
PIM ���

The Parallel Iterative Methods package for

Systems of Linear Equations

User�s Guide

�Fortran �� version�

Rudnei Dias da Cunha

Mathematics Institute and National Supercomputing Centre

Universidade Federal do Rio Grande do Sul

Brasil

Tim Hopkins

Computing Laboratory

University of Kent at Canterbury

United Kingdom

Abstract

We describe PIM �Parallel Iterative Methods�� a collection of Fortran �� routines to
solve systems of linear equations on parallel computers using iterative methods�

A number of iterative methods for symmetric and nonsymmetric systems are avail�
able� including Conjugate�Gradients �CG�� Bi�Conjugate�Gradients �Bi�CG�� Conjugate�
Gradients squared �CGS�� the stabilised version of Bi�Conjugate�Gradients �Bi�CGSTAB��
the restarted stabilised version of Bi�Conjugate�Gradients �RBi�CGSTAB�� generalised min�
imal residual �GMRES�� generalised conjugate residual �GCR�� normal equation solvers
�CGNR and CGNE�� quasi�minimal residual �QMR� with coupled two�term recurrences�
transpose�free quasi�minimal residual �TFQMR� and Chebyshev acceleration�

The PIM routines can be used with user�supplied preconditioners� and left�� right� or
symmetric�preconditioning are supported� Several stopping criteria can be chosen by the
user�

In this user�s guide we present a brief overview of the iterative methods and algorithms
available� The use of PIM is introduced via examples� We also present some results obtained
with PIM concerning the selection of stopping criteria and parallel scalability� A reference
manual can be found at the end of this report with speci	c details of the routines and
parameters�

Contents

� Introduction �

� An overview of the iterative methods �

CG �
CG with eigenvalues estimation �

CGNR and CGNE �
Bi�CG �

CGS ��
Bi�CGSTAB ��
RBi�CGSTAB ��

GMRES ��
GMRES with eigenvalues estimation ��
GCR ��
QMR with coupled two�term recurrences � � � � � � � � � � � � � � � � � � ��

TFQMR ��
Chebyshev acceleration ��

� Internal details of PIM ��

	
� Supported architectures and environments �	
	
� Parallel programming model ��

	
	 Data partitioning ��
	
� Increasing the parallel scalability of iterative methods � � � � � � � � � � � � � � � ��
	
� Stopping criteria �

� Using PIM ��

�
� Naming convention of routines ��

�
� Obtaining PIM ��
�
	 Installing PIM ��

Building the PIM core functions ��
Building the examples ��

Cleaning�up ��
Using PIM in your application ��

�
� Calling a PIM iterative method routine ��
�
� External routines ��

Matrix�vector product ��
Preconditioning �	
Inner�products� vector norms and global accumulation � � � � � � � � � � � ��

�

Monitoring the iterations �

�

 Example programs ��

�

� Eigenvalues estimation and Chebyshev acceleration � � � � � � � � � � � � � ��
�

� Dense storage � 	�

�

	 PDE storage � 	�
A matrix�vector product for parallel vector architectures � � � � � � � � � � 	�

�

� Preconditioners � 	�
�

� Results � 	

Stopping criteria � 	

General results � 	

Scalability � 	�

� Summary ��

References ��

A Reference manual ��

A
� Description of parameters ��
A
� External routines ��

Note ��
Matrix�vector product v � Au ��
Transpose matrix�vector product v � ATu � � � � � � � � � � � � � � � � � � ��

Left preconditioning v � Qu ��
Right preconditioning v � Qu ��
Parallel sum ��
Parallel vector norm ��

Monitoring routine ��
A
	 PIM CG ��
A
� PIM CGEV ��

A
� PIM CGNR �	
A

 PIM CGNE ��
A
� PIM BICG ��
A
� PIM CGS ��

A
� PIM BICGSTAB �
�
A
�� PIM RBICGSTAB �
	
A
�� PIM RGMRES �
�
A
�� PIM RGMRESEV �
�

A
�	 PIM RGCR �
�
A
�� PIM QMR ��

	

A
�� PIM TFQMR �	
A
�
 PIM CHEBYSHEV ��
A
�� PIM SETPAR ��
A
�� PIM PRTPAR ��

A
�� INIT ��

�

� Introduction

The Parallel Iterative Methods �PIM� is a collection of Fortran �� routines designed to solve
systems of linear equations �SLEs� on parallel computers using a variety of iterative methods

PIM o�ers a number of iterative methods� including

� Conjugate�Gradients �CG� �����

� Conjugate�Gradients for normal equations with minimisation of the residual norm
�CGNR� �	���

� Conjugate�Gradients for normal equations with minimisation of the error norm �CGNE�
�����

� Bi�Conjugate�Gradients �Bi�CG� �����

� Conjugate�Gradients squared �CGS� �����

� the stabilised version of Bi�Conjugate�Gradients �Bi�CGSTAB� ��
��

� the restarted� stabilised version of Bi�Conjugate�Gradients �RBi�CGSTAB� ��	��

� the restarted� generalised minimal residual �RGMRES� �����

� the restarted� generalised conjugate residual �RGCR� �����

� the quasi�minimal residual with coupled two�term recurrences �QMR� �����

� the transpose�free quasi�minimal residual �TFQMR� ��	� and

� Chebyshev acceleration �	��

The routines allow the use of preconditioners� the user may choose to use left�� right� or
symmetric�preconditioning
 Several stopping criteria are also available

PIM was developed with two main goals

�
 To allow the user complete freedom with respect to the matrix storage� access and parti�
tioning�

�
 To achieve portability across a variety of parallel architectures and programming environ�

ments

These goals are achieved by hiding from the PIM routines the speci�c details concerning the

computation of the following three linear algebra operations

�

�
 Matrix�vector �and transpose�matrix�vector� product

�
 Preconditioning step

	
 Inner�products and vector norm

Routines to compute these operations need to be provided by the user
 Many vendors supply
their own� optimised linear algebra routines which the user may want to use

A number of packages for the iterative solution of linear systems are available including

ITPACK �	�� and NSPCG �	��
 PIM di�ers from these packages in three main aspects
 First�
while ITPACK and NSPCG may be used on a parallel vector supercomputer like a Cray Y�MP�
there are no versions of these packages available for distributed�memory parallel computers

Second� there is no debugging support� this is dictated by the fact that in some multiprocessing

environments parallel I�O is not available
 The third aspect is that we do not provide a collection
of preconditioners but leave the responsibility of providing the appropriate routines to the user

In this sense� PIM has many similarities to a proposed standard for iterative linear solvers�

by Ashby and Seager ���
 In that proposal� the user supplies the matrix�vector product and
preconditioning routines
 We believe that their proposed standard satis�es many of the needs
of the scienti�c community as� drawing on its concepts� we have been able to provide software
that has been used in a variety of parallel and sequential environments
 PIM does not always

follow the proposal especially with respect to the format of the matrix�vector product routines
and the lack of debugging support

Due to the openness of the design of PIM� it is also possible to use it on a sequential machine

In this case� the user can take advantage of the BLAS ���� to compute the above operations

This characteristic is important for testing purposes� once the user is satis�ed that the selection
of preconditioners and stopping criteria are suitable� the computation can be accelerated by
using appropriate parallel versions of the three linear algebra operations mentioned above

A package similar to PIM is the Simpli�ed Linear Equation Solvers �SLES� by Gropp and
Smith �	��� part of the PETSc project
 In SLES the user has a number of iterative methods �CG�
CGS� Bi�CGSTAB� two variants of the transpose�free QMR� restarted GMRES� Chebyshev and
Richardson� which can be used together with built�in preconditioners and can be executed

either sequentially or in parallel
 The package may be used with any data representation of
the matrix and vectors with some routines being provided to create matrices dynamically in
its internal format �a feature found on ITPACK�
 The user can also extend SLES in the sense
that it can provide new routines for preconditioners and iterative methods without modifying

SLES
 It is also possible to debug and monitor the performance of a SLES routine

Portability of code across di�erent multiprocessor platforms is a very important issue
 For

distributed�memory multiprocessor computers� a number of public�domain software libraries

have appeared� including PVM ����� TCGMSG �		�� NXLIB ����� p� ��� �the latter with support
for shared�memory programming�
 These libraries are available on a number of architectures

making it possible to port applications between di�erent parallel computers with few �if any�
modi�cations to the code being necessary
 In ���	 the �Message�Passing Interface Forum�� a
consortium of academia and vendors� drawing on the experiences of users of those and other
libraries� de�ned a standard interface for message�passing operations� called MPI ����
 Today

we have available implementations of MPI built on top of other� existing libraries� like the
CHIMP�MPI library developed at the Edinburgh Parallel Computer Centre ���� and the Unify
project ��� which provides an MPI interface on top of PVM
 It is expected that native implemen�
tations will be available soon
 In the previous releases of PIM ��
� and �
�� we had distributed

examples using PVM� TCGMSG� p� and NXLIB� however from this release onwards we will
support only PVM� the �de�facto� standard for message�passing� and MPI

We would like to mention two projects which we believe can be used together with PIM

