
Abstrating Numeri Constraints withBoolean FuntionsJaob M. Howe 1 and Andy KingComputing Laboratory, University of Kent, Canterbury, CT2 7NFAbstratA simple, syntati algorithm for abstrating numeri onstraints for groundnessanalysis is presented and proved orret. The tehnique uses neither projetion nortemporary variables, and plugs a gap in the abstrat interpretation literature.Key words: Abstrat interpretation; Compilers; Constraint programming.
1 IntrodutionGroundness analysis is an important theme of logi programming and ab-strat interpretation. Groundness analyses identify those program variableswhih at run time will be bound to terms that ontain no variables (groundterms) [1,3℄. For onstraint languages, like CLP(R) [7℄, an analogous problemis deduing whih variables are de�nite, that is, ompletely �xed by the store[2,4,5℄. Groundness and de�niteness are strongly related, and groundness isoften used for both onepts.Little has been written about how to abstrat numeri onstraints, that is,taking a numeri onstraint as input and omputing as output a Booleanformula that aurately desribes the grounding behaviour of the onstraint.For example, [4,5℄ just give some example groundness abstrations in a ta-ble; no algorithm for alulating an abstration for an arbitrary onstraint isdesribed. In addition, [2℄ also explains the rôle of temporary variables andprojetion in abstration. The proedure is as follows: �rst, a numeri on-straint, for instane, w = x + y � z, is written in three-variable form, forexample, w = x + v; v = y � z, where v is a fresh, temporary variable. Se-ond, table lookup is used to map three-variable forms to Boolean formulae,1 Supported by EPSRC grant GR/MO8769.Preprint submitted to Elsevier Preprint 10 April 2000



for example w = x + v and v = y � z map to f1 = (w  (x ^ v)) ^ (x  (w ^ v)) ^ (v  (w ^ x)) and f2 = (v  (y ^ z)). The grounding behaviourof the onstraint w = x + v; v = y � z is desribed by f1 ^ f2. Third, tempo-rary variables are removed by projetion, for example, v an be eliminated by9v:(f1 ^ f2) = (w (x ^ y ^ z)) ^ (x (w ^ y ^ z)).The third step an be omitted but this typially only defers projetion. Fur-thermore, retaining the temporary variables an degrade the time and spaeeÆieny of many the representations of Boolean funtions [1,3,5,6,8,9℄ thathave been proposed for groundness analysis. Projetion is partiularly inon-venient for the analysis of [6℄ beause variable elimination is not requiredelsewhere in the analysis. This paper addresses these problems by presentinga simple, syntati algorithm for abstrating numeri onstraints that neitheruses projetion nor introdues temporary variables. The algorithm gives ab-strations whih are guaranteed to be at least as preise as those given usingthe three variable form method.The paper is organised as follows: Setion 2 presents a semantis for (non-Herbrand) CLP(R) onstraints. Abstration is also formalised. Setion 3 de-tails three-variable form. Setion 4 explains how abstration an be reast asthe problem of reognising those variables in a numeri onstraint whih willtake a unique value when the others are grounded. Setion 5 onludes.2 Abstrat Interpretation2.1 Conrete DomainLet R denote the real numbers and let �N denote the set of funtor symbolsof CLP(R) [7℄, f+, �, =, �, abs, aros, arsin, os, max, min, pow, sing,where � is unary minus. (Binary subtration x � y abbreviates x + (�y),thus is not modeled diretly). Let ? =2 R denote a speial symbol reservedfor