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Synthesis of 8-Heteroaryl-2′-deoxyguanosine Derivatives

Gerard Hobley, Vladimir Gubala1, María del C. Rivera-Sánchez, and José M. Rivera
Department of Chemistry, College of Natural Sciences, University of Puerto Rico, Río Piedras
Campus, San Juan, Puerto Rico, PR-00931

Abstract
We describe the synthesis of 8-heteroaromatic-2′-deoxyguanosine analogues using Suzuki-Miyaura
or Stille conditions. Unprotected and protected 8-bromo-2′-deoxyguanosine was coupled with
commercially available heteroarylboronic acids or the trialkyltin derivatives of 2-pyridylbromides
either with or without microwave irradiation in good yields.
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The development of efficient strategies for the synthesis of nucleoside analogues is of great
importance due to their potential uses in biological applications. For example, many nucleoside
analogues have found uses as antibiotics and antivirals,1 as probes for nucleic acid
structure2 and as chain terminators for DNA sequencing.3 Our main interest is in guanine and
its derivatives, which arises from the fact that they can self-associate to form macrocyclic,
planar tetramers known as G-tetrads. These further associate through π-stacking interactions
to form G-quadruplexes (GQs). These GQs can be formed from individual guanine subunits
or from G-rich oligonucleotides that fold up into a variety of quadruplex structures.4 The cation
templated self-assembly of guanosines into G-quadruplexes has been recognized since the
1960’s.5 More recent studies of G-quadruplex formation have been in diverse areas such as
cancer research and nanotechnology.4,6 We have demonstrated the aggregation of 8-
aromatic-2′-deoxyguanosine analogues in organic solvents7 and have shown their selective
binding of cations in some cases.8 We are particularly interested in the synthesis of 8-
heteroaromatic-2′-deoxyguanosine (8-(HetAr)dG) derivatives. Heteroatoms and functional
groups in the heteroaryl moieties can be used to increase the number of H-bonds. We have
shown that functional groups within an 8-phenyl ring can lead to supramolecular complexes
with higher stability.7

Since Shaughnessy’s method9 of using the easily prepared 8-bromo-2′-deoxyguanosine (8-
BrdG)10 and commercially available boronic acids had proven successful in the synthesis of
8-aromatic-2′-deoxyguanosine analogues (8-ArdG),7 we decided to apply it to the synthesis
of 8-(HetAr)dG targets. However, although the method is useful in the coupling of a variety
of heterocycles vide infra, we quickly realized that we needed to use a different method to
couple the 2-pyridyl moiety. Because of the expense, reported instability11and relative scarcity
of commercially available, functionalized 2-pyridyl boronic acids we decided to use Stille
conditions as an alternative method.12 This is not without precedent since the Stille
methodology has been used for 2-pyridylstannane couplings to various aromatic skeletons13
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including a number of purine analogues.14 Nonetheless, to the best of our knowledge it has
never been used to make 8-(HetAr)dG derivatives. In our hands, when we tried to couple
heteroaromatics to 3′, 5′-isobutyric ester of 8-bromo-2′-deoxyguanosine (3′,5′-i-Bu-8-BrdG)
using heteroaromatic tin compounds, tetrakistriphenylphosphinepalladium in refluxing
toluene,14f the sole reaction product was that derived from replacement of the bromide in the
substrate with a hydrogen atom. Under these conditions the reaction is extremely sluggish and
on this substrate dehalogenation/ hydrogenation ensues. Recently the coupling of
heteroaromatics to various guanine analogues has been reported using Stille conditions:
refluxing in xylene at 150 °C, tetrakistriphenyl phosphinepalladium and triphenylbismuth as
a co-ligand.14a However this work which parallels ours does not try the coupling reaction on
3′,5′-i-Bu-8-BrdG.

