
A New Approach towards
Non-holonomic Path Planning of

Car-like Robots using Rapidly
Random Tree Fixed

Nodes(RRT*FN)

A Thesis Submitted to
The University of Kent

for The Degree of
Doctor of Philosophy

in Electronic Engineering

Sotirios Spanogianopoulos

Nov 2017

Abstract

Autonomous car driving is gaining attention in industry and is also an ongoing

research in scientific community. Assuming that the cars moving on the road are all

autonomous, this thesis introduces an elegant approach to generate non-holonomic

collision-free motion of a car connecting any two poses (configurations) set by the

user. Particularly this thesis focusses research on “path-planning” of car-like robots

in the presence of static obstacles.

Path planning of car-like robots can be done using RRT and RRT*. Instead of

generating the non-holonomic path between two sampled configurations in RRT,

our approach finds a small incremental step towards the next random configuration.

Since the incremental step can be in any direction we use RRT to guide the robot

from start configuration to end configuration.

This “easy-to-implement” mechanism provides flexibility for enabling standard plan-

ners to solve for non-holonomic robots without much modifications. Thus, strength

of such planners for car path planning can be easily realized. This thesis demon-

strates this point by applying this mechanism for an effective variant of RRT called

as RRT - Fixed Nodes (RRT*FN).

Experiments are conducted by incorporating our mechanism into RRT*FN (termed

as RRT*FN-NH) to show the effectiveness and quality of non-holonomic path gener-

ated. The experiments are conducted for typical benchmark static environments and

the results indicate that RRT*FN-NH is mostly finding the feasible non-holonomic

solutions with a fixed number of nodes (satisfying memory requirements) at the cost

of increased number of iterations in multiples of 10k.

Thus, this thesis proves the applicability of mechanism for a highly constrained

planner like RRT*-FN, where the path needs to be found with a fixed number

of nodes. Although, comparing the algorithm (RRT*FN-NH) with other existing

planners is not the focus of this thesis there are considerable advantages of the

mechanism when applied to a planner. They are a) instantaneous non-holonomoic

path generation using the strengths of that particular planner, b) ability to modify

i

on-the-fly non-holomic paths, and c) simple to integrate with most of the existing

planners.

Moreover, applicability of this mechanism using RRT*-FN for non-holomic path

generation of a car is shown for a more realistic urban environments that have typical

narrow curved roads. The experiments were done for actual road map obtained from

google maps and the feasibility of non-holomoic path generation was shown for such

environments. The typical number of iterations needed for finding such feasible

solutions were also in multiple of 10k. Increasing speed profiles of the car was tested

by limiting max speed and acceleration to see the effect on the number of iterations.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisors Dr. Konstantinos

Sirlantzis and Dr. Gareth Howells for their continuous encouragement, keen interest

and constant guidance throughout the course of my research work. My conversations

with them have been a source of great encouragement, inspiration and learning.

I would also like to acknowledge School of Engineering and Digital Arts support for

without their funding I could not have completed this thesis.

I would like to express my gratitude to my parents. Especially to my mother, Ms

Paraskevi Spanogianopoulou, who has always been there for me and I am thankful

for everything she has done. To my father, Mr Ioannis Spanogianopoulos, who has

been a source of encouragement.

This work was part of the SAVEMORE project co-funded by the European Regional

Development Fund and the School of Engineering and Digital Arts, University of

Kent, UK. SAVEMORE was selected for funding under the Interreg IVA France

(Channel) England programme.

iii

To xxx:

Dedication goes here

iv

Contents

Abstract i

Acknowledgements iii

List of Tables xi

List of Figures xii

List of Publications xvi

1 Introduction 1

1.1 Tools for autonomous navigation of a robot 2

1.1.1 3D object intersection checking 2

1.1.2 Collision-checking of any robot motion 2

1.1.3 Planners . 4

1.2 Necessity of a new approach . 5

1.2.1 Can be used by most planners 5

1.2.2 Facilitating global path planning 6

v

CONTENTS vi

1.2.3 Giving path planners ability to rapidly handle unforeseen ob-

stacles on-the-fly . 7

1.2.4 Enabling feasibility for existing computing technology con-

strained by memory and power 7

1.3 Scope and objectives of this research 8

1.4 Structure of Thesis . 9

2 State-of-the-art review 11

2.1 Review of a sampling based path planner 11

2.1.1 Rapidly-exploring Random Tree (RRT) 12

2.1.2 RRT* . 14

2.1.3 Selecting RRT as our test planner 14

2.2 Existing approaches using RRT for non-holonomic systems 15

2.2.1 Car-like robot . 16

2.2.2 Other complex non-holonomic systems 16

2.3 Safe path planning . 17

2.3.1 Indoor environments . 17

2.3.2 Planning on rough terrains . 18

2.3.3 Online RRT . 19

2.4 Further improvements introduced in RRT 20

2.5 Other factors affecting path planning 22

2.5.1 Sensing unforeseen changes . 22

CONTENTS vii

2.5.2 Addressing motion uncertainty in car-like robot 23

2.6 Methods Based on Fuzzy Logic . 23

2.6.1 Sensor-based Methods . 24

2.6.2 SLAM-based Methods . 27

2.7 Latest developments . 30

3 Motivation and Contribution 40

3.1 Need of path planning process in autonomous navigation 40

3.1.1 Simple path planning for any robot 41

3.1.2 Car-like robot – a robot with non-holonomic constraints . . . 41

3.1.3 Framework for autonomous navigation of car-like robot using

way points . 43

3.2 Revisiting current state-of-art approaches 45

3.3 Technical characteristics of mechanism augmenting planners for non-

holonomic path generation . 46

3.3.1 Computationally inexpensive 46

3.3.2 Instantaneous . 46

3.3.3 Simplicity in integrating with already existing path planners . 47

3.4 Achievements and contribution . 47

3.4.1 Interweaving incremental collision checking with generator . . 47

3.4.2 Strengths of most existing planners can now be applied for

non-holonomic path planning 48

CONTENTS viii

3.4.3 Could be easily scaled for dynamic environments with existing

motion planners . 48

3.5 Practical aspects . 49

4 Augmented Path Planner: RRT* Fixed Nodes for Non-Holonomic

robot (RRT*FN-NH) 50

4.1 A review of RRT*FN . 51

4.1.1 Overall structure . 51

4.1.2 Sampling of new node . 52

4.1.3 Connection of new node to tree 52

4.1.4 Rewiring of nodes . 53

4.1.5 Maintaining constraint of maximum fixed nodes 53

4.1.6 Summarising into an algorithm 54

4.1.7 Problems in Extending RRT*FN for non-holonomic systems . 55

4.2 Problem Statement . 56

4.3 Non-holonomic path generation using small dt 58

4.3.1 Modelling kinematics of car-like robot 59

4.3.2 Random non-holomic instantaneous path generator 60

4.4 RRT*FN with non-holonomic constraints 61

4.4.1 Simple modifications to RRT*FN 61

4.4.2 Highlights on RRT*-FN-NH 62

CONTENTS ix

5 Experiments and Results 64

5.1 Specific details on implemented approach 65

5.1.1 Minimising steering angle change 66

5.1.2 Collision checker . 66

Benchmark Environments . 67

Google Maps . 67

5.2 RRT*FN-NH in traditional environments 67

5.2.1 Initial parameters . 68

Random seed as a parameter 68

5.2.2 Feasibility of RRT*FN-NH in finding solutions 69

5.2.3 Study of narrow passage example 70

5.2.4 Study with environment requiring multiple manuevers 74

5.3 RRT*FN-NH on Google Maps . 76

5.3.1 Car speed profiles . 77

Slow speed . 78

Medium speed . 78

Fast speed . 79

5.3.2 Insights . 79

6 Conclusion and Future Work 86

6.1 Achievements . 87

6.2 Summary . 88

6.3 Possible future advancements of our work 89

6.4 Autonomous robot navigation and obstacle perception 90

6.5 Applications of autonomously-navigating car-like robots 93

x

List of Tables

5.1 Experimental data of RRT*FN with Nonholonomic constraints 70

5.2 Experimental data of RRT*FN-NH Vs. RRT* for narrow passage

environment . 72

5.3 Experimental data of RRT*FN-NH Vs. RRT* for car needing multi-

ple manuevers to reach goal . 74

5.4 Speed profile of car in pixels, pixels/sec, pixels/sec2 77

5.5 Results in pixels and sec for slow speed profile 78

5.6 Results in pixels and sec for medium speed profile 79

5.7 Results in pixels and sec for fast speed profile 79

xi

List of Figures

1.1 Illustration of collision-free determination of robot motion 10

2.1 Flowchart of Rapidly-exploring Random Tree (RRT) 13

2.2 Diagram of the overall control system [1] 24

2.3 Block diagram of the overall system [2] 25

2.4 A schematic representation of a car-like robot making a detour from

a path towards its primary destination to opportunistically gather

additional information about a secondary target (indicated by a blue

star) once the presence of the latter has been detected at distance R

[3]. 27

2.5 Double integrator system: the snapshots depict the path at different

time instant [4]. 27

2.6 Simulated detection of two cars crossing each others. (a) Simulated

environment : the robot equipped with a laser range finder detects a

car moving from left to right and a second car moving from right to

left. (b) Dynamic occupancy grid: red is high, blue is low probabil-

ity of occupation. The space behind the cars has low probability of

occupation. (c) Clustering: different colours characterise objects and

occluded or free space [5]. 28

xii

LIST OF FIGURES xiii

2.7 An example of a generated path [1] 28

2.8 Variables involved in trajectory tracking behaviour, using Bayesian

inference [6]. 29

2.9 An example minimum-distance path (bold line) found by non-holonomic

RRT* after 1000 vertices [7]. 34

2.10 An example CLiFF-RRT* path generated in the more complex maze

scenario [8]. 37

2.11 Theta*-RRT trees in two example environments [9]. 38

4.1 Flowchart of overall structure of RRT*FN. The bold text represents

the logical function (fn) stated in RRT*FN algorithm 52

4.2 Flowchart of sampling a new node that can be connected to RRT*FN 53

4.3 Flowchart of connecting a new node to tree 54

4.4 Flowchart of rewiring node of tree to optimise its neighbourhood . . . 55

4.5 Flowchart of various tactics used to maintain fixed number of nodes . 56

4.6 Symbols used in describing the control vector u and the configuration

q of the car-like robot. 58

4.7 Applying control vector ui−1 to qi−1 results in new pose qi of the robot 58

5.1 A path Γbest returned by RRT*FN NH 71

5.2 Path Γbest returned for narrow passage example with Random Seed

100 . 72

5.3 Path Γbest returned for narrow passage example with smaller total

time and larger total length with Random Seed # 80 73

5.4 Path Γbest returned for Random Seed # 50, where car needed multiple

manuevers to reach goal . 75

5.5 Path Γbest returned for Random Seed # 30, where car needed multiple

manuevers to reach goal . 75

5.6 Path Γbest returned for Random Seed # 60, where car needed multiple

manuevers to reach goal . 76

5.7 Path Γbest returned for Map 1 in slow speed profile of car 82

5.8 Path Γbest returned for Map 2 in slow speed profile of car 83

5.9 Path Γbest returned for Map 1 and Map 2 in medium speed profile of

car . 84

5.10 Path Γbest returned for Map 1 and Map 2 in medium speed profile of

car . 85

xiv

xv

List of Publications

The research in this thesis have produced the following publications:

Journal:

[J2] Spanogianopoulos, S.and Sirlantzis, K. Car-Like Mobile Robot Navigation:

A Survey. In: Tsihrintzis, George and Virvou, Maria and Jain, Lakhmi C, eds.

Intelligent Computing Systems: Emerging Application Areas, Springer-Verlag

Berlin Heidelberg, 2016.

Conference:

[C1] Spanogianopoulos, S.and Sirlantzis, K. Path Planning of Car-like Robot

using RRT*FN. 12th International Conference on Ubiquitous Robots and Am-

bient Intelligence, 2015.

xvi

Chapter 1

Introduction

During the past few years there has been significant progress in navigation applied

to outdoor robots with several industrial applications in well defined environments.

At the same time there also exists literature for making autonomous systems reliable

in much less structured environments. However, these are mostly not for car-like

robots that are non-holonomic in nature.

Driving a car autonomously in real world environments has been recently picked

up by many industries and is widely studied in research literature. Currently, its

picking up pace in the market to have autonomous cars. The most crucial ability

required to enable autonomy is to predict the future safe motion of the car under

the presence of obstacles moving unpredictably. Basically, the fundamental ability

to plan the motion of the car in an intuitive way is the focus of this dissertation.

Once a reasonable representation of the environment is obtained, the vehicle needs

to be controlled to follow a certain path. Path execution by the robot has three main

stages: navigation, path planning and guidance. The navigation module is usually

responsible for the localization of the vehicle within a given map. The path planning

module deals with defining global as well as local paths and the guidance module

is responsible for keeping the car on the defined path within acceptable errors. The

application of such a techniques has many applications in areas such as robotics,

1

1.1. Tools for autonomous navigation of a robot 2

manufacturing, pharmaceutical drug design, computational biology and computer

graphics.

In this Chapter, first we discuss the fundamental tools required to enable car to

move autonomously, then discuss the necessity of the new approach.

1.1 Tools for autonomous navigation of a robot

There already exists popular and general tools published in literature that are used

for facilitating autonomous navigation of a robot.

1.1.1 3D object intersection checking

The objects in 3D physical space are described by the position and orientation

(collectively called as pose). Representing such objects in frame of reference is

widely studied and well known in literature [10, 11]. These objects can either be a

robot or a group of robots, or obstacles or any combination thereof.

Checking if two objects (robot with any obstacle) of known geometry are intersecting

or not (i.e. in collision or not) is also well studied in literature [12,13].

1.1.2 Collision-checking of any robot motion

With these fundamental tools of representing objects with poses and intersection

checking for known environments the motion of any object (robot) can be computed

as follows:

• Discretisation: Represent the motion of object as sequence of the object at

corresponding poses at some future time.

1.1. Tools for autonomous navigation of a robot 3

• Environment snapshot at a time Knowing position of object for any time t,

and also the position of the obstacles estimated at the same time t, a snapshot

of the environment is known. At this step the information of geometries of

object and obstacles are known in cartesian space or robot’s workspace.

• Collision check of object: For every snapshot computed, standard inter-

section checking between is performed between object and all the obstacles to

know if the object will not collide with any obstacle at that time. If no snap-

shot contains intersection then the entire motion of the object is collision-free.

Figure 1.1 indicates the above process for a four wheeled robot that is moving in

a simple straight line motion. Figure 1.1(a) shows how a continuous straight-line

path is divided into set of discrete poses at particular future time. Note that the

red obstacle is shown at time t1. To know if the trajectory is collision-free the

respective poses of the four wheeled robot needs to be tested with the red obstacle

at the respective time intervals; for example, in Figure 1.1(b) the four wheeled

robot pose at time t4 and red obstacle position at time t4 is considered. Based on

standard intersection algorithms the collision is determined at time t4 between the

four wheeled robot and red obstacle. Figure 1.1(d) shows the result of querying the

current trajectory for collision-free.

The collision avoidance can be possible by knowing the pose at which collision

takes place and finding the right maneuvers based on the intersection information.

However, when there are multiple obstacles finding maneuvers can become tedious

and hence a common methodology of sampling based approaches are used to find

collision-free paths.

Figure 1.1(e) further illustrates that a graph of randomly chosen paths connected

with each other may lead in finding a collision free path by using the collision in-

formation. Also there is a possibility that all the randomly sampled paths chosen

may not have a feasible path to be extracted, especially if environment grows com-

1.1. Tools for autonomous navigation of a robot 4

plex. However, as the number of randomly sampled paths increases, so does the

probability of finding a collision-free path.

1.1.3 Planners

A motion of an object (robot) can be detected collision free as mentioned in the

previous subsection. However, it might happen that the entire motion is not collision

free but rather a part of it is. This will be true for many different robot motions.

Now, those collision free part of robot motions can be reused to compute a diverted

collision-free motion for that object. Making such decisions are a part of algorithms

called planners.

There are three types of planners: a)Path Planner, b) Reactive Planner and c)

Motion planner. All these algorithms accept two standard inputs: i) Start pose and

ii) Goal pose of the robot. The obstacles poses and geometries are also needed as

inputs but are usually interface to algorithm by a means of sensor that provides raw

information about them.

Path Planning is a process of finding collision-free motion of robot from start to goal

pose, where the obstacles are usually assumed to be static. In this, the major chal-

lenge is, if the environment is congested with obstacles, finding the shortest path or

time-optimal path becomes a heuristic concern for the planner. Some widely known

path planners that need obstacle geometry information are [14,15] and unknown ob-

stacle geometry are [16]. Nowadays, sampling based approaches[17–22] are widely

used for representing robot free-space.

Reactive Planning is a local process of avoiding obstacles that are usually in motion.

Usually this is combined with path planning process to handle moving obstacles on

the fly while it follows the global path as indicated by the path planner. Typical

examples of such work done are in [23,24].

1.2. Necessity of a new approach 5

Motion Planning is the process of finding a collision-free motion (trajectory) of robot

from start to goal pose taking into account the future predicted motions or perceived

motions of obstacles. Thus, conceptually same as path planning but works with an

extra parameter the future motions of obstacles. Note that earlier the steps were

described to determine collision free motion also applies here (e.g. [25,26]).

1.2 Necessity of a new approach

Most approaches in literature (for e.g., [27,28]) for non-holonomic path generation

require complex computations that may not generate random path instantaneously.

Moreover, path planning process is avoided [29] in autonomous navigation by re-

placing it with reactive techniques.

Path planning offers several advantages:

1. Formulating a set of multiple non-holonomic paths that can be chosen on the

fly based on situation

2. Can have different path quality such as smoothness, less jerks, constrained

speed and acceleration.

3. Can be re-planned on existing set of non-holonomic paths already precomputed

Next we reason strongly the necessity of a new approach.

1.2.1 Can be used by most planners

Most sampling based planners require the kinematics of robot in coming up with non-

holonomic motion that connects between two nearby sampled poses. Using complex

non-holonomic generators can not only slow down the path planning process but

1.2. Necessity of a new approach 6

also may not be able to simply find a feasible intuitive trajectory in constrained

time.

Instead if an approach exists that relaxes on one of the sampled configuration from

two as proposed by path planner but finds a nearby reachable pose, not only, it will

be instantaneous, but also, it will satisfy non-holonomic constraints.

Relaxing assumption can be incorporated by many planners and this thesis uses

a variant of RRT to show the elegant way of generating non-holonmic motion of

car-like robot in combination with planning process.

1.2.2 Facilitating global path planning

Global path planning is a process where the robot moves from start to goal configu-

ration knowing all possible obstacles future motions that it will encounter. However,

mostly global path planning is difficult to achieve when a car-like robot moves in un-

foreseen environment. Instead local planning using way-points as shown in Chapter

1 can be used to handle unforeseen changes. However, there have been reports [30]

that autonomous car driving failures occur due to the mistake of other car driven

manually.

If all cars driving on the road are autonomous (no manual driving), then a central

planner can exists that can collectively pre-plan the path of all the cars. This will

need the ability of a global path planner. Moreover, as moving obstacles can most

likely be cars on highways or roads, often stopping or passing by other cars in

reactive manner may seem to be dangerous. So a global planner is required that

plans collectively for all cars so that the possibility of unforeseen obstacles decreases

and can be known beforehand.

The global path planning can be done for every car in serial or parallel fashion with

the simple assumption that all cars are autonomous.

1.2. Necessity of a new approach 7

1.2.3 Giving path planners ability to rapidly handle unfore-

seen obstacles on-the-fly

Although all car driving may be autonomous there can be pedestrians which could

contribute to unforeseen changes that the car-like robot may need to handle. If the

non-holonomic path generation is instantaneous the different non-holonomic motions

may be generated and added/concatenated to the set of current non-holonomic pre-

planned paths by global planning process. Fast collision checking can be done and

recomputed non-holonomic connected path can be used on-the-fly to avoid unfore-

seen obstacles.

