
Core Meta-Modelling Semantics of UML: The

pUML Approach

Andy Evans1 and Stuart Kent2

1 Department of Computer Science,
University of York, York, UK.

andye@cs.york.ac.uk
2 Computing Laboratory, University of Kent,

Canterbury, UK.
s.j.h.kent@ukc.ac.uk

Abstract. The current UML semantics documentation has made a sig-
ni�cant step towards providing a precise description of the UML. How-
ever, at present the semantic model it proposes only provides a descrip-
tion of the language's syntax and well-formedness rules. The meaning
of the language, which is mainly described in English, is too informal
and unstructured to provide a foundation for developing formal anal-
ysis and development techniques. Another problem is the scope of the
model, which is both complex and large. This paper describes work cur-
rently being undertaken by the precise UML group (pUML), an interna-
tional group of researchers and practitioners, to address these problems.
A formalisation strategy is presented which concentrates on giving a pre-
cise denotational semantics to core elements of UML. This is illustrated
through the development of precise de�nitions of two important con-
cepts: generalization and packages. Finally, a viewpoint architecture is
proposed as a means of providing improved separation of concerns in the
semantics de�nition.

1 Introduction

The Uni�ed Modeling Language (UML) [BRJ98,RJB99] is rapidly becoming a
de-facto language for modelling object-oriented systems. An important aspect
of the language is the recognition by its authors of the need to provide a precise
description of its semantics. Their intention is that this should act as an unam-
biguous description of the language, while also permitting extensibility so that
it may adapt to future changes in object-oriented analysis and design. This has
resulted in a Semantics Document [Gro99], which is presently being managed by
the Object Management Group, and forms an important part of the language's
standard de�nition. The approach taken in the Semantics Document is to give
a meta-model description of the language. This is presented in terms of three
views: the abstract syntax, well-formedness rules, and modelling element seman-
tics. The abstract syntax is expressed using a subset of UML static modelling
notations. The abstract syntax model is supported by natural language descrip-
tions of the syntactic structure of UML constructs. The well-formedness rules

are expressed in the Object Constraint Language (OCL). Finally, the semantics
of modelling elements are described in natural language.

A potential advantage of providing a semantics for UML is that many of the
bene�ts of using a formal language such as Z [Spi92] might be transferable to
UML. Some of the major bene�ts of having a precise semantics for UML are
given below:

Clarity: The formally stated semantics can act as a point of reference to
resolve disagreements over intended interpretation and to clear up confusion
over the precise meaning of a construct.
Equivalence and Consistency: A precise semantics provides an unam-
biguous basis from which to compare and contrast the UML with other
techniques and notations, and for ensuring consistency between its di�erent
components.
Extendibility: The soundness of extensions to the UML can be veri�ed (as
encouraged by the UML authors).
Re�nement: The correctness of design steps in the UML can be veri�ed
and precisely documented. In particular, a properly developed semantics sup-
ports the development of design transformations, in which a more abstract
model is diagrammatically transformed into an implementation model.
Proof: Justi�ed proofs and rigorous analysis of important properties of a
system described in the UML require precise semantics. Proof and rigorous
analysis are not currently supported by UML.
Tools: The tools that make use of semantics, for example a code genera-
tor or consistency checker, require that semantics to be precise, whether it
be expressed as part of the standard or invented in the code by the tool
developer.

Unfortunately, the current UML semantics are not suÆciently formal to re-
alise many of these bene�ts. Although much of the syntax of the language has
been de�ned, and some static semantics given, dynamic semantics are mostly
described using lengthy paragraphs of often ambiguous informal English, or are
missing entirely. Furthermore, little consideration has been paid to important
issues such as proof, compositionality and rigorous tool support. A further prob-
lem is the extensive scope of the language, all of which must be dealt with before
the language is completely de�ned.

This paper describes work being carried out by the precise UML (pUML)
group and documented in [pG99,FELR98,EFLR98,ARKB99]. pUML is an inter-
national group of researchers and practitioners who share the goal of developing
UML as a precise (formal) modelling language. The paper reports on work that
aims to strengthen the existing meta-model semantics of UML. In section 2 a
formalisation strategy is described (developed through the experiences of the
group) that is being used to precisely describe the semantics of UML. This aims
to give a precise denotational semantics to the core elements of UML. Section 3
identi�es a core semantics model for UML, and in sections 4 and 5 an illustration
is given of the formalisation of two core concepts: generalization and package.

