
The Fisher E¤ect in the Presence of Time-Varying
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Abstract

A resolution of the Fisher e¤ect puzzle in terms of statistical inference is attempted. Motivation stems

from empirical evidence of time-varying coe¢ cients in the data generating process of both the interest

rates and in�ation rates for 19 OECD countries. These time-varying dynamics crucially a¤ect the

behaviour of all the co-integration estimators considered, especially in small samples. When employing

simulated critical values instead of asymptotic ones, the results provide ample evidence supporting the

existence of a long-run Fisher e¤ect in which interest rates move one-to-one with in�ation rates in all

countries under scrutiny except for Ireland and Switzerland.

Keywords: Co-integration Estimators; Fisher E¤ect; Monte Carlo Simulations; Time-varying Coef-

�cients.
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1 Introduction

A vast literature is devoted to the size of the response of nominal interest rates to changes in

expected in�ation, broadly known as the Fisher (1930) e¤ect (see Cooray, 2003). The impor-

tance of this response stems from the fact that permanent shocks to either in�ation or nominal

rates should not be translated into permanent disturbances to real rates themselves. Such a

case would be problematic in the context of standard models of inter-temporal asset pricing.

Moreover, long-run super-neutrality of money is associated with a coe¢ cient relating inter-

est rates to expected in�ation equal to one. A value below unity implies substantial long-run

non-neutralities.

Unfortunately, there is no consensus among economists about the true size of the Fisher

e¤ect, as several problems plague the empirical estimates. First, as Darby (1975) argued, the

Fisher e¤ect estimate should be greater than one in order to compensate debt holders for a

lower after-tax return, since interest income is usually taxed as ordinary income. Second, the

expected in�ation rate is generally unobservable and when actual realised in�ation is used to

proxy expected in�ation, an errors-in-variables bias is introduced on the estimate of the Fisher

e¤ect. Finally and more importantly, the time series properties of both interest rates and

in�ation rates should be considered carefully. In the event of integrated variables, the only

way to establish a theoretical Fisher relationship is via co-integration techniques. However,

even when applying the appropriate co-integration methods, severe problems may arise, such as

the low power of co-integration tests, structural breaks and nonlinearities in the co-integrating

relationship, or the performance of co-integration estimators in small samples.

In general, there is much con�icting evidence in the literature about the Fisher e¤ect. Nu-

merous studies have found that the slope coe¢ cient in a regression of in�ation against nominal

rates is signi�cantly di¤erent from 1, at least over certain periods. Mishkin (1992) was one

of the �rst to suggest that the Fisher relation should be treated within the context of a co-

integrated system, as in Engle and Granger (1987), but did not derive any strong conclusions

due to the large standard errors of the estimated parameters. Subsequent studies used more

e¢ cient estimation procedures and generally found support for a long-run Fisher relation in the

US (see Evans and Lewis, 1995; Crowder and Ho¤man, 1996; Atkins and Coe, 2002; Fahmy

and Kandil, 2003). Caporale and Pittis (2004) showed that the inability of the frequently em-

ployed estimators to provide e¢ cient estimates in small samples is likely to be responsible for

the over-rejection of the Fisher hypothesis. Once the estimators with the best properties are

chosen, the evidence is strongly supportive of the Fisher e¤ect in the US.

Turning to studies examining whether the Fisher relationship holds internationally, Rose

(1988) examined the integration properties of nominal interest rates and in�ation for 18 OECD

countries. The author concluded that in�ation does not appear to have a unit root, while

nominal interest rates do. By contrast, Koustas and Serletis (1999) established that the Fisher

e¤ect conditions hold for a set of 10 industrialised countries, without, however, establishing

a unit coe¢ cient. With the development of panel co-integration techniques, several authors

examined the international Fisher e¤ect in a panel setting. For example, developing two new
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panel co-integration tests for the null of no co-integration, Westerlund (2008) showed that the

null can be safely rejected for a panel of 20 OECD countries. The author provided evidence

of a unit slope on in�ation, thus lending support to an international Fisher e¤ect. Moreover,

Coakley et al. (2006), motivated by panel data studies on the Fisher and other economic

relationships, provided insights into the impact of error cross-section dependence and persistent

autocorrelation on panel regression estimates.

Another strand of the literature, developed relatively recently, takes another route and

attempts to explain the failure of the Fisher e¤ect due to either nonlinearities or structural

breaks which may exist in this equilibrium relationship. Bierens (2000) and Lanne (2006) found

that interest rates and in�ation shared common nonlinear trends. Similar evidence was provided

by Kapetanios et al. (2003) and Koustas and Lamarche (2010) who found that the process of

the real interest rate exhibited asymmetric mean reversion, while stationary. Christopoulos and

Leon-Ledesma (2007) showed that the co-integrating relationship between US interest rates

and in�ation was a nonlinear one. The authors attribute the less-than-proportional relationship

found in the literature to this nonlinearity. On the other hand, Haug et al. (2011) provided

evidence in favour of a linear Fisher relationship when accounting for structural breaks in the

co-integration equation. However, in the majority of cases, their �ndings could not support the

assumption that nominal interest rates and in�ation move one-to-one in the long run.

In this study, we also focus on the empirical examination of the long-run Fisher e¤ect for

19 OECD countries. Our main objective is to investigate whether the empirical failure of the

Fisher e¤ect is linked to the likely distorted small-sample performance of the co-integration esti-

mators under time-varying dynamics. Previous studies that introduced time-varying dynamics

in the analysis of co-integrated variables include Bierens and Martins (2010) and Koop et al.

(2011). Both studies developed a vector error correction model which allows the co-integration

relationship to evolve over time. Our approach di¤ers since, under our data generating process

(DGP), the coe¢ cient of the co-integration equation is time invariant, while the time-varying

dynamics are introduced in the process of the co-integrating error and the error that drives the

regressor.

Our analysis is motivated by the potential of relevant shifts in policy conduct. Speci�cally,

changes in monetary policy regimes are likely to be an important source of variation in the

processes governing both real interest rates and in�ation rates. In a similar mode, Haug et al.

(2011) allowed for a time-varying co-integrating coe¢ cient subject to breaks, probably induced

by shifts in monetary policy stance. However, instead of allowing for abrupt regime changes,

our error model parameters shift over time in a smooth and gradual fashion consistent with

interest-rate smoothing monetary policy. Trecroci and Vassalli (2010) modelled monetary policy

reaction functions with a time-varying parameter model and provided an extensive discussion

on its appropriateness.

We put forward a wide class of processes, which allow for more general heterogeneity prop-

erties in the data similar to those encountered in empirical applications. Speci�cally, we model

the co-integrating error process and the error that drives the in�ation process as a vector au-
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toregressive model with either autoregressive or random coe¢ cients. Interestingly, this class

of DGPs is likely to satisfy the conditions for the applicability of the functional central limit

theorem (FCLT), thus allowing for asymptotics of integrated processes to be derived and restor-

ing the asymptotic optimality of the common co-integration estimators (Phillips and Durlauf,

1986). The behaviour of various co-integration estimators in the presence of time-varying coe¢ -

cients is then examined. By means of Monte Carlo simulations, we show that these time-varying

dynamics a¤ect the behaviour of all the co-integration estimators considered in this study, caus-

ing signi�cant size distortions when testing the Fisher e¤ect. Our �ndings suggest that among

the estimators under scrutiny, the augmented autoregressive distributed lag (AADL) estimator

(Pesaran and Shin, 1999) appears to be the most robust estimator to time-varying dynamics,

closely followed by the fully modi�ed least squares (FMLS) estimator (Phillips and Hansen,

1990).

As a second step in our analysis, we estimate the Fisher equation and base our statistical

tests on simulated critical values instead of asymptotic ones. Taking this route, we �nd that

the Fisher e¤ect survives the empirical evidence irrespective of the estimator choice, with just

a few exceptions. We, therefore, conjecture that a possible explanation for the scarce evidence

of an international Fisher e¤ect in the literature is the poor small-sample performance of the

co-integration estimators under a DGP with time-varying coe¢ cients. A word of caution is in

order here. Our �ndings do not rule out the possibility of alternative speci�cations, such as

regime switching or breaks in either the error dynamics or the co-integration parameter.

The layout of this paper is as follows: Section 2 provides a discussion of the Fisher equation

and introduces the DGP for the relationship between interest rates and in�ation. Next, we

examine the e¤ect of time-varying dynamics on the behaviour of various co-integration estima-

tors. Section 3 presents the estimates of the Fisher equation obtained by various estimators and

discusses the main �ndings of our empirical analysis. Finally, Section 4 summarises the main

�ndings of the paper.

2 Econometric methodology

In this section, we �rst describe the Fisher e¤ect modelling in a co-integrating framework and

then introduce a DGP for the relationship between interest rates and in�ation rates that allows

for time-varying dynamics in the error generating process. We also provide some theoretical

results on the presence of nuisance parameters in the distribution of the OLS estimator in

the context of the DGP under consideration. Finally, we examine the behaviour of various

co-integration estimators in terms of their ability to provide correct statistical inference in the

presence of time-varying dynamics.