Herein we report two convenient methods for the direct functionalization of the C-8 position
of 2′-deoxyguanosine with heteroaromatic substituents either on 8-BrdG using commercially
available boronic acids (Suzuki-Miyaura conditions) or via 2-pyridylstannanes and (Stille
conditions) upon 3′,5′-i-Bu-8-BrdG. The Stille reaction on this substrate is accompanied by
a competitive side reaction, which by taking measures to increase the rate of Stille Coupling,
can be significantly reduced. The methodology presented not only allows us to make a series
of target molecules which we believe will have novel supramolecular properties but it should
also be useful to others who wish to functionalise the C-8 position of guanine and its analogues.

Boronic acids (1a, b and c) were found to couple efficiently to 8-BrdG using the Shaughnessy
method (Scheme 1, Table 1, Entries 1, 2 and 3) to yield the 8-(HetAr)dG derivatives 2a, b and
c.15 It was found however that the coupling reaction was very inefficient with the boronic acids
1d, e, f. Since it has been reported that Suzuki couplings can be extremely efficient under
microwave irradiation,16 we modified the methodology by treating 8-BrdG with boronic acids
(1d, e, f) in aqueous acetonitrile/DMF mixtures under microwave irradiation, obtaining the 8-
(HetAr)dG products (2d, e, f, entries 4, 5, 6).17 As shown in Scheme 1, these 8-(HetAr)dG
compounds were converted to their isobutyric esters18 (3a-f) for future studies of their self-
assembly in organic solvents.

We next turned our attention to the synthesis of target molecule 4a (Scheme 2). The starting
secondary alcohol was protected as the benzyl ether 5a. This was converted to the tributyltin
compound 6a in good yield. We applied a modification of the method reported by Brill and
Riva-Toniolo,14b where they describe the solid phase reaction of 8-bromo-2,6-diaminopurines
with various organostannanes. The initial coupling under homogeneous conditions used DMF
as the solvent, copper(II)oxide as additive and much less of the ligand,
bisdiphenylphosphinopropane (DPPP). We found that the reaction gave a mixture of the
debrominated 7 and coupled product 4a in a 1:1 ratio (entry 2, Table 2). Furthermore, 4a turned
out to be a 1:1 mixture of diastereoisomers as determined by proton and carbon NMR,
indicating no diastereoselectivity.

However, upon changing the additive to Cu(I)oxide14b and the equivalents of additive to two,
we observed a significant improvement in the overall rate of the reaction and on the ratio of
the two products (7:4a, Entry 3). Changing the ligand to triphenylarsine, which has weak
donicity, led to improved yields of 4a (Entry 4) with further improvement by changing the
solvent to N-methylpyrrolidinone (NMP) (Entry 5). The overall optimal combination of ligand
and solvent was DPPP with NMP (Entry 6). Under these conditions reducing the amount of
additive (Cu(I)O), reduction in the initial amount of tin compound added or increasing the
concentration of ligand (DPPP) had adverse effects on the rate of formation of the required
product (data not shown). These results are in accord with those of other groups, who have
sought to increase the rate of the Stille coupling reaction.14b-e,12b
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These results encouraged us to attempt the synthesis of more challenging 8-(2Py)dG targets.
The protected bromopyridines (5b-d) were converted to the tributyltin derivatives (6b-d). Each
of these was coupled to 3′,5′-i-Bu-8-BrdG as outlined in Table 2 (Entries 7-9).19 As can be
seen the coupling reaction proceeds with moderate to good yields in all cases.