Finally, section 6 proposes a `model-instance viewpoint architecture' (MVA), as
a route towards integrating the core semantics within the UML semantics.

2 The pUML approach

In this section, we brie
y present some of the key objectives of the pUML group's
approach to formalising the UML. The formalisation strategy that is currently
adopted by the group is also described. A detailed discussion of the approach
and formalisation strategy can be found in [ARKB99].

2.1 Working with the standard

An important aim of the pUML approach is to work �rmly in the context of the
existing UML semantics. The reasons for taking this approach (as opposed to
developing our own semantic model) are as follows:

1. We recognise that UML is a standard and that considerable time and ef-
fort has been invested in the development of its semantics. It cannot be
expected that radically di�erent semantic proposals will be incorporated in
new versions.

2. We believe that the existing UML semantics documentation and the meta-
modelling approach already provide a good foundation for a precise seman-
tics. As described below, the use of denotational semantics is the key to
describing the semantics of UML precisely.

Thus, the pUML approach aims to identify and make precise areas of ambi-
guity and/or missing semantic details within the current UML meta-model.

2.2 Core semantics

To cope with the large scope of the UML it is natural to concentrate on essen-
tial concepts of the language to build a clear and precise foundation as a basis
for formalisation. Therefore, the approach taken in the group's work is to con-
centrate on identifying and formalising a core semantic model for UML before
tackling other features of the language. This has a number of advantages: �rstly,
it makes the formalisation task more manageable; secondly, a more precise core
will act as a foundation for understanding the semantics of the remainder of
the language. This is useful in the case of the many diagrammatical notations
supported by UML, as each diagram's semantics can be de�ned as a particular
`view' of the core model semantics. For example, the meaning of an interac-
tion diagram should be understandable in terms of a subset of the behavioural
semantics of the core.

2.3 Adopting a denotational approach

One of the best known (and most popular) approaches to describing the seman-
tics of languages is the denotational approach (for an in-depth discussion see
[Sch86]). The denotational approach assigns semantics to a language by giving
a mapping from its syntactical elements to a meaningful representation. For ex-
ample, an association may denoted by a set of links between objects, while a
class may be denoted by a set of objects.

UML already partially adopts the denotational approach to describe aspects
of the language. The meta-modelling approach used in the UML semantics nat-
urally supports the description of denotational relationships between model ele-
ments: model elements and their denotations can both be abstracted as concep-
tual classes, and the relationships between them can be formalised by associa-
tions and OCL constraints. It consequently makes good sense to continue using
the denotational approach in the formalisation strategy. The distinguishing fea-
ture of the pUML approach is its emphasis on obtaining precise denotational
descriptions of UML modelling elements.

2.4 Review and feedback

Constructing a semantics for a language as large and complex as UML is clearly
not a simple task. Thus, obtaining feedback and reviews of semantic proposals
is a key goal of the pUML approach. This is currently being achieved through
publications, open collaborations and the group's web-site. Future aims of the
group are to develop semantic tests, which can be used to validate the correctness
of new semantic proposals. The use of formal notations to gain a alternative view
of a semantic proposal is also used.

2.5 Tool support

Tool support is essential if the bene�ts of a precise semantics are to be realised.
Sophisticated analysis and design tools (that support veri�cation and re�nement)
require a meta-model semantics that can be implemented eÆciently, and which
supports sophisticated automation by tool vendors.

2.6 Formalisation strategy

In order to implement the pUML approach it is necessary to develop a strategy
for formalising the UML. This is intended to act as a step by step guide to the
formalisation process, thus permitting a more rigorous and traceable work pro-
gram. The formalisation strategy consists of the following steps (a more detailed
account can be found in [ARKB99]):

1. Identify speci�c modelling element/s that contribute to a core semantic
model.

2. Iteratively examine the element/s, seeking to verify their completeness. Here,
completeness is achieved when: (1) the modelling element has a precise syn-
tax, (2) is well-formed, and (3) has a precise denotation in terms of some
fundamental aspect of the core semantic model.

