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a b s t r a c t

Ultrathin poly(methyl methacrylate) PMMA films were prepared on gold substrates by spin coating

PMMA dissolved in toluene. By varying the concentration of PMMA, spin coating speed and curing

condition, we obtained very smooth and ultrathin PMMA films. The PMMA films were transformed into

highly reactive film containing carboxylic functionalities using UV/O3 irradiation. These films were

shown to remain stable and reactive for at least one week. We then demonstrated the application of the

UV/O3 treated PMMA films for the detection of microRNAs using a label-free detection method called

total internal reflection ellipsometry (TIRE). A limit of detection of 10 pM was established. The

technique proposed here is a simple and quick method for generating carboxylic functional films for

label-free bioanalytical detection techniques.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Poly(methyl methacrylate) (PMMA) is an attractive material for
the fabrication of low-cost micro-total analysis systems (m-TAS) since
it possesses excellent optical, thermal, chemical and biocompatible
properties (Brown et al., 2006; Castaño-Álvarez et al., 2005; Chen
et al., 2003; Galloway et al., 2002; Klank et al., 2002; Koesdjojo et al.,
2008; Lee et al., 2001; Muck et al., 2004; Yao et al., 2005). PMMA can
be used to fabricate microchips or microchannels either by injection
molding or hot embossing/imprinting (Brown et al., 2006; Galloway
et al., 2002; Lee et al., 2001) or laser ablation (Cheng et al., 2004;
Klank et al., 2002; Yao et al., 2005). In addition, through appropriate
treatment of its surface, PMMA can be functionalised to enable the
covalent attachment of biomolecules for bioassay development
(Choi et al., 2010; Fixe et al., 2004; Kimura, 2006; Liu and Rauch,
2003; Nugen et al,. 2009; Situma et al., 2007; Situma et al., 2005;
Soper et al., 2005; Welle and Gottwald, 2002). The ability to integrate
ll rights reserved.
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both structure and chemical functionality on a single PMMA mono-
lithic device reduces its complexity resulting in substantial savings
during device fabrication (Nugen et al., 2009; Situma et al., 2005;
Soper et al., 2005; Wang et al., 2003).

Pristine PMMA is a relatively inert and hydrophobic material.
Consequently, without surface treatment, bio-recognition ele-
ments such as oligonucleotides and antibodies can only be non-
covalently adsorbed on the methyl ester surface, resulting in poor
device performance. Thus, surface treatment of PMMA is neces-
sary in order to generate reactive surfaces for the attachment of
biomolecules. Reactive functional groups are typically introduced
onto the surface of PMMA either by chemical or photophysical
modification routes. A popular procedure for the chemical func-
tionalization of PMMA involves amination in N-lithioethylenedia-
mine solution followed by addition of a homo bifunctional
cross-linker molecule such as glutaraldehyde to enable attach-
ment of aminated biomolecules and then capping of the
unreacted aldehyde functional groups with a reducing agent
(Fixe et al., 2004; Wang et al., 2003). Alternatively, NaOH can be
used to hydrolyze the methyl ester moieties of native PMMA to
produce carboxylic acids (Choi et al., 2010). The photophysical
modification of PMMA by UV/O3 treatment is also a very

www.elsevier.com/locate/bios
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attractive method for providing carboxylic functionality which
has been extensively used in fluorescence-based biomolecular
detection techniques (Liu and Rauch, 2003; Situma et al., 2007;
Situma et al., 2005; Soper et al., 2005; Tsao et al., 2007; Welle and
Gottwald, 2002). Once the carboxylic groups have been generated
on the PMMA surface, other chemical groups such as thiols or
amines can be further introduced (Ligaj et al., 2006; Wei et al.,
2005). However, UV/O3 oxidation is an aggressive surface activa-
tion method since ozone is directly photolyzed with UV light,
producing molecular oxygen and an oxygen atom which can
result in high background fluorescence of the polymer substrates.
Consequently, UV/O3 treatment is unsuitable for the generation of
substrates for fluorescence-based detection applications (Diaz-
Quijada et al., 2007; Gubala et al., 2010).