1.2.4 Enabling feasibility for existing computing technology

constrained by memory and power

There exists planners [31] that limit the memory usage of planners making it easy

to deploy on embedded systems that are low powered thus having a longer life with

battery. However, most of these planners have not been shown to work with non-

holonomic constraints.

While there exists efficient path planners for an unconstrained robot, those ap-

proaches can not be used for car-like robot because computing non-holonomic con-

straints is complicated and may be infeasible on a low end embedded system. How-

ever, if the non-holonomic path generation requires less computing power then this

approaches can be easily used.

1.3. Scope and objectives of this research 8

1.3 Scope and objectives of this research

The primary goal of this research is to facilitate planning of car-like robots au-

tonomously. Since a car-like robot is non-holonomic, the scope of this research is

focused on tackling non-holonomic constraints posed by car-like robots, which have

kinematics described by differential equations. Such robots in physical space can be

any non-holonomic vehicles such as cars, jeeps, mini-trucks, etc. Heavy-duty trucks

with wide load can also be considered, provided the kinematics of attached wheeled

carrier with load is formulated. These vehicles have in common that they have a

throttle for speed control and a steering wheel to control their direction of motion.

This research is tested heavily for static environments where obstacles can be large

or small, collectively forming a narrow passage or complex environment for the car

to manuever. Further, to test the quality of the path, real road-like narrow free

space is obtained from google maps onto which the non-holonomic motion of the

car is found. The current scope was limited for static environments in 2D simula-

tion environment. Live and raw sensor data is not taken into account for collision

checking purpose which may pose a challenge in establishing real-time constraints.

Although the real-time constraint is usually dependent on non-holonomic path gen-

eration computation and collision checking, this research has aimed to minimise the

use of collision checking by using incremental planning strategy and making the

non-holonomic path generator instantaneous.

The main objective of this thesis is to facilitate non-holonomic motion planning

of car-like robots using elegant and well-established planners developed mostly for

holonomic robots. As an example, there exist RRT*-Fixed Nodes [31] approach

for holonomic robots that tries to find a feasible path under constant memory con-

straints. Such planner can be very useful while deploying for mobile robots where

the computing platforms are limited with constant memory and power source.

1.4. Structure of Thesis 9

Other objective of this thesis is mainly focused on enabling RRT*-Fixed Nodes

(this variant of RRT) for non-holonomic robots. Same strategies mentioned for

planning under constant memory constraints is applied and tested for a car-like

robot. While original algorithm RRT*-FN can not be tested for car-like robots,

a comparison study is done by building RRT* (called RRT*-Non Holonomic) for

non-holonomic robots with the new introduced algorithm (RRT*-Fixed Nodes-Non

Holonomic) based on RRT*-Fixed Nodes. So RRT*-Non Holonomic is unbounded

by memory requirement whereas RRT*-Fixed Nodes-Non Holonmic algorithm had

constant memory constraint. The test parameters path length, total time of path

and computing time (in terms of iterations) are reported in this thesis for benchmark

environments, traditionally used for path planning of holonomic robots. Also to

rapidly handle unforeseen changes the non-holonomic path generator needs to be

instantaneous is another critical objective that this research tries to focus on.

1.4 Structure of Thesis

Chapter 2 surveys the path planning literature available for holonomic robots, non-

holonomic robots and current challenges faced to achieve safe motion in dynamic

environment with unforeseen changes. It mostly concerned with RRT based variant

planners as they facilitate incremental step based path/motion planning. Chapter

3 discusses the motivation and contributions made by this approach. It reasons out

a need of new approach and provides necessary requirements on achieving the task

of autonomous car driving using state-of-art path planners. Chapter 4 discusses on

enabling the state-of-the-art planner called RRT*-Fixed Nodes for non-holonomic

car-like robots via the approaches suggested in literature. Chapter 5 shows ex-

periments and results on the path finding feasibility under memory constraints and

number of iterations available. Chapter 6 concludes the research and provides future

insights on further work.

1.4. Structure of Thesis 10

(a) Discretization of robot motion

(b) Environment snapshot at future time t4

(c) Intersection checking determines this configuration will be in
collision

(d) Final result with green poses indicating collision-free part mo-
tion

(e) Finding a feasible collision free motion to the goal by randomized
sampling

Figure 1.1: Illustration of collision-free determination of robot motion

Chapter 2

State-of-the-art review

Since this thesis focuses on path planning aspect involving RRT for autonomous

navigation of car-like robot, this Chapter first covers existing literature similar to

approaches that use RRT for non-holonomic system planning. Later, also the prac-

tical aspects of autonomous navigation of car-like robot addressed in literature are

briefly covered to provide an introductory view.

2.1 Review of a sampling based path planner

There exists many literature [16, 32–38] that are fundamentally based on sampling

based planners mainly Probabilistic Roadmap Method (PRM) [17] and Rapidly-

exploring Random Tree (RRT) [19].

A very popular and successful family of navigation algorithms is based on the

Rapidly-exploring Random Tree (RRT) path planning method. An interesting fea-

ture of this algorithm for path planning is that a path planned with RRT does not

need local planner to find a way from a configuration to another. It also allows the

RRT to rapidly explore in the beginning, and then converge to a uniform coverage

of the space.

11

2.1. Review of a sampling based path planner 12

2.1.1 Rapidly-exploring Random Tree (RRT)

RRT tries to address the motion planning of any kind of robot by sampling in the

planning or configuration space of the robot. Sampling means given a state of robot,

it tries to vary all the parameters within the state to find different collision-free

positions and orientations of a robot

Some notions used in describing the complexity of space planning of the robot :

• d : degrees of freedom of robot (number of independent joint variables)

• Qd: the configuration space of robot, i.e., d-dimensional space with each axis

= an independent joint variable

• Qobs: the region in Qd such that a point on Qobs representing the state of the

robot is in collision with an obstacle in the environment

• Qfree: is the remaining collision free region in Qd

• τ : the tree with root node as qinit connected by more nodes. Thus, τ = (V,E)

is a specialized graph with vertices V lying in Qfree and E is a subset of V ×V .

The branches of the tree are termed as continuous path segments.

Figure 2.1 shows the flowchart of the algorithm. It consists of following functions:

• InitialiseTree: Initialises the tree with the root as current robot pose (state)

or starting robot pose.

• Sample: This function randomly samples the configuration space Qd and

comes with qrand.

• Nearest: Finds the nearest robot pose qnear to qrand to add to tree τ

• Steer: Usually concatenation of a set of one-step hyper straight-line paths

connecting the qnear to qrand as a single path Γ

2.1. Review of a sampling based path planner 13

Figure 2.1: Flowchart of Rapidly-exploring Random Tree (RRT)

• ObstacleFree: Check if that concatenated single-step hyper straight-line

paths lies in Qfree

• InsertNode: Once the Γ is collision-free add that qrand node to the tree.

Above steps are repeated for N iterations and at most N new nodes can be added

to the tree such that the entire tree lies in Qfree.

Some of the advantages of RRT include collision checking as and when required

in an incremental fashion, can be applied to high Degree Of Freedom robots, and

is probabilistically complete. Some disadvantages include lack of exploration in

unconnected regions, may not effectively work for simple environments, does not

have weighted heuristics in selecting optimized paths.

2.1. Review of a sampling based path planner 14

2.1.2 RRT*

RRT* is a variant of RRT that accommodates heuristics in planning process, Given

a corresponding cost function c, optimal path planning seeks to find a feasible path

ρbest from initial state to final state, such that,

c(ρbest) = minc(ρ) : ρisfeasible (2.1)

RRT* introduces two more concepts: a) local neighbourhood of newly added node

and b) rewiring of local neighbourhood of newly added node such that cost to initial

state is decreased. The tactic used in rewiring of branches of trees reflects the

performance of RRT*. More details about the implementation can be found in [39].

2.1.3 Selecting RRT as our test planner

There exists many branches in path planning algorithms, such as, A* [40], PRM [16],

and RRT [19]. While A* algorithm is dedicated to find shortest path by overesti-

mating heuristics and using the environment as a grid like structure, it does not

support path planning of robots with kinematic constraints directly. Also, making

grid like structure for the environment is not ideal as the car might stop in between

two grids (each grid usually represents a car pose).

While PRM might be more effective in supporting continuous space exploration

with kinematics of the robot, it faces difficulty while scaling up for the dynamic

environments. Since these planners have some indirect limitations, the RRT was

chosen as our test planner.

The RRT is popular in sampling based algorithms for path planning of robots. It

also has a vast variants to effectively explore the configuration space. The primary

reasons behind choosing RRT are:

2.2. Existing approaches using RRT for non-holonomic systems 15

• An incremental planner has more adaptability towards dynamic scenarios of

the environment (e.g. [41, 42]). Since car needs to navigate in dynamic

environments this planner fits well.

• Simple iteration based probabilistic algorithm allows to study how this ap-

proach can find feasible collision-free paths in reasonable time [43]. Thus, the

quality of path increases as the iterations increases. This suits our car driving

scenario where as the car-like robot is moving the path can still be improved

by increasing the number of iterations.

• RRT has an elegant and a simple way of implementation provided the next

configuration (pose) of the robot can be computed using its kinematics. Thus,

deployment of it on embedded system of car becomes simple and feasible.

• RRT very commonly used for path planning is used mostly for holonomic

robots [44]. To extends its capabilities for non-holonomic robots is an intrigu-

ing choice to extend this path planner for car-like robots.

2.2 Existing approaches using RRT for non-holonomic

systems

Car-like mobile robot navigation has been a challenging field in the academic re-

search over the last few decades. As these robots are mainly aimed for outdoor

activities, corresponding navigation algorithms should be able to account for the

constraints imposed by the non-holonomic type of movement allowable for car-like

mobile robots.

2.2. Existing approaches using RRT for non-holonomic systems 16

2.2.1 Car-like robot

In [45], a five degrees of freedom dynamic car model is used that considers skidding

and sliding. After exploring the configuration space using RRT, the RRT then

converges to a uniform coverage of the configuration space by breaking the large

Voronoi areas.

In [46] authors present a new method for improving the trajectories based on the

Voronoi Fast Marching Method (VFM). The proposed method is suitable for im-

proving the smoothness. Further in [47] authors present the application of Voronoi

Fast Marching (VFM) to non-holonomic mobile robot path planning.

Authors in [48] presented several enhancements that improve the quality of the

generated path in comparison with the simple adaptation of the Single-query, Bi-

directional, Lazy roadmap (SBL) algorithm [48], which successfully builds upon the

traditional Probabilistic Roadmaps (PRM), solving also the planning problem in

the context of non-holonomic constraints of car-like robots.

2.2.2 Other complex non-holonomic systems

In [27] authors extend the RRT algorithm to handle a large class of non-holonomic

dynamical systems. While addressing computational complexity and asymptotic

optimality of the system motion, the approach seeks connections within bounding

boxes and computes the shape and orientation of these boxes for a large class of

dynamical systems based on differential geometry using the ball-box theorem, where

shapes can be constructed and joined in a “fuzzy” manner, i.e. without definitive

boundary constraints.

Further, in [28] the authors tries to solve the problem of computing a complete

motion to the goal within a limited time. There are also other notable approaches

2.3. Safe path planning 17

(for e.g. [49]) that do path planning in context of non-holonomic constraints.

Addressing the narrow passage problem1 while path-planning is crucial for RRT to

support for non-holonomic constraints. As an example, in [50], the obstacle vector

information is used to grow the tree in some nine possible ways in difficult areas of

configuration space (C-space). A modification to a greedy algorithm was made for

calculating the planner path, such that it would take as big a step length as possible,

as long as it is less than some maximum step length specified.

2.3 Safe path planning

During the past few years there has been significant progress in navigation applied

to outdoor robots with several industrial applications in well defined environments.

At the same time there is still a need of fundamental breakthroughs in autonomous

systems to make them reliable in much less structured environments.

Safe path planning is a key concern in robotics especially when humans are involved.

There exists literature to address this concern and is discussed in this section.

2.3.1 Indoor environments

Authors in [45] are using a five degrees of freedom dynamic car model to better place

car configuration, considering skidding and sliding. They use the Rapidly-exploring

Random Tree (RRT) planner to quickly explore the whole configuration space.

In [51] authors address the problem of safe path planning for their car-like robot

that involves non-holonomic constraints and their planner uses an ideal indoor 2D

world map, where obstacles are represented by polygonal lines. Then, they used the

1A narrow passage problem is visualised as a corridor like environment where the width of
mobile robot is slighltly smaller than the distance between corridor walls.

2.3. Safe path planning 18

Rapidly-exploring Random Trees (RRT) method, which is an incremental method

to quickly explore the whole configuration space, in order to visit the unexplored

parts of the space by breaking the large Voronoi areas.

In [52] authors try to address the problem of testing complex reactive control systems

and validating the effectiveness of multi-agent controllers. More specifically, they

consider the application of the Rapidly-exploring Random Tree (RRT) algorithm to

the testing and validation problem and they propose three modifications in order to

improve its results.

2.3.2 Planning on rough terrains

As the car-like robots are used outdoors, in [53] a novel RRT algorithm on rough

terrains (RRT- RT) has been developed using the Roughness based Navigation Func-

tion (RbNF), which is a numerical function that provides the cost-to-go values for

each terrain location. Simulation results show that the RRT-RT planner explores

the terrain in an efficient manner, and generates final paths that slightly deviate

from paths obtained by Dijkstra’s algorithm.

In [54] authors propose a new method for navigating a car-like vehicle within an

unstructured environment and solving the following problems: precise parking ma-

neuvers, narrow turns and long distance navigation. Using a path planning technique

an implicit graph is expanded on the fly by an A* search algorithm. Also adding

a feed forward term makes the controller react more quickly and accurately, since

reaction of the vehicle to steering input is modelled separately from controller off-

set introduced by noise. The configuration space obstacles are also computed from

an obstacle map acquired from a high definition laser range scanner and search is

restricted to the collision free subset of the configuration space.

The paper in [55] presents a path planning algorithm for handling systems with

constraints on controls or the need for relatively straight paths for real-time actions.

2.3. Safe path planning 19

The initial phase of the algorithm finds an efficient path using guided Expansive

Spaces Trees (guided ESTs) and focuses on a randomized search on the low cost

region while expanding a tree.

2.3.3 Online RRT

Literature [56] widely addresses offline based path planning, where the collision-free

trajectory of the robot is planned offline and then given to the actual robot to execute

the trajectory. Offline path planning works if the obstacle geometry and motions

are known beforehand. However, usually a car driving on road autonomously may

not have known information beforehand about obstacles or environment.

The work presented in [57] proposes on-line use of the RRT on robotic vehicles.

By providing a path and a speed command to the controller for tracking the path,

the vehicle is able to avoid obstacles and stay in lane boundaries under the different

conditions of urban driving. The proposed RRT obtains the dynamically feasible

trajectory by running a forward simulation of the closed-loop system, consisting of

the vehicle model and the controller.

In [58] authors used a Partial Motion Planning (PMP) approach in order for the

algorithm to operate in changing environments under minimal time constraints.

Inevitable Collision State (ICS) [59] property was used, which firstly proves that

a trajectory is continuously safe while the states safety is verified discretely only,

and secondly, it permits a practical computation of safe trajectories by integrating

a dynamic collision detection module within the Rapidly-Exploring Random Tree

(RRT).

In [60] a method is presented for sensor-based exploration of unknown environ-

ments, which proceeds by building a data structure called SRT (Sensor-based Ran-

dom Tree). The SRT structure represents a roadmap of the explored area with an

associated safe region, and estimates the free space as perceived by the robot during

2.4. Further improvements introduced in RRT 20

the exploration. The technique which is used for this case is called SRT-Radial and

deals with non-holonomic constraints using two alternative planners.

The paper in [61] describes a navigation algorithm for dynamic and uncertain envi-

ronment. Assuming that moving obstacles are supposed to move in typical patterns

that can be pre-learned, in this literature the planner (based on an extension of RRT)

takes into account the likelihood of the obstacles trajectory and the probability of

collision.

In [62] numerous extensions made to the standard RRT algorithm that enable the

on-line use of RRT on robotic vehicles. The sampling is done using the environmental

structure to reduce the time in finding trajectories with various maneuvers.

2.4 Further improvements introduced in RRT

Making RRT efficient has also been a prime goal of researchers. In [63], the obsta-

cles in the configuration space are taken into account and a general framework for

minimizing the effect of inappropriate sampling is developed based on the visibility

region of the nodes in the tree.

Also, in [64] a new sampling scheme is developed for a variant of the dynamic-

domain RRT that iteratively adapts the sampling domain for the Voronoi region of

each node during the search process. The boundary domain of a given node (i.e.

its associated radius) is adapted as a function of the number of expansion attempts

and failures from that node. Also, to ensure the probabilistic completeness of the

algorithm, a lower bound on the possible radius values of the nodes is formulated

when that nodes are extended.

In [65], a variant of the Rapidly-Exploring Random Tree (RRT) path planning al-

gorithm is presented, which is able to explore narrow passages or difficult areas more

effectively. More specifically, authors in [65] used some obstacle hints for directions

2.4. Further improvements introduced in RRT 21

to grow the tree for path planning in order to find difficult areas of configuration

space (C-space). They presented nine possible ways to expand a tree, in which

the orientations to grow are either the same as the source configuration or random

orientations.

The paper in [66] presents a utility-guided algorithm for the online adaptation of the

random tree expansion strategy. As the dimensionality of the configuration space

increases, the performance of the tree-based planners that use uniform expansion

degrades. The proposed algorithm is based mainly on RRT and guides the expansion

towards regions of maximum utility based on local characteristics of state space.

In [67] authors analyze the weaknesses of RRT as the obstacles in the configuration

space are not taken into account and/or the sampling region is inappropriately

chosen. They propose a general framework for minimizing these weaknesses by

considering the visibility region of the nodes in the tree. By developing a simple

new planner that defines a boundary domain for a boundary point as the intersection

of the Voronoi region of that point and an n-dimensional sphere centered at that

point.

Authors in [68] analyze the influence of a parameter introduced in [67], which relies

on a new sampling scheme that improves the performance of the RRT approach,

and propose a new variant of the dynamic-domain RRT, which iteratively adapts

the sampling domain for the Voronoi region of each node during the search process.

In particular, authors propose to adapt the boundary domain of a given node (i.e.

its associated radius) as a function of the number of expansion attempts and failures

from this node.

In [69] a new method called Transition-based RRT (T-RRT) for path planning in

continuous cost spaces is presented, which combines the exploration strength of the

RRT algorithm that rapidly grow random trees toward unexplored regions of the

space, with the efficiency of stochastic optimization methods that use transition

2.5. Other factors affecting path planning 22

tests to accept or to reject a new potential state.

In [70] authors address the problem of parallelizing the Rapidly-exploring Random

Tree (RRT) algorithm on large-scale distributed-memory architectures, using the

message passing interface. The parallelization schemes they compared are the OR

parallel RRT, the distributed RRT, and the manager–worker RRT.

2.5 Other factors affecting path planning

In literature the other relevant parameters that affect path planning process are

discussed here.

2.5.1 Sensing unforeseen changes

Most sensors generate very rudimentary data about obstacles that can not be di-

rectly used to get geometry information or their future motions.

There exists approaches [71,72]), that digitise obstacles using laser scanner, stereo-

vision, camera, etc. There exists literature to identify specific types of objects with

different complexities, such as, human [73,74], vegetation [75], objects that can cause

a mobile robot to drop off [76], etc. Using machine learning techniques [77–79], there

exists notably [80,81], that can be used to detect various kinds of objects.

