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FACTORIZED ESTIMATION OF HIGH-DIMENSIONAL

NONPARAMETRIC COVARIANCE MODELS

By Jian Zhang† and Jie Li∗,†

University of Kent†

Estimation of covariate-dependent conditional covariance matrix
in a high-dimensional space poses a challenge to contemporary sta-
tistical research. The existing kernel estimators may not be locally
adaptive due to using a single bandwidth to explore the smoothness of
all entries of the target matrix function. Moreover, the corresponding
theory holds only for i.i.d. samples although in most of applications,
the samples are dependent. In this paper, we propose a novel esti-
mation scheme to overcome these obstacles by using techniques of
factorization, thresholding and optimal shrinkage. Under certain reg-
ularity conditions, we show that the proposed estimator is consistent
with the underlying matrix even when the sample is dependent. We
conduct a set of simulation studies to show that the proposed estima-
tor significantly outperforms its competitors. We apply the proposed
procedure to the analysis of an asset return dataset, identifying a
number of interesting volatility and co-volatility patterns across dif-
ferent time periods.

1. Introduction. Nonparametric estimation of covariate-dependent con-
ditional covariance matrix Σ(u) in covariance models is fundamental to
contemporary scientific research including neuroimaging studies in neuro-
science, disease mapping in health science, daily ozone concentration anal-
ysis in environmental science and asset portfolio risk analysis in finance,
among others ([9, 12, 11, 8, 7, 14, 15, 3, 10, 4] and references therein). How-
ever, most efforts in nonparametric covariance estimation suffer from a curse
of dimensionality [7]. For example, in asset portfolio risk analysis, modeling
market-dependent co-volatility of p assets by use of historical return data
over n consecutive months involves estimating p(p + 1)/2 nonparametric
curves [5]. The data set we are studying in this paper contains historical
returns of 75 assets over three time periods, namely before-financial-crisis,
in-financial-crisis and after-financial-crisis with n equal to 84, 36 and 95
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months respectively. Note that many more assets can be collected for in-
vestigation whereas the number of months n in a period is sometimes quite
limited. When p is close to or larger than n, the kernel covariance estimator
proposed by Yin et al.[11] can be degenerate or ill-conditioned with a high
condition number (i.e. with a high ratio of its largest to smallest eigenval-
ues). Hence, it cannot be reliably inverted to compute the precision matrix
which is required in the above risk analysis. To tackle this problem, Chen
and Leng [3] proposed a method (called DCM) to regularize the kernel co-
variance model by thresholding covariance entries. If the resulting estimator
is still ill-conditioned, then an eigenvalue-dependent number is added to its
diagonals (called ad-hoc shrinkage below). These authors also established a
consistency theory for their estimator when the sample is i.i.d. There are
three main issues that arise in the application of the DCM. First, in the
DCM, the same bandwidth is adopted for estimating entries of varying de-
grees of smoothness. This may compromise the performance of the DCM. On
other hand, letting all the entries have their own bandwidths may overlook
the fact that they are constrained in order to form a positive definite ma-
trix. This calls for a factorized estimation with multiple bandwidths adapt-
ing to unknown smoothness in factors of the covariance matrix. Secondly,
the above ad-hoc shrinkage operation is hard to implement and not optimal
from a decision-making point of view. It is desirable to explore an optimal
shrinkage procedure. Finally, the existing theory in [3] holds only for i.i.d.
samples although, in most of applications, the samples are dependent. For
instance, in the above asset portfolio risk analysis, the returns of the market
and assets are time series which are serially correlated.

In this paper, we propose a scheme to address these issues. The scheme is
based on a factorization of Σ(u) in the form of Σ(u) = Q(u)1/2C(u)Q(u)1/2,
where C(u) = Q(u)−1/2Σ(u)Q(u)−1/2 andQ(u) is an invertible matrix factor
of Σ(u). For example, if let Q(u) = diag(Σ(u)), a diagonal matrix composed
by the diagonal entries of Σ(u), then C(u) consists of correlation coefficients
derived from Σ(u). In the scheme, we first estimate Q(u) and C(u) in turn
with separate kernel bandwidths. The resulting estimator of C(u) is further
enhanced by an entry-wise thresholding. Then , by substituting the resulting
estimators of Q(u) and C(u) into the above factorization formula, we can
obtain a plug-in estimator of Σ(u). Finally, a well-conditioned shrinkage
estimator of Σ(u) is derived by the principle of minimizing the Frobenius loss.
Note that, in practice, Q(u) is often chosen to be less complex than Σ(u).
For example, let it be much sparse compared to Σ(u) when the dimension
p is large. Therefore, estimating Q(u) separately from C(u) may help the
above procedure circumvent the curse of dimensionality and provide a more
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accurate estimator for Σ(u).
To evaluate the performance of the new proposal, a set of simulation

studies are conducted. The results demonstrate that the new proposal sub-
stantially outperforms its counterparts in terms of the Frobenius loss. The
proposed method is illustrated through an application to the analysis of
monthly return data for a group of risky assets mentioned above. The anal-
ysis reports the following findings: (1) Some asset returns present a stark
nonlinear departure from the linear Capital Asset Pricing Model (CAPM)
[5]. (2) Both volatility and co-volatility of these assets are varying with the
market. See Figure 1 for more details. These two findings provide an em-
pirical support for building a nonparametric CAPM for risk assessment and
portfolio selection. We also establish a theoretical background for the new
proposal: we show that under some mixing and regularity conditions, the
proposed estimator is asymptotically consistent with the underlying covari-
ance matrix function even when the samples are dependent.

[Put Figure 1 here.]
The rest of the article is organized as follows. In Section 2, the proposed

optimal shrinkage estimator is constructed. Then, an algorithm is developed
to determine the bandwidth in the kernel smoothing as well as the level
of thresholding. In Section 3, the uniform consistency and the convergence
rate of the proposed estimator are established with dependent samples. In
Section 4, simulation studies are conducted to evaluate the performance of
the proposed method and compare it to the method of Chen and Leng [3].
The proposed procedure is employed to analyze asset returns for a group of
assets. We conclude with a discussion in Section 5. The technical proofs of
asymptotic theory are delayed to the Appendix and the Online Supplemen-
tary Material.

Throughout this paper, we let λmin(·) and λmax(·) denote the minimum
and maximum eigenvalues of a square matrix. For a vector x, let ||x|| de-
note its Euclidean norm. For a square matrix A = (aik)p×p, let ||A||F =
√

tr(AAT )/p, ||A|| = λ
1/2
max(AAT ), ||A||max = max1≤i,k≤p |aik| and ||A||∞ =

max1≤i≤p
∑n

k=1 |aik| denote its (size-normalized) Frobenius, spectral, max
and ∞-norms. Let < A,B >= tr(ABT )/p be the inner product of square
matrices A and B. Let I(·) denote an indicator function. Note that these
norms satisfy ||A||F ≤ ||A|| ≤ ||A||∞ ≤ max1≤i≤p

∑p
j=1 I(|aik| > 0)||A||max.

Let diag(x) denote the diagonal matrix with diagonal entries made from the
elements of x. Let c ∧ d and c ∨ d denote the minimum and maximum of
numbers c and d. Let Ip be a p-dimensional identity matrix.
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2. Methodology. Let Y = (Y1, ..., Yp)
T ∈ R

p be a p−dimensional
random vector and U ∈ R be the associated index random variable. We
model the conditional mean and covariance matrix of Y given U = u as
µ(u) = E[Y |U = u] and cov(Y |U = u) = Σ(u) respectively whose compo-
nents are assumed to be an unknown but smooth function of u. Suppose
that (yi, ui)

n
i=1 with yi = (yi1, ..., yip)

T , are random observations from the
population (Y, U), satisfying the equations

yi = µ(ui) + Σ(ui)
1/2εi, i = 1, ..., n,

where µ(ui) = (µ1(ui), ..., µp(ui))
T and (ui)

n
i=1 is a dependent random sam-

ple of U . Also, given (ui)
n
i=1, εi’s are dependent on each other and with zero

means and unity covariance matrices (i.e., E[εi|ui] = 0p, cov(εi|ui) = Ip
and E[εiε

T
j ] 6= 0, i 6= j). Let K(u) be a kernel density function, Kh(u) =

h−1K(u/h) (the scaled kernel function with a bandwidth h > 0) and wih(u) =
Kh(ui − u)/

∑n
k=1Kh(uk − u) (the weighting function). Yin et al. [12] con-

sidered the following kernel estimators for µ(·) and Σ(·):

µ̂(u) =
n
∑

i=1

wih1
(u)yi,(2.1)

Σ̂(u) =

n
∑

i=1

wih(u)(yi − µ̂(ui))(yi − µ̂(ui))
T =̂(σ̂kj(u))1≤k,j≤p,

where h1 and h are bandwidths for mean and covariance matrix functions
respectively.

As the diagonals in a non-negative definite matrix often determine its
behavior, we focus on the factorization Σ(u) = Q(u)1/2C(u)Q(u)1/2, where
Q(u) = diag(Σ(u)) and C(u) = Q(u)−1/2Σ(u)Q(u)−1/2. However, the idea
can be extended to other banded matrices. Note also that both the condi-
tional number and the estimation accuracy of Σ(u) are determined by the
corresponding values of C(u) and Q(u). This makes it possible to improve
the estimation accuracy of Σ(u) by separately enhancing estimation of Q(u)
and C(u) and by using the techniques of entry-wise thresholding and optimal
shrinkage. The details are as follows.