3. Use formal techniques to gain better insight into the existing de�nitions as
shown in [FELR98,EFLR98].

4. Where in-completeness is identi�ed, we attempt to address it by strengthen-
ing the existing model, or extending it in the most conservative way possible.

5. Feed the results into the UML meta-model, and disseminate to interested
parties for feedback.

In the next section, we identify some core concepts for UML before showing
how the strategy can be used to formalise their semantics.

3 The UML core

What parts of the UML semantics should be included in the core semantics?
This question is already partially answered in the UML semantics document. It
identi�es a `Core - Relationships' package and a number of `Common Behaviour'
packages. The Core Relationship package de�nes a set of model elements that
are common to all UML diagrams, such as relationship, classi�er, association
and generalization. However, it only describes their syntax.

The Common Behavior package gives a partial denotational meaning to the
model elements in the core package. For instance, it describes an association
between classi�ers and instances. This establishes the connection between the
representation of a classi�er and its meaning, which is a collection of instances.
The meaning of an association (a collection of object links) is also given, along
with a connection between association roles and attribute values. Finally, the
Common Behaviour package also introduces the notion of an action and stimulus.
These speci�cally relate to the modelling of behaviour in UML.

To illustrate the scope, and to show the potential for realising a compact
core semantics, the relevant class diagrams of the two models are shown in the
Figures 1 and 2. Well-formedness rules and some classes are omitted for brevity.

An appropriate starting point for a formalisation is to consider these two
models in isolation, with the aim of improving the rigor with which the syntax
of UML core elements are associated with (or mapped to) their denotations (core
instances).

4 Generalization/Specialization

This section presents a precise de�nition of the meaning of generalization and
speci�cally how it relates to instance conformance. The presentation is more
structured and detailed than above due to the greater number of omissions in
this part of the UML semantics document.

+connection

{ordered}

Class

isActive : Boolean

Association

Attribute

initialValue : Expression

AssociationEnd

isNavigable : Boolean

ordering : OrderingKind

aggregation : AggregationKind

targetScope : ScopeKind

multiplicity : Multiplicity

changeability : ChangeableKind

visibility : VisibilityKind

2..*

1

2..*

1

* 0..1

+qualifier

* {ordered}

+associationEnd

0..1

Classifier

1 *

+type

1 *

**

+participant

*

+specification

*

Relationship

ModelElement

name : Name

Generalization

discriminator : Name

GeneralizableElement

isRoot : Boolean

isLeaf : Boolean

isAbstract : Boolean

1*

+parent

1

+specialization

*

* 1

+generalization

*

+child

1

Fig. 1. Fragment of the core relationships package

4.1 Informal description

In UML, a generalization is de�ned as \a taxonomic relationship between a more
general element and a more speci�c element", where \the more speci�c element
is fully consistent with the more general element (it has all of its properties,
members, and relationships) and may contain additional information" [Gro99]
(page 2-35) .

Closely related to the UML meaning of generalization is the notion of direct
and indirect instances: This is alluded to in the meta-model as the requirement
that \no object may be a direct instance of an abstract class, although an object
may be an indirect instance of one through a subclass that is non-abstract"
[Gro99] (page 2-59).

UML also places standard constraints on subclasses. The default constraint
is that a set of generalizations are disjoint, i.e. \ (an) instance of the parent
(class) may be an instance of no more than one of the given children .." [Gro99]
(page 2-36). Abstract classes enforce a further constraint, which implies that no
instance can be a direct instance of an abstract class.

ModelElement

(from Core)

Association

(from Core)

AssociationEnd

(from Core)
2..*1

+connection

2..*1

Link

1

*

+association1

*

Attribute

(from Core)

LinkEnd

1

*

+associationEnd
1

*

1

+connection

2 .. *
{ordered}

Classifier

(from Core)

AttributeLink

*1 *

+attribute

1

Instance

1

*

+instance

1

+link

*

*
+classifier

1..*

1

0..*

1

+slot 0..* *

1

*

+value1+theInstance

Fig. 2. Fragment of the common behaviour package

We now examine whether these properties are adequately speci�ed in the
UML semantics document.