The �rst is the proposed standard for a user�level sparse BLAS by Du� et al� ���� and Heroux
�	��
 This standard addresses the common problem of accessing and storing sparse matrices in
the context of the BLAS routines� such routines could then be called by the user in conjunction
with a PIM routine
 The second is the BLACS project by Dongarra et al� ��
� which provides

routines to perform distributed operations over matrices using PVM 	
�

� An overview of the iterative methods

How to choose an iterative method from the many available is still an open question� since any
one of these methods may solve a particular system in very few iterations while diverging on
another
 In this section we provide a brief overview of the iterative methods present in PIM

More details are available in the works of Ashby et al� ���� Saad ��������� Nachtigal et al� �	���
Freund et al� ������
� and Barrett et al� �
�

We introduce the following notation
 CG� Bi�CG� CGS� Bi�CGSTAB� restarted GMRES�
restarted GCR and TFQMR solve a non�singular system of n linear equations of the form

Q�AQ�x � Q�b ���

where Q� and Q� are the preconditioning matrices
 For CGNR� the system solved is

Q�A
TAQ�x � Q�A

T b ���

and for CGNE we solve the system

Q�AA
TQ�x � Q�b �	�

CG The CG method is used mainly to solve Hermitian positive�de�nite �HPD� systems
 The

method minimises the residual in the A�norm and in �nite�precision arithmetic it terminates in
at most n iterations
 The method does not require the coe�cient matrix� only the result of a

�

matrix�vector product Au is needed
 It also requires a relatively small number of vectors to be
stored per iteration since its iterates can be expressed by short� three�term vector recurrences

With suitable preconditioners� CG can be used to solve nonsymmetric systems
 Holter
et al� �	
� have solved a number of problems arising from the modelling of groundwater �ow

via �nite�di�erences discretisations of the two�dimensional di�usion equation
 The properties
of the model led to systems where the coe�cient matrix was very ill�conditioned� incomplete
factorisations and least�squares polynomial preconditioners were used to solve these systems

Hyperbolic equations of the form

�u

�t
� ��

�u

�x
� ��

�u

�y
� f�x� y� t�

have been solved with CG using a Neumann polynomial approximation to A�� as a precondi�
tioner ����

CG with eigenvalues estimation An important characteristic of CG is its connection to

the Lanczos method ���� which allows us to obtain estimates of the eigenvalues of Q�AQ�

with only a little extra work per iteration
 These estimates� �� and �n� are obtained from
the Lanczos tridiagonal matrix Tk whose entries are generated during the iterations of the

CG method ���� pp
 �������� ��	�����
 If we de�ne the matrices � � diag���� ��� � � � � �k����
Gk � diag���� ��� � � � � �k��� and

Bk �

�
��������

� ���
� ���

�

 ��k

�

�
��������

where �i � jj ri jj�� ri is the residual at the i�th iteration� �i � pTi Api and �i � rTi ri	r
T
i��ri��

are generated via the CG iterations �at no extra cost�� we obtain the Lanczos�s matrix via the
relation

Tk � ���BT
k GkBk�

�� ���

Due to the structure of the matrices Bk� � and Gk� the matrix Tk can be easily updated during
the CG iterations
 The general formula for Tk is

ai � ���i �i�� � �i���	�
�
i��� �� � �� i � �� �� � � � � k

bi � ��i���i��	��i���i�� i � �� �� � � � � k � �

�

where ai and bi are the elements along the diagonal and subdiagonal of Tk respectively

The strategy employed to obtain the eigenvalue estimates is based on Sturm sequences ����

pp
 �	���	��
 For the matrix T�� obtained during the �rst iteration of CG� the eigenvalues are
obtained directly from the quadratic equation derived from p��� � det�T� � �I�
 We also set

an interval �c� d� � ���� �n�

For the next iterations� we update the interval �c� d� using Gerschgorin�s theorem
 This is

easily accomplished since at each iteration only two new values are added to Tk to give Tk���
the updated interval is then

c � min�c� jakj � jbk��j � jbkj� jak��j � jbkj��
d � max�d� jakj� jbk��j� jbkj� jak��j� jbkj�

The new estimates for the extreme eigenvalues are then computed using a bisection routine
applied to the polynomial p��� � det�Tk����I� which is computed via a recurrence expression
���� pp
 �	��
 The intervals �c� ��� and ��n� d� are used in the bisection routine to �nd the new
estimates of �� and �n respectively

A possible use of this routine would be to employ adaptive polynomial preconditioners �see ���
and �	�� where at each iteration information about the extreme eigenvalues of Q�AQ� is obtained

and the polynomial preconditioner is modi�ed to represent a more accurate approximation to

A��
 This routine can also be used as a preliminary step before solving the system using the
Chebyshev acceleration routine� PIM CHEBYSHEV

CGNR and CGNE For nonsymmetric systems� one could use the CG formulation applied
to systems involving either ATA or AAT � these are called CGNR and CGNE respectively
 The
di�erence between both methods is that CGNR minimises the residual jj b�Axk jj� and CGNE

the error jjA��b� xk jj�
 A potential problem with this approach is that the condition number
of ATA or AAT is large even for a moderately ill�conditioned A� thus requiring a substantial
number of iterations for convergence
 However� as noted by Nachtigal et al� �	��� CGNR is better

than GMRES and CGS for some systems� including circulant matrices
 More generally� CGNR
and CGNE perform well if the eigenvalue spectrum of A has some symmetries� examples of such
matrices are the real skew�symmetric and shifted skew�symmetric matrices A � ei��T � �I��
T � TH �
 real and � complex

Bi�CG Bi�CG is a method derived to solve non�Hermitian systems of equations� and is closely

related to the Lanczos method to compute the eigenvalues of A
 The method requires few vec�
tors per iteration and the computation of a matrix�vector product as well as a transpose�
matrix�vector product ATu
 The iterates of Bi�CG are generated in the Krylov subspace

K�r�� A� � fr�� r�A� r�A�� � � �g� where r� � b� Ax�

�

A Galerkin condition �wHrk � � � �w � K� r�� AT �� is imposed on the residual vector where
 r� is an arbitrary vector satisfying rTk r� �� �
 It is important to note that two sequences of
residual vectors are generated� one involving rk and A and the other rk and AT but the solution
vector xk is updated using only the �rst sequence

Bi�CG has an erratic convergence with large oscillations of the residual ��norm which usually
cause a large number of iterations to be performed until convergence is achieved
 Moreover�
the method may break down� for example� the iterations cannot proceed when some quantities
�dependent on r�� become zero�

CGS CGS is a method that tries to overcome the problems of Bi�CG
 By rewriting some of
the expressions used in Bi�CG� it is possible to eliminate the need for AT altogether
 Sonneveld
���� also noted that it is possible to �theoretically� increase the rate of convergence of Bi�CG at
no extra work per iteration
 However� if Bi�CG diverges for some system� CGS diverges even

faster
 It is also possible that CGS diverges while Bi�CG does not for some systems

Bi�CGSTAB Bi�CGSTAB is a variant of Bi�CG with a similar formulation to CGS
 However�
steepest�descent steps are performed at each iteration and these contribute to a considerably
smoother convergence behaviour than that obtained with Bi�CG and CGS
 It is known that for

some systems Bi�CGSTAB may present an erratic convergence behaviour as does Bi�CG and
CGS

RBi�CGSTAB The restarted Bi�CGSTAB� proposed by Sleijpen and Fokkema ��	�� tries to
overcome the stagnation of the iterations of Bi�CGSTAB which occurs with a large class of
systems of linear equations
 The method combines the restarted GMRES method and Bi�CG�

being composed of two speci�c sections! a Bi�CG part where �l��� u and r vectors are produced
�l being usually � or ��� and a minimal residual step follows� when the residuals are minimized

RBi�CGSTAB is mathematically equivalent to Bi�CGSTAB if l � �� although numerically their

iterations will usually di�er
 The method does not require the computation of transpose matrix�
vector products as in Bi�CG and a smaller number of vectors need to be stored per iteration
than for other restarted methods like GMRES

GMRES The GMRES method is a very robust method to solve nonsymmetric systems

The method uses the Arnoldi process to compute an orthonormal basis fv�� v�� � � � � vkg of the

Krylov subspace K�A� v��
 The solution of the system is taken as x� � Vkyk where Vk is a
matrix whose columns are the orthonormal vectors vi� and yk is the solution of the least�
squares problem Hkyk � jj r� jj�e�� where the upper Hessenberg matrix Hk is generated during

�The PIM implementation of Bi�CG� CGS and Bi�CGSTAB sets �r� � r� but the user may modify the code if

another choice of �r� is desirable�

��

the Arnoldi process and e� � ��� �� �� � � � � ��T
 This least�squares problem can be solved using a
QR factorisation of Hk

A problem that arises in connection with GMRES is that the number of vectors of or�
der n that need to be stored grows linearly with k and the number of multiplications grows

quadratically
 This may be avoided by using a restarted version of GMRES� this is the method
implemented in PIM
 Instead of generating an orthonormal basis of dimension k� one chooses a
value c� c � n� and generates an approximation to the solution using an orthonormal basis of
dimension c� thereby reducing considerably the amount of storage needed
 Although the restar�

ted GMRES does not break down ���� pp
 �
��� it may� depending on the system and the value
of c� produce a stationary sequence of residuals� thus not achieving convergence
 Increasing the
value of c usually cures this problem and may also increase the rate of convergence

A detailed explanation of the parallel implementation of the restarted GMRES used can be
found in ��	�

GMRES with eigenvalues estimation It is very easy to obtain estimates of the eigenvalues
of Q�AQ� at each iteration of GMRES� since the upper Hessenberg matrix Hk computed during

the Arnoldi process satis�es Q�AQ�Vk � VkHk
 The eigenvalues of Hk approximate those of

Q�AQ�� especially on the boundaries of the region containing ��Q�AQ��
 The QR algorithm
can be used to obtain the eigenvalues of Hk
 The LAPACK routine HSEQR ��� pp
 �������� is
used for this purpose

The routine PIM RGMRESEV returns a box in the complex plane� de�ning the minimum and
maximum values along the real and imaginary axes
 These values can then be used by the
Chebyshev acceleration routine� PIM CHEBYSHEV

GCR The GCR method is generally used in its restarted form for reasons similar to those
given above for GMRES
 It is mathematically equivalent to the restarted version of GMRES

but it is not as robust
 It is applicable to systems where the coe�cient matrix is of the form

A � �I � R� � complex and R real symmetric and A � �I � S� � real and SH � �S� arising
in electromagnetics and quantum chromodynamics applications respectively ���

QMR with coupled two�term recurrences The QMR method by Freund and Nachtigal

���� overcomes the di�culties associated with the Bi�CG method
 The original QMR algorithm
uses the three�term recurrences as found in the underlying Lanczos process
 In �nite�precision
arithmetic� though� mathematically equivalent coupled two�term recurrences are more robust
than the three�term recurrences
 PIM implements the coupled two�term recurrence version of

the QMR algorithm as described in ����

��

TFQMR TFQMR is a variant of CGS proposed by Freund ��	�
 TFQMR uses all available
search direction vectors instead of the two search vectors used in CGS
 Moreover� these vectors
are combined using a parameter which can be obtained via a quasi�minimisation of the residual

The method is thus extremely robust and has the advantage of not requiring the computation of

transpose matrix�vector products
 PIM o�ers TFQMR with ��norm weights �see ��	� Algorithm
�
���

Chebyshev acceleration The Chebyshev acceleration is a polynomial acceleration applied
to basic stationary methods of the form

xk�� � Gxk � f

where G � I � Q�A� f � Q�b
 If we consider k iterations of the above method� the iterates
xk may be linearly combined such that y �

Pk
j�� cjxj is a better approximation to x� � A��b

The coe�cients cj are chosen so that the norm of error vector is minimized and
Pk

j�� cj � �
 If

we assume that the eigenvalues of G are contained in an interval ��� ��� with ��
 � � �
 ��
then the Chebyshev polynomials satisfy the above conditions on the cj�s
 We refer the user to

�	�� pp
 ��"��� 		�"		�� for more details

The Chebyshev acceleration has the property that its iterates can be expressed by short

�three�term� recurrence relations and� especially for parallel computers� no inner�products or

vector norms are needed �except for the stopping test�
 The di�culty associated with the

Chebyshev acceleration is the need for good estimates either for the smallest or largest eigen�
values of G if the eigenvalues are real� or in the case of a complex eigenspectrum a region in
the complex plane containing the eigenvalues of minimum and maximum modulus

With PIM� the user may make use of two routines� PIM CGEV and PIM RGMRESEV� to obtain
such estimates
 PIM CGEV covers the case where the eigenvalues of G are real� for the complex
case� PIM RGMRESEV should be used
 To obtain appropriately accurate estimates� these routines
must be used with left�preconditioning� and should be allowed to run for several iterations
 The

estimates for the eigenvalues of Q�A should then be modi�ed to those of I�Q�A
 This is done
by replacing the smallest and largest real values� r and s� by �� s and �� r respectively
 The

imaginary values should not be modi�ed

We note that even if A has only real eigenvalues� G may have complex �or imaginary
only� eigenvalues
 In this latter case� the Chebyshev acceleration is de�ned in terms of a
minimum bounding ellipse that contains the eigenvalues of G
 If we obtain a box �r� s� t� u�
where r � Re���G�� � s and t � Im���G�� � u� then the axes of this ellipse are de�ned as

p �
p
��r � s�	�� q �

p
��t� u�	�

These parameters for the Chebyshev iteration are computed by PIM CHEBYSHEV
 An example of
the use of this routine may be found in Section �
�

��

Figure �! Selecting an iterative method

Symmetric matrix?

CGEV CG

CHEBYSHEV
RGMRESEV

Transpose

matrix-vector product
available?

Bi-CG
CGNR

CGNE
QMR

CGS

Bi-CGSTAB
RBi-CGSTAB

TFQMR

CHEBYSHEV

CG(1)

RGMRES (2)
RGCR (2)

Eigenvalue
estimation?

Eigenvalue
estimation?

Notes:
(1) only for mildly non-

symmetric systems
(2) use a small restarting

value if storage is at
a premium

Y N

Y N Y N

Y N

For nonsymmetric systems� one may use a combination of the routine PIM RGMRESEV and

PIM CHEBYSHEV as proposed by Elman et al� as a hybrid method ���� page ����

To conclude this section� Figure � shows a diagram to aid in the selection of an iterative

method

� Internal details of PIM

��� Supported architectures and environments

PIM has been tested on scalar� vector and parallel computers including the Cray Y�MP�E��	��
Cray Y�MP C����
��
� SGI Challenge� Intel Paragon� TMC CM��� and networks of worksta�

tions under PVM 	
	

� CHIMP�MPI v�
�� Argonne MPI� p� v�
�� TCGMSG �
�� and Intel
NX
 Table � lists the architectures and environments on which PIM has been successfully tested

�The results obtained are based upon a beta version of the software and� consequently� is not necessarily

representative of the performance of the full version of this software�

�	

Table �! Computers where PIM has been tested

Architecture Compiler and O�S

Sun SPARC Sun Fortran �
� � SunOS �
�
	
Sun SPARC Sun Fortran �
�
� � SunOS �
�
Sun SPARC EPC Fortran �� � SunOS �
�
	
Sun SPARC EPC Fortran �� � SunOS �
�
	

Sun SPARC NAG Fortran �� � SunOS �
�
	
DEC AXP �����
�� DEC Fortran 	
	�� � DEC OSF�� �
	
DEC AXP 	������� DEC Fortran 	
����� � DEC OSF�� �
�
SGI IRIS Indigo MIPS Fortran �
�
� � SGI IRIX �
�
�F

SGI IRIS Crimson MIPS Fortran �
�
� � SGI IRIX �
�
�C
SGI Indy II MIPS Fortran �
� � SGI IRIX �
�
�

Cray Y�MP�E��	� Cray Fortran

� � UNICOS �
�
�
�

Cray Y�MP C����
��
 Cray Fortran �
� � UNICOS �
�
	
SGI Challenge MIPS Fortran �
� � SGI IRIX �
�
Intel Paragon XP�S Portland if�� �
� � OSF�� �
�

IBM ���
 SP�� IBM XL Fortran
��� �
	 � AIX 	
�

Cray T	D Cray Fortran �
� � UNICOS �
	
	
TMC CM�� CM Fortran ��

��� Parallel programming model

PIM uses the Single Program� Multiple Data �SPMD� programming model
 The main implica�

tion of using this model is that certain scalar values are needed in each processing element �PE�

Two of the user�supplied routines� to compute a global sum and a vector norm� must provide
for this� preferably making use of a reduction and�or broadcast routine like those present on

PVM 	
	

 and MPI

��� Data partitioning

With PIM� the iterative method routines have no knowledge of the way in which the user has
chosen to store and access either the coe�cient or the preconditioning matrices
 We thus restrict

ourselves to partitioning the vectors

The assumption made is that each PE knows the number of elements of each vector stored

in it and that all vector variables in a processor have the same number of elements
 This is

a broad assumption that allows us to accommodate many di�erent data partitioning schemes�
including contiguous� cyclic �or wrap�around� and scattered partitionings
 We are able to make

��

this assumption because the vector�vector operations used " vector accumulations� assignments
and copies " are disjoint element�wise
 The other operations used involving matrices and vectors
which may require knowledge of the individual indices of vectors� are the responsibility of the
user

PIM requires that the elements of vectors must be stored locally starting from position
�� thus the user has a local numbering of the variables which can be translated to a global
numbering if required
 For example� if a vector of � elements is partitioned in wrap�around
fashion among � processors� using blocks of length �� then the �rst processor stores elements

�� 	� � and � in the �rst four positions of an array� the second processor then stores elements
�� ��
 and � in positions � to � on its array
 We stress that for most of the commonly used
partitioning schemes data may be retrieved with very little overhead

��� Increasing the parallel scalability of iterative methods

One of the main causes for the poor scalability of implementations of iterative methods on
distributed�memory computers is the need to compute inner�products� � � uT v �

Pn
i�� uivi�

where u and v are vectors distributed across p processors �without loss of generality assume
that each processor holds n	p elements of each vector�
 This computation can be divided in

three parts

�
 The local computation of partial sums of the form �j �
Pn�p

i�� uivi� on each processor�

�
 The reduction of the �j values� where these values travel across the processors in some

e�cient way �for instance� as if traversing a binary�tree up to its root� and are summed
during the process
 At the end� the value of � �

Pp
j�� �j is stored in a single processor�

	
 The broadcast of � to all processors

During parts �
 and 	
 a number of processors are idle for some time
 A possible strategy to

reduce this idle time and thus increase the scalability of the implementation� is to re�arrange

the operations in the algorithm so that parts �
 and 	
 accumulate a number of partial sums
corresponding to some inner�products
 Some of the algorithms available in PIM� including
CG� CGEV� Bi�CG� CGNR and CGNE have been rewritten using the approach suggested by

