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Abstract- This work presents a classification algorithm
based on genetic algorithms (GAs) that discovers
comprehensible IF-THEN rules, in the spirit of data
mining. The proposed GA has a flexible chromosome
encoding where each chromosome corresponds to a
classification rule. Although the number of genes
(genotype) is fixed, the number of rule conditions
(phenotype) is variable. The GA also has specific
mutation operators for this chromosome encoding. The
algorithm was evaluated on two public domain, real-
world data sets (on the medical domains of der matology
and breast cancer).

1 Introduction

This work presents a system based on genetic dgorithms
(GAs) to perform the task of classfication. The system is
evaluated in two medicd domains. diagncsis of
dermatologica diseases and pediction d reaurrence of
breast cancer. The use of GAs in clasdficaion is an
attempt to effectively exploit the large search spaceusually
asociated with clasdfication tasks. The GA presented here
was designed acording to some cncepts of data mining
and knowvledge discovery, where the goal is to find nd
only acarate knowledge but aso comprehensible
knowledge [6, 8]. Hence the GA's indviduas (or
chromosomes) encode |IF-THEN classficaion rules,
similarly (in form) to the rules discovered by dita mining
algorithms based onthe rule induction paradigm.

This paper is organized as follows. Sedion 2 lriefly
reviews the basic charaderistics of genetic dgorithms and
the dassfication task (from a data mining viewpaint).
Sedion 3 describes in detail our proposed system. Sedion
4 lriefly describes the data sets used in the experiments.
Sedion 5 dscusses the results of the experiments. Sedion
6 discusses related work. Finaly, sedion 7 concludes the

paper.
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2 An Overview of Classification and Genetic
Algorithms

The dassficdion task is one of the most studied in data
mining. In esence the problem consists of assgning
records to ore out of a small set of pre-defined classes, by
discovering some relationship between attributes. Each
record (henceforth an example) consists of a set of
predicting attributes and a goal attribute to be predicted
[11, 8]. A data-mining algorithm is applied to a set of
training examples, with a known class to dscover rules
deteding some relationship between the predicting
attributes and the goal attribute. This relationship is then
used to predict the dass(the value of the goal attribute) of
examples whose dassis unknawn.

The discovered knawvledge is usually represented in the
form of IF-THEN prediction rules, which have the
advantage of being a high-level, symbdic knowledge
representation, contributing to the mmprehensibility of the
discovered knowledge. The discovered rules can be
evaluated acarding to several criteria, such as the degree
of confidencein the prediction, classficaion acaracy rate
on unknavn-class examples, comprehensihility, etc. We
emphasize that this latter is a aucia criterion in the
context of data mining.

Genetic Algarithms (GAs) are aseach method that has
been widely used in applicaions where the size of the
seach spaceis very large. In esence GAs are “seach
algorithms based onthe medanics of natural seledion and
natural genetics’ [9]. GAs are inspired onthe principle of
survival of the fittest, where the fittest individuas are
seleded to produce off spring for the next generation. In the
context of search, individuals are candidate solutions to a
given seach problem. Hence reproduction o the fittest
individuals means reprodwction o the best current
candidate solutions. Genetic operators such as sledion,



crosover and mutation generate offspring from the fittest
individuals. One of the alvantages of GAs over
“traditional” search methods is that the former performs a
kind o global seach using a popdation d individuals,
rather than performing alocd, hill -climbing search. Global
seach methods are less likely to get trapped into locd
maxima, in comparison with loca search methodks.

It is interesting to nae that, overal, the knowledge
discovery paradigm most used in data mining is dill rule
induction. Most of the dgorithms in this paradigm perform
akind d locd seach.

3 The Genetic Algorithm

The GA used in this work was developed based in the
GALOPPS3.2 system [10Q]. This is a pubic-domain todl
that incorporates sveral fedures proposed by GA
reseachers and is very portable. The next subsedions
describe several aspeds of the propased algorithm, namely
individual encoding, genetic operators, and fitness
function.