2.1 Fisher e¤ect modelling

Formally, the �Fisher e¤ect�can be expressed as follows:

it(m) = �
e
t (m) + r

e
t (m);
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where it(m) is the m-period nominal interest rate at time t, �et (m) denotes the expected rate

of in�ation from time t to t+m, and ret (m) is the ex-ante real interest rate. Assuming rational

expectations (see, for example, Mishkin, 1992), realised in�ation is linked to expected in�ation

as follows:

�t(m) = �
e
t (m) + et;

where et is a white noise process, orthogonal to �et (m): If we further assume that the process

followed by the real interest rate is a white noise process with a mean equal to r; we are able

to test for the Fisher e¤ect in the context of the following regression:

it(m) = r + ��t(m) + �t: (1)

If it(m) and �t(m) are both considered to be I(1), the null hypothesis to be tested can take the

following form:

Fisher hypothesis holds , (i) �t is I(0) and (ii) � = 1:

The �rst of these conditions, that is, the condition that it(m) and �t(m) are co-integrated

processes is supported by the bulk of empirical evidence in the literature. On the other hand,

when dealing with the second condition, estimates of � appear to be signi�cantly di¤erent from

unity, leading to the Fisher e¤ect puzzle.

2.2 The data generating process

Many studies in the literature examine the co-integration equation between the variables of in-

terest in the context of the triangular DGP proposed by Phillips (1988). Under this triangular

DGP, the vector of the co-integrating error and the error that drives the regressor is usually

modelled as a VAR(1) process. The need to parameterise the vector of errors stems from the

necessity to evaluate the various estimators in �nite samples, typically used in empirical appli-

cations, and/or to derive sample-speci�c critical values for testing a co-integration relationship

of interest. In this context, several Monte Carlo studies of the small-sample properties of co-

integration estimators have been conducted (see, for example, Phillips and Hansen, 1990; Stock

and Watson, 1993; Christou and Pittis, 2002; and Panopoulou and Pittis, 2004).

In order to accommodate the empirical regularities observed in the relation between interest

rates and in�ation rates, we choose to introduce a more general DGP that allows for time-varying

dynamics in the process of the co-integrating error and the error that drives the regressor.

Speci�cally, we consider the following bivariate DGP for the I(1) vector zt = [yt; xt]> :

yt = �xt + u1t (2)

and

�xt = u2t: (3)
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We further assume that ut = [u1t; u2t]> is an I(0) process generated as follows:

ut = (M + Pt)ut�1 + et; (4)

where M is a diagonal 2� 2 parameter matrix and Pt is a diagonal 2� 2 time-varying matrix.
Speci�cally,  

u1t

u2t

!
=

" 
�11 0

0 �22

!
+

 
�11;t 0

0 �22;t

!# 
u1t�1

u2t�1

!
+

 
e1t

e2t

!
(5)

and  
e1t

e2t

!
s NIID

" 
0

0

!
;�12 =

 
�11 �12

�12 �22

!#
: (6)

Moreover, we allow Pt to follow a vector autoregressive (VAR) process of order 1, that is,

Pt = �Pt�1 + vt; where � is a diagonal 2� 2 constant parameter matrix: 
�11;t

�22;t

!
=

 
�11 0

0 �22

! 
�11;t�1
�22;t�1

!
+

 
v1t

v2t

!
(7)

and  
v1t

v2t

!
s NIID

" 
0

0

!
;�34 =

 
�33 0

0 �44

!#
: (8)

It is easy to see that under this speci�cation, the co-integration error and the error that

drives the regressor follow the following two univariate processes:

u1t = (�11 + �11;t)u1t�1 + e1t; �11;t = �11�11;t�1 + v1t

and

u2t = (�22 + �22;t)u2t�1 + e2t; �22;t = �22�22;t�1 + v2t:

Appendix A1 provides the stationarity condition for u1t and u2t based on the results of Weiss

(1985).

The aforementioned DGP assumes that ut follows a VAR(1) model with AR(1) coe¢ cients

(VAR(1)-AR(1) process). In our analysis, we also consider a second DGP that assumes that ut
follows a VAR(1) process with random coe¢ cients (VAR(1)-RC process). This case is naturally

a subset of the previous one. By setting � = 0; Pt is a mean zero process with E [Pt 
 Pt] = C: It
is easy to show that the elements of the matrix C can be obtained from those of the matrix �34
for a diagonal matrix Pt: In deriving the necessary and su¢ cient conditions for the stationarity

and stability of this process, we further assume that Pt is independent of et: Analytically, the

generating mechanism for the VAR(1)-RC case is given by the following equations: 
u1t

u2t

!
=

" 
�11 0

0 �22

!
+

 
�11;t 0

0 �22;t

!# 
u1t�1

u2t�1

!
+

 
e1t

e2t

!
(9)
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and 0BBBB@
e1t

e2t

�11;t

�22;t

1CCCCA ~NIID
266664
0BBBB@
0

0

0

0

1CCCCA ;
0BBBB@
�11 �12 0 0

�12 �22 0 0

0 0 �33 0

0 0 0 �44

1CCCCA
377775 : (10)

After some algebra, we show that the stationarity of the VAR(1)-RC model is ensured by

the following condition.

Proposition 1The vector ut = [u1t; u2t]> that follows a VAR(1)-RC process given by equations
(9) and (10) is stationary if 1� �211 � �33 > 0 and 1� �222 � �44 > 0:

Proof. See Appendix A2.
Next, we relate the parameters of our DGPs to the nuisance parameters that are present in

the distribution of the OLS estimator.

2.3 Nuisance parameters

The presence of nuisance parameters in the distribution of the OLS estimator renders standard

asymptotic theory useless in the case of co-integration. The reason for the presence of these non-

standard asymptotics is that when the elements of ut are contemporaneously and/or temporally

correlated, the following two types of second-order asymptotic e¤ects are present in the limiting

distribution of the OLS estimator (see Phillips and Loretan, 1991): (i) The nuisance parameter

!12=!22 that describes the �long-run correlation�e¤ect, due to non-diagonality of the long-run

covariance matrix 
 = [!ij ] ; i; j = 1; 2 and (ii) The nuisance parameter �21 =
P1
k=0E(u20u1k)

(of the one-sided covariance matrix, �) that describes the �endogeneity�e¤ect. However, the

design of our DGPs rules out any feedbacks from the co-integration error to the error that

drives the regressor or from the regressor to the error that drives the co-integration error.

In this case, both nuisance parameters have the same source, namely, the contemporaneous

correlation between u1t and u2t.

We now derive the relevant nuisance parameters for the VAR(1)-RC process given by equa-

tions (9) and (10): To keep the analysis clear, the derivation of the variance matrices is given

in Appendix B. We end up with the following formulas: The variance-covariance matrix V of

ut is given by

vecV = (I �M 
M � C)�1vec�12

and the long-run covariance matrix 
 is given by


 = V +M(I �M)�1V + V (I �M 0)�1M 0:

In our DGP,


 =

0@ (1+�11)�11
(1��11)(1��211��33)

�12
(1��11)(1��22)

�12
(1��11)(1��22)

(1+�22)�22
(1��22)(1��222��44)

1A
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and

� =

0@ �11
(1��11)(1��211��33)

�12
(1��11)(1��11�22)

�12
(1��22)(1��11�22)

�22
(1��22)(1��222��44)

1A :
Hence, we have

!12
!22

=
�12(1� �222 � �44)
(1� �11)(1 + �22)�22

and

�21 =
�12

(1� �22)(1� �11�22)
:

We observe that both nuisance parameters are increasing functions of �11 and �12. On the other

hand, the persistence of the error that drives the regressor (mainly controlled by �22) drives the

nuisance parameters in the opposite direction; that is, as �22 increases,
!12
!22

decreases while �21
increases. What is interesting in this case is that the e¤ect of the random coe¢ cients does not

amplify the magnitude of the nuisance parameters. Speci�cally, as �44 increases, the �long-run

correlation�e¤ect decreases, due to increased variation in the error that drives the regressor.

Similar results for the general case of a VAR(1)-AR(1) process are not easy to derive, due

to the algebraic intractability of the process.

2.4 Monte Carlo simulations

We investigate, by means of Monte Carlo simulations, the �nite sample performance of various

co-integration estimators in cases where the co-integration error and the error that drives the

regressor follow either a VAR(1)-AR(1) or a VAR(1)-RC process. The estimators are evaluated

on the basis of their accuracy of statistical inference since this is of interest in our empirical

investigation of the Fisher e¤ect. As a measure of accuracy of statistical inference, we calculate

the empirical size of the t-test for testing the hypothesis � = 1 in equation (2) for a nominal size

of 5%. We use 2000 replications and consider sample sizes of T + 50 observations with T equal

to 50, 150, and 200. In all cases, the �rst 50 observations are discarded to eliminate the e¤ect

of initial values. The selected sample sizes are in line with the sample sizes of most empirical

applications, including the one presented in Section 3 of this study.