For detecting future obstacle motion, there exists short term prediction mechanisms

[82, 83] commonly used for reactive planning [84, 85] . Also long term prediction

of future obstacle motion can be computed using various approaches [86–89] by

tracking obstacle motion [82,86,90–94].

2.6. Methods Based on Fuzzy Logic 23

2.5.2 Addressing motion uncertainty in car-like robot

A car-like robot may not exactly follow the planned path due to slipping of wheels,

tyres alignment, motors actuation are never same even with same inputs, etc. How-

ever, in literature there already exists appraoches that handle different kind of un-

certainties resulting from different factors, such as, slipping of wheels [95], stabilizing

a non-holonomic system [96], etc. There also exists a literature [97] that mathemat-

ically solves the problem of uncertainty using equations specific to robot.

Using known environment features the uncertainty in robot motion could be reduces

is well studied in [98] to generate a map. If there is uncertainty in map generation

process there exists approaches (e.g., [99]) to deal with uncertainity in a map.

In [100] introduces the notion of a robust path that guarantees a non-holonomic

mobile robot to reach its goal based on landmarks.

Some researchers addressed uncertainties in path planning algorithm, e.g., [101–

103].

2.6 Methods Based on Fuzzy Logic

In [1] a navigation scheme that contains complex pattern, non-uniform illumina-

tion, and strong reflection based on a distributed active-vision network-space system

(DAVNSS), is presented. This system is subject to three fuzzy variable-structure

decentralized controls (FVSDCs), which includes trajectory tracking and obstacle

avoidance. Two distributed wireless charge-coupled-device (CCD) cameras individ-

ually driven by two stepping motors are constructed to capture the dynamic pose of

the car-like wheeled robot (CLWR) and the obstacle. The control system includes

quad processors with multiple sampling rates, while a personal computer (PC) is

employed to receive the image of the CLWR or obstacle by a wireless transmitter

2.6. Methods Based on Fuzzy Logic 24

Figure 2.2: Diagram of the overall control system [1]

and then to plan three reference commands for the CLWR and the cameras. Next, a

six-step image-processing routine and the calibration between the world coordinate

and the image plane coordinate using multilayer perceptrons (MLPs) are estab-

lished, while in the final step the radial distortion of ACCD is reduced for better

localization and tracking.

In [2] a different approach is presented for a navigation system, which includes

a path tracking and an obstacle avoidance apparatus for a car-like wheeled robot

(CLWR) within an Internet-based smart-space (IBSS) using fuzzy-neural adaptive

control (FNAC). This method relies on two distributed charge-coupled device (CCD)

cameras, which capture both the dynamic pose of the CLWR and the obstacle. Based

on the control authority of these two CCD cameras, a suitable reference command

has been planeed, which contains the desired steering angle and angular velocity

for the FNAC built into the client computer. The FNAC method that the authors

presented in [24] contains also a neural network consisting of a radial basis function

(RBFNN) to learn the time-related uncertainties due to the fuzzy-model error, which

stem from wireless network delays and CLW slippage.

2.6.1 Sensor-based Methods

Another approach presented in [104] investigates the use of Dynamic Window Ap-

proach (DWA) to solve the high speed autonomous navigation problem for mobile

2.6. Methods Based on Fuzzy Logic 25

Figure 2.3: Block diagram of the overall system [2]

robots in unknown and unstructured environments. Since the DWA algorithm con-

siders periodically a short time interval when computing the next motion command

and based on the fact that the obstacles in the closer environment of the robot

impose restriction on the translational and rotational velocities, authors define a

Dynamic Window (DW) in order to limit the accelerations executable by the mo-

tors. In addition, in order to reduce the time of the motion command selection, they

use the sensory data from the environment directly in the obstacle avoidance process

without the grid cells building in the velocity space, while in order to determine the

Distance To Collision (DTC), they have adopted an analytic solution for polygonal

robot. Regarding the experimental results of the algorithm, the obstacle avoidance

tests using the extended DWA for different environments (simple and cluttered) at

high speeds indicated a good performance and efficiency.

Another approach which relies on a sensor based algorithm for car-like robot based

on GVG theory is presented in [105]. For generating the completed GVG, the car-

like robot goes through each edge and vertex of GVG in two tangent directions.. In

addition, the authors proposed backward motion for direction changes at boundary

points, also with favorable results (no collision) in unknown environments. In [106]

a new algorithm is presented that enables a car-like robot to explore an unknown

planar workspace, based on Generalized Voronoi Graph (GVG) theory. More specif-

ically, since GVG is a set of points in the plane equidistant to two obstacles, the

robot of the proposed system has three degrees of freedom and hence the authors

defined a rod-GVG edge as the set of the points equidistant to three obstacles. In

2.6. Methods Based on Fuzzy Logic 26

[107], an intelligent scaled car-like mobile robot that possesses the capability of au-

tonomous driving in an extra-road environment and fully autonomous parking on

standard parking lots is presented. In particular, authors describe a low weight

and low cost complex mobile robot that is able to navigate across a previously un-

known terrain combining some mechanical, sensorial, computing and communication

modules (rather than implementing a new sophisticated algorithm). An algorithm

associated with the autopilot of the system was also implemented, in order to make

the mobile robot completely autonomous; many of these functions are written in

MATLAB, and therefore available for analysis and modification using open-source

modules (xPC toolbox). The robot described in [3] is equipped with a sensor that

can alert it if an anomaly appears within some range while the robot is moving.

In that case, the robot tries to deviate from its computed path and gather more

information about the target without incurring considerable delays in fulfilling its

primary mission, which is to move to its final destination. The originality of this

approach is to take a “semi-corrective” action, i.e. deviating while attempting to

further define the problem, akin to a car stepping out of its lane when flashing

lights appear ahead – not changing lanes yet, just gaining a view of the obstacle.

This model relies on a sampling-based planner called SYCLOP, which works by au-

tomatically defining a decomposition of the workspace, creating an adjacency and

abstraction graph, and searching that graph for a high-level guide. Then, a low-

level planning layer computes the actual dynamically feasible paths and informs the

upper layer for how to assign informative weights to the edges of the abstraction

graph.

A different approach is presented in [4], where authors present a new trajectory

deformation scheme in order to improve path deformation. During the course of

execution, the still-to- be-executed part of the motion is continuously deformed in

response to sensor information (internal and external) acquired on-line, thus ac-

counting for the incompleteness and inaccuracies of the a priori world model.

2.6. Methods Based on Fuzzy Logic 27

Figure 2.4: A schematic representation of a car-like robot making a detour from a
path towards its primary destination to opportunistically gather additional infor-
mation about a secondary target (indicated by a blue star) once the presence of the
latter has been detected at distance R [3].

Figure 2.5: Double integrator system: the snapshots depict the path at different
time instant [4].

In [5], the Probabilistic Velocity Obstacle (PVO) provides a probabilistic estimation

of the occupied free space around the robot and of the velocity with which the

objects are moving. The observations of the mobile robot update a 4D probabilistic

occupancy grid (incl. space and velocity), and the probability of collision in time

is estimated for each reachable velocity of the robot. The proposed system shows

that is able to take directly into account limited range and occlusions, uncertain

estimations of velocity and position of the obstacles, allowing the robot to navigate

safely toward the goal.

2.6.2 SLAM-based Methods

In [108] the authors address the problem of on-line path following for a car work-

ing in unstructured outdoor environments. More specifically, the partially known

map of the environment is updated and expanded in real time by a Simultaneous

Localization and Mapping (SLAM) algorithm. This information is used to imple-

2.6. Methods Based on Fuzzy Logic 28

Figure 2.6: Simulated detection of two cars crossing each others. (a) Simulated
environment : the robot equipped with a laser range finder detects a car moving
from left to right and a second car moving from right to left. (b) Dynamic occupancy
grid: red is high, blue is low probability of occupation. The space behind the cars has
low probability of occupation. (c) Clustering: different colours characterise objects
and occluded or free space [5].

Figure 2.7: An example of a generated path [1]

ment global path planning based on a new method which constructs a cost graph

using the D* search algorithm. In this stage, uncertainty is incorporated in the cost

function, and since the continuity of the path is crucial for car type robots, the

algorithm chooses only the continuous-curvature local paths. Finally, an improved

feedback linearization control algorithm is used to guide the car along this computed

reference path.

In [6] authors present a bi-steerable car, which allow steering by turning either

the back or the front wheels. Using this car, they address the integration of the

four essential autonomy abilities (i.e. simultaneous localisation and environment

modelling, motion planning and motion execution) into a single application. Then

they build a kind of simplified occupancy grid on the environment and they apply the

motion planner adopted for the CyCab, expressed as a Bayesian inference problem.

Bayesian methods are also used for trajectory tracking

In [109] a new kind of public transportation system is presented, which relies on a

2.6. Methods Based on Fuzzy Logic 29

Figure 2.8: Variables involved in trajectory tracking behaviour, using Bayesian in-
ference [6].

particular double- steering kinematic structure (as described above). The authors

in this work address the integration of these four essential autonomy abilities into

one application, applying a reactive execution of planned motion. In addition, they

address the fusion of controls, issued from the control law and the obstacle avoidance

module, using probabilistic techniques. The planner first builds a collision-free path

without taking into account the non-holonomic constraints of the system. Then, this

path is approximated by a sequence of collision-free feasible sub-paths computed by

a suitable steering method and then is smoothed properly.

In [110] authors propose a dense stereo V-SLAM algorithm that estimates a dense

3D map representation which is more accurate than raw stereo measurements. The

proposed system is composed of two main parts. First a sparse V- SLAM system

based on an EKF is calculated, which takes the resulting pose estimates in order

to compute a locally dense representation from dense stereo correspondences. The

state vector of the EKF contains all landmark positions, the current camera pose

and a subset of past camera poses. To tackle the computational complexity problem

inherent to EKF SLAM, authors utilize a sub mapping method called conditionally

independent sub maps. After incorporating new observations and updating the

EKF state vector a new camera pose is obtained. This allows the dense part to be

continuously updated.

In [111] a strategy to turn a car-like mobile robot in a restricted environment using a

Simultaneous Localization and Map Building (SLAM) algorithm is presented. More

2.7. Latest developments 30

specifically, in the first step of the proposed method, the environment’s information

and the vehicle’s pose (position and orientation) estimation is provided to the vehicle

by a SLAM algorithm, which is implemented on an Extended Kalman Filter (EKF),

extracting the lines and corners (convex and concave) from the environment. In the

next phase, a turning algorithm, which is based on a semi-circle trajectory, following

with direction switching, plans from the vehicle’s initial pose the first semi-circle

trajectory with respect to the environment until it reaches a neighborhood of the

closest geometric map feature provided by the SLAM system state. Then, a next

semi-circle trajectory is planned in the opposite direction to the previous trajectory.

The proposed algorithm continues until the vehicles reaches the desired orientation,

while a kinematic trajectory controller drives the vehicle through the generated

paths.

Authors in [112] present a new SLAM method, called L-SLAM. It is a low dimension

version of the FastSLAM family algorithms, which reduces the dimensionality of the

particle filter that FastSLAM algorithms use, while achieving better accuracy with

less or the same number of particles. The key idea they used is to sample only the

robot’s orientation on each particle, in contrast to the FastSLAM algorithms that

sample the orientation along with the position of the robot.

2.7 Latest developments

In [113] authors focus on the distance metric, since they believe that it is a key com-

ponent in RRT-based motion planning. The reason behind it is that the distance

metric affects the coverage of the state space, the path quality and the planning

time. Therefore, in order to speed up the planning time, they introduced a learning

approach for approximating the distance metric for RRT-based planners. Specif-

ically, they made some extensions to a previous work and they approximated the

cost-to-go metric by a simple, offline-learned regression model with constant-time

2.7. Latest developments 31

inference. The proposed metric distance can estimate the cost of local paths through

a novel extender, which is called POSQ, solving the two-point boundary value prob-

lem (2P-BVP) and producing smooth cusp-free trajectories. The new POSQ can

connect any pair of 2D poses and produces RRT trees that covers the entire state

space. In addition, the proposed POSQ extender makes no linearization or approxi-

mation, while at the same time is efficient to compute it. Furthermore, it is capable

to produce smoother paths in shorter time with smaller trees than motion primitives.

In general, the main contributions of this method could be briefly summarized as the

presentation of a comprehensive comparison to an Euclidean distance baseline, the

four alternative regression models (neural network regression, LWPR, SVM regres-

sion, and random forest regression), and a method for learning offline the distance

pseudo-metric for the case of the POSQ extender using a set of domain-specific

features and a simple basis function model with constant-time inference.

A new technique that exploits the reachable volumes is presented in [114], with

which it is possible to efficiently restrict the sampling to feasible or reachable re-

gions of the planning space, even in cases where a high degree of freedom is required,

or when highly constrained environments create problems to the planning process.

Based on that, they have developed a method to apply reachable volumes to tree-

based planners such as Rapidly-Exploring Random Trees (RRTs), in order to adjust

the stepping reachable volume samples so that to generate nearby samples that are

also in the reachable volumes. In particular, they have developed a reachable vol-

ume RRT called RVRRT that can solve problems with high degree of freedom, while

it can be applied in problems with many constraints. For this reason, they imple-

mented a reachable volume stepping function, a reachable volume expand function,

and a distance metric based on these operations. Additionally, they developed a

reachable volume local planner to ensure that local paths satisfy some constraints

from different methods, such as PRMs, showing that the RVRRTs can solve many

and constrained problems with up to 64 degrees of freedom. Also, they tested it to

2.7. Latest developments 32

unconstrained problems and they claim that their method can be applied to prob-

lems with as many as 134 degrees of freedom, while at the same time the proposed

RVRRTs can solve them more efficiently than existing methods, requiring fewer

nodes and collision detection calls. In [115] authors present a new motion planning

technique called Batch Informed Trees (BIT*), which is based on unifying graph- and

sampling-based planning algorithms. In their method they assume that the recog-

nition of a set of samples can describe an implicit random geometric graph (RGG),

based on which they are able to combine the ordered nature of graph-based meth-

ods with the scalability of sampling-based algorithms, such as the Rapidly-exploring

Random Trees (RRT). To manage it, the new BIT* technique uses a heuristic to

efficiently search a series of increasingly dense implicit RGGs, taking into considera-

tion also the previous information. Authors describe this process as an extension to

incremental graph-search techniques, like the Lifelong Planning A* (LPA*), which

is applied to continuous problem domains. Also they state that their method could

be considered as a generalization of the existing sampling-based optimal planners, as

it tends to be probabilistically complete and asymptotically optimal. The proposed

BIT* method was tested under different cases, and on these problems, BIT* was

able to find better and faster solutions than RRT, RRT*, Informed RRT*, and Fast

Marching Trees (FMT*).

The method proposed by [116] intends to fill a gap which is caused when a Bi-

directional search strategy is applied to increase the success and convergence rates

of sampling-based motion planning algorithms. More specifically, it is evident that

although there are many methods in this field, actually there are very few approaches

that try to merge the bi-directional search and the asymptotic optimality into exist-

ing optimal planners, such as PRM*, RRT*, and FMT*. Therefore, in this work a

bi-directional, sampling-based, asymptotically optimal algorithm is proposed, which

extends the Fast Marching Tree (FMT*) algorithm to a bi-directional search. There-

fore the new algorithm is called Bi-directional FMT* (BFMT*), and its intension

2.7. Latest developments 33

is to preserve the key properties and asymptotic optimality through convergence

in probability. More particularly, the BFMT* method performs a two-source, lazy

dynamic programming recursion over a set of randomly-drawn samples, generating

two search trees. The first one in the cost-to-come space from the initial config-

uration, while the second one in the cost-to-go space from the goal configuration.

As authors state, this is the first tree-based, asymptotically-optimal bi-directional

sampling-based planner, which converges to an optimal solution at least as fast as

the state-of-the-art methods, such as FMT*, PRM*, and RRT*.

Authors in [117] proposed a method based on machine learning (ML) in order

to estimate the relevant region of a motion planning problem during the explo-

ration phase of sampling-based path planners. Their method relies on the fact that

the incremental sampling-based algorithms collect a lot of data about the planning

problem as iterations progress. Therefore, they utilize this information in order to

provide informative labels of the collected samples (obstacle or free) and to asso-

ciate approximate cost values with each sample. Then, employing active learning

and by inferencing based on the collected data, these labels are used to guide the

selection of future samples towards the favorable region of the search space without

invoking the computationally expensive collision checking and local steering pro-

cedures. In order to succeed it, the proposed algorithm guides the exploration so

that it draws more samples from the relevant region as the number of iterations

increases. In order to do it, it first predicts if a given sample is collision-free (clas-

sification phase) without calling the collision-checker, and then it estimates if it is

a promising sample. In this case, it is checked if it has the potential to improve the

current best solution (regression phase), without solving the local steering problem.

Finally, the proposed exploration strategy is integrated to the RRT# algorithm, in

order to guide the future exploration of the search space. In another work [7], a new

non-holonomic distance function for unicycle-type vehicles was proposed, in order

to extend the optimal path planner RRT* and be able to handle non-holonomic

2.7. Latest developments 34

Figure 2.9: An example minimum-distance path (bold line) found by non-holonomic
RRT* after 1000 vertices [7].

constraints. What makes the proposed distance function appealing is the fact that

it is also a control-Lyapunov function (CLF) for the system, which makes it a natu-

ral measure of cost-to-go. This parameterized closed-form distance function can be

applied from a pose (position and orientation) to a target pose for unicycle-type ve-

hicles, while the shape of the resulting path can be controlled by the free parameters

of the distance function. Therefore, as the authors state, it is possible to construct

feedback policies that stabilize the system to a target pose, and also to generate

the optimal path that respects the non-holonomic constraints of the system via the

non-holonomic RRT*. The result of this process is the composition of the Lyapunov

function, which provides stabilizing feedback and the cost-to-go to the final desti-

nation in the neighborhood of the planned path. This is the most important result,

since it adds flexibility and robustness to the planning process, as well as higher

efficiency.

In [118] authors describe a process which focuses more on Inverse Reinforcement

Learning (IRL) for path planning, because IRL can enable robots to learn the cost

functions through a demonstration process instead of hard-coding them. Based on

this fact, they developed the Rapidly Exploring Learning Trees (RLT*), which is

2.7. Latest developments 35

capable to learn the cost functions of optimal Rapidly Exploring Random Trees

(RRT*) through a demonstration process. In this way, they apply an inverse learn-

ing method to complex tasks, relying mainly on the Approximate Maximum Margin

Planning (AMMP), a variant of Maximum Margin Planning (MMP), along with the

sample-based planning algorithm RRT* cost function. In addition, a new caching

scheme was introduced, which is very efficient and can reduce the computational cost

when RRT* is used within AMMP. After extensive experiments, authors mention

that the proposed RLT* algorithm can learn effectively the cost function in robotic

tasks with obstacles and motion constraints under different social navigation sce-

nario, using either simulated or real-robot data, achieving better performance at

lower computational cost than existing methods.

A novel approach for collision-free global navigation for continuous-time multi-agent

systems is presented in [119]. The proposed approach is quite generalized and

could be used to perform collision-free navigation in 2D and 3D spaces, either in

case of narrow passages or in crowded regions. The proposed method first pre-

computes the multiple bridges in the narrow or tight regions in the current workspace

using kinodynamic RRT algorithms. The computed bridges have certain geometric

properties that enable the calculation of a collision-free trajectory for each agent,

which is also guaranteed by the fact that authors have defined specific criteria, with

which when an agent enters a bridge with a velocity which satisfies them, then

the new method can always compute a collision-free trajectory that lies within the

bridge. In this way, the trajectory is computed using simple interpolation at runtime,

and after combining the pre-computed and interpolated bridges trajectories with

local multi-agent navigation algorithms, it is possible to compute global collision-

free paths for each agent. Combining the above-mentioned features and methods,

the proposed method can combine the performance benefits of coupled multi-agent

algorithms with the precomputed trajectories of the bridges, in order to handle

better different challenging scenarios, such as 3D benchmarks with narrow passages.