D�Azevedo and Romine ����
 Others� like Bi�CGSTAB� RBi�CGSTAB� RGCR� RGMRES and
QMR have not been re�arranged but some or all of their inner�products can be computed with
a single global sum operation

The computation of the last two parts depends on the actual message�passing library being

used
 With MPI� parts �
 and 	
 are also o�ered as a single operation called MPI ALLREDUCE

Applications using the PVM 	
	

 Fortran interface should however call PVMFREDUCE and then
PVMFBROADCAST

��

An important point to make is that we have chosen modi�cations to the iterative methods
that reduce the number of synchronization points while at the same time maintaining their
convergence properties and numerical qualities
 This is the case of the D�Azevedo and Romine
modi�cation� also� in the speci�c case of GMRES� which uses the Arnoldi process �a suitable

reworking of the modi�ed Gram�Schmidt procedure� to compute a vector basis� the computation
of several inner�products with a single global sum does not compromise numerical stability

For instance� in the algorithm for the restarted GMRES �see Algorithm A
��� step � involves
the computation of j inner�products of the form V T

i Vj� i � �� �� � � � � j
 It is thus possible to

arrange for each processor to compute j partial sums using the BLAS routine DOT and store
these in an array
 Then in a single call to a reduction routine� these arrays are communicated
among the processors and their individual elements are summed
 On the completion of the

global sum the array containing the respective j inner�products is stored in a single processor
and is then broadcast to the remaining processors

The CGS and TFQMR implementations available on PIM do not bene�t from this approach

��� Stopping criteria

PIM o�ers a number of stopping criteria which may be selected by the user
 In Table � we
list the di�erent criteria used� rk � b � Axk is the true residual of the current estimate xk�
zk is the pseudo�residual �usually generated by linear recurrences and possibly involving the

preconditioners� and � is the user�supplied tolerance
 Note that the norms are not indicated�

these depend on the user�supplied routine to compute a vector norm

Table �! Stopping criteria available on PIM

No
 Stopping criterion

� jj rk jj
 �
� jj rk jj
 �jj b jj
	

q
rTk zk
 �jj b jj

� jj zk jj
 �
� jj zk jj
 �jj b jj

 jj zk jj
 �jjQ�b jj
� jjxk � xk�� jj
 �

If speed of execution is of the foremost importance� the user needs to select the stopping
criterion that will impose the minimum overhead
 The following notes may be of use in the

selection of an appropriate stopping criterion

�

�
 If the stopping criterion selected is one of �� � or � then the true residual is computed
�except when using TFQMR with either no preconditioning or left preconditioning�

�
 The restarted GMRES method uses its own stopping criterion �see ���� page �
��� which
is equivalent to the ��norm of the residual �or pseudo�residual if preconditioning is used�

	
 If either no preconditioning or right�preconditioning is used and criterion 	 is selected�
the PIM iterative method called will �ag the error and exit without solving the system

�except for the restarted GMRES routine�

� Using PIM

��� Naming convention of routines

The PIM routines have names of the form

PIM method

where indicates single�precision �S�� double�precision �D�� complex �C� or double�precision
complex �Z� and method is one of! CG� CGEV �CG with eigenvalue estimation�� CGNR� CGNE�
BICG� CGS� BICGSTAB� RBICGSTAB� RGMRES� RGMRESEV �RGMRES with eigenvalue estimation��

and RGCR� QMR� TFQMR and CHEBYSHEV

��� Obtaining PIM

PIM �
� is available via anonymous ftp from

unix�hensa�ac�uk� �le �pub�misc�netlib�pim�pim���tar�Z

and

ftp�mat�ufrgs�br� �le �pub�pim�pim���tar�gz

There is also a PIM World�Wide�Web homepage which can be accessed at

http���www�mat�ufrgs�br�pim�e�html

which gives a brief description of the package and allows the reader to download the software
and related documentation

The current distribution contains

� The PIM routines in the directories single� double� complex and dcomplex

� A set of example programs for sequential and parallel execution �using PVM and MPI�
in the directories examples�sequential� examples�pvm and examples�mpi�

� This guide in PostScript format in the doc directory

��

��� Installing PIM

To install PIM� unpack the distributed compressed �or gzipped�� tar �le!

uncompress pim���tar�Z �or gunzip pim���tar�gz�
tar xfp pim���tar

cd pim

and edit the Makefile
 The following variables may need to be modi�ed

HOME Your top directory� e
g
� �u��users�fred

FC Your Fortran compiler of choice� usually f		

FFLAGS Flags for the Fortran compilation of main programs �example programs�

OFFLAGS Flags for the Fortran compilation of separate modules �PIM routines and modules of
examples�

NOTE! This must include at least the �ag required for separate compilation �usually �c�

AR The archiver program� usually ar

HASRANLIB Either t �true� or f �false�� indicating if it is necessary to use a random library
program �usually ranlib� to build the PIM library

BLASLIB Either the name of an archive �le containing theBLAS library or �lblas if the library

libblas�a has been installed on a system�wide basis

PARLIB The compilation switches for any required parallel libraries
 This variable must be left
blank if PIM is to be used in sequential mode
 For example� if PVM 	 is to be used� then
PARLIB would be de�ned as
�L
�PVM ROOT��lib�
�PVM ARCH� �lfpvm
 �lpvm
 �lgpvm

Each iterative method routine is stored in a separate �le with names in lower case fol�
lowing the naming convention of the routines� e
g
� the routine PIMDCG is stored in the �le
pim���double�pimdcg�f

Building the PIM core functions PIM needs the values of some machine�dependent

�oating�point constants
 The single� or double�precision values are stored in the �les
pim���common�smachcons�f and pim���common�dmachcons�f respectively
 Default values are

supplied for the IEEE���� �oating�point standard� and are stored separately in the �les
pim�common�smachcons�f�ieee	�� and pim�common�dmachcons�f�ieee	�� " these are used

by default
 However if you are using PIM on a computer which does not support the IEEE����
standard� you may!

��

�
 type make smachcons or make dmachcons� this will compile and execute a program which
uses the LAPACK routine LAMCH� to compute those constants� and the relevant �les will
be generated

�
 edit either pim�common�smachcons�f�orig or pim�common�dmachcons�f�orig and re�

place the strings MACHEPSVAL� UNDERFLOWVAL and OVERFLOWVAL by the val�
ues of the machine epsilon� under�ow and over�ow thresholds to those of the particular
computer you are using� either in single� or double�precision

To build PIM� type make makefiles to build the make�les in the appropriate directories
and then make single� make double� make complex or make dcomplex to build the single�
precision� double�precision� complex or double complex versions of PIM
 This will generate �o

�les� one for each iterative method routine� along with the library �le libpim�a which contains
the support routines

Building the examples Example programs are provided for sequential use� and for parallel
use with MPI and PVM�

The example programs require a timing routine
 The distribution comes with the �le

examples�common�timer�f which contains examples of the timing functions available on the
Cray� the IBM RS�
��� and also the UNIX etime function
 By default� the latter is used� this
�le must be modi�ed to use the timing function available on the target machine

The PVM and MPI example programs use the Fortran INCLUDE statement to include the

PVM and MPI header �les
 Some compilers have a switch �usually �I� which allows the user
to provide search directories in which �les to be included are located �as with the IBM AIX
XL Fortran compiler�� while others require the presence of those �les in the same directory as
the source code resides
 In the �rst case� you will need to include in the FFLAGS variable the

relevant switches �see x�
	�� in the latter� you will need to install the PVM and MPI header
�les �fpvm
�h and mpif�h respectively� by typing

make install�pvm�include INCFILE��name�of�fpvm
�h�

make install�mpi�include INCFILE��name�of�mpif�h�

where you should replace �name�of�fpvm
�h� and �name�of�mpif�h� by the full �lename of
the required include �les� for instance� if PVM is installed on �usr�local�pvm
 then you should

type

make install�pvm�include INCFILE��usr�local�pvm
�include�fpvm
�h

Figure � shows the directory tree containing the examples
 To build them� type make

followed by the name of a subdirectory of examples� e
g
� make sequential�single�dense

�The PVM examples use the �groups� library libgpvm�a which provides the reduction functions�

��

Figure �! Directories containing the examples

examples

pvm
mpi

single dense
pde

double dense
pde

complex dense

dcomplex dense

sequential

dcomplex dense

complex dense

double
dense
pde
harwell-boeing

single

dense
pde
pvp-pde
harwell-boeing

The example programs can also be built locally in those directories by changing to a speci�c

directory and typing make

Cleaning�up You may wish to remove some or all of the compiled codes or other �les installed

under the PIM directory� in this case you may type one of the following

make singleclean

make doubleclean

make complexclean

make dcomplexclean

make sequentialclean

make pvmclean

make mpiclean

make clean�pvm�include

make clean�mpi�include

make examplesclean

make makefilesclean

make realclean

which will clean�up the PIM routines� the examples� the Make�les� the include �les and all

generated �les� returning the package to its distribution form

��

Using PIM in your application To use PIM with your application� link your program with
the �o �le corresponding to the PIM iterative method routine being called and with the PIM
support library libpim�a

��� Calling a PIM iterative method routine

With the exception of the Bi�CG� CGNR� CGNE and QMR methods� all the implemented
methods have the same parameter list as CG
 The argument list for the double�precision im�
plementation of the CG method is

