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We study spinful excitations in the Moore-Read state. Energetics of the skyrmion based on a spin-wave
picture support the existence of skyrmion excitations in the plateau belowν = 5/2. This prediction is then
tested numerically. We construct trial skyrmion wavefunctions for general FQHE states, and obtain significant
overlaps for the predicted skyrmions ofν = 5/2. The case ofν = 5/2 is particularly interesting as skyrmions
have twice the charge of quasiparticles (qp’s). As the spin polarization of the system is tuned from full to
none, we observe a transition between qp- and skyrmion-likebehaviour of the excitation spectrum that can be
interpreted as binding of qp’s. Our ED results confirm that skyrmion states are energetically competitive with
quasiparticles at low Zeeman coupling. Disorder and large density of quasiparticles are discussed as further
mechanisms for depolarization.

Theν = 5/2 state has been intensely studied in recent years
due to accumulating evidence that it realizes a non-abelian
phase of matter [1], that could serve as a basis for topological
quantum computation [2]. A crucial step towards establish-
ing the experimentalν = 5/2 state as in the weakly paired
Moore-Read phase [1, 3, 4], is to show that the groundstate
is spin-polarized. This has been achieved theoretically bynu-
merical simulations of model systems [5–7]. However, recent
experiments [8, 9] cast doubt on the realization of a polarized
quantum liquid atν = 5/2. Experiments by Piczuket al.[8]
are consistent even with a completely unpolarized Hall state
at this filling. It appears crucial to resolve the discrepancy be-
tween the current theoretical understanding of theν = 5/2
as a spin-polarized Hall state and these puzzling experimental
findings.

In this Letter, we analyze the possibility whether skyrmion
excitations exist, and contribute to depleting the spin-
polarization atν = 5/2. An important factor influencing
the spin spectrum, that was ignored in previous studies [5],
is the role of finite layer widthw. Indeed, the leading even
pseudopotentialsV0, V2 of the Coulomb interaction in the sec-
ond Landau level soften considerably upon increasingw. In
line with this observation, it was found for integer quantum
Hall states in higher LL that skyrmions are stabilized only
in finite w [10]. We shall therefore include variations ofw
in all our considerations, below [*** define somewhere the
width-model used, or add reference ***]. At finitew & λ
(whereλ = [~c/eB]1/2 is the magnetic length), we find hole-
like skyrmion excitations to exist, and to be stable. These
skyrmions are found to be very different from the skyrmions
of integer QH states or atν = 1/3. As their charge is twice
that of the fundamental charged excitations, skyrmions may
break up into pairs of quasiparticles. This has important con-
sequences for high quasiparticle densities or in the presence
of disorder, where qp’s can spontaneously bind and acquire a
spin texture to minimize their energy.

Our study proceeds as follows. We first estimate the en-
ergy of skyrmions based on an estimate of the spin-stiffnessat
ν = 5/2. This leads us to predict that skyrmions are favoured

over pairs of quasiholes. We then establish this result in finite
systems on the sphere based on exact diagonalization tech-
niques. In particular, we formulate trial wavefunctions for
general skyrmions and obtain satisfactory overlaps with the
exact states. An alternative construction of these trial states
using model Hamiltonians is also given. In light of these
results, we then consider the competition of skyrmions and
quasiparticles, which is found to confirm the conclusions ob-
tained from spin-wave theory. Finally, we discuss how the in-
terplay ofe/2 skyrmions ande/4 quasiparticles intriguingly
influences transport properties.

Skyrmions in quantum Hall liquids are topological exci-
tations created by adding a single flux quantum to a fully
spin polarized state while creating a spin texture that absorbs
the additional degree of freedom. Given the spin-stiffness
ρs of a polarized electron gas, the energy of an infinitely
extended [lowest energy] skyrmion isEsk = 4πρs. How-
ever, ρs can also be found from the single-spinwave spec-
trum of the groundstate. We considered such spectra in ex-
act numerical diagonalizations (ED) of finite systems on the
sphere for the Moore-Read state at fluxNφ = 2N − 3 and
spinS = N/2 − 1. At long wavelength, spinwaves have a
quadratic dispersion which reads, expressed for the 2nd LL
and on the sphere,EL = 8π

νNφ
ρsL(L+1) (*** Nφ orNφ − 2

in denominator? ***). In the spectra for systems of size
N = 10, . . . , 16 (check!) that could be calculated in ED,
only theL = 1 state is well separated from the further ex-
citation spectrum. Therefore, we estimateρs by regression of
EL=1 = [E