2.7. Latest developments 36

It is also mentioned that this approach can perform global navigation for 50-100

agents on a single CPU core, either in 2D or in 3D workspaces, presenting linear

processing time in most cases and scenarios.

A work that focuses more on autonomous vehicles is presented in [120]. Authors

first briefly describe the high interest of the research community in this field and

especially the active development of systems such as the ADAS (Advanced Driver

Assistance Systems), which points towards fully autonomous vehicles. Although in

this field the motion planning is very important key technology for fully autonomous

vehicles, such as in cases where they operate in constrained narrow spaces like a

parking lot, it is well-known that in these environments the motion planning is

very challenging because it requires many changes in forward and reverse directions,

as well as adjustments of position and orientation. Therefore, they have proposed

an efficient motion planning algorithm, which relies on Rapidly-exploring Random

Trees (RRT) and it can specify the desired orientation of the vehicle during the tree

expansion. Their method is called the desired orientation RRT (DORRT), and in

order to overcome the above limitations, authors used a tangential vector space,

which indicates the desired orientation and enables to model some non-holonomic

constraints for the vehicle and some geometric constraints for the obstacles. For

the model creation, the proposed method relies on a magnetic-field-based model,

which can determine the preferred direction of a vehicle based on the non-holonomic

constraints of the vehicle and the geometric constraints of obstacles. The proposed

method was tested in narrow parking spaces, verifying its efficiency and performance.

A method which relies on Gaussian mixture fields is presented in [8], where au-

thors present a new mobile robot motion planning approach based on kinodynamic

constraints. Under this concept, kinodynamic constraints exploit learned percep-

tion priors in the form of continuous Gaussian mixture fields, creating statistical

multi-modal motion models of discrete objects or continuous media. This repre-

sentation creates a Circular Linear Flow Field (CLiFF) map, which associates a

2.7. Latest developments 37

Figure 2.10: An example CLiFF-RRT* path generated in the more complex maze
scenario [8].

Gaussian mixture model (GMM) to each location whose components encode mul-

tiple weighted flow directions. Specifically, this model captures the dependency

between motion speed (a linear variable) and direction (a circular variable) using

semi-wrapped Gaussian mixture models, creating motion models in environments

that encode the dynamics of air or pedestrian flows. Then, these mixture compo-

nents guide a sampling and rewiring process in an RRT* algorithm using a steer

function for non-holonomic mobile robots. From the combination of the above-

mentioned techniques, their method is called CLiFF-RRT*. Following with many

experimental setups and using three alternative baselines, authors verify that this

combination allows the planner to generate efficiently high-quality solutions in terms

of path smoothness and path length, while it controls vehicle motions through the

multi-modal representations of Gaussian mixture fields.

The limitations of RRT and RRT* are described and analyzed in the work of [9],

who focus more on these planning techniques in high- dimensional systems such as

wheeled robots with complex non-holonomic constraints. As they mention, in this

applications the planning times can scale poorly for these robots, leading to the

usage of hierarchical techniques that grow the RRT trees in more advanced ways.

Following this direction, authors proposed a new technique, called Theta*-RRT,

which hierarchically combines any-angle search with RRT motion planning for non-

2.7. Latest developments 38

Figure 2.11: Theta*-RRT trees in two example environments [9].

holonomic wheeled robots. Their method is a variation of RRT and improves its

efficiency in high-dimensional spaces by generating a trajectory which expands a

tree of geodesics toward sampled states. These sampled states present distributions

which summarize the geometric information of the any-angle path using steer func-

tions instead of random control propagations. In this way, they are able to gain

more knowledge of the non-holonomic constraints of the system and to ensure that

their method will succeed high planning efficiency and high trajectory quality. For

this reason they state that their proposed method can retain the probabilistic com-

pleteness of RRT for all small-time controllable systems that use an analytical steer

function, and in order to proof it, they validated their method in various scenarios,

such as in the case of a differential drive system and in the case of a high-dimensional

truck-and-trailer system. As the claim, the proposed Theta*-RRT method produced

shorter trajectories much faster than other baseline planners, such as RRT, A*-RRT,

RRT* and A*-RRT* without losing the smoothness.

A method focusing again in high-dimensional configuration spaces is presented in

[121], which tries to dig deeper in the field not of sampling-based planners such as

RRT-Connect, but the search-based methods such as A*. Authors analyze the sys-

tematic nature of search-based algorithms, claiming that although it often leads to

consistent and high-quality paths, it also enforces strict conditions for the connection

2.7. Latest developments 39

of forward and backward searches. Based on this claim, they argue that the currently

developed admissible heuristics for the connection of forward and backward searches

present high computational complexity, therefore in their work try to differentiate

from this line and exploit the recent advances in search with inadmissible heuristics,

in order to develop a new algorithm. Their algorithm is called A*-Connect and it

relies heavily on RRT-Connect. The proposed method uses a fast approximation

of the front-to-front heuristic to lead the forward and backward searches towards

each other. Specifically, it runs bi-frontal searches either from the start or from the

goal configuration, differentiating from the single frontier searches. In addition, it

runs a front-to-back and a fast-to-compute front-to-front heuristic search in paral-

lel from each side, exploiting the functionality of the Multi-Heuristic A* (MHA*)

framework. Actually, the framework MHA* provides a multi-heuristic search that

allows the usage of multiple arbitrarily inadmissible heuristics while at the same time

it can preserve the completeness and bounded suboptimality conditions. By using

multi-heuristic searches, authors can apply a bidirectional multi-heuristic search in

a principled manner, and therefore the A*-Connect is capable to find solutions much

faster than a unidirectional search. Even in this case, authors state that A*-Connect

can still guarantee the bounded suboptimality, which was proven by the performed

experiments and their evaluation process. Authors tested it in various domains,

such as in manipulation and navigation, and they compared it with other popular

sampling-based methods and state-of-the-art bidirectional search algorithms.

Chapter 3

Motivation and Contribution

Driving car-like robot autonomously is a challenging issue that requires a funda-

mental need of path planning process for planning complex manuvers in presence of

complex scenarios. Although a simple reactive scheme suits best to avoid unforeseen

obstacles, it may not be able to plan for complex manuvers and may require a forced

stop. So for online path planning the author recommends to work (change) with a

pre-computed set of non-holonomic paths generated in pre-processing phase.

In this Chapter, a need of new approach is reasoned aiming specifically at offline

or/and online path-planning process that should be needed for autonomous naviga-

tion of car-like robot. Further it will also provide insight on fundamental components

that are needed to facilitate path planning process.

3.1 Need of path planning process in autonomous

navigation

Path planning of robot consists of finding trajectory from some starting pose to

the goal pose. Traditionally, the robotics literature [122, 123] assumes there exist

a configuration space of the robot called C-Space, where a point in configuration

40

3.1. Need of path planning process in autonomous navigation 41

space represents the robot pose.

The C-space is divided into C-free space and C-obstacle space. For all robot poses

that collide with obstacles belong to C-obstacles and for poses that are collision free

belongs to C-free space. It is often needed to find a path in C-space that completely

lies in C-free space. There can be many paths that can connect the start pose to

goal pose and selecting the best path under optimality constraints such as shortest

distance, shortest time or both also is a part of path planning process.

3.1.1 Simple path planning for any robot

Algorithm 1 represents a common approach to solve path planning problem. Usually

finding C-free space as a continuous region can be computationally expensive, so

instead sampling is done to find collision free C-points in popular path planning

approaches like Probabilistic Road Map (PRM) [17] and Rapidly-exploring Random

Tree (RRT) [18].

Algorithm 1: Path Plan

1: Given inputs start pose qs and goal pose qg of the robot and N be the number
of tries to connect trajectory from qs to qg

2: Trajectory Γ = ∅
3: for i = 1 : N do
4: Explore the C-space for collision free C-space
5: Start growing the trajectory using kinematic model of the robot in newly

found collision-free C-space from start pose to some unexplored poses
6: if qg is in the connected free C-space from qs then
7: Add that grown trajectory in to set Γ
8: end if
9: end for

10: return Γbest from set Γ using the heuristics set by user

3.1.2 Car-like robot – a robot with non-holonomic constraints

The non-holonomic system is defined as “a constrained system whose state depends

on the path taken in order to achieve it” in [124]. Usually such constraints expresses

3.1. Need of path planning process in autonomous navigation 42

kinematic models of that system using differential equations.

For a car-like model the non-holonomic constraints are shown below in kinematic

model of the car. The configuration (or pose) of car-like robot can be expressed as

q = [x y θ], where (x, y) is the center position of axle of rear wheels and θ is the

orientation of the robot.

θ̇ =
si sinφi

l
(3.1)

ẋ = si cos θi+1 cosφi (3.2)

ẏ = si sin θi+1 cosφi × dti (3.3)

, where l is the length between two axles, φ is the steering angle of the front wheels

and s is the motion speed.

As seen in previous section while planning, randomly exploring free C-space for

finding a feasible trajectory can be straightforward if no constraints are placed on

robot motion, i.e., robot can move to any C-point in any straight-line direction.

While such assumption is true for holonomic robots and robot arms, but for car-

like robots to be from any C-point to some other C-point may require complex

manuevering.

Thus, we need an extra step here on whether the robot is able to move to that newly

discovered C-point. Algorithm 2 illustrates this new condition in path planning

process.

3.1. Need of path planning process in autonomous navigation 43

Algorithm 2: Path PlanNH

1: Given inputs start pose qs and goal pose qg of the robot and N be the number
of tries to connect trajectory from qs to qg

2: Trajectory Γ = ∅
3: for i = 1 : N do
4: Explore the C-space for collision free C-space
5: if The robot can move to that newly found free C-space satisfying

non-holonomic constraints then
6: Start growing the trajectory using kinematic model of the robot in newly

found collision-free C-space from start pose to some unexplored poses
7: if qg is in the connected free C-space from qs then
8: Add that grown trajectory in to set Γ
9: end if

10: end if
11: end for
12: return Γbest from set Γ using the heuristics set by user

3.1.3 Framework for autonomous navigation of car-like robot

using way points

Given a car-like robot to drive on roadways, this section focuses on fundamental

algorithms required to achieve the task. For simplicity we initially assume that

there is no traffic on the road and the Algorithm 3 illustrates an approach to drive

the car on the road from start configuration to goal configuration.

As seen from the algorithm the start pose and end pose of the car are given and the

output that the algorithm generates is concatenated non-holonomic trajectories for

car-like robot stored in variable Γ. It is often common to use GPS with the car for

the human driver to navigate on the road using simple instructions, such as, turn

left on juncture, etc. The algorithm below uses that information to come up with

physical poses (called as way points) of the car at that each step. Note that the

car-like robot may not be exactly at ending way-point but needs to be near that

within some threshold distance.

Using Path PlanNH algorithm discussed in earlier section is called to plan or gen-

erate the non-holonomic trajectory between intermediate way-points. So this in

3.1. Need of path planning process in autonomous navigation 44

essence reduces the problem from global planning (i.e. connecting entire trajectory

from start to goal possibly without any car stops) into smaller steps which could be

seen as local planning.

Algorithm 3: Path planning of car-like robot in absence of traffic

1: Given inputs start pose qs and goal pose qg of the car
2: The non-holonomic trajectory Γ = ∅
3: List the global step by step direction using map api (such as Google Map, Map

Quest, etc.)
4: At each above step insert an intermediate pose of the car called as way-points.

A set of ordered way points W of the car poses is given by:

W = {q1,q2,,qk} (3.4)

5: Γ = Γ + Path PlanNH(qs,q1)
6: for i = 1 to k − 1 do
7: Γ = Γ + Path PlanNH(qi,qi + 1).
8: end for
9: Γ = Γ + Path PlanNH(qk,qg)

10: return Γ

As seen from algorithm we need three fundamental algorithms: a) Step by step

directions generator, (b) Converting steps to physical poses (way-points) and (c)

Path planning between intermediate poses. Step by Step directions generator is

already implemented by many industries and commonly available in market, such

as, Google Maps [125], Map Quest [126], etc. Converting steps to way-points

requires a combination of localisation [127] of car at that step achieved using GPS

sensor to find physical poses of car.

However, path planning between intermediate poses remains a largely open problem

where, the trajectory should not only be non-holonomic in nature but also need to be

guaranteed collision-free for safety purpose. Generating non-holonomic collision-free

trajectories is mostly the focus of this thesis.

3.2. Revisiting current state-of-art approaches 45

3.2 Revisiting current state-of-art approaches

Most non-holonomic path generations procedure/planners [27,28] does not take the

advantage of incremental computation in finding collision free paths. This leads to

recomputation of the entire non-holonomic path from start to goal if some part of

the path is in-feasible. While, making sub-goals for a path can reduce this problem

for current state-of-art approaches it still may not find a collision free path not to

mention the added computational cost.

Autonomous car driving in real environments require to tackle unforeseen changes

in obstacle positions during path planning procedure. Such procedures/planners to

be applied for dynamic environments may lead to a lot of recomputations which

may further have difficulty finding feasible solutions in real-time while maintaining

non-holonomic constraints.

Thus current advancements needed in non-holomonic path generation process so as

to be incorporated by most planners for any kind of environment are:

1. Computational simplicity in non-holonominc path generation.

2. Facilitation of incremental collision-free path tests

3. Ability to modify the existing non-holonomic path generated based on updated

sensor data from the environment

This motivates us to further study our approach and apply it to a path planner to

test its feasibility and applicability.

3.3. Technical characteristics of mechanism augmenting planners for non-holonomic path generation46

3.3 Technical characteristics of mechanism aug-

menting planners for non-holonomic path gen-

eration

The following section addresses the advancements needed by non-holonomic path

generator for autonomous car driving.

3.3.1 Computationally inexpensive

Car like robot being mobile will have limited battery which constrains the process-

ing power consumption. Recomputing non-holonomic paths while driving on roads

may be needed which can lead to high processing if the approach itself requires

high processing steps to compute a sample non-holonomic path. Thus, the criti-

cal requirement from path planner is to work by limiting computational tasks that

involve computational expensive non-holonomic path generation and collision check-

ing. While its difficult to reduce the collision checking cost, the approach mentioned

in this research makes it possible to have non-holonomic path generation in real-time

constraints.

3.3.2 Instantaneous

While computationally inexpensive is a necessity making the non-holonomic path

generator almost instantaneous is ideal for path planning as only collision computing

cost needs to be borne by the planner for making car react to avoid obstacles in real-

time.

3.4. Achievements and contribution 47

3.3.3 Simplicity in integrating with already existing path

planners

Literature [128] offers wide variety of planners with different strengths and weak-

ness pertaining to different domains. Thus augmenting a path planner to facilitate

non-holonomic path generation should have minimal changes on the planner when

integrating the generator into it.

3.4 Achievements and contribution

Our contribution is the incremental non-holonmic path generation which leads to

multiple benefits addressed in this section.

3.4.1 Interweaving incremental collision checking with gen-

erator

While two major computational costs of path planners being non-holonomic path

generation and collision checking, doing them serially one after the other can tremen-

dously increase the computational cost making it difficult to exhibit real-time per-

formance.

Rather, if an incremental non-holonomic step is computed and immediately check

for collision the planner would immediately know if the step was favorable or not.

Although, this incremental step still needs serial execution of non-holonomic path

generation and then collision checking, the computational burden is much less com-

pared to entire non-holonomic path computed and then checked for collision. So

this can be viewed as if the the collision checking process is interweaved with the

non-holonomic path generation process.

3.4. Achievements and contribution 48

3.4.2 Strengths of most existing planners can now be ap-

plied for non-holonomic path planning

Most successful class of planners are sampling based planners but they are usually

used for planning robotic arms or holonomic mobile robots. Their basic tendency

to search the continuous C-space [122] is by sampling in C-space randomly and

then connecting them together via a collision-free path(s). Usually the strength of

planners is to identify the best subset of free C-space while identifying potential

C-obstacle space and guiding the robot to the goal safely.

Our strategy is based on that– not only the sampled points given by planners are

taken as input by non-holonomic generator, but also the control inputs (steering and

acceleration/de-acceleration) are computed by the generator. Thus, the planner

does not need to be concerned with control inputs and rather focus on position

and orientation of the car while planning. Such isolation of control inputs from

configuration space inputs facilitate existing planners to still plan in C-space.

3.4.3 Could be easily scaled for dynamic environments with

existing motion planners

The notion of C-space can be extended to CT-space and same algorithm for planning

in C-space can be applied to known dynamic environments. So as mentioned in

previous subsection same benefits apply here.

Recomputations often needed by motion planners to plan motion if dynamic environ-

ments are uncertain. As there is obvious advantage of combining collision checking

at incremental step, the new position of obstacles can be used to quickly modify the

current already computed non-holonomic path that will be in collision effectively by

keeping the previous collision-free configurations for non-holonomic path intact.

3.5. Practical aspects 49

Although proving it to work for uncertain dynamic environments is out of scope for

current thesis, the ability of non-holonomic generator to be randomly instantaneous

makes it favorable to be applied for any kind of dynamic environment.

3.5 Practical aspects

Although, this thesis is aimed at showing results in simulations, the algorithms

proposed are aimed at implementing on a real car-like robot. Also, the assumption

of pre-processing the path planning is heavily used in this thesis.

Chapter 4

Augmented Path Planner: RRT*

Fixed Nodes for Non-Holonomic robot

(RRT*FN-NH)

As car-like robots are mainly aimed for outdoor activities, corresponding naviga-

tion algorithms should be able to account for the constraints imposed by the non-

holonomic type of movement. A very popular and successful family of navigation

algorithms is based on the Rapidly-exploring Random Tree (RRT) path planning

method. In this Chapter, some variety of modifications are proposed for the basic

RRT algorithm that aim to improve the performance with respect to aspects, such

as, time, path length, and trajectory smoothness, while observing the non-holonomic

kinematic constraints.

The main goal is to achieve an instantaneous random non-holonomic path for car-

like robot such that the non-holonimic path has a predefined start pose but random

end pose. This scheme is especially useful as most sampling path planners randomly

sample the configuration space of the robot.

So, further this scheme relies on path planner to guide the instantaneous random

non-holonomic path generator to reach the desired goal pose. This is the main

50

4.1. A review of RRT*FN 51

elegant tactic that is proposed by this thesis. Further a more constrained variant

of RRT* called RRT*-Fixed Nodes (RRT*-FN) is augmented by this tactic and

is called as RRT*FN-NH and can be applied to car-like robots. This chapter is

dedicated to address the feasibility of this tactic and approach used by thesis.

4.1 A review of RRT*FN

Basic functions of RRT path planner were discussed in Chapter 1. A variant of RRT

called RRT* takes into account the heuristics of the possible paths from start to goal

configuration and returns the best path satisfying heuristics set by the user. RRT*

Fixed Nodes (RRT*FN) [31], a variant of RRT*, adds an additional constraint of

maximum number of nodes in a tree.

RRT* Fixed Nodes (RRT*FN) minimizes memory requirements of RRT* by remov-

ing weak nodes1 in presence of high-performance node. The tree is grown identical

to RRT* until a maximum M number of nodes is reached. If the algorithm does

not find a feasible path connecting qs to qe then algorithm is restarted and the old

node is removed whenever a new node is added.

4.1.1 Overall structure

The flowchart for overall structure for RRT*FN is shown in Figure 4.1. Similar to

RRT it runs for N iterations and finds the probabilistically best path connecting

robot configuration qs to somewhere near to qe using at most M nodes. The core

functioning is carried out at connector d, which is described in following sections.

1These are the nodes, although, feasible but increases the path cost based on heuristics selected
by user.

4.1. A review of RRT*FN 52

Figure 4.1: Flowchart of overall structure of RRT*FN. The bold text represents the
logical function (fn) stated in RRT*FN algorithm

4.1.2 Sampling of new node

The next flowchart for sampling a new node is shown in Figure 4.2. The steps are

exactly similar to that of RRT except that a qnear pose is computed that may not

be same as qrand.

