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Abstract
: Many powered wheelchair users find their medical condition andBackground

their ability to drive the wheelchair will change over time. In order to maintain
their independent mobility, the powered chair will require adjustment over time
to suit the user's needs, thus regular input from healthcare professionals is
required. These limited resources can result in the user having to wait weeks
for appointments, resulting in the user losing independent mobility,
consequently affecting their quality of life and that of their family and carers. In
order to provide an adaptive assistive driving system, a range of features need
to be identified which are suitable for initial system setup and can automatically
provide data for re-calibration over the long term.

: A questionnaire was designed to collect information from poweredMethods
wheelchair users with regard to their symptoms and how they changed over
time. Another group of volunteer participants were asked to drive a test platform
and complete a course which represented manoeuvring in a very confined
space as quickly as possible. Two of those participants were also monitored
over a longer period in their normal home daily environment. Features, thought
to be suitable, were examined using pattern recognition classifiers to determine
their suitability for identifying the changing user input over time.

: The results are not designed to provide absolute insight into theResults
individual user behaviour, as no ground truth of their ability has been
determined, they do nevertheless demonstrate the utility of the measured
features to provide evidence of the users’ changing ability over time whilst
driving a powered wheelchair.

: Determining the driving features and adjustable elementsConclusions
provides the initial step towards developing an adaptable assistive technology
for the user when the ground truths of the individual and their machine have
been learned by a smart pattern recognition system.

   Referee Status:

  Invited Referees

 

  
version 2
published
06 Dec 2017

version 1
published
27 Sep 2017

 1 2

report report

, University ofJuan Carlos García

Alcala, Spain
1

, BrunelLorraine H DeSouza

University London, UK
2

 27 Sep 2017,  :93 (doi:  )First published: 2 10.12688/wellcomeopenres.12280.1
 06 Dec 2017,  :93 (doi:  )Latest published: 2 10.12688/wellcomeopenres.12280.2

v2

Page 1 of 39

Wellcome Open Research 2017, 2:93 Last updated: 06 DEC 2017

https://wellcomeopenresearch.org/articles/2-93/v2
https://wellcomeopenresearch.org/articles/2-93/v2
https://orcid.org/0000-0001-6217-0484
https://orcid.org/0000-0002-3649-508X
https://wellcomeopenresearch.org/articles/2-93/v2
https://wellcomeopenresearch.org/articles/2-93/v1
https://orcid.org/0000-0002-9367-9475
https://orcid.org/0000-0001-5623-7064
http://dx.doi.org/10.12688/wellcomeopenres.12280.1
http://dx.doi.org/10.12688/wellcomeopenres.12280.2
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.12280.2&domain=pdf&date_stamp=2017-12-06


 

 Michael Gillham ( ), Gareth Howells ( )Corresponding authors: M.Gillham@kent.ac.uk W.G.J.Howells@kent.ac.uk
  : Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, ProjectAuthor roles: Gillham M

Administration, Resources, Software, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing;  : Conceptualization,Pepper M
Funding Acquisition, Investigation, Project Administration, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; 

: Conceptualization, Funding Acquisition, Investigation, Methodology, Project Administration, Supervision, Validation, Writing – OriginalKelly S
Draft Preparation, Writing – Review & Editing;  : Conceptualization, Funding Acquisition, Investigation, Methodology, ProjectHowells G
Administration, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

 No competing interests were disclosed.Competing interests:
 Gillham M, Pepper M, Kelly S and Howells G. How to cite this article: Feature determination from powered wheelchair user joystick input

 Wellcome Opencharacteristics for adapting driving assistance [version 2; referees: 1 approved, 1 approved with reservations]
Research 2017,  :93 (doi:  )2 10.12688/wellcomeopenres.12280.2

 © 2017 Gillham M  . This is an open access article distributed under the terms of the  , whichCopyright: et al Creative Commons Attribution Licence
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 This work was supported by the Wellcome Trust [109739].Grant information:
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 27 Sep 2017,  :93 (doi:  ) First published: 2 10.12688/wellcomeopenres.12280.1

Page 2 of 39

Wellcome Open Research 2017, 2:93 Last updated: 06 DEC 2017

http://dx.doi.org/10.12688/wellcomeopenres.12280.2
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/wellcomeopenres.12280.1


Introduction
There is no typical powered wheelchair (PWC) user. Individuals  
may be suffering from neurological trauma or disease, or be 
affected by musculoskeletal trauma or disease; and they may be 
of any age. Increasingly, people are living longer and therefore 
may require mobility assistance for much longer. One publication  
in 20101 investigated these issues; the research concluded that the 
literature was lacking in regard to the PWC user quality of life  
and their ability to self-maintain. The Canadian Occupational  
Performance Measure (COPM), developed by Law et al. in  
19942, measures the users’ perception of their own self-care and  
living capabilities by using a questionnaire which usually takes 
around thirty minutes to complete. This methodology has been 
applied in a lot of research, some for PWC users, according to a 
review of the methodology3. Mills et al.4 propose a conceptual  
framework, which includes a range of factors likely to affect  
user performance. They identify 10 tools used to assess the user 
driving abilities for the purpose of more suitable adjustment of the 
PWC to the individual user’s needs.

Earlier research into young people’s needs, with regards to 
the benefits of the PWC, had indicated that children who used  
PWCs had much better spatial awareness and cause-and-effect 
skills than their peers who did not use PWCs5. However more 
recent research6 concluded that the benefit to the user was only 
positive when both the PWC and their environment were of  
a suitable ‘fit’, and could be quite negative when the child 
felt excluded from social integration; for example, due to the  
bulkiness of the PWC restricting their movements in confined  
environments.

A study of the elder PWC user found that one of the immediate 
benefits from issue of a PWC was an increased independence  
and a feeling of well-being7. Furthermore, the research sug-
gested that despite this euphoria many of the elderly users were  
anxious about driving outdoors, which may be due to a fear of 
accidents, particularly toppling over, and the issue of a breakdown  
leaving them stranded. The research noted that this user group  
were dissatisfied with the wheelchair service, quoting long wait-
ing times and having serious concerns that the chair would not  
meet their changing needs over time.

There has been much research in the field of providing PWC  
users with smart and assistive systems8,9; however, most users do  
not like having their control taken away from them, essentially  
disempowering them10 rather than assisting them to overcome  
challenges that their disabilities present. This essentially means 
that each individual would need the assistive system to be adapted  
and adjusted to their individual needs and requirements, and  
for the system to be re-tuned as their needs change over time.  
This is a substantial constraint for any manufacturer or developer 
of technology.

Therefore each person’s needs from any smart assistive  
PWC is quite unique and specific to them, hence current com-
mercially available assistive technology tends to be specialist  
equipment, specifically designed and built for each individual, 
or a group suffering from a particular illness, or alternatively  
is some standard hardware/software which has been adapted 
for the particular individual. This means that assistive tech-
nology is very costly in both equipment and technical main-
tenance, particularly when the device may require constant  
adjustment11.

In order for manufacturers to be able to mass produce devices 
at an affordable cost, there needs to be a sufficient volume of  
production. Therefore, there is a need to develop assistive PWC  
technology which is adaptable to a wide range of users’ clini-
cal needs, whilst also being adaptable to the individual’s per-
sonal preferences. This would require a smart system which 
monitors the user’s performance and adjusts the system 
accordingly; this information may also be directly related 
to their medical condition, which could potentially provide  

            Amendments from Version 1

The Introduction has been modified to reflect the current situation 
with young person’s attitudes towards powered wheelchairs 
(PWC), and to highlight the need to adapt the PWC to each 
individual. The text describing Table 1 has been re-worded to 
make it clearer that the table suggests the number of potential 
smart PWC users. Reference to the source of observations 
about PWC set-up and adjustments to the control system for the 
individual have been added.

Questionnaire self-scoring/defining has been added to the main 
text. The ‘control’ participants who were non-users has been 
explained, the types of PWC used has been stated, and the 
question of body posture supporting addressed. The course 
depicted in Figure 2 has been labelled with dimensions. ‘Not 
answered’ has replaced ‘N/A’ in Table 4. The experimental method 
for group ’C’ has been elaborated upon.

Features have been listed in the “Feature development” section 
and the reference to Table 1 changed to Table 2. Specific details 
of the features and their labels have been added to the “Feature 
evaluation” section. Figure 3 has had the ‘X’ and ‘Y’ axes that are 
referred to in the text added. Figure 10 legend has been changed 
to make the axis labelling clearer.

Our intention was to determine smoothness from velocity not 
jerk, potentially spasm and possibly panic from sudden direction 
change, and tremor and nervousness from frequency and peaks 
over the long term and in real-time. Experimentation to determine 
joystick data-rate suitability has been explained in detail with the 
corresponding future work needed added to the Conclusion.

The collision avoidance method has been better explained with 
regard to how the varying user joystick input quality could be 
used to adjust its behaviour and Figure 4 has been updated to 
show more information. Driving duration analysis has been better 
stated.

See referee reports

REVISED
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Table 1. Estimated potential smart wheelchairs users, organised by diagnosis, in the EU.

Diagnosis Prevalence 
(millions) 

(Lower–upper)

% who need 
wheelchair 

(Lower–upper)

Typical symptoms % with 
symptoms 

(Lower–upper)

Alzheimer disease 3.6–6.4 10–20 Attention, agitation, and  
impulse control Executive reasoning

45–52 
35–45

Amyotrophic lateral 
sclerosis

0.04–0.05 46–80 Fatigue/weakness 
Head/neck movement

20–26 
20–26

Cerebral palsy 1.1–1.3 80–90 Spasticity 
Tremor 
Hemiplegia 
Ataxia 
Dystonia 
Executive reasoning

70–90 
10–20 
10–20 
5–10 
15–20 
30–40

Multiple sclerosis 0.4–0.6 65–75 Spasticity 
Tremor 
Fatigue/weakness 
Head/neck movement 
Ataxia 
Executive reasoning

65–90 
5–7 

43–90 
43–90 
23–84 
30–70

Parkinson disease 1.4–1.6 5–15 Visual field neglect 
Tremor 
Bradykinesia 
Executive reasoning

85–95 
60–65 
10–15 
25–45

Traumatic brain injury 4.6–5 15–25 Visual field neglect 
Visual field loss Spasticity 
Hemiplegia 
Tremor 
Bradykinesia 
Fatigue/weakness 
Head/neck movement 
Attention, agitation, and  
impulse control 
Executive reasoning

20–80 
15–25 
35–50 
45–50 
20–30 
20–25 
35–50 
35–50 
20–60 
50–60

clinicians with more data to base their diagnosis and subsequent 
treatments on.

Currently, health authorities across Europe provide adaptive and 
assistive technology for those who need it on an individual basis; 
therefore PWCs are adapted to each person, which is expen-
sive and very time consuming. The PWC user is subjected to an  
ability-to-operate test and, in the UK12, will only be given an 
NHS funded PWC if they meet this criterion. For those individ-
uals who do not meet the requirements the only alternative is to  
either have an assistant in constant attendance, or not to use a  
PWC unless they can buy their own, with the associated re-tuning 
costs.

According to research13 there are a wide range of diseases which 
may cause sufficient disabilities to prevent individuals from  
operating a PWC without assistance, these have been extrapo-
lated from the US population at the time of the research to fit  
the current (2016) EU population and are listed in Table 1 by  

diagnosis, with some of the typically associated symptoms. Accord-
ing to our research and experience, whilst developing and testing 
our driving assistance technology14–16, providing simple collision  
avoidance or navigational assistance would not be sufficient to 
allow unmonitored use of the PWC, due to safety risks. There needs  
to be a synergetic assistance which adapts the assistance to the 
needs and requirements of the individual as they change over  
time, and most importantly keeps the user in full control of the 
PWC motion at all times.