MicroRNAs (miRNAs) are small non-coding (� 22nt in length)
RNAs. miRNAs have been shown to play a role in many critical
biological processes and as a result have been extensively studied
for their role in disease. miRNAs have been found circulating in
the blood stream, in urine and saliva in a stable form (Dobbins
et al., 2008; Heneghan et al., 2010; Weber et al., 2010), opening
up the possibility of their use as minimally invasive biomarkers.
Their short length and the high level of sequence homology
between closely related miRNAs make them difficult to distin-
guish. In this work, we demonstrate the use of modified PMMA
thin films for the label-free detection of two closely related
miRNAs using a surface plasmon resonance (SPR)-based method
called total internal reflection ellipsometry (TIRE) (Fig. 1). To this
end, PMMA was spin coated onto a Au-coated glass slide. By
carefully controlling the concentration of PMMA, the spin speed
and the curing condition, we generated ultrathin and smooth
PMMA films which could be readily converted into a reactive
carboxylic film by UV/O3 treatment, enabling oligonucleotide
probe immobilization. We have successfully detected the target
miRNAs with the lowest detection concentration at 10 pM.

The technique demonstrated here is label-free, thus eliminating
the problems associated with using fluorescence based methods
when UV/O3 treatment is used. In addition, the surface chemistry
Fig. 1. Steps in preparation and experiment with PMMA thin films (a) PMMA spin-coat

(50% of 50 W power at 254 nm peak and 5% of 50 W power at 185 nm peak, treatment

ethylcarbondiimide hydrochloride (EDC) activation; (d) oligonucleotide hybridization a

(f) total internal reflection ellipsometry (TIRE) setup based on UVISEL spectroscopic el
approach presented here offers a simple way of generating reactive
surfaces for other label-free optical detection methods such as
surface plasmon resonance (SPR), dual-polarization interferometry
(DPI), quartz crystal microbalance (QCM) or microcantilever-based
biosensors by spin coating PMMA onto sensor surfaces.
2. Materials and methods

2.1. Materials

Poly(methyl methacrylate) (PMMA) sheets (0.25 mm thick, impact
modified, MW¼120,000) were supplied by Goodfellow Cambridge
Limited (Huntingdon, England). Gold-coated standard glass slides
(Ti/Au¼2 nm/30 nm, 26 mm�76 mm, 1 mm thick) were purchased
from PhasisSarl (Geneva, Switzerland). N-(3-dimethylaminopropyl)-
N0-ethylcarbodiimide hydrochloride (EDC) and toluene were pur-
chased from Sigma Aldrich (Arklow, Ireland). All chemicals were used
as received without further purification. 50 amino modified oligonu-
cleotide DNA probes (50-CGC-CAA-TAT-TTA-CGT-GCT-GCT-A-30) (miR-

16 probe, 22-mer) and synthetic oligonucleotide target RNAs (50-U-

AGC-AGC-ACG-UAA-AUA-UUG-GCG-30) (miR-16 target, 22-mer) and
(50-UAG-CAG-CAC-AGA-AAU-AUU-GGC-30) (miR-195 target, 21-mer)
were purchased from Eurofins MWG Operon (Ebersberg, Germany).

2.2. Preparation of PMMA thin films

A PMMA sheet was cut into small pieces and dissolved in
toluene at concentrations ranging from 0.1 to 0.5% w/v to make
the raw PMMA solution. The solution was sonicated for 15 min to
completely dissolve the PMMA pieces. The PMMA solution was
then filtered through a PTFE filter (pore size 0.2 mm) (Chroma-
filXtra PTFE-20/25 Macherey-Nagel, Duren, Germany) to elimi-
nate precipitates and dust particles. The PMMA solution was then
spin-coated onto the clean Au-coated glass slide at three spin
speeds (1000, 2000 and 3000 rpm) for 45 s. The acceleration and
deceleration to and from the desired spin speed took place in 5 s.
ing onto Au-coated glass slides; (b) PMMA thin films undergone UV/O3 treatment

time 8 min); (c) DNA probe immobilization with N-(3-dimethylaminopropyl)-N0-

ssays to detect microRNAs (e) PMMA flow-cell fabricated by CO2 laser machining;

lipsometry (Horiba Jobin Yvon).



