Z aibmi) Since both series a = > a,r "™ and b= > b,r™™"
=0 n=0 n=0
are absolutely convergent, by Mertens’ theorem (see e.g. [15]) their Cauchy
o
product Y ¢, " converges to ab.

n=0
Since (a;);cy, and (b);cy, are canonical representations of a and b, we

have

lem] < 7 (m+1), m e N.

Now we want to find the result in the form

o0
— . 2E ! ,.—m
ab—c—rc-g ot
m=0

where —p < ¢;, < p for all m € Ny. However, the sequence (cy,),,cy, cannot
be normalized directly, because generally it is not bounded by any positive
integer. Instead, we can recursively apply reduce to small bounded portions
of (¢m)men, > @ shown in Figures 2 and 3.

15

apby apby agbn—1 aoby, aObn+1 aobn+2 apbon—1 apban,
a1 by a1by_o | a1bp_y a, by, albn-i-l a1bop_o a1bop_1
Up—1bo | Gpn_1by ap_1by an_1b3 Up—1bp Up—1bp41
anbO anbl anb2 anbnfl anbn
an—l—lbO an-l—lbl an—l—lbn—Q an-l—lbn—l
a/n+2b0 an+2bn73 an+2bn72
a2n—1bo A2p,—1b1
a2nbo
Figure 2: Multiplication — before normalizing
Coo Co1 Con—1 | Con Con+1 Co,n+2 €0,2n—1 Co,2n
Ant1by apy1by Api1bp—2 | Qpy1bp g
a/n+2b0 an+2bn73 an+2bn72
aon—1bo Aop—1b1
a2nb0

Figure 3: Multiplication — after normalizing first (n + 1) lines

Namely, let us choose some n € N, then for all m > n we write:

We have:
(o0}
E ot ™
m=0

m n
Z Aibp—i = Z aibpm—i +
i=0 i=0

M

3
Il s
)

WE

3
Il
)

m

1=0

min(m,n)

=0

i a;bpm—i
i=0
Z ibpm—i

E by | 7™

r™m 4 Z

i a;bpm—i

i=n+1

n

m
aibm,i r

Z aibmﬂ- + om
m=n+1 \i=0 1=n+1
oo m
r-™ 4 Z Z by | r7™ (13)
m=n+1 \i=n+1

16

min(m,n)

Now the sums > a;b,—; are bounded for all m € N,

i=0
min(m,n)
Y aibmi| < (n+1) 07 (14)
i=0
min(m,n)
so we can apply reduce to the sequence > aibm; . Having done
i=0
méeNy

so m(n) times, where

m (n) = [log, (n+1)p* — p+1)],

we shall obtain an equivalent sequence (COm)meNo satisfying |co,m| < p for all
m € N(), i.e.

00 min(m,n)

Z Z by | 77 = i com” ", where || < p. (15)
m=0 =0 m=0

Returning to (13), we rewrite it in the form

00 n—1 00
E Cmrfm e E Comrim + ’I"in E C%)’I"im,
m=0 m=0 m=0
where
1 _
¢y’ = Con (16)
n+m
1
07(71) = Cop+m T E aibn—l—m—ia m €N
i=n+1

Proceeding recursively with the series

00 n—1 00
Z cDp=m — Z Cimr AT Z cUtbp—m e N,
m=0 m=0 m=0

we obtain an equivalent sequence (cy,), cn,
00 n—1 n—1 n—1
Z Cmr "t = Z com” " H+TT" (Z Cim? " <Z Com” T+ ...
m=0 m=0 m=0 m=0
n—1 2n—1 3n—1
= Z Com?™ " + Z Clyn—nT "+ Z Com—om? " 4 ...
m=0 m=n m=2n
00 (k+1)n—1 00
= Z Z Ck,mfknr_m - C:nr_ma
k=0 m=kn m=0

17

where

C;n = Cmdivn, mmodn; |C:n| S Py M € NO
min(m,n)
(k)
(CkM)meNO ~ di,m—z’ , Jekm| < p
=0 méENy
g = gm0 =0
i d¥ . ieN
0 _
m
k+1) (k+1)
07(n) = Z A i
=0
O = ¢,

Thus, (c},) ey, 18 the required result of multiplication.