error handling and let V denote a denumerable set of variables. Let X?denote X [ f?g. Put � = R? [ �N and �V = � [ V . Let T and TV denotethe (ground) and (non-ground) terms generated from � and �V respetively.A valuation is a total map,  : V ! R? , and the set of valuations is denoted	. Let D be an interpretation of the symbols of �. D(d) = d for all d 2 R? .Eah symbol f 2 �N of arity n is interpreted by D as a map f : Rn? ! R? .For example, + : R? � R? ! R? maps numbers d1; d2 2 R to their sum,otherwise, if either d1 = ? or d2 = ?, it maps to ?. The other symbolsin �N are interpreted in the usual way, exept in the following three ases:(d=0) = ? for every d 2 R? , arsin(d) = ? i� :(�1 � d � 1); aros(d) =? i� :(�1 � d � 1). Let � denote the set of binary onstraint symbols2



f=;�g. D interprets d1 = d2 as the prediate whih is true i� d1; d2 2 Rand d1 = d2; D interprets d1 � d2 in the obvious way. Let C denote theset of onstraints generated by TV and �, whih is losed under onjuntion(^), existential quanti�ation (9) and renaming (�). A valuation,  , naturallyextends to terms and onstraints using the interpretation D. Entailment ofonstraints, j=, is de�ned by 1 j= 2 i� 8 2 	: (1) )  (2). Equivalene,�, is de�ned by 1�2 i� 1 j= 2 and 2 j= 1. hC=�; j=;^i is a (bounded) meetsemi-lattie with the bottom and top elements false and true, where j= and ^are lifted to equivalene lasses of onstraints. Let P(X) denote the powersetof X. For the purposes of abstrat interpretation, the onrete domain is takento be the lattie hP(C=�);�;[;\i.In ommon with many onstraint solvers, the solver of CLP(R) [7℄ is partial inthe sense that it an only detet the satis�ability/unsatis�ability of onstraintsthat beome linear. To model this, let L denote the set of linear onstraints,that is (where d 2 R), true; false, Pni=1 di � xi = d, Pni=1 di � xi � d 2 L.L is losed under onjuntion, existential quanti�ation and renaming. Thetransition system ( � (L � C)2 is de�ned by: h; d ^ d0i ( h00; d0i i� thereexists 0 2 L suh that  j= ^i2I(xi = di), d ^ ^i2I(xi = di)�0 and 00� ^ 0(where I is a possibly empty index set). For example, htrue; (y = x�sin(z)^z =�=2)i ( h2 � z = �; y = x � sin(z)i ( h(x = y ^ 2 � z = �); truei. Let (?abbreviate zero or more( transitions. The transition system( is onuentin that if htrue; i (? h0; d0i 6( and htrue; i (? h00; d00i 6(, then 0 � 00and d0 � d00. Let f : L ! L be a map suh that f() = f(0) i�  � 0. Thisgives the (deterministi) map  ( hf(0); d0i where htrue; i (? h0; d0i 6(.This is neessary to formulate abstration as a mapping. Let C= denote those 2 C of form (t = t0) and suh that  6( h0; d0i with 0 j= false. Letvar(o) denote the (free) variables in syntati objet o and let mvar(o) denotethe variable ourrenes in syntati objet o (as a multiset), for example,mvar(f(u; v; v)) = fu; v; vg. Let M# denote the set of singularly ourringelements of the multiset M . Finally, letM(X) = fM jM# 2 P(X)g.2.2 Abstrat DomainGroundness and groundness dependenies are often represented by Booleanfuntions [1,3℄. Let X denote a �nite set of variables, and let BoolX denote theset of Boolean formulae overX. Eah f 2 BoolX represents an jXj-ary Booleanfuntion, so funtion and formula are used interhangeably. The formula ^Yis sometimes written Y . A Boolean funtion f is positive i� X j= f . LetPosX denote the set of positive Boolean funtions over X, augmented withthe logial onstant false. hPosX; j=;_;^i is a omplete lattie { the abstratdomain. 9fy1; : : : ; yng:f abbreviates 9y1 : : :9yn:f .3