Research aims
This research seeks to determine features which would iden-
tify the changing needs of PWC users and to distinguish the  
elements which would be required to make adjustments to an 
assistive PWC system, which would then be able to adapt to  
the users’ needs as they change over time. In order to do this we 
need to identify and quantify the severity of the problem. This  
will require identifying how often they use their PWC, how  
many collisions occur and when, what problems they have and  
how that may relate to their specific disability.
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The user joystick input trajectory quality can be used as 
a measure of the level of assistance required to assist an  
individual17–19; however research is sparse with regards to quantify-
ing and qualifying that user input with the intention of providing  
precise assistance for that individual when so required. We 
have also identified from our previous research that the user’s 
approach angle to doorways and their proximity to obstacles 
when navigating the environment can be a measure of their abil-
ity to drive, this research further investigates the suitability of  
collision avoidance as an identifying feature for feedback to adapt 
the system to better suit the individual’s’ navigation assistance 
requirement.

The ultimate objective of this research is to provide the  
adjustable elements which can be used to first improve the user’s 
own input quality, keeping them in full control for as long as 
possible and only when necessary moving to the next layer of  
assistance, which would also provide progressively more colli-
sion avoidance assistance, and then to the next level providing  
steering assistance, and finally to the higher level where the  
joystick input has now become digital. This methodology we 
believe will allow individuals who have been precluded from 
being prescribed a PWC to now be eligible for a smart adaptable 
assistive PWC, where the assistive system would also be able 
to step-in and provide the necessary assistance to keep the user  
in full and safe control of their PWC.

Powered wheelchair control
The electric powered wheelchair is usually controlled by a  
joystick which provides a digitised proportional input where  
one axis provides the turn proportionality and the other axis  
provides the forward and reverse proportionality. The powered 
wheelchair platform can be described as a unicycle or a two 
wheeled non-holonomic tank like mechanism14 which has the  
following kinematic:

                            2
right left

body body

v v
x v =

+
=

                            
(1)

                            

right left
body body

v v

W
θ ω

−
= =

                         
(2)

Where:

υ
right

 and υ
left

 are the velocities of the individually driven rear 
wheels.

W is the distance between the rear driving wheels.

This means that the platform motion is restricted by these  
equations; this means that for a wheel separation of half a metre 
the platform can rotate 4 times faster than the forward veloc-
ity. The joystick input device has a very similar mathematical  

relationship; however the distance between the two drive  
wheels would need to be two metres for there to be an equally  
proportional relationship between the joystick and the motion.

According to one control system manufacturer; they employ a 
‘Virtual Restrictor Plate’ (VRP)20 for the purpose of allowing  
the medical practitioner some degree of freedom to adjust the  
distance the user is required to move the joystick with regard to  
the actual motion of the PWC, whilst maintaining a safe ratio of 
speed to turn. Other methods of modifying the shape have been 
evaluated21 however the basic principle is still the same, to map 
or scale in some way the joystick to provide the user with their  
desired platform motion. There are usually up to five joy-
stick mapping profiles20 which are used for different speed and 
turn rates such that the input better matches the desired out-
put, akin to changing gear in a motorised vehicle. This means 
that the user can use the same joystick movement to drive have 
a much finer control at low speeds in confined environments 
and or conversely little joystick movement to drive at speed  
outdoors. This scaling will affect turn speeds, forward and reverse 
speeds, acceleration and deceleration. The outcome should be 
that the user has the PWC set up so that they feel safe and com-
petent to drive in restricted and open environments. The Kent 
and Canterbury hospital wheelchair technicians and prescribing  
clinicians we interviewed stated that this process may take several 
sessions and sometimes a satisfactory outcome is not achieved.

A further challenge to meeting user need is that their ability and 
ease to move the joystick may change significantly over time. In 
the case of the smart PWC, the system would need to adjust the 
dynamic parameters in the collision avoidance and the trajectory 
generation according to the joystick input and the profile selected 
by the user.

The mapping process will not only need to map the position of 
the joystick to the desired velocity for each motor driven wheel  
according to Equation 1 and Equation 2 it will also need to provide  
some time delay ramp to the rate of change of the joystick such 
that the motor acceleration is smooth and jerk is minimised. The 
most common method is to use a feed-forward control approach, 
shown in Figure 1, where certain parameters can be adjusted to  
suit the needs of each user of the platform whilst remaining  
within the boundaries of the electrical and mechanical system 
dynamics22. This process is implemented in the control algorithms 
developed by the control system manufacturer.

The most common parameters which always require adjustment 
to the individual for each profile (driving situation) are:

•    �forward speed range

•    �forward +/- acceleration

•    �reverse speed range

•    �reverse +/- acceleration
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•    �turn speed range

•    �turn +/- acceleration.

The current method of setting-up a PWC is essentially down 
to trial-and-error, and the procedure (after discussion with the  
wheelchair service, dealers, and clinicians) can be as follows:

•    �Match the power module load compensation to the motor 
loads to ensure the loading between motors is the same 
and it is driving without a bias to one side on flat ground.

•    �Adjust the positive and negative acceleration on turning, 
forward, reverse, pulling away and stopping.

•    �Tune for each profile such that the performance is evenly 
spread across the range of profiles.

•    �Fine tune each profile with the user to suit their desires 
and needs.

Some of the observations commonly reported, according to 
PWC dealers, hospital wheelchair service technicians and  
clinicians we spoke to, were:

•	 Motor load compensation can be very difficult to achieve 
on older chairs where it is not possible to compensate 
for differences in left and right motor load. Additionally 
compensation may only be effective at one power level. 
This means that the chair may drive in a straight line on 
a vinyl surface, but veer on a carpeted surface. Joystick 
users can compensate for this change in drive characteris-
tic. However the switch user is not able to do so.

•	 Aggressive acceleration or too high forward and turning 
speed can frighten some users and made them reluctant to 
drive the chair.

•	 Some users with reduced hand function required reduced 
joystick throw – that is 50% deflection gives 100% 
speed.

•	 Sometimes it is necessary to reverse the polarity of the 
Forward/Reverse action if the user found it easier to pull 
the joystick rather than push.

•	 It is important to keep asking, every time you see the user, 
if the settings are suitable.

•	 There are not enough resources for regular visits to the 
user to check and adjust PWC tuning.

•	 Users may not report that they are having difficulty driv-
ing their chair. Perhaps for fear that the chair will be 
taken away or because they don’t think that anything can 
be done to improve the chair setup or because they have 
given up asking.

•	 Therefore a smart wheelchair which can identify the 
user’s driving characteristics and detect from those char-
acteristics whether the chair requires retuning, should be 
of great benefit to that user.

Ethical statement
The project was subject to the University’s formal procedure  
for ethical consideration of projects involving human participa-
tion, under the auspices of the Faculty of Sciences’ Research  
Ethics Advisory Group. Ethical approval was granted by NRES 
Committee East of England, REC reference: 14/EE/0164 under 
the title: Evaluation of a Powered Wheelchair with collision  
avoidance.

Methods
Whilst there is some guidance on the analysis of driving  
features23 there remains the need to determine which features are 
good indicators of the user’s ability to control their PWC safely 
in their respective environments, especially if their ability changes 
over time. A potential set of features is given in Table 2. These are 
based upon the symptoms listed in Table 1 and some adjustable 
parameters for PWC control systems, and also information on the 
proximity of obstacles.

Figure 1. Typical feed-forward PWC control schematic.
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Table 2. Measurements for a potential feature-set.

Symptoms Reactions Measurements

Tremors and involuntary 
movements of the joystick 

Continuous sinusoidal component and 
sudden motion

•    Position
•    Velocity
•    Frequency

Attention, tiredness, and 
general fatigue

Increasingly irregular motion and proximity 
to obstacles, operational time reduction

•    Position
•    Velocity
•    Proximity
•    Time

Muscular stiffness and 
weakness

Directional bias and amplitude change of 
muscular activity

•    Position
•    Velocity
•    Time

Observational and visual bias Hesitation and preference when driving in 
certain directions, proximity to obstacles

•    Position
•    Velocity
•    Proximity
•    Time

Reasoning, confusion, panic, 
and agitation 

Hesitation when driving, directional 
changes, stop-start, proximity to obstacles, 
sudden motion, possible nervous tremors

•    Position
•    Velocity
•    Frequency
•    Proximity
•    Time

Table 3. Powered wheelchair user questionnaire background data.

Identifier Driving 
ability

Number of years in 
wheelchair Reason for PWC Difficulties
Manual Powered

A1 5 3 6 Physical strength None at present

A2 5 0 20 Physical strength Slopes and kerbs

A3 4 14 6
Guillain–Barré syndrome, 
neurological and paralysed 
from waist down

Clawed hands unable to turn 
head to see

A4 4 0.5 0.5 Motor neuron disease Rear visibility, kerbs, obstructions

A5 4 16 6 Spina Bifida Spatial awareness

A6 4 0 12 Osteoarthritis Pedestrians not seeing me, 
uneven paths/roads and slopes

A7 4 0 10 Ehlers-Danlos syndrome Tiredness, poor proprioception, 
dislocation

A8 5 20 15 Myasthenia gravis tiredness/weakness/not able to 
use on a bad day

A9 1 5 2 Cerebral palsy affecting all 
four limbs jerkiness of my arms

A10 1 15 2 Cerebral ataxia spatial awareness

A11 4 0 2 Poor balance/knees concentration/not able to use on 
a bad day

A three pronged approach was undertaken in order to investigate 
the problem. The first approach was to locate and obtain data  
from PWC users by using a questionnaire (Supplementary File S1).  
This was undertaken by attending disability exhibitions and  
conferences and asking visitors in powered wheelchairs to take 
part in the data collection. The anonymous questionnaire with a  
self-addressed envelope was included and out of nearly 70 

questionnaires some 11 participants responded (A group), the 
anonymous data was simply given a random identifier when the  
envelope was opened and their backgrounds with the associated 
identifiers are given in Table 3. They were also asked to self-score  
the number of collisions and the range of their abilities, for one of  
their self-defined ‘good days’ and for one of their ‘bad days’. Par-
ticipants were clearly informed that they were partaking in research 
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and that the data would be used solely for research purposes,  
both verbally and in writing on the questionnaire, and that by  
returning the questionnaire they would be giving their consent 
to participate. The returned questionnaire data had no personal  
identification attached and therefore is fully anonymised. This  
does not alter or distort the scientific meaning.

The second approach was to use data obtained from twelve par-
ticipants (B group) who were invited to undertake evaluation of  
a smart PWC collision avoidance system (Dynamic Localised 
Force Field method14) using a specially designed course to test  
manoeuvring in confined spaces in accordance with the ethi-
cal approval of the project. We also invited two student nurses 
to undertake the same course, who had never driven a PWC  
and had no disabilities, as a comparative control (labelled B5 and 
B6). All participants used the same PWC (Invacare Spectre XTR2 
platform using a Dynamic Controls DX2 joystick control sys-
tem) with the same driving profile and undertook the same path 
around the course, shown in Figure 2. They were asked to drive  
around the course as quickly as possible without colliding with 
any of the walls or posts as if they were on a competitive driv-
ing test. Their joystick control input to the PWC system,  
and the data from the collision avoidance ultrasound sensors  
measuring the range to the surrounding obstacles, was recorded 
by our monitoring hardware as they negotiated the driving  
course in chronologically labelled order of the participant par-
ticipation. The anonymised B group participants’ backgrounds are  
given in Table 4. All participants were able to adjust their own  
upper body posture and had no additional means of support  
other than the standard PWC.