3.1 Individual Encoding

A chromosome is divided into n genes, where eat gene
corresponds to a ondtioninvaolving ore dtribute, andnis
the number of predicting attributes in the data being mined.
The genes are positional, i.e. the first gene represents the
first attribute, the second gene represents the second
attribute, and so on Eadh i-th gene, i=1...n, is subdvided
into threefields: weight (W), operator (O) and value (V),
as down in figue 1. Each gene rresponds to ore
condtion in the IF part of a rule, and the atire
chromosome (individual) corresponds to the entire IF part
of the rule. The THEN part does nat need to be amded into
the chromosome, as will be eplained later. Therefore,
henceforth we will refer to the IF part of the rule excoded
into a chromosome simply astherule.

Gene, Gene,
wlo [vi|[ . [.[ w [ o [y
Fig. 1. Representation d a chromosome (individual)

The field weight (W) is a red-valued variable taking
values in the range [0..1]. This variable indicates whether
or nat the crrespondng attribute is present in the rule.
More predsely, when W is snaller than a user-defined
threshold (cdled Limit) the i-th condtion is effedively
removed from the rule. Therefore, the greaer the value of
the threshold Limit, the smaller the probability that the
correspondng condtion will be present in the rule. We
used a Limit value of 0.3, so that condtions with a weight
smaller than or equal to 0.3 were dfedively removed from
the rule. Note that mutations in the field weight can cause
the arrespondng attribute to be removed o re-inserted
into the rule.

The field operator (O) is a variable that indicates the
relational operator employed in the i-th condtion. If
attribute A is categoricd (nominal) this field can contain
the operators “=" and“#£”. If attribute A is continuous, this
field can contain the operators “=>" and “<".

The field value (V) contains one of the values
belongng to the domain o attribute A. The value V, is
coded into a binary string, which is properly decoded for
purposes of fitnessevaluation. The number of bits used to
code V, is propational to the number of values in the
domain of attribute A,

Note that the @&owve ecoding is quite flexible with
resped to the length of the rules. A “traditional” GA is
very limited in this asped, since it can only cope with
fixed-length rules. In ou approadh, athough ead
chromosome has a fixed length, the genes are “interpreted”
(based the value of the weight W) in such a way that the
individual phenotype (the rule) has a variable length.
Hence different individuals correspond to rules with
different number of condtions.

3.2 Genetic Operators

We used conventional genetic operators of seledion and
crosover. More predsely, we used stochastic tournament
seledion with tournament size 3 and two-point crosover,
with crossover probability = 100%. We dso used an dliti st
reproduction strategy, where the best individual of eath
generation was passed urdltered to the next generation.

We developed three mutation operators tail ored for our
genome representation, namely weight mutation,
relational-operator mutation and value mutation. Each o
these operators ads on a different field of a gene - seethe
previous sibsedion. We used mutation rates of 30% for
ead kind d mutation.

The weight mutation was developed to modify the
weight of a rule ndtion. This operator randamly
generates a small red-valued number that is then added to
or subtraded from the aurrent weight of the @ndtion.
Hence condtions can be removed o inserted in arule, as
the value of the weight field gets snaller or greaer than
the threshold Limit.

The relational-operator mutation modifies the relational
operator currently being wsed in a condtion d the rule, by
repladng it with another one, randomly generated among
the valid relational operators (depending on whether the
attribute is caegoricad or continuous).

The value mutation modifies the cntents of the value
field, by repladng the arrent value with another one
randamly generated. There ae two passble caes here.
Firgt, if the dtribute is caegoricd, this mutation smply
replaces the arrent value field with ancther vaue
belongng to the domain o the dtribute. Second, if the
attribute is continuows, the mutation produces a small
number that is then added to or subtraded from the aurrent



contents of the value field. Thisis implemented in such a
way that the lower and upper bounds of the domain of the
attribute ae never excealed.