2.3 Abstration and ConretisationThe onretisation map, X :PosX!P(C=�), details how formulae representonstraints. Conretisation is de�ned byX(f) = f[℄� j 80 2 C : ( ^ 0) 6� false) assignX( ^ 0) j= fgHere, assignX : C!BoolX is given by assignX() = Y^(^f:y j y 2 X n Y g)and Y = fy 2 X j 9d 2 R :  ( h0; d0i ^ 0 j= (y = d)g. The abstrationmap, �X :P(C=�)!PosX , is de�ned by �X(C) = ^ff 2 PosX j C � X(f)g.�X() abbreviates �X(f[℄�g).Proposition 1 �X ; X form a Galois insertion.Proof. By the de�nition of �X , there is a Galois onnetion. To show that itis an insertion, it is suÆient to demonstrate that X is injetive. Suppose thatX(f1) = X(f2) and f1 6= f2. Then there exists g = X1 ^ (^f:xjx 2 X2g),where X = X1 [X2 and X1 \X2 = ;, suh that (without loss of generality)g j= f1, but g 6j= f2. Let  = ^fx = 1 j x 2 X1g. Piking 0 = true, itis seen that assignX( ^ 0) = g. Thus [℄� 2 X(f1), but [℄� =2 X(f2). Aontradition. Therefore X is injetive. 23 Computing Abstrations With ProjetionC is not �nite and thus X (�X) annot be interpreted as an algorithm foromputing X(f) (�X()) for arbitrary f 2 PosX ( 2 C). This motivates thetranslation of a onstraint into three-variable form.De�nition 2  � C2 is the least binary relation suh that:(1) ( ^ t = t0)  ( ^ x = t ^ x = t0) if t 62 V [ R, t0 62 V [ R andx 62 var( ^ t = t0);(2) ( ^ t = t0)  ( ^ t = t00 ^ y = ti) if t 2 V [ R, t0 = f(t1; :::; ti; :::; tn),t00 = f(t1; :::; y; :::; tn), where ti 62 V [ R, and y 62 var( ^ t = t0);(3) ( ^ t = t0) ( ^ t0 = t) if t 62 V [ R and t0 2 V [ R.Proposition 3  �nitely terminates.Example 4 (x = ((sin(y)=2) � z) + 7) (x = u+ 7 ^ u = (sin(y)=2) � z) (x = u+7^u = v �z^v = sin(y)=2) (x = u+7^u = v �z^v = w=2^w =sin(y)) 6 . 4



Table 1Three-variable groundness abstration for CLP(R) �tblX ()  �tblX ()t = d � t0 V $ V 0 t = t0 � t00 V  (V 0 ^ V 00)t = t0 + t00 f2(V; V 0; V 00) t = �t0 V $ V 0t = t0=d V $ V 0 t = d=t0 V $ V 0t = t0=t00 f1(V; V 0; V 00) t = pow(t0; t00) V  (V 0 ^ V 00)t = os(t0) V  V 0 t = sin(t0) V  V 0t = aros(t0) V $ V 0 t = arsin(t0) V $ V 0t = min(t0; t00) V  (V 0 ^ V 00) t = max(t0; t00) V  (V 0 ^ V 00)t = abs(t0) V  V 0 t � t0 truewhere d 2 R n f0g; t; t0; t00 2 R [ V ; V = var(t); V 0 = var(t0); V 00 = var(t00);f1(x; y; z) = (x (y^z))^ (y  (x^z)) and f2(x; y; z) = f1(x; y; z)^ (z  (x^y))A onstraint  2 C is said to be in three-variable form i�  6 . Let ? abbrevi-ate zero or more redutions. This leads to the following abstration tehnique:De�nition 5 The abstration map �tvfX :C!PosX is de�ned as follows. Sup-pose ( h0; d0i. If 0 j= false then �tvfX () = false, else �tvfX () = �tvfX 0(0^d0)where�tvfX 0() = 8>><>>:�tvfX 0(0) ^ �tvfX 0(00) if  = 0 ^ 009(var(0) n var()):�tvfX 0(0) if  ? 0 6 and  6= 00 ^ 000�tblX () otherwise.The redution  ( h0; d0i an be performed using CLP(R) mahinery [7℄.Table 1 de�nes �tblX () for a (non-ompound) three-variable onstraint . Tosee that �tvfX is well-de�ned, let   ? 1 6 and   ? 2 6 . A renaming� : Y1 ! Y2 exists with Y1 = var(1) n var(), Y2 = var(2) n var() and�(1) = 2. Moreover, 9Y2:�tvfX (2) = 9�(Y1):�tvfX (�(1)) = 9�(Y1):�(�tvfX (1)) =9Y1:�tvfX (1) sine � is bijetive and var(�(�tvfX (1)))n�(Y1) = var(�tvfX (1))nY1.Intuitively, �tvfX is well-de�ned sine any extra variables introdued by  areeliminated. Observe �X() j= �tvfX () for all  2 C.Proposition 6 Table 1 is safe, that is, �X() j= �tblX (), where  is in three-variable form,  6= 0 ^ 00 and var() � X.