The third approach was to obtain joystick movement data from  
two participants, B1 & B2, over a longer period of time (C 
group) without any modification to their control input. This was 
achieved by mounting on a standard Invacare Spectra PWC using 
a Dynamic Controls DX2 joystick control system we supplied, a 

joystick recording device connected to the manufacturer’s control 
system, and two buttons for the user to press, one for deliberate 
collision and one for accidental collision, an IMU, and a real time 
clock. The participants took turns to drive the PWC without any  
collision avoidance in their normal daily environment for at least 
three days. The inertial motion of the platform, joystick input,  
time-of-day, driving time, and the output from two manual dig-
ital buttons for identifying deliberate and accidental collisions 
were recorded on an SD card, without identifying what the user 
was doing and where they were. The identifier labels of B1 and  
B2 are respectively also C1 and C2 where the first letter simply 
relates to the different testing group and environment.

The participants in both group B and C were informed in writing, 
and verbally, what they would be volunteering to undertake, and 
how their data would be used for research and publication, for  
which they gave their written consent. All data has been  
anonymized without distortion or alteration to the scientific  
meaning.

Feature development
Determining the user’s physical input range and rate of  
change of position to set-up the control system has been until 
now an iterative empirical process. In addition there also remains 
the issue of the user input ability changing over time and how  
that is monitored so that the system can be re-adjusted at some 
later date. A smart PWC system would need to analyse the user 
input characteristics and then adjust the control system mappings, 
in order to provide a progressively proportionally scaled robust 
and safe assistance. A further requirement of any smart assistive  
system10,16 is that the user is kept in control for as long as  
possible, rather than the smart system simply taking over con-
trol and confronting the user with an autonomous system.  
Therefore the first step in developing an adaptive assistive sys-
tem is to identify the input profile of the user so that the joystick  
mapping can be better initially set-up and adjusted over time.

Figure 2. Participant driving evaluation course.
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Table 4. Powered wheelchair user test course data recording, background.

Identifier Driving 
ability

Years 
driving PWC

PWC driving 
training Reason for PWC Difficulties

B1 5 15 None Cerebral Palsy None at present

B2 5 3.5 Yes Stroke Left side paralysis

B3 5 11 Scooter Duchenne 
muscular dystrophy Muscular weakness

B4 5 9 None Duchenne 
muscular dystrophy Muscular weakness

B5 0 0 None Control subject None

B6 0 0 None Control subject None

B7 4 2 None Brain injury Attention, memory, anxiety, 
fatigue, equilibrium

B8 4 15 None Multiple Sclerosis Muscular weakness, 
spasticity

B9 4.5 16 Yes Multiple Sclerosis Muscular weakness, 
spasticity, equilibrium

B10 2.5 1 Yes, 
currently Brain injury

Attention, planning, 
fatigue, equilibrium, visual, 
fine motor

B11 3.5 15 None Cerebral Palsy Left side spasticity

B12 2 2 Some Not answered Not answered

B13 4.5 4 None Multiple Sclerosis Not answered

B14 4.5 12 None Tetraplegia Fine motor control of 
fingers, left side weaker

Returning to our initial feature set, given in Table 2, we  
hypothesise that we can identify the user input profile from their 
physical input quality, joystick position range, and rate of change 
of joystick position, and by feedback from obstacle proximity  
sensors we can also identify their visual spatial awareness.  
Thus essentially we can profile the user driving trajectory input  
and how it changes over time by monitoring the following  
features:

•   Joystick Position

○    Biases/areas/quadrants

○    Range/magnitudes

•   �Joystick Velocity (actual user velocity of the joystick  
movement)

○    Sudden large magnitudes

○    Measure of smoothness

○    Biases/areas/quadrants

•   Proximity to Obstacles

○    Biases

○    Magnitudes

•   Time

○    Actual driving time day-to-day (long term trend)

○    Specific task

  Overall

  Ratio of moving to stopping

•   Frequency of tremor/shake in joystick motion

○    Long term trend

○    Short term task/place specific

Joystick input tremor and smoothness. Hand tremors  
can affect the joystick input quality, such that the user finds it 
challenging to operate a normal PWC. Therefore modern PWC 
control systems can be programmed to compensate for tremor.  
However the severity of the tremor may change over time such 
that sometimes the user may be fully capable of safely control-
ling the PWC and at other times could be potentially a danger to  
themselves and others around them. Research has identified the 
dominant tremor frequency is age related; particularly people 
with large amplitude tremors undergo a reduction in frequency as 
they age24. Hand tremor frequency may also be dependent on the  
task; research suggests the displacement amplitude may decrease 
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the tremor frequency by 3–4 Hz where the range is commonly 
between 4–11 Hz25. One proposed solution was to develop  
Isometric Joysticks, which measure applied force rather than  
movement26; however there was only a small improvement in  
performance.

A smart adaptive system would need to determine when the  
joystick signal input quality with adapted filtering is suitable 
to be acceptable as a proportional input, or whether treating the  
joystick as a switched device is a better option with the sys-
tem providing appropriate assistance to control speed and rate of  
turn, acceleration and deceleration. However the first step in the 
process is to detect the presence of tremor, spasm or panic.

In order to detect tremors a Fast Fourier Transform will be 
used to determine if the joystick signal is sufficient for the pur-
pose of monitoring the user for signs of tremor such that we can  
correct their joystick input:

                            
(j 1)(k 1)N

j 1 N
X(k) x( j) − −

== Σ ω
                            

(3)

Where:

                                       ω
N
 = e(−2πi)/N                                      (4)

Smoothness can be regarded as a measure of intended move-
ment and jerk (ms-3) has been commonly used as an empirical  
way to obtain some objective measurement of this feature.  
However several studies have reported mixed results with dif-
ferent jerk algorithms27, such that dimensionless jerk and the 
log of the dimensionless jerk being the only valid measures of  
smoothness28. However velocity (ms-1) rather than jerk is thought 
to be a more appropriate measurement of smoothness29 which  
in this case can be easily obtained from the standard joy-
stick. The sample rate from the Dynamic Data Bus is set by the  
manufacturer at 50Hz. This rate is high enough to meet the  
requirement for smoothness measurement29. Smoothness can be 
obtained by using the joystick velocity vector as follows:
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And where (v
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1
) is the distance the joystick has moved  

in the velocity plane and (ω
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1
 is the sample time period and the weight w

i
 

is given by:

                                           w
i
 = λ̃

{1,2,....i}                                           
 (7)

In addition to tremor and smoothness there is the issue of user 
sudden movement or panic in response to a miscalculation or 

some involuntary muscular action when navigating around obsta-
cles. The Peaks method (sudden direction change), which can be  
used in real-time, offers the potential for determining sudden  
jerks (panicky motion) or spasms as well as long term tremor  
monitoring.

Joystick positional bias. The user may need to have the joystick 
forward and reverse swapped because their ability to pull their 
hand towards them is better than to push the joystick away from 
them. They may also only be able to move the joystick part-way 
rather than the fully available range. This range, or throw, may also 
change over the day and over days. The general input pattern of 
the joystick can be said to lie within the diamond shape given in  
Figure 3, where the physical restriction of the device keeps the 
input within the kinematic boundary given by equations one and 
two. Additionally the software VRP, or equivalent, ensures the  
input continues to obey the boundaries when the throw shape is 
altered.

It is proposed that in order to identify measure and adjust the  
mapping the joystick input is represented by quadrants within 
which the shape of the user input profile is represented by shape  
parameters A and B, shown in Figure 3, such that they represent 
the semi major axis and semi minor axis of an ellipse where the  
joystick speed and turn (x and y) statistical position density  
distribution mid 50% inter-quartile range (IQR) represents the  
magnitude of A and B, and the centre point in the (x) axis is 
the median of the IQR, and the centre of the (y) axis is the first  
quartile.

In Figure 3 the user’s forward left quadrant might look like the  
blue ellipse and the forward right quadrant might be indicated by 
the red ellipse where an optimally mapped profile, for the task 
in hand, might look like the green ellipse where both quadrant  
ellipses are now overlapped. It should be noted that although the 
ellipse for the two forward quadrants crossover the actual posi-
tion data is all in the respective quadrants, showing the full ellipse  
(overlap) is designed to permit a visual miss-alignment between 
how the user moves the joystick left/right, this is likely to be  
highly dependent upon how the user holds the joystick as well as 
the muscular flexibility (future research).

The position profile can be remapped to meet the needs of the  
user by either changing the pre-set profile velocity ranges (for spe-
cific tasks) or for a smart adaptive assistive system by setting the 
maximum ‘best day’ performance and then adjusting the mapping 
by taking the A and B parameters and using their spread to remap 
the input joystick values. This is done by taking the joystick veloc-
ity and turn commands off of the powered chair communication 
bus, remapping those values and returning them to the bus30. The 
equation for remapping can be given by:

                          

( _ ) _

( _ _ )
in

out
x in min range out

x
range in out min

− ∗
=

+                 
(8)

Velocity vector bias. Whilst there may be a method to solve or  
filter the tremor/smoothness there may be also be a bias to  
the smoothness which can be because of muscular or motor  
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Figure 3. Joystick pattern and input ranges.

neuron disease or due to visual neglect. Therefore it is proposed to  
determine the velocity vector in each quadrant by measuring the 
rate of change of the joystick position and to represent this as a 
range using the 50% IQR. This feature can be used to bias the  
Joystick input tremor and smoothness section for each quadrant 
where the velocity vector is broken down into components to  
adjust each axis in each quadrant. This would give the accelera-
tion parameter range for the feed-forward control set-up and for  
the smart adaptive system to adjust as it changes over time.

Proximity to obstacles. One crucial feature to consider for 
the adjustment of any assisted navigation system, must be the 
proximity to obstacles as the user manoeuvres around them.  
Whilst it is impossible to identify intent there is clearly a need for 
users to come into contact with obstacles, such as when transfer-
ring to a bed or chair, and when opening a manually operated door.  
Therefore the measurement of obstacle proximity must be 
one which identifies a bias in the pattern, such as driving very  
close to obstacles on the left side as opposed to the right side 
and more collisions in one particular sector around the user. This  
could indicate a visual or spatial awareness problem. This  
measure could be obtained by comparing the assisted system  
corrected user input with the actual input by taking a moving  
average of the differences in each sector.

                              
(( ) / )

1
1

exp R p kF −= −
                                     

(9)

The Dynamic Localised Adjustable Force Field (DLAFF)14 is 
one such collision avoidance method which can be dynami-
cally adjusted according to user needs and abilities. The concept  

is based upon two travelling ellipses, as shown in Figure 4, which 
surround the PWC platform, the inner ellipse provides a zone 
within which the physical platform and user is located, the outer  
ellipse provides the limit of the repulsion force, which is given 
by Equation 9, and which acts between them in a radial fashion  
about the mid-point of the rear PWC axle, marked ‘O’ in Figure 4,  
to damp the platform motion where the nearest forward right 
obstacle damps the left wheel motor and the nearest forward left  
obstacle damps the right wheel motor.

The size and shape of the two ellipses can be dynamically  
changed providing that one of the foci remains at the body ori-
gin ‘O’ and the other foci ‘F’ is constrained to the X body axis. 
The ellipse can also be extended outwards along the Y axis  
such that the repulsive zone each side can be extended or 
retracted. Areas of the ellipses can be sectioned into zones in a 
similar way to the joystick, such as shown in Figure 4; however in  
this case the zones should relate to the platform dynamic and kin-
ematic such that the collision avoidance can be biased and adjusted 
over time. For example the user may have their left leg in plas-
ter and in this case the inner ellipse foci ‘F’ would be moved  
outward such that the physical dimensions of the platform 
and user were kept within the inner ellipse. Another example  
might be that the user has poor vision to the left and has trou-
ble negotiating obstacles to the left, in this case we might extend 
the outer ellipse on the left side and/or we might adjust the  
repulsion proportionality such as by changing the (k) value, 
as shown in Figure 5, to alter the collision avoidance behaviour 
to provide more or less safety distance between the platform  
and the obstacle. Altering the damping factor in this case will 
change the platform trajectory earlier in such a way that the  
obstacle is passed at a further distance than would otherwise  
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Figure 4. Collision avoidance zoning.