SUBROUTINE PIMDCG�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�

� PDSUM�PDNRM�PROGRESS�

and for Bi�CG �as well as for CGNR� CGNE and QMR�

SUBROUTINE PIMDBICG�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�

� PDSUM�PDNRM�PROGRESS�

where the parameters are as follows

Parameter Description

X A vector of length IPAR���

On input� contains the initial estimate
On output� contains the last estimate computed

B The right�hand�side vector of length IPAR���

WRK A work vector used internally �see the description

of each routine for its length�
IPAR An integer array containing input�output parameters

PAR A �oating�point array containing input�output parameters
MATVEC Matrix�vector product external subroutine

TMATVEC Transpose�matrix�vector product external subroutine
PRECONL Left�preconditioning external subroutine
PRECONR Right�preconditioning external subroutine

P SUM Global sum �reduction� external function
P NRM Vector norm external function
PROGRESS Monitoring routine

Note in the example above that� contrary to the proposal in ���� PIM uses separate routines
to compute the matrix�vector and transpose�matrix�vector products
 See the reference manual�
sections A
� and A
� for the description of the parameters above and the synopsis of the external

routine

��

��� External routines

As stated earlier� the user is responsible for supplying certain routines to be used internally by
the iterative method routines
 One of the characteristics of PIM is that if external routines are

not required by an iterative method routine they are not called �the only exception being the
monitoring routines�
 The user only needs to provide those subroutines that will actually be
called by an iterative method routine� depending on the selection of method� preconditioners
and stopping criteria� dummy parameters may be passed in place of those that are not used

Some compilers may require the presence of all routines used in the program during the linking
phase of the compilation� in this case the user may need to provide stubs for the dummy
routines
 Section A
� gives the synopsis of each user�supplied external routine used by PIM

The external routines have a �xed parameter list to which the user must adhere �see xA
��

Note that �from version �
� onwards� the coe�cient and the preconditioning matrices do not
appear in the parameter list of the PIM routines
 Indeed we regard the matrix�vector products
and preconditioning routines as operators returning only the appropriate resulting vector� thus

the PIM routines have no knowledge of the way in which the matrices are stored

The external routines� however� may access the matrices declared in the main program via

COMMON blocks
 This strategy hides from the PIM routines details of how the matrices are
declared in the main program and thus allows the user to choose the most appropriate storage

method for her problem� previous versions of PIM were more restrictive in this sense

Matrix�vector product Consider as an example a dense matrix partitioned by contiguous
columns among a number of processors
 For illustrative purposes we assume that N is an integer
multiple of NPROCS� and that LOCLEN�N�NPROCS
 The following code may then be used

PROGRAM MATV

� A IS DECLARED AS IF USING A COLUMN PARTITIONING FOR AT LEAST

� TWO PROCESSORS�

INTEGER LDA

PARAMETER �LDA�	

�

INTEGER LOCLEN

PARAMETER �LOCLEN��	
�

DOUBLE PRECISION A�LDA�LOCLEN�

COMMON �PIMA�A

� SET UP PROBLEM SOLVING PARAMETERS FOR USE BY USER DEFINED ROUTINES

� THE USER MAY NEED TO SET MORE VALUES OF THE IPAR ARRAY

� LEADING DIMENSION OF A

IPAR�
��LDA

� NUMBER OF ROWS�COLUMNS OF A

IPAR����N

� NUMBER OF PROCESSORS

��

IPAR����NPROCS

� NUMBER OF ELEMENTS STORED LOCALLY

IPAR����N�IPAR���

� CALL PIM ROUTINE

CALL PIMDCG�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

STOP

END

� MATRIX�VECTOR PRODUCT ROUTINE CALLED BY A PIM ROUTINE� THE

� ARGUMENT LIST TO THIS ROUTINE IS FIXED�

SUBROUTINE MATVEC�U�V�IPAR�

DOUBLE PRECISION U����V���

INTEGER IPAR���

INTEGER LDA

PARAMETER �LDA�	

�

INTEGER LOCLEN

PARAMETER �LOCLEN��	
�

DOUBLE PRECISION A�LDA�LOCLEN�

COMMON �PIMA�A
���

RETURN

END

The scheme above can be used for the transpose�matrix�vector product as well
 We note that
many di�erent storage schemes are available for storing sparse matrices� the reader may �nd
useful to consult Barrett et al� �
� pp
 ���� where such schemes as well as algorithms to compute

matrix�vector products are discussed

Preconditioning For the preconditioning routines� one may use the scheme outlined above
for the matrix�vector product� in some cases this may not be necessary� when there is no need
to operate with A or the preconditioner is stored as a vector
 An example is the diagonal �or

Jacobi� left�preconditioning� where Q� � diag�A���

PROGRAM DIAGP

INTEGER LDA

PARAMETER �LDA�	

�

INTEGER LOCLEN

PARAMETER �LOCLEN��	
�

� Q
 IS DECLARED AS A VECTOR OF LENGTH �	
� AS IF USING AT LEAST

� TWO PROCESSORS�

DOUBLE PRECISION A�LDA�LOCLEN��Q
�LOCLEN�

COMMON �PIMQ
�Q

EXTERNAL MATVEC�DIAGL�PDUMR�PDSUM�PDNRM

�	

� SET UP PROBLEM SOLVING PARAMETERS FOR USE BY USER DEFINED ROUTINES

� THE USER MAY NEED TO SET MORE VALUES OF THE IPAR ARRAY

� LEADING DIMENSION OF A

IPAR�
��LDA

� NUMBER OF ROWS�COLUMNS OF A

IPAR����N

� NUMBER OF PROCESSORS

IPAR����NPROCS

� NUMBER OF ELEMENTS STORED LOCALLY

IPAR����N�IPAR���

� SET LEFT�PRECONDITIONING

IPAR����

���

DO

 I�
�N

Q
�I��
�
D
�A�I�I�

 CONTINUE
���

CALL DINIT�IPAR����
�
D
�X�
�

CALL PIMDCG�X�B�WRK�IPAR�DPAR�MATVEC�DIAGL�PDUMR�PDSUM�PDNRM�PROGRESS�

STOP

END
���

SUBROUTINE DIAGL�U�V�IPAR�

DOUBLE PRECISION U����V���

INTEGER IPAR���

INTEGER LOCLEN

PARAMETER �LOCLEN��	
�

DOUBLE PRECISION Q
�LOCLEN�

COMMON �PIMQ
�Q

CALL DCOPY�IPAR����U�
�V�
�

CALL DVPROD�IPAR����Q
�
�V�
�

RETURN

where DVPROD is a routine based on the BLAS DAXPY routine that performs an element�by�

element vector multiplication
 This example also shows the use of dummy arguments �PDUMR�

Note that it is the responsibility of the user to ensure that� when using preconditioning� the

matrix Q�AQ� must satisfy any requirements made by the iterative method being used with
respect to the symmetry and�or positive�de�niteness of the matrix
 For example� if A is a matrix

with arbitrary �i
e
� non�constant� diagonal entries� then both diag�A���A and Adiag�A��� will
not be symmetric� and the CG and CGEV methods will generally fail to converge
 For these
methods symmetric preconditioning� diag�A�����Adiag�A������ should be used

Inner�products
 vector norms and global accumulation When running PIM routines
on multiprocessor architectures� the inner�product and vector norm routines require reduction

��

and broadcast operations �in some message�passing libraries these can be supplied by a single
routine�
 On vector processors these operations are handled directly by the hardware whereas
on distributed�memory architectures these operations involve the exchange of messages among
the processors

When a PIM iterative routine needs to compute an inner�product� it calls DOT to compute
the partial inner�product values
 The user�supplied routine P SUM is then used to generate the
global sum of those partial sums
 The following code shows the routines to compute the global
sum and the vector ��norm jju jj� �

p
uTu using the BLAS DDOT routine and the reduction�

plus�broadcast operation provided by MPI

SUBROUTINE PDSUM�ISIZE�X�

INCLUDE �mpif�h�

INTEGER ISIZE

DOUBLE PRECISION X���

DOUBLE PRECISION WRK�

�

INTEGER IERR

EXTERNAL DCOPY�MPI�ALLREDUCE

CALL MPI�ALLREDUCE�X�WRK�ISIZE�MPI�DOUBLE�PRECISION�MPI�SUM�

� MPI�COMM�WORLD�IERR�

CALL DCOPY�ISIZE�WRK�
�X�
�

RETURN

END

DOUBLE PRECISION FUNCTION PDNRM�LOCLEN�U�

INCLUDE �mpif�h�

INTEGER LOCLEN

DOUBLE PRECISION U���

DOUBLE PRECISION PSUM

INTEGER IERR

DOUBLE PRECISION DDOT

EXTERNAL DDOT

INTRINSIC SQRT

DOUBLE PRECISION WRK�
�

EXTERNAL MPI�ALLREDUCE

PSUM � DDOT�LOCLEN�U�
�U�
�

CALL MPI�ALLREDUCE�PSUM�WRK�
�MPI�DOUBLE�PRECISION�MPI�SUM�

� MPI�COMM�WORLD�IERR�

PDNRM � SQRT�WRK�
��

RETURN

END

It should be noted that P SUM is actually a wrapper to the global sum routines available on