Proof. Safety is demonstrated only for the ase x = y � z; other ases may betreated similarly. Let fx; y; zg � X. Assume, for the sake of a ontradition,that there exists 0 2 C suh that assignX(x = y � z ^ 0) 6j= x (y^ z). ThusassignX(x = y�z^0) = (:x)^y^z and htrue; x = y�z^0i(? h00; d00i where00 j= (y = d1)^ (z = d2). Hene h00; d00i(? h000; d000i where 000 j= (x = d1 � d2)whih ontradits assignX(x = y�z^0) = (:x)^y^z and the assumption. 25



Observe that �X 6= �X tvf sine �tvfX (x � y � (1=x) = 0) = true and �X(x �y � (1=x)) = (y  x). Moreover, it should be noted that the table does notaurately desribe the grounding behaviour of some unusual (and spei�)onstraints in three-variable form. For example, �X(x = min(y; y)) = x $ y,whereas �tblX (x = min(y; y)) = x  y. In pratie it is expeted that suhonstraints will not our, however, the table ould be extended to inludethese extra ases.
4 Computing Abstrations Without ProjetionAbstration may be reast as the problem of reognising those variables ina onstraint whih will take a unique value when the other variables in theexpression are grounded. This is ahieved preisely by the map det�. Theapproah is formulated in terms of approximations to det�, and is at least asaurate as the three-variable form method.De�nition 7 The map det� : C= ! P(V ) is given by x 2 det�() i� 8� :var() n fxg ! R:9!d 2 R? :�() � (x = d).An abstration map ould be de�ned in terms of det�. However, omputingthis may require non-trivial symboli manipulation of . For example, det�(x =y � (1=z)) = fx; yg requires the reognition that y � (1=z) � y=z. To build anabstration map in terms of a simple pattern reogniser (together with ()det� is approximated by a lass of maps Det .De�nition 8 Det is the least set of maps det : C= ! P(V ) that satisfy (wheref 2 �N):safety: det() � det�();preision 1: if  = (x = t) and  6 , then mvar()# \ det�() � det();preision 2: if y 2 det(x = t) and y =2 var(t0), then y 2 det(t = t0);preision 3: let  = (t = f(t1; :::; ti; :::; tn)) and 0 = (t = f(t1; :::; y; :::; tn)),with y =2 var(), if y 2 det(0), then det(y = ti) n var(0) � det() anddet(0) n var(y = ti) � det() .The onditions in de�nition 8 relate to the abstration map in the followingway. The safety ondition ensures �X() j= �detX () if det 2 Det . Preision 1guarantees �detX () j= �tvfX () for a non-ompound three-variable onstraint and the ompositionality properties of preision 2 and preision 3 (withpreision 1) ensures that �detX () j= �tvfX () for arbitrary .Proposition 9 det� 2 Det. 6



Proof. Only preision 3 is non-trivial. Suppose that x 2 det�(y = ti)nvar(0).It is demonstrated that x 2 det�(). Sine y 2 det�() and x 62 var(0), andgiven � : var() n fxg ! R, it an be seen that there is a unique d 2 R suhthat �(0) � (y = d). Put �0 = � [ fy 7! dg. Hene:�(t = f(t1; :::; ti; :::; tn))� �0(t = f(t1; :::; ti; :::; tn))� �0(t = f(t1; :::; y; :::; tn) ^ y = ti)� �0(y = ti)� x = d0 sine x 2 det�(y = ti)Hene x 2 det�(). Similarly, the seond ondition holds. 2An abstration map, parameterised by det, an now be de�ned.De�nition 10 The abstration map �detX :C!PosX is de�ned as follows. Sup-pose ( h0; d0i. If 0 j= false then �detX () = false, else �detX () = �detX 0(0^d0)where �detX 0() = 8>><>>: true if  = (t � t0)�detX 0(0) ^ �detX 0(00) if  = (0 ^ 00)^v2det()(v  (var() n fvg)) otherwiseTheorem 11 If  2 C and det2Det, then �X() j= �detX () j= �tvfX ().Proof. The �rst entailment is established by demonstrating the any Booleanformula that is entailed by �detX is also entailed by �X . The seond entailmentis established by demonstrating