Figure 5. Adjustment the repulsive field of the collision avoidance by using the (k) value.
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have been the case, this is crucial in the case where the user  
may be travelling quicker than the system can respond.

Duration of active PWC driving. The PWC user may be seated 
in their chair for long periods of time31, effectively living in 
it. The time they spend out of bed, or other seating, and in their  
chair will be related to their day-to-day ability. Additionally 
the amount of time spent driving, rather than just sitting in the 
PWC may also indicate their current capability; however these  
may be long term health related features. For the purposes of 
adapting and adjusting any driving assistance time based fea-
tures, the time driving to time stationary and the number of pauses  
when negotiating obstacles may have some relationship to lev-
els of tiredness and reasoning and thus some direct relationship  
to the amount of assistance which is required.

Feature evaluation and data processing
An adaptive system would require a metric of the user’s  
changing abilities over time, such that by using pattern recognition 
techniques these changing features can be identified. Essentially, 
a pattern of features is assigned to a particular event or symptom,  
and a classifier tries to match the current observation with saved 
patterns. Similar pattern recognition work to that required for a 
smart PWC adaptive system has been previously undertaken for  
various online classifiers to determine the suitability for develop-
ing real-time embedded systems. This research concluded that 
linear and quadratic discriminant analyses are highly suited and  
K-Nearest Neighbour-1 is possible if the training set does not 
become too large to the task32 Naïve Bayes, Support Vector  
Machine, and Artificial Neural Networks proved were even more 
suitable33. The research was undertaken on a dual core 1500 MHz 
2GB RAM MICROSPACE EBX (MSEBX945) small compu-
ter format board with 1000 sample training set and 400 features.  
Another research project used a Weightless Neural Networks 
to classify simple geometric patterns in the microsecond time  
frame on an Atmel AT89x55 24.3MHz processor with 256 bytes 
of RAM34. Therefore, in line with developing a real-time adap-
tive assistive system, we propose to evaluate the driving features  
by using the following classifiers:

•	 Linear Bayes Normal35

•	 Fisher's linear discriminant36

•	 Logistic linear37

•	 Naive Bayes classifier38

•	 Support vector machine39

•	 Parzen classifier40

•	 k-nearest neighbour41

Features used for all of the fixed course monitoring of group B:

•	 FFT dominant frequency

•	 Smoothness

•	 Forward left ‘A’ from joystick position ellipse

•	 Forward left ‘B’ from joystick position ellipse

•	 Forward right ‘A’ from joystick position ellipse

•	 Forward right ‘B’ from joystick position ellipse

•	 Rear left ‘A’ from joystick position ellipse

•	 Rear left ‘B’ from joystick position ellipse

•	 Rear right ‘A’ from joystick position ellipse

•	 Rear right ‘B’ from joystick position ellipse

•	 Forward left velocity vector median

•	 Forward right velocity vector median

•	 Rear left velocity vector median

•	 Rear left velocity vector median

•	 Forward left collision bias

•	 Forward right collision bias

•	 Rear left collision bias

•	 Rear right collision bias

•	 Ratio of time in motion to time stationary

•	 Total course time

Features used for all of the three day monitoring of group C:

•	 FFT dominant frequency

•	 Smoothness

•	 Forward left ‘A’ from joystick position ellipse

•	 Forward left ‘B’ from joystick position ellipse

•	 Forward right ‘A’ from joystick position ellipse

•	 Forward right ‘B’ from joystick position ellipse

•	 Rear left ‘A’ from joystick position ellipse

•	 Rear left ‘B’ from joystick position ellipse

•	 Rear right ‘A’ from joystick position ellipse

•	 Rear right ‘B’ from joystick position ellipse

•	 Forward left velocity vector median

•	 Forward right velocity vector median

•	 Rear left velocity vector median

•	 Rear left velocity vector median

•	 Ratio of time in motion to time stationary

Page 13 of 39

Wellcome Open Research 2017, 2:93 Last updated: 06 DEC 2017



Results
Collision analysis
The ‘A’ group of volunteer participants (A1-A11) were  
asked to monitor their daily routine on a ‘good’ and ‘bad’ day. 
They were tasked with noting how many collisions occurred and  
what class of collision they were. Class (A) denotes acciden-
tal collisions, Class (D) refers to intentional and deliberate col-
lisions such as attempting to use the PWC to open doors, and  
class (C) relates to directional changes where the user has needed 
to reverse and re-approach due to initial misjudgement of the  
correct alignment to a doorway for example. Participants A8 and 
A11 were unable to drive the PWC on a bad day.

The results of the good day collisions, shown in Table 5, clearly 
show that using the PWC to push open doors is quite common, 
however the number of accidental collisions with the door frame 
was high compared to deliberate collisions and misalignments. In 
comparison with the same two types of obstacle on a bad day, it  
can be seen that the number of deliberate collisions did not 
change significantly, yet the accidental collision and misalignment  
incidents rose to be of similar occurrence, with door frame  
misalignments doubling (Table 6). This pattern was similarly  
followed with the other types of obstacles, with a general increase 
in the number of accidental collisions, in particular with that of the 
misalignment class.

In addition to gathering data via the volunteer questionnaires, 
two experienced PWC users were monitored over an extended  
period of time, one for five days and the other for four days. In 
this case they used a standard powered chair, which included 
an electronic data collection system. This system enabled the  
users to record collisions by pressing a button. The data indicated 
that on average for each hour in the PWC, C1 had 3.9 and C2  
had 3.3 accidental collisions (Table 7). When this was aver-
aged against the actual driving time the rate increased to: C1 had  
12.3 and C2 had 7.2 collisions per hour of actual driving. The  
average collisions recorded by the 11 questionnaire participants 
showed an average accident rate of around one per hour.

The response from the participant questionnaire is given in  
Table 8 and this indicated that there was a marked shift of abili-
ties between a ‘good day’ and a ‘bad day’. The range of abilities 
stretched from being reasonably able to function to needing full 
support from carers.

Joystick tremor and smoothness analysis
An experiment was undertaken, with the view of  
establishing whether the data rate from the standard commer-
cially available system was sufficient to measure both the tremor 
and smoothness features. Commonly the Normalised Jerk score 
is employed27 to measure smoothness; however this is the third  
derivative of joystick position whereas velocity is the first  
order. This would mean that using jerk to score smoothness,  
rather than velocity, would require a higher sample rate than is 
available.

An artificial tremor was analysed to obtain the frequency  
by using the two methods as previously described. The first  

involved using a Fast Fourier Transform and the second count-
ing peaks in the signal as it changed sign over time, an exam-
ple is shown in Figure 6. As expected the 50Hz sample rate  
from the commercial system is suitable for measuring the  
typical tremor rate range; however the notched joystick plot, and 
experimentation, indicated that it would not be suitable for third 
order differentiation to obtain jerk.

In order to determine if velocity is a good measure of joystick  
smoothness we needed to compare this with the traditional  
Normalised Jerk Score; therefore a three axis accelerometer was 
mounted into the joystick handle and additionally, an analogue 
to digital converter was connected directly to the Hall Effect  
sensor coils and samples from both sensors were acquired at  
a data rate of ≈250Hz thus directly measuring acceleration 
and velocity. Joystick position data was also collected at 50Hz 
from the PWC data bus (Dynamic Controls DX2) using their  
proprietary interface30.

A series of 16 artificial tremors at different frequencies were  
physically generated and the data from the accelerometer, ana-
logue joystick, and digital joystick from the system bus recorded.  
The data was then first analysed to determine whether veloc-
ity obtained from differentiating the joystick position data was  
a reasonable feature for determination of smoothness.

The joystick movement data from the accelerometer and 
from the system data bus were compared to determine the 
suitability for extracting the frequency from the stand-
ard PWC data bus. In addition, the velocity vector was  
derived from both the joystick data and the much higher sample  
rate directly from the joystick coils; this was compared to the  
traditional method of obtaining the weighted average jerk from 
accelerometer data. Both sets of data are given in in Table 9.

The accelerometer and joystick bus values were compared  
using ANOVA to determine whether the joystick bus data rate was 
sufficient to determine the tremor frequency by using either the  
FFT or digital peak count methods. The FFT method digital  
joystick compared to accelerometer gave F (15, 15) = 108, p = 0 
where F critical = 2.4. The digital joystick peak method  
returned F (15, 15) = 2.79, p = 0.028 where F critical = 2.4. 
Therefore the FFT method is very good and the peaks method is  
a fair method of measuring tremor when taking joystick data  
from the system bus compared to using an accelerometer.

There appeared to be little correlation between the different meth-
ods of evaluating velocity vector smoothness when the data was 
initially reviewed, however this was due to the sampling rate and 
hence scaling. All three methods are given for comparison in  
Figure 7. Therefore if we multiply the velocity vector smoothness 
obtained from the joystick digital data by a factor of two, to try 
to adjust the scale difference, we can compare the digital joystick 
directly with the weighted average jerk to determine if there is a 
significance. This gave a digital smoothness score to accelerometer 
normalised jerk score correlation of F (15, 15) = 10.7, p = 0 and  
F critical = 2.4 which indicated that there was a significant  
correlation between the two methods. Therefore the joystick data 
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Table 5. Collisions on a good day.

Obstacle class Identifier Totals

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

Door A 0 0 2 0 3 0 0 1 0 0 1 7

D 0 2 6 2 5 0 4 0 0 0 0 19

C 0 0 2 0 2 4 1 0 0 0 N/A 9

Doorway 
frame

A 0 1 2 1 10 0 0 2 4 10 2 32

D 0 0 1 0 0 0 0 0 0 0 0 1

C 0 0 3 1 2 2 0 0 0 0 0 8

Wall A 0 0 0 1 4 0 0 0 0 5 1 11

D 0 0 0 0 2 0 0 0 0 0 0 2

C 0 0 1 1 0 0 1 0 0 0 0 3

Furniture A 0 0 0 1 3 0 1 1 4 10 0 20

D 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 1 0 1 2 2 0 0 0 0 6

People A 0 0 0 0 1 0 0 0 2 3 0 6

D 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 2 0 2 5 0 0 0 0 0 9

Road A 0 0 1 1 3 0 0 2 1 5 1 14

D 0 0 1 0 4 0 3 0 0 0 0 8

C 0 0 1 0 1 0 0 0 0 0 0 2

Totals 0 3 23 8 43 13 12 6 11 33 5 157

Hours in PWC 16 18 8.5 5 16 10 12 12 5 N/A 2 104.5

Table 6. Collisions on a bad day.