Construction of a plug-in estimator for Σ(u). We start with the kernel
estimator Q̂(u) = diag(σ̂kk(u) : 1 ≤ k ≤ p) with a Q(u)-specified bandwidth
h = h2. Then, we standardize yi, 1 ≤ i ≤ n by using µ̂(ui) and Q̂(u):

ỹi = Q̂(u)−1/2(yi − µ̂(ui)), 1 ≤ i ≤ n.
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Based on the standardized observations, we construct the following kernel
estimator of C(u):

Ĉ(u) =
n
∑

i=1

wih(u)ỹiỹ
T
i(2.2)

with a C(u)-specified bandwidth h3. As pointed out before, the dimension p
is frequently large than the local sample size nh. This results in a degenerate
estimator Ĉ(u). Following [1], we regularize the above correlation coefficient
estimator by thresholding its entries as follows:

Ĉ(t)(u) =
(

ĉjk(u)I(|ĉjk(u)| > t0(u)
√

log(p/h)/(nh))
)

1≤j,k≤p
,

where ĉjk(u) is the (j, k)-th entry of Ĉ(u) and I(·) is an indicator function
and t0(u) is a positive function of u.

Using the above estimators, we construct a plug-in estimator of Σ(u) in
form

Σ̂(t)(u) = Q̂(u)1/2Ĉ(t)(u)Q̂(u)1/2.

Shrinkage of Σ̂(t)(u). In Section 3 below, under sparsity and regularity
conditions, we show that the above thresholded covariance estimator is con-
sistent with the underlying covariance matrix function as n and p tend to
infinity. However, for a finite sample, the proposed estimator may still be
ill-conditioned. To ameliorate it, we propose to shrink Σ̂(t)(u) to the iden-
tity matrix Ip, where the amount of shrinkage is optimized in terms of the
data-driven Frobenius loss in two steps. Step 1, we find a population version,
namely a linear combination of Ip and Σ̂(t)(u), Σ∗(u) = ρaIp+(1−ρ)Σ̂(t)(u),
whose expected Frobenius loss E||Σ∗(u)−Σ(u)||2F attains the minimum with
respect to 0 ≤ ρ ≤ 1 and a ∈ R. For this purpose, we decompose the above
expected quadratic loss as follows:

E||Σ∗(u)− Σ(u)||2F = E||Σ∗(u)− E[Σ∗(u)] + E[Σ∗(u)]− Σ(u)||2

= (1− ρ)2E||Σ̂(t)(u)− E[Σ̂(t)(u)||2F
+||ρ(aIp − E[Σ(t)(u)]) + E[Σ̂(t)(u)]− Σ(u)||2F .(2.3)

Differentiating the above loss with respect to a and setting it to zero, we
have

dE||Σ∗(u)− Σ(u)||2F /da = 2ρ < Ip, ρ(aIp − E[Σ̂(t)(u)])

+E[Σ̂(t)(u)]− Σ(u) = 0,
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which yields

a(u) =< Ip, E[Σ̂(t)(u)] > −ρ−1 < Ip, E[Σ̂(t)(u)]− Σ(u) > .

Substituting it back to (2.3), we have

E||Σ∗(u)− Σ(u)||2F = (1− ρ)2E||Σ̂(t)(u)− E[Σ̂(t)(u)]||2

+||(1− ρ)Ah −A||2F
= (1− ρ)2E||Σ∗(u)− Σ(u)||2 + ρ2||Ah||2F

+||Ah −A||2F − 2ρ < Ah, Ah −A >,(2.4)

where

Ah(u) = E[Σ̂(t)(u)]− < Ip, E[Σ̂(t)(u)] > Ip.

A(u) = Σ(u)− < Ip,Σ(u) > Ip.

Differentiating (2.4) with respect to ρ and setting it to zero, we have

−2(1− ρ)E||Σ̂(t)(u)− Σ(u)||2 + 2ρ||Ah(u)||2F
−2 < Ah(u), Ah(u)−A(u) >= 0.

Solving the above equation, we have the solution

ρh(u) =
β2h(u) +Qh(u)

β2h(u) + α2
h(u)

∧ 1,(2.5)

where

α2
h(u) = ||Ah||2F , β2h(u) = E||Σ̂(t)(u)− E[Σ̂(t)(u)]||2F ,

Qh(u) = < Ah(u), Ah(u)−A(u) > .

It is easy to see that αh(u) is a Frobenius norm of the residual of E[Σ̂(t)(u)]
after its projection to the space spanned by the identity matrix Ip while
β2h(u) is a Frobenius-type variance of Σ̂(t)(u). And Qh(u) is a bias effect
of the kernel smoothing. If replacing ρ in a(u) by ρh(u), then we have the
solution

ah(u) =< Ip, E[Σ̂(t)(u)] > −ρ−1
h (u) < Ip, E[Σ̂(t)(u)]− Σ(u) > .

Therefore, the optimal solution Σ̂∗(u) to the above covariance optimization
problem is of the form:

Σ̂∗(u) = ρh(u)ah(u)Ip + (1− ρh)Σ̂
(t)(u).
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Note that α2
h(u), β

2
h(u) and Qh(u) in (2.5) depend on unknown matrices

E[Σ̂(t)(u)] and Σ(u). So, in Step 2, we estimate them by the plug-in estima-
tors,

α̂2
p(u) = ||Σ̂(t)(u)− p−1tr(Σ̂(t)(u))Ip||2F .

β̂2p(u) =
1

p

p
∑

j=1

p
∑

k=1

n
∑

i=1

w2
ih(u) ((yij − µ̂j(ui))(yik − µ̂k(ui))− σ̂jk(u))

2

×I(|σ̂jk(u)| > t0(u)
√

log(p/h)/(nh)).

It is easy to see that β̂2p(u) is the squared Frobenius-norm of the variance
estimators of σ̂jk(u)’s. For simplicity, we shrink Qh(u) to zero. Combining
the above two steps gives the following estimator of Σ(u) with a data-driven
optimal amount of shrinkage:

Σ̂(st)(u) =
β̂2p(u)

α̂2
p(u) + β̂2p(u)

p−1tr(Σ̂(t)(u))Ip +
α̂2
p(u)

α̂2
p(u) + β̂2p(u)

Σ̂(t)(u).

3. Theory. Let Fk0 and F∞
k0+k be the σ-algebras generated by {(yi, ui) :

1 ≤ i ≤ k0} and {(yi, ui) : k0 + 1 ≤ k <∞}. Define

α(k) = max
k0≥1

sup
A∈Fk0

,B∈F∞

k0+k

|P (A)P (B)− P (A ∩B)|.

We assume the following regularity conditions:
(C1) The symmetric kernel function K(·) on R with derivative K ′(·) sat-

isfies

K0 = sup
z
K(z) < +∞, K1 = sup

z
|K ′(z)| < +∞,

∫

K(z)dz = 1,

∫

zK(z)dz = 0,

∫

z2K(z)dz < +∞,

∫

|z|3k(z)dz <∞.

(C2) The density function of U , g(u), has the second order continuous
derivative g′′(·) over a compact support [a, b] and infu∈[a,b] g(u) > 0. For
any i 6= i1, the joint density of ui and ui1 , maxi 6=i1 supz,z1∈[a,b] gii1(z, z1) is
bounded.

(C3) There exist positive constants τ2 and κ2 < 1 such that for k ≥ 1,
α(k) ≤ exp(−τ2kκ2).

(C4) There exist constants 0 < κ1 ≤ 1, τ1 > 0 such that

max
1≤j≤p

P (|yij | > v) ≤ exp(1− τ1v
κ1).
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(C5) The second derivatives of µj(u) = E[y1j |U = u], 1 ≤ j ≤ p are
uniformly bounded in the sense that max1≤j≤p supu∈[a,b] |µ′′j (u)| <∞.

(C6) The conditional variance functions σ2j (u) = E[(yij − µj(ui))
2|ui =

u] are bounded below from zero uniformly for 1 ≤ j ≤ p and u ∈ [a, b].
Their first order derivatives are also uniformly bounded. The conditional
expectations E[(yij − µj(ui))(y(i+t)j − µj(ui+k))|ui = z, ui+t = z1] with
z, z1 ∈ [a, b], 1 ≤ i < ∞, 1 ≤ t ≤ ∞, 1 ≤ j ≤ p, are uniformly bounded in
i, t, z and z1.

It follows from (C5) that b2=̂max1≤j≤p supu∈[a,b] |µj(u)| < ∞. Note that
these conditions are imposed to facilitate the proofs and thus may not be
the weakest possible for establishing the theory below. The above conditions
are routinely used in the literature of the kernel smoothing and time series
analysis (see [5]).

Let ĝh1
(u) = 1

n

∑n
i=1Kh1

(ui − u). be a kernel density estimator of g(u).
In the following lemma, we show that ĝh1

(u) is uniformly consistent to g(u).

Proposition 3.1. Under Conditions (C1)∼(C3), if for a constant 0 <
ζ0 < κ2, as n→ ∞ and h1 → 0, the bandwidth h1 satisfies

log(nh−4
1 )

(nh1 log(1/h1))ζ0/2
= O(1),

(log(nh1 log(1/h1)))
ζ0 log(h−1

1 )

(nh1 log(1/h1))ζ0(1−ζ0)/2
= O(1),

then supa≤u≤b |ĝh1
(u)− g(u)| = Op

(

√

log(1/h1)
nh1

)

+O(h21).