that eah  redution results in a onstraintwhose �detX abstration is not stronger than that of the previous onstraint.The base ase demonstrates that �detX () j= �tvfX () for  in the lookup table.Consider  2 C suh that ( h0; d0i. If 0 j= false, the result is immediate.Let det2Det .To show �X() j= �detX (), onsider 0 ^ d0 = 1 ^ ::: ^ n. If �X(i) j= �detX 0(i),then �X() j= �detX (). Suppose, for a ontradition, that �X(i) 6j= �detX 0(i),for some i. Then there exists fx = x  Y , where x 2 det(i) and Y =var(i) n fxg, suh that 900 2 C:assignX(i ^ 00) 6j= fx and i ^ 00 6� false.Hene assignX(i ^ 00) j= (:x) ^ Y . Thus for every y 2 Y there is e 2 Rsuh that i ^ 00 (? h000; d000i and 000 j= (y = e); indeed, it may be assumedthat 8y 2 Y:9e 2 R:000 j= (y = e). By safety, sine x 2 det(i), for somee0 2 R, i ^ 000 j= (x = e0). Therefore, i ^ 00 (? h000; d000i (? h0000; d0000i and0000 j= (x = e0). A ontradition. Thus �X(i) j= fx and the result follows.To show �detX () j= �tvfX (). Let 0 ^ d0 = 1 ^ ::: ^ n. It is enough to showthat �detX (i) j= �tvfX (i). Proof is by indution in the length of . For the base7



ase, onsider 00 = (t = f(t1; : : : ; tn)), where f 2 �N and 00 6 (the � ase isobvious). Suppose �tvfX (00) j= (x  Y ), where x =2 Y . By inspetion of Table1, x 2 (mvar(00))#. By Proposition 6, �X(00) j= �tvfX (00). Hene �X(00) j=(x Y ). Let � : var(00) n fxg ! R and put 000 = ^fy = �(y)jy 2 Y g. Heneeither 00 ^ 000 (? h0000; d0000i and 0000 j= false, in whih ase x 2 det�(00),sine �(00) � (x = ?), or 00 ^ 000 ( h00000; d00000i and 00000 j= (x = e), in whihase (x = e) � �(00 ^ 000) � �(00) and x 2 det�(00). Sine x 2 det�(00), bypreision 1, x 2 det(00). By inspetion of Table 1, Y = var(00) n fxg. Hene�detX (00) j= �tvfX (00).For the indutive ase, suppose i  00  ? 000 6 . By hypothesis, �detX (00) j=9(var(000) n var(00)):�tvfX (000), so it is enough to show �detX (i) j= 9(var(00) nvar(i)):�detX (00).(1) To show �detX (t = t0) j= 9x:�detX (x = t^x = t0). Sine 9x:�detX (x = t^x = t0)= 9x:(�detX (x = t) ^ �detX (x = t0))= 9x:((^v2det(x=t)v  (var(x = t) n fvg))^(^u2det(x=t0)u (var(x = t0) n fug))) = fSuppose f j= (y  Y ). To show ^v2det(t=t0)(v  var(t = t0) n fvg) j=(y  Y ), suppose, without loss of generality, y 2 det(x = t0). Sinex 2 det(x = t0), y =2 var(x = t0). By preision 2, y 2 det(t = t0) and thusthe result follows.(2) To show �detX (t = t0) = 9y:�detX (t = t00^y = ti), where t0 = f(t1; :::; ti; :::; tn),t00 = f(t1; :::; y; :::; tn) and y =2 var(t0). Sine 9y:�detX (t = t00 ^ y = ti)= 9y:(�detX (t = t00) ^ �detX (y = ti))= 9y:((^v2det(t=t00)v  (var(t = t00) n fvg)))^(^u2det(y=ti)u (var(y = ti) n fug)))Using preision 3, the result an be established analogously to the previ-ous ase.(3) To show �detX (t = t0) = �detX (t0 = t), where t0 2 R [ V and t =2 R [ V .Immediate. 2Next, a spei� map in det1 2 Det is desribed. The map syntatially iden-ti�es those variables that our one in a numeri onstraint expression andwhih take a unique value when the variables are grounded.De�nition 12 The map det1 : C= ! P(V ) is de�ned by: det1(t = t0) =(det1(t) [ det1(t0))#, where det1 : TV !M(V ) is given by (where d 2 R n f0g)
8



Table 2Example groundness abstrations for X = fw; x; y; zgi 0i �tvfX (i) �det1X (i) �det�X (i) �X(i)w = x � (y + z) 1 f1 f1 f1 f1w = x+ w x = 0 f2 f2 f2 f2w = x=0 false f3 f3 f3 f3w = x+ x=w 4 f4 f4 f5 f5(w � x ^ abs(x) � w) 5 f4 f4 f4 f6