We consider the following nine estimators: (i) the standard OLS estimator; (ii) two versions

of the DOLS estimator� one, denoted as DOLS(hac), uses the HAC covariance matrix estima-

tor while the other, denoted as DOLS, re-scales the OLS coe¢ cient covariance matrix; (iii) two

versions of the canonical cointegrating regression (CCR) estimator, denoted as CCR(nw) and

CCR(a); (iv) two versions of the FMLS estimator, denoted as FMLS(nw) and FMLS(a), which

use either the Newey-West or the Andrews procedure for bandwidth selection, respectively; (v)

the JOH estimator; and (vi) the AADL estimator. We use the Akaike information criterion

(AIC) to choose the lag and lead speci�cation for DOLS and AADL along with the lag speci�-

cation for JOH. AIC is also used to determine the optimal lag speci�cation for the estimation

of the long-run covariance matrix in the context of FMLS and CCR. Appendix C provides a

brief description of these estimators.

We generate random samples from DGPs that are similar, but di¤er in the value of only
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one or two coe¢ cients, in order to be able to isolate the e¤ect of each coe¢ cient of interest

on the behaviour of the estimators under scrutiny. In the case of a VAR(1)-RC process, the

coe¢ cients that a¤ect the nuisance parameters and, as a consequence, the behaviour of the

estimators are �12, �44, and �11. Moreover, when we consider the case of a VAR(1)-AR(1)

process, the values of �11 and �22 probably a¤ect the results. On the other hand, we keep the

value of all the remaining coe¢ cients of the DGP �xed throughout the experiment. Speci�cally,

we set �11 = �22 = 1, �22 = 0:3, and �33 = 0:1.

Our �rst experiment focuses on the case of a VAR(1)-RC process. Speci�cally, we examine

six di¤erent DGPs, and the results for samples of 50, 150, and 200 observations are reported

in Table 1. The �rst DGP (DGP1) corresponds to a process with (i) small contemporaneous

correlation between u1t and u2t (�12 = 0:3), (ii) low persistence of u1t (�11 = 0:4), and (iii)

mild time-varying dynamics (�44 = 0:1). DGP1 serves as a benchmark in our analysis since

it describes a process with mild time-varying dynamics and small nuisance parameters. Even

though DGP1 is a process with relatively mild dynamics, we observe signi�cant size distortions

especially for small samples of 50 observations. To be more speci�c, when T = 50, both versions

of the DOLS estimator have an empirical size of around 30%, which is much higher than the

nominal size of 5%. Similarly, the empirical size of the OLS and JOH estimators is around 20%,

while AADL appears to be the estimator with the lowest size distortions, with an empirical size

of 12%.

As the sample size increases, the behaviour of all estimators improves. When T = 150, most

estimators have an empirical size that ranges from 7% (AADL, FMLS(a), and CCR(a)) to 9%

(JOH). The empirical size of DOLS(hac) also decreases from 29% to 13%. On the other hand,

the �naive�versions of DOLS and OLS continue to have important size distortions with empirical

sizes of 22% and 18%, respectively. If we further increase the sample size to 200 observations,

the behaviour of DOLS and OLS does not improve, while the size distortions for the remaining

estimators slightly decrease.

The comparison of the results for DGP1 and DGP2 shows that the size of the contempora-

neous correlation between u1t and u2t seems to lead to a small increase in the size distortions

of OLS, while the behaviour of the other estimators remains una¤ected. Comparing DGP3 and

DGP5, we �nd that when the persistence of u1t is relatively high, an increase in �12 increases

the size distortions of both versions of the CCR estimator, especially for small sample sizes.

Moreover, high persistence of the co-integration error u1t leads to a signi�cant deterioration of

the behaviour of all estimators. For example, when we increase �11 to 0.7 (DGP3), the empir-

ical size of DOLS and JOH is 54% and 30%, respectively (T = 50). AADL seems to be the

estimator that is less a¤ected by the persistence of u1t since its empirical size increases from

12% in DGP1 to 15% in DGP3 (T = 50). The behaviour of all estimators improves as the

sample size increases and most estimators have an empirical size of around 10% when T = 150;

which further decreases to 7% to 9% when T = 200. OLS, DOLS, and, to a lesser degree,

DOLS(hac) are the only exceptions with much higher size distortions compared to the other

estimators considered in this study. Finally, an increase in the value of �44 that controls the
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Table 1: Empirical size for the Fisher hypothesis (VAR(1)-RC model)
DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

�12 0.3 0.9 0.3 0.3 0.9 0.9
�44 0.1 0.1 0.1 0.4 0.1 0.4
�11 0.4 0.4 0.7 0.4 0.7 0.7
Panel A T=50
OLS 0.21 0.26 0.41 0.19 0.56 0.51
DOLS(hac) 0.29 0.28 0.42 0.29 0.44 0.44
DOLS 0.30 0.29 0.54 0.29 0.53 0.54
FMLS(nw) 0.16 0.16 0.21 0.15 0.22 0.23
FMLS(a) 0.14 0.14 0.20 0.13 0.21 0.22
CCR(nw) 0.17 0.16 0.22 0.17 0.28 0.26
CCR(a) 0.15 0.15 0.22 0.15 0.29 0.26
JOH 0.19 0.18 0.30 0.18 0.26 0.30
AADL 0.12 0.12 0.15 0.12 0.16 0.16
Panel B T=150
OLS 0.18 0.26 0.38 0.20 0.57 0.49
DOLS(hac) 0.13 0.14 0.19 0.14 0.21 0.24
DOLS 0.22 0.22 0.44 0.22 0.45 0.47
FMLS(nw) 0.08 0.08 0.10 0.09 0.10 0.12
FMLS(a) 0.07 0.07 0.10 0.09 0.09 0.12
CCR(nw) 0.08 0.08 0.10 0.09 0.14 0.14
CCR(a) 0.07 0.08 0.10 0.09 0.14 0.14
JOH 0.09 0.09 0.12 0.09 0.11 0.13
AADL 0.07 0.08 0.09 0.07 0.09 0.10
Panel C T=200
OLS 0.19 0.28 0.40 0.19 0.58 0.53
DOLS(hac) 0.11 0.12 0.17 0.12 0.18 0.17
DOLS 0.22 0.22 0.43 0.22 0.45 0.43
FMOLS(nw) 0.07 0.07 0.09 0.07 0.09 0.08
FMOLS(a) 0.06 0.06 0.08 0.06 0.09 0.09
CCR(nw) 0.07 0.08 0.09 0.07 0.11 0.10
CCR(a) 0.07 0.07 0.08 0.07 0.11 0.10
JOH 0.07 0.08 0.09 0.07 0.09 0.09
AADL 0.06 0.07 0.07 0.06 0.08 0.07

Notes: The DGP is given by equations (2)-(3) and (9)-(10).
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�random-coe¢ cient� e¤ect (together with �33) causes, in general, minor improvements in the

behaviour of the estimators. This is illustrated by the comparison of DGP4 to either DGP1 or

DGP6.

In summary, the �ndings of our �rst Monte Carlo experiment suggest that all the estimators

under scrutiny su¤er from size distortions when the DGP corresponds to a VAR(1)-RC process.

The size distortions are higher for small sample sizes and are an increasing function of the

persistence of the co-integration error and, to a lesser degree, of the contemporaneous correlation

between u1t and u2t. AADL appears to be the best-performing estimator followed by the two

versions of FMLS. On the other hand, OLS and DOLS are the estimators with the worst

behaviour in the context of our DGPs.

Our second experiment focuses on the case of a VAR(1)-AR(1) process. We consider four

di¤erent DGPs: DGP7 to DGP10. The results, reported in Table 2 along with the results

for DGP1, which serves as a benchmark, suggest that switching from a VAR(1)-RC process

to a VAR(1)-AR(1) process increases the size distortions of all the estimators examined in our

analysis. In all cases, the size distortions decrease as the sample size increases. AADL remains

the best-performing estimator, closely followed by FMLS and CCR. On the other hand, OLS and

DOLS have the largest size distortions among the estimators under scrutiny. The comparison

of the empirical sizes for DGP7 and DGP8 shows that high values of �11 cause larger size

distortions compared to high values of �11. DGP9 reveals that, similar to the VAR(1)-RC case,

the size distortions increase with the size of �12. Finally, DGP10 shows that the behaviour of

the estimators is not a¤ected by the value of �22.

3 Empirical analysis

In this section, we use data from 19 OECD countries to examine whether the Fisher rela-

tion has empirical support internationally. Our main focus is on the ability of the alternative

co-integration estimators to provide valid inference about the validity of the Fisher relation-

ship. The empirical analysis is based on the same nine estimators included in the Monte Carlo

experiment presented in the previous section.