4.2 Existing formal de�nitions

Bruel and France [BR98] have de�ned a formal model of generalization. Classes
are denoted by a set of object references, where each reference maps to a set of
attribute values and operations. Generalization implies inheritance of attributes
and operations from parent classes (as expected). In addition, class denotations
are used to formalise the meaning of direct and indirect instances, disjoint and
abstract classes. This is achieved by constraining the sets of objects assigned to
classes in di�erent ways depending on the roles the classes play in a particular
generalisation hierarchy. For example, assume that Ai is the set of object ref-
erences belonging to the class A and that B and C are subclasses of A. Because
instances of B and C are also instances of A, it is required that Bi � Ai and
Ci � Ai, where Bi and Ci are the set of object references of B and C.

This model also enables constraints on generalisations to be elegantly for-
malised in terms of simple constraints on sets of object references. In the case
of the standard `disjoint' constraint on subclasses, the following must hold:
Bi \ Ci = ;, i.e. there can be no instances belonging to both subclasses. For
an abstract class, this constraint is further strengthened by requiring that Bi

and Ci partition Ai. In other words, there can be no instances of A, which are
not instances of B or C. This is formally stated as Ai = Bi [Ci.

We will adopt this model in order to strengthen the existing meta-model
de�nition of generalization as it applied to classi�ers and classes.

4.3 Syntax and well-formedness

The abstract syntax of the Generalization model element is described by the
meta-model fragment shown in Figure 3. This is taken from the core relationships
package of the UML Semantics Document.

Generalization

discriminator : Name

GeneralizableElement

isRoot : Boolean

isLeaf : Boolean

isAbstract : Boolean

Classifier

Class

isActive : Boolean

+generalization

*

+specialization

*

+child

1* 1

+parent

11*

Fig. 3. Syntax of Generalization/Specialization

The most important well-formedness rule which applies to this model ele-
ment, that is not already ensured by the class diagram, is that circular inher-
itance is not allowed. This constraint is decribed using the Object Constraint
Language (OCL). Assuming `allParents' returns all the parents of Generaliz-
ableElement, then it must hold that:

context GeneralizableElement

invariant

not self.allParents -> includes(self)

Here, the context of the OCL expression is any instance of a GeneralizableEle-
ment.

4.4 Semantics

The completeness of the semantic formalisation versus the desired properties
of generalizations is now examined. We restrict ourselves to examining whether

the properties of instance conformance, identi�ed in section 4.2, are preserved by
the meaning of Generalisation/Specialisation in the UML semantics. Therefore
the most important denotational relationship to be examined is that between
a classi�er and instance. This relationship is formalised in the existing UML
semantics by the meta-model fragment shown in Fig 4. This denotes the fact
that a Classi�er is described by the set of objects that may be instantiated from
it. Note that the more generic term for a class in UML is the classi�er.

Classifier Instance
+classifier

1..* *1..* *

Fig. 4. Meta-model fragment for Classi�er and Instance relationship

However, unlike the formal model described in section 4.2, the UML meta-
model does not describe the meaning of generalization in terms of the Classi-
�er/Instance relationship. Thus, in order to give a precise denotational meaning
to a Generalization, the meta-model must be strengthened with additional con-
straints on the relationship between the Generalization model elements and the
Classi�er-Instance relationship.

Indirect instances The �rst constraint relates to the meaning of indirect in-
stances.

An Instance of a Classi�er is also an indirect Instance of its parent Classi�ers.
This is speci�ed as follows:

context c : Classifier

invariant

c.generalization.parent -> forall(s : Classifier |

s.instance -> includesAll(c.instance))

Instance identity Unfortunately, this constraint does not guarantee that every
instance is a direct or indirect instance of a related classi�er (it only states that
generalization implies the existence of indirect instances).

Thus, an additional constraint must be added in order to rule out the possi-
bility of an instance being instantiated from two or more un-related classi�ers.
This is the unique identity constraint:

context i : Instance

invariant

i.classifier -> exists(direct : Classifier |

direct.allParents -> union(Setfdirectg) = i.classifier

This states that the only Classi�ers that an object can be instantiated from
are either the Classi�er that it is directly instantiated from or its parents 1.