4.1.3 Connection of new node to tree

The next flowchart is for connecting the new node to the tree and is shown in

Figure 4.3. The obstacle free function is similar to RRT as we had seen in Chapter

2. However, we have an additional “choose parent” parent function that selects the

nodes based on heuristics and then makes an appropriate insertion to the parent

node as shown by the flowchart.

4.1. A review of RRT*FN 53

Figure 4.2: Flowchart of sampling a new node that can be connected to RRT*FN

4.1.4 Rewiring of nodes

The rewiring of nodes in tree is required to optimise the neighbourhood of the tree

and also maintain the constraint of maximum fixed nodes by removing less optimal

nodes in the tree. This step is specifically dedicated for that and its flowchart is

shown in Figure 4.4.

4.1.5 Maintaining constraint of maximum fixed nodes

To maintain constant fixed number of nodes, if the tree exceeds the number of nodes

then the only way is to delete some old node to add new node using certain criteria.

4.1. A review of RRT*FN 54

Figure 4.3: Flowchart of connecting a new node to tree

These criteria are shown in flowchart in Figure 4.5.

Basically three tactics are used,

1. does the new node make tree optimal? if not then remove the new node instead

of old node

2. does the child of any node can be removed? if yes remove it

3. if no node can be removed then simply use the old tree and ignore the new

node insertion process

4.1.6 Summarising into an algorithm

Similar to RRT the Algorithm 4 runs for N iterations and finds the probabilistically

best path connecting robot configuration qs to somewhere near to qe, using cost

4.1. A review of RRT*FN 55

Figure 4.4: Flowchart of rewiring node of tree to optimise its neighbourhood

function c(Γ). Similar to RRT It samples a node in Q, finds the nearest neighbour

qnear, and then performs collision checking of trajectory of steering the robot from

from qnear to qi. If that trajectory is collision free, then the node is considered to

be added.

If the number of nodes exceeds max. number of allowed nodes M in a tree τ it

removes a low performance node using force removal strategy2 or simply restoring

the old tree with M nodes. Thus, a new node is only added to the tree τ if the node

qi at iteration i makes the path to qs more cost-effective.

4.1.7 Problems in Extending RRT*FN for non-holonomic

systems

As seen in this section RRT*FN has proposed significant strategies to tackle path

planning of holonomic robot systems. However, all the above strategies can not

be directly applied to non-holonomic systems. For example, RRT*FN mentions

on connecting a random node in configuration space of the robot to explore the

environment. Although, for non-holonomic systems the random configuration of that

system can be generated by randomly varying its joint parameters, the fundamental

2Search the whole tree τ and remove randomly one node with no children.

4.2. Problem Statement 56

Figure 4.5: Flowchart of various tactics used to maintain fixed number of nodes

problem lies in maintaining non-holonomic constraints between this random node

and the nearest node in the tree.

Rather, to maintain such constraints is solving inversely for a connected path that

is computationally expensive. Also the incremental planning style of RRT breaks

down. Due to this problem the effectiveness of rewiring strategy seems unattractive.

In the next sections the author proposes on how to apply most of the strategies from

RRT*FN for non-holonomic systems.

4.2 Problem Statement

The motion of the car-like robot is commonly described by a control vector u = [φ s],

where φ is the steering angle of the front wheels and s is the motion speed. The

path generation of such a robot satisfying non-holonomic constraints is introduced

in this section.

The configuration (or pose) of car-like robot can be expressed as q = [x y θ], where

4.2. Problem Statement 57

Algorithm 4: RRT*FN

1: Input qs, qe, N and M
2: I nitialize tree τ with one node qs

3: for i = 1 to N do
4: if the number of nodes added to τ exceeds M then
5: τold ← τ
6: end if
7: Sample a node qi randomly in Q
8: qnear ← nearest node to qi in τ
9: [qi ui−1]← S teer the robot from qnear to qi

10: if Steering the robot from qnear to qi is collision-free then
11: I nsert node qi in τ using control vector ui−1
12: Using local neighbourhood re-wire the node qi to some other parent that

minimizes path cost to qs

13: if ∃ τold and new node qi is cost-effective then
14: if ∃ a node q∅ with one or no child then
15: Force remove that node q∅
16: end if
17: end if
18: if no node can be removed or new node qi is not cost-effective then
19: τ ← τold when no removal performed
20: end if
21: end if
22: end for
23: c(Γbest) = min{c(Γ),∀ feasible Γ from qs to near qe

24: return Γbest

(x, y) is the center position of axle of rear wheels and θ is the orientation of the

robot w.r.t. world frame {W} (see Figure 4.6). Let Q be the configuration space

of the robot, which is three dimensional.

The problem can be formulated as:

• Inputs

– qs : The starting configuration of the car described by three parameters

[xs ys θs]

– us : The starting control vector applied to generate configuration qs

– qe : The ending configuration of the car described by three parameters

[xe ye θe]

4.3. Non-holonomic path generation using small dt 58

Figure 4.6: Symbols used in describing the control vector u and the configuration q
of the car-like robot.

• Output

– Find a path (refer Figure 4.7) described by configurations qi and their

corresponding control vectors ui−1 connecting the configurations qs to qe

subject to non-holonomic constraints and trajectory profile constraints,

such as, max velocity, acceleration, etc.

Figure 4.7: Applying control vector ui−1 to qi−1 results in new pose qi of the robot

4.3 Non-holonomic path generation using small dt

Since non-holonomic equations are differential in nature they can only be formulated

to find the next configuration qi+1 using previous robot pose qi and the control

vector ui, if :

4.3. Non-holonomic path generation using small dt 59

• the differential time dt is assumed to be constant

• the same non-changing control vector input ui is applied within that time

interval dt

• can be useful for planning if one-step motion can be computed by assuming

dt to be some small value, which is propotional to acceleration of the car

In this section, an instantaneous random non-holonomic path generator is devised

after modelling the kinematics of car-like robot using a small dt.

4.3.1 Modelling kinematics of car-like robot

Kinematic model of the car-like robot satisfying non-holonomic constraints is widely

known in literature [129]. Applying control vector ui = [φi si] to the robot at current

configuration qi = [xi yi θi] for a small time interval dti, the resulting configuration

qi+1 = [xi+1 yi+1 θi+1] can be expressed using following equations:

θi+1 = θi +
si sinφi

l
× dti (4.1)

xi+1 = xi + si cos θi+1 cosφi × dti (4.2)

yi+1 = xi + si sin θi+1 cosφi × dti (4.3)

, where l is the length between two axles.

If the current time is ti, then ti+1 = ti+dti is the time when robot is at configuration

qi+1. The small time interval dt = ti+1− ti enables to make simple assumption such

4.3. Non-holonomic path generation using small dt 60

as the speed si remains nearly constant from time ti to ti+1 and we can compute

qi+1 directly using above differential equations.

The small interval dti is also chosen such that the incremental distance the robot

covers can be approximated by a constant straight line euclidean distance dλ.

4.3.2 Random non-holomic instantaneous path generator

The possible speed si+1 for computing next configuration qi+2 is limited upon

acceleration/de-acceleration a applied to the robot within time interval dti and the

change in speed dsi+1 = si+1 − si can be expressed as:

−adti ≤ dsi+1 ≤ adti,where dti ≤
dλ
dsi+1

(4.4)

The Algorithm 5 implements next configuration generation satisfying non-holonomic

constraints and constraint expressed in eqn.(4.4). The algorithm requires presetting

distance threshold dλ, and maximum magnitude of acceleration/de-acceleration of

the car amax. To build a path Γ for car-like robot with n configurations, Algorithm 5

can be iterated for i = 1 to n given the starting configuration q0 and u−1 = [0 0].

Algorithm 5: Next configuration qi generation

1: Input starting configuration qi−1 and ui−2
2: r = [0, 1] be a random generator

3: dti−1 =
√

dλ
a

, where a = ramax

4: si−1 = si−2 + (−1 + 2r)adti−1
5:

φi−1 =

{
φi−2 if r < 0.5

φi−2 + (−1 + 2r)30◦ Otherwise

6: Compute qi = [xi yi θi] using eqn.(4.1– 4.3) with ui−1 = [φi−1 si−1] and
qi−1 = [xi−1 yi−1 θi−1]

The path generation using algorithm 5 needs a path planner to lead the car from

starting configuration to a pre-desired goal configuration. Specifically, the planner

4.4. RRT*FN with non-holonomic constraints 61

can find a sequence of control actions u to drive the robot from initial configuration

qs to some final configuration qe in presence of constraints imposed by environment

and by robot dynamics. The prospects of RRT is cited in [18]. It randomly samples

the configuration space of the robot and tries to connect that sampled configuration

(node) qi to its nearest configuration (node) qnear in the tree τ rooted at node qs.

For this paper, the relevant variants of RRT to be considered are RRT* [130] and

RRT*FN [31]. RRT* introduces heuristics into RRT along-with the concepts of

local neighbourhood of newly added node and its re-wiring. Thus, RRT* finds a

feasible path Γbest from qs to qe using a cost function c(Γ).

4.4 RRT*FN with non-holonomic constraints

Enabling RRT*FN to function for non-holonomic robots is the focus of this section.

As Algorithm 5 generates an incremental step in a random direction, RRT*FN can

guide the series of generation of incremental steps towards goal configuration. Also,

maintaining the fixed nodes strategy could be adopted here.

4.4.1 Simple modifications to RRT*FN

Algorithm 6 (called as RRT*FN-NH) proposes on making RRT*FN work for robot

with non-holonomic constraints. Similar to RRT it samples a node q in the con-

figuration space Q of the robot but does not uses that node to connect to nearest

node qnear in tree τ . Instead, using Algorithm 5 it generates the next configuration

qj using qnear and control vectors ui−2 and ui−1. The parent control vector ui−2

is needed in generating the next configuration qj (Algorithm 5). Using the output

control vector ui−1 of Algorithm 5 the robot is steered to the next incremental con-

figuration. Thus, RRT*FN-NH while satisfying non-holonomic constraints explores

4.4. RRT*FN with non-holonomic constraints 62

the configuration space and tries to connect to the goal using similar principle of

RRT*FN.

Algorithm 6: RRT*FN-NH

1: I nitialize tree τ with one node qs and u−1 = [0 0]
2: for j = 1 to N do
3: if the number of nodes added to τ exceeds M then
4: τold ← τ
5: end if
6: Sample a node q randomly in Q
7: qnear ← nearest node to q in τ
8: ui−2 ← the control vector applied at parent of qnear

9: [qi ui−1]← Using Algorithm 5 generate qi with qi−1 = qnear and ui−2
10: qj = qi and store ui−1 with node qj

11: if robot at qi is collision-free then
12: I nsert node qi in τ using control vector ui−1
13: if ∃ τold and new node qj is cost-effective then
14: if ∃ a node q∅ with one or no child then
15: Force remove that node q∅
16: end if
17: end if
18: if no node can be removed or new node qj is not cost-effective then
19: τ ← τold when no removal performed
20: end if
21: end if
22: end for
23: c(Γbest) = min{c(Γ),∀ feasible Γ from qs to near qe

24: return Γbest

4.4.2 Highlights on RRT*-FN-NH

While most of the strategies are taken from RRT*-FN. There lies these fundamental

differences that had to be proposed for it to function with non-holonomic systems:

1. Instead of sampling a node in configuration space, the node is randomly sam-

pled from a tree and a random control vector is applied to it. So this dual

approach to sampling strategy by RRT variants is proposed.

2. While the non-holonomic systems are differential in nature and RRT*-FN can

not function with it, the incremental step planning style of RRT is exploited.

4.4. RRT*FN with non-holonomic constraints 63

Since, the step is incremental, the next node can be directly computed using

differential equations while maintaining non-holonomic constraints. So this key

insight is explored by this thesis. Not only it make RRT*FN functional for

non-holonomic systems but also provides a means for any incremental planner

to adopt this strategy.

3. Also the rewiring strategy is removed for RRT*-FN-NH. Instead with above

elegant strategies RRT*-FN-NH was made functional and effective. Chapter 5

discusses the use of the above collective strategies as mentioned in Algorithm

6 in various environments for a car-like robot.

The focus of this thesis was to facilitate any planner to be applied for non-holonomic

systems with less changes as possible. So as seen with RRT*-FN-NH only a few

strategies were not used and new additional strategies were proposed.

There are few additional differences between RRT*FN and RRT*FN-NH. The col-

lision checking of robot configuration is done instead of a trajectory while steering

the robot from qnear to qj. As the next incremental step is small, possibility of

finding a feasible configuration is much higher than a trajectory steering the robot.

This also provides simple computationally less-intensive collision checking of a robot

configuration instead of continuous collision checking of a trajectory.

Chapter 5

Experiments and Results

Testing the following parameters for RRT*FN-NH in different scenarios is the main

focus of this Chapter.

1. # of Iterations N : The number of iterations will show the feasibility of the

approach for real-time constraints. If number of iterations required are large,

as shown in [131] RRT-FN-NH should converge, similar to any sampling based

planner. However, note that since in every iteration there is always a motion

step satisfying non-holonomic constraints the only reason that a node is not

attached to tree is because of collision with environment.

2. # of Nodes M : The number of nodes needed in the tree to find a solution

directly relates to the memory needed by the embedded system on-board the

car-like robot. So a test is required to give an indication on cost of reducing

the number of nodes to find paths in traditional environments.

3. Total Length of Path L: The total length of the path for traditional

benchmark environments will show the optimality of the approach in finding

a solution path while maintaining non-holonomic constraints. This step can

be critical as if the non-holonomic path has too many curves, where a simple

straight line motion would suffice, then not only its risky driving but also

64

5.1. Specific details on implemented approach 65

uncomfortable for passengers in the car-like robot. To control this a special

step is introduced in Algorithm 7 that controls the randomness in steering

angle change.

4. Total Time of Path T : Total time of path tests whether the acceleration

constraints set by user is met most of the time or not. Maintaining non-

holonomic constraints if the car moves near max. speed set by user most of

the time, then RRT*FN-NH has been optimal in finding the paths and slowing

down as a sharp turn is encountered.

5. Computation time: The time of path computation is not affected by non-

holonomic node generation but only by collision checking cost. Also this would

not play a role if the initial dense tree is planned offline. However, for online

path adaptation the computation time will be dependent on collision-checking

cost that could be minimised by the planner but currently it is out of scope of

this research.

Experiments were conducted on modified RRT*FN toolbox [31] in Matlab. The

tool originally provides appropriate implementation of RRT*FN mostly for robots,

like an arm, rectangular moble robot, etc. that was modified by the author to work

for non-holonomic constraints.

5.1 Specific details on implemented approach

In this section some of the critical design constraints that were implemented are

discussed.

5.1. Specific details on implemented approach 66

5.1.1 Minimising steering angle change

For every single step taken if the steering angle keeps on changing as mentioned in

Algorithm 5, then the car-like robot would rarely move in a straight smooth jerk-

free motion. To make a non-holonomic path that would make appropriate turns

the following Algorithm 7 is used in implementation instead of Algorithm 5 as

mentioned in Chapter 4. Also note that the bounds on the speed of the car is also

checked.

Algorithm 7: Next configuration qi generation

1: Input starting configuration qi−1 and ui−2
2: r = [0, 1] be a random generator

3: dti−1 =
√

dλ
a

, where a = ramax

4: si−1 = si−2 + (−1 + 2r)adti−1
5: if si−1 < 0 then
6: si−1 = a× dti−1
7: end if
8: if si−1 < vmax then
9: si−1 = vmax

10: end if
11: Generate random number r
12: if r < 0.5 then
13: φi−1 = 0
14: else
15: Again generate random number r
16:

φi−1 =

{
φi−2 if r < 0.5

φi−2 + (−1 + 2r)30◦ Otherwise

17: end if
18: Compute qi = [xi yi θi] using eqn.(4.1– 4.3) with ui−1 = [φi−1 si−1] and

qi−1 = [xi−1 yi−1 θi−1]

5.1.2 Collision checker

While collision checking algorithm poses severe computational constraints in real-

time for finding a collision-free path, studying their effect in this section is beyond

5.2. RRT*FN-NH in traditional environments 67

the scope of the research. For two different environments different collision checking

algorithm were used.

Benchmark Environments

A simple 2D object oriented bounding box (OBB) collision check was implemented

to do fast collision checking in case for traditional environments, where obstacles are

polygonal in nature (shown in red). The algorithm 8 shows the collision detection

between a car pose and obstacles in environment.

Algorithm 8: Collision checker for Benchmark Static Environments

1: Input pose qi of the robot and set of static polygonal obstacles described by
ordered vertices

2: Fit Axis Aligned Bounding Box (AABB) to all the polygonal obstacles
3: OBB of car is same as the car geometry described with ordered vertices at

pose qi

4: for each AABB o describing a static obstacle do
5: if rectangle o is in collision with oriented rectangle OBB then
6: return collision exists
7: end if
8: end for
9: return no possible collision exists

Google Maps

For testing non-holonomic path generation on Google maps a simple collision check-

ing whether pixels occupied by the car are on the road pixels or not was developed.

Algorithm 9 shows computing free space occupancy of the car. All pixels that are

not road pixels are considered as obstacle pixels.

5.2 RRT*FN-NH in traditional environments

Most RRT based algorithms are tested on common benchmark based environments

consisting of polygonal obstacles that we refer here as traditional environments.

5.2. RRT*FN-NH in traditional environments 68

Algorithm 9: Collision checker for Google Maps

1: Input pose qi of the robot and set of pixels Proad belonging to the road on the
map

2: Find the set of all the pixels Pcar occupied by the car at pose qi

3: if Pcar ⊂ Proad then
4: return no possible collision exists and car is on the road
5: else
6: return collision exists and car is off road
7: end if

Although, the results produced here are not compared with some other approach,

the results here can be used to get a measure on the performance of RRT*FN-NH

under the non-holonomic constraints assumption.

5.2.1 Initial parameters

We tested the RRT*FN with non-holonomic constraints in many different environ-

ments. The environment was a bounded rectangle area of size 10 unit × 10 unit.

The car robot tested had dimension 0.58×0.38 unit2. The minimum and maximum

velocity of the car was set to 0.001 and 0.05 unit per seconds respectively. The

length between the two axles of the car was 0.38 units. The maximum acceleration

of car was 0.04 units/sec2. The incremental or discritization step dλ was set to a

constant of 0.1 units.

Random seed as a parameter

The random generator needs a random seed in Matlab for generating random num-

bers. If the random seed is same, then the random numbers generated will be

appearing in same sequence. Thus, if the random generator generates random num-

bers not in favour of path planning steps it might happen that because of that

chosen random seed the solution found was not feasible.

So to get results the random seed was chosen specifically by the user. There are

5.2. RRT*FN-NH in traditional environments 69

experiments conducted to show the effect of random seed parameter on finding a

feasible solution.

5.2.2 Feasibility of RRT*FN-NH in finding solutions

Table 5.1 shows the results of six tests with following output parameters: L as path

length and T as total time taken for robot to reach the goal. The input parameters to

RRT*FN for non-holonomic constraints areN (the number of iterations in RRT*FN)

and M (the max. number of nodes in tree τ).

Test # 1 shows a traditional example of narrow passage (Fig. 5.1(a)) in path planning

problem. Test # 2 enforces the car to take multiple turns (Fig. 5.1(b)) without

stopping the car as min. velocity of car is greater than 0. Test # 3 checks if the car

finds the shortest route (Fig. 5.1(c)) compared to longer route; hence, the number of

iterations are set to 50,000. Test # 4 checks if the car can take sharper turn (U-turn)

to reach the goal (Fig. 5.1(e)). Test # 5 (Fig. 5.1(e)) and # 6 (Fig. 5.1(f)) are for

the same environments but with different set accelerations that result in different

total time.