3.1 Data

We use annual data for long-term interest rates and in�ation rates available at the website of

Professor Michael D. Bordo and the IFS database. The use of a long annual historical dataset

stems from our need to increase the power of our testing methodology. Given that our focus

is on the long-run equilibrium relation between interest rates and in�ation rates, the �ndings

in the literature indicate that the time span is far more important than the mere number of

observations. In other words, co-integration is a long-run concept and therefore the literature

suggests that it is preferable to conduct a co-integration analysis using low-frequency data over

a long time period rather than high-frequency data over a short time period (see, among others,

Hakkio and Rush, 1991; Otero and Smith, 2000; Zhou, 2001).
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Table 2: Empirical size for the Fisher hypothesis (VAR(1)-AR(1) model)
DGP1 DGP7 DGP8 DGP9 DGP10

�12 0.3 0.3 0.3 0.9 0.3
�11 0.4 0.4 0.6 0.6 0.4
'11 0.0 0.6 0.4 0.4 0.6
'22 0.0 0.3 0.3 0.3 0.6
Panel A T=50
OLS 0.21 0.27 0.36 0.47 0.28
DOLS(hac) 0.29 0.34 0.40 0.42 0.36
DOLS 0.30 0.40 0.50 0.52 0.40
FMLS(nw) 0.16 0.18 0.20 0.21 0.17
FMLS(a) 0.14 0.18 0.19 0.19 0.17
CCR(nw) 0.17 0.19 0.21 0.24 0.19
CCR(a) 0.15 0.18 0.20 0.23 0.19
JOH 0.19 0.25 0.29 0.28 0.25
AADL 0.12 0.14 0.16 0.15 0.16
Panel B T=150
OLS 0.18 0.31 0.38 0.49 0.31
DOLS(hac) 0.13 0.16 0.20 0.20 0.18
DOLS 0.22 0.35 0.42 0.44 0.34
FMLS(nw) 0.08 0.11 0.11 0.10 0.12
FMLS(a) 0.07 0.11 0.11 0.09 0.11
CCR(nw) 0.08 0.12 0.12 0.11 0.12
CCR(a) 0.07 0.12 0.11 0.11 0.12
JOH 0.09 0.11 0.13 0.11 0.12
AADL 0.07 0.09 0.10 0.08 0.10
Panel C T=200
OLS 0.19 0.30 0.39 0.49 0.30
DOLS(hac) 0.11 0.13 0.16 0.16 0.13
DOLS 0.22 0.33 0.41 0.43 0.32
FMOLS(nw) 0.07 0.08 0.08 0.08 0.09
FMOLS(a) 0.06 0.09 0.08 0.08 0.09
CCR(nw) 0.07 0.08 0.08 0.10 0.09
CCR(a) 0.07 0.09 0.08 0.10 0.09
JOH 0.07 0.07 0.08 0.09 0.09
AADL 0.06 0.06 0.07 0.07 0.07

Notes: The DGP is given by equations (2)-(3) and (5)-(8).
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We use the IFS database to extend the sample period to 2009 for all variables. However,

the start date di¤ers among countries due to data availability. Speci�cally, the sample starts

in 1881 for Canada, Denmark, Ireland, the Netherlands, Sweden, the UK, and the USA; 1883

for Switzerland; 1947 for Australia, Belgium, and Norway; 1949 for France, Italy, New Zealand,

and Portugal; 1955 for Germany; 1965 for Austria; 1966 for Japan; and 1970 for Luxembourg.

3.2 Estimation results

Some preliminary results con�rm the widely held view that interest rates and in�ation rates are

I(1) processes and co-integrated. Speci�cally, we employ the trace statistic and the maximum-

eigenvalue statistic developed by Johansen (1988, 1991) and Johansen and Juselius (1990) to

test for co-integration between interest rates and in�ation rates. Both tests clearly suggest

the existence of co-integration for almost all countries under scrutiny. Austria, Italy, Japan,

and Luxembourg are the only exceptions. We should note however that the sample size for

the aforementioned four countries is relatively small and this might in�uence the power of the

tests to reveal co-integration (see, among others, Haug, 1996). In summary, our results suggest

that the �rst condition for the Fisher hypothesis to hold is, in general, satis�ed. In this mode,

we focus on testing the second hypothesis, namely, that the slope coe¢ cient is insigni�cantly

di¤erent from 1.

Before proceeding to the estimation of the slope coe¢ cient, �, we �rst establish its time-

invariancy property on the basis of tests for stability in co-integrating regressions (Hansen,

1992). Moreover, we employ three tests, namely, the Lc, MeanF, and SupF tests, which test

the null hypothesis that the co-integrating vector is constant. To save space, we provide a

brief description of the tests along with our results in Appendix D. In the majority of cases,

our �ndings (Table D1) point to the stability of the co-integrating relationship justifying our

modelling approach. However, we can identify some exceptions. The tests uniformly reject

the null hypothesis of a constant co-integrating parameter for Austria and Switzerland. Our

results are mixed for Denmark, Italy, Portugal, and, to a lesser degree, France. France, Italy,

and Switzerland are among the countries with a structural break in the co-integrating relation

according to Haug et al. (2011).

Although our �ndings so far broadly support the existence of a time-invariant co-integrating

relation between interest rates and in�ation rates, we cannot rule out the possibility of the

existence of a break in the Fisher equation for speci�c countries. Unfortunately, there is no

straightforward way to di¤erentiate between (i) a process with constant � and time-varying

dynamics in the error terms and (ii) a process with a time-varying � and a constant coe¢ cient

process for the error terms. We believe that the former is more likely than the latter, since the

literature indicates that the existence of a break in the co-integrating relation usually leads to

co-integration test rejections (see Gregory et al., 1996; Davidson and Monticini, 2010; Haug et

al., 2011).

In an attempt to further investigate this issue, we perform a simple Monte Carlo experiment,

described in detail in Appendix E. In brief, we �rst consider a DGP with time-variation in the
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co-integrating parameter and examine how often the co-integration tests indicate the existence

of co-integration. Then, we repeat the same procedure in the context of a DGP with a constant �

and time-varying dynamics in the error terms. In the former case, our �ndings con�rm previous

�ndings in the literature since the co-integration tests indicate the existence of co-integration

in less than 20% of the generated samples. In the latter case, the power of the co-integration

tests increases signi�cantly exceeding 90% in some speci�cations. We, therefore, continue our

empirical analysis assuming a constant �, keeping in mind, however, that this might not hold

for speci�c countries, such as Austria and Italy where co-integration is not supported and the

Hansen stability tests indicate a structural break in �.

We now proceed with the estimation of the slope coe¢ cient. Table 3 presents the estimated

value of �, along with the respective standard errors, for all the countries and estimators under

consideration. First, we observe signi�cant variation in the estimated slope coe¢ cient both

across estimators and across countries. The OLS estimator systematically produces the lowest

estimates of � with a median value of 0.233, while the estimated �s range from 0.01 (Ireland)

to 0.64 (Austria). CCR and FMLS also generate, on average, low estimates of �, while JOH

provides the highest ones with a median estimate of 1.308. A cross-country comparison reveals

that Ireland and Switzerland generate, in general, the lowest estimates with a median of 0.01

and 0.065 respectively. On the other hand, Austria and Italy give the highest estimates with a

median of 1 and 0.724, respectively.

Next, we test the null hypothesis that � equals unity for all countries under scrutiny based on

the nine di¤erent estimators considered in the analysis. The t-statistics for the null hypothesis

of � = 1 are reported in Table 4. Entries in bold indicate rejection of the null hypothesis

based on 5% asymptotic critical values. Our �ndings suggest that in most cases, the Fisher

hypothesis is rejected. Speci�cally, eight out of the nine estimators lead to the rejection of

the null hypothesis for France, Ireland, the Netherlands, Portugal, and Switzerland. In most

countries, at least four estimators suggest that � is not equal to unity. The countries with the

strongest evidence in favour of the Fisher hypothesis are Austria and Luxembourg. For these

two countries, all estimators, other than OLS, do not reject the null hypothesis. As far as the

behaviour of the estimators is concerned, we observe many di¤erences. The results based on

the OLS estimator suggest rejection of the Fisher hypothesis in all 19 countries under scrutiny.

Similarly, CCR produces t-statistics that reject the Fisher hypothesis for 15 or 16 countries

depending on the version of the estimator. On the other hand, the results of AADL indicate

that the null hypothesis is rejected in only four countries. It is interesting to note that, according

to our previous simulations, AADL is the most robust estimator to DGPs with time-varying

dynamics. The remaining estimators reject the null hypothesis for 8 to 12 countries.

So far, the results produced by most estimators provide evidence against the validity of

the Fisher hypothesis. These �ndings are based on asymptotic critical values that might be

inappropriate for small sample sizes such as ours consisting of 40 to 128 observations. Moreover,

it is possible that the DGP of both interest rates and in�ation rates has time-varying coe¢ cients.