Direct instances The meaning of a direct instance can now be precisely de-
�ned:

context i : Instance

isDirectInstanceOf(c : Classifier) : Boolean

isDirectInstanceOf(c) = c.allParents -> union(Setfcg) = i.classifier

A direct Instance directly instantiates a Classi�er and indirectly instantiates
its parents.

Disjoint constraints Once direct and indirect Instances are formalised, it is
possible to give a precise description to the meaning of constraints on general-
izations (for example the disjoint constraint).

The disjoint constraint can be formalised as follows:

context c : Class

invariant

c.specialization.child -> forall(i,j : Classifier |

i <> j implies i.instance ->

intersection(j.instance) -> isEmpty)

For any two children of a Classi�er, i and j, the set of instances of i will be
disjoint from the set of instances of j. Note that the disjoint constraint is only
applied to Classes in UML, not Classi�ers.

Abstract classi�ers Finally, the following OCL constraint formalises the re-
quired property of an abstract classi�er that it cannot be directly instantiated:

context c : Classifier

invariant

c.isAbstract implies

c.specialization.child.instance -> asSet = c.instance

Note, the result of the specialization.child path is a bag of instances belonging
to each subtype of c. Applying the asSet operation results in a set of instances.
Equating this to to the instances of c implies that all the instances of c are
covered by the instances of its children. This, in conjunction with the disjoint
property above, implies the required partition of instances, and completes the
formalisation of this concept.

1 The UML standard does in fact state that static/dynamic multiple classi�cation of
instances is permitted without generalization being present. However, the conditions
under which this is permitted are not de�ned, and we therefore defer consideration
of this aspect for now.

5 Package Instances

Links, link ends and objects do not generally appear in isolation. A UML object
diagram represents a snapshot [DA98] of the state of the system. Yet there is
no corresponding concept in the meta-model. A reason for this is given in the
accompanying English semantics, [Gro99] (page 2-179):

The purpose of the package construct is to provide a general grouping
mechanism. A package cannot be instantiated, thus it has no runtime
semantics.

This is a particularly implementation-oriented perspective. Object diagrams
can be drawn to show instances of speci�cation models (think of tools which
simulate that model) as much as instances of implementation models. As has
been identi�ed in the discussion on abstract classes, whether something is in-
stantiable or not at execution is captured not by whether it can or can not have
instances, but whether those instances are only instances of that thing.

So, in this section, we develop the idea of instances of packages, corresponding
to object diagrams. This also caters for instances of models and subsystems. We
believe that this concept is essential for formalising the semantics of behavioural
constraints speci�ed in a package. Again, the model-instance view is emphasised
in our formalisation.

Although a package is de�ned to be a collection of model elements (which
include instance as well as design elements), it is constrained [Gro99] (page 2-
175, [1]) only to include design elements. This suggests a new class is required to
capture the concept of a package instance. The relevant class diagram is given
in Fig 5.

Classes have also been added to make the distinction between design and
instance element clearer, although only some of the di�erent kinds of design and
instance elements have been shown on the diagram. The new classes make the
OCL constraint in [Gro99] (page 2-175, [1]), redundant.

There is another issue that needs to be considered { but not here as it is
beyond the scope of this paper. The allContents associations from Package and
PackageInstance, respectively, are examples of the recursive composite pattern.
In that pattern there is usually another association to collect together all prim-
itive (as opposed to composite) elements that are contained in the composite
either directly, or indirectly through other composites that are elements of the
composite. The meta-model has nothing to say about what it means for a pack-
age to be contained within another, or the relationship of that concept to package
imports. Some hints are provided in the accompanying English semantics, though
the description given for packages in general seems at odds with the description
given for models. A similar issue arises for package instances.

The association `accessed' from Package is an attempt at capturing the no-
tion, mentioned in the informal semantics [Gro99] (page 2-173), that elements
from other packages may be accessed from a package. The association `accessi-
ble' then represents all those elements which are accessible from a package, i.e.
those contained within it and those outside which it is able to access:

DesignElement

InstanceClassifier

0..*1..* 0..*1..*

LinkEnd
AssociationEnd

0..*1 0..*1

ModelElement

name : Name

InstanceElement

ModelInstance

0..*

+allContents

0..*Model

0..*

1

0..*

+model1

Package 0..*

+allContents

0..*

Snapshot

Fig. 5. Meta-model fragment for packages and their instances

context p : Package

invariant

p.accessible = p.accessed->union(p.allContents)

At least one further constraint is required, that associations only refer to
classi�ers accessible to the package.