N.C.H. Le et al. / Biosensors and Bioelectronics 36 (2012) 250–256252
Initially, a fast curing method was employed in which the PMMA
spin-coated Au-coated glass slide was cured in ambient air for 2 h
followed by 1h at 140 1C in an oven (Walsh and Franses 1999, 2003).
However, we found that this method resulted in very rough PMMA
surfaces due to the rapid evaporation of toluene leaving a wrinkled
PMMA film (Fig. 1S, supplementary information). We modified this
method by first curing at room temperature overnight and then in
an oven for 2 h at 80 1C. This method resulted in very smooth and
uniform PMMA films on Au-coated glass slides.

2.3. Modification of PMMA surface by UV/O3 treatment

UV/O3 treatment was performed using a commercial ozone
cleaning and activation system (PSD-UV, Novascan Technologies,
Ames, IA, USA). According to the manufacturer specifications, at
the 50 W power setting, approximately 50% of the total lamp
output power is delivered around the 254 nm peak and 5% around
the 185 nm peak. The optical power was kept constant but the
treatment time was varied. We found that an 8 min UV/O3

treatment was optimal for thin PMMA films spin-coated onto
the Au surfaces. When the treatment time is too short the
carboxylic functionality might not be generated sufficiently while
if the treatment time is too long, the thin PMMA film will be
etched away (data not shown).

2.4. Water contact angle

The wettability of the different surfaces was analyzed by measur-
ing the water contact angle (WCA) of the surfaces using the First Ten
Angstroms FTA200 (Portsmouth, VA, USA) contact angle analyzer.
High purity HPLC grade water (Sigma Aldrich, Arklow, Ireland) was
used for the measurement. The water contact angle of each surface
was measured three times at three different locations.

2.5. Atomic force microscopy

Surface morphology and roughness of Au coated, PMMA coated,
UV/O3 treated PMMA was measured with a Digital Instruments (DI)
BioScopeTM II (Veeco Instruments Inc., Plainview, NY, USA) atomic
force microscope (AFM) in tapping mode in air. Silicon cantilevers
with integrated tips (TESP, Veeco Probes, Camarillo, CA, USA) and
with resonant frequencies between 327 and 349 kHz, and with
E30 N/m spring constant were used for measurements. For each
surface, three locations with a surface area of 2�2 mm2 each were
imaged at a rate of 0.5 Hz and at a resolution of 512�512. Research
NanoScope 7.30 software (Veeco Instruments Inc., Plainview, NY,
USA) was used to analyze the data and estimate the RMS roughness.

2.6. Spectroscopic ellipsometry and total internal reflection

ellipsometry

The thicknesses of the PMMA films and the subsequently
treated PMMA films deposited on the Au substrate were mea-
sured by an UVISEL spectroscopic ellipsometer (JobinYvon Horiba,
France). Measurements were performed in external mode at angle
of incidence of 701 with wavelengths ranging from 350 to 800 nm
with a resolution of 5 nm. A three-layer model (BK7 glass, Au and
organic layer) was used in the fitting with PsiDelta 2 software
(JobinYvon Horiba, France) to obtain the thickness of the Au and
PMMA films from the measured C and D spectra. The C and
D values are defined as the ratio r of the reflection coefficients
Rp and Rs for components of light polarized parallel-p and
perpendicular-s to the plane of incidence, respectively, following
the ellipsometry equation (Azzam and Bashara, 1987). The refractive
indices of BK7, Au and organic layer (i.e. PMMA) are detailed
elsewhere (Le et al., 2010).
The total internal reflection ellipsometry (TIRE) experimental
setup was also based on the same UVISEL spectroscopic ellips-
ometer (JobinYvon Horiba, France) (Fig. 1(e–f)) (Le et al., 2010; Le
et al., 2011). The PMMA modified Au-coated sensing substrate
was first glued to a PMMA flow-cell. A BK7 prism was placed on
top of the sensing substrate with a layer of refractive index
matching oil and secured by Scotchs tape. A syringe pump
(Harvard Apparatus, Boston, USA) was connected to the outlet
of one microwell of the flow-cell through silicone tubing and a
PDMS connector for conducting one assay at a time. The flow rate
from the pump was controlled to 1–2 ml/min. Two modes of
measurements were carried out with TIRE: spectral and kinetic
measurement, which also recordedC and D values (Nabok et al.,
2007; Nabok et al., 2009; Poksinski and Arwin, 2004). In the
spectral mode, the angle of incidence was approximately 68.31
and the wavelength was scanned over the range between 450 nm
and 1100 nm. The integration time was 100 ms and the spectral
resolution was 2 nm. After a set of C and D spectra were
recorded, the kinetic mode was switched on at the same incident
angle and at a fixed wavelength, i.e. around 2–3 nm shift from the
surface plasmon resonance (SPR) wavelength obtained from
the firstC spectrum, to detect maximal change in either C or
D during the introduction of the analyte. The integration time and
interval in kinetic mode were set at 100 ms and 100 ms, respec-
tively. Even though the kinetic mode could not provide quantita-
tive information about the thickness of the bound biomolecule
layer, it helps to monitor the reactions in the microwells.