We have applied a set of conditions that make the rate of the Stille coupling reaction competitive
to a problematic side reaction, obtaining reasonable yields of the target molecules. Using this
method or the previously reported Suzuki-Miyaura conditions and a modification of these, we
are now able to synthesize a library of 8-(HetAr)dG derivatives. We expect that these
methodologies should also be useful to others who wish to attach functional groups to the C-8
position of purines.
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this was added 2:1:1, water: MeCN: DMF. The corresponding boronic acid (0.5 equiv of 1d) was
added and the mixture irradiated with microwaves at 100 W, 120 °C with constant cooling for 5
minutes. The addition of the boronic acid and microwave irradiation was repeated until TLC
revealed that the starting material was consumed. The reaction mixture was then poured into water
(25 ml) and pH was adjusted to 6-7 (0.1 M HCl). The precipitate formed was stirred at 0 °C for
another 30 minutes, filtered and dried en vacuo to give compound 2d as a solid (2d) (88.2 mg, 265
μmol, 77 %). 1H NMR (500 MHz, DMSO-d6): δ 10.81 (s, 1H), 7.75 (d, J= 6 Hz, 1H), 7.50 (d, J=
4 Hz, 1H), 7.22 (dd, J= 5, 4 Hz, 1H), 6.47 (s, 2H), 6.27 (t, J= 8 Hz, 1H), 5.20 (d, J= 5 Hz, 1H), 4.96
(t, J= 5 Hz, 1H), 4.39 (d, J= 3 Hz, 1H), 3.83 (t, J= 3 Hz, 1H), 3.64 (m, 1H), 3.54 (m, 1H), 3.33 (m,
1H), 2.09 (m, 1H). 13C NMR (125 MHz, DMSO-d6): δ 156.9, 153.8, 153.0, 141.4, 140.1, 139.8,
132.9, 126.0, 125.3, 125.0, 122.7, 117.8, 88.3, 84.6, 71.2, 62.1, 31.1. IR (neat)/cm-1 1687, 1612,
1437, 999. (2e) (98.8 mg, 283 μmol, 82 %). 1H NMR (500 MHz, DMSO-d6): δ 11.11 (s, 1H), 7.92
(s, 1H), 6.96 (d, J= 4 Hz, 1H), 6.70 (dd, J= 3, 2 Hz, 1H), 6.56 (s, 2H), 6.38 (t, J= 7 Hz, 1H), 5.21
(d, J= 4 Hz, 1H), 5.10 (br s, 1H), 4.40 (br s, 1H), 3.81 (t, J= 3 Hz, 1H), 3.64 (m, 1H), 3.51 (m, 1H),
3.18 (m, 1H), 2.10 (m, 1H). 13C NMR (125 MHz, DMSO-d6): δ 152.4, 145.0, 144.9, 138.2, 120.4,
118.2, 116.8, 112.6, 111.5, 88.6, 85.3, 71.9, 62.9, 37.8. IR (neat)/cm-1 1688, 1619, 1527, 1446,
1379, 951. (2f) Grey solid (45 mg, 135 μmol, 94 %). 1H NMR (500 MHz, DMSO-d6): δ 10.76 (br
s, 1H), 8.17 (s, 1H), 7.86 (t, J =1 Hz, 1H), 6.87 (br d, J=1 Hz, 1H), 6.43 (br s, 2H), 6.17 (t, 1H),
5.22 (d, 1H), 5.00 (t, 1H), 4.40 (br dt, J= 3 Hz, 1H), 3.81 (m, 1H), 3.64 (m, 1H), 3.55 (m, 1H), 3.22
(q, J= 7 Hz, 1H), 2.09 (ddd, J= 7, 3 Hz, 1H). 13C NMR (125 MHz, DMSO-d6): δ 157.3, 153.6,
152.6, 144.6, 143.3, 140.9, 117.6, 117.0, 111.6, 88.4, 84.7, 71.4, 62.5, 37.2. IR (KBr/cm-1): 3341,
3143, 2919, 1678, 1568, 877.