��

a particular machine
 Also� when executing PIM on a sequential computer� these routines are
empty i
e
� the contents of the array X must not be altered in any way since its elements already
are the inner�product values

The parameter list for these routines was decided upon after inspecting the format of the

global operations available from existing message�passing libraries

Monitoring the iterations In some cases� most particularly when selecting the iterative
method to be used for solving a speci�c problem� it is important to be able to obtain feedback
from the PIM routines as to how an iterative method is progressing

To this end� we have included in the parameter list of each iterative method routine an
external subroutine �called PROGRESS� which receives from that routine the number of vector el�
ements stored locally �LOCLEN�� the iteration number �ITNO�� the norm of the residual �NORMRES�
�according to the norm being used�� the current iteration vector �X�� the residual vector �RES�

and the true residual vector rk � b � Axk� �TRUERES�
 This last vector contains meaningful
values only if IPAR��� is �� � or 	

The parameter list of the monitoring routine is �xed� as shown in xA
�
 The example below
shows a possible use of the monitoring routine� for the DOUBLE PRECISION data type

SUBROUTINE PROGRESS�LOCLEN�ITNO�NORMRES�X�RES�TRUERES�

INTEGER LOCLEN�ITNO

DOUBLE PRECISION NORMRES

DOUBLE PRECISION X����RES����TRUERES���

EXTERNAL PRINTV

WRITE ���FMT��

� ITNO�NORMRES

WRITE ���FMT��

� �X��

CALL PRINTV�LOCLEN�X�

WRITE ���FMT��

� �RESIDUAL��

CALL PRINTV�LOCLEN�RES�

WRITE ���FMT��

� �TRUE RESIDUAL��

CALL PRINTV�LOCLEN�TRUERES�

RETURN

�

 FORMAT ���I	�
X�D
��

�

�

 FORMAT ���A�

END

SUBROUTINE PRINTV�N�U�

INTEGER N

DOUBLE PRECISION U���

INTEGER I

DO

 I �
�N

WRITE ���FMT��

� U�I�

 CONTINUE

RETURN

�

 FORMAT ���D
����
X��

�

END

As with the other external routines used by PIM� this routine needs to be supplied by
the user� we have included the source code for the routine as shown above in the directory
�pim�examples�common and this may be used as is or can be modi�ed by the user as required

Please note that for large system sizes the routine above will produce very large amounts of

output
 We stress that this routine is always called by the PIM iterative method routines� if no
monitoring is needed a dummy routine must be provide

Note that some of the iterative methods contain an inner loop within the main iteration

loop
 This means that� for PIM RGCR and PIM TFQMR� the value of ITNO passed to PROGRESS

will be repeated as many times as the inner loop is executed
 We did not modify the iteration
number passed to PROGRESS so as to re�ect the true behaviour of the iterative method being
used

��� Example programs

In the distributed software the user will �nd a collection of example programs under the direc�
tory examples
 The example programs show how to use PIM with three di�erent matrix storage

formats including dense matrices� those derived from the �ve�point �nite�di�erence discretisa�
tion of a partial di�erential equation �PDE� and the standard sparse representation found in
the Harwell�Boeing sparse matrix collection ����

Most of the examples are provided for sequential and parallel execution� the latter with

separate codes for PVM 	
	

 and MPI libraries
 The examples involving the Harwell�Boeing
sparse format are provided for sequential execution only

The parallel programs for the dense and PDE storage formats have di�erent partitioning

strategies and the matrix�vector products have been designed to take advantage of these

The systems solved have been set�up such that the solution is the vector x � ��� �� � � � � ��T �

in order to help in checking the results
 For the dense storage format� the real system has the
tridiagonal coe�cient matrix of order n � ���

A �

�
�������

� �
� � �

� � �
� �

�
�������

and the complex system of order n � ��� has the form A � �I � S� where S � SH � � � �� �i
and

��

S �

�
�������

� � � i

�� i � � � i

�� i � � � i
�� i �

�
�������

���

The problem using the Harwell�Boeing format is NOS� from the LANPRO collection of problems
in structural engineering ���� pp
 ������
 Problem NOS� has order n � ��� and is derived from a

�nite�element approximation of a beam structure
 For the PDE storage format the system being
solved is derived from the �ve�point �nite�di�erence discretisation of the convection�di�usion
equation

� �

�
��u

�x�
�
��u

�y�

�
� cos���

�u

�x
� sin���

�u

�y
� � �
�

on the unit square� with � � ���� � � ��	
 and u � x�� y� on #R
 The �rst order terms were
discretised using forward di�erences �this problem was taken from �����

A di�erent set of systems is used for the HYBRID examples with dense storage format
 The

real system has a nonsymmetric tridiagonal coe�cient matrix of order n � ���

A �

�
�������

� ��

� � ��

� � ��
� �

�
�������

and the complex system of order n � ��� has A de�ned as

A �

�
�������

� �� � i

� � i � �� � i

� � i � �� � i

� � i �

�
�������

The examples include the solution of systems using di�erent preconditioners
 In the dense
and Harwell�Boeing formats the examples include diagonal and polynomial preconditioners� the
�ve�point PDE format includes a variant of the incomplete LU factorisation and polynomial

preconditioners
 The polynomial preconditioners provided are the Neumann and the weighted
and unweighted least�squares polynomials found in �	
�

��

��	�� Eigenvalues estimation and Chebyshev acceleration

Consider the use of Chebyshev acceleration to obtain a solution to a linear system whose
coe�cient matrix has real entries only� the eigenvalues of the iteration matrix I � Q�A are

known to lie in the complex plane
 We can use a few iterations of the routine PIMDRGMRESEV to
obtain estimates of the eigenvalues of Q�A and then switch to PIMDCHEBYSHEV
 Before the latter
is called a transformation on the extreme values on the real axis must be made as described in
Section �

In the example below� we use the Jacobi preconditioner as shown in x�
�
 Note that the
vector X returned by PIMDRGMRESEV may be used as an improved initial vector for the routine
PIMDCHEBYSHEV
 Both routines are combined in a loop to produce a hybrid method� the code
below is based on the algorithm given by Elman et al� ���� page ����

PROGRAM HYBRID

INTEGER MAXIT

EXTERNAL MATVEC�PRECON�PDUMR�PDSUM�PDNRM�

� SET MAXIMUM NUMBER OF ITERATIONS FOR THE HYBRID LOOP

MAXIT�INT�N����

� SET LEFT�PRECONDITIONING

IPAR����

CALL DINIT�N�
�
D
�X�
�

DO

 I �
�MAXIT

� SET SMALL NUMBER OF ITERATIONS FOR RGMRESEV

IPAR�

���

CALL PIMDRGMRESV�X�B�WRK�IPAR�DPAR�MATVEC�PRECONR�PDUMR�PDSUM�PDNRM�PROGRESS�

IF �IPAR�
���NE��
� THEN

IPAR�

� � I

GO TO �

END IF

� MODIFY REAL INTERVAL TO REFLECT EIGENVALUES OF I�Q
A� BOX CONTAINING

� THE EIGENVALUES IS RETURNED IN DPAR���� DPAR���� DPAR�	�� DPAR����

� THE FIRST TWO ARE THE INTERVAL ALONG THE REAL AXIS� THE LAST TWO ARE

� THE INTERVAL ALONG THE IMAGINARY AXIS�

MU
 � DPAR���

MUN � DPAR���

DPAR��� �
�
D
 � MUN

DPAR��� �
�
D
 � MU

� SET NUMBER OF ITERATIONS FOR CHEBYSHEV

IPAR�

��	

CALL PIMDCHEBYSHEV�X�B�DWRK�IPAR�DPAR�MATVEC�PRECON�PDUMR�PDSUM�PDNRM��PROGRESS�

IF ��IPAR�
���EQ�
� �OR� �IPAR�
���EQ���� �OR�

��

� �IPAR�
���EQ����� THEN

IPAR�

� � I

GO TO �

END IF

 CONTINUE

�
 CONTINUE
���

��	�� Dense storage

For the dense case� the coe�cient matrix is partitioned by columns among the p processors�
which are considered to be logically connected on a grid �see Figure 	�A�
 Each processor stores
at most dn	p e columns of A
 For the example shown in Figure 	�B� the portion of the matrix�
vector product to be stored in processor � is computed according to the diagram shown in

Figure 	�C
 Basically� each processor computes a vector with the same number of elements as

that of the target processor �� in the example� which holds the partial sums for each element

This vector is then sent across the network to be summed in a recursive�doubling fashion until

the accumulated vectors� carrying the contributions of the remaining processors� arrive at the
target processor
 These accumulated vectors are then summed together with the partial sum
vector computed locally in the target processor� yielding the elements of the vector resulting
from the matrix�vector product
 This process is repeated for all processors
 This algorithm is

described in ����

To compute the dense transpose�matrix�vector product� ATu� each processor broadcasts to
the other processors a copy of its own part of u
 The resulting part of the v vector is then
computed by each processor

��	�� PDE storage

For the PDE storage format� a square region is subdivided into l�� rows and columns giving a
grid containing l� internal points� each point being numbered as i��j���l� i� j � �� �� � � � � l �see
Figure ��
 At each point we assign � di�erent values corresponding to the center� north� south�

east and west points on the stencil ��i�j� �i�j� �i�j � �i�j � �i�j respectively� which are derived from
the PDE and the boundary conditions of the problem
 Each grid point represents a variable�
the whole being obtained by solving a linear system of order n � l�

A matrix�vector product v � Au is obtained by computing

vi�j � �i�jui�j � �i�jui���j � �i�jui���j � �i�jui�j�� � �i�jui�j�� ���

where some of the �� �� �� � and � may be zero according to the position of the point relative

to the grid
 Note that only the neighbouring points in the vertical and horizontal directions are
needed to compute vi�j

	�

Figure 	! Matrix�vector product� dense storage format! A� Partitioning in columns � B� Exam�
ple and C� Computation and communication steps

=

A B C D E F G H

I J K L M N O P

a

b

c

d

e

f

g

h

.
.