S=N/2
L=1 −Epol]/N as a function of the system size,

as shown in Fig. 1a). The resulting skyrmion energy has to be
compared against the energy-cost to creating a pair of quasi-
holes (electrons) upon adding (removing) one flux quantum to
the polarizedν = 5/2 liquid. While the most common quan-
tity to be evaluated is the charge-gap∆ = ǫqe + ǫqh, care has
to be taken to determine how this energy-cost is distributed
between these two particles. When comparing different types
of quasiparticles, the relevant quantity is the neutral quasipar-
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FIG. 1: AREK: could you add the extrapolation ofE1 to extractρs
as panel a)? a) Extraction of the spin-stiffnessρs from the long-
wavelength part of the spectra with a single spinflip. b) Skyrmion
energy from spin-stiffness, in comparison to the neutral quasihole
energyǫNqh, establishing the skyrmion as the lowest energy hole-like
excitation of theν = 5/2 state at finite width.

ticle energy [11, 12]

ǫNqh(e) = ǫ̃qh(e) ∓
ν

2k
ξν , (1)

which takes into account the gross quasiparticle energyǫ̃qh(e)
that expresses a change in correlation energy, as well as the
change of potential energy associated with modifying the
number of particles in the liquid. The latter is related to the en-
ergy per particle in the infinite systemξν , and we have added
the possibility of creatingk quasiparticles per flux quantum.
Using known quasiparticle- and groundstate-energies for the
Moore-Read state [13, 14], we obtain a qh energyǫNqh of the
order of the gap, whileǫNqe is slightly negative [20]. Our
results, as a function of layer widthw, are summarized in
Fig. 1b), and show a cross-over from the quasihole to the
skyrmion as the lowest energy excitation at small but finite
w ≈ λ

2 .
The non-abelian statistics of the Moore-Read state allows

for two distinct fusion channels(1, ψ) for a pair of quasiholes.
For completeness, let us also consider states in theψ-channel,
which occurs at oddN . As the groundstate energies for both
odd and evenN extrapolate to the same thermodynamic limit,
we consider the energy cost of adding a neutral fermion

∆nf [N ] = (EN+1/(N + 1)− EN/N)N (2)

for states with two qh atNφ = 2N−2. The scaling of∆nf [N ]
reveals a positive and roughly constant (inw) gap towards
adding a neutral fermion. We will therefore focus on even
particle numbersN , below.

Let us analyze the exact numerical spectra of small model
systems to verify if the predictions of spin-wave theory for
the stability of skyrmions are born out. While we consid-
ered the infinite skyrmion above, the largest skyrmion that
can be created on a finite sphere is the one which covers its
entire surface, and has quantum numbersS = L = 0. In
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FIG. 2: a) Spin correlations of the skyrmion state atNφ = 2N − 2
in terms of guiding center coordinates (left) and electron coordinates
(right). [for clarity, show a single correlation function for 2N-2,
maybew = 0, andw = 3, but maybe one is sufficient] b) Split-
ting of theL = S = 0 Hilbert space forN = 10 and2l = 18 under
the consecutive action of pair and triplet pseudopotentials, VS(m)
andWS(m). At each step, green labels give squared projections of
the Coulomb ground state onto the lowest subspace (upper andlower
value: w = 0 andw = 3λ) with dimension indicated in red. The
nondegenerate ground state obtained by the successive application
of V0(0), W3/2(3), andV0(2) is an approximation to the skyrmion
formed in the pfaffian state.

order to obtain theL = S = 0 many body states for finite
N in exact diagonalization, we use a projected Lanczos pro-
cedure [15] that constrainsS2 to remain minimized between
iterations (while simulating in a subspace withLz, Sz fixed).
We are thus able to generate spin-projected groundstates ef-
ficiently, with Hilbert-space dimensions reaching1.4 × 109

in the case ofN = 12 atNφ = 26. Skyrmions potentially
exist at a field of one flux quantum above/below an incom-
pressible state. Forν = 5/2 this mother state could be ei-
ther the pfaffianPf or antipfaffianPf [16, 17], with shifts on
the sphere ofσ = 3 or σ = −1 respectively [with the shift
σ defined byNφ = ν−1N − σ]. There are four possible
skyrmion states withσ = 4, 2, 0 and−2, of which the state
at σ = 2 appears most energetically favourable in extrapo-
lations of the respective GS energies from the ED spectra of
systems with up toN = 12 particles. Let us tentatively name
these statesΨσ by their shiftσ, and distinguish skyrmions
S+ (increasing flux) or anti-skyrmionsS− (decreasingNφ),
such thatΨ4 = S+Pf , Ψ2 = S−Pf , Ψ0 = S+Pf ∗, and
Ψ−2 = S−Pf

∗.