(18). Esterifications were performed according to the procedures outlined in Reference 7. (3a) (63.0 mg,
129 μmol, 89 %). MP 126 °C. 1H NMR (500 MHz; DMSO-d6); δ 11.0 (br s, 1H), 8.88 (d, J= 2 Hz,
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1H,), 8.74 (dd, J= 5, 1 Hz), 8.10 (d, J= 8 Hz, 1H), 7.68 (dd, J= 5, 8 Hz), 6.61 (s, 2H), 6.13 (t, J= 7
Hz, 1H), 5.50 (q, J= 3 Hz, 1H), 4.45 (dd, J= 11, 5 Hz, 1H), 4.30 (dd, J= 11, 7 Hz, 1H), 4.20 (m,
1H), 3.57 (q, J= 7 Hz, 1H), 2.57 (m, 2H), 2.44 (q, J= 5 Hz, 1H), 1.12 (d, J= 2 Hz, 1H) 1.10 (s, 6H),
1.08 (s, 3H). 13CNMR (125 MHz; DMSO-d6); δ 176.0, 175.7, 156.7, 153.3, 152.1. 150.2, 139.3,
144.2, 136.5, 126.3, 123.6, 117.4, 84.72, 81.8, 74.7, 63.5, 34.0, 33.1, 33.0, 18.71, 18.68, 18.60,
18.59. IR (neat)/cm-1 1727, 1689, 1627, 1150. Anal. Calcd. for: C23H28N6O6 (C 57.02, H 5.82, N
17.35); found (C 54.86, H 5.99, N 15.51). (3b) (128 mg, 237 μmol, 91 %). MP 201 °C. 1H NMR
(500 MHz, DMSO-d6): δ 10.83 (s, 1H), 8.01 (m, 1H), 7.93 (m, 2H), 7.42 (m, 2H), 6.54 (s, 2H),
6.41 (t, J= 7 Hz, 1H), 5.00 (t, J= 6 Hz, 1H), 4.42 (m, 1H), 3.68 (m, 1H), 3.57 (m, 1H), 3.23 (m, 1H),
2.53 (m, 2H), 2.09 (m, 1H), 1.10 (m, 6H), 1.05 (m, 6H). 13C NMR (125 MHz, DMSO-d6): δ 206.9,
175.8, 175.6, 156.9, 153.7, 153.0, 141.4, 140.1, 139.8, 132.9, 126.0, 125.3, 125.0, 122.7, 117.8,
88.3, 84.6, 71.2, 62.1, 37.2, 31.1, 18.5, 18.4. IR (neat)/cm-1 1734, 1683, 1635, 1597, 1190, 1156.
Anal. Calcd. for: C26H29N5O6S (C 57.87, H 5.42, N 12.96); found (C 58.03, H 5.67, N 12.59).
(3c) Yellow solid (133.8 mg, 256 μmol, 65 %). 1H NMR (500 MHz, DMSO-d6): δ 11.04 (br s, 1H),
7.78 (d, J= 7 Hz, 1H), 7.69 (d, J= 8 Hz, 1H), 7.44 (br s, 1H), 7.43 (br t, J= 8 Hz, 1H), 7.36 (t, J=7
Hz, 1H), 6.66 (br s, 2H), 6.65 (m, 1H), 5.56 (br d, 1H), 4.45 (br d, 1H), 4.28 (br d, 1H), 4.24 (m,
1H), 3.58 (br quin, 1H), 2.61 (br quin, J=7 Hz, 1H), 2.50 (m, 1H), 2.47 (m, 1H), 1.14 (d, J= 7 Hz,
1H), 1.05 (d, 1H). 13C NMR (125 MHz, DMSO-d6): δ 176.8, 176.5, 157.8, 155.0, 154.5, 152.8,
146.6, 138.1, 128.3, 126.42, 124.41, 122.6, 118.5, 112.0, 108.5, 85.3, 82.5, 75.3, 64.3, 35.2, 33.9,
33.8, 19.3, 19.3. IR (KBr/cm-1): 3308, 3138, 2973, 2935, 2877, 1737, 1687, 1570, 1258, 751.
(3d) (113 mg, 231 μmol, 89 %). MP 134 °C. 1H NMR (500 MHz, DMSO-d6): δ 10.85 (s, 1H), 7.76
(d, J= 5 Hz, 1H), 7.48 (d, J= 5 Hz, 1H), 7.10 (dd, J= 5, 4 1H), 6.53 (s, 2H), 6.32 (t, J= 7 Hz, 1H),
5.50 (m, 1H), 4.32 (m, 1H), 4.30 (m, 1H), 4.20 (m, 1H), 3.64 (m, 1H), 2.57 (m, 2H), 2.43 (m, 1H),
1.11 (m, 6H), 1.05 (m, 6H). 13C NMR (125 MHz, DMSO-d6): δ 176.6, 176.4, 157.1, 153.8, 152.7,
141.9, 132.5, 129.4, 128.7, 128.5, 117.7, 85.3, 82.5, 75.4, 64.1, 34.5, 33.7, 19.3. IR (neat)/cm-1