Obstacle Class Identifier Totals

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

Door A 1 0 5 0 7 0 2 N/A 4 0 N/A 19

D 1 2 4 2 3 0 10 N/A 0 0 N/A 22

C 1 0 5 2 4 2 3 N/A 0 0 N/A 17

Doorway 
frame

A 1 1 6 5 6 0 3 N/A 8 5 N/A 35

D 1 0 1 0 1 0 0 N/A 0 0 N/A 3

C 1 0 6 2 2 0 4 N/A 0 0 N/A 15

Wall A 1 0 2 1 10 0 2 N/A 0 1 N/A 17

D 0 0 1 0 2 0 0 N/A 0 0 N/A 3

C 0 0 3 2 1 1 6 N/A 0 0 N/A 13

Furniture A 1 0 2 4 11 1 2 N/A 8 5 N/A 34

D 0 0 1 0 2 0 0 N/A 0 0 N/A 3

C 0 0 4 2 1 2 5 N/A 0 0 N/A 14

People A 0 0 5 1 2 1 1 N/A 4 0 N/A 14

D 0 0 1 0 0 0 0 N/A 0 0 N/A 1

C 0 0 1 0 2 9 6 N/A 0 0 N/A 18

Road A 0 0 3 3 4 3 1 N/A 2 1 N/A 17

D 0 0 1 0 2 0 4 N/A 0 0 N/A 7

C 0 0 1 0 1 6 2 N/A 0 0 N/A 10

Totals 8 3 52 24 61 25 51 N/A 26 12 N/A 262

Hours in PWC 12 18 4.5 7 16 15 16 N/A 2 N/A N/A 90.5
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Table 7. Long term collision data.

Day

1 2 3

Id Class Totals

C1 Number of deliberate collisions 3 1 1 5

Number of accidental collisions 3 17 23 43

Hours in PWC 5.45 3.13 3.03 11.61

Hours driving 1.04 0.83 1.63 3.5

C2 Number of deliberate collisions 4 0 1 5

Number of accidental collisions 14 8 32 54

Hours in PWC 5.2 0.97 10.35 16.52

Hours driving 2.98 0.73 3.79 7.5

Table 8. Range of symptoms between good and bad days.

ID A B C D E F G H

g b d g b d g b d g b d g b d g b d g b d g b d

A1 1 1 0 1 1 0 1 1 0 1 1 0 2 4 2 2 4 2 1 3 2 1 1 0

A2 1 1 0 1 1 0 1 1 0 1 1 0 1 2 1 1 2 1 1 3 2 1 1 0

A3 2 4 2 2 3 1 2 3 1 2 3 1 4 5 1 4 5 1 4 5 1 2 4 2

A4 1 1 0 1 1 0 1 1 0 1 1 0 2 2 0 2 5 3 2 5 3 1 1 0

A5 1 1 0 1 2 1 1 3 2 1 1 0 1 3 2 1 3 2 2 4 2 2 4 2

A6 1 3 2 1 3 2 1 3 2 1 3 2 1 4 3 1 3 2 1 4 3 1 3 2

A7 1 3 2 1 3 2 1 3 2 1 3 2 2 3 1 2 5 3 1 4 3 1 3 2

A8 1 1 0 1 2 1 1 2 1 1 2 1 1 3 2 3 5 2 3 5 2 2 5 3

A9 3 5 2 1 3 2 2 4 2 1 3 2 3 5 2 3 5 2 3 5 2 2 4 2

A10 1 3 2 3 5 2 2 5 3 3 5 2 1 2 1 3 5 2 3 5 2 3 5 2

A11 3 4 1 2 3 1 1 2 1 1 2 1 2 3 1 2 3 1 3 4 1 1 2 1

Key:

A1:A11 = Participant identification

g = Good day

b = Bad day

d = Difference between a good day and a bad day

A to H = Symptom identifier given in Table. 4.

1 = not suffering with this (within normal range)

2 = causes occasional problems

3 = problematic effecting day-to-day tasks

4 = severely affecting personal performance

Class Symptom

A Muscular tremors and/or spasms

B Attention and/or concentration difficulty

C Panic and/or agitation (nervousness)

D Reasoning and/or confusion

E Muscular stiffness

F Muscular weakness

G General fatigue/tiredness

H Observational and/or visual bias5 = unable to function without assistance

Page 16 of 39

Wellcome Open Research 2017, 2:93 Last updated: 06 DEC 2017



Figure 6. Example plot of the digital system joystick data frequency feature analysis.

Table 9. Joystick multimodal frequency analysis.

FFT 
accelerometer 

y axis (Hz)

Magnitude 
dominant 

y axis 
frequency

FFT 
Joystick 
digital 

y axis (Hz)

Frequency 
digital peak 
count (Hz)

Weighted 
average 

(x, y) jerk 
vector

Analogue 
velocity  

(x, y) vector 
smoothness

Digital 
velocity 

(x, y) vector 
smoothness

1 3.523 0.247 3.197 3.619 0.296 0.081 0.159

2 6.016 3.048 5.908 6.471 2.619 0.121 0.715

3 4.715 0.488 4.661 4.920 0.586 0.082 0.219

4 3.957 5.981 3.957 4.861 4.440 0.205 1.418

5 3.957 4.841 4.282 4.486 2.129 0.136 0.865

6 3.360 9.117 3.36 3.842 3.724 0.217 1.613

7 4.390 3.619 4.39 5.050 2.118 0.130 0.800

8 8.618 0.599 7.859 6.767 1.130 0.077 0.198

9 4.471 1.738 4.444 4.971 1.333 0.093 0.447

10 6.178 3.802 5.85 5.366 5.767 0.204 1.341

11 4.498 3.469 4.498 5.218 4.166 0.177 0.996

12 4.336 0.191 4.336 3.558 0.361 0.082 0.157

13 4.878 0.242 4.878 2.521 0.312 0.080 0.150

14 4.444 0.810 4.444 4.817 0.445 0.083 0.184

15 3.144 1.438 3.144 4.999 0.715 0.082 0.262

16 6.585 0.316 6.097 3.650 4.042 0.245 1.951
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Figure 7. Comparison of the smoothness score with the normalised jerk score using an accelerometer, analogue measurement of the 
velocity vector direct from the joystick coils and the digital data from the PWC bus.

obtained from the PWC system can be used with the velocity 
smoothness algorithm to determine the user smoothness of input 
without the need to mount additional sensors.

The tremor frequency and range of the fixed course partici-
pants, depicted in Figure 8, showed that most of the participants 
did not have a significant tremor. Only two of the participants  
appeared to have a significant tremor; however both were young 
student nurses who had never driven, or attendant operated,  
a PWC who were asked, without prior warning, to take part as 
novice, non-disabled non-users for the purpose of comparison.  
They were both very nervous and anxious about undertaking 
the test course which we believed was the reason for the tremor  
and the smoothness results. The other participants had little  
variation in the range of smoothness (Figure 9), although their  
individual ranges appeared to indicate that this might be an  
identifying feature for each individual.

The results in Figure 10 showed the three day range of tremor 
and smoothness for participant C1 and C2, who were also, B1 
and B2 respectively. The participants undertaking the test course 
were instructed to complete the course as quickly as possible as  
if on a driving test. When the day to day user and their driving 
test course tremor and smoothness were compared it was clear that  
there was a much narrower range for the test course. Additionally, 
C2 reported feeling unwell and to have had difficulties getting 
around the outside rear of their house on day three.

There was a large range of tremor variation on the last day for 
C2, however the smoothness range remained similar to the 
other days unlike the two non PWC users (B5 and B6) on the 
test course who showed large variation in both smoothness and 
tremor when stressed. There remains a question as to whether the  
difficulty in operating the PWC for C2 was because of an  
increased tremor due to illness, or that the action of attempting to 
manoeuvre the platform gave rise to a tremor-like motion of the 
joystick or that the increased tremor and difficulty reported in 
manoeuvring the chair was a result of feeling unwell. We believe 
the latter is the case, otherwise smoothness would also have been  
affected.

Joystick position analysis
The PWC user is likely to have different joystick usage profiles  
for different tasks. For example driving indoors in a highly  
cluttered environment will require more left to right movements 
to avoid objects compared with driving outside in open spaces 
which will not require so much correction. The user is provided 
with a range of programmed profiles to suite each environment. For 
example acceleration, deceleration, rate of turn and velocity will 
have relatively low values for indoor use and high values when 
in open spaces or outdoors. Ideally, an adaptive assistive system  
could use the user’s driving characteristics to recognise the  
environment in which the user is driving, and then automatically 
select the most appropriate profile for the user and micro-adjust as 
the user’s needs change over the day.
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Figure 8. Tremor frequency comparisons for all fixed course participants.

Figure 9. Smoothness comparisons for all fixed course participants.
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Figure 10. Tremor frequency (T) and smoothness (S) features variability day-to-day compared to specific task for participants C1 and 
C2.

The results in the tables and figures abbreviate forward right 
‘a’ component of the ellipse as ‘fra’ and rear right ‘b’ as rrb or  
‘ra/la’ and ’rb/lb’ as right/left ‘a’ and right/left ‘b’, where not  
otherwise labelled.

The driving test course results for the different features are  
given in Table 10a and Table 10b, Figure 11 shows the  
forward quadrants only as the task was mainly forwards where the 
reverse element was specifically tasked into a left hand corner and  
therefore not enough data was present for proper analysis,  
although the results are still given in Table 10. This test course 
could be described as a highly cluttered indoor environment,  
therefore it would be expected that more time would be spent turn-
ing than driving in a pure forward or reverse direction due to the 
lack of free space. The data for the ‘C’ group for the three days  
was analysed in two ways, firstly the range of change over  
the day was broken down into segments of driving greater  
than 30 seconds over each of the entire day’s driving, given in  
Table 11 and Table 13, and secondly was to use all of the data  
combined for each entire day, Table 12 and Table 14.

The outcome indicated that the joystick turn position range  
was clearly not suited to the manoeuvring needs during  
the test course, the ellipse bias parameter ‘b’ being much larger  

and towards the limit of the left right throw range shown in  
Figure 11, for all of participants. This mapping can be clearly  
seen from the joystick ellipse profile of B1/C1 shown in Figure 12.  
However when we look at the extended three day experiment  
it can be seen from the data shown in Figure 13–Figure 14  
that the settings given to the user were more suited to them for 
their environment, with the ellipse parameters plotted and shown in  
Figure 15. It is also clear when we compared the range of  
variance within the day and over the days for group C with  
their performance during the B group test course that joystick  
position was task specific, furthermore there appeared to be  
a range of operation specific to each individual user, as seen by the 
tightly clustered ellipse parameters in Figure 11, this indicated  
that this metric is a potential identifying feature as well as a means  
of adjusting the PWC initial profile mappings and to re-map them  
as their abilities change over the long-term.

Joystick velocity vector bias analysis
In addition to the PWC user joystick positional pattern and 
biases, due to physical and/or cognitive impairment, there is the 
issue of the rate of change of position. Where smoothness and  
tremor give an overall quality to the motion, there still remains 
the issue of which specific direction the motion needs more or 
less damping. For example a user may find pulling the joystick 
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Table 10A. Feature data from driving test course (median values).