5.3 Division

The intention here is to develop algorithms for division of exact real numbers.
Let N € R be the dividend, D € R, D # 0 — the divisor, their redundant
signed-digit radix-r representations given by

o0 o
N =rEv. 5 nir %, D =rFpr. E dir ",
=0 1=0

where |n;| < p, |d;| < p for i € N. The task is to compute a real quotient

o0
Q=r"e. E gr~"
i=0

such that N =Q - D and |¢;| < p, i € N.

A considerable body of work exists in the literature on the methods of
signed-digit division, most of which in one way or another owe their origin
to an algorithm due to Robertson [12]. The substance of the algorithm lies
with an iterative process that produces one digit of the quotient per cycle
according to the following recurrence equation

Py =1 (P, —q.D), n €Ny, (17)

where Py = N, P, is the current partial remainder, P, is the next partial
remainder, and ¢, is the quotient digit inferred from P, and D. It is easy to
see that

Po=r"[N=(g+qr " +...4¢ r ") D], neN

18

and so imposing an upper bound on the value of |P,| will ensure convergence
of the algorithm, provided that selection of the quotient digit ¢, results in
the next partial remainder P, ; adhering to the same allowed range as P,.

The existing signed-digit division algorithms primarily differ in their se-
lection of quotient digits, restriction of the range of the possible values of
the divisor, dividend and partial remainders and, finally, normalization tech-
niques.

The conventional, non-redundant algorithms also use relation (17) but
always produce correct quotient digits — the multiplications of the divisor
by the digits of the quotient are done by repeated subtraction, and a guessed
digit is known to be incorrect if it is either too large and the subsequent
subtraction leaves a negative result, or it is too small and the subtraction
leaves a result that exceeds a multiple of the divisor in that digit position.

In redundant signed-digit representations, however, the sign of an inter-
mediate result may not be readily available for inspection, because a number
of its most significant digits, generally unknown in advance, may happen to
be all zero. The usual way to get around this problem is to make a guess
about ¢, based on the inspection of several most significant digits of P, and
D. Even though this could result in some quotient digits ¢, selected in this
way being incorrect, the redundancy allows recovery from wrong guesses by
taking an appropriate correction step in the next quotient digit. As long
as the next ¢ can correct an error in the previous step, convergence of the
algorithm is guaranteed.

The method of division put forward here is a modification of the original
Robertson’s signed-digit division algorithm and is similar to that recently
reported by David Smith [14].

The algorithm uses the above recurrence relation (17) and the following

digit selection function:
0 = { J - sen (p—“°) , (18)
do

where p, is the first digit of the n-th partial remainder P,, and dj is the first
digit of the divisor D which, being non-zero?, is so scaled that |dy| > 2. Be-
ginning with Py = N, we have the following sequences of digits representing
P,.1,neNg:

Pno
do

Pn+1 = T (pn(] - QTLdﬂa Pn1 — QTLdla *tty Dnk — QTLdka T)r
= (r(pnO - qndO) + (pnl - Qndl)a Pn2 — Qnan oy Pnk — Qndka e)r

4Note that since D is represented by an infinite sequence of digits, one cannot effectively
check whether or not it is non-zero.

19

The early algorithms fully normalized P,, n € N at each step in order to
keep the entries of the sequence bounded. However, as recently shown in [14]
(and also suggested by Carl Pixley in the early 1980’s), it is possible to skip
the full normalization of the partial remainders, and instead normalize only a
few leading digits. The details of the algorithm analysis are given in [14], and
although considering the operands to be finite and given in non-redundant
form, readily lend themselves to the elaboration necessary to extend the
method to operate with infinite sequences of signed digits.

The elimination of most intermediate digit normalizations makes the di-
vision algorithm run in double-quick time, and at high precision nearly as
fast as multiplication.

6 Complexity analysis

The chief and computationally most significant part of the algorithms pre-
sented in this paper is the normalization function, which is for the greater
part responsible for the complexity of the four arithmetic operations.

The normalization procedure relies upon unbounded integer arithmetic
for its operation, and hence the speed of normalization is crucially dependent
on the speed of same. As seen in Fig. 1, normalization always requires one-
digit carry-look-ahead — to produce N radix-r digits of a normalized result,
it is necessary to compute N + 1 digits of the number being normalized,
whereafter N out of the N + 1 digits (excluding the first one) are divided by
r, and the results of the divisions — added, possibly in parallel, resulting in
a total of N integer divisions by r, and N integer additions. If r is a power
of 2, the divisions by r can be done by simple shifts.