In such cases, the results of the Monte Carlo experiment presented in Section 2 reveal that the
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Table 3: Estimation results for the co-integrating parameter in the Fisher equation
OLS DOLS DOLS FMLS FMLS CCR CCR JOH AADL

(hac) (nw) (a) (nw) (a)
Australia 0.259* 1.572* 1.572* 0.509 0.501 0.466 0.456 2.078* 1.362*

(0.091) (0.288) (0.185) (0.312) (0.309) (0.284) (0.278) (0.434) (0.355)
Austria 0.640* 1.101* 1.101* 1.000* 0.945* 0.943* 0.928* 1.214* 1.186*

(0.088) (0.159) (0.093) (0.338) (0.326) (0.310) (0.317) (0.242) (0.495)
Belgium 0.152* 0.998* 0.998* 0.239 0.370 0.256 0.356 1.308* 0.416

(0.038) (0.129) (0.066) (0.198) (0.213) (0.216) (0.205) (0.174) (0.254)
Canada 0.201* 1.173* 1.173* 0.388 0.675* 0.414 0.361* 1.547* 0.876*

(0.046) (0.191) (0.094) (0.260) (0.225) (0.278) (0.131) (0.188) (0.359)
Denmark 0.233* 1.303* 1.303* 0.571* 0.561* 0.466* 0.426* 1.547* 0.740*

(0.047) (0.288) (0.105) (0.252) (0.260) (0.209) (0.200) (0.215) (0.337)
France 0.127* 0.792* 0.792* 0.300 0.278 0.213 0.225 1.113* 0.388

(0.030) (0.068) (0.065) (0.158) (0.172) (0.111) (0.139) (0.177) (0.203)
Germany 0.171* 1.273* 1.273* 0.701* 0.797* 0.551* 0.521* 2.734* 0.277

(0.060) (0.142) (0.108) (0.239) (0.251) (0.203) (0.188) (0.415) (0.384)
Italy 0.556* 0.907* 0.907* 0.724* 0.691* 0.670* 0.661* 0.966* 0.960*

(0.066) (0.055) (0.052) (0.138) (0.147) (0.113) (0.130) (0.159) (0.228)
Ireland 0.010 0.013 0.013 -0.022 0.004 -0.035 0.003 1.047* 0.084

(0.009) (0.015) (0.011) (0.041) (0.043) (0.048) (0.046) (0.231) (0.081)
Japan 0.459* 0.816* 0.816* 0.663* 0.604* 0.576* 0.586* 0.917* 0.660*

(0.064) (0.075) (0.058) (0.195) (0.222) (0.148) (0.208) (0.164) (0.236)
Luxembourg 0.330* 0.873* 0.873* 0.701* 0.643 0.572* 0.568 2.045* 1.219

(0.101) (0.198) (0.156) (0.326) (0.335) (0.263) (0.292) (0.575) (0.741)
Netherlands 0.091* 0.377 0.377* 0.154 0.207 0.149 0.168 2.170* 0.550

(0.033) (0.193) (0.066) (0.154) (0.176) (0.148) (0.143) (0.403) (0.343)
New Zealand 0.435* 0.461* 0.461* 0.526* 0.507* 0.491* 0.479* 1.099* 0.880*

(0.076) (0.097) (0.075) (0.158) (0.155) (0.125) (0.122) (0.180) (0.223)
Norway 0.398* 0.607* 0.607* 1.120 1.269* 0.661 0.559* 2.226* 1.701*

(0.111) (0.142) (0.139) (0.633) (0.447) (0.382) (0.192) (0.410) (0.680)
Portugal 0.516* 0.690* 0.690* 0.653* 0.673* 0.581* 0.589* 0.788* 0.781*

(0.053) (0.017) (0.020) (0.062) (0.068) (0.043) (0.047) (0.069) (0.115)
Sweden 0.139* 0.879* 0.879* 0.579* 0.875* 0.588* 0.268* 1.503* 0.573

(0.038) (0.209) (0.081) (0.206) (0.236) (0.208) (0.098) (0.283) (0.371)
Switzerland 0.042* 0.099* 0.099* 0.049 0.065 0.049 0.062 0.946* 0.172

(0.017) (0.045) (0.024) (0.078) (0.075) (0.080) (0.071) (0.146) (0.102)
UK 0.295* 1.018* 1.018* 0.603* 0.690* 0.512* 0.447* 1.173* 0.605*

(0.040) (0.145) (0.069) (0.183) (0.174) (0.154) (0.108) (0.183) (0.205)
USA 0.169* 1.125* 1.125* 0.375 0.381 0.344 0.328 1.637* 0.774*

(0.044) (0.270) (0.107) (0.223) (0.235) (0.205) (0.204) (0.243) (0.327)

Notes : Standard errors are reported in parentheses.
An asterisk indicates a statistically signi�cant estimate (�=5%).
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Table 4: t-statistic for the null hypothesis of a unit coe¢ cient in the Fisher equation
OLS DOLS DOLS FMLS FMLS CCR CCR JOH AADL

(hac) (nw) (a) (nw) (a)
Australia -8.142 1.989 3.087 -1.574 -1.616 -1.883 -1.955 2.485 1.018
Austria -4.099 0.633 1.086 0.000 -0.167 -0.183 -0.226 0.883 0.375
Belgium -22.60* -0.017 -0.033 -3.838 -2.961 -3.451 -3.141 1.768 -2.303
Canada -17.32* 0.904 1.848 -2.350 -1.444 -2.106 -4.881 2.905 -0.346
Denmark -16.218 1.052 2.882 -1.700 -1.691 -2.551 -2.875 2.546 -0.772
France -29.31* -3.034 -3.184 -4.441 -4.194 -7.064* -5.587 0.639 -3.015
Germany -13.86* 1.916 2.532 -1.253 -0.807 -2.215 -2.555 4.183 -1.883
Italy -6.690 -1.696 -1.797 -2.004 -2.094 -2.909 -2.618 -0.212 -0.174
Ireland -108.02* -66.25* -90.30* -24.85* -23.28* -21.48* -21.62* 0.204 -11.35*
Japan -8.426* -2.441 -3.160 -1.728 -1.788 -2.861 -1.993 -0.508 -1.443
Luxembourg -6.632 -0.644 -0.815 -0.917 -1.068 -1.627 -1.483 1.817 0.295
Netherlands -27.23* -3.228 -9.462 -5.510 -4.514 -5.735 -5.839 2.900 -1.313
New Zealand -7.449 -5.546 -7.176 -3.003 -3.173 -4.084 -4.279 0.552 -0.540
Norway -5.443 -2.768 -2.822 0.189 0.602 -0.888 -2.297 2.992 1.029
Portugal -9.181 -18.53* -15.37* -5.574 -4.802 -9.832* -8.810* -3.100 -1.894
Sweden -22.77* -0.580 -1.507 -2.039 -0.529 -1.976 -7.444* 1.775 -1.152
Switzerland -56.94* -20.20* -38.05* -12.22* -12.40* -11.88* -13.18* -0.370 -8.09*
UK -17.47* 0.124 0.259 -2.170 -1.779 -3.169 -5.112 0.943 -1.927
USA -18.70* 0.464 1.167 -2.809 -2.638 -3.202 -3.296 2.623 -0.692

Notes: Bold indicates rejection of the null hypothesis of a unit coe¢ cient based on asymptotic critical values.
An asterisk indicates rejection of the null hypothesis of a unit coe¢ cient based on simulated critical values.

estimators considered in this analysis su¤er from signi�cant size distortions. Therefore, the

utilisation of asymptotic critical values seems problematic and can lead to false conclusions. We

overcome these issues by repeating the analysis based on simulated critical values that take into

account both the small sample size and the time-varying dynamics.

In order to generate the simulated critical values, we �rst need to choose the proper DGP to

describe the relationship between the interest rate and the in�ation of each country. We consider

three alternative models; the VAR(1)-AR(1) and VAR(1)-RC models described in Section 2,

and a simple VAR(1) model with constant coe¢ cients. The constant coe¢ cient VAR(1) model

is a simpli�ed version of VAR(1)-RC where �11;t and �22;t are not included in the model of ut.

Speci�cally, ut = Mut�1 + et where M is a diagonal 2� 2 matrix and et � NIID(0;�12). For
each country under examination, we select among the three models by means of the likelihood

ratio (LR) statistic. Once again, we use simulated critical values instead of asymptotic ones to

ensure correct inference. The values of the LR statistic, together with the 5% simulated critical

values and the selected model are reported in Table 5. The general VAR(1)-AR(1) model is

selected for nine countries, while the VAR(1)-RC model is also selected for nine countries. On

the other hand, the constant coe¢ cient VAR(1) model is supported only for Austria.