3.3 Fitness Function
The fitness function evaluates the quality of ead rule
(individual). This work uses the fitnessfunction employed
by [15]. Before we can define the fitness function, it is
necessary to recdl a few basic concepts on classfication
rule evaluation. When uwsing a rule for classfying an
example, depending onthe dasspredicted byarule and on
the true dassof the example, four different types of results
can be observed for the prediction, as follows:
* true positive (tp) - the rule predicts that the patient has
agiven dsease andthe patient redly have that disease;

 false postive (fp) — the rule predicts that the patient
has a given disease but the patient does nat have it;

* true negative (tn) - the rule predicts that the patient
does nat have agiven dsease, and indeed the patient
does not have it;

 false negative (fn) - the rule predicts that the patient
does nat have agiven dsease but the patient does have
it.
Our fitnessfunction combines two indicaors commonly
used in medicd domains, namely the sensitivity (Se) and
the spedficity (Sp, defined as foll ows:

Se=tp/(tp+ fn) (1)

Sp=tn/ (tn + fp) 2

Finally, the fitness function wed by ou system is
defined as the product of these two indicators, i.e.:

fitness= Se* Sp 3

Therefore, the goal of our system is to maximize both
the Se and the Spat the same time, and the product shown
in equation (3) provides agood gadient for the function.

Each run d our GA solves a two-class clasdfication
problem, where the goal is to predict whether or not the
patient has a given dsease. Therefore, the GA is run at
least once for ead class (value of the goal attribute). For
instance, suppaing that the gplicaion damain has 6
clases, we nedl to run the GA at least 6 times. In the first
runthe GA would seach for rules predicting class1; in the
second runit would search for rules predicting class 2, and
so on When the GA is saching for rules predicting a
given class all other classs are dfedively merged into a
large dass which can be onceptualy though of as
meaning that the patient does not have the disease

predicted bythe rule. Hence, the above formulas for Se and
Spcan be aplied to problems with any number of classes.

This charaderistic of our GA aso explains why it is not
necessary to encode the dass predicted by a rule into the
chromaosome representation, as mentioned in sedion 31. In
effed, in a given run d the GA al indviduas are
seaching for rules predicting the same dass

4 Data Sets Used in the Experiments

We did some experiments with two pubic domain data
sets, in the medicd domains of dermatology and lkreast
cancer. These data sets were obtained from the UCI
(University of California & Irvine) - Madine Leaning
Repository [17]. These data sets have been used
extensively for classficaion tasks using dfferent
paradigms, see for instance [3] and [5]. The main
charaderigtics of eath o these domains are described in
the next two subsedions.

4.1 Der matology Data Set

The differential diagnosis of the diseasse eaythemato-
squamous is an important problem in dermatology. There
are six different diagnoses (six classs), and all of them
share some dinicd charaderistics of erythema and scding,
with few differences. The six clases are: psoriasis,
seboreic dermatitis, lichen planus, pityriasis rosea chronic
dermatitis and gtyriasis rubra pilaris. Some charaderistics
are more incident in certain dseases, but they can aso
appea in some stages of development of other diseases,
making more difficult the diagnasis. Some charaderistics
of the diseases are discussed in [5].

This data set contains 366 records, ead ore with 34
attributes. All attributes had their values mapped to a four-
valued graded scde in the range [0...3], where 0 indicates
the ladk of the correspondng charaderistic and 3indicaes
agrea incidence of that characeristic. Two exceptions are
the atribute age, which remains with its values expressd
in yeas, and the atribute family history, which takes on
the value 1 when the disease has been olserved in the
family of the patient and O dherwise.

4.2 Breast Cancer Data Set

Breast cancer re-occurs in upto 3% of the patients that
undergo a breast cancer surgery [3]. This data set contains
286 reaords, ead with 9 attributes, and the goal is to
determine the patients for whom the caicer will re-occur.
Hence, there ae only two classes, hamely no-reaurrence-
events and reaurrence-events. All attributes are cadegoricd.
More detail ed information abou this data set can be found
in[3].



5 Computational Results

Each GA run consisted of a popuation d 50 individuals
evolving duing 50 gnerations. The set of parameters used
for the genetic operators (crosover and mutation rates,
etc.) were s defined in sedion 3

Each data set was randamly partitioned into two parts,
with 2/3 o the records used for training and 13 of the
record used for testing the quality of the discovered rules.
Asusual in the literature, this partition was dore in such a
way that the propation d examples belongng to ead
class (the relative frequency of the dasg was kept the
same in bah the training and the test set. Since the aurrent
version d our algorithm canna cope with missng values,
in ead data set the few records that contained missng
values were simply removed, for the purposes of the
experiments reported below.