Similarly, if normalization is to be performed m times, in order to obtain
N digits of the result, we need N + m digits of the original number, as well
as N+ (N+1)+...+(N+m—1) =m(N + (m —1)/2) divisions by r and
additions.

6.1 Addition and subtraction

The computation of N digits of the sum of two numbers requires N + 1
digits of the operands, N integer divisions by r and 2N + 1 integer additions.
Addition of n numbers, where n > 2, requires N + m digits of the operands,
m(N + (m — 1)/2) divisions by r and m(N + (m — 1)/2) + (n — 1)(N + m)
additions, where m = [log, (np — p+ 1)]. This is, of course, much better
than the repeated binary addition 1+ (2 + (z3 + (- - - + x,))), which results

20

in the evaluation of N + n digits of the operands, (n — 1)(N + (n — 2)/2)
divisions by r and 2(n — 1)N + (n — 1)? additions.

Subtraction is only different from addition in that negation is performed
beforehand. Negation, of course, does not require any look-ahead, and its
complexity is simply that of changing the sign of a number’s digits.

6.2 Multiplication

The complexity of the multiplication algorithm depends on the value of the

parameter n € N that appears in (14). Let us address ourselves to the

question of choosing an appropriate value for n. In principle, the algorithm

will work correctly with any n € N, so our main concern here is to minimize

the number of operations needed to compute N digits of the result. Note

that when n = 1, the algorithm is the same as that adopted by Avizienis [2].
Now let

N=pn+q, 0<qg<n.

We have p + 1 partial normalization groups (the first two groups are shown
in Fig. 2), each of which requires at most m(n) = [log, ((n + 1) p*> — p+1)]
applications of reduce (see (14)). On account of the granularity effect, to
compute N digits of the product, the normalization procedure requires m
extra digits from the last partial normalization group, 2m extra digits from
the second-last one, and so on; the first group requiring as many as pm extra
digits, thus making the total number of integer divisions and additions

Ngw = m(N+pm+(m—1)/2)+
m((N—n)+(p—-1)ym+(m—-1)/2)+...+
m((N = pn) +(m —1)/2)
= mN+N-n)+(N-2n)+...4(N—pn))+
m*p+(p—1D+...+1)+mim—1)(p+1)/2

1
= 5m(p+1)(1\f+q+rmp+m—1).

The corresponding formula for the number of integer multiplications of the
operands’ digits is

w_k(q—l)m—l—n-(2m+...+(p+1)m)

N(N +1 2+3
= %—l—m(p;pn—i-q—l)

Nmult

21

Thus, we have to choose n such as to minimize the two functions

Nuw(m, N) = gm(n) - (p+1) (N +q-+m(n) - p+m(n) ~ 1),

1 ?+3
Nt ¥) = SNV 1) o) (50 g 1))
where

N
p= {—J, g =N mod n,
n

[log, (n+1)p>—p+1)].

m(n)

For instance, let » = 10, p = 6, then

—_-
—

n=1
2<n<26
if 27<n <276
if 277 <n <2776

—_-
—

m(n) =

Ot = W N

and the corresponding minimal values of Ny;, for N = 100 are
Nyiv(1,100) = % -2-101- 301 = 30401
Nin(26,100) = % +3-4-133 =798
Nyin(276,100) = % -4-1-203 =406
Ngin(2776,100) = % +5+1-204 =510

These data have been summarized in graphical form in Fig. 4 as plots of
Ngiy and Ny versus n for N = 100. It is apparent that Ny, (n) and Ny (n)
behave similarly for other values of IV, r and p. One can see that the optimal
value of Ny;, is attained when n = N 4+ 1, in which case p = 0, ¢ = N, and
the total number of divisions is Ny, (N + 1, N) = mN + m(m — 1)/2. Since
the number N of required precision digits is generally unknown in advance,
it is reasonable to choose some fized value of n that would ensure reasonable
performance of the algorithm for all N. It is also clear that we may only
choose n out of

n =max{n € N| m(n) <k}, keN,

22

Figure 4: Choice of n for multiplication — the number of integer multi-
plications N,,,;; and divisions Ny;, vs. n calculated for N = 100 precision
digits

r=10, p=6, N=100

12000

10000 -

8000 -

.
m=4 —— Ndiv
m= —— Nmult

6000 -

4000 -

2000

0
1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 n

because if n’ > n" and m(n') = m(n"), we have Ny, (n') < Ngiy(n").