The miRNA hybridization assay was conducted in a fresh micro-
well after the baseline C and D spectra of the UV/O3 treated PMMA
surface in 2-(N-morpholino)ethanesulfonic acid (MES, pH 6.5) buffer
were recorded. 80 ml of aminated miR-16probe at a concentration of
1 mM in 100 mM EDC in MES buffer (pH 6.5) was then pumped into
the microwell and allowed to react for 60 min with a continuous
flow rate of 1.3 ml/min. A second set of C and D spectra, which
corresponded to the immobilization of miR-16 probe, was measured
after the microwell was rinsed with 80 ml of phosphate buffered
saline (PBS, pH 7.0). Next, 80 ml of complementary miR-16 target at
concentrations ranging from 1 pM to 1 mM in hybridization buffer
(150 mM NaCl, 150 mM saline-sodium citrate (SSC) buffer, pH 7.0)
was pumped into the microwell and also allowed to react for 60 min
before rinsing with another 80 ml of PBS buffer. A third set of C and
D spectra was then recorded corresponding to the hybridization of
the complementary miR-16 target to the capture miR-16 probe. A
fresh microwell was used every time a new assay was started. Two
control experiments were conducted. The first control experiment
was performed to assess the ability of the UV/O3 treated PMMA
surface to bind the aminated miR-16 probe in the absence of EDC.
The second control experiment investigated the specificity of the
capture miR-16 probe by using miR-195 target at a concentration of
1 mM in hybridization buffer.

PsiDelta 2 software (JobinYvon Horiba, France) was used for
fitting the data from the measured C and D spectra from TIRE. A
four-layer model similar to the model used in (Le et al. 2010; Le
et al. 2011; Nabok et al. 2007; Nabok et al. 2009; Poksinski and
Arwin 2004) was used in the fitting program to estimate the
thickness of oligonucleotide probe and target layers bound onto
the modified PMMA surfaces, subsequently.
3. Results and discussion

3.1. PMMA thin films preparation

The curing of PMMA films prepared on Au substrates
requires careful consideration to obtain the level of smooth-
ness and uniformity required for bioanalytical sensing using
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TIRE. The curing process consisted of two steps: (1) the as-
prepared PMMA films were first cured overnight in ambient
air in a closed chamber to prevent contamination, and (2) the
PMMA films were then cured in an oven at 80 1C for 2 h. With
this curing process, very thin, smooth and uniform PMMA
surfaces were achieved. The film thickness was measured by
ellipsometry and the film roughness was measured by AFM.
The affect of varying the spin speeds and concentrations of
PMMA is summarized in Table S1, supplementary information.
From this table, it can be seen that by varying spin speed and
(or) PMMA concentration, film thickness and roughness can be
controlled. Low speed and high concentration resulted in thick
films with high roughness while high speed and low concen-
tration resulted in thin films with low roughness. These data
are in good agreement with results reported previously on Si
substrates (Walsh and Franses 1999, 2003). Films prepared at
0.25% w/v PMMA and 2000 rpm were chosen for all further
experiments. This PMMA film was then subjected to UV/O3

treatment for 8 min to introduce carboxylic functionality.
After this treatment, the apparent thickness was reduced by
approximately 3 nm (Fig. 2(a)), as measured by ellipsometric
fitting, whilst the water contact angle was substantially
reduced to about 251 (Fig. 2(b)). The AFM results from bare
Au, PMMA coated Au and UV/O3 treated PMMA films are
summarized in Fig. 2(c–e) confirming that smooth and uni-
form films were obtained. The oxidized PMMA coated Au
slides were stored under vacuum until used.
Fig. 2. (a) Spectroscopic ellipsometry measurements on bare Au substrate, PMMA coate

ellipsometric fitting. Here, the thicknesses are the total thicknesses measured from th

coating and then UV/O3 treatment; tapping mode AFM images measured in air of surfac