Letting 1/γ1 = 1/κ1 + 1/κ2, we state a uniform consistency result for
estimator µ̂j(u) in the following theorem.

Theorem 3.1. Under Conditions (C1)∼(C6), if as n, p→ ∞ and h1 →
0, we have (log(p))2/γ1−1/n = O(1), and

log(h−4
1 np)

(nh1 log(p/h1))γ1/2
= O(1),

(log(nh1 log(p/h1))
γ1 log(1/h1)

(nh1 log(p/h1))γ1(1−γ1)/2
= O(1),

then

max
1≤j≤p

sup
u∈[a,b]

|µ̂j(u)− µj(u)| = Op





√

log(p/h1)

nh1



+O(h21).

Let 1/γ2 = 2/κ1+1/κ2. In the next theorem, we show that the entries of
the proposed covariance matrix estimator are consistent with the underlying
ones uniformly in u and indices 1 ≤ j, k ≤ p.
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Theorem 3.2. Under Conditions (C1)∼(C6), if as n, p→ ∞, h1, h3, h→
0, h/h1 + h1/h = O(1), h/h3 + h3/h = O(1), log(p)2/γ2−1/n = O(1) and

log(nph−4)

(nh log(p/h))γ2/2
= O(1),

(log(nh log(p/h)))γ2 log(1/h)

(nh log(p/h))γ2(1−γ2)/2
= O(1),

then

max
1≤j,k≤p

sup
u∈[a,b]

|σ̂jk(u)− σjk(u)| = Op

(
√

log(p/h)

nh
+ h2

)

,

max
1≤j,k≤p

sup
u∈[a,b]

|ĉjk(u)− cjk(u)| = Op

(
√

log(p/h)

nh
+ h2

)

.

Let αp(u) = ||Σ(u)− < Σ(u), Ip > Ip||F and τnp =
√

log(p/h)/nh. Let

t̂0(u) be an estimator of the thresholding function t0(u) used in Σ̂(t)(u) and
Σ̂(st)(u). Let mp(u) = max1≤k≤p

∑p
j=1 I(σkj(u) > 0). The smaller mp(u),

the sparser Σ(u) is. To state the next theorem, we introduce the following
conditions on separability between Σ(u) and Ip, sparsity and bounds of Σ(u)
respectively.

(C7) τnp/(log(p/h) infu∈[a,b] α
2
p(u)) = O(1), supu∈[a,b]mp(u)τnp/αp(u) =

o(1).
(C8) There exists a positive constant s1 such that supu∈[a,b] ||Σ(u)|| ≤ s1.

(C9) There exists a positive constant s0p such that s0p/
√

supu∈[a,b]mp(u)τnp →
∞ and infu∈[a,b] ||Σ(u)|| ≥ s0p as p→ ∞.

(C10) supu∈[a,b] |t̂0(u) − t0(u)| = o(1) and there exist positive constants
ta < tb such that for ta < infu∈[a,b] t0(u) ≤ supu∈[a,b] t0(u) < tb.

Under these conditions, we state a uniform consistent result for Σ̂(st)(u)
as follows.

Theorem 3.3. Under Conditions (C1)∼(C8), if as n, p→ ∞, h1, h, h3 →
0, h/h1 + h1/h = O(1), h/h3 + h3/h = O(1), log(p)2/γ3−1/n = O(1),
nh5/ log(p/h) = O(1), and

log(nph−4)

(nh log(p/h))γ3/2
= O(1),

(log(nh log(p/h)))γ3 log(1/h)

(nh log(p/h))γ3(1−γ3)/2
= O(1),

and if supu∈[a,b]mp(u)τnp = o(1), then uniformly in u ∈ [a, b],

||Σ̂(st)(u)− Σ(u)|| = Op(mp(u)τnp).
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In addition to the above conditions, if Condition (C9) holds, then uniformly
in u ∈ [a, b],

||Σ̂(st)(u)Σ−1(u)− Ip|| = Op

(

mp(u)τnps
−1
0p

)

= op

(

√

mp(u)τnp

)

.

||Σ(u)(Σ̂(st)(u))−1 − Ip|| = Op

(

mp(u)τnps
−1
0p

)

= op

(

√

mp(u)τnp

)

.

||(Σ̂(st)(u))−1 − Σ−1(u)|| = Op

(

mp(u)τnps
−2
0p

)

= op(1).

Finally, in addition to the above conditions, if Condition (C10) holds, then
the above results continue to hold after replacing t0(u) by t̂0(u) in Σ̂(t)(u)
and Σ̂(st)(u).

4. Numerical studies. In this section, to demonstrate the merits of
the proposed estimators in finite sample settings, we applied the proposed
procedures to both synthetic and real data.

To facility the presentation, let tNCM and stNCM denote the proposed
estimators Σ̂(t)(u) and Σ̂(st)(u) respectively. Let DCM1 and DCM2 denote two
DCM estimators defined by

DCM1(u) = (σ̂1jk(u)I(σ̂1jk(u) ≥ d(u))),

DCM2(u) = (σ̂2jk(u)I(σ̂2jk(u) ≥ d(u))),(4.1)

where d(u) is a thresholding constant and

Σ̂1(u) =

n
∑

i=1

wih(u)(yi − µ̂(ui))(yi − µ̂(ui))
T =̂(σ̂1jk(u))1≤j,k≤p,

Σ̂2(u) =

n
∑

i=1

wih(u)(yi − µ̂(u))(yi − µ̂(u))T =̂(σ̂2jk(ui))1≤j,k≤p.

4.1. Choice of tuning parameters. As is common in most smoothing
methods, the choice of appropriate tuning parameters plays an important
role in the performance of a regularized estimator. Data-driven choice of the
tuning parameter is a difficult problem. Here we apply the commonly used
practical strategy of choosing the values of tuning parameters in a sequential
manner through the cross validation . The details are as follows.

Bandwidth for estimating µ(u). We let h1 = argminCVµ(h) as the opti-
mal bandwidth for the mean kernel estimator in equation (2.1), where

CVµ(h) =
1

n

n
∑

i=1

||yi − µ̂h,−i(ui)||2ω(ui).
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Here, µ̂h,−i(ui) is a kernel mean function estimator after dropping the ith
observation from the data. The trimming function ω(u) = I(u(1) < u <
u(n−1)) is used for reducing the boundary effects on CVµ(h), where u(m) is
the mth order statistic of (ui)

n
i=1.

Tuning parameters for estimating Q(u). To select the bandwidth for Q̂(u),
for each h, we calculate σ̂kk(−i) : 1 ≤ k ≤ p after dropping the ith obser-

vation. We choose the optimal bandwidth h2 = argminCVσ(h) for Q̂(u),
where CVσ(u) is a Stein-loss-based cross-validation function defined by

CVσ(h) =

n
∑

i=1

p
∑

k=1

{

(yki − µ̂k(ui))
2

si(σ̂kk(−i)(ui))
+ log(si(σ̂kk(−i)(ui)))

}

.

Bandwidth for estimating C(u). There are two existing cross-validation
methods for selecting the bandwidth h for estimator in (2.2): One is a
Stein-loss-based approach [12] which was however applicable only to low-
dimensional data. The other is a subset-based approach [2] for high-dimensional
data. In this paper, we opt for an alternative approach by choosing h3 =
argminCVC(h) at which the following criterion attains the minimum:

CVC(h) =
1

n

n
∑

i=1

‖Ĉ(−i)(ui)− ỹiỹ
T
i ‖2F ,

where Ĉ(−i)(ui) is the kernel estimator of C(u) based on the leave-one-out
dataset (ỹj , ui)j 6=i.

Thresholding level for for Σ̂(t)(u). Following [1, 3], we split the sample into
two sub-samples called trial and testing samples and select the threshold by
minimizing the Frobenius norm of the difference between the trial sam-
ple based estimator after thresholding and the estimated covariance matrix
computed from the testing sample. Specifically, we divide the original sample
into two samples at random of size n1 and n2, where n1 = n(1− 1/ log(n))
and n2 = n/ log(n), and repeat this N1 times. Here, we set N1 = 100 as the
default value according to our numerical experience. Let Σ̂1,s(u) and Σ̂1,s(u)
be the plug-in estimators based on n1 and n2 observations respectively with

the bandwidth selected by the leave-one-out cross validation. Let Σ̂
(t)
1,s be

the thresholded estimator derived from Σ̂1,s(u) with the thresholding level

t0(u). Given u, we select t0(u) by minimizing
∑N1

s=1 ||Σ̂
(t)
1,s − Σ̂2,s||F /N1.

Tuning parameters for estimating DCM. The bandwidth h and the level of
thresholding of the DCM estimators in (4.1) are determined by the so-called
subset and sample-splitting approaches respectively [3].
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4.2. Synthetic data. In this subsection, we carried out a set of simula-
tion studies. To start, we need a criterion to measure the performance of
a nonparametric covariance matrix estimator. There are multiple possible
criteria, but one particularly convenient choice is integrated root-squared
error (IRSE). For any estimator Ψ̂(u) of Σ(u), u ∈ [a, b] the IRSE is defined
as

IRSE(Ψ̂) =

∫ b

a
||Ψ̂(u)− Σ(u)||Fdu ≈ 1

K0

K0
∑

k=1

||Ψ̂(vk)− Σ(vk)||F ,

where vk, 1 ≤ k ≤ K0 be grids evenly distributed over the interval (a, b).
In the following, we set K0 = 20 for (a, b) = (−1, 1). We considered three
settings for µ(u) and Σ(u) in our simulations.