There can be many kinds of package instance. For example, to give the se-
mantics for dynamic behavioural constraints, it is likely that an idea of a trace

(in the formal sense of the word) or �lmstrip, corresponding to an instance of
the execution of some sequence of actions or operations will be required. In this
paper we restrict ourselves to snapshots, instances that correspond to object
diagrams. Snapshot is a subclass of PackageInstance. It is only associated with
Instance's and Link's.

Of course it is not the case that any snapshot can be an instance of any pack-
age. Speci�cally, the links and instances must be of associations and classi�ers,
respectively, accessible to that package:

context s : Snapshot

invariant

s.package.accessible->select(oclIsKindOf(Association))

->includesAll(s.allContents->select(oclIsKindOf(Link)).association

and s.package.accessible->select(oclIsKindOf(Classifier))

->includesAll(s.allContents->select(oclIsKindOf(Instance)).classifier

If a link is of an association accessible to the package then that guaran-
tees that link ends are of association ends accessible to the package. Similarly,

instances at the ends of link ends are guaranteed to be of classi�ers in the pack-
age. This is because we ensured earlier that associations only connect classi�ers
accessible to the package.

5.1 Constraints

According to the meta-model, all modeling elements may be subject to con-
straints [Gro99] (page 2-14). With the separation of design and instance ele-
ments, this can be re�ned by associating constraints with design elements only.
A constraint may take on many forms: for example, there can be constraints
on classes such as the OCL invariants used to constrain the meta-model in this
paper, or constraints on actions which are contracts comprising pre and post
conditions written in OCL. This suggests that the decision in the current ver-
sion of the meta-model to pin down a constraint so that it has a body which is
a simple boolean expression may be premature { only invariant constraints have
this structure. The class diagram in Fig 6 captures these revisions.

ModelInstance

Invariant

0..*

0..*

0..*

+satisfies0..*

BooleanExpression

evaluate()1

+body

1

Contract

pre
post

ConstraintDesignElement

0..*1 0..*

+constrainedElement

1

Fig. 6. Meta-model fragment for constraints

The diagram focuses on a single kind of constraint, namely invariants on
packages.

6 A Model-Instance Viewpoint Architecture

In terms of future work, it is important to understand how the pUML approach
should �t within the overall architecture of the UML semantics. Currently, the
UML semantics adopts a rather ad-hoc approach, in which its various elements
are distributed throughout a number of di�erent packages, for example, there
are a state-machine, model-management and use-case packages. Each of these
packages has some overlap with each other, but because this is not made explicit
in the architecture, understanding and maintaining the model is diÆcult.

An alternative architecture is one that makes a clear distinction between the
core semantics, which describe the essential concepts and meaning of a language,

and viewpoints, which describe the di�erent ways in which the core concepts can
be viewed by the modeller. For example a static modelling view encompasses
classes and objects. Furthermore, viewpoints can be directly related to the dia-
grammatical notations that are used to visually represent models, for example
class and association icons, etc.

The viewpoint architecture has been successfully applied in the development
of the RM-ODP standard [ISO96], where it is used to describe multiple views
of open distributed systems. The advantage of adopting a viewpoint-oriented
architecture is that it places clear boundaries on the roles that di�erent parts of
the semantics plays. While the core semantics makes clear the meaning of the
language, the views and diagram elements specify the syntactical features of the
language (which is essential to tool designers).

Figure 7 gives an overview of an architecture that both supports a viewpoint-
oriented model of the UML semantics, and which also places emphasis on pre-
cisely documenting the relationships between model elements and instances (de-
notations).

InstanceElement

DesignElement

* +instances*

ViewInstances

ViewElement

* +instances*

DiagramElement

DiagramInstance

* +instances*

DiagramsCore Views

Fig. 7. Model-Instance View Architecture (MVA)

Here, the semantics is to divided into three main packages: the core, views
and diagrams-packages. Within these packages, the relationship between model
elements and their denotations (instances) are given by the `instances' associ-
ations. This makes explicit the fact that most denotations in UML consist of
mappings from generic concepts to the instances which they represent. In the
core-package, elements might include modelling concepts such as associations
and classes, while their instances are objects and links. In the view-package,
views map view elements and instances to appropriate core elements and in-

stances. A behavioural view, for example, would provide a mapping to only
behavioural modelling elements in the core, such as operations and actions. Fi-
nally, the diagrams-package provides a link between diagram meta-models and
their instances (class icons, etc.) to elements in the core model (through possibly
many viewpoints).