RMS roughness¼0.2270.07 nm (e) UV/O3 treated PMMA, RMS roughness¼0.3270.03
3.2. Aging study of UV/O3 treated PMMA surface

In order to assess how long the oxidized film could be kept
whilst retaining its carboxylate reactivity, an aging study of the
UV/O3 treated surfaces stored in a vacuum desiccator was
performed. The results are summarized in Fig. 3. Changes in
water contact angle and the thicknesses of the immobilized
oligonucleotide layer after the reaction with constant concentra-
tion of 1 mM of miR-16 probe over a period of 8 day were
measured sequentially on five pairs of samples prepared on the
same day. We found that while the contact angles increased and
saturated after 4 day, the signal corresponding to the change in
the refractive index and hence to the amount of miR-16 probe

remained constant over the time period investigated. It is specu-
lated that the carboxylic groups are still abundant for the DNA
probe to bind to even though the water contact angle has
increased to around 401 which is still much lower than that of
pristine PMMA film. This relative stability of the oxidized PMMA
treated by UV/O3 is in contrast to a very short lifetime of plasma
oxidized cyclo-olefin polymer (COP) substrates, which have been
used for capturing biomolecules (Gubala et al. 2010).
3.3. Oligonucleotide hybridization assays for detection of microRNAs

Prior to the oligo hybridization experiment, two control reactions
were performed. C and D spectra of the two control experiments
d Au substrate and UV/O3 treated PMMA film, the thicknesses were obtained from

e gold surface (b) water contact angle change from bare Au substrate to PMMA

es of (c) bare Au, RMS roughness¼0.3970.01 nm, (d) PMMA coated Au substrate,

nm.



Fig. 3. (a) Aging study on binding of 1 mM of miR-16 probe for 0, 2, 4, 6 and 8 day, (b) water contact angle change after UV/O3 treatment for 0, 2, 4, 6 and 8 day. Five sets

of samples were used in these measurements. On each sample, measurements on three locations were obtained.

Fig. 4. Two control experiments with DNA on UV/O3 treated PMMA films (a) When miR-16 probe (22-mer) at 1 mM was introduced to the UV/O3 treated PMMA surface

without EDC activation, the increase in thickness was minimal due to non-specific binding (b) When miR-195 target (non-complementary) at 1 mM was incubated with the

capture miR-16 probe at 1 mM concentration, there was some level of non-specific hybridization, resulting in an increase in thickness of about 2.1 nm. In these figures, the

thicknesses indicated are the total thicknesses measured from the gold surface.
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are shown in Fig. 4(a) and (b). In the first control experiment, an
NH2-modified miR-16 probe (22-mer) was allowed to react with the
COOH groups of the UV/O3 treated PMMA film in the absence of
EDC. As expected, and illustrated in Fig. 4(a), there is only a very
small shift in C and D spectra corresponding to a very small amount
of physically adsorbed miR-16 probe after 60 min. In the second
control experiment, the same amino-modified miR-16 probe (22-
mer) was covalently immobilized to the COOH surface using EDC
and then incubated with the non-complementary miR-195 target

(21-mer). The length of the immobilized miR-16 probe (22-mer) is
close to 7 nm, but the observed thickness increase was only
2.13 nm, suggesting that the immobilized probe was lying ‘flat’ on
the surface. As seen in Fig. 4(b), the introduction of the non-
complementary miR-195 target solution resulted in small shift in
the C and D spectra, corresponding to a further 2.1 nm increase in
thickness. This additional increase in thickness was attributed to
non-specific hybridization of the target to the immobilized probe.
Given that miR-195 and miR-16 targets differ by only three bases
(Fig. S2, Supplementary information), this result is not surprising.
This non-specific hybridization could potentially be controlled by
optimizing hybridization conditions such as surface blocking and
temperature and salt concentration of the buffer and by probes
design. To summarize both control experiments, physical adsorption
of the probe leads to a small, 0.58 nm increase in thickness of the
deposited material. Covalent attachment of the probe resulted in
2.13 nm thickness increase, which was further extended by 2.1 nm
upon reaction with the non-complementary target.