det1(t) =ftg if t 2 Vdet1(t0) if t = �t; t = d � t0; t = t0=d or t = d=t0det1(t0) [ det1(t00) if t = t0 + t00det1(t0) [ det1(t0) [ det1(t00) [ det1(t00) if t = t0 � t00; t = pow(t0; t00)t = min(t0; t00) or t = max(t0; t00)det1(t0) [ det1(t00) [ det1(t00) if t = t0=t00det1(t0) [ det1(t0) if t = abs(t0); t = os(t0) or t = sin(t0)det1(t0) if t = aros(t0) or t = arsin(t0)Proposition 13 det1 2 Det.Example 14 Consider  = (x+ v = x � y + z=w) and suppose ( htrue; i.Observe that det1() = (det1(x+v)[det1(x�y+z=w))# = (det1(x)[det1(v)[det1(x)[det1(x)[det1(y)[det1(y)[det1(z)[det1(w)[det1(w))# = fv; w; w; x;x; x; y; y; zg# = fv; zg. Hene �det1X () = (v  w^x^y^z)^(z  v^w^x^y).Example 15 Table 2 details the abstrations for various onstraints wheref1 = w  (x ^ y ^ z), f2 = x, f3 = false, f4 = true f5 = x  w, f6 =w $ x. The abstration algorithms are de�ned in terms of(. It is assumedthat i ( h0; d0i and 0i = 0 ^ d0. In pratie, ( is evaluated by posting theonstraint to the store and then retrieving it. The net e�et is to evaluateground terms and to group together like terms. For example, 2 � x = os(�) �z+x+max(2; 3)( hx = �z+3; truei. This( is used in this example. Notethat �X(i) j= �det�X (i) j= �det1X (i) j= �tvfX (i). The abstrations for 1; 2; 3all agree, illustrating that all methods give good auray. The abstrationsof 4 show that det1 an still be strengthened. �X(5) shows that, in general,systems of inequations need to be onsidered to ompute the best abstration.Note that if a weaker ( were used, a stronger det ould be de�ned to giveabstrations of a similar strength. The three variable form method would notbe so exible. 9



5 ConlusionThis paper has desribed a simple algorithm for abstrating numeri on-straints. This method does not introdue temporary variables, utilises avail-able CLP(R) mahinery, and is at least as preise as the three-variable method.Whilst other works have given preise de�nitions of abstration, they have notaddressed how to eÆiently ompute the map. This paper plugs this hole. Thealgorithm an be easily implemented and has been used with the analyser in[8℄. Future work will look at the more general ase of mixing Herbrand andlinear onstraints.Referenes[1℄ T. Armstrong, K. Marriott, P. Shahte, and H. S�ndergaard. Two Classes ofBoolean Funtions for Dependeny Analysis. Siene of Computer Programming,31(1):3{45, 1998.[2℄ N. Baker and H. S�ndergaard. De�niteness Analysis for CLP(R). AustralianComputer Siene Communiations, 15(1):321{332, 1993.[3℄ M. Codish and B. Demoen. Analyzing Logi Programs Using \Prop"-ositionalLogi Programs and a Magi Wand. Journal of Logi Programming, 25(3):249{274, 1995.[4℄ M. Gar��a de la Banda. Independene, Global Analysis, and Parallelism inDynamially Sheduled Constraint Logi Programming. PhD thesis, UniversidadPolit�enia de Madrid, 1994.[5℄ M. Gar��a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,G. Janssens, and W. Simoens. Global Analysis of Constraint Logi Programs.ACM Transations on Programming Languages and Systems, 18(5):564{614,1996.[6℄ A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple PolynomialGroundness Analysis for Logi Programs. Journal of Logi Programming, 2000.Forthoming.[7℄ N. Heintze, J. Ja�ar, S. Mihaylov, P. Stukey, and R. Yap. The CLP(R)Programmer's Manual Version 1.1, 1991.[8℄ J. M. Howe and A. King. Implementing Groundness Analysis with De�niteBoolean Funtions. In G. Smolka, editor, European Symposium on Programming,volume 1782 of Leture Notes in Computer Siene, pages 200{214. Springer-Verlag, 2000.[9℄ A. King, J. Smaus, and P. Hill. Quotienting Share for Dependeny Analysis. InS. D. Swierstra, editor, European Symposium on Programming, volume 1576 ofLeture Notes in Computer Siene, pages 59{73. Springer-Verlag, 1999.10