7 Further Work

This paper has described an approach to the semantics of UML which builds
upon the meta-model de�ned in the UML standard semantics document. Frag-
ments of the semantics have been shown here, speci�cally the semantics of asso-
ciations and generalisation, and the introduction of snapshots which will play a
pivotal role in the semantics of behavioural constraints. A model-instance view-
point architecture has been proposed as a way of integrating the core semantics
into the complete UML meta-model.

Our immediate goal is to complete this semantics for a core notation set,
seeking compliance with the current UML standard. The core is likely to in-
clude a static and a dynamic aspect. We can also distinguish between intra- and
extra-package. The static part, intra-package, will include associations, classes
and OCL invariants. The dynamic part, intra-package, will include actions,
pre/post conditions for actions and action compositions (e.g. sequences). The
extra-package part focuses on relationships between packages. In the best tra-
dition of \bootstrapping" the meta-model itself will be written in the smallest
subset possible of the static part of the core-classes, simple associations and OCL
invariants should be suÆcient.

In the longer term, our intention is to give a semantics to the complete
notation set, by mapping into the core, extending the core only when there is
not already a concept which suÆces. Of course one role of semantics is to clarify
and remove ambiguities from the notation. Therefore we will not be surprised
if we �nd that the notation needs to be adjusted or the informal semantics
rewritten. However, we will be able to provide a tightly argued, semantically-
based recommendation for any change deemed necessary.

Some consideration also needs to be given to quality assurance. There are at
least three approaches we have identi�ed:

1. peer review and inspection

2. acceptance tests

3. tool-based testing environment

So far the only feedback has come from 1. Since a meta-model is itself a
model, acceptance tests could be devised as they would be for any model. Per-
haps \testing" a model is a novel concept: it at least comprises devising object
diagrams, snapshots, that the model must/must-not accept. Better than a list
of acceptance tests on paper would be a tool embodying the meta-model, that
allowed arbitrary snapshots to be checked against it.

References

[ARKB99] A.S.Evans, R.B.France, K.C.Lano, and B.Rumpe, Towards a core meta
modelling semantics of UML, Behavoral Speci�cations for Businesses and
Systems (Haim Kilov, ed.), Kluwer Press, 1999, To appear.

[BR98] J-M. Bruel and R.B.France, Transforming UML models to formal speci�ca-
tions, UML'98 - Beyond the notation, LNCS 1618, Springer-Verlag, 1998.

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson, The Uni�ed Modeling Language
user guide, Addison-Wesley, 1998.

[DA98] D. D'Souza and A.C.Wills, Objects, components and frameworks with UML,
Object Technology Series, Addison-Wesley, 1998.

[EFLR98] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe, Developing
the UML as a formal modelling notation, UML'98 Proceedings (Jean Bezivin
and Pierre-Allain Muller, eds.), Springer-Verlag, LNCS 1618, 1998.

[FELR98] R. France, A. Evans, K. Lano, and B. Rumpe, The UML as a formal mod-
eling notation, Computer Standards & Interfaces 19 (1998).

[Gro99] Object Management Group, OMG Uni�ed Modeling Language Speci�cation,
version 1.3beta. found at: http://www.omg.org, 1999.

[ISO96] ISO/IEC, Reference model of open distributed processing - part 1-5,
ISO/IEC DIS 10746-1, Tech. report, 1996.

[pG99] The pUML Group, The precise UML web site:
http://www.cs.york.ac.uk/puml, 1999.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch, The Uni�ed Modeling Language
reference manual, Addison-Wesley, 1999.

[Sch86] D. A. Schmidt, Denotational semantics: A methodology for language devel-
opment, Allyn and Bacon, 1986.

[Spi92] J.M. Spivey, The Z reference manual, 2nd edition, Prentice Hall, 1992.