.

Aa+Bb+Cc+Dd+Ee+Ff+Gg+Hh

Ia+Jb+Kc+Ld+Me+Nf+Og+Ph

.

.

.

B)

Aa+Bb+Cc+Dd+Ee+Ff+Gg+Hh
Ia+Jb+Kc+Ld+Me+Nf+Og+Ph

Gg+Hh
Og+Ph

Cc+Dd+Gg+Hh
Kc+Ld+Og+Ph

Ee+Ff
Me+Nf

Step 1

Step 2

C)

A) Processors

	�

Figure �! Matrix�vector product� PDE storage format

Processor 0 Processor 1 Processor 2

Boundary grid points (exchanged)

Grid points

Data exchange
Five−point stencil

1

2

3

4

5

6

7

8

i

j

α

β

γ

δε

A parallel computation of ��� may be organised as follows
 The grid points are partitioned

by vertical panels among the processors as shown in Figure �
 A processor holds at most d l	p e
columns of l grid points
 To compute the matrix�vector product� each processor exchanges with
its neighbours the grid points in the �interfaces� between the processors �the points marked

with white squares in Figure ��
 Equation ��� is then applied independently by each processor

at its local grid points� except at the local interfacing points
 After the interfacing grid points
from the neighbouring processors have arrived at a processor� Equation ��� is applied using the
local interfacing points and those from the neighbouring processors

This parallel computation o�ers the possibility of overlapping communication with the com�

putation
 If the number of local grid points is large enough� one may expect that while Equation
��� is being applied to those points� the interfacing grid points of the neighbouring processors
will have been transferred and be available for use
 This method attempts to minimize the

overheads incurred by transferring the data �note that we only make gains if the asynchronous
transfer of messages is available�
 The example below is taken from the matrix�vector product
routine using MPI

	�

SUBROUTINE PDMVPDE�NPROCS�MYID�LDC�L�MYL�COEFS�U�V�UEAST�UWEST�

INCLUDE �mpif�h�

� Declarations���

� Send border U values to �myid�
��th processor

MSGTYPE �

TO � MYID �

CALL MPI�ISEND�U�EI
��L�MPI�DOUBLE�PRECISION�TO�MSGTYPE�

� MPI�COMM�WORLD�SID
�IERR�

� Post to receive border U values from �myid�
��th processor

MSGTYPE �

CALL MPI�IRECV�UEAST�L�MPI�DOUBLE�PRECISION�MPI�ANY�SOURCE�

� MSGTYPE�MPI�COMM�WORLD�RID
�IERR�

� Send border U values to �myid�
��th processor

MSGTYPE �

TO � MYID �

CALL MPI�ISEND�U�WI
��L�MPI�DOUBLE�PRECISION�TO�MSGTYPE�

� MPI�COMM�WORLD�SID
�IERR�

� Post to receive border U values from �myid�
��th processor

MSGTYPE �

CALL MPI�IRECV�UWEST�L�MPI�DOUBLE�PRECISION�MPI�ANY�SOURCE�

� MSGTYPE�MPI�COMM�WORLD�RID
�IERR�

� Compute with local grid points���

� Need �eastern� data�wait for completion of receive

CALL MPI�WAIT�RID
�ISTAT�IERR�

� Compute with local interfacing grid points in the �east����

� Need �west� data�wait for completion of receive

CALL MPI�WAIT�RID
�ISTAT�IERR�

� Compute with local interfacing grid points in the �west����

� Release message IDs

CALL MPI�WAIT�SID
�ISTAT�IERR�

CALL MPI�WAIT�SID
�ISTAT�IERR�

RETURN

END

The computation of the transpose�matrix�vector product for the PDE case is performed in a
similar fashion
 Before the computation starts� each processor exchanges with its left and right

		

neighbouring processors the east and west coe�cients corresponding to the interfacing grid
points�
 The computation performed is then similar to the matrix�vector product described
above except that for each interfacing grid point we apply

vi�j � �i�jui�j � �i���jui���j � �i���jui���j � �i�j��ui�j�� � �i�j��ui�j�� ���

Comparing ��� to ��� we see that the coe�cients are swapped in the north�south and east�west
directions
 Note that due to the partitioning imposed we do not need to exchange the north
and south coe�cients

A matrix�vector product for parallel vector architectures For parallel vector architec�

tures like the Cray Y�MP�E� the routines outlined above are not e�cient� because of the small
vector lengths involved
 A routine requiring the use of long vectors may be obtained by writing
the matrix�vector product for the ��point stencil as a sequence of AXPYs
 The use of AXPYs
also provides a better performance because these operations are usually very e�cient on such

machines

Consider the storage scheme described above i
e
� �ve coe�cients ��� �� �� � and �� are stored

per grid point� and numbered sequentially as i� �j � ��l� i� j � �� �� � � � � l
 The coe�cients can

then be stored in �ve separate arrays of size n � l�
 The matrix�vector product v � Au can
then be obtained by the following sequence of operations

vk � �kuk� k � �� �� � � � � n ���

vk � vk � �kuk��� k � �� �� � � � � n� � ����

vk � vk � �kuk��� k � �� 	� � � � � n ����

vk � vk � �kuk�l� k � �� �� � � � � n� l ����

vk � vk � �kuk�l� k � l � �� l � �� � � � � n ��	�

and the transpose matrix�vector product v � ATu is obtained similarly�

vk � �kuk� k � �� �� � � � � n ����

vk�� � vk�� � �kuk� k � �� �� � � � � n� � ����

vk�� � vk�� � �kuk� k � �� 	� � � � � n ��
�

vk�l � vk�l � �kuk� k � �� �� � � � � n� l ����

vk�l � vk�l � �kuk� k � l � �� l � �� � � � � n ����

Experiments on the Cray Y�MP�E��	� showed that this approach gave a three�fold improve�

ment in the performance� from ��MFLOPS to ���MFLOPS
 A separate set of the PDE examples
containing these matrix�vector product routines are provided under the
pim���examples�sequential�pvp�pde directory

�This may only need to be done once if the coe	cient matrix is unchanged during the solution of the system�

	�

��	�� Preconditioners

The examples involving an incomplete LU factorisation as the preconditioner for the PDE case
are a modi�cation of the usual ILU��� method
 This modi�cation was made to allow the com�

putation of the preconditioning step without requiring any communication to be performed
 To
achieve this we note that the matrices arising from the �ve�point �nite�di�erence discretisation
have the following structure

A �

�
������

B E

F B

 E
F B

�
������ � B �

�
������

� �

� �

 �
� �

�
������ ����

where E and F are diagonal matrices and �� � and � are the central� north and south coe�cients

derived from the discretisation �the subscripts are dropped for clarity�
 Each matrix B is
approximating the unknowns in a single vertical line on the grid on Figure �

To compute a preconditioner Q � LU � we modify the ILU��� algorithm in the sense that
the blocks E and F are discarded �because only the diagonal blocks are considered we refer to

this factorisation as IDLU����
 The resulting L and U factors have the following structure

L �

�
�����
X

X

X

�
����� � X �

�
�����

�
$� �

$� �

�
����� �

U �

�
�����
Y

Y

Y

�
����� � Y �

�
������

$� $�

$�

 $�

$�

�
������ ����

where $�� $� and $� are the modi�ed coe�cients arising from the ILU��� algorithm
 %From the

structure of L and U it may be clearly seen that applying the preconditioning step reduces to the
solution of small �order l�� independent� triangular systems
 Each of these systems correspond
to a vertical line in the grid� since it was partitioned in vertical panels� these systems can be

solved independently in each processor

	�

The polynomial preconditioners used can be expressed by�
mX
i��

�m�i

	
I � �diag�A����A

i�
�diag�A���� ����

which can be easily computed as a sequence of vector updates and matrix�vector products using

Horner�s algorithm
 Note that the �m�i coe�cients de�ne the kind of polynomial preconditioner
being used
 The Neumann preconditioner is obtained when �m�i � ���i � the weighted and
unweighted least�squares polynomial preconditioners are those reported in �	
�
 The maximum

available degree of the polynomial for these latter two is m � �	

��	�� Results

In this section we provide some results for the example programs discussed above

Stopping criteria As pointed out earlier� the selection of the stopping criterion has a sub�

stantial e�ect on the execution time
 Evidently� there is a trade�o� between the time spent
on each iteration and the total number of iterations required for convergence
 In Table 	 we
show� for each of the stopping criteria provided� the execution time per iteration when PIMDCG

is applied to the tridiagonal system �described in x�

� of order n � ��� with diagonal left�

preconditioning
 The increase in execution time of each stopping criterion with respect to
criterion � �the �cheapest� one� is shown