Setting 1: Following [13, 3], we set µ(u) and Σ(u) as follows. Let µ(u) =
(µ1(u), · · · , µp(u))T with

µj(u) =
50
∑

k=1

(−1)k+1

k2
Zjkcos(kπu), 1 ≤ j ≤ p,

where {Zjk : 1 ≤ j ≤ p, 1 ≤ k ≤ 50} is an independent sample drawn
from the uniform distribution over [−5, 5]. Let Σ(u) = {σij(u)}1≤i,j≤p with
σij(u) = exp(u/2)[{φ(u) + 0.1}I(|i− j| = 1) + φ(u)I(|i− j| = 2) + I(i = j)]
and φ(u) is the standard normal density. Note that diag(Σ(u)) = exp(u/2)Ip
is spherical and the correlation matrix C(u) = (cij(u))1≤i,j≤p with cij(u) =
I(|i − j| = 1) + φ(u)I(|i − j| = 2) + I(i = j) which is equal to zero when
|i− j| ≥ 3. Therefore, C(u) is sparse as it is banded with bandwidth 2.

Setting 2: Following [14], let µ(u) = (µ1(u), · · · , µp(u))T with

µj(u) = Zj exp

(

(u− τj)
2

22

)

sin(2π(u− τj)), 1 ≤ j ≤ p,

where Zj , j = 1, · · · , p are independently drawn from uniform distribution
U(−5, 5) , τ = (τ1, · · · , τp) is a row vector of p evenly spaced points be-
tween −1 and 1. Set Σ(u) = {σij(u)}1≤i,j≤p with σij(u) = exp(u/2)φ(u)|i−j|.
Note that diag(Σ(u)) = exp(u/2)Ip is spherical and the correlation matrix
C(u) = (cij(u))1≤i,j≤p with cij(u) = φ(u)|i−j|. Therefore, cij(u) is decreasing
exponentially fast but C(u) is not sparse.

Setting 3: Let µ(u) be the same as that in Setting 1. Let Σ(u) =
AT (u)A(u), where the (i, j)th entry of A(u) equals

aij(u) = exp

(

u sin(ij)

2

){

[sin(πu) + 0.1] I (|i− j| = 1)

+ sin(πu)I (|i− j| = 2) + I (i = j)

}

.
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Note that diag(Σ(u)) = diag(
∑p

j=1 a
2
ij : 1 ≤ i ≤ p) is not spherical. C(u) is

sparse as it is banded with bandwidth 4.
For each combination of (n, p) with n = 100, 200, 500 and p = 50, 100,

150, 300, 500, we repeated the experiment 90 times, generating 90 datasets
of (yi, ui), 1 ≤ i ≤ n. Each dataset was obtained in two steps. In Step
1, we drew ui, i = 1, · · · , n independently from the uniform distribution
U(−1, 1). In Step 2, for each given ui, we drew yi from the covariance model
yi = µ(ui) + Σ(ui)

1/2εi, where εi, i = 1, ..., n were iteratively drawn from
the vector AR(1) model

ε0 = ξ0, εi = ρεi−1 + ξi, i = 1, · · · , n

with 0 ≤ ρ < 1 and ξk, k = 0, 1, ... independently sampled from the standard
p-dimensional Normal N(0, Ip). We considered ρ = 0, 0.3, 0.8.

For each combination of (n, p, ρ), we applied tNCM, stNCM, DCM1 and DCM2

to each of 90 datasets and calculated their IRSE values. The mean and stan-
dard error of these values are displayed in Tables 1∼ 3 respectively. As
example, the CPU time required by DCM1, DCM2, tNCM and stNCM to esti-
mate the covariance models for 90 datasets simulated in Setting 1 is reported
in the Web-Appendix D. The results can be summarized as follows:

• On average, the IRSE loss of each procedure was increasing in the
dimension p and in the degree of serial correlation ρ while decreasing
in sample size n.

• The degrees of sparsity and diagonal homogeneity in Σ(u) had an
effect on the performance of these four procedures. For example, when
(n, p, ρ) = (100, 300, 0), compared to in Setting 1, the IRSE loss of

stNCM in Setting 2 increased by 84%. This is not surprising as the
degrees of sparsity and diagonal homogeneity in Setting 2 lead to a
higher dimensionality (i.e., the number of effective parameters in the
model) than that in Setting 1.

• Among the four procedures, stNCM performed best in all three settings,
followed by tNCM, DCM1 and DCM2. In particular, the performance of
DCM2 was substantially worse than its competitors. For example, for
(n, p, ρ) = (100, 300, 0), in Setting 1, compared to DCM1, on average

tNCM and stNCM reduced the IRSE loss by 23% and 25% respectively.
Compared to tNCM, on average stNCM reduced the IRSE loss by 3%.
Compared to DCM2, on average DCM1 reduced the IRSE loss by 99%.
In Setting 2, compared to DCM1, on average tNCM and stNCM reduced
the IRSE loss by 12% and 16% respectively. Compared to DCM2, on
average DCM1 reduced the IRSE loss by 99%. Compared to tNCM, on
average stNCM reduced the IRSE loss by 5%. In Setting 3, compared to
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DCM1, on average tNCM and stNCM reduced the IRSE by 14% and 15%
respectively. Compared to DCM2, on average DCM1 reduced the loss by
94%. Compared to tNCM, on average stNCM reduced the IRSE loss by
2%. The similar conclusion can be made for dependent samples when
ρ = 0.3 and 0.8. In particular, the optimal shrinkage can reduce the
serial correlation effect on the proposed procedure stNCM.

• The CPU-time costs of tNCM and stNCM are much less than those of
DCM1 and DCM2.

[Put Tables 1∼3 here.]

4.3. Asset return data. Capital asset pricing model (CAPM) is a model
that describes the relationship between systematic risk and expected return
for assets, which is widely used throughout finance for the pricing of risky
assets. However, the assumption that asset returns are linearly related to
the market return is imposed on the model. The primary goal of this study
was to extend the CAPM to the nonlinear setting. In particular, we are
interested in how the volatility and co-volatility of a group of asset returns
depend on the market return.

For this purpose, from the database of Yahoo Finance, we collected monthly
return data of 75 assets across 8 sectors over three time-periods, namely,
before-financial-crisis period from 02/2001 to 01/2007, in-financial-crisis pe-
riod from 02/2007 to 01/2010 and after-financial-crisis period from 02/2010
to 12/2017. The sector distribution of these assets as follows. Technology:
AAPL, AMD, HPQ, IBM, IIN, INTC, LNGY, LOGI, MSFT, NTAP, NVDA,
SNE, TACT andWDC. Health care: AET, AMGN, AZN, BAX, CVS, GILD,
GSK, HUM, IMMU, JNJ, LLY, MRK, NVS, PFE, TECH and UNH. En-
ergy: BP, CVX, OXY, RDS-B, SU and XOM. Financial services: C, GS,
HSBC, JPM, MS, PGR, RF and THG. Communication services: SHEN,
T and TEO. Consumer defensive: BIG, DLTR, FRED, KO, TGT, TUES,
UN and WMT. Consumer cyclical: AMZN, EMMS, KSS, SIRI and TM.
Industrials: BA, CAJ, DY, EME, FIX, GE, GVA, IR, MMM, MTZ, PWR,
SKYW, UPS, UTX and VMI. We also collected the index return of S&P500
which was treated as the market’s return.

We applied the proposed stNCM to the data for each time-period, ob-
taining the corresponding estimates for mean µ(u) and covariance matrix
Σ(u). Here, the diagonals of estimated Σ(u) show the volatility of individual
returns while estimated correlation coefficient matrix C(u) captures cross-
sectional relationships in these returns.

We plotted the estimated individual mean functions and the estimated
volatility functions in Figure 1 and also Figures in the Web-Appendix C,
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the Online Supplementary Material, revealing a number of assets which had
nonlinear relationships to the market return. The degree of this non-linearity
significantly decreased after financial crisis, indicating that the CAPM fitted
to the market better than before the financial crisis. Figure 1 and Figures in
the Web-Appendix C also show that the individual volatility of the assets
increased a lot during the financial crisis period but returned to normal after
the financial crisis. The pattern of the dependence of the volatility on the
market also changed a lot after financial crisis: Changes from non-constant
volatility functions before the financial crisis to almost constant volatility
functions after the financial crisis. We also investigated effects of the financial
crisis on the co-volatility of the selected assets by the estimated non-zero
correlation coefficient functions. See Figures in the Web-Appendix B, the
Online Supplementary Material for the details. By use of the estimated
covariance matrix functions, in each time-period, we identified the associated
pairs of assets that were of nonzero market-dependent conditional correlation
coefficients (and nonzero conditional co-volatility). We further conducted
asymptotic tests for significance of co-volatility for these pairs as follows.
For any pair of assets (a, b), let Corr(a,b)(u) denote its correlation coefficient
as a function of u (the market’s return) and with estimator ˆCorr(a,b)(u).