In principle, the larger the value of n, the better; except when n is vastly
larger than N, the number of operations N,, will continue to grow with N
(due to the increasing of m). On the other hand, choosing a large value of
n would imply large values of the sequence entries (up to (n + 1) p*> — see
(14)) which, if exceeded the threshold for representing integers (usually the
size of the machine word), would result in slower integer operations. The
values of n corresponding to m = 2 are obviously inadequate, resulting in
an unnecessarily large number of operations (e.g. Avizienis’s algorithm),
but any of the numbers nsz, ny, ... are equally suitable for the value of n (in
terms of operation counts). Of course, the larger the m in n,,, the more
normalizations (and therefore more space to hold the intermediate results)
will be required. In our implementation, we have used n = n3 (e.g. for r = 10
and p =6, n = nz = 26).

23

6.3 Division

Division can be analyzed in much the same way as multiplication, and is also
quadratic. For simplicity’s sake, we shall assume that the partial remainders
are normalized fully — as remarked above, the actual time estimates will
only be better.

By (18), to determine the N-th digit g of the quotient, the division algo-
rithm must compute the first digit of the N-th partial remainder Py, which
according to (17), involves evaluation of Py ; and D to 3 digits (an extra
digit is required because of the multiplication by r), that in turn demands
Pyx_5 and D to 5 digits, and the domino effect applies to the rest of the par-
tial remainders, so that Py will be evaluated to 2N + 1 digits. In summary,
we will have N2 =143+ ...+ 2N — 1 integer divisions and additions from
the normalization of Py, Py_1, ---, P;, plus N more divisions from the digit
selection guesswork in (18), as well as N(N +2) =3+5+ ...+ (2N + 1)
additions and multiplications of the quotient digits ¢, by the digits of the
divisor D in (17).

7 Elementary functions

In this section, we shall discuss the evaluation of elementary functions on ex-
act real numbers. Functions of real variables that can be defined for normal-
ized signed-digit radix-r representations are precisely those for which there
exist left-to-right algorithms defined on representations. These algorithms
must work in an on-line fashion: digit-by-digit, most significant digit first,
inputting digits of the argument(s) and outputting digits of the result with
bounded delay. The question one should ask himself when defining a func-
tion on representations is whether, given more digits of the argument, one can
produce more digits of the result. In particular, only continuous functions
on exact reals are computable.

7.1 Absolute value

The absolute value is probably one of the simplest functions definable on the
real numbers. In floating-point systems, all that is required for its compu-
tation is changing a number’s sign bit, if need be — an operation so trivial
that it is never even considered as such.

In exact real arithmetic systems, however, there is no algorithm for de-
ciding whether or not two infinite sequences represent the same number. In
particular, the predicates =, < and > are non-computable, and in general

24

one cannot even check a number to see whether it is positive, negative, or
zZero.

Nonetheless, the absolute value function is definable on exact reals. Let us
show that if the signed-digit radix-r system used is not maximally redundant,
i.,e. p <r —1, the sign of a number is determined by the sign of the first
non-zero entry of its mantissa. Indeed, if a; is the first non-zero element of

(an)neNO, then

o0
- p o p
rk<ak—r_1>§2anr Srk<ak+—r_1>,

and if the system is not maximally redundant, all of these numbers have the
same sign as a (provided a; # 0). From this also results the conclusion
that in non-maximally-redundant systems zero is represented uniquely (up
to differences in exponents).

The algorithm for evaluation of the absolute value is now obvious:

O:abs(alaa%"'aana'“)a if(LOZO
abs(ama’la"'aan;"'): (afﬂaala"'aana"')a ifa0>0
(—ap, —ay, -+, —ap,---), otherwise

and its complexity is that of negation.

7.2 Minimum and maximum

It may come as a surprise to some to learn that while the comparison op-
erators < and > are clearly non-computable on exact reals, the functions
minimum and maximum are. This is most readily seen from the relations

min (a,b) = a+b—2|a—b|,
b —b
max (a,b) = ot +2|a |,

which involve only computable functions: addition, subtraction, absolute
value, and division by 2.