5.1 Resultsfor the Dermatology Data Set

Table 1 presents the final 6 rules discovered by the GA -
ore rule for ead class For ead class the GA was run
threetimes, varying the randam seed used to generate the
initial popuation. The best rule of the threeruns, acording
to its fitness value measured on the training set, was
seleded as the rule predicting that class (this is the rule
shown in Table 1). Once the 6 rules were seleded, they
were evaluated ona separate test set, as mentioned above.
Note that the set of rules used for classficaion also
includes a “default” rule, i.e. a rule with no condtions
which is automaticdly applied when no dher rule has its
condtions sttisfied by the example to be dassfied. This
rule smply predicts classC1, which is the “majority” class
- i.e. the most frequent classin the training set.

Table 1. Discovered Rule Set for the Dermatology Data Set

Fitness
0,9730,973

C|Rule

1 | IF (clubbng d thereteridges)=1 AND
(perifolli cular parakeratosis)=0

2 | IF (koebrer phenomenon)=0 AND
(vacudlisation and danage of basal
layer)<1 AND

(spongosis)=2

3 | IF (bandlikeinfiltrate)=>2

4 | IF(kneeandelbow involvement)=0 AND
(family history)=0 AND

(acanthosis)<3 AND

(focal hypergranuosis)<2 AND
(spongosis)=1 AND

(inflammatory monduclear infiltrate)>1
5 | IF (melanin incontinence)<1 AND
(fibrosis of the pagill ary dermis)z0 AND
(munro microalcesg=0

6 | IF (folli cular papues)=1 AND

(perifolli cular parakeratosis)>1

0,8550,855

1,000-0,979
0,860-0,783

1,000-1,000

1,000-1,000

For ead rule in Table 1 the third column shows two
values, namely the fitness of the rule - computed by
equation (3) - in the training set and in the test set,
respedively. One can seethat al the rules discovered from
the training data generalize well for examples in the test
set. In most cases the fitnessin the test set is nealy equal
to the fitnessin the training set. The only exception is the
rule for class C4, where the fitness of 86% in the training
set dropped to afithessof 78.3% in the test set.

The fitness values reported in Table 1 are useful for
evaluating the performance of ead rule separately.
However, it is also important to evaluate the performance
of the rule set as a whoe. As usual in the literature, this
evaluation was dore by measuring the acaracy rate on the
test set, i.e. the ratio of the number of examples corredly
classfied ower the total number of examplesin the test set.
The acaracgy rate of the rule set was 95% (out of 119
examples, 113were arredly classfied).

We dso observed that in 5 ou of the 6 classes the same
rule cndtions were discovered by the three GA runs for
that class Since the different random seeds could leal to
very different results aadossthe threeruns, we believe that
the dgorithm has reliably identified the main predicting
attributes for eat class However, this conclusion reeds to
be validated by more experiments.

5.2 Reaultsfor the Breast Cancer Data Set

Table 2 shows the final two rules discovered by the GA -
onrerule for eat class We followed the same procedure &
described in sedion 51, running the GA three times for
ead class

Table 2. Discovered Rule Set for the Breast Cancer Data Set

Fitness
0,564-0,365

C|Rule

1 | IF (inv-nodes)<(9-11) AND
(deg-malig)<2 AND
(irradiat)=(no)

2 | IF (menopatse)=(ge40) AND
(tumor-size)#(45-49) AND
(deg-malig)=2

0,497-0,393

For each rulein Table 2 it is $rown two values, namely
the fitness of the rule - computed by equation 3 - in the
training set and in the test set, respedively. This time,
however, the rules discovered from the training set did na
generalize so well for examples of the test set. This ans
to be due to the fada that this is a considerably more
difficult clasdficaion problem, in comparison with the
dermatology dhta set, and the datais quite noisy.

Anyway, it isinteresting to evaluate the performance of
the set of discovered rules as a whole, by measuring the
acaracy rate, as dore in the previous sdion. The



acaracy rate of the discovered rule set was 67% (out of 92
examples, 62 were mrredly classfied).