Id Run FFT 
(Hz)

‘S’ 
*102

Position bias ellipse Velocity vector bias 
(mm/s) Obstacle bias

Driving 
timeforward 

right/left
rear 

right/left forward rear forward rear

ra rb la lb ra rb la lb right left right left right left right left % Total 
(s)

B1

1 1.73 1.69 17 74 13 76 10 44 10 13 8 11 13 18 27 32 34 41 80 111

2 1.19 1.69 14 73 13 69 42 116 5 8 8 10 11 8 25 25 35 32 69 100

3 1.14 1.65 24 97 21 85 23 76 17 119 8 8 8 15 34 28 45 32 99 146

4 1.95 1.53 15 80 16 80 17 55 9 26 8 8 8 7 33 30 37 35 100 122

B2

1 1.19 2.24 29 100 31 95 25 72 10 22 11 13 8 10 33 31 34 31 99 145

2 1.3 2.13 24 86 28 90 12 48 9 36 13 10 12 8 32 33 36 41 97 146

3 1.08 2.49 29 97 34 99 5 25 21 55 12 13 11 20 33 29 34 44 98 143

4 1.19 2.42 28 99 32 98 16 59 44 112 12 13 8 8 38 32 35 37 98 152

B3

1 1.84 2.41 29 90 18 73 17 31 8 25 11 11 10 18 37 33 38 35 100 119

2 1.84 2.41 30 94 19 74 4 19 1 7 8 13 7 10 37 36 39 35 99 118

3 1.46 2.5 28 81 19 76 9 35 4 16 8 15 9 14 40 33 36 42 96 110

4 1.73 2.82 28 86 24 74 13 40 10 27 11 13 12 18 39 35 35 35 97 120

B4

1 1.41 2.18 25 96 20 71 21 63 34 84 11 13 10 37 30 36 38 32 98 116

2 1.9 2.02 26 87 20 74 13 45 6 20 8 8 10 13 35 39 37 40 100 112

3 2.01 1.71 26 90 18 67 15 55 1 8 8 8 8 12 31 39 38 46 99 110

4 1.84 1.89 25 86 19 70 17 57 3 17 10 10 7 7 34 36 38 41 100 111

B5

1 1.03 4.49 42 105 32 86 55 127 42 120 21 14 7 31 35 41 37 31 79 125

2 3.36 3.87 43 112 35 103 55 127 8 24 15 16 15 7 35 41 35 37 99 154

3 1.3 3.23 46 114 39 103 21 50 54 126 12 15 5 12 35 37 40 27 100 130

4 1.52 2.72 39 109 38 106 9 35 0 0 8 10 5 0 39 34 36 0 100 127

B6

1 4.66 4.05 42 110 35 103 43 127 22 44 13 10 12 18 38 42 25 34 66 115

2 1.46 3.62 39 109 41 109 35 117 8 24 13 10 7 13 35 30 43 35 78 111

3 1.08 3.24 41 112 38 108 14 41 21 48 11 8 8 26 33 31 36 36 91 122

4 1.41 3.33 32 105 28 86 9 26 21 46 11 11 8 15 36 31 38 45 90 115

B7

1 1.03 2.16 24 96 22 68 6 28 26 10 12 12 6 17 31 31 41 23 100 137

2 1.03 2.15 29 102 21 74 14 39 13 26 14 15 9 18 30 32 40 38 100 149

3 1.57 2.58 24 98 27 83 22 50 17 61 15 15 9 33 31 33 38 26 100 159

4 1.08 2.49 24 94 21 76 16 44 12 37 18 15 9 19 33 38 39 39 99 153

towards them is much easier than pushing away from them which  
results in different rate of change between driving forward and 
reverse which may change for the user over time. Whilst this  
research has simply depicted the velocity in quadrant vector form  
(forward-left (f l), forward-right, rear-left (rl), rear-right (rr)) in the 
box-plot format shown in Figure 16, it is expected in future that  
the vector will be split into turn and speed component form for 
adjustment of damping.

There is a certainty that in general reversing will not be as smooth  
as driving forward; although participant B2/C2 appeared to 

be equally smooth driving forward or backwards there was a 
slight reduction in the relative range of smoothness in the rear 
right compared to the rear left which may have been due to the  
user’s restricted movement on the left side whilst the partici-
pant B1/C1 appeared to have difficulty in the rear right quadrant  
according the data (Figure 17).

Obstacle proximity bias analysis
An additional four laps of the driving course were undertaken  
with the collision avoidance system on so that any bias in the  
proximity to obstacles that a driver has as they pass that obstacle  
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Table 10B. Feature data from driving test course (median values).

Id Run FFT 
(Hz)

‘S’ 
*102

Position bias ellipse Velocity vector bias 
(mm/s) Obstacle bias

Driving 
timeforward 

right/left
rear 

right/left forward rear forward rear

ra rb la lb ra rb la lb right left right left right left right left % Total 
(s)

B8

1 1.19 1.85 23 91 16 74 19 48 3 10 10 10 6 6 35 35 33 45 89 169

2 1.25 2.02 27 101 22 70 8 18 26 6 10 10 6 39 40 33 38 25 95 150

3 1.08 1.72 28 88 19 79 45 116 6 6 10 10 6 6 34 34 36 39 99 130

4 1.46 2.11 27 93 26 74 40 94 22 10 10 12 6 10 38 32 38 36 97 142

B9

1 1.25 2.3 25 86 22 70 28 80 17 81 15 14 10 17 34 33 41 33 95 137

2 1.03 2.34 28 106 22 69 20 62 0 4 14 11 9 4 30 35 43 38 96 136

3 1.03 2.49 33 98 28 77 17 53 46 86 13 13 10 15 34 38 40 31 96 128

4 1.19 2.71 31 90 22 75 28 80 24 25 15 15 11 12 35 36 41 34 94 137

B10

1 0.76 1.86 19 99 22 71 12 38 39 125 10 10 4 12 34 31 35 22 99 223

2 1.11 1.64 25 89 24 86 41 100 11 42 10 7 9 12 29 30 30 36 100 190

3 0.6 1.64 19 95 21 78 48 109 13 20 10 6 9 6 35 29 41 36 100 207

4 0.65 1.67 22 97 26 89 25 69 28 33 9 10 6 6 29 28 33 30 100 198

B11

1 1.73 1.57 24 84 28 85 15 53 35 60 10 10 11 10 31 25 38 35 99 136

2 1.84 1.91 31 87 32 84 14 44 39 91 12 10 10 13 29 32 37 49 96 140

3 1.25 1.99 31 91 30 81 14 47 42 100 12 12 10 26 28 31 38 19 99 145

4 1.14 2.11 29 89 27 80 23 66 33 8 13 12 9 27 29 29 38 40 98 134

B12

1 2.33 1.72 26 96 24 79 28 28 23 32 10 10 6 19 27 28 36 22 94 178

2 1.03 1.55 28 98 25 88 19 18 3 127 10 9 10 4 28 30 38 29 99 158

3 1.19 1.46 29 90 22 88 12 34 35 117 9 10 6 9 30 29 37 21 98 144

4 2.11 1.51 23 80 26 88 21 40 16 124 10 10 9 9 25 28 37 18 99 133

B13

1 1.25 1.63 17 84 21 72 20 28 26 37 10 10 6 10 28 28 37 46 95 146

2 1.19 1.64 20 84 20 70 20 44 46 111 10 10 10 10 28 30 34 12 91 145

3 1.08 1.50 16 69 23 61 14 53 31 22 7 6 10 13 26 29 39 23 92 151

4 1.84 1.35 23 92 19 74 10 29 7 1 10 6 4 29 27 30 37 10 94 143

B14

1 2.28 2.60 18 93 24 86 20 43 37 112 15 19 12 9 42 29 37 31 88 147

2 1.25 2.11 23 91 23 83 14 46 40 122 14 12 10 10 34 32 39 17 99 131

3 1.25 2.18 23 93 19 83 16 38 34 100 14 12 10 12 33 33 42 24 100 134

4 1.14 2.07 28 96 16 76 18 59 13 13 12 14 9 15 35 33 48 40 100 137

could be determined which may indicate some visual or per-
ception difficulty; therefore it would be imperative to include 
this as a metric in any driving performance assessment and  
a definitive component for the adjustment of any navigation assis-
tive system. The quadrant relative bias is shown in Figure 18,  
where the magnitude in the y axis denotes the amount of differ-
ence between the user joystick input and the system determined  
corrected joystick input calculated to keep the platform a safe  

distance from the obstacle, where the ‘k’ value was fixed perma-
nently at the same value for all.

Participant B1 had a bias in the rear right quadrant which  
appeared to correlate with the velocity bias the user also had 
in that quadrant when they participated in the group ‘C’ trial.  
This relevance has more significance when we compare B1 with 
all of the other participants who appeared to have a greater level 
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Figure 11. Joystick forward quadrants position pattern ellipse bias parameters for all fixed course participants.

Table 11. The range of variance of features for C1 for each day showing the minimum, 
median, and maximum values when the motion of the platform was at least 30 seconds in 
duration.

C1
Day

1 2 3

Feature min med max min med max min med max

FFT Joystick digital ‘y’ axis (Hz) 1.1 4.8 6.0 2.3 4.5 10.6 0.5 2.2 4.4

Velocity vector (x, y) ×102 
smoothness ‘S’ 1.4 3.5 6.1 1.7 2.9 3.9 2.2 2.9 5.3

Input bias ellipse

F/right a 6.5 19 44 6 13 24 12 18 24

F/right b 13 20 104 18 34 60 15 29 71

F/left b 5 18 35 6 10 21 8 16 32

F/left b 14 21 97 21 36 70 20 26 102

R/right a 3 16 49 6 20 40 16 25 36

R/right b 18 43 127 6 56 96 22 31 102

R/left a 8 13 35 2 17 32 10 18 47

R/left b 16 30 76 28 57 127 18 72 90

Velocity vector bias 
(mm/s)

F/right 10 24 45 10 16 24 12 16 40

F/left 13 25 33 11 19 29 10 15 42

R/right 6 28 89 10 26 73 15 33 51

R/left 9 21 160 11 21 46 14 23 36

Driving time
ratio 0.1 0.5 1.6 0.4 0.7 1.6 0.1 0.4 1.0

total 39 95 360 30 75 161 56 121 1424
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Table 12. Average daily feature values for C1 calculated from complete 
dataset of all motions.

C1 Day

feature 1 2 3

FFT Joystick digital y axis (Hz) 0 0 0

Velocity vector (x, y) ×102 smoothness ‘S’ 3.5 2.9 4.4

Position bias ellipse

forward

right a 34 16 36

right b 20 35 29

left a 32 15 35

left b 20 38 27

rear

right a 26 22 28

right b 44 59 62

left a 23 22 25

left b 37 59 69

Velocity vector bias (mm/s)

Forward
right 24 16 30

left 25 18 33

rear
right 14 20 28

left 18 20 21

Driving time
ratio 0.7 1.1 0.4

total 4507 3822 6722

Table 13. The range of variance of features for C2 for each day showing the minimum, median, and 
maximum values when the motion of the platform was at least 30 seconds in duration.

C2
Day

1 2 3

Feature min mid max min mid max min mid max

FFT Joystick digital ‘y’ axis (Hz) 0.3 3.0 8.8 1.1 2.9 5.7 0.5 4.8 14.6

Velocity vector (x, y) ×102 smoothness ‘S’ 1.5 4.2 5.9 3.4 3.7 5.1 1.3 3.5 5.1

Input bias ellipse

F/right a 7.5 14 50 0 22 50 0 13 39

F/right b 5 88 127 15 62 127 7 88 127

F/left b 5 16 56 11 15 29 7 15 47

F/left b 18 95 127 8 102 127 7 98 127

R/right a 0 29 46 4 22 41 4 30 49

R/right b 13 88 124 10 50 127 8 76 127

R/left a 1 25 36 3 23 29 1 26 44

R/left b 8 95 116 3 108 125 7 91 127

Velocity vector bias (mm/s)

F/right 8 23 45 7 22 34 5 19 35

F/left 8 25 78 8 21 46 5 23 89

R/right 6 20 153 8 16 23 5 18 36

R/left 9 22 41 7 16 21 6 19 88

Driving time
ratio 0.2 0.6 1.5 0.3 0.8 1.8 0.1 0.6 1.5

total 35 91 1192 36 85 402 32 69 812
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Table 14. Average daily feature values for C2 calculated from 
complete dataset of all motions.

C2 Day

feature 1 2 3

FFT Joystick digital y axis (Hz) 0 0 0

Velocity vector (x, y) ×102 smoothness ‘S’ 3.9 4.0 3.6

Position bias ellipse

forward

right a 43 30 21

right b 67 86 88

left a 46 24 21

left b 67 111 93

rear

right a 42 45 38

right b 83 81 74

left a 28 33 32

left b 93 112 91

Velocity vector bias (mm/s)

Forward
right 18 21 19

left 21 22 22

rear
right 19 15 16

left 22 17 19

Driving time
ratio 0.7 0.6 0.6

total 11261 2441 24364

Figure 12. Joystick positional pattern for B1/C1 during test course.
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Figure 13. Joystick forward quadrant position pattern ellipse bias parameter over time compared to specific task for B1/C1 and 
B2/C2.