Given the selected model for each country, we now calculate the simulated critical values

(not reported) for each estimator. In this way, we can conduct proper statistical inference for the

null hypothesis that � equals unity. An asterisk on the estimates reported in Table 4 indicates

rejection of the null hypothesis based on simulated critical values. In a nutshell, this last set of

results paints a totally di¤erent picture. We now provide strong evidence supporting the validity

of the Fisher hypothesis. To be more speci�c, all the estimators lead to the same conclusion

that � = 1 in almost all cases. OLS is the only exception since it still suggests rejection of the
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Table 5: Model selection (LR-statistic)
LR-statistic Simulated critical values (� = 5%)

Selected VAR-AR VAR-AR VAR-RC VAR-AR VAR-AR VAR-RC
vs. vs. vs. vs. vs. vs.

Model VAR-RC VAR VAR VAR-RC VAR VAR
Australia VAR-RC 2.245 21.448 19.203 5.642 9.778 7.630
Austria VAR 1.116 7.522 6.406 3.904 9.025 7.454
Belgium VAR-AR 7.114 40.546 33.433 6.057 9.041 7.496
Canada VAR-AR 17.665 72.318 54.653 7.172 10.34 8.763
Denmark VAR-AR 11.466 75.761 64.295 6.431 10.44 8.173
France VAR-RC 1.105 45.454 44.349 6.317 9.626 8.012
Germany VAR-RC 1.412 11.670 10.258 4.704 8.632 7.097
Italy VAR-RC 1.458 13.160 11.701 7.681 9.028 6.915
Ireland VAR-AR 16.363 340.040 323.677 5.930 9.277 7.327
Japan VAR-RC 2.329 11.633 9.603 7.836 11.156 9.467
Luxembourg VAR-AR 16.658 19.699 3.041 4.589 9.220 7.595
Netherlands VAR-AR 6.218 40.816 34.599 5.172 9.406 7.330
New Zealand VAR-RC 2.677 12.914 10.237 4.589 8.876 7.142
Norway VAR-RC 3.050 12.614 9.564 5.745 9.781 8.057
Portugal VAR-AR 25.837 39.485 13.648 5.760 9.062 6.978
Sweden VAR-AR 8.574 79.919 71.345 6.142 9.492 7.772
Switzerland VAR-RC 0.834 53.665 52.831 6.108 8.125 6.508
UK VAR-RC 0.772 107.810 107.039 10.14 8.752 7.036
USA VAR-AR 7.448 62.840 55.392 6.102 9.858 8.232
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Fisher hypothesis for 11 countries. If we concentrate on the other eight estimators, they all

support the Fisher hypothesis for 14 countries (Australia, Austria, Belgium, Canada, Denmark,

Germany, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, the UK, and the

USA), while seven of them support the Fisher hypothesis for France and Sweden. The results

are mixed for Portugal where four estimators lead to the rejection of the Fisher hypothesis.

However, we should note that the estimators with the best Monte Carlo performance, namely,

AADL and both versions of FMLS, support the validity of the Fisher hypothesis in Portugal.

On the other hand, Ireland and Switzerland are the only cases where almost all the estimators

reject the Fisher hypothesis.

4 Conclusions

This study examines the Fisher hypothesis for 19 OECD countries. We consider the case of time-

varying dynamics in the error generating process of both interest rates and in�ation rates. In

such cases, the behaviour of the co-integration estimators that are usually utilised to investigate

the validity of the Fisher hypothesis can be a¤ected leading to incorrect conclusions.

We �rst use Monte Carlo simulations to examine the properties of nine alternative estimators

under DGPs with time-varying coe¢ cients. Our results suggest that the estimators su¤er from

signi�cant size distortions, especially for small sample sizes. The AADL estimator appears to be

the most robust estimator to time-varying dynamics, closely followed by the FMLS estimator.

Next, we employ 19 OECD countries to examine whether the Fisher relation has empirical

support internationally. The �ndings crucially depend on the critical values used to test the

Fisher hypothesis. When we use asymptotic critical values, which, according to our Monte Carlo

experiment, are inappropriate for correct inference in cases of small samples and/or DGPs

with time-varying dynamics, empirical evidence is usually against the validity of the Fisher

hypothesis. AADL is the only exception since this estimator rejects the Fisher hypothesis for

only four countries. On the other hand, when we use simulated critical values that take into

account both the available sample size and the time-varying dynamics of the data generating

process, the picture changes dramatically. All the estimators under scrutiny, with the exception

of OLS, strongly support the validity of the Fisher hypothesis. The only exceptions are Ireland

and Switzerland where almost all estimators reject the Fisher hypothesis, while the results are

mixed in the case of Portugal.
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Appendix A: Stationarity conditions for ut = [u1t; u2t]>

A1: Stationarity conditions for the VAR(1)-AR(1) case.
Consider the process ut = [u1t; u2t]> given by equations (4)-(8). According to Weiss (1985),

the stability condition for u1t and u2t is (dropping the subscripts) R+ S2(1) � 1; with

R+ S2(1) = �2 +
q

1� �2
(1 + 4�2 + 8�2 lim

n!1

n�1X
j=1

n� j
n

�j) +

2q2

(1� �2)2
(1 + lim

n!1

n�1X
j=1

n� j
n

�2j);

where q equals �33 and �44 for the case of u1t and u2t respectively.

In general, stability does not imply stationarity. However, implicit in the derivation of the

stability condition by Weiss is the existence of a �nite mean and the condition itself is built

on the requirement of a �nite variance, which associated with an identical distribution for the

errors et provide us with a su¢ cient second-order stationarity condition, albeit a strong one.

A2: Stationarity conditions for the VAR(1)-RC case.
Nicholls and Quinn (1982) derived the stationarity conditions for the multivariate autoregressive

model of order n. In our case, their conditions (necessary and su¢ cient) are as follows:

1.The eigenvalues of the matrix M are less than unity. Given that M is diagonal, its eigenvalues

are less than unity in modulus() j�11j < 1 and j�22j < 1, and

2.The matrix H =

0@�11 1��211
1��211��33

�12

�12 �22
1��222

1��222��44

1A is positive de�nite.

When conditions 1 and 2 are satis�ed, the variance-covariance matrix V of ut is given by

V =

0@ �11
1��211��33

�12
1��11�22

�12
1��11�22

�22
1��222��44

1A :
Proof to proposition 1: The starting point for the derivation of the stationarity conditions

for our parameter space is the following theorem by Nicholls and Quinn (1982):

Theorem: A unique F t-measurable stationary solution futg exists to (9) if and only if
the eigenvalues of M are less than unity in modulus and the matrix H given by vecH =

(I � CA)�1vec�12 is positive de�nite, where A = (I �M 
M)�1 and �12 is the covariance
matrix of fetg. The covariance matrix V of ut is then given by vecV = AvecH:

The �rst condition reduces to j�11j < 1 and j�22j < 1 given the diagonality of M in our

setup. Next, we derive matrix H and then the conditions that ensure that it is positive de�nite.

As stated in the theorem matrix H is given by vecH = (I � CA)�1vec�12; with C being

equal to

22



C = E [Pt 
 Pt] = E

266664
0BBBB@
�11t�11t 0 0 0

0 �11t�22t 0 0

0 0 �11t�22t 0

0 0 0 �11t�11t

1CCCCA
377775 =

0BBBB@
�33 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �44

1CCCCA :

Thus, vecH =

0BBBBB@
�11

1��211
1��211��33
�12

�12

�22
1��222

1��222��44

1CCCCCA =) H =

0@�11 1��211
1��211��33

�12

�12 �22
1��222

1��222��44

1A :
Given that a symmetric matrix is positive de�nite if and only if all of its eigenvalues are

positive, we next prove the condition based on its eigenvalues (see Judge et al. 1988, pp 960-961).

If �12 = 0; the eigenvalues of H are �1 = �11
1��211

1��211��33
and �2 = �22

1��222
1��222��44

: Given that

�11; �22; 1 � �211; 1 � �222 are all positive, H is positive de�nite () 1 � �211 � �33 > 0 and

1� �222 � �44 > 0: These conditions are equivalent to the ones for scalar RC(1) models, which
is natural since when �12 = 0; both u1t and u2t reduce to univariate RC(1) models.

Interestingly, when �12 6= 0; the conditions 1 � �211 � �33 > 0 and 1 � �222 � �44 > 0 are

su¢ cient for the positive de�niteness of H:

By setting 1� �211 = a; 1� �211 � �33 = b; 1� �222 = c and 1� �222 � �44 = d; the eigenvalues
of H are

�1 =
1

2bd

�
ad�11 + bc�22 �

q
(ad�11 + bc�22)

2 + 4bd(bd�212 � ac�11�12)
�

and

�2 =
1

2bd

�
ad�11 + bc�22 +

q
(ad�11 + bc�22)

2 + 4bd(bd�212 � ac�11�12)
�
:

In order to ensure that both eigenvalues are positive, it is su¢ cient to show that �1 > 0; since

�1 < �2 for all parameter values. Please note that the case of complex eigenvalues is ruled out

by the symmetry of the matrix H (see Lutkepohl, 1993, pp.456). The following constraints need

to be taken into account: a; b; c; d; �11; �22 > 0; j�12j < �11; j�12j < �22; b < a and d < c: We

need to show that

ad�11 + bc�22 >

q
(ad�11 + bc�22)

2 + 4bd(bd�212 � ac�11�12) =)

4bd(bd�212 � ac�11�12) < 0 =) bd�212 � ac�11�12 < 0;

which holds for any parameter con�gurations subject to the constraints set earlier:

The covariance matrix V of ut is given by vecV = AvecH; so V =

0@ �11
1��211��33

�12
1��11�22

�12
1��11�22

�22
1��222��44

1A.
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Appendix B: Nuisance parameters for the VAR(1)-RC case
Three types of variances are associated with the process ut as de�ned by equations (4) to (6),

namely the conditional or contemporaneous covariance matrix, the unconditional covariance

matrix and the long-run covariance matrix. In what follows, we derive these variances for the

VAR(1)-RC case.