Let F̂(a,b)(u) = 0.5 log(1 + ˆCorr(a,b)(u))/ log(1 − ˆCorr(a,b)(u)) be Fisher’s Z
transformation. To test H0 : Corr(a,b)(u) 6≡ 0, we considered the test statistics

Avec(a,b) =
n
∑

i=1

|F̂(a,b)(ui)|/n ≈ N(E[|F(a,b)(U)|], var(|F(a,b)(U)|)/n)

and calculated the approximate P-value P (
√
nAvec(a,b)/

√

v̂ar(Corr(a,b)(U))|N(0, 1)),

where the sample variance of |F̂(a,b)(ui)|, 1 ≤ i ≤ n is denoted by v̂ar(|F(a,b)(U)|)
and N(0, 1) is the standard Normal. Then, even after Bonferroni correction
for multiple testing, these P-values were all significant (< 10−2) for the above
selected pairs of assets. The final list of significant pairs are as follows:

• Before-financial-crisis. Within Technology: AET-UNH. Within En-
ergy: BP-CVX, BP-OXY, BP-RDSB, BP-SU, BP-XOM, CVX-OXY,
CVX-RDSB, CVX-SU, CVX-XOM, GS-MS,OXY-RDSB, OXY-SU, OXY-
XOM and RDSB-XOM. Within Consumer defensive: TGT-WMT.

• In-financial-crisis.Within Technology: AET-HUM, AET-MRK, AET-
UNH and NVDA-WDC. Within Industrials: EME-MTZ. Within En-
ergy: BP-CVX, BP-OXY, BP-RDSB, CVX-RDSB, CVX-XOM, OXY-
RDSB, OXY-SU and RDSB-SU. Within Consumer defensive: TGT-
TUES. Within Health care: AMGN-JNJ, AZN-GSK, HUM-UNH and
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JNJ-NVS. Within Financial services: C-JPM. Between Industrials and
Consumer cyclical: IR-TM. Between Consumer cyclical and Consumer
defensive: TM-TUES. Between Financial service and Industrials: RF-
UPS.

• After-financial-crisis.Within Technology: AET-HUM, AET-UNH and
INTC-MSFT. Within Industrials: EME-GVA and IR-UTX. Within
Energy: BP-CVX, BP-RDSB, BP-SU, BP-XOM, CVX-RDSB, CVX-
SU, CVX-XOM, OXY-SU, RDSB-SU and RDSB-XOM. Within Con-
sumer defensive: KO-UN. Within Health care: AMGN-LLY, AMGN-
MRK, AMGN-PFE, AZN-GSK, AZN-LLY, GSK-JNJ, GSK-MRK,
GSK-NVS, HUM-UNH, LLY-NVS and MRK-NVS. Within Financial
services: C-GS, C-HSBC, C-JPM, C-MS, C-RF, GS-JPM, GS-MS, GS-
RF, HSBC-MS, JPM-MS, JPM-RF and MS-RF. Between Financial
service and Industrials: JPM-MTZ. Between consumer defensive and
Financial services: KO-MS. Between Consumer cyclical and Consumer
defensive: KSS-TGT. Between Technology and Industrials: IBM-PWR.
Between Health care and Consumer defensive: GSK-UN and NVS-UN.

The results indicate that before financial crisis, there were only 16 signif-
icant within-sector co-volatility connections between these assets. In partic-
ular, there were no significant cross-sectional co-volatility connections be-
tween these assets. The number of co-volatility assets within and across sec-
tors was significantly increasing during and after financial-crisis: The number
of within-sector co-volatility connections increased from 16 to 22 during the
financial crisis period and to 37 after the financial crisis. The number of
between-sector co-volatility connections increased from 0 to 3 during the
financial crisis period and to 7 after the financial crisis. This implies that in
response to the financial crisis, the financial market has been more closely
integrated than before the financial crisis.

5. Discussion and conclusion. Estimating covariate-dependent co-
variance matrix Σ(u) of a high-dimensional response vector poses a big chal-
lenge to contemporary statistical research. The existing kernel methods in
[11, 2] of Yin et al. [12] might not be flexible enough to capture varying
smoothness across key parts of the matrix as they used a single bandwidth
for all entries of Σ(u). Here, we have proposed a novel estimation procedure
to overcome this obstacle, based on a simple factorization of Σ(u), namely
Σ(u) = Q(u)1/2C(u)Q1/2(u), where Q(u) = diag(Σ(u)) and C(u) is the
correlation coefficient function. The proposal has been implemented in two
steps. In Step 1, we estimate Q(u) and C(u) robustly by use of separate
bandwidths, followed by substituting these estimators in the above factor-
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ization formula to obtain a plug-in estimator. In Step 2, we threshold the
entries of the plug-in estimator, followed by an optimal shrinkage from a
decision-making point of view. The idea can be extended to other Q(u).
For example, we can form Q(u) by diagonal blocks of Σ(u) or by selecting
a subset of eigenvectors of Σ(u) as its blocks. We have conducted a set of
simulations to demonstrate that the new proposal outperforms the existing
DCM approach in terms of estimation loss. To illustrate our new proposal,
we have applied it to a dataset of asset returns. We have developed a non-
parametric capital asset pricing model to capture volatility and co-volatility
among these risky assets. We have showed that under some regularity con-
ditions, the proposed estimator is consistent with the underlying covariance
matrix as both the sample size and dimension tend to infinity. There are a
few important topics which are remained to address but beyond the scope of
this paper, such as nonparametric nonlinear shrinkage (analogous to those
in [2]) and multiple-covariate-dependent covariance models.

APPENDIX A: PROOFS

Proof of Proposition 3.1: It follows from Lemma 0.1, the Online Sup-
plementary Material by letting φ0(ui) = 1. The proof is completed.

Proof of Theorem 3.1: It follows from Proposition 3.1 that

sup
u∈[a,b]

|ĝh1
(u)− g(u)| = Op





√

log(1/h1)

nh1



+O(h21).(A.1)

Therefore, under Condition (C2), for sufficiently large n, we have infu∈[a,b] ĝh1
(u) ≥

0.5 infu∈[a,b] g(u) > 0. Note that

µ̂j(u)− µj(u) =
1

ĝh1
(u)

(B1jn(u) +B2jn(u) +B3jn(u)),(A.2)

where

B1jn(u) =
1

nh1

n
∑

j=1

K((ui − u)/h1)(yj(ui)− µj(ui))

B2jn(u) =
1

nh1

n
∑

i=1

K((ui − u)/h1)µj(ui)− g(u)µj(u)

B3jn(u) = (g(u)− ĝh1
(u))µj(u).



18 J. ZHANG ET AL.

We show below that

B3jn(u) = Op





√

log(1/h1)

nh1



 .(A.3)

max
1≤j≤p

sup
u∈[a,b]

|B1jn(u)| = Op





√

log(p/h1)

nh1



+O(h21).(A.4)

max
1≤j≤p

sup
u∈[a,b]

|B2jn(u)| = Op





√

log(p/h1)

nh1



+O(h21).(A.5)

The equation (A.3) directly follows from (A.1) and Condition (C5). We
employ Lemma 0.1, the Online Supplementary Material to show that equa-
tions (A.4) and (A.5) as follows.

To this end, we verify the conditions in Lemma 0.1, the Online Supple-
mentary Material. First, we bound the tail probability of yij − µj(ui):

max
1≤j≤p

P (|yij − µj(ui)| > v) ≤ max
1≤j≤p

P (|yij | > v − b2)

≤ 1 ∧ (exp(−τ1((v − b2) ∨ 0)κ1).(A.6)

When vκ1 ≥ bκ1

2 + 1/τ1, we have

exp(1− τ1(v − b2)
κ1) ≤ exp(1− τ1(v

κ1 − bκ1

2 ))

≤ exp

(

(1 + τ1b
κ1

2 )

(

1− τ1
1 + τ1b

κ1

2

vκ1

))

≤ exp

(

1− τ1
1 + τ1b

κ1

2

vκ1

)

.

This together with the inequality in (A.6) implies that when vκ1 ≥ bκ1

2 +1/τ1,

max
1≤j≤p

sup
u
P (|yij − µj(ui)| > v) ≤ exp

(

1− τ1
1 + τ1b

κ1

2

vκ1

)

.

On other hand, when vκ1 < bκ1

2 + 1/τ1,

max
1≤j≤p

sup
u
P (|yij − µj(ui)| > v) ≤ 1 ≤ exp

(

1− τ1
1 + τ1b

κ1

2

vκ1

)

.
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Therefore, we have

max
1≤j≤p

P (|yij − µj(ui)| > v) ≤ exp

(

1− τ1
1 + τ1b

κ1

2

vκ1

)

.(A.7)

Equation (A.4) follows from Lemma 0.1, the Online Supplementary Material
by letting φ1(yij , ui) = yij−µj(ui). Similarly, the equation (A.5) follows from
Lemma 0.1, the Online Supplementary Material by letting φ0j = µj(ui). The
proof is completed by combining equations (A.2) and (A.3)∼(A.5).

Proof of Theorem 3.2: Note that h/h1+h1/h = O(1) and h/h3+h3/h =
O(1) which imply that h/h1 and h/h3 are bounded below from zero and
above from infinity. Therefore,

log(nph−4)

(nh log(p/h))γ2/2
= O(1),

(log(nh log(p/h)))γ2 log(1/h)

(nh log(p/h))γ2(1−γ2)/2
= O(1)

imply that

log(nph−4
1 )

(nh1 log(p/h1))γ2/2
= O(1),

(log(nh1 log(p/h1)))
γ2 log(1/h1)

(nh1 log(p/h1))γ2(1−γ2)/2
= O(1).

log(nph−4
3 )

(nh3 log(p/h3))γ2/2
= O(1),

(log(nh3 log(p/h3)))
γ2 log(1/h3)

(nh3 log(p/h3))γ2(1−γ2)/2
= O(1).