The implications of computability of min and max are non-trivial: for
example, we can sort lists of exact real numbers using sorting algorithms
based upon max and min, rather than upon < and > (such as Batcher’s
merge sort).

25

7.3 Square root

The square root function is singled out because of its simplicity and amenabil-
ity to implementation with little additional overhead beyond that of the ba-
sic arithmetic operations. It is also almost the only commonly used function
that is evaluated iteratively. The algorithm that we will describe is the direct
analogue of that for division and produces n digits of the result in n cycles,
at a rate of one digit per cycle. Such pseudo-division methods can also be
extensible to higher degrees, although roots of order greater than three are
usually evaluated by the same methods as ¥ for arbitrary y, using exponents
and logarithms, and even cube-root functions are somewhat uncommon in
function libraries. Our primary emphasis will therefore be on evaluation of
N

Suppose that we want to evaluate y = y/x in radix r. Let x be given by
a normalized signed-digit sequence X = (zg,21,...,2y,,...), with 2o > 0,

o0
|z, < p, n € N, and exponent e, so that z =r¢- > z,r ™ x > 0. Then
n=0

B re/2.\/X, if eis even
Y= rlevrz. vrX, ifeisodd

Let Y = (yo,Y1,--- »Yn,---) be a mantissa of y such that |y,| < p, n € N.
Denote

Yo=yo+yir 4. +yr "

so that Y = lim Y,,. Consider the scaled partial remainders
n—oo

Ph=X,P,=r"(X-Y,),neN

Observing that Y, = Y,,_1 +y,r™", we can rewrite the next partial remainder
as

The square root algorithm is based on the above recurrence relation, each
iteration of which consists of two subcomputations:

1) Determination of the result digit ¥, using a digit selection function s,
which has P, and Y,,_; as arguments:

Yn = S(Pn; Ynfl)
2) Formation of P, from P,, Y,_; and y,:

Pn+1 =r (Pn - 2ann71 - y2r7n)

n

26

If care is exercised in choosing vy, and the selection function s is such that
<P <P < < P <X,

the algorithm will converge as

1
Tn+1

1

X = V2] = = Paal < = 11,

As in the case of division, we make guesses about the digits 1, based
on the most significant digits of the current remainder P, and the current
approximation Y, ;. Although the guessed digits may be incorrect in some
cases, no correction steps would be needed if a redundant signed-digit repre-
sentation of P, was used. In particular, it can be shown that the following
digit selection function

Yn = * SN Pno,
2yp

where p,o is the integer part of P, and y, = L‘ /xgj the first digit of Y, is
reliable enough as long as yo > [\/r], i.e. o > 7.

8 Summary

The foregoing analysis suggests that, notwithstanding the claim made by
Boehm and Cartwright, the representation of exact real numbers by lazy
infinite sequences of signed digits in a radix-r system can lead to reasonably
efficient implementations of constructive real arithmetic. In particular, the
algorithms presented here largely overcome what they called the granularity
effect. For the sake of simplicity, our implementation used » = 10 and
p = 6, and was written in the functional programming language Miranda®
[17]. Choosing the radix to be a large number, and using a compiled language
such as C/C++ or Java, would yield a large dividend in efficiency, which
could be improved even further on a multi-processor system if normalization
and other functions were multi-threaded.

What are the advantages and shortcomings of positional arithmetic sys-
tems as opposed to others, e.g. functional ones? Laziness is certainly an
advantage — a demand-driven system only computes those numbers that
are needed, and only to the precision required. It also avoids recomputing
the elements calculated earlier, so that each digit gives a better approxima-
tion to the number being computed. Conversion of numbers into redundant

SMiranda is a product and trademark of Research Software Limited.

27

form and decoding them back into conventional form is also very simple, as
the “conventional” systems are also positional radix-r systems.

Among the shortcomings we can name the problem of choosing the subset
of finitely representable numbers. The availability of a subset in which num-
bers are represented finitely is important for many reasons, not least of which
is the need to compute equality tests. For example, it is clear that all inte-
gers must be finitely represented. After the integers, the rationals seem to be
the best candidate for such subset, but any efficient implementation based
on the representation of the rationals as repeating radix-r numbers must
overcome nontrivial technical challenges, such as being able to recognize a
state of computation that has occurred before, or having to deal with finite
representations of very great lengths. Evaluation of transcendental functions
in radix-r systems is also problematic, as there are no obvious digit-by-digit
algorithms that are both simple and efficient.