As seen in Figure 5.1 RRT*FN for non-holonomic constraints always find a solution

but requires iterations of at least 10,000. Two factors affect the number of iterations,

the discritization step and the non-holonmic constraints of the robot. As seen in

results L and T is crucial parameters and relevant to environment and the constraints

of the car-like robot movement. Also, for Test # 4, the acceleration was reduced

to 0.004 units/sec2 to obtain feasible solution in 10,000 iterations, but total time

increased. So we conducted test # 6 with the same acceleration as original and

with 10,000 iterations no feasible solution was obtained. So we had to increase the

iterations upto 50,000. Thus, if the speed of the car is high most of the time then

the chances of it hitting the obstacles are higher and more iterations will be needed.

5.2. RRT*FN-NH in traditional environments 70

Table 5.1: Experimental data of RRT*FN with Nonholonomic constraints

Test # N M L T
(×103) (×103) (units) (secs)

1 10 1 9.02 67.27
2 10 1 18.25 124.1
3 40 15 24.08 162.6
4 10 1 13.12 221.29
5 10 1 27.40 395.01
6 50 1 22.08 156.085

5.2.3 Study of narrow passage example

A narrow passage problem poses a challenge to path planner such that the path

planner needs to explore (instead of exploit) the high dimensional configuration

space. Thus, how fast can it explore the configuration space to find a feasible

solution is focus of this section.

As discussed earlier random seed plays an important role in finding feasible solutions,

the test will take into account the random seed as a parameter. Also if same problem

was given to traditional RRT* path planner using the Algorithm 7 for non-holonomic

path generation, the number of nodes required to form a feasible path is given in

Table 5.2 for comparison with RRT*-FN-NH. For all the experiments N was set to

5000 iterations.

So RRT* here is same as RRT*FN-NH with the condition M = N , i.e., the number

of nodes equals number of iterations. So as seen in Table 5.2 M is deliberately

chosen much smaller value than N so as to see if the memory conservation can be

achieved. Clearly from the table most of the cases RRT*FN-NH is able to find

feasible solution with less associated memory cost but increased Total time T of the

path. This indicates that car-like robot had to move more slowly to cross the narrow

passage when constrained by max. number of nodes allowed. Figure 5.2 illustrates

an example that compares RRT* generated path with RRT*FN-NH path.

5.2. RRT*FN-NH in traditional environments 71

..
(a) Test # 1 (b) Test # 2

(c) Test # 3 (d) Test # 4

(e) Test # 5 (f) Test # 6

Figure 5.1: A path Γbest returned by RRT*FN NH

Another interesting observation is for random seed # 80 where exactly reverse case

is observed, i.e., as M < N , as memory cost decreases so does total time but there

5.2. RRT*FN-NH in traditional environments 72

Table 5.2: Experimental data of RRT*FN-NH Vs. RRT* for narrow passage envi-
ronment

Random Path M L T Feasible
Seed # Planner (×103) (units) (secs)

10
RRT* 2225 8.3941 128.6839 Yes

RRT*FN-NH 1225 – – No

20
RRT* 2379 7.9951 125.1129 Yes

RRT*FN-NH 879 7.695 155.3891 Yes

30
RRT* 2472 8.3079 172.9373 Yes

RRT*FN-NH 972 8.257 181.15 Yes

40
RRT* 2875 9.3683 163.6372 Yes

RRT*FN-NH 875 9.3495 159.8945 Yes

50
RRT* 2608 7.6588 109.5401 Yes

RRT*FN-NH 1108 7.7038 151.7836 Yes

60
RRT* 2647 8.9314 169.0311 Yes

RRT*FN-NH 1147 8.8929 172.71 Yes

70
RRT* 2292 9.0344 122.595 Yes

RRT*FN-NH 1292 8.2007 168.2634 Yes

80
RRT* 2536 8.5819 169.2465 Yes

RRT*FN-NH 1036 9.4647 143.2935 Yes

90
RRT* 2942 9.0344 122.595 Yes

RRT*FN-NH 942 9.0344 122.595 Yes

100
RRT* 2620 8.7925 132.4406 Yes

RRT*FN-NH 1120 8.0729 140.7413 Yes

..
(a) RRT* (b) RRT*FN-NH

Figure 5.2: Path Γbest returned for narrow passage example with Random Seed #
100

is increase total length of the path. Figure 5.3 illustrates the non-holonomic path

generated by RRT* and RRT*FN-NH. As seen with this example with RRT*FN-

5.2. RRT*FN-NH in traditional environments 73

NH the car-like robot moves more towards the lower obstacle of narrow passage and

then makes the car go straight to the goal with more speed, thus, decreasing the

total time but increasing path length.

..
(a) RRT* (b) RRT*FN-NH

Figure 5.3: Path Γbest returned for narrow passage example with smaller total time
and larger total length with Random Seed # 80

However, there exists 1 in 10 case where the RRT*FN-NH fails to find a feasible

solution when M < N for random seed # 10. This indicates that memory can not

be made arbitrary small and is a function of the complexity of the environment that

RRT*FN-NH is trying to solve. However, this section shows that there are many

benefits of using RRT*FN-NH and are listed below:

• Ability to solve narrow passage problem for non-holonomic constraint robot

using less number of nodes compared to RRT*

• Total path length mostly decreases when RRT*FN-NH is used

• Memory constraints can be achieved but is a function of the complexity of the

environment to be solved for.

5.2. RRT*FN-NH in traditional environments 74

5.2.4 Study with environment requiring multiple manuevers

A car-like robot may need to perform multiple manuevers to reach its intermediate

destination or final destination. Solving traditional environment 4 requires at least

two turning manuevers to avoid central obstacles as shown in Figure 5.1(b).

Similar to the study of narrow passage environment, the random seed parameter is

used to compare RRT* with RRT*FN-NH and the results are given in Table 5.3.

The number of iterations for all the experiments were set to constant 5000.

Table 5.3: Experimental data of RRT*FN-NH Vs. RRT* for car needing multiple
manuevers to reach goal

Random Path M L T Feasible
Seed # Planner (×103) (units) (secs)

10
RRT* 1765 19.2683 298.0733 Yes

RRT*FN-NH 1265 19.2683 298.0733 Yes

20
RRT* 1275 17.7123 275.443 Yes

RRT*FN-NH 775 17.777 313.4863 Yes

30
RRT* 2213 18.8971 315.9048 Yes

RRT*FN-NH 713 16.3752 308.333 No

40
RRT* 2197 18.1019 329.2288 Yes

RRT*FN-NH 1197 17.9108 314.303 Yes

50
RRT* 1688 18.6306 317.5444 Yes

RRT*FN-NH 1188 18.2871 311.696 Yes

60
RRT* 2594 17.1476 275.834 Yes

RRT*FN-NH 594 17.1477 252.610 Yes

70
RRT* 2662 18.7617 260.0442 Yes

RRT*FN-NH 1162 18.7617 260.0442 Yes

80
RRT* 917 18.5985 388.5194 Yes

RRT*FN-NH 917 18.5985 388.5194 Yes

90
RRT* 2729 17.7479 280.2562 Yes

RRT*FN-NH 1229 17.8295 300.1967 Yes

100
RRT* 2719 18.0902 276.6442 Yes

RRT*FN-NH 719 18.2293 261.144 Yes

Although, the number of nodes can be decreased the total path length achieved is

nearly same as that of RRT* and also total time has increased (see Figure 5.4 for

example). Also, there exists a case, where the path found was unable to connect to

5.2. RRT*FN-NH in traditional environments 75

..
(a) RRT* (b) RRT*FN-NH

Figure 5.4: Path Γbest returned for Random Seed # 50, where car needed multiple
manuevers to reach goal

goal (see Figure 5.5). This shows that complex manuevers requires more number

of nodes for the car-like robot to avoid obstacles and also maintain non-holonomic

constraints. However, if the random generator favors the path planner search process

then also the right non-holonomic path can be achieved with less number of nodes

(see Figure 5.6).

..
(a) RRT* (b) RRT*FN-NH

Figure 5.5: Path Γbest returned for Random Seed # 30, where car needed multiple
manuevers to reach goal

Thus, this section shows that complex manuevers can be easily handled by combin-

ing instantaneous next non-holomic constrained step and making path planner to

guide the robot to the goal. This indicates the simplicity and elegant nature of the

5.3. RRT*FN-NH on Google Maps 76

..
(a) RRT* (b) RRT*FN-NH

Figure 5.6: Path Γbest returned for Random Seed # 60, where car needed multiple
manuevers to reach goal

approach.

5.3 RRT*FN-NH on Google Maps

Although traditional environments provided some challenging task for path planner

to find right manuevers or explore the environment, it did not however represent

the real scenario. So in this section, a real road map scenario (without traffic) is

considered as an environment for RRT*FN-NH to generate non-holonomic path for

car-like robot. Two local environments are chosen that mostly represent the roads

found in urban areas.

The map 1 (see Fig 5.7(a)) is chosen such that it mostly represents multiple turns

at intersections to reach the goal. Such turns will often require slowing down car to

a certain speed when nearing intersection and then take a smooth turn thus offering

a necessary constraint commonly found in urban road driving which was missing in

benchmark examples. These roads are nearly straight with slight curvature.

The map 2 (see Fig 5.8(a)) represents commonly a major junction found in cities

where there is a circular obstacle (roundabouts) at the center where traffic from all

5.3. RRT*FN-NH on Google Maps 77

the roads merge into and separate out. Although, we have not taken into account the

merging of traffic, maintaining nearly same speed near the junction may be critical

to compete with fast moving traffic. Thus contrary to map 1 here the slowing down

of vehicle may not be needed but rather nearly continuous speed motion is necessary.

The local maps were taken from Google static map API [125] at a constant zoom

level of the Google map. The car had width 3 pixels, length 6 pixels and length

between axle as 2 pixels.

5.3.1 Car speed profiles

Three speed profiles were tested: Slow, Medium and Fast. Table 5.7 represents the

speed profile parameters. dstep is the maximum allowable one step motion that can

be taken by the car-like robot. Note that the acceleration was kept constant for all

speed profiles as a car would have a constant acceleration but moving with different

speed ranges.

Table 5.4: Speed profile of car in pixels, pixels/sec, pixels/sec2

Profile Slow Medium Fast
dstep 0.75 1 1.25
vmin 0.1 0.5 0.1
vmax 1.5 2 4
amax 0.1 0.1 0.1

Given some arbitrary random seed chosen, different profiles are used to test N (no

of iterations) and M (max. number of nodes) required by RRT*FN-NH and also

the quality of non-holonomic path using parameters L (Total path length), and T

(total time taken by path) are described in following tests.

5.3. RRT*FN-NH on Google Maps 78

Slow speed

Table 5.5 presents the results obtained by running RRT*FN-NH on google maps 1

and 2. Given the speed range of minimum 0.1 pixels/sec and maximum 1.5 pix-

els/sec, the total time taken by the car to reach destination for Map 1 is 1027 secs

and Map 2 is 399 secs. Note that Map 1 consist of many lanes and longer distance

to travel compared to Map 2 and hence car takes longer time for Map 1.

Figure 5.7 shows the resulting non-holonomic path in Map 1 using slow speed profile.

Also local enlarged areas are shown to see the quality of non-holonomic path being

generated.

Table 5.5: Results in pixels and sec for slow speed profile

Parameters Map 1 Map 2
Random seed 1000 100

N 28×103 4×103

M 8188 1330
L 628.1257 246.7283
T 1026.7629 398.5783

Medium speed

Table 5.6 mentions the results obtained by running RRT*FN-NH on google maps 1

and 2. Given the speed range of minimum 0.5 pixels/sec and maximum 2 pixels/sec,

the total time taken by the car to reach destination for Map 1 is 877 secs (< 1027 secs

required for slow profile) and Map 2 is 417 sec (> 399 secs required for slow profile).

Thus for map 1 the car was able to move faster with the medium speed profile,

however, for Map 2 the turning curve caused the problem for the car to possibly

de-accelerate to maintain right curvature and was slow or nearly same as slow speed

profile (also, note, the random seed for Map 2 was changed to test feasibility).

5.3. RRT*FN-NH on Google Maps 79

Table 5.6: Results in pixels and sec for medium speed profile

Parameters Map 1 Map 2
Random seed 1000 1000

N 8×103 4×103

M 2666 1097
L 643.6551 248.3377
T 877.6788 416.9307

Fast speed

Table 5.6 mentions the results obtained by running RRT*FN-NH on google maps 1

and 2. Given the speed range of minimum 0.1 pixels/sec and maximum 4 pixels/sec,

the total time taken by the car to reach destination for Map 1 is 540 secs (< 877 secs

required for medium profile) and Map 2 is 376 secs (< 417 secs required for medium

profile). Same thing is again observed for Map 1. However, for Map 2 as the min

speed was set to 0.1 pixels/sec the path it generated around the curvature was nearly

in the same nature as that of path in slow profile. This shows that min allowable

speed needs to be selected appropriately to get the right results or expectations.

Table 5.7: Results in pixels and sec for fast speed profile

Parameters Map 1 Map 2
Random seed 1000 123

N 32×103 4×103

M 8898 1078
L 648.6269 254.3213
T 540.9243 375.4331

5.3.2 Insights

Lets look at the quality of non-holonomic path found by RRT*-FN-NH for Map 1

in slow profile. For first intersection present in local area 1 clearly as seen from

figure 5.7(b), the car slightly diverges from straight line its following to maintain

5.3. RRT*FN-NH on Google Maps 80

the curve. Also note if the two consecutive configurations are nearby implies that

speed of the car had to be decreased and if its further implies that speed of car

was increased. It seems that it almost maintains the speed while turning, but

unfortunately does not correct the steering wheel back to straight position on time

which makes the car move in a zig-zag way. This implies additional heuristics are

needed to be enforced by the planner to achieve human-like turning movement of

car.

Next in figure 5.7(c) represents a nearly straight road. As seen by increasing dis-

tance between neighbouring configurations the car picks up speed but soon realises

it going to hit the other side of road and de-accelerates to make a small turn to keep

going forward along the road. Here the interesting characteristic to note is that

acceleration/de-acceleration are automatically represented by the non-holonomic

path as given by generator. Note typically the road is assume to be single way.

If double way needs to be enforced then that part of road has to be represented as

obstacle space for planner. Such simple change can easily navigate the car straight

along its own road.

In figure 5.7(d) again the intersection is represented and as seen the car goes slight

near the other side of road to make a turn at nearly constant speed. A smooth

non-holonomic path was resulted based on the right positioning of car as decided

by non-holonomic path planner. Note for local area 1 this was not observed as the

start position of car was fixed thus showing the constraint behavior observed by

non-holonomic motion.

Next in figure 5.7(e) the non-holomic path take more of a zig-zag to reach the final

destination as the length of the road was more based on the computed positioning of

the car. This is the result of simultaneously taking two intersections consecutively

as speed of the car was attained that may make it difficult to turn. This leads us to

have RRT*-FN-NH run with more iterations and more number of nodes.

5.3. RRT*FN-NH on Google Maps 81

Now lets look at map 2 that has roundabout for slow speed profile. In figure 5.8(b)

as seen the road is nearly narrow where only single car can pass by. In-spite of

such tight narrow road, although with slight curvature, the car speed is nearly kept

constant to navigate through narrow road. Also the non-holonomic path appears

smooth. This reflects back to our claim that for two lane roads even if the road gets

narrow RRT*FN-NH planner will be able to find a solution in reasonable number

of iterations.

Figure 5.8(c) shows a drastic de-acceleration to make sure car does not hit the round-

about. Also note the extent of turn causes it to go faster for remaining path that

shows the efficacy of path planner for non-holonomic paths. Thus, path planning

provides an obvious advantage in by placing the car at right position to favor further

car motion. This is the key insight observed for map 1 as well as map 2.

While the path quality for other different speed profiles are shown in figure 5.9

and figure 5.10 respectively for meduim and fast profile, the key thing to note is

with such constrained maps for RRT*FN-NH, it can be still easily find feasible

paths. Thus, RRT*FN-NH seems to have less difficulty and can be easily applied

on google maps to generate non-holonomic paths. Note here speed profile change

still produces nearly same path lengths but with better total time performance at

the cost of increased number of iterations need to be increased with increased speed

profile. However, the memory needed stays nearly the same.

5.3. RRT*FN-NH on Google Maps 82

..
(a) Map 1

..
(b) Enlarged local area 1 (c) Enlarged local area 2

..
(d) Enlarged local area 3 (e) Enlarged local area 4

Figure 5.7: Path Γbest returned for Map 1 in slow speed profile of car

5.3. RRT*FN-NH on Google Maps 83

..
(a) Map 2

..
(b) Enlarged local area 1 (c) Enlarged local area 2

Figure 5.8: Path Γbest returned for Map 2 in slow speed profile of car

5.3. RRT*FN-NH on Google Maps 84

..
(a) Map 1

..
(b) Map 2

Figure 5.9: Path Γbest returned for Map 1 and Map 2 in medium speed profile of car

5.3. RRT*FN-NH on Google Maps 85

..
(a) Map 1

..
(b) Map 2

Figure 5.10: Path Γbest returned for Map 1 and Map 2 in medium speed profile of
car

Chapter 6

Conclusion and Future Work

The ability for any mobile robot to navigate in its environment is a fundamental task.

There are many literature (refer Chapter 2) already existing that provides ability for

a mobile device to avoid dangerous situations such as collisions and unsafe conditions

(temperature, radiation, exposure to weather, etc.). However, such mobile devices

addressed in literature are not mostly for non-holonomic systems, like a car with

steering mechanism and speed control (acceleration/stop pedestal).

There exists rich literature [128] of path planning of robots (not mostly for non-

holonomic systems) that can now mostly be applied for non-holonomic systems

with the approach presented in the thesis. Specifically, this thesis showed how a

constrained planner RRT*FN can be applied for non-holonimic systems (a car-like

robot) elegantly using the non-holonomic path generation incrementally step-by-

step.

By using incremental small next step and the modified path planning algorithm

RRT*FN-NH for robots with non-holonomic constraints, the thesis demonstrated

experiments of car-like robot in different challenging static environments with ad-

ditional constraint of having minimum velocity of car. The tests showed that to

obtain feasible solution, the number of iterations required are in the magnitude of

103.

86

6.1. Achievements 87

6.1 Achievements

This research aimed at addressing the path planning process for autonomous driving

cars. The key novel points are mentioned below about the approach and outcome.

1. Utilizing the basic form of kinematic differential equations to compute “incre-

mental next step” of non-holonomic systems (see Section 4.3.1).

2. This resulted in an instantaneous random path generation algorithm satisfying

non-holonomic constraints (see Sections 4.3.2, and 5.1.1).

3. The randomness required by sampling based planners was achieved at the

time of generating non-holonomic constraints. Thus no need of connecting

two disconnected configurations using local planner that normally results in

computationally expensive path that may also be infeasible (see Section 4.4.2).

4. Effectively combined the path planner capability of using randomness in ex-

ploring the configuration space of the robot while facilitating that feasible

random path to grow more towards the goal (see Sections 4.4, 5.2, and 5.3).

5. A variant of RRT*FN was used as a demonstrative planner with the strategies

as mentioned in this research for non-holonomic robots (see Chapter 4).

6. Experiments shows that a vast literature of path planning for various robots

can now be easily extended for non-holonomic robots (see Sections 5.2, and

5.3).

7. Further to prove practicality of path planning process for car-like robots, the

road-like environments were also tested at different speed profiles (see Section

5.3).

8. Non-holonomic path generator being instantaneous can be easily scaled for

dynamic environments with unforeseen changes.

6.2. Summary 88

6.2 Summary

Chapter 1 introduces the basic tools for autonomous navigation of robot commonly

used in literature that can not be applied efficiently for non-holonomic systems.