Figure 14. Joystick rear quadrant position pattern ellipse bias parameter over time compared to specific task for B1/C1 and B2/C2.
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Figure 15. Positional bias plot showing forward left and right ellipses of participant C1 day 2.

Figure 16. Velocity vector quadrant bias for all fixed course participants.
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Figure 17. Three day velocity vector quadrant bias variability over time compared to specific task.

Figure 18. Obstacle avoidance quadrant relative bias for all fixed course participants.
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Figure 19. Course time and driving time percentage for all fixed course participants.

of system intervention bias towards the rear left side as would be  
expected when manoeuvring into a left hand corner. There was 
a significant range of intervention across all of the participants  
with some having had very little difference between system  
generated trajectories and their own and yet others had a large  
range of difference.

Duration of active PWC driving analysis
The driving ratio is given in the left hand column of each par-
ticipant and the total course time in the right hand column in  
Figure 19. The large range of both ratio and overall time for  
B1/C1 was thought to be because the participant tried to 
concentrate too hard on not making a mistake rather than  
undertaking the course as quickly as possible. Participants B6 and 
B7 were novices and therefore unfamiliar with PWC’s response 
to their input. This caused their stop/drive ratio and overall  
time to be irregularly varied. Participants B7, B8, B10, and B12 
had a narrow driving to stop ratio range but a varied overall time 
to complete course range which might have suggested tiredness  
or cognitive difficulty, participants reported these issues at the end 
of the test; however there was no direct correlation to each run.

It is clear when looking at the three day data that without deter-
mining exactly what task the PWC was undertaking, such as  
a fixed course, the ratio and overall PWC use time can only be 
a long term or day-to-day feature rather than over each day.  
However, a smart assistive PWC system would potentially be 
able to identify the platform location and therefore determine,  
for example, that the user was taking too long to negotiate the  

bathroom doorway and use that information together with  
the obstacle proximity feature to determine that the user is in  
need of greater assistance.

Pattern recognition analysis of feature set
The purpose of this research is to identify potential features and 
metrics that identify user driving patterns and changes in those 
patterns over time. This information can then be used so that  
assistive PWC systems can adapt over time to the user’s chang-
ing needs. Therefore the features must indicate that changing state. 
In order to test this we have used classifiers which can be used to 
run in real-time on embedded hardware. One task is to examine 
whether the driving characteristics enable the identification of each 
participant.

Whilst there are not many samples, they can be reasonably  
divided into testing and training sets (Table 15) with ten tests 
run for each classifier to improve robustness of testing. The  
outcome determined that it was possible to identify each partici-
pant between 74% and 86% correctly (Table 16) despite only hav-
ing a limited dataset. If the richer dataset for group ‘C’ is used  
then, as can be seen in Table 17, there was a certainty of correct 
identification between 86% and 95%, dependent on the classifier 
used, between C1 and C2.

When data from C1 and C2 were analysed as it changed over the 
three days (Table 18 and Table 19), by labelling each day and 
comparing the three days for each participant individually, there 
was a much lower correlation of 65% to 85%, indicating that 
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Table 16. Pattern recognition test of driving test course participants.

All participants test number

Classifier 1 2 3 4 5 6 7 8 9 10 Ave

Linear Bayes 
Normal Classifier 89.3 82.1 89.3 89.3 89.3 82.1 78.6 89.3 85.7 85.7 86.1

K-Nearest 
Neighbour-1 89.3 82.1 75.0 82.1 82.1 85.7 89.3 75.0 85.7 75.0 82.1

Naive Bayes 
classifier 82.1 78.6 82.1 92.9 85.7 75.0 78.6 71.4 82.1 89.3 81.8

Parzen classifier 92.9 85.7 85.7 89.3 85.7 82.1 78.6 85.7 78.6 82.1 84.6

Fisher’s linear 
Discriminant 71.4 75.0 71.4 67.9 89.3 75.0 75.0 71.4 71.4 75.0 74.3

Logistic linear 
classifier 83.9 75.0 78.6 85.7 80.4 73.2 78.6 78.6 89.3 85.7 80.9

Support vector 
machine 82.1 89.3 67.9 82.1 64.3 78.6 78.6 75.0 85.7 75.0 77.9

Table 17. Pattern recognition test of three day participants for individuality.

C1 versus C2 test number

Classifier 1 2 3 4 5 6 7 8 9 10 Ave

Linear Bayes Normal 
Classifier 91.8 90.0 90.0 95.4 89.1 91.2 93.6 94.5 90.9 90.9 91.7

K-Nearest Neighbour-1 96.4 90.9 98.2 92.7 96.4 96.4 92.7 87.3 98.2 98.2 94.7

Naive Bayes classifier 83.6 80.1 87.3 90.9 89.1 85.4 85.4 88.2 90.1 81.2 86.1

Parzen classifier 90.1 92.7 92.7 96.4 96.4 100 92.7 92.7 94.5 98.2 94.6

Fisher’s linear 
Discriminant 92.7 88.2 90.0 95.4 88.2 93.6 93.6 90.0 88.2 91.2 91.1

Logistic linear 
classifier 90.0 89.1 93.6 91.8 90.0 92.7 90.0 91.8 88.2 88.2 90.5

Support vector 
machine 92.7 94.5 91.8 91.8 86.4 90.0 90.9 92.7 90.9 94.5 91.6

Table 15. Pattern recognition testing criteria.

Test Total 
samples Classes Training/

test split

All participants test 56 14 (users) 50:50

A versus B test 140 2 (A and B) 60:40

A change over time test 35 3 (Day 1, 2 ,3) 60:40

B change over time test 105 3 (Day 1, 2 ,3) 60:40
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Table 18. Pattern recognition test for changes over the three day period (C1).

C1 change over time test number

Classifier 1 2 3 4 5 6 7 8 9 10 Ave

Linear Bayes Normal 
Classifier 66.7 63.0 51.9 77.8 74.1 63.0 77.8 51.9 63.0 59.3 64.9

K-Nearest Neighbour-1 70.4 70.4 85.2 63.0 70.4 77.8 85.2 77.8 55.6 77.8 73.4

Naive Bayes classifier 88.9 74.1 96.3 81.5 92.6 85.2 85.2 88.9 74.1 85.2 85.2

Parzen classifier 63.0 70.4 66.7 59.2 70.3 59.2 66.7 55.6 85.2 66.7 66.3

Fisher’s linear 
Discriminant 48.1 48.1 66.7 66.7 63.0 63.0 70.3 66.7 77.7 81.5 65.2

Logistic linear 
classifier 70.3 85.2 62.9 55.6 85.2 81.4 85.2 63.0 63.0 85.2 73.7

Support vector 
machine 66.7 70.4 55.6 66.7 81.5 59.3 77.8 85.2 77.8 74.1 71.5

Table 19. Pattern recognition test for changes over the three day period (C2).

C2 change over time test number

Classifier 1 2 3 4 5 6 7 8 9 10 Ave

Linear Bayes Normal 
Classifier 71.6 64.2 59.3 74.1 72.8 69.1 64.2 76.5 72.8 66.7 69.1

K-Nearest Neighbour-1 82.7 77.8 70.4 85.2 77.8 82.7 90.1 85.2 82.7 87.7 82.2

Naive Bayes classifier 74.1 75.3 69.1 71.6 69.1 75.3 80.2 74.1 69.1 79.0 73.7

Parzen classifier 76.5 79.0 83.9 71.6 87.7 77.8 82.7 71.6 74.1 72.8 77.8

Fisher’s linear 
Discriminant 74.1 76.5 65.4 71.6 69.1 72.8 71.6 72.8 71.6 60.5 70.6

Logistic linear 
classifier 71.6 64.2 76.5 71.6 71.6 77.8 70.4 76.5 74.1 72.8 72.7

Support vector 
machine 69.1 75.3 69.1 75.3 77.8 71.6 75.3 70.4 74.1 65.4 72.3

there had been a variation between the days. There was of course 
variation during each of the days and this was not differentiated  
by the labelling due to lack of ground truths and specific tasks 
undertaken over the course of each day, this requires further  
investigation in a more observed environment. However, these 
results clearly show that there is already potential for adjusting the 
system over the long term without the ground truths, which is an 
important step towards developing an automated assistive system.

Conclusions
The development and provision of effective assistive technology 
to enable an individual to perform daily tasks on a more equal  
basis to someone who does not have the same disability can be 
challenging and hard to quantify, let alone justify, when funding 
demands are forever stretched. This research has sought to ease 
the development of an adaptable adjustable system by identifying 
some quantitative and qualitative measures with which to test the  
requirement of providing adaptive assistance to the PWC user 
in addition to determining the driving features and adjustable  
elements.

It is interesting to note from the results that, when assessing 
individuals, their awareness of the circumstances, location, and  
level of observation significantly affects their behaviour and per-
formance. Therefore information as to the user’s location and the 
task they are undertaking needs to be additionally identified by the 
smart system for it to be able to provide a robust adaptive system.

This research has identified that:

•	 The mapping of Joystick position to speed and turn 
interpretation can be adjusted over the long term as the 
user‘s movement pattern changes. An initial setup mapping 
can be undertaken for calibration and recalibrated sometime 
later. From the results, it does not appear to be necessary to 
update over the very short term such as during the course 
of a single day. Without knowing what the time related task 
being undertaken, there was no meaning to the short term 
time duration as we discovered when we undertook the long 
term 3 day testing. For example, there was no distinction 
between the users just moving the joystick accidentally or 
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Supplementary material
Supplementary File S1: Questionnaire for the collection of data from powered wheelchair users.

Click here to access the data.

out of boredom and actual intended motion. The time feature 
has a clear function to be employed as a measure of how 
quickly a user can undertake a specific set task, this translates 
to the passing through of doorways and passageways where  
they are identifiable by the system. The time function 
can also indicate the general trend of usage over time. 
The ratio of driving time can be used as a long term trend 
potentially indicating the user’s ability change over time. This  
feature can also be used on task specific activities as a measure 
of the user’s quality of navigation and therefore is a factor 
in the user abilities as they change over time during the day  
and over the days which can also indicate the need for a 
change in the level of required assistance.

•	 The smoothness feature is good for identifying the long  
term trend, when combined with tremor frequency, and as 
a short term daily identifier of the need to filter the input  
signal. This feature also has the important characteristic  
of being an identifier for the need to change the level of 
assistance from a smart assistive PWC.

•	 The frequency of tremor obtained from the joystick is 
a good measure of user change over time providing the  
time frame is of sufficient length to discount short term 
anomalies caused by controlled user actions which mimic 
a tremor. The smoothness feature should be used for the  
short term input filtering.

•	 The sensor feedback from the collision avoidance system 
can be used to indicate the proximity of obstacles as  
the user negotiates the environment. This produces a feature 
when the user input is compared to the system generated 
output that can be used to adjust the assistance, and level  
of assistance offered by the system.

•	 Finally the velocity vector can be used to determine the 
level of user uncertainty at some moment in time, such as  
when negotiating tight spaces and the user over reacts 
or makes erratic corrections. This is an interesting and  
important observation.