Similarly to the results of sedion 51, for ead classthe
same rule condtions were discovered by the three GA runs
for that class showing that the GA converged to the same
best rule despite variations in the randam seed.

6 Related Work

Several GAs designed for discovering some kind o
comprehensible dassficaion rules have been propcsed in
the literature. We briefly review some of them below.

GIL [12] uses <svera generalizaion/spedalization
operators propcsed by [16] to extend the genetic operators
of conventional GA, creding a knowledge- intensive GA
for the dassficaion task. GIL follows the Pittsburgh's
approach for rule leaning, where eat individua of the
popuation corresponds to a set of rules. GABIL [4] also
foll ows the Pittsburgh’'s approach and also suggests a few
task-spedfic genetic operators. Yet ancther projed
foll owing the Pittsburgh's approach is HDPDCS [19]. This
system was explicitly designed for both classficaion and
feaure extradion from high dmensionality data sets.

A mgjor difference between ou system and the eowve
projeds is that we do nd follow the Pittsburgh approach.
In ou system, an individual corresponds to a single rule,
which at least tends to be more computationally efficient.
Thisisusually known as the Michigan approach.

REGAL leans firg-order-logic (FOL) rules [18]. The
discovery of FOL rules is an interesting feaure shared by
few GAs, but in the cae of REGAL it requires that the
user provides a kind o template of the logicd formula to
be leaned. This requirement reduces the aitonamy of the
system, which can be considered a drawbadk in the context
of data mining. Several parallel GAs are descendant from
REGAL, e.g. the G-NET system [1].

SIAOL1 [2] aso leans FOL class descriptions, but it
does nat need a user-spedfied formula template. Instead, it
adapts the technique of generalizing a seed example to
lean FOL classficaion rules [16]. From a data-mining
viewpoint, it seams that the main drawbadk of SIAOL is
that this kind d generaizaion technique is quite
computationally expensive, making it difficult to apply
SIAOL1 to large databases.

Both REGAL and SIAO1 are very different from our
system, since the latter discovers conventional
propasitional logic rules, rather than FOL ones.

A system somewhat more similar to ousis EDRL [13].
This gstem also requires one run o the GA for
discovering arule for ead class In addition, in this g/stem
eadh chromosome is represented as a onjunction o
condtions of a singe rule, smilarly to ou system.
However, this g/stem cannd cope with continuows
attributes, i.e. it asumes that continuows attributes have

bee previoudy discretized as a pre-processng step. Our
system does not have this limitation, i.e. it copes with bah
caegoricd and continuous attributes. It choud be noted,
however, that a more recent version d EDRL copes with
corntinuots attributes [14].

Ancther GA for discovering rules following the
approach o asciating a chromosome with a @wnjunction
of condtions of asinge ruleis described in [7]. However,
this ystem does not addressthe dassficaion task. Rather,
it addresses the dependence modeling (or generalized rule
indwction) task. The latter can be regarded as a
generdizaion o the former, since different rules can
predict different goal attributes, rather than a single goal
(or clas9 attribute.

7 Conclusions and Future Work

The preliminary results reported in this paper are
promising, and allow us to conclude that our chromosome
encoding and its asociated rule set representation are a
good alternative for extrading a smal set of
comprehensible rules, which is important in the context of
data mining.

The acworacgy rates adiieved by ouw GA in the
dermatology data set (95%) and in the breast cancer data
set (67%) are similar to the ones reported by dher
reseachers in these data sets. However, our GA seams to
be particularly effedive in finding a oncise set of
comprehensible rules, since (by design) it discovers only a
singe rule for eah class Other data mining algorithms
often discover several rules for asingle dass which makes
it difficult for the user to understand the numerous
discovered rules.

Future work shoud consist of more experiments with
other data sets, as well as more daborated experiments to
optimize several parameters of the dgorithm, such as
mutation rates, the Limit threshold for the weight field, etc.
(Recdl that the results of this paper were adieved withou
any serious attempt to ogtimizethe parameters of the GA.)
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