Further this chapter discusses the necessity of a new approach that would facilitate

most of the already existing literature to be applied for non-holonomic systems.

Further it also tries to scale up for environments that are dynamic in nature. To

limit the effects of uncertainity in dynamic environments the major assumption this

thesis makes is that all the cars on the road are autonomous and not manually

driven.

Chapter 2 refers to literature survey extensively. The references for existing non-

holonomic path planners indicate that mathemathical computation of such paths

can be time-consuming especially if the entire non-holonomic path is generated for

sub-goals and then collision check is made. Not only its difficult to modify the

existing non-holonomic paths based on collision information but also such generators

can not be effectively applied to standard planners like RRT. Further, Chapter 2

indicates existing literature on safe path planning, factors that affect path planning

and planning using fuzzy logic. Such literature already existing can be applied to

facilitate non-holonomic path planning by elegant combination of incremental non-

holonomic step generation and path planners solution to reach goal.

Chapter 3 discusses the basic framework for autonomous car driving having one

of its critical component as non-holonomic path planning. Further it indicates to

handle autonomous car driving in presence of obstacles, ideally the non-holonomic

path generator should be computationally inexpensive and moreover instantaneous

to rapidly change the found non-holonomic path in collision. Further it argues

that the generator should easily integrate with incremental sampling based planners

based on their methodology. Then it discusses the achievements and contributions

6.3. Possible future advancements of our work 89

made by the thesis.

Chapter 4 discusses the algorithms used to generate non-holonomic paths and ef-

fectively augments RRT*FN planner to find collision-free non-holonomic path from

start to end. It provides the configuration of the car and also the control vec-

tors (speed, steering angle) as inputs at a time that needs to actuated by the car

to achieve that non-holonomic path for reaching goal. After briefly introducing

RRT*FN, Chapter 4 provides the modified version of RRT*FN called RRT*FN-NH

to plan collision-free paths for car-like robots. RRT*FN was chosen so that RRT

is constrained to work in a limited amount of RAM as found in most embedded

systems that have to be deployed with the car.

Chapter 5 finally examines RRT*FN-NH in traditional benchmark static environ-

ments and produces a validity that RRT*FN-NH finds most of the time the feasible

non-holonomic collision-free path if it exists. Multiple tests are done and quality of

paths are discussed for this benchmark simulations with a variety including narrow

passage problem and requiring multiple maneuvers. Further, this thesis tries to ap-

ply RRT*FN-NH on Google Map roads so that the quality of path can be tested

for real-scenarios. Elegantly applied for google maps the tests show similar results

as obtained for benchmark environments with a cost of increased iterations as the

speed profile of car increases. Such number of iterations usually goes in the multiples

of 10k based on complexity of environment.

6.3 Possible future advancements of our work

While the purpose of this thesis was to facilitate the existing algorithms for non-

holonomic path planning, it tested for a RRT based algorthm. While RRT and

PRM have been dominantly used in the field, most of the algorithms that are based

on RRT should be able to use the thesis directly to facilitate non-holonomic path

6.4. Autonomous robot navigation and obstacle perception 90

planning. However, the strengths of different approaches used in path planning like

PRM needs to be tested with this approach especially if PRM relies on some local

planner to connect between the sub-goals.

The algorithm shown here can scale up for dynamic environments, however tests

need to be made to indicate the real-time performance achieved by this method

especially being incremental in nature. While the roads (without traffic) based on

google maps were tested, the need of central planner to plan all the autonomous car

motion simultaneously is needed.

6.4 Autonomous robot navigation and obstacle

perception

As a result, mobile robots capable of moving in a dynamical and uncertain environ-

ment is an important issue in real-world applications. The problem that how to find

an optimal real-time collision-free path with a limited sensing range in the presence

of dynamically moving objects is arising naturally. The optimal solution should take

motion constraints into consideration (including boundary conditions and kinematic

constraint), explicitly handle dynamically moving objects, and be analytical.

Based on the previous mentioned methods (refer Chapter 2), it is evident that this

technology is well promising for the future. While the human-machine interface is

not yet at a transparent level, the degree of autonomy available after a machine

has been program is now approaching that once considered purely science fiction.

Things that could be done in the future, related to the previous algorithms, are

for example to optimize the current techniques using more state-of-the-art methods,

testing the navigation algorithms to have a measure of its performance in more

complex and realistic scenarios, or even considering for instance that the knowledge

about the future behaviour of a robot is less reliable in the distant future, so it could

6.4. Autonomous robot navigation and obstacle perception 91

be interesting to monotonically decrease the influence of the obstacles with respect

to time.

One of the ways in which autonomous robot perception could be improved, espe-

cially for safe navigation of urban environments, is by object perception. For the

majority of this review, all obstacles have been treated as essentially equal (i.e.

rough patches to be avoided). However, as the reader may have suspected at some

point, not all obstacles are equal. In fact, some obstacles present quite opposite

problems to the optimization routine. A patch of ground for example is a “rough

patch” that, although preferably avoided, could in theory be traversed if the cost-

to-go function (i.e. “roughness-to-go”) were to deem a trajectory through that path

to be necessary. However, in other situations, especially in urban environments,

“traversing” an obstacles is absolutely not an option. One obvious case of an obsta-

cle that may not under any circumstances be traversed is a pedestrian. Pedestrians

must be avoided at all costs, including the cost of potentially never reaching the

end destination or (from a programmatic point of view) never being able to cal-

culate possible trajectories leading to the destination. This would be the case in

a hypothetical situation where a never-ending stream of pedestrians is crossing a

street. One of the recent entries into the US Department of Defense – sponsored

annual competitions for autonomous robot navigation was the Stanford car dubbed

“Junior” (2013). As reported [36], “Junior” was able to very accurately tell the

difference between people, cars, animals, signs, and roads. This was largely thanks

to a novel laser and sensor calibration scheme that involved a great deal of machine

learning in the original situation in the navigation environment. This was an exam-

ple of a case for which existing information about the visual environment was used

to estimate or interpolate parameters for that environment at later times points,

by looking primarily at the aspects of the environment that change. “Junior” au-

tonomous vehicle [43] is able to turn a density “cloud” of obstacle perception (left)

into a refined, crisp image (right) with sufficient details to make out the identity of

6.4. Autonomous robot navigation and obstacle perception 92

different obstacles, provided that an initial sensor calibration is performed. Once

this calibration has been performed at the beginning of the vehicle’s trip or trajec-

tory, it does not need to be repeated until the vehicle is transported by carrier and

placed in a new environment. The refined image allows for certain obstacles (such

as pedestrians in a crowded urban environment) to be identified and avoided at all

costs, in favor of traversing less important obstacles if need be (such as curbs, stairs,

etc.) Another means by which machine vision is becoming more sophisticated in

the perception of objects, is in a sense by moving in the opposite direction to how

Stanford’s “Junior” progressed from earlier autonomous vehicles. Whereas “Junior”

was able to use more specific, fine-grained features of the environment, [37] is able

to detect whether it is nighttime or daytime outside, and base interpretation of fea-

tures, obstacles density paths, and corresponding trajectories on this information.

For example, an accurate assessment of the position of the sun (as well as other

light sources, during the night) allows for the detection of shadows with greater

accuracy. Evidently, shadows can be traversed provided there are not hidden obsta-

cles. To this author’s knowledge, no methods that delve into predicting obstacles

hidden in shadows have been developed to date. As one can see, the richness of the

visual information is increasingly being taken advantage of by autonomous vehicles,

thanks in large part to these vehicles’ increasingly powerful artificial intelligences.

As a result, the rate of acquisition of this data is becoming increasingly “thirsty”,

and autonomous vehicles are traveling faster and faster. “Junior” [45], for example,

can travel up to 35 miles per hours in a crowded urban environment (slowing or

stopping where necessary, of course, to avoid pedestrians and other key obstacles).

However, the faster that autonomous vehicles go, the more error is introduced to

their sensors thanks simply to some basic principles of optics. For example, bending

of light occurs even at moderate (highway) speed. As a results, in [45] the authors

present a sensor capable of recording single-photon time of flight information based

on correlation with other photons.

6.5. Applications of autonomously-navigating car-like robots 93

6.5 Applications of autonomously-navigating car-

like robots

With all the above literature review and discussed devoted to sensors, techniques,

problem types, and optimization algorithms for autonomous vehicle perception of

obstacles and navigation by optimization of trajectories around obstacles, little has

been said thus far about the actual applications of autonomously-navigating robots.

What is the interest in, and what are therefore some possible applications of, these

increasingly intelligent and self-aware road and off-road travelers? Below is a dis-

cussion describing a variety of different existing and emerging applications of such

robots. An obvious, although far from universally accepted or even much consid-

ered, application for autonomous vehicles is for the transportation of people. Some

autonomous vehicles already transport people. However, there is potential for au-

tonomous personal and public vehicles to largely replace the manually-operated

equivalents of today and yesterday. Because there is not yet an “internet of things”

(IoT), a term used below that refers to the potential future in which all objects are

connected to the internet via tiny wireless sensors, directions and features of roads

and in particular traffic conditions (for example detours due to construction) are

often not updated into mobile road navigation apps on many drivers’ cell phones

or GPS units. Therefore, at least for the foreseeable future (until there is a veri-

table IoT or at least higher-integrity, more reliable set of traffic / road conditions

comprehensively and instantaneously updated in real time – no 15-minute delay al-

lowable) autonomous vehicles would have to be able to read road signs just as any

human driver would. A recent study [46] provides a method for achieving rapid,

in-transit machine-vision sign reading. However, the authors performed their train-

ing as well as validation under conditions of fair lighting, unlike what may often be

the case even with headlights illuminated. One possible applications autonomously-

navigating robots is as traffic-monitoring “drone” vehicles. These vehicles would

6.5. Applications of autonomously-navigating car-like robots 94

patrol highways, and collect information about traffic density, and other environmen-

tal factors such as temperature, humidity, and surface conditions (e.g. precipitation

accumulation). These drone vehicles would be networked to an information hub,

either a higher-level computer or a human operator and traffic surveyor. Relaying

information to a central information hub would enable high-resolution, real-time in-

formation about traffic to be distributed to passengers. This would be accomplished

in multiple possible ways, for example by allowing the information to be accessible

to mobile phone apps. One recently-proposed means of distributing the information

gathered by robotic drone vehicles is by using cloud computing [47]. In this model,

cloud computing would also be used to allow communication (and thereby forma-

tion of consensus data interpretation and analysis) between different robots. Cloud

computing is fast, easily accessible, and cheap. In order to address issues of security

related to autonomous vehicles, especially those with a multitude of sensors con-

taining possible sensitive information (but generally without the size, complexity, or

infrastructure to effectively protect against virus or rogue cyber intrusions), some

sophisticated theoretical as wel as practical design steps have already been taken.

As explained in [48], while denial of service (DoS) style attacks (or sophisticated

cyber-attacks originating from multiple points simultaneously) on static networks

remains a problem, the technological development of wireless sensors has in many

cases led to the adoption of a mobile, robotic platform. In parallel, the possibility

of DoS by a mobile, malignant node arises. This article is the first to describe this

problem explicitly, describing the unique advantages to DoS agents that mobility

brings, and to propose a solution for overcoming these new advantages. The article

[48] mentions several means by which malicious, mobile nodes could disrupt wireless

sensor networks (WSNs) that would be impossible without mobility. A mobile node,

if equipped with robotic arms, could move up to a node in the WSN, pick it up,

and move it. This disruption in position would throw flags in the WSN security

routine, and may even automatically cut out the node from the WSN, leaving it

easy pretty for the malicious node. Malignant, mobile nodes could also move to as

6.5. Applications of autonomously-navigating car-like robots 95

many different positions as possible, searching for weaknesses (i.e. spots where their

positions would be more likely to be accepted as characteristic of a “safe” node),

jamming communications, and moving nodes. In addition, the diversification of at-

tack paths would make traceback impossible, without a prior assumption that the

nodes were both mobile and hostile. Although purely theoretical, the article does

propose several strategies for combating the threat of a mobile, malignant node or

swarm of nodes. The article focuses on the case wherein the WSN is static, and

only the malignant nodes are mobile. A straightforward means of detecting a mo-

bile malignant node would be to keep a list of neighbors, leveraging the fact that the

WSN is static. However, this would place severe constraints on the topology of the

WSN, as a pre-defined set of neighbors would have to be supplied to the base node

as a unique key, for each node. The authors suggest using an adjustable threshold

maximum time limit between signals from a neighboring node, with the assumption

that, beyond this threshold, the neighbor would be considered as potentially mobile

(and therefore malignant). The more nodes flag the same outside node as malignant

according to this criterion, the more likely is the base node to pass a judgment of

“malignant”.

Bibliography

[1] C. L. Hwang and C. Y. Shih, “A distributed active-vision network-space ap-

proach for the navigation of a car-like wheeled robot,” IEEE Transactions on

Industrial Electronics, vol. 56, no. 3, pp. 846–855, March 2009.

[2] C. L. Hwang and L. J. Chang, “Internet-based smart-space navigation of a car-

like wheeled robot using fuzzy-neural adaptive control,” IEEE Transactions

on Fuzzy Systems, vol. 16, no. 5, pp. 1271–1284, Oct 2008.

[3] D. K. Grady, M. Moll, C. Hegde, A. C. Sankaranarayanan, R. G. Baraniuk,

and L. E. Kavraki, “Multi-objective sensor-based replanning for a car-like

robot,” in 2012 IEEE International Symposium on Safety, Security, and Res-

cue Robotics (SSRR), Nov 2012, pp. 1–6.

[4] V. Delsart and T. Fraichard, “Navigating dynamic environments using trajec-

tory deformation,” in 2008 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Sept 2008, pp. 226–233.

[5] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Dynamic obstacle avoidance

in uncertain environment combining pvos and occupancy grid,” in Proceedings

2007 IEEE International Conference on Robotics and Automation, April 2007,

pp. 1610–1616.

[6] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and

C. Laugier, “The cycab: a car-like robot navigating autonomously

96

BIBLIOGRAPHY 97

and safely among pedestrians,” Robotics and Autonomous Systems,

vol. 50, no. 1, pp. 51 – 67, 2005. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0921889004001848

[7] J. J. Park and B. Kuipers, “Feedback motion planning via non-holonomic rrt*

for mobile robots,” in 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Sept 2015, pp. 4035–4040.

[8] L. Palmieri, T. P. Kucner, M. Magnusson, A. J. Lilienthal, and K. O. Arras,

“Kinodynamic motion planning on gaussian mixture fields,” in 2017 IEEE

International Conference on Robotics and Automation (ICRA), May 2017,

pp. 6176–6181.

[9] L. Palmieri, S. Koenig, and K. O. Arras, “Rrt-based nonholonomic motion

planning using any-angle path biasing,” in 2016 IEEE International Confer-

ence on Robotics and Automation (ICRA), May 2016, pp. 2775–2781.

[10] J. J. Craig, Introduction to Robotics: Mechanics and Control. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[11] M. T. Mason, Mechanics of Robotic Manipulation. Cambridge, MA: MIT

Press, Aug. 2001.

[12] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide: An inter-

active and exact collision detection system for large-scale environments,” in

Proc. of ACM Interactive 3D Graphics Conf., 1995, pp. 189–196.

[13] M. C. Lin and S. Gottschalk, “Collision detection between geometric models:

A survey,” in Proc. of IMA Conf. on Mathematics of Surfaces, 1998, pp. 37–56.

[14] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free

paths among polyhedral obstacles,” Communications of the Association for

Computing Machinery (ACM), vol. 22, no. 10, pp. 560–570, 1979.

BIBLIOGRAPHY 98

[15] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” International Journal of Robotics Research (IJRR), vol. 5, no. 1,

pp. 90–98, 1986.

[16] J. Latombe, Robot Motion Planning. Kluwer Academic Publishers, 1991.

[17] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” in

IEEE Trans. on Robotics and Automation, vol. 12, no. 4, 1996, pp. 566–580.

[18] S. M. LaValle and J. J. K. Jr., “Randomized kinodynamic planning,” in IEEE

International Conference on Robotics and Automation, 1999, pp. 473–479.

[19] S. M. LaValle, Planning Algorithms. Cambridge University Press, May 2006.

[20] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo, “OBPRM:

an obstacle-based PRM for 3d workspaces,” in WAFR ’98: Proceedings of the

third workshop on the algorithmic foundations of robotics on Robotics : the

algorithmic perspective. Natick, MA, USA: A. K. Peters, Ltd., 1998, pp.

155–168.

[21] M. H. Overmars, “The Gaussian sampling strategy for probabilistic roadmap

planners,” in Proc. IEEE Int. Conf. on Robotics and Automation, 1999, pp.

1018–1023.

[22] P. Leven and S. Hutchinson, “Using manipulability to bias sampling during

the construction of probabilistic roadmaps,” IEEE Trans. on Robotics and

Automation, vol. 19, no. 6, pp. 1020–1026, Dec. 2003.

[23] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent motion

for autonomous mobile manipulation in dynamic environments.” in Robotics

Science and Systems II. The MIT Press, 2006.

[24] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: the path-

velocity decomposition,” Int. J. Rob. Res., vol. 5, no. 3, pp. 72–89, 1986.

BIBLIOGRAPHY 99

[25] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite rrts for rapid replanning

in dynamic environments,” in IEEE Intl. Conf. on Robotics and Automation,

2007, pp. 1603–1609.

[26] J. Vannoy and J. Xiao, “Real-time Adaptive Motion Planning (RAMP) of

mobile manipulators in dynamic environments with unforeseen changes,” in

IEEE Trans. on Robotics, vol. 24(5), 2008, pp. 1199–1212.

[27] S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning for

non-holonomic dynamical systems,” in IEEE International Conference on

Robotics and Automation (ICRA),, May 2013, pp. 5041–5047.

[28] S. Petti and T. Fraichard, “Safe navigation of a car-like robot in a dynamic

environment,” in Proceedings of the European Conference on Mobile Robots,

2005.

[29] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley: The robot that

won the darpa grand challenge,” Journal of field Robotics, vol. 23, no. 9, pp.

661–692, 2006.

[30] V. V. Dixit, S. Chand, and D. J. Nair, “Autonomous vehicles:

Disengagements, accidents and reaction times,” PLOS ONE, vol. 11, no. 12,

pp. 1–14, 12 2016. [Online]. Available: https://doi.org/10.1371/journal.pone.

0168054

[31] O. Adiyatov and H. Varol, “Rapidly-exploring random tree based memory

efficient motion planning,” in IEEE International Conference on Mechatronics

and Automation (ICMA), 2013, pp. 354–359.

[32] J. Ward and J. Katupitiya, “Free space mapping and motion planning in

configuration space for mobile manipulators,” in IEEE Intl. Conf. on Robotics

and Automation, 2007, pp. 4981–4986.

BIBLIOGRAPHY 100

[33] P. Leven and S. Hutchinson, “A framework for real-time path planning in

changing environments,” Intl. J. of Robotics Research, vol. 21, pp. 999–1030,

2002.

[34] V. Govea, D. Alejandro, F. Large, T. Fraichard, and C. Laugier, “High-speed

autonomous navigation with motion prediction for unknown moving obsta-

cles,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Oct. 2004,

pp. 82–87.

[35] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient planning

in dynamic environments,” in IEEE Intl. Conf. on Robotics and Automation,

May 2009, pp. 1662–1668.

[36] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning and

replanning in dynamic environments,” in IEEE Intl. Conf. on Robotics and

Automation, May 2006, pp. 2366–2371.

[37] N. Du Toit and J. Burdick, “Robot motion planning in dynamic, uncertain

environments,” Robotics, IEEE Transactions on, vol. 28, no. 1, pp. 101 –115,

Feb. 2012.

[38] B. Jones and I. Walker, “Kinematics for multisection continuum robots,” in

IEEE Trans. Robot., 2006.