1733, 1672, 1593, 1152. Anal. Calcd. for: C22H27N5O6S (C 53.98, H 5.56, N 14.31); found (C
53.84, H 6.01, N 14.27). (3e) (111 mg, 234 μmol, 90 %). MP 167 °C. 1H NMR (500 MHz, DMSO-
d6): δ 10.88 (s, 1H), 7.90 (d, J= 5 Hz, 1H), 6.96 (d, J= 5 Hz, 1H), 6.69 (dd, J= 5, 4 Hz, 1H), 6.54
(s, 2H), 6.44 (t, J= 7 Hz, 1H), 5.46 (m, 1H), 4.40 (m, 1H), 4.22 (m, 1H), 4.16 (m, 1H), 3.50 (m,
1H), 2.57 (m, 2H), 2.41 (m, 1H), 1.12 (m, 6H), 1.03 (m, 6H). 13C NMR (125 MHz, DMSO-d6):
δ 176.6, 176.3, 157.1, 153.9, 152.3, 145.1, 144.7, 138.4, 117.9, 112.9, 112.5, 85.1, 82.3, 75.3, 64.3,
35.0, 33.7, 19.3. IR (neat/cm-1): 1732, 1681, 1153, 1077, 764. Anal. Calcd. for: C22H27N5O7 (C
55.81, H 5.75, N 14.79); found (C 55.44, H 6.02, N 14.67). (3f) Yellow solid (228 mg, 481 μmol,
80 %). 1H NMR (500 MHz, DMSO-d6): δ 10.83 (br s, 1H), 8.14 (s, 1H), 7.87 (t, J= 1 Hz, 1H), 6.88
(d, J= 1 Hz, 1H), 6.50 (br s, 2H), 6.22 (t, 1H), 5.49 (quin, J= 7, 4 Hz, 1H), 4.40 (m, 1H), 4.24 (m,
1H), 4.19 (br ddd, J=7 Hz, 1H), 3.61 (quin, J=7 Hz, 1H), 2.59 (quin, J= 7 Hz, 1H), 2.52 (br quin,
J= 7 Hz, 1H), 2.43 (ddd, J= 7, 4 Hz, 1H), 1.12 (dd, J= 7 Hz, 1H), 1.05 (dd, J=7 Hz, 1H). 13C NMR
(125 MHz, DMSO-d6): δ 176.4, 176.2, 157.0, 153.5, 152.3, 144.6, 142.7, 140.8, 117.5, 116.7, 111.3,
84.8, 82.1, 75.1, 64.0, 34.4, 33.6, 33.6, 19.2, 19.2, 19.1, 19.1. IR (KBr/cm-1): 1738, 1687, 1596,
1254, 875.