Conditional/contemporaneous covariance matrix:

Ef[ut � E(ut=ut�1)][ut � E(ut=ut�1)]0=ut�1g = E(ete0t) = �12:

Unconditional covariance matrix (V ):

V = E[utu
0
t] = E[((M + Pt)ut�1 + et)((M + Pt)ut�1 + et)0])

vecV = vec[E[(M + Pt)ut�1u0t�1(M + Pt)
0 + etet0]])

vecV = E[(M + Pt)
 (M + Pt)vec(ut�1u0t�1) + vec�12])
vecV = E[(M 
M + Pt 
 Pt)]vecV + vec�12 )
vecV = (M 
M + C)vecV + vec�12 )
vecV � (M 
M + C)vecV = vec�12 )
(I �M 
M � C)vecV = vec�12 )

vecV = (I �M 
M � C)�1vec�12:

Long-run covariance matrix (
):

The long-run covariance matrix 
 can be decomposed into three matrices: the unconditional

covariance matrix V; and two temporal matrices � and �0; i.e. 
 = V + � + �0; where � =

E[T�1
TP
t=1

TP
s=t+1

utu
0
s] =

T�1P
s=1
E(utu

0
t�s):

For s = 1; we have E(utu0t�1) = E[((M+Pt)ut�1+et)u
0
t�1] = E[(M+Pt)]E[ut�1u

0
t�1] =MV:

For s = 2; we have E(utu0t�2) = E[((M + Pt)(M + Pt�1)ut�2 + (M + Pt)et�1 + et)u0t�2] =

E[(M + Pt)(M + Pt�1)]E[ut�2u0t�2] =M
2V:

For s = T � 1; we have E(utu0t�T+1) =MT�1V:

So � reduces to � = MV +M2V + ::: +MT�1V and given that all the eigenvalues of M

are less than unity in modulus, we have:

� =M(I +M +M2 + :::+MT�2V )V !M(I �M)�1V (where ! stands for convergence

as T tends to in�nity).

In a similar mode, �0 =
T�1P
s=1
E(ut�su0t) = V (I+M+M2+ :::+MT�2)

0
M

0
= V (I�M 0)�1M 0:

Adding up the three terms we have


 = V + �+ �0 )


 = V +M(I �M)�1V + V (I �M 0)�1M 0:

With some algebra, we relate the parameters of our DGP to the nuisance parameters,

!12=!22 that describes the �long-run correlation�e¤ect, due to non-diagonality of the long run
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covariance matrix 
 = [!ij ] ; i; j = 1; 2 and �21 =
P1
k=0E(u20u1k) that describes the �endogene-

ity�e¤ect. Speci�cally, we have:

V =

0@ �11
1��211��33

�12
1��11�22

�12
1��11�22

�22
1��222��44

1A ;


 = V + �+ �0 =

0@ (1+�11)�11
(1��11)(1��211��33)

�12
(1��11)(1��22)

�12
(1��11)(1��22)

(1+�22)�22
(1��22)(1��222��44)

1A
and

� = V + �0 =

0@ �11
(1��11)(1��211��33)

�12
(1��11)(1��11�22)

�12
(1��22)(1��11�22)

�22
(1��22)(1��222��44)

1A :
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Appendix C: Brief description of the co-integration estimators
We consider both parametric and semi-parametric co-integration estimators, the majority of

which are asymptotically e¢ cient provided that the conditions of the FCLT are satis�ed. Next,

we provide a brief description of these estimators:

Dynamic OLS (DOLS(p,t)): This estimator was suggested by Phillips and Loretan (1991),
Saikonnen (1991), and Stock and Watson (1993). The term DOLS was �rst used by Stock and

Watson who generalised it to systems with higher orders of integration. It utilises the static

equation (2), augmented by lags and leads of the �rst di¤erence of the regressor; that is,

yt = �xt +

p�1X
i=1


i�xt�i +
t�1X
j=1

dj�xt+j + vt:

This model provides a direct way to estimate the co-integrating relationship and asymptotically

leads to valid test statistics. When there are no feedbacks from the co-integration error to the

error that drives the regressor, it is su¢ cient to augment the co-integration estimator (2) only

by lags of �xt. Any serial correlation of vt does not raise any serious problems in the estimation

of � and can be dealt with by consistently estimating the long-run variance of vt as proposed

by Newey and West (1987).

Fully Modi�ed Least Squares (FMLS): Phillips and Hansen (1990) employ semi-parametric
corrections for the long-run correlation and endogeneity e¤ects, which fully modify the OLS esti-

mator and its attendant standard error, thus obtaining the so-called FMLS estimation method.

The FMLS estimator is based on consistent estimation of the 
 and � matrices, which in turn

requires the selection of a kernel and the determination of the bandwidth. We employ the

quadratic spectral kernel, since it is optimal with respect to an asymptotic truncated mean

square error criterion in the class of kernels that necessarily generate positive semi-de�nite esti-

mators of the long-run variance covariance matrix in �nite samples. The bandwidth parameter

has been selected by applying either the Newey-West (1994) or the Andrews (1991) procedure.

Moreover, we consider the �pre-whitened� version of FMLS which �lters the error vector but
prior to estimating 
 and � (see Andrews and Monahan, 1992; Christou and Pittis, 2002; and

Panopoulou and Pittis, 2004, for a discussion on the performance of the various versions of the

FMLS estimator).

Canonical Co-integrating Regression (CCR): Park�s (1992) CCR is closely related to

FMLS, but instead employs stationary transformations of the data to obtain least squares es-

timates to remove the long-run dependence between the co-integrating equation and stochastic

regressors innovations. As in FMLS, the �rst step in CCR is to obtain estimates of the inno-

vations ut and corresponding consistent estimates of the long-run covariance matrices 
 and

�. Similarly to FMLS, we consider the pre-whitened version of CCR and employ the quadratic

spectral kernel, while we apply either the Newey-West or the Andrews procedure for bandwidth

selection.

Johansen�s Maximum Likelihood (JOH): Apart from various single-equation estimators,

we also consider the system-based maximum likelihood estimator of �; suggested by Johansen
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(1988, 1991). The order of the JOH estimator corresponds to the lag-order of the VAR model

on which this estimator is based. An important di¤erence of this estimator from the other co-

integration estimators considered in this study is that it has been developed and proved to be

asymptotically optimal in the context of a Gaussian vector autoregression which accommodates

a rather narrow class of DGPs.

Augmented Autoregressive Distributed Lag (AADL(q,r,s)): This estimator is based
on the following ADL(q,r) model (see Pesaran and Shin, 1999):

yt =

qX
i=0

aixt�i +
rX
j=1

bjyt�j + �t:

The parameter of interest is equal to the long-run multiplier of yt with respect to xt. A direct

estimate of the parameter of interest � along with its standard error may be obtained by

transforming the ADL model into the Bewley form (see Bewley, 1979; Wickens and Breusch,

1988; Banerjee et al., 1993):

yt = �xt +

q�1X
i=1

ai�xt�i +
r�1X
j=1

bj�yt�j + �t:

Estimates of the coe¢ cients and their standard errors can be obtained by using the instrumental

variables (IV) estimator, with the original matrix of regressors being the IV (see Wickens and

Breusch, 1988). This means that the ADL estimator of � is very easy to apply since it involves

only IV estimation techniques. The AADL estimator is an extension of the ADL estimator

where leads of the regressor are added to the equation. Speci�cally, the AADL estimator of �

is calculated based on the following equation:

yt = �xt +

q�1X
i=1

ai�xt�i +
r�1X
j=1

bj�yt�j +
s�1X
h=1

ah�xt+h + �t:

AADL is required when there is Granger causality running from the co-integrating error to the

error that drives the regressor. In such a case, augmentation of the ADL model by the leads of

the regressor restores super-exogeneity and removes the second-order asymptotic biases, thus

rendering the AADL estimator asymptotically e¢ cient.
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Appendix D: Tests for parameter instability in the co-integrating equation
We employ Hansen�s (1992) tests for parameter instability in co-integrating regressions, which

can be derived as Langrange multiplier (LM) tests in correctly speci�ed likelihood problems.