As 0 < γ2 < κ2 satisfies the conditions in Proposition 3.1, it follows from
Proposition 3.1 that

sup
u∈[a,b]

|ĝh1
(u)− g(u)| = Op





√

log(1/h1)

nh1



+O(h21).

sup
u∈[a,b]

|ĝh(u)− g(u)| = Op

(
√

log(1/h)

nh

)

+O(h2).

This implies that for sufficiently large n, both supu∈[a,b] ĝh1
(u) and supu∈[a,b] ĝh(u)

are bounded below from zero. Note that

σ̂jk(u) =

n
∑

i=1

wih(u)(yij − µ̂j(ui))(yik − µ̂k(ui))

= σ̃jk(u) + ψ1jn(u) + ψ2jn(u) + ψ3jn(u),(A.8)
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where

σ̃jk(u) =
n
∑

i=1

wih(u)(yij − µj(ui))(yik − µk(ui)),

ψ1jkn(u) =
n
∑

i=1

wih(u)(yij − µj(ui))(µk(ui)− µ̂k(ui)),

ψ2jkn(u) =
n
∑

i=1

wih(u)(µj(ui)− µ̂j(ui))(yik − µk(ui))

ψ3jkn(u) =
n
∑

i=1

wih(u)(µj(ui)− µ̂j(ui))(µk(ui)− µ̂k(ui)).

By Theorem 3.1, we have

|ψ1jkn(u)| ≤
(

n
∑

i=1

wih(u)(yij − µj(ui))
2

)1/2( n
∑

i=1

wih(u)(µk(ui)− µ̂k(ui))
2

)1/2

≤ σ̃
1/2
jj

(

Op(
√

log(p/h1)/(nh1)) +O(h21)
)

,

|ψ2jkn(u)| ≤
(

n
∑

i=1

wih(u)(µj(ui)− µ̂j(ui))
2

)1/2( n
∑

i=1

wih(u)(yik − µk(ui))
2

)1/2

≤
(

Op

(

√

log(p/h1)/(nh1)
)

+O(h21)
)

σ̃
1/2
kk ,

|ψ3jkn(u)| ≤
(

n
∑

i=1

wih(u)(µj(ui)− µ̂j(ui))
2

)1/2( n
∑

i=1

wih(u)(µk(ui)− µ̂k(ui))
2

)1/2

≤
(

Op(
√

log(p/h1)/(nh1)) +O(h21)
)2
.

To complete the proof, it suffice to prove

max
1≤j,k≤p

sup
u∈[a,b]

|σ̂jk(u)− σjk(u)| = Op

(
√

log(p/h)

nh
+ h2

)

.(A.9)

Let

y∗ij = yij − µj(ui), y∗ik = yik − µk(ui).

Then, E[y∗ij |ui] = 0, σjk(ui) = E[y∗ijy
∗
ik|ui] and

σ̃jk(u)− σjk(u) =
1

ĝh(u)

1

nh

n
∑

i=1

K(
ui − u

h
)y∗ijy

∗
ik − σjk(u)

=
1

ĝh(u)
(T1jkn(u) + T2jkn(u) + T3jkn(u)) ,(A.10)
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where

T1jkn(u) =
1

nh

n
∑

i=1

K(
ui − u

h
)
(

y∗ijy
∗
ik − σjk(ui)

)

T2jkn(u) =
1

nh

n
∑

i=1

(

K(
ui − u

h
)σjk(ui)− g(u)σjk(u)

)

T3jkn(u) = (g(u)− ĝh(u))σjk(u).

By Proposition 3.1, uniformly in 1 ≤ j, k ≤ p and u ∈ [a, b], we have

max
jk

sup
u∈[a,b]

|T3jkn(u)| = Op

(
√

log(1/h)

nh
+ h2

)

.(A.11)

Note that by using (A.7), we have

max
1≤j,k≤p

P (|y∗ijy∗ik| > v) ≤ max
j,k

(

P (|y∗ij | >
√
v) + P (|y∗ik| >

√
v)
)

≤ 2 exp

(

1− τ1
1 + τ1b

κ1

2

vκ1/2

)

.

Let b3 = maxj,k supw σjk(w). Then, we have

max
1≤j,k≤p

P
(

|y∗ijy∗ik − σjk(ui)| > v
)

≤ max
j,k

P
(

|y∗ijy∗ik| > (v − b3) ∨ 0
)

≤ 1 ∧ exp

(

1 + log(2)− τ1
1 + τ1b

κ1

2

((v − b3) ∨ 0)κ1/2

)

≤ 1 ∧ exp

(

1 + log(2) +
τ1b

κ1/2
3

1 + τ1b
κ1

2

− τ1v
κ1/2

1 + τ1b
κ1

2

)

≤ exp

(

1− vκ1/2

(τ−1
1 + bκ1

2 )(1 + log(2)) + b
κ1/2
3

)

.(A.12)

Letting φ0jk(ui) = σjk(ui) in Lemma 0.1, the Online Supplementary Ma-
terial and invoking (A.12), we have

max
1≤j,k≤p

sup
u∈[a,b]

|T2jkn(u)| = Op

(
√

log(p/h)

nh

)

+O(h2).(A.13)

Similarly, letting φ2(yij , yik, ui) = y∗ijy
∗
ik − σjk(ui) in Lemma 0.1(iii), the

Online Supplementary Material, we have

max
1≤j,k≤p

sup
u∈[a,b]

|T1jkn(u)| = Op

(
√

log(p/h)

nh

)

+O(h2).
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This together with (A.8), (A.11) and (A.13) gives

max
1≤j,k≤p

sup
u∈[a,b]

|σ̃jk(u)− σjk(u)| = Op

(
√

log(p/h)

nh
+ h2

)

and

|ψ1jkn(u)| ≤ σ̃
1/2
jj (u)

(

Op(
√

log(p/h1)/(nh1)) +O(h21)
)

= Op(
√

log(p/h1)/(nh1) + h21).

|ψ2jkn(u)| ≤
(

Op

(

√

log(p/h1)/(nh1)
)

+O(h21)
)

σ̃
1/2
kk (u)

= Op

(

√

log(p/h)/(nh) + h2
)

.

|ψ3jkn(u)| = op

(

√

log(p/h)/(nh)
)

.

Combining these with (A.8) yields (A.9), namely

max
1≤j,k≤p

sup
u∈[a,b]

|σ̂jk(u)− σjk(u)| ≤ max
1≤j,k≤p

sup
u∈[a,b]

{|σ̃jk(u)− σjk(u)|+ |ψ1jn(u)|

+|ψ2jn(u)|+ |ψ3jn(u)|}

= Op





√

log(p/h1)

nh1
+

√

log(p/h)

nh
+ h21 + h2





= Op

(
√

log(p/h)

nh
+ h2

)

,

where the last equation follows from the condition that h/h1+h1/h = O(1).
Let ỹij = (yij − µ̂j(ui))/

√

σ̂jj(ui), 1 ≤ j ≤ p. Let

σ̃jk(u) =
√

σ̂jj(u)σ̂kk(u)
n
∑

i=1

wh3
(ui − u)ỹij ỹik, 1 ≤ j, k ≤ p.

If h/h3 + h3/h = O(1), then using the similar arguments to the above, we
can show that

n
∑

i=1

wh3
(ui − u)(

√

σjj(u)σkk(u)/(σjj(ui)σkk(ui))− 1)(yij − µ̂j(ui))(yik − µ̂k(ui))

= Op

(
√

log(p/h)

nh
+ h2

)

.

n
∑

i=1

wh3
(ui − u)|(yij − µ̂j(ui))(yik − µ̂k(ui))| = Op(1).
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Therefore, it follows from the previous arguments that

|σ̃jk(u)− σ̂jk(u)| = |
n
∑

i=1

wh3
(ui − u)(

√

σ̂jj(u)σ̂kk(u)/(σ̂jj(ui)σ̂kk(ui))− 1)

×(yij − µ̂j(ui))(yik − µ̂k(ui))|

= |
n
∑

i=1

wh3
(ui − u)(

√

σjj(u)σkk(u)/(σjj(ui)σkk(ui))− 1)

×(yij − µ̂j(ui))(yik − µ̂k(ui))|+Op

(
√

log(p/h)

nh
+ h2

)

= Op

(
√

log(p/h)

nh
+ h2

)

,

which implies

σ̃jk(u) = σjk(u) +Op

(
√

log(p/h)

nh
+ h2

)

uniformly for u. Therefore,

ĉij(u) =
σ̃jk(u)

√

σ̂jj(u)σ̂kk(u)
+Op

(
√

log(p/h)

nh
+ h2

)

= cij(u) +Op

(
√

log(p/h)

nh
+ h2

)

uniformly for u. The proof is completed.
Proof of Theorem 3.3. Note that nh5/ log(p/h) = O(1) implies that

h2 = O(τnp). Also h/h1 + h1/h = O(1) and h/h3 + h3/h = O(1) imply that
h, h1 and h3 have the same convergence rate as h, h1, h3 → 0. By definition
and Lemma 0.7, the Online Supplementary Material, we have that uniformly



24 J. ZHANG ET AL.

in u ∈ [a, b],

||Σ̂(st)(u)− Σ(u)|| = || β̂
2(u)

δ̂2p(u)
(< Σ̂(t)(u), Ip > Ip − Σ(u))

+
α̂2(u)