The paper has therefore identified features and metrics which, 
with further refinement and testing, are suitable to be used to set 
up industry standard PWC control systems and to monitor their 
use for adjustment as the user’s needs change over time. This is a  
significant improvement over the current trial and error method 
and these features and metrics can be used to adjust/correct user 
joystick input to keep them safely in control of their machine 
for longer rather than crossing some digital threshold and deny-
ing them control. Further work is required to obtain user ground 
truths with respect to user actions, and to monitor their changes in  
behaviour over longer periods of time, when participants are using 

their own PWCs in order to determine precise adjustments for  
the smart adaptive system. This would need to involve  
accurate observation of panicky movements and spasms and  
users negotiating real-world obstacles.

Data availability
The data supporting the findings reported in this study have  
been uploaded to OSF: https://osf.io/w95ba/42. The following  
files are included:

Extended_Day_Data.zip
This folder contains all of the data collected over the extended 
experiment which includes: Time in milliseconds; joystick  
speed; joystick turn; drive profile; x body accelerometer; y body 
accelerometer; z body accelerometer; body roll; body pitch;  
body yaw; and collision event. Only days which contained  
sufficient data were reported in the results.

Fixed_Course_Feature_Results.xlsx
This file lists the features identified for each participant on all  
four attempts of the driving course.

Initial_Joystick_Data.zip
This folder contains the artificially generated tremors for  
determination of the suitability of the PWC joystick data rate  
from the manufacturers system CAN Bus.

Joystick tremor analysis.xlsx
This file summarises the artificially generated joystick tremors.

Pattern_Recognition_Combined_Data.zip
A folder containing the feature data for the pattern recognition  
testing from the driving course and the multiple day usage.

SANAS_Driver_Symptoms_Data.xlsx
Anonymous questionnaire responses.

Wheelchair Fixed course Data.zip
Anonymized data from the 14 participants on the driving course 
assessment with key.
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In the Introduction, the statement “Young people’s needs, with regards to the benefits of the PWC, have
not been fully researched” relies on ref 5 which is now 14 years out of date. The authors need to carry out
a contemporary literature search and review up-to-date research studies. This needs attention and the
findings from a search may further inform or adjust the evidence underpinning the research aims and
objectives.

The “ability-to-operate test” is carried out to assess individuals for PWC provision is primarily concerned
with safety (chair user and others in the environment) and has more to do with how the chair user
perceives, judges and interprets the environment in order to drive the PWC successfully.

It is unclear from Table 1 what are the disabilities “which currently prevent individuals from operating a
PWC without assistance”. Many of those listed e.g. spasticity, weakness, would not prevent use of a
PWC. Some listed are co-occurring e.g., spasticity/hemiplegia. This needs clarification. 

The statement that “This process may take several sessions and sometimes a satisfactory outcome is not
achieved” requires the support of evidence specifically relating to the issues addressed in the paragraph,
i.e. users’ control of the joystick.

“Some of the observations commonly reported”. Please provide the sources of the reported observations
that are considered to be common.

What is the rational for including people who did not use powered chairs in group B? They are noted as
‘control’ – what does that mean? Is it that they did not have a health condition that would need a PWC for
mobility? Also, what is the meaning of not applicable (N/A) for B12’s reason for having a PWC? The text
states that there were 12 group B participants but table 4 indicates that there were 12. These issues need
clarification.

How were the activities of group C in the PWC recorded? Then, how were the recordings analysed? This
needs to be addressed so that similar studies can reproduce the methods.

Regarding the assessment of driving time and stationary time it would be helpful to reconsider the
assumption that stationary time may “indicate their current capability” and “have some relationship to
levels of tiredness and reasoning and thus some direct relationship to the amount of assistance which is
required.” PWC users who work may spend a fair amount of time stationary (e.g. at a work station or
operating a computer) and/or not driving the chair (e.g. because they may be driving their
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required.” PWC users who work may spend a fair amount of time stationary (e.g. at a work station or
operating a computer) and/or not driving the chair (e.g. because they may be driving their
car/van/transporter travelling to and from work).

How did the authors define a ‘good day’ and a ‘bad day’? How was this judged by the PWC users? Please
provide a definitions. Table 5 and text – there are three users with high collision numbers – the majority in
your category A. The remaining users had far fewer collisions. Is it fair to take an average? Similar
comments are relevant for table 6. The same users A3 and A5 have high numbers. Interestingly, A 10 has
fewer collisions on a ‘bad’ day than on a ‘good’ day. Any particular reason noted? Also, did the report of
collision with people allow differentiation between the PWC user colliding with another person and
another person colliding with the PWC?

Page 19. The authors state “due to physical and/or cognitive damage”. Please change ‘damage’ to
‘impairment’. The features of positional pattern and biases could also be due to posture. It is not clear if
the participants were seated with postural support, or had sufficient trunk muscle ability to be independent
in postural support.

Page 27 para 2: please rephrase “ …on not making a mistake and a colliding rather than having
undertaken the course …” as it does not scan well. Similarly “..use the PWC and unfamiliar with its
response …” (were unfamiliar?)

p.27 – this is an interesting scenario – “the user was taking too long to negotiate the bathroom doorway ..”
and so needed assistance. Whilst it is clear that the proximity device will sense an obstacle, would it also
sense water spillage on the bathroom floor? This would be a safety reason for the PWC user to stop at the
doorway.

Typo – “When the data from C1 and C2 was analysed”  data   analysed.were

The authors have appropriately summarised what this research has identified. They should also discuss
the limitations of the study. One issue arises that it would be helpful to have the views of the researchers
about. The test circuit used had fixed features, yet everyday outdoors driving for PWC users requires
manoeuvring and negotiating moving features – e.g. pedestrians, cars/bicycles etc, trolleys, buggies, etc.
how would the system work in these everyday circumstances? Although the authors did not research this
in the study, is it something that will need specific further research in order for the new devices to have
benefits for users in daily life with a PWC?

This review has not commented on the bioengineering aspects of the paper as the reviewer is not a
bioengineer. A review by a peer bioengineer working in powered wheelchair research is recommended.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.
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Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Referee Expertise: My area of expertise is in research with users and providers of powered wheelchairs
from a clinical and functional perspective. My research field is in physical and complex disability and the
use of assistive technology by those with long term functional limitations. I do not have expertise in
bioengineering and cannot comment on those aspects of this article.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 05 Dec 2017
, University of Kent, UKMichael Gillham

We would like to thank the reviewer for the helpful and thorough review. We have subsequently
made changes to the content, as suggested, with regard to all of the points raised. 

 There are no competing interests.Competing Interests:
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   Juan Carlos García
Department of Electronics, University of Alcala, Alcalá de Henares, Spain

This paper is very interesting for future developments in Assistive devices for Powered Wheelchairs
(PWC). However I have found several points that need to be clarified, justified or extended.

The authors mention the “smart PWC collision avoidance system” (page 7, second paragraph) but they
give no details about which is the smart PWC used. This information must be included here in order to
know the actual expected performance of that avoidance system. If the set of users (A, B and C) had
different PWCs such information should also be included, because this is an important factor that could
affect the overall system’s performance.

In the same page 7, Table 3, the concept “Driving ability” was included with an apparent numeric scale
from 1 to 5. What does it mean? How was that figure obtained? Was it an objective quantity or subjective
quality?

The evaluation course shown in Figure 2 needs further details. There is no metric information there and
the dimensions of a test driving course have a great importance when evaluating driving abilities. Full
details about lengths and widths of corridors and dimensions and location of obstacles must be included.
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The section “Feature development” will be clarified if a list of such features is introduced before them, for
instance after the first paragraph on page 9, just before the first feature studied (that is “input tremor and
smoothness”). Also I guess that there is a miss-reference in the first paragraph on page 9: it is mentioned
“Table 1” and I think that the right reference should be “Table 2”.

On section “Joystick positional bias”, paragraph 2, there is a mention to axes x and y in Figure 3. Such
axes were not represented there. Apparently they are supposed to be aligned with the Forward-Reverse
(axis x) and the rotation (axis y) commands. Please: let it be clear on Figure 3 and in text. I have to say
that normally I expect to see Joystick actions as they are physically found on the actual device that is
“Forward” action pointing upwards.

The “Proximity to obstacles” section needs to be improved. Although authors make a direct mention to
reference 14, in the current article Equation (9) has all of its parameters undefined so it is meaningless
here. For instance, what is the “damping factor” mentioned in text? Please, fix that issue.

Figure 4 shows the so called “collision avoidance zoning”. Also here appear a lot of undescribed features.
Why the zones appear inside some elliptic regions? Why there are two (apparently) important points
here? One of such points is the turning centre of the PWC (between the traction wheels, back on chair)
but, what is the meaning of the other point of interest? What is the meaning of the small rectangles? Are
they a representation of the PWC wheels? Why are there two elliptic regions?

In section “Feature evaluation…” on page 12 appears up to 7 classifiers. But, are the input vectors the
same for all the seven classifiers? Please, give more details about what features are used for each
classifier and, if all of them are used, give a list summarizing them.

In my opinion, the section “Joystick tremor and smoothness analysis” must be suppressed or deeply
reformatted. Let us go directly to Figure 7. From there it is stated that the 50Hz digital info is enough for
identifying tremor so no additional hardware is required. That is evident knowing the expected frequency
characteristics of tremor and the 50Hz sampling frequency of the system bus. Such 50Hz frequency on
system bus, according to sampling theorems, are enough for identifying frequency patterns of even 10Hz
(theoretically, up to 25Hz). So there is no need for introducing new devices for up-sampling low frequency
information (like the one of tremor) up to 250Hz. So the results on Figure 7 are self-evident and any
difference there could only be derived from systematic errors on the measuring process.

In Figure 10, the vertical scale is “Frequency” and “Smoothness”. However, the data columns were
referred to as “T” and “S”. I think that “T” must be replaced by “F” of Frequency.

About the section “Pattern recognition…” on page 27 there are some points that need further
improvement. As I said before, somewhere the reader needs to find what were the actual features
introduced to the classifiers. But here we need to know also the ‘output classes’. Such info is shown in
Table 15, but it is not clear to me the meaning of all the classes. For instance: first row in Table 15 show
14 classes that can be identified as one per user in Table 4. But, what about the other classes in other
rows? And also, why there is not an option for a “not classified” or “not identified” class?

I hope my questions and comments could help to improve this article. Nevertheless I would like to
congratulate the authors for their excellent work.

Is the work clearly and accurately presented and does it cite the current literature?

Yes
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Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Referee Expertise: Assistive technologies, embedded systems, human machine interfaces, smart
wheelchairs

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

Author Response 05 Dec 2017
, University of Kent, UKMichael Gillham

We would like to thank the reviewer for the helpful and thorough review. We have made
amendments to the content as suggested by the reviewer to all of the points raised with the
exception of: The joystick plot orientation of axes was intended to correspond to the collision
avoidance (assistive technology) body frame of reference. Although the 50Hz data rate from the
joystick is sufficient to determine tremor frequency up to 25Hz our intention was to determine
whether velocity was an adequate replacement for jerk as a measure of smoothness (as reported
by others). In this case the joystick measurement of velocity between two datum points is simply
the rate of the actual distance travelled by the joystick; however jerk is fourth derivative of joystick
position and therefore we needed to sample for jerk at a much higher rate in order to compare
velocity derived smoothness with the Normalised Jerk Score. We were also looking to use large
amplitude sudden velocity magnitude and direction changes as a measure of panic or sudden
reaction to misjudging obstacles, these have a velocity/frequency much higher than normal hand
tremors, and we aim to determine this in future work when ground truths are available. In addition
all these changes would need to be monitored as they changed over short periods of time, such as
negotiating a specific doorway where there may only be 50-100 samples whilst also over the
general long-term monitoring and filtering of tremors and potentially spasms. Consequently in
response to the review we have re-worded this section to make these things clearer because it did
appear unnecessary. 

 There are no competing interests.Competing Interests:
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