(19). General procedure for a Stille Coupling using the synthesis of compound 4a as an example. 3′,5′-
i-Bu-8-BrdG (50.0 mg, 103 μmol), DPPP (6.35 mg, 15.4 μmol), Pd(OAc)2 (3.45 mg, 15.4 μmol),
Cu2O (29.5 mg, 206 μmol) and NMP (490 μL) were mixed. After this, compound 6a (115 mg, 206
μmol) was added to the mixture. The mixture was heated to 115 °C for 1 hour after which HPLC
analysis of the crude reaction mixture showed that the starting material was consumed. Therefore,
the mixture was filtered through celite and the solvents removed under reduced pressure. The
product was isolated by column chromatography (50 % EtOAc in Et2O) yielding 4a as a white solid
(47.0 mg, 75.9 μmol, 74 %). MP 169 °C. 1H NMR (500 MHz; DMSO-d6); δ 10.89 (s, 1H), 8.02
(m, 2H), 7.58 (m, 2H), 7.36 (m, 4H), 7.30 (m, 1H), 6.54 (s, 2H), 5.46 (m, 1H), 4.67 (q, J= 7 Hz,
1H), 4.53 (s, 1H), 4.51 (s, 1H), 4.47 (m, 1H), 4.31 (m, 1H), 4.06 (m, 1H), 3.59 (m, 1H), 2.50 (m,
2H), 2.34 (m, 1H), 1.53 and 1.51 (d, J= 7 Hz, 3H), 1.15-1.06 (m, 12H). 13C NMR (125 MHz;
DMSO-d6); δ 176.0, 175.5, 161.27, 156.6, 153.2, 152.7, 149.0, 143.7, 143.6, 138.4, 138.1, 128.19,
128.17, 127.39, 127.36, 122.3, 120.1, 117.3, 85.4, 81.4, 77.3, 74.9, 70.1, 63.6, 33.9, 33.1, 21.4,
21.3, 18.7, 18.6, 18.5. IR (neat)/cm-1 1732, 1690, 1631, 1587, 1156. Anal. Calcd. for:
C32H38N6O7 (C 62.12, H 6.19, N 13.58); found (C 60.88, H 6.15, N 12.98). (4b) White solid (253
mg, 398 μmol, 80 %). MP 209 °C. 1H NMR (500 MHz; DMSO-d6); δ 10.89 (s, 1H), 8.01 (m, 2H),
7.55 (m, 2H), 7.28 (d, J= 8 Hz, 2H), 6.91 (d, J= 8 Hz, 2H), 6.54 (s, 2H), 5.45 (m, 1H), 4.64 (m,
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1H), 4.48 (m, 1H), 4.45 (d, J= 14 Hz, 1H), 4.43 (d, J= 14 Hz, 1H), 4.07 (m, 1H), 3.58 (m, 1H), 2.35
(m, 1H), 1.49 (t, J= 6 Hz, 3H), 1.09 (d, J= 7 Hz, 6H), 1.07 (d, J= 7 Hz, 6H). 13C NMR (125 MHz;
DMSO-d6); δ 176.0, 175.6, 161.4, 158.7, 156.6, 153.2, 149.0, 143.6, 138.2, 130.3, 129.09, 129.07,
122.3, 120.1, 117.4, 113.59, 113.57, 85.4, 81.4, 76.94, 76.90, 74.9, 69.7, 63.7, 55.0, 48.4, 33.9,
33.1, 30.1, 29.0, 21.4, 21.3, 18.6, 18.53, 18.49, 17.2. IR (neat)/cm-1 1724, 1681, 1635, 1566, 1153,
817. Anal. Calcd. for: C33H40N6O8 (C 61.10, H 6.22, N 12.96); found (C 60.61, H 6.20, N 12.88).
(4c) White solid (192 mg, 302 μmol, 60 %). MP 182 °C. 1H NMR (500 MHz; DMSO-d6); δ 10.91
(s, 1H), 8.00 (m, 2H), 7.54 (m, 2H), 7.33 (d, J= 8 Hz, 2H), 6.93 (d, J= 8 Hz, 2H), 6.57 (s, 2H), 5.50
(m, 1H), 4.65 (s, 2H), 4.58 (s, 2H), 4.88 (dd, J= 12, 6 Hz, 1H), 4.29 (dd, J= 12, 7 Hz, 1H), 4.09 (m,
1H), 3.76 (s, 3H), 3.50 (m, 1H), 2.52 (m, 2H), 2.35 (m, 1H), 1.10 (d, J= 7 Hz, 6H) 1.07 (d, J= 7 Hz,
6H). 13C NMR (125 MHz; DMSO-d6); δ 176.0, 175.5, 158.8, 157.3, 156.7, 153.3, 152.7, 149.1,
143.5, 138.1, 130.0, 129.2, 122.4, 121.1, 117.3, 113.7, 85.1, 81.4, 74.8, 71.9, 71.6, 63.8, 55.0, 34.4,
33.12, 33.09, 18.7, 18.6. IR (neat)/cm-1 1734, 1691, 1629, 1588, 1571, 1249. Anal. Calcd. for:
C32H38N6O8 (C 60.56, H 6.03, N 13.24); found (C 60.65, H 6.00, N 13.12). (4d) White solid (187
mg, 305 μmol, 61 %). MP 193 °C. 1H NMR (500 MHz; DMSO-d6); δ 10.88 (s, 1H), 7.99 (m, 2H),
7.56 (t, J= 7 Hz, 1H), 7.47 (d, J= 7 Hz, 1H), 6.55 (br s, 2H), 5.50 (m, 1H), 4.59 (s, 1H), 4.47 (dd,
J= 12, 6 Hz, 1H), 4.26 (dd, J= 12, 7 Hz, 1H), 4.09 (m, 1H), 3.66 (t, J= 8 Hz, 2H), 3.49 (m, 1H),
2.60 (m, 1H), 2.52 (m, 1H), 2.37 (m, 1H), 1.14 (dd, J= 7, 3 Hz, 6H), 1.06 (d, J= 7 Hz, 6H), 0.99 (t,
J= 8 Hz, 2H), 0.03 (s, 9H). 13C NMR (125 MHz; DMSO-d6); δ 175.9, 175.5, 157.6, 156.6, 153.3,
152.7, 148.9, 143.5, 138.0, 122.2, 120.6, 117.3, 85.1, 81.4, 74.8, 72.4, 67.6, 63.8, 34.5, 33.2, 33.1,
18.69, 18.65, 17.7, -1.30. IR (neat)/cm-1 1731, 1671, 1564, 1460, 1189. Anal. Calcd. for:
C29H42N6O7Si (C 56.66, H 6.89, N 13.67); found (C 56.59, H 6.89, N 12.85).
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Scheme 1.
Synthesis of 8-(HetAr)dG derivatives.
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Scheme 2.
Synthesis of 3′,5′-i-Bu-8-(2Py)dG analogues.
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Table 1