All these factors must be considered prior to choosing a representation of
the exact reals most suitable for a given problem. Situations where one might
want to use infinite precision arithmetic include e.g. testing an algorithm
to determine whether it suffers from a numerical instability, or computing
some numbers to high precision to serve as reference values for conventional
methods.

Acknowledgements

Support for this research was provided by EPSRC Grant Ref. GR/1.03279.
The author wishes to thank Professor David Turner for his numerous sugges-
tions and guidance in this project all the way from inception to completion.
Credit is also due to Carl Pixley, whose early unpublished work at Burroughs
Corporation’s Austin Research Center was a great source of inspiration for
this research.

References

[1] Avizienis, A., “Binary-compatible signed-digit arithmetic”, Proc.
AFIPS Fall Joint Comp. Conf., 1964, pp. 663-672

[2] Avizienis, A., “Signed-digit number representations for fast parallel
arithmetic”, IRE Trans. El. Comp., Vol. EC-10, No. 3, Sept. 1961,
pp- 389-400

28

3]

Boehm, H.-J., Cartwright R., et al., “Exact Real Arithmetic: A Case
Study in Higher Order Programming”, Proceedings 1986 ACM Confer-
ence on LISP and Functional Programming, ACM Press (August 1986),
pp- 162-163

Boehm, H. and Cartwright, R., “Exact Real Arithmetic: Formulating
Real Numbers as Functions”, in Research Topics in Functional Program-
ming, (ed) D. A. Turner, Addison-Wesley, 1990

Edalat, A. and Potts, P. J., “A New Representation for Exact Real
Numbers”, Electronic Notes in Theoretical Computer Science, 6 (1997),
URL: http://www.elsevier.nl/locate/entcs/volume6.html

Ercegovac M. D., “On-line Arithmetic: an Overview”, SPIE Vol. 495,
Real Time Signal Processing VII, 1984, pp. 86-93

Kaganovsky, A., “Computing with Exact Real Numbers in a Radix-
r System”, Electronic Notes in Theoretical Computer Science, Vol. 13
(1998)

Ménissier-Morain, V., “Arbitrary Precision Real Arithmetic: Design and
Algorithms”, Unpublished manuscript

Muller, J.-M. “Arithmétique des ordinateurs”, Etudes et recherches en
informatique, Masson, 1989

Myhill, J., “What is a real number?”, American Mathematical Monthly,
Sept. 1972, pp. 748-754

Pixley, C. P., “Demand-Driven Arithmetic”, Burroughs Corporation
Austin Research Center, Internal Report ARC 82-18, Nov. 1982

Robertson, J. E., “A New Class of Digital Division Methods”, IRFE
Trans. El. Comp., Vol. EC-7, Sept. 1958, pp. 218-222

Schwarz, J., “Implementing Infinite Precision Arithmetic”, Proc. 9th
Symposium on Computer Arithmetic, September 6-8, 1989, pp. 10-17

Smith, D. M., “A Multiple-Precision Division Algorithm”, Mathematics
of Computation, Vol. 65, No. 213, Jan. 1996, pp. 157-163

Stromberg, K. R., Introduction to Classical Real Analysis, Wadsworth,
Inc., 1981

29

[16]

[20]

[21]

Turing, A. M., “On Computable Numbers, with an Application to
the Entscheidungsproblem”, Proc. London Math. Soc., Ser. 2, Vol. 42,
Nov. 12, 1936, pp. 230-265. A correction, ibid., Vol. 43, pp. 544-546

Turner, D.A., “An Overview of Miranda”, SIGPLAN Notices, Vol. 21,
No. 12, pp. 158-166 (December 1986)

Turner, D.A., “SASL Language Manual”, St. Andrews University, De-
partment of Computational Science Technical Report, Dec 1976

Vuillemin, J. E., “Exact Real Computer Arithmetic with Continued
Fractions”, IEEE Transactions on Computers, Vol. 39, No. 8, Au-
gust 1990, pp. 1087-1105

Wiedmer, E., “Computing with Infinite Objects”, Theoretical Computer
Science, Vol. 10 (1980), pp. 133-155

Wiedmer, E., “Exaktes Rechnen mit reellen Zahlen und anderen un-
endlichen Objekten”, Diss. ETH 5975, Zurich (1977)

30