δ̂2p(u)
(Σ̂(t)(u)− Σ(u))||

≤ β̂2(u)

δ̂2p(u)
||(< Σ(u), Ip > +Op(τnp))Ip − Σ(u)||+

α̂2
p(u)

δ̂2p(u)
||Σ̂(t)(u)− Σ(u)||

=
β̂2(u)O(1)

α2
p(u)(1 +Op(mp(u)τnp/αp(u)))2

+Op(mp(u)τnp)

=
Op(mp(u)τ

2
np)

α2
p(u) log(p/h)(1 +Op(mp(u)τnp/αp(u)))2

+Op(mp(u)τnp)

= Op(mp(u)τnp) +Op(mp(u)τnp) = Op(mp(u)τnp),

since supu∈[a,b]mp(u)τnp/αp(u) = o(1) and τnp/(log(p/h) infu∈[a,b] α
2
p(u)) =

O(1).
Furthermore, under Condition (C9), we have that uniformly in u ∈ [a, b],

||Σ̂(t)(u)|| ≥ ||Σ(u)|| − ||Σ̂(t)(u)− Σ(u)||
= ||Σ(u)|| −Op (mp(u)τnp)

≥ s0p −Op (mp(u)τnp)

= s0p (1− op(1)) .

||Σ̂(st)(u)Σ−1(u)− Ip|| ≤ ||Σ̂(t)(u)− Σ(u)||(||Σ(u)||)−1

≤ Op

(

mp(u)τnps
−1
0p

)

.

||Σ(u)(Σ̂(st)(u))−1 − Ip|| ≤ ||Σ̂(t)(u)− Σ(u)||(||Σ(st)(u)||)−1

≤ Op

(

mp(u)τnps
−1
0p

)

.

||(Σ̂(t)(u))−1 − Σ(u)−1|| ≤
(

||Σ̂(t)(u)||||Σ(u)||
)−1

||Σ̂(t)(u)− Σ(u)||

= Op

(

mp(u)τnps
−2
0p

)

.

Finally, under Condition (C10), it follows from Lemmas 0.3 and 0.6, the
Online Supplementary Material that the above results continue to hold if
we replace the thresholding function t0(u) by t̂0(u). The proof is completed.
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SUPPLEMENTARY MATERIAL

Supplement A: Online Supplementary Material

(http://www.e-publications.org/ims/support/dowload/stncmjzlsuppl.zip). The
detailed proofs of the lemmas and some extra information on numerical re-
sults.
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Table 1

The Average(standard error) of IRSE for Setting 1

n p DCM2 DCM1 tNCM stNCM

ρ = 0

100

50 5.1307(0.2504) 0.5807(0.0348) 0.4546(0.0348) 0.4482(0.0361)
100 16.2142(0.4702) 0.6263(0.0256) 0.4962(0.0254) 0.4878(0.0264)
150 49.4335(0.7562) 0.6497(0.0212) 0.5199(0.0209) 0.5112(0.0219)
300 78.0434(0.4833) 0.7045(0.0171) 0.5739(0.0151) 0.5654(0.0156)
500 102.8816(0.3913) 0.7521(0.0172) 0.6111(0.0133) 0.6021(0.0138)

200

50 2.8919(0.0826) 0.3650(0.0269) 0.2821(0.0242) 0.2834(0.0253)
100 8.8372(0.1562) 0.3868(0.0179) 0.2976(0.0156) 0.2989(0.0161)
150 18.5651(0.3007) 0.3915(0.0164) 0.3031(0.0150) 0.3040(0.0155)
300 70.8479(0.3201) 0.4194(0.0126) 0.3201(0.0100) 0.3204(0.0104)
500 84.8626(0.2537) 0.4508(0.0108) 0.3315(0.0092) 0.3310(0.0093)

500

50 1.5780(0.0356) 0.2025(0.0128) 0.1814(0.0113) 0.1831(0.0119)
100 3.3680(0.0440) 0.2071(0.0093) 0.1822(0.0074) 0.1840(0.0078)
150 6.0579(0.0645) 0.2108(0.0081) 0.1827(0.0061) 0.1845(0.0064)
300 28.7062(0.2438) 0.2295(0.0052) 0.1838(0.0042) 0.1856(0.0044)
500 90.9963(0.2061) 0.2519(0.0041) 0.1845(0.0036) 0.1863(0.0038)

ρ = 0.3

100

50 5.7885(0.2845) 0.6171(0.0345) 0.4934(0.0292) 0.4816(0.0298)
100 18.6343(0.5494) 0.6686(0.0301) 0.5375(0.0245) 0.5263(0.0248)
150 55.3409(0.7486) 0.7056(0.0284) 0.5627(0.0212) 0.5512(0.0223)
300 80.5517(0.4835) 0.7648(0.0206) 0.6157(0.0162) 0.6047(0.0165)
500 102.5949(0.5096) 0.8198(0.0295) 0.6532(0.0108) 0.6422(0.0110)

200

50 3.0460(0.0937) 0.3980(0.0251) 0.3079(0.0212) 0.3069(0.0218)
100 8.1745(0.1568) 0.4188(0.0184) 0.3239(0.0151) 0.3229(0.0154)
150 17.6292(0.2808) 0.4274(0.0180) 0.3310(0.0147) 0.3294(0.0147)
300 72.9782(0.3237) 0.4608(0.0152) 0.3533(0.0101) 0.3510(0.0103)
500 93.0913(0.2922) 0.4972(0.0121) 0.3697(0.0083) 0.3671(0.0086)

500

50 1.5613(0.0410) 0.2161(0.0123) 0.1902(0.0097) 0.1915(0.0104)
100 3.3541(0.0484) 0.2191(0.0102) 0.1904(0.0075) 0.1917(0.0077)
150 6.4276(0.0660) 0.2250(0.0095) 0.1918(0.0072) 0.1930(0.0073)
300 27.2019(0.2476) 0.2416(0.0060) 0.1932(0.0048) 0.1946(0.0049)
500 92.5289(0.2549) 0.2630(0.0043) 0.1932(0.0038) 0.1946(0.0040)

ρ = 0.8

100

50 5.6548(0.3649) 1.3968(0.1261) 1.3139(0.1178) 1.1319(0.1038)
100 18.0835(0.5143) 1.8898(0.1264) 1.7843(0.1177) 1.4853(0.1051)
150 55.7814(0.6103) 2.3268(0.1293) 2.1991(0.1225) 1.8063(0.1094)
300 80.8167(0.4157) 3.2234(0.1261) 3.0622(0.1199) 2.4755(0.1086)
500 102.7016(0.4263) 4.1306(0.1081) 3.9262(0.1021) 3.1492(0.0936)

200

50 3.0830(0.1428) 1.1094(0.0783) 1.0305(0.0709) 0.9078(0.0620)
100 8.1824(0.1964) 1.5004(0.0731) 1.4002(0.0677) 1.1875(0.0595)
150 17.3394(0.3018) 1.8256(0.0669) 1.7130(0.0620) 1.4254(0.0556)
300 73.0011(0.3285) 2.5373(0.0588) 2.4022(0.0554) 1.9570(0.0504)
500 93.1479(0.2667) 3.2475(0.0685) 3.0812(0.0645) 2.4830(0.0583)

500

50 1.6169(0.0621) 0.7379(0.0405) 0.6859(0.0319) 0.6324(0.0270)
100 3.3779(0.0624) 1.0280(0.0319) 0.9495(0.0279) 0.8410(0.0240)
150 6.4755(0.0886) 1.2453(0.0295) 1.1566(0.0280) 1.0007(0.0246)
300 26.5926(0.2880) 1.7210(0.0300) 1.6184(0.0284) 1.3545(0.0253)
500 92.7346(0.2502) 2.1956(0.0268) 2.0834(0.0254) 1.7137(0.0222)
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Table 2

The Average(standard error) of IRSE for Setting 2

n p DCM2 DCM1 tNCM stNCM

ρ = 0

100

50 11.8865(0.2591) 0.5261(0.0194) 0.4534(0.0229) 0.4338(0.0232)
100 37.3349(1.2667) 0.5494(0.0144) 0.4834(0.0148) 0.4642(0.0161)
150 62.9012(0.5970) 0.5609(0.0149) 0.4980(0.0161) 0.4797(0.0168)
300 87.7651(0.5914) 0.5902(0.0183) 0.5248(0.0107) 0.5077(0.0113)
500 114.8459(0.5070) 0.6096(0.0171) 0.5449(0.0071) 0.5286(0.0076)

200

50 6.1169(0.2148) 0.3867(0.0186) 0.3177(0.0161) 0.3095(0.0164)
100 16.9859(0.2304) 0.3995(0.0114) 0.3277(0.0110) 0.3195(0.0111)
150 35.6152(0.5072) 0.4049(0.0116) 0.3336(0.0096) 0.3253(0.0096)
300 90.4787(0.4491) 0.4235(0.0105) 0.3447(0.0080) 0.3364(0.0082)
500 116.3211(0.3969) 0.4442(0.0089) 0.3529(0.0071) 0.3446(0.0071)

500

50 2.8192(0.0788) 0.2626(0.0089) 0.2367(0.0094) 0.2341(0.0102)
100 7.2953(0.0871) 0.2672(0.0049) 0.2420(0.0051) 0.2395(0.0056)
150 13.8324(0.0962) 0.2708(0.0044) 0.2453(0.0035) 0.2430(0.0038)
300 84.4015(0.8099) 0.2825(0.0030) 0.2478(0.0024) 0.2457(0.0025)
500 117.4588(0.2618) 0.2974(0.0023) 0.2488(0.0017) 0.2469(0.0018)