Features of the correlation functions ofΨ4,2,0,−2 are con-
sistent with the interpretation of these spin-singlet groundstate
as skyrmions. Let us discuss the case ofΨ2, shown in Fig. 2.
Remarkably, its charge correlationsg(r) = g↑↑+g↑↓ are virtu-
ally identical to the correlation function of the spin-polarized
Moore-Read state at shiftσ = 3. In addition however, there
is a distinct spin texture revealed by decreasing spin correla-
tions f = g↑↑ − g↑↓, i.e. antiparallel spins are favoured on
long distances, while parallel spins dominate at smallr. Sim-
ilar features are consistently found for the other three possible
skyrmions withσ = 4, 0, and−2. To further consolidate our
interpretation of this state as a skyrmion ofν = 5/2, we for-
mulate a trial wavefunction for an idealised skyrmion state,
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N d(HL=0) OMR OCF-BCS OMR OCF-BCS

w = 0 w = 3ℓ0
8 285 0.788(9) 0.802(9) 0.81(2) 0.84(3)
10 6996 0.51(3) 0.54(3) 0.71(1) 0.72(1)

TABLE I: If there is space, this table will be kept, otherwisea few
values of the overlaps may just be added in the main text. If kept,
should add overlaps obtained with polarized Coulomb GS, also.

and consider its overlaps with the states from ED.
In the case of the integer quantum Hall effect atν = 1, it

is known that the wavefunction factors into a part describing
the charge correlations of a filled LL multiplying a factorΨB

describing the spin-texture of the skyrmion [18].ΨB can be
obtained formally as a many-body states of spinfulbosons ex-
periencing the added fluxδNφ = Nφ−N

pol
φ,ν=1. At smallδNφ,

such a state is uniquely defined by its angular-momentum and
spin quantum numbersL,Lz, S andSz. We construct general
skyrmion states by analogy, multiplying a general polarized
stateΨν0

pol by a spin texture to yield

Ψν0
sk ({zi, χi}) = Ψpol

νp ({zi})×ΨS,L
B ({zi, χi}) (3)

S=0
= PS=0

[

Ψpol
νp ({zi})×

(

ui
vi

)]

, (4)

where particle coordinates are denoted by positionszi =
xi + yi ↔ (ui vi) and spinorsχi. Up to a projectionPS=0

into a global spin singlet, the spin of electrons in an infinite
skyrmion (4) simply points radially outwards at all points on
the sphere. We calculate overlaps of these trial states withthe
exact eigenstates in a standard way [19], where the polarized
state can be taken either as the Moore-Read state, an opti-
mized weakly paired state [3] or as the exact Coulomb eigen-
state of the polarized system. The resulting overlaps, shown
in Table I, are found be moderately large. Further informa-
tion as to where inaccuracies in our modelling arise can be
extracted from a construction of skyrmion states using sim-
ple model Hamiltonians build from short distance two- and
three-body repulsions as represented in Fig. 2. Beginning with
the full L = S = 0 Hilbert spaceH (dimensiond = 1581
at N = 10), we first construct a zero-energy subspaceH′

(d = 105) of the pair interaction with a single pseudopoten-
tial coefficient,VS(m) = δS,0δm,0. Next, withinH′ we ap-
ply a triplet interactionWS(m) = W3/2(3), to obtain a zero-
energy subspaceH′′ (d = 21) retaining unpolarized states
with pfaffian-like correlations at short range. Finally, inside
H′′ we use minimization ofV0(2) to select the state with the
longest spin wave length, i.e., the infinite skyrmion formedin
an exact pfaffian parent. Indeed, the single state obtained in
this procedure is very similar to the trial state (3) based on
the Moore-Read pfaffian, with a relative overlap of0.96(1).
Monitoring the total overlap of the exact Coulomb ground-
state with vectors inH(n), it becomes evident that overlap is
lost at the stage of enforcing the pair-correlations of the pfaf-
fian. This is hardly surprising given that even in polarized
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FIG. 3: (a) Dependence of energyE on the total spinS for N =
12 unpolarized electrons at2l = 20 and22 (i.e., atν = 1/2 and
γ = 4 or 2). Solid and dashed lines connect the ground states and
the lowestL = S states at eachS. The energies include electrostatic
corrections defined in the text. (b) Phase diagram in the plane of
Zeeman energyEZ and lateral harmonic confinement~ω, showing
transitions between various states of a pair ofe/4-charged quasiholes
(QHs) or spin textures (CSTs), and of the positive skyrmions(L =
S).

systems, the pfaffian is not a very accurate description of the
exact Coulomb groundstate [3, 6]. In line with this analogy,
the overlap increases in finite well width [i.e., relativelyhigher
V0(0)].