For the hybridization experiment involving a perfectly com-
plementary probe and target, we covalently immobilized the
capture miR-16 probe (22-mer) on the surface and then allowed
it to hybridize to its complementary miR-16 target (22-mer).
While the thickness increase of 1.83 nm after the first capture
reaction was consistent with the results in the second control
experiment, the specific hybridization reaction and formation of a
RNA–DNA hybrid helix resulted in large shifts in both C and D
spectra (Fig. 5(a)). The kinetic measurement mode (Fig. S3,
supplementary information) clearly shows the change in C signal
when miR-16 probe and miR-16 target were sequentially intro-
duced to the UV/O3 treated PMMA surface. Fitting both C and
D spectra revealed a large increase in thickness corresponding to
6.5 nm for the hybrid helix. We speculate that initially the purine
and pyrimidine bases of the single-stranded probe have a



Fig. 5. (a) Complementary probe:target hybridization assay on UV/O3 treated PMMA films, miR-16 target (complementary) at 1 mM was incubated with capture miR-16

probe at 1 mM concentration, there was a significant increase in thickness of about 6.5 nm due to the possibility that the hybrid duplexes were stretched out during the

hybridization process to its physical length. In this figure, the thicknesses are the total thicknesses measured from the gold surface. (b) A standard curve plotting the

thickness changes when increasing the concentration of miR-16 target. The miR-16 probe concentration was fixed at 1 mM. The concentration of miR-16 target was shown

on logarithmic scale, while the error bars represent the standard deviations of three measurements at three locations in the same reaction microwell. A lowest detectable

signal was obtained at target concentration of 10 pM.
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tendency to maximize some energetically favorable, non-covalent
interactions with the oxidized PMMA surface and hence the probe
lies ‘flat’ on the surface. However, the formation of a hybrid helix
renders the supramolecule significantly negatively charged with
exposed phosphate groups on the duplex backbone. Therefore,
the dominant factor for the hybrid helix orientation is electro-
static repulsions between the negative charge of the double
strand and the surface �COO� groups. The small difference in
the thickness of the captured probe for experiments shown in
Fig. 4(b) and Fig. 5(a) could be explained by effects related to
aging and some degree of non-uniformity of the COOH groups. In
order to assess the sensitivity of the TIRE technique, we decreased
the concentration of the miR-16 target to 1 pM. When the
immobilized probe concentration was kept constant at 1 mM,
10 pM of target miRNA was detected (Fig. 5(b)). However, the
1 pM concentration of miR-16 target did not result in any
detectable shift in the C and D spectra. The typical, complete
C and D spectra at different target concentrations is summarized
in Fig. S4 (supplementary information). Previously, TIRE has been
used to study the adsorption and the interaction of DNA mole-
cules on polyethylenimine (PEI) films deposited on Au surfaces
(Nabok et al. 2007; Nabok et al. 2009). However, in these two
studies the DNA probes were physically adsorbed onto the PEI
surfaces and the DNA molecules were very long. Here, we have
successfully demonstrated the specific detection of miRNAs on
UV/O3 treated PMMA surfaces using TIRE. These results are in
good agreement with previous work where other surface chemis-
tries have been used to probe DNA hybridization (Lao et al. 2009;
Pollet et al. 2009).
4. Conclusions

A method to prepare carboxylic functional film on a Au sensing
substrate for use in a label free TIRE detection technique is
reported. By tuning the condition of spin coating of PMMA and
the curing condition, ultrathin, smooth and uniform PMMA films
were achieved. UV/O3 treatment was then used to generate
carboxylic functionalities readily for binding of biomolecules.
We have successfully demonstrated the detection of miRNAs on
UV/O3 treated PMMA surfaces and confirmed a 10 pM limit of
detection for the miRNA, miR-16 target. Furthermore, the UV/O3
treated surface show excellent stability of reactivity for a period
of up to 8 day. Our results could be useful when a quick method to
prepare carboxylic functionality on spin coated PMMA surfaces is
required. This technique is particularly well suited to other label-
free SPR-based optical detection techniques by spin coating
PMMA onto Au substrates. Alternatively, it could also be used in
other label-free sensing technique such as DPI, QCM or micro-
cantilever-based systems by spin coating PMMA on to quartz or
silicon surface, respectively.
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