The three tests, namely, Lc, MeanF, and SupF are all tests of the same null hypothesis but

di¤er in their choice of alternative. The null hypothesis is that the co-integrating vector is time-

invariant (constant), while the alternative is that parameters either follow a martingale process

(Lc, MeanF) or exhibit a single structural break at unknown time t (SupF). The tests are built

in the context of fully modi�ed estimation of the co-integrated regression. To save space, we do

not give details on the formulation of the tests. However, all tests tend to have power in similar

directions and can detect whether the proposed model is a good model that captures a stable

relationship. The asymptotic distribution of the test statistics is non-standard and depends on

the nature of trends in the co-integrating regression. Hansen (1992) provides both tabulated

critical values and function p-values that map the observed test statistic into the appropriate

value in the range of [0; 1] and more speci�cally into the range of interest [0; 0:20] :

Table D1 presents the stability tests for the parameters in the co-integrating regression

(Equation 1) for the countries under scrutiny. Test statistics are calculated on the basis of fully

modi�ed estimation with the covariance parameters estimated using the quadratic spectral

kernel and pre-whitened residuals with a VAR(1) model. The bandwidth is selected by means

of the Andrews (1991) procedure. P -values are calculated by the function p-value methodology

(see Hansen, 1992). A p-value of 0:20 suggests signi�cance at the > 0:20 level. The Gauss code

employed is available on the website of Professor Bruce E. Hansen.

Overall, our �ndings suggest that the co-integrating relationship between in�ation and in-

terest rates is stable. More speci�cally, on the grounds of the Lc test and a 5% signi�cance

level, we cannot reject the null of stability for all the countries at hand with the exception

of Austria. Similarly, the MeanF test points to stability of the co-integrating relationship for

the majority of the countries with the exception of Austria, Italy, Portugal, and Switzerland.

Turning to the SupF test, our results point to weaker evidence with respect to stability of the

co-integration vector, as the null is rejected for six countries, namely, Austria, Denmark, France,

Italy, Portugal, and Switzerland. A word of caution is in order here; rejection of the null does

not imply that the particular alternative that a test is designed to detect holds, as there are

many possibilities behind this outcome. Taking this and our stability test results into account,

we conjecture that our choice to model the co-integrating relationship as stable and allow for

time-varying dynamics in the error generating process is justi�ed by our long-run dataset.
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Table D1. Parameter stability tests

Country /Test Lc (p-val) MeanF (p-val) SupF (p-val)

Australia 0.098 (0.200) 1.673 (0.200) 4.312 (0.200)

Austria 15.061 (0.010) 94.276 (0.010) 191.814 (0.010)

Belgium 0.179 (0.200) 1.944 (0.200) 7.491 (0.200)

Canada 0.136 (0.200) 1.300 (0.200) 9.971 (0.156)

Denmark 0.126 (0.200) 3.982 (0.083) 16.955 (0.010)

France 0.236 (0.200) 2.979 (0.176) 7.704 (0.010)

Germany 0.275 (0.176) 1.863 (0.200) 3.688 (0.200)

Italy 0.222 (0.200) 8.425 (0.010) 19.765 (0.010)

Ireland 0.183 (0.200) 1.992 (0.200) 7.707 (0.200)

Japan 0.205 (0.200) 2.132 (0.200) 7.074 (0.200)

Luxembourg 0.145 (0.200) 1.352 (0.200) 6.681 (0.200)

Netherlands 0.294 (0.155) 1.781 (0.200) 6.107 (0.200)

New Zealand 0.091 (0.200) 1.295 (0.200) 4.223 (0.200)

Norway 0.203 (0.200) 2.665 (0.200) 8.971 (0.200)

Portugal 0.280 (0.170) 52.352 (0.010) 170.50 (0.010)

Sweden 0.088 (0.200) 1.690 (0.200) 11.316 (0.093)

Switzerland 0.393 (0.081) 6.215 (0.015) 25.930 (0.010)

UK 0.179 (0.200) 3.922 (0.085) 7.565 (0.200)

USA 0.244 (0.200) 3.150 (0.158) 10.394 (0.108)
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Appendix E: Sensitivity of co-integration tests to time-varying dynamics
We conduct a simple Monte Carlo experiment to investigate the behaviour of the trace sta-

tistic and the maximum-eigenvalue statistic developed by Johansen (1988, 1991) and Johansen

and Juselius (1990) in the context of DGPs with time-varying dynamics. We �rst examine var-

ious DGPs with a break in the co-integrating parameter, while the error of the co-integrating

equation and the error that drives the regressor follow a VAR(1) process. We consider four

di¤erent pairs of values for �, taken randomly from the real data estimations of Haug et al.

(2011). The cases considered range from DGPs with a small change in � to DGPs with rather

large changes in the value of �. We assume that the break in � happens at rT where T is the

sample size and r = 0:3, 0:5, and 0:7. We use 2000 replications and we consider sample sizes of

T + 50 observations with T equal to 50, 150, and 200. In all cases, the �rst 50 observations are

discarded to eliminate the e¤ect of initial values. Panel A of Table E1 reports the percentage of

times each co-integration test suggests the existence of co-integration. In general, both statistics

behave in a similar manner. They both rarely indicate the existence of co-integration especially

for large breaks in the value of �. For example, when � increases from 0.69 to 1.64, the trace

statistic �nds co-integration in less than 18% of the cases (in most cases, this �gure is below

10%) for all sample sizes and all values of r considered in our simulation. It is interesting to

note that as r increases, both co-integration tests indicate the existence of co-integration less

often. In all the cases reported in Panel A of Table E1, � increases after the break-point. For

completeness, we also considered the opposite case. The results are not reported for brevity,

since they are qualitatively similar.

We next repeat the same procedure in the context of DGPs with a constant � and time-

varying dynamics in the error terms. To be more speci�c, we consider DGPs 1-3 and 7-9 from

our �rst Monte Carlo experiment described in Section 2.4. Once again, 2000 random samples of

size T+50 are generated for each DGP, where T = 50, 150, and 200, and the �rst 50 observations

are discarded to remove the e¤ect of initial values. The results are reported in Panel B of Table

E1. It turns out that the power of both co-integration tests increases substantially, especially

for large sample sizes. When T = 150 or 200, both tests indicate the existence of co-integration

in more than 80% of the cases for almost all speci�cations. In summary, our �ndings suggest

that the existence of a break in the co-integrating parameter � makes both co-integration tests

frequently reject co-integration, especially when the break in � is large. On the other hand,

in the context of DGPs considered in this study (i.e. DGPs with constant � and time-varying

dynamics in the process that describes the co-integrating error and the error that drives the

regressor), co-integration tests have signi�cant power in �nding co-integration. We should note

however that our simulation experiment is not extensive and, similarly to all Monte Carlo

experiments, the �ndings apply to the DGPs and sample sizes considered in the analysis.
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Table E1. Co-integration tests and time-varying dynamics

Panel A: DGPs with a break in the co-integration parameter �

T=50 Breakpoint=0.3 Breakpoint=0.5 Breakpoint=0.7

�1 �2 Trace Max-Eig. Trace Max-Eig. Trace Max-Eig.

0.940 1.270 0.328 0.351 0.280 0.305 0.257 0.302

0.630 1.350 0.169 0.184 0.121 0.152 0.125 0.160

0.690 1.640 0.177 0.181 0.104 0.121 0.090 0.112

0.930 2.150 0.135 0.149 0.082 0.105 0.086 0.114

T=150 Breakpoint=0.3 Breakpoint=0.5 Breakpoint=0.7

�1 �2 Trace Max-Eig. Trace Max-Eig. Trace Max-Eig.

0.940 1.270 0.535 0.549 0.395 0.436 0.353 0.399

0.630 1.350 0.224 0.227 0.107 0.135 0.104 0.129

0.690 1.640 0.156 0.160 0.066 0.076 0.076 0.088

0.930 2.150 0.129 0.139 0.062 0.076 0.054 0.066

T=200 Breakpoint=0.3 Breakpoint=0.5 Breakpoint=0.7

�1 �2 Trace Max-Eig. Trace Max-Eig. Trace Max-Eig.

0.940 1.270 0.572 0.597 0.412 0.456 0.371 0.401

0.630 1.350 0.235 0.259 0.119 0.147 0.108 0.131

0.690 1.640 0.179 0.188 0.070 0.089 0.074 0.097

0.930 2.150 0.128 0.145 0.055 0.069 0.055 0.068

Panel B: DGPs with constant � and time-varying dynamics in the errors

T=50 T=150 T=200

Trace Max-Eig. Trace Max-Eig. Trace Max-Eig.

DGP-1 0.700 0.730 0.927 0.933 0.947 0.947

DGP-2 0.805 0.828 0.947 0.949 0.949 0.949

DGP-3 0.327 0.341 0.677 0.722 0.891 0.913

DGP-7 0.554 0.578 0.803 0.825 0.907 0.915

DGP-8 0.376 0.397 0.693 0.731 0.884 0.902

DGP-9 0.557 0.572 0.800 0.827 0.915 0.923
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