Results for the synthesis of 8-(HetAr)dG derivatives from commercially available boronic acids and 8-BrdG

Entry Boronic acid Product/yielda) Ester/yielda)

1 1a i 2a/ 79% 3a/ 89 %

2 1b i 2b/ 88 % 3b/ 91 %

3 1c i 2c/ 81 % 3c/ 65 %

4 1d ii 2d/ 77 % 3d/ 89 %

5 1e ii 2e/ 82 % 3e/ 90 %

6 1f ii 2f/ 94 % 3f/ 80 %

Conditions (i) and (ii) see Scheme 1

a)
isolated yield.
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Table 2

Coupling of 2-pyridyl stannanes to 3′, 5′-i-Bu-8-BrdG under various conditions

Entry(e) Tin
compound(a)

Additive/
Equiv

Reaction
time (h)

Ligand/
equiv(b)

1 6a None 3.5 DPPP/ 0.66

2 6a CuO/ 1 14 DPPP/ 0.66

3 6a Cu2O/ 2 1 DPPP/ 1

4 6a Cu2O/ 2 1 AsPh3 / 2

5 6a Cu2O/ 2 1 AsPh3 / 2

6 6a Cu2O/ 2 1 DPPP/ 1

7 6b Cu2O/ 2 1 DPPP/ 1

8 6c Cu2O/ 2 1 DPPP/ 1

9 6d Cu2O/ 2 1 DPPP/ 1

Entry(e) Solvent % Conv.(c) Ratio 7:4a Yield

1 DMF 33 1.2: 1(c) Nd

2 DMF Nd 1: 1(d) 4a/ 39 %(d)

3 DMF >98 1: 6.3(c) 4a/ 70 %(c)

4 DMF >98 1: 6.0(c) 4a/ 57 %(c)

5 NMP >98 1: 6.2(c) 4a/ 59 %(c)

6 NMP >98 1: 7.7(c) 4a/ 74 %(d)

7 NMP Nd Na 4b/ 80 %(d)

8 NMP Nd Na 4c/ 60 %(d)

9 NMP Nd Na 4d/ 61 %(d)

(a)
2.0 equivalents used in all cases

(b)
with respect to the palladium

(c)
Calculated by HPLC analysis of the crude reaction mixtures; (Nd) not done; (Na) not applicable

(d)
isolated yield

(e)
other conditions: 3′,5′-i-Bu-8-BrdG (50 mg in 490 μL of solvent), 15 mol % Pd(OAc)2, 115 °C.
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