ρ = 0.3

100

50 11.9070(0.2632) 0.5488(0.0229) 0.4846(0.0300) 0.4628(0.0280)
100 37.5512(1.3329) 0.5643(0.0164) 0.5049(0.0165) 0.4850(0.0171)
150 62.9160(0.5414) 0.5831(0.0159) 0.5190(0.0136) 0.4999(0.0145)
300 87.6334(0.5364) 0.6114(0.0187) 0.5456(0.0083) 0.5280(0.0093)
500 114.8919(0.5994) 0.6266(0.0222) 0.5603(0.0071) 0.5433(0.0074)

200

50 6.2194(0.2103) 0.4067(0.0168) 0.3343(0.0171) 0.3243(0.0163)
100 16.9228(0.2161) 0.4186(0.0161) 0.3465(0.0161) 0.3364(0.0155)
150 35.6480(0.5216) 0.4275(0.0114) 0.3534(0.0093) 0.3434(0.0089)
300 90.4008(0.4407) 0.4491(0.0117) 0.3677(0.0080) 0.3575(0.0079)
500 116.3462(0.3737) 0.4703(0.0121) 0.3787(0.0078) 0.3688(0.0078)

500

50 2.8119(0.0847) 0.2714(0.0083) 0.2456(0.0077) 0.2423(0.0081)
100 7.3496(0.0772) 0.2751(0.0065) 0.2495(0.0053) 0.2467(0.0054)
150 13.7107(0.0975) 0.2798(0.0053) 0.2519(0.0040) 0.2492(0.0040)
300 84.6477(0.5483) 0.2909(0.0037) 0.2536(0.0029) 0.2514(0.0029)
500 117.4813(0.2674) 0.3046(0.0029) 0.2539(0.0022) 0.2517(0.0022)

ρ = 0.8

100

50 11.8065(0.2964) 1.3110(0.1046) 1.2273(0.0932) 1.0305(0.0807)
100 37.5451(1.5225) 1.7824(0.1125) 1.6758(0.1054) 1.3707(0.0942)
150 62.8919(0.5696) 2.1604(0.1116) 2.0378(0.1050) 1.6487(0.0943)
300 87.5892(0.5203) 3.0189(0.0912) 2.8635(0.0870) 2.2906(0.0794)
500 114.9517(0.5658) 3.8808(0.0967) 3.6842(0.0939) 2.9324(0.0865)

200

50 6.0032(0.2641) 1.0720(0.0562) 0.9904(0.0528) 0.8423(0.0479)
100 16.6911(0.2923) 1.4519(0.0547) 1.3521(0.0527) 1.1169(0.0470)
150 36.6918(0.6470) 1.7727(0.0591) 1.6604(0.0557) 1.3564(0.0507)
300 90.4006(0.4564) 2.4649(0.0491) 2.3305(0.0462) 1.8768(0.0421)
500 116.2670(0.3876) 3.1504(0.0599) 2.9914(0.0571) 2.3935(0.0523)

500

50 2.7977(0.1020) 0.7284(0.0324) 0.6723(0.0267) 0.5950(0.0235)
100 7.1270(0.1176) 1.0120(0.0268) 0.9328(0.0250) 0.7952(0.0227)
150 13.3994(0.1379) 1.2240(0.0246) 1.1367(0.0235) 0.9520(0.0215)
300 82.8582(0.8672) 1.6915(0.0256) 1.5929(0.0242) 1.3054(0.0220)
500 117.4724(0.2692) 2.1614(0.0218) 2.0525(0.0209) 1.6643(0.0185)
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Table 3

The Average(standard error) of IRSE for Setting 3

n p DCM2 DCM1 tNCM stNCM

ρ = 0

100

50 7.2002(0.4009) 3.5156(0.1637) 3.0263(0.1351) 2.9973(0.1418)
100 16.4443(0.4565) 3.8041(0.0726) 3.2530(0.0551) 3.2200(0.0589)
150 50.7710(0.5789) 3.9366(0.0649) 3.3912(0.0414) 3.3586(0.0432)
300 78.2423(0.6810) 4.1044(0.0624) 3.5757(0.0297) 3.5416(0.0292)
500 102.9735(0.6949) 4.2842(0.0793) 3.7076(0.0220) 3.6691(0.0218)

200

50 4.7672(0.2241) 2.7869(0.1292) 2.3683(0.0990) 2.3456(0.1021)
100 10.3670(0.2726) 2.9617(0.0963) 2.5836(0.0553) 2.5661(0.0574)
150 16.7314(0.2515) 3.5027(0.0579) 2.7180(0.0450) 2.6976(0.0464)
300 71.1626(0.4656) 3.7042(0.0368) 2.9883(0.0297) 2.9567(0.0305)
500 85.0637(0.4323) 3.9768(0.0448) 3.1697(0.0212) 3.1307(0.0217)

500

50 3.0828(0.0990) 2.0581(0.0636) 1.6115(0.0619) 1.6079(0.0634)
100 5.4027(0.1283) 2.1808(0.0577) 1.8712(0.0435) 1.8677(0.0443)
150 7.9711(0.0929) 2.2271(0.0473) 2.0339(0.0333) 2.0311(0.0341)
300 20.0680(0.1489) 2.3369(0.0375) 2.3138(0.0221) 2.3083(0.0226)
500 90.3515(0.2678) 3.2536(0.0129) 2.5211(0.0175) 2.5125(0.0179)

ρ = 0.3

100

50 7.9703(0.4326) 3.5611(0.1876) 3.0472(0.1133) 3.0116(0.1188)
100 18.1734(0.4703) 3.8359(0.0843) 3.2654(0.0516) 3.2310(0.0551)
150 56.4342(0.6837) 3.9699(0.0778) 3.4091(0.0433) 3.3762(0.0461)
300 80.4879(0.7218) 4.1319(0.0747) 3.5784(0.0285) 3.5443(0.0284)
500 102.5341(0.7728) 4.2849(0.0987) 3.6996(0.0233) 3.6641(0.0228)

200

50 4.7921(0.2095) 2.8340(0.1146) 2.3977(0.0845) 2.3708(0.0879)
100 9.8312(0.2352) 3.0478(0.0996) 2.6016(0.0575) 2.5786(0.0594)
150 16.2014(0.2387) 3.5476(0.0640) 2.7332(0.0492) 2.7097(0.0505)
300 73.1892(0.4665) 3.7509(0.0418) 2.9873(0.0307) 2.9555(0.0313)
500 93.0226(0.4103) 3.9992(0.0487) 3.1546(0.0272) 3.1171(0.0280)

500

50 2.9875(0.1213) 2.0968(0.0805) 1.6410(0.0565) 1.6351(0.0576)
100 5.3832(0.1591) 2.2157(0.0610) 1.8861(0.0443) 1.8810(0.0458)
150 7.9702(0.0786) 2.2675(0.0499) 2.0482(0.0352) 2.0437(0.0360)
300 18.9870(0.1429) 2.3773(0.0436) 2.3161(0.0238) 2.3101(0.0243)
500 91.6005(0.3058) 3.2760(0.0179) 2.5101(0.0164) 2.5011(0.0167)

ρ = 0.8

100

50 8.2587(0.5799) 4.6369(0.5098) 4.1809(0.3017) 3.7168(0.1794)
100 18.1379(0.4944) 5.9809(0.4096) 5.2965(0.3118) 4.4277(0.1898)
150 50.7099(6.2867) 7.1100(0.5062) 6.2984(0.3498) 5.0698(0.2249)
300 78.9593(0.6606) 9.3633(0.3683) 8.4308(0.3441) 6.4292(0.2322)
500 101.1399(0.6726) 11.5664(0.3317) 10.5839(0.2916) 7.8342(0.2232)

200

50 5.5375(0.3775) 3.8373(0.3996) 3.5263(0.2055) 3.1336(0.1301)
100 10.3672(0.2550) 4.8094(0.4444) 4.5007(0.1761) 3.7962(0.1082)
150 16.4920(0.2807) 6.2207(0.4457) 5.3075(0.1538) 4.3213(0.0967)
300 70.7900(0.4641) 8.2310(0.2065) 7.0400(0.1583) 5.4331(0.1133)
500 91.2056(0.3782) 10.1027(0.2081) 8.8042(0.1784) 6.5836(0.1320)

500

50 3.4523(0.2160) 2.6353(0.2005) 2.4554(0.1428) 2.3046(0.1097)
100 6.0072(0.1610) 2.9998(0.2064) 3.2643(0.0977) 2.9233(0.0564)
150 8.2472(0.1143) 3.3002(0.1875) 3.8406(0.0702) 3.3285(0.0437)
300 19.1704(0.1533) 4.2317(0.3624) 5.0320(0.0766) 4.1276(0.0525)
500 40.0499(0.3396) 7.2277(0.0840) 6.2086(0.0710) 4.9125(0.0487)
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Fig 1: Before-financial-crisis: (a) Plots of estimated means µ̂k(ui) against
i (top), estimated individual volatility σ̂kk(ui) against i (middle) and ui
against i (bottom). (b) Plots of estimated µ̂k(u) against u (left) and esti-
mated individual volatility σ̂kk(u) against u right. Similarly, (c) and (d) for
the in-financial-crisis period while (e) and (f) for the after-financial-crisis.
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