Having identified the spin-singlet statesΨ2(4) as skyrmions
of the MR pfaffian, let us now analyze the entire spin-
spectrum including partial spin-polarizations. For general
skyrmions of sizeK on the sphere [18], the angular momen-
tum satisfiesL = S = N

2 − K > 0, with the ‘infinite’
skyrmion studied above beingK = N

2 . Considering the low-
est energy Coulomb states with these quantum numbers at an-
gular momentum projectionLz = Sz = L = S we confirm
that these correspond to states with an accumulation of charge
(e/2) and spin up within an area∝ K (???) near the north
pole.

Are these skyrmions stable, however? Carrying twice the
charge (qsk = e/2) of the elementary spinless quasiparti-
cles of the Moore–Read state (qqp = e/4), they must com-
bine a pair of like-charged quasiholes (QHs) or quasielec-
trons (QEs). It would therefore be somewhat of a surprise
should such skyrmions be stable at small sizesK. Indeed, as
shown in Fig. 3(a) forN = 12 particles in a system of fi-
nite widthw = 3λ, the energy of the Coulomb-groundstate
in the Hilbert-subspace with fixedS is lower than the energy
of the lowest state with the quantum numbers of the skyrmion
for K . N

4 . This break-up of a uniquee/2 skyrmion into
two separate objects is clearly evidenced by a low total an-
gular momentum (shown in Fig. 3, whereverL 6= S) of the
Coulomb state. Only a pair of two separate objects whose
individual angular momenta are counter-aligned can explain
such smallL. We also refer to these intermediate states com-
posed of two separate charged entities as charge-spin textures
(CST). A further subtlety comes into play when comparing
skyrmions of different sizes: finite-size effects caused bythe
concentration of charge in form of two QEs/QHs/CSTs have
to be compensated for. This is achieved by applying the stan-
dard electrostatic correctionδE [13] for quasiparticle states
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at S = N
2 , and by using cubic interpolation of(2S/N)3δE

at the intermediate polarizations. A marked asymmetry be-
tweenS− andS+ is evident. While quasielectrons are ener-
getically more favourable than antiskyrmions, skyrmions are
clearly preferred over quasiholes. These finite size results
therefore confirm our above analysis based on extrapolation
of the skyrmion energy from the spin-stiffness.

In realistic systems, skyrmion stability will be reduced by
the Zeeman splittingEZ . However, quite unlike for cases
with qsk = qqp, the stability of skyrmions may beenhanced
by the presence of disorder, here. In the usual case, disorder
acts to reduce the size of pinned charge carriers, i.e., it dis-
favours large skyrmions. For nu=5/2 on the other hand, dis-
order can act to bring twoe/4 quasiholes together to form a
single skyrmion. It can thus have the opposite effect of mak-
ing skyrmionsmore favourable, by overcoming the Coulomb
repulsion of the quasiparticles. We model this effect by as-
suming a simple lateral harmonic confinement of frequency
ω that modulates the energy of available states as a function
of their localization of charge. We thus convert the map of
Coulomb energyE(L, S) into the phase diagram for the sta-
bility of S+ syrmions shown in Fig. 3(b). While its details
are certainly affected by the finite sizeN = 12 and choice of
disorder, the emergence and relative position of the polarized
2QH phase and the unpolarized 2CST and skyrmion phases
are expected to remain valid in realistic systems. [Need to say
what the values ofEZ and~ω correspond to in terms of more
obvious system parameters]

Another concern that might be raised about the stability of
skyrmions in theν = 5/2 states concerns the presence of the
second fusion channelψ. If at odd particle number, a differ-
ent low-energy state involving a neutral fermion would have
lower energy than the skyrmion obtained as a spin-texture of
the vacuum channel, our conclusions would fail. In analogy of
our above comparison of the two fusion channels for the po-
larized system, we have scaled the energy per particle for the
systems with the smallest possible polarization,S = 1

2 for N
odd versusS = 0 for N even according to Eq. (2). While our
results are limited to two data points forN = 9 andN = 11
due to the large Hilbert spaces at low spin and we cannot con-
fidently extrapolate to largeN , the data obtained are consis-
tent with theψ channel being higher in energy. [**overlaps
for odd N**]

If realized in experimental samples, the presence of
skyrmions due to pinning by disorder might have an unusual
effect on the transport properties of the system. Typically, in-

creasing the Zeeman energy also increases the transport gap,
as it increases the creation energy of the charge carrier. How-
ever, here, if the skyrmions are present only due to pinning in
the disorder, and the elementary charge carriers aree/4 QPs,
then one can expect the opposite effect. Namely, if pinned
quasiparticles are bound into skyrmions, increasing the Zee-
man energy decreases their binding energy and would there-
fore decrease the activation energy associated with the un-
binding of these QPs.

(** Discuss effect of skyrmions on NA interferometer **)
A large density of quasiparticles far from the centre of the

quantum Hall plateau can have a similar effect, as it forces
qp’s to come close.

Conclusions
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