[39] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime

motion planning using the rrt∗,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), Shanghai, China, May 2011,

pp. 1478–1483.

[40] P. Muntean, “Mobile robot navigation on partially known maps using a

fast a star algorithm version,” CoRR, vol. abs/1604.08708, 2016. [Online].

Available: http://arxiv.org/abs/1604.08708

BIBLIOGRAPHY 101

[41] M. Otte and E. Frazzoli, “Rrtx,” Int. J. Rob. Res., vol. 35, no. 7, pp. 797–822,

Jun. 2016. [Online]. Available: https://doi.org/10.1177/0278364915594679

[42] O. Adiyatov and H. Varol, “A novel rrt*-based algorithm for motion planning

in dynamic environments,” in 2017 IEEE International Conference on Mecha-

tronics and Automation, ICMA 2017. Institute of Electrical and Electronics

Engineers Inc., 8 2017, pp. 1416–1421.

[43] L. Huazhong, L. Yongsheng, W. Meini, and D. Tangren, “Design and im-

plementation of improved rrt algorithm for collision free motion planning of

high-dimensional robot in complex environment,” in Proceedings of 2012 2nd

International Conference on Computer Science and Network Technology, Dec

2012, pp. 1391–1397.

[44] I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using rrt*

based approaches: A survey and future directions,” International Journal of

Advanced Computer Science and Applications, vol. 7, no. 11, 2016. [Online].

Available: http://dx.doi.org/10.14569/IJACSA.2016.071114

[45] R. Pepy, A. Lambert, and H. Mounier, “Path planning using a dynamic vehicle

model,” in Information and Communication Technologies, 2006. ICTTA ’06.

2nd, vol. 1, 2006, pp. 781–786.

[46] S. Garrido, D. Blanco, L. Moreno, and F. Martin, “Improving rrt motion tra-

jectories using vfm,” in 2009 IEEE International Conference on Mechatronics,

April 2009, pp. 1–6.

[47] S. Garrido, L. Moreno, D. Blanco, and F. Martin, “Smooth path planning

for non-holonomic robots using fast marching,” in 2009 IEEE International

Conference on Mechatronics, April 2009, pp. 1–6.

BIBLIOGRAPHY 102

[48] S. Balakirsky and D. Dimitrov, “Single-query, bi-directional, lazy roadmap

planner applied to car-like robots,” in 2010 IEEE International Conference

on Robotics and Automation, May 2010, pp. 5015–5020.

[49] ——, “Single-query, bi-directional, lazy roadmap planner applied to car-like

robots,” in IEEE International Conference on Robotics and Automation, May

2010, pp. 5015–5020.

[50] S. Rodriguez, X. Tang, J.-M. Lien, and N. Amato, “An obstacle-based rapidly-

exploring random tree,” in Proceedings IEEE International Conference on

Robotics and Automation, May 2006, pp. 895–900.

[51] R. Pepy and A. Lambert, “Safe path planning in an uncertain-configuration

space using rrt,” in 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Oct 2006, pp. 5376–5381.

[52] J. Kim, J. M. Esposito, and V. Kumar, “An rrt-based algorithm for testing

and validating multirobot controllers,” in Robotics: Science and Systems I,

Cambridge, Massachusetts, June 8-11 2005.

[53] A. Tahirovic and G. Magnani, “A roughness-based rrt for mobile robot navi-

gation planning,” in In IFAC World Congress, vol. 18, 2001, pp. 5944–5949.

[54] J. Ziegler and M. Werling, “Navigating car-like robots in unstructured envi-

ronments using an obstacle sensitive cost function,” in 2008 IEEE Intelligent

Vehicles Symposium, June 2008, pp. 787–791.

[55] J. M. Phillips, N. Bedrossian, and L. E. Kavraki, “Guided expansive spaces

trees: a search strategy for motion- and cost-constrained state spaces,” in

Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE Interna-

tional Conference on, vol. 4, April 2004, pp. 3968–3973 Vol.4.

BIBLIOGRAPHY 103

[56] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, Jun. 2011. [Online].

Available: http://dx.doi.org/10.1177/0278364911406761

[57] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion planning

for urban driving using rrt,” in 2008 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sept 2008, pp. 1681–1686.

[58] S. Petti and T. Fraichard, “Safe Navigation of a Car-Like Robot

in a Dynamic Environment,” in Proc. of the European Conf.

on Mobile Robots, Ancona (IT), France, Sep. 2005, voir basilic :

http://emotion.inrialpes.fr/bibemotion/2005/PF05a/ address: Ancona (IT).

[Online]. Available: https://hal.inria.fr/inria-00182047

[59] ——, “Safe navigation of a car-like robot in a dynamic environment,” in Proc.

of the European Conf. on Mobile Robots, Ancona (IT), France, Sep 2005,

voir basilic : http://emotion.inrialpes.fr/bibemotion/2005/PF05a/ address:

Ancona (IT). [Online]. Available: https://hal.inria.fr/inria-00182047

[60] G. Oriolo, M. Vendittelli, L. Freda, and G. Troso, “The srt method: Random-

ized strategies for exploration,” in Robotics and Automation, 2004. Proceed-

ings. ICRA’04. 2004 IEEE International Conference on, vol. 5. IEEE, 2004,

pp. 4688–4694.

[61] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic navigation

in dynamic environment using rapidly-exploring random trees and gaussian

processes,” in 2008 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Sept 2008, pp. 1056–1062.

[62] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli, and J. How, “Motion planning for

urban driving using rrt,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, Sept 2008, pp. 1681–1686.

BIBLIOGRAPHY 104

[63] A. Yershova, L. Jaillet, T. Simeon, and S. LaValle, “Dynamic-domain rrts: Ef-

ficient exploration by controlling the sampling domain,” in IEEE International

Conference on Robotics and Automation, April 2005, pp. 3856–3861.

[64] L. Jaillet, A. Yershova, S. La Valle, and T. Simeon, “Adaptive tuning of

the sampling domain for dynamic-domain rrts,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, Aug 2005, pp. 2851–2856.

[65] Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based

rapidly-exploring random tree,” in Proceedings 2006 IEEE International Con-

ference on Robotics and Automation, 2006. ICRA 2006., May 2006, pp. 895–

900.

[66] B. Burns and O. Brock, “Single-query motion planning with utility-guided ran-

dom trees,” in Proceedings 2007 IEEE International Conference on Robotics

and Automation, April 2007, pp. 3307–3312.

[67] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle, “Dynamic-domain rrts:

Efficient exploration by controlling the sampling domain,” in Proceedings of

the 2005 IEEE International Conference on Robotics and Automation, April

2005, pp. 3856–3861.

[68] L. Jaillet, A. Yershova, S. M. L. Valle, and T. Simeon, “Adaptive tuning of the

sampling domain for dynamic-domain rrts,” in 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Aug 2005, pp. 2851–2856.

[69] L. Jaillet, J. Cortes, and T. Simeon, “Transition-based rrt for path planning

in continuous cost spaces,” in 2008 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sept 2008, pp. 2145–2150.

[70] D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing rrt on large-scale

distributed-memory architectures,” IEEE Transactions on Robotics, vol. 29,

no. 2, pp. 571–579, April 2013.

BIBLIOGRAPHY 105

[71] C. H. Esteban, C. Hernandez, and E. F. Schmitt, “Multi-stereo 3d object

reconstruction,” in 3D Data Processing Visualization and Transmission, 2002,

2002, pp. 159–166.

[72] M. Han and T. Kanade, “Creating 3d models with uncalibrated cameras,” in

proceeding of IEEE Computer Society Workshop on the Application of Com-

puter Vision (WACV2000), Dec. 2000.

[73] N. Bellotto and H. Hu, “Multisensor-based human detection and tracking for

mobile service robots,” IEEE Trans. on Systems, Man, and Cybernetics – Part

B, vol. 39, no. 1, pp. 167–181, 2009.

[74] D. Gavrila, “The visual analysis of human movement: A survey,” Computer

Vision and Image Understanding, vol. 73, pp. 82–98, 1999.

[75] D. Bradley, R. Unnikrishnan, and J. A. Bagnell, “Vegetation detection for

driving in complex environments,” in IEEE Intl. Conf. on Robotics and Au-

tomation, April 2007.

[76] A. Murarka, M. Sridharan, and B. Kuipers, “Detecting obstacles and drop-offs

using stereo and motion cues for safe local motion,” in IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, 2008, pp. 702–708.

[77] H. Schneiderman and T. Kanade, “Object detection using the statistics of

parts,” Intl. Journal of Computer Vision, vol. 56, pp. 151–177, 2004.

[78] T. Pham and A. Smeulders, “Object recognition with uncertain geometry

and uncertain part detection,” Computer Vision and Image Understanding,

vol. 99, p. 258, 2005.

[79] P. Withagen, K. Schutte, and F. Groen, “Object detection and tracking using

a likelihood based approach,” in Proc. IEEE Int. Conf. on Image Processing,

2003.

BIBLIOGRAPHY 106

[80] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Syn-

thesis Lectures on Artificial Intelligence and Machine Learning, vol. 3, no. 1,

pp. 1–130, 2009.

[81] Y. Kodratoff and S. Moscatelli, “Machine learning for object recognition and

scene analysis,” International Journal of Pattern Recognition and AI, vol. 8,

pp. 259–304, 1994.

[82] C. C. Chang and K.-T. Song, “Environment prediction for a mobile robot in

a dynamic environment,” IEEE Trans. on Robotics and Automation, vol. 13,

no. 6, pp. 862–872, Dec. 1997.

[83] Y. S. Nam, B. H. Lee, and M. S. Kim, “View-time based moving obstacle

avoidance using stochastic prediction of obstacle motion,” in IEEE Intl. Conf.

on Robotics and Automation, 1996, pp. 1081–1086.

[84] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using

velocity obstacles,” in Intl. J. of Robotics Research, vol. 17, 1998, pp. 760–

772.

[85] F. Large, S. Sckhavat, Z. Shiller, and C. Laugier, “Using non-linear velocity

obstacles to plan motions in a dynamic environment.” in IEEE Intl. Conf. on

Control, Automation, Robotics and Vision (ICARCV), 2002, pp. 734–739.

[86] A. Elnagar and K. Gupta, “Motion prediction of moving objects based on

autoregressive model,” IEEE Trans. on Systems, Man, and Cybernetics, Part

A, vol. 28, no. 6, pp. 803–810, 1998.

[87] J. Vannoy and J. Xiao, “Real-time motion planning of multiple mobile manip-

ulators with a common task objective in shared work environments,” in IEEE

Intl. Conf. on Robotics and Automation, April 2007, pp. 20–26.

BIBLIOGRAPHY 107

[88] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning Motion

Patterns of People for Compliant Robot Motion,” Intl. J. of Robotics Research,

vol. 24, no. 1, pp. 31–48, 2005.

[89] Z. Chen, D. C. K. Ngai, and N. H. C. Yung, “Behavior prediction based on

obstacle motion patterns in dynamically changing environments,” in Proceed-

ings of the 2008 IEEE/WIC/ACM Intl. Conf. on Intelligent Agent Technology,

2008, pp. 132–135.

[90] A. Ess, B. Leibe, K. Schindler, and L. V. Gool, “Moving obstacle detection

in highly dynamic scenes,” in IEEE Intl. Conf. on Robotics and Automation,

May 2009, pp. 56–63.

[91] G. Gallagher, S. S. Srinivasa, J. A. Bagnell, and D. Ferguson, “Gatmo: a

generalized approach to tracking movable objects,” in IEEE Intl. Conf. on

Robotics and Automation, May 2009, pp. 2043–2048.

[92] A. Elnagar and A. Hussein, “An adaptive motion prediction model for trajec-

tory planner systems,” in Intl. Conf. on Robotics and Automation, Sep. 2003,

pp. 2442–2447.

[93] V. Govea, D. Alejandro, F. Large, T. Fraichard, and C. Laugier, “Moving

obstacles’ motion prediction for autonomous navigation,” in Int. Conf. on

Control, Automation, Robotics and Vision, Dec. 2004.

[94] A. F. Foka and P. E. Trahanias, “Predictive autonomous robot navigation,” in

Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS,

2002, pp. 490–495.

[95] W. Dixon, I. Walker, and D. Dawson, “Fault detection for wheeled mobile

robots with parametric uncertainty,” in Advanced Intelligent Mechatronics,

2001. Proceedings. 2001 IEEE/ASME International Conference on, vol. 2,

2001, pp. 1245 –1250 vol.2.

BIBLIOGRAPHY 108

[96] R. W. Brockett, Asymptotic Stability and Feedback Stabilization. Boston:

Birkhauser, 1983, pp. 181–191.

[97] A. Widyotriatmo, A. Pamosoaji, and K.-S. Hong, “Robust configuration con-

trol of a mobile robot with uncertainties,” in Control Conference (ASCC),

2011 8th Asian, May 2011, pp. 1036 –1041.

[98] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation-mobile robot

navigation with uncertainty in dynamic environments,” in Robotics and Au-

tomation, 1999. Proceedings. 1999 IEEE International Conference on, vol. 1,

1999, pp. 35–40.

[99] P. Missiuro and N. Roy, “Adapting probabilistic roadmaps to handle uncer-

tain maps,” in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006

IEEE International Conference on, May 2006, pp. 1261 –1267.

[100] T. Fraichard and R. Mermond, “Path planning with uncertainty for car-like

robots,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE Interna-

tional Conference on, vol. 1, May 1998, pp. 27 –32 vol.1.

[101] S. LaValle and R. Sharma, “Robot motion planning in a changing, partially

predictable environment,” in Intelligent Control, 1994., Proceedings of the

1994 IEEE International Symposium on, Aug. 1994, pp. 261 –266.

[102] L. Page and A. Sanderson, “Robot motion planning for sensor-based control

with uncertainties,” in Robotics and Automation, 1995. Proceedings., 1995

IEEE International Conference on, vol. 2, May 1995, pp. 1333 –1340 vol.2.

[103] H. Kurniawati, D. Yanzhu, D. Hsu, and S. L. Wee, “Motion planning un-

der uncertainty for robotic tasks with long time horizons,” The International

Journal of Robotics Research, vol. 30, no. 3, pp. 308–323, 2011.

BIBLIOGRAPHY 109

[104] K. Rebai, O. Azouaoui, M. Benmami, and A. Larabi, “Car-like robot naviga-

tion at high speed,” in 2007 IEEE International Conference on Robotics and

Biomimetics (ROBIO), Dec 2007, pp. 2053–2057.

[105] Q. Yuan, J. Y. Lee, and C. Han, “Sensor-based navigation algorithm for car-

like robot to generate completed gvg,” in 2011 11th International Conference

on Control, Automation and Systems, Oct 2011, pp. 1442–1447.

[106] J. Yang, A. Daoui, Z. Qu, J. Wang, and R. A. Hull, “An optimal and real-

time solution to parameterized mobile robot trajectories in the presence of

moving obstacles,” in Proceedings of the 2005 IEEE International Conference

on Robotics and Automation, April 2005, pp. 4412–4417.

[107] R. Gall, F. Tröster, and G. Mogan, “On the development of an experimental

car-like mobile robot,” in 2010 12th International Conference on Optimization

of Electrical and Electronic Equipment, May 2010, pp. 734–739.

[108] S. Rezaei, J. Guivant, and E. M. Nebot, “Car-like robot path following

in large unstructured environments,” in Proceedings 2003 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS 2003) (Cat.

No.03CH37453), vol. 3, Oct 2003, pp. 2468–2473 vol.3.

[109] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessiere, and C. Laugier,

“An autonomous car-like robot navigating safely among pedestrians,” in

Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE Inter-

national Conference on, vol. 2, April 2004, pp. 1945–1950 Vol.2.

[110] H. Lategahn, A. Geiger, and B. Kitt, “Visual slam for autonomous ground ve-

hicles,” in 2011 IEEE International Conference on Robotics and Automation,

May 2011, pp. 1732–1737.

[111] F. A. A. Cheein, R. Carelli, C. D. la Cruz, and T. F. Bastos-Filho, “Slam-

based turning strategy in restricted environments for car-like mobile robots,”

BIBLIOGRAPHY 110

in 2010 IEEE International Conference on Industrial Technology, March 2010,

pp. 602–607.

[112] V. Petridis and N. Zikos, “L-slam: Reduced dimensionality fastslam algo-

rithms,” in The 2010 International Joint Conference on Neural Networks

(IJCNN), July 2010, pp. 1–7.

[113] L. Palmieri and K. O. Arras, “Distance metric learning for rrt-based motion

planning with constant-time inference,” in 2015 IEEE International Confer-

ence on Robotics and Automation (ICRA), May 2015, pp. 637–643.

[114] T. McMahon, S. Thomas, and N. M. Amato, “Reachable volume rrt,” in 2015

IEEE International Conference on Robotics and Automation (ICRA), May

2015, pp. 2977–2984.

[115] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees

(bit*): Sampling-based optimal planning via the heuristically guided search

of implicit random geometric graphs,” in 2015 IEEE International Conference

on Robotics and Automation (ICRA), May 2015, pp. 3067–3074.

[116] J. A. Starek, J. V. Gomez, E. Schmerling, L. Janson, L. Moreno, and

M. Pavone, “An asymptotically-optimal sampling-based algorithm for bi-

directional motion planning,” in 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), Sept 2015, pp. 2072–2078.

[117] O. Arslan and P. Tsiotras, “Machine learning guided exploration for sampling-

based motion planning algorithms,” in 2015 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), Sept 2015, pp. 2646–2652.

[118] K. Shiarlis, J. Messias, and S. Whiteson, “Rapidly exploring learning trees,”

in 2017 IEEE International Conference on Robotics and Automation (ICRA),

May 2017, pp. 1541–1548.

BIBLIOGRAPHY 111

[119] L. He, J. Pan, and D. Manocha, “Efficient multi-agent global navigation using

interpolating bridges,” in 2017 IEEE International Conference on Robotics

and Automation (ICRA), May 2017, pp. 4391–4398.

[120] S. Shin, J. Ahn, and J. Park, “Desired orientation rrt (do-rrt) for autonomous

vehicle in narrow cluttered spaces,” in 2016 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), Oct 2016, pp. 4736–4741.

[121] F. Islam, V. Narayanan, and M. Likhachev, “A*-connect: Bounded subopti-

mal bidirectional heuristic search,” in 2016 IEEE International Conference on

Robotics and Automation (ICRA), May 2016, pp. 2752–2758.

[122] T. Lozano-Pérez, “Spatial planning: A configuration space approach,” in

IEEE Trans. on Computers, vol. C-32, no. 2, Feb. 1983, pp. 108–120.

[123] S. M. Udupa, “Collision detection and avoidance in computer controlled ma-

nipulators.” Ph.D. dissertation, Pasadena, CA, USA, 1977.

[124] “Nonholonomic system definition,” https://en.wikipedia.org/wiki/

Nonholonomic system, accessed: 2017-03-10.

[125] “Google maps api,” https://www.google.co.uk/maps/@53.800651,-4.064941,

6z:, accessed: 2017-04-10.

[126] “Mapquest api,” https://developer.mapquest.com/documentation/

static-map-api/v5/, accessed: 2017-04-15.

[127] “Localisation definition,” https://en.wikipedia.org/wiki/Mobile robot

navigation, accessed: 2014-02-05.

[128] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge Uni-

versity Press, 2006.

BIBLIOGRAPHY 112

[129] L. O. Noureddine Ouadah and F. Boudjema, “Car-like mobile robot ori-

ented positioning by fuzzy controllers,” in International Journal of Advanced

Robotics System, vol. 5, no. 3, 2008, pp. 249–256.

[130] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion

planning using the rrt*,” in IEEE International Conference on Robotics and

Automation (ICRA), May 2011, pp. 1478–1483.

[131] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, Jun. 2011. [Online].

Available: http://dx.doi.org/10.1177/0278364911406761