Table 	! E�ect of di�erent stopping criteria on an iterative method routine

Stopping Time�s��
criterion k� jj rk� jj� iteration Increase

� �� 	��
� ����� ��			� ��

� ��
���� ���� ��	�	� ����
	 �� ����� ���	 ��	��
 ��
�
� �� 	�	�� ����� ������ ��
� ��
���� ���� ����
� ����

 �� ���	� ���� ������ ��	�
� �� 	���� ����� ������ 	�	�

General results We present below the results obtained from solving a system of n �
�
equations derived from the ��point �nite�di�erences discretisation of Equation �
�

	

We used both the IDLU��� and the Neumann polynomial preconditioner of degree � as left�
preconditioners to solve this problem
 The stopping criterion used was number � with � � �����

and the ��norm� using this criterion a solution will be accepted if jj zk jj�
 	����������� except
for PIMDRGMRES which stops its iterations when the norm of the residual is less than �
 The

maximum number of iterations allowed was 	� and the initial value of the solution vector was
��� �� � � � � ��T
 For the restarted GMRES and GCR the restarting value used was ��
 The results
are reported for the double�precision versions of the routines

Tables � and � show the results obtained with the PIM routines for the IDLU��� and

Neumann preconditioners on a single workstation
 A status value of � on exit from a PIM
routine indicates that the convergence conditions have been satis�ed� a non�zero status value
indicates that a problem has been encountered
 In particular a status value of �� is returned

when the maximum number of iterations speci�ed by the user has been exceeded
 This example
is characteristic of the problems facing the user of iterative method i
e
� not all methods converge
to the solution and some preconditioner may cause an iterative method to diverge �or converge
slowly�
 We stress that the methods that have failed to converge in this example do converge

for other systems

Scalability In Table
 we present the execution times obtained by solving the test problem
above� but with n � �
	�� equations� with the PIMDRGMRES routine �using �� basis vectors�
and the Neumann polynomial preconditioner �of �rst degreee� on the IBM SP��� Intel Paragon

XP�S� Kendall Square Research KSR�� SGI Challenge� Cray Y�MP�E and Cray C���
E
 The
PIMDRGMRES routine converged to a tolerance of ����� in �� iterations
 The results for the Cray
machines were obtained with the modi�ed matrix�vector product routines described in x�

	

The results for the KSR� are obtained using the KSRBLAS routines
 The programs running

on the SGI Challenge are from the set of examples available with the PIM distributed software
using the PVM message�passing library
 The results for the IBM SP�� are obtained using
the IBM PVMe �
� version of PVM� which enables the use of the IBM SP�� High Performance
Switch
 Note that for the IBM SP��� SGI Challenge and Intel Paragon XP�S superlinear e�ects

occur� we believe this is due to the speci�c memory organization of those machines �hierarchic
memories and�or the presence of a cache memory�

� Summary

We have described in this report PIM� the Parallel Iterative Methods package� a collection of

Fortran �� routines for the parallel solution of linear systems using iterative methods

The package was designed to be used in a variety of parallel environments without imposing

any restriction on the way the coe�cient matrices and the preconditioning steps are handled

The user may thus explore characteristics of the problem and of the particular parallel architec�

	�

Table �! Example with IDLU��� preconditioner

Method k� Time�s� jj r
k�� jj� Status

CG 	� ������ ������� ��
CGEV 	� ������ ������� ��
Bi�CG 	� ������ ������� ��
CGS �� ������ �����	 � ����� �
Bi�CGSTAB �� ������ ������ � ����� �
RBi�CGSTAB � ���	�� 	����� � ����� �

RGMRES 	 ���
�� ������ � ����� �
RGMRESEV 	 ������ ������ � ����� �
RGCR 	 ������ ������ � ����� �
CGNR 	� ������ �����	� ��
CGNE 	� ������ 	������ ��
QMR 	� ������ ����	� ��
TFQMR �� ������ ��	��� � ����� �

Table �! Example with Neumann polynomial preconditioner

Method k� Time�s� jj r
k�� jj� Status

CG 	� ������ ������
 ��
CGEV 	� ���	�� ������
 ��
Bi�CG 	� ������ �	��
�� ��
CGS �� ������ ���	�� � ����� �

Bi�CGSTAB �� ������ ��	�
	 � ����� �
RBi�CGSTAB � ������ ���		� � ����� �
RGMRES 	 ���
�� ������ � ����� �
RGMRESEV 	 ��	��� ������ � ����� �

RGCR 	 ������ ������ � ����� �
CGNR 	� ������ ������ � ���� ��
CGNE 	� ������ 	�
��� � ��� ��
QMR 	� ���
�� ������ ��
TFQMR �� ������ ��
�	� � ����� �

	�

Table
! Execution time �in seconds� for test problem �n � �
	��� solved by PIMDRGMRES with
the Neumann polynomial preconditioner �of �rst degreee�

IBM Intel Intel SGI Cray Cray Cray

p SP�� Paragon XP�S iPSC��
�� Challengey KSR�z T	D� Y�MP�E C���

� ������ �
���	 ���
� ��	���

� 	��
� �	��
� ����� ������ ���
�
� ����	
���� �
��� �
��	 ����
� ���� ����� 	��
� �

���
�
 �
�	� 	��	� ����

	� �����

� W
H
 Purvis� Daresbury Laboratory� U
K

y S
 Thomas� CERCA�Montr&eal
z A
 Pindor� U
 of Toronto �	��
� P
T
M
 Bulh oes� Cray Research Inc

ture being used
 Indeed� the performance of a PIM routine is dependent on the user�supplied

routines for the matrix�vector products� inner�products and vector norms and the computation
of the preconditioning steps

PIM is an ongoing project and we intend to improve it and include other iterative methods

We encourage readers to send their comments and suggestions� the authors may be contacted

via e�mail at either rudnei�mat�ufrgs�br or trh�ukc�ac�uk

Acknowledgements

We would like to thank the National Supercomputing Centre �CESUP	� Brazil� the National
Laboratory for Scienti�c Computing �LNCC
CNPq	� Brazil� the Parallel Laboratory� University

in Bergen� Norway� the Army High Performance Computing Research Center� Minnesota� USA
and Digital Equipment Corporation �via the Internet Alpha Program�� who kindly made their
facilities available for our tests

We also thank our collaborators� Matthias G
 Imhof �MIT�� Paulo Tib&erio M
 Bulh oes �Cray
Research�� Steve Thomas �CERCA�Montr&eal�� Andrzej Pindor �University of Toronto�� William
H
 Purvis �Daresbury Laboratory� U
K
� and Ramiro B
 Willmersdorf �LNCC� Brazil� for their
help on testing PIM

This work was supported in part by the Army High Performance Computing Research

	�

Center� under the auspices of Army Research O�ce contract number DAAL�	����C���	� with
the University of Minnesota

References

��� E
 Anderson� Z
 Bai� C
 Bischof� J
 Demmel� J
 Dongarra� J
 Du Croz� A
 Greenbaum�
S
 Hammarling� A
 McKenney� S
 Ostrouchov� and D
 Sorensen
 LAPACK Users� Guide

SIAM� Philadelphia� ����

��� S
F
 Ashby
 Minimax polynomial preconditioning for Hermitian linear systems
 Report
UCRL�JC���	���� Numerical Mathematics Group� Computing ' Mathematics Research
Division� Lawrence Livermore National Laboratory� March ����

�	� S
F
 Ashby� T
A
 Manteu�el� and J
S
 Otto
 A comparison of adaptive Chebyshev and least

squares polynomial preconditioning for Hermitian positive de�nite linear systems
 Report
UCRL�JC���
��
� Numerical Mathematics Group� Computing ' Mathematics Research
Division� Lawrence Livermore National Laboratory� March ����

��� S
F
 Ashby� T
A
 Manteu�el� and P
E
 Saylor
 A taxonomy for Conjugate Gradient meth�

ods
 SIAM Journal of Numerical Analysis� ��!����"��
�� ����

��� S
F
 Ashby and M
K
 Seager
 A proposed standard for iterative linear solvers �version
�
��
 Report UCRL�����
�� Numerical Mathematics Group� Computing ' Mathematics
Research Division� Lawrence Livermore National Laboratory� January ����

�
� R
 Barrett� M
 Berry� T
 Chan� J
 Demmel� J
 Donald� J
 Dongarra� V
 Eijkhout� R
 Pozo�

C
 Romine� and H
 van der Vorst
 Templates for the solution of linear systems� building
blocks for iterative methods
 SIAM� Philadelphia� ���	

��� R
A
A
 Bruce� J
G
 Mills� and G
A
 Smith
 CHIMP�MPI user guide
 EPCC�KTP�CHIMP�
V��USER �
�� Edinburgh Parallel Computer Centre� University of Edinburgh� June ����

��� R
 Butler and E
 Lusk
 User�s guide to the p� programming system
 ANL������� Argonne

National Laboratory� October ����

��� F
�C
 Cheng� P
 Vaughan� D
 Reese� and A
 Skjellum
 The Unify system
 User�s guide�
document for version �
�
�� NSF Engineering Research Center� Mississippi State University�
September ����

���� E
J
 Craig
 The N�step iteration procedures
 Journal of Mathematical Physics� 	�!
�"�	�

����

��

���� R
D
 da Cunha
 A Study on Iterative Methods for the Solution of Systems of Linear
Equations on Transputer Networks
 PhD thesis� Computing Laboratory� University of
Kent at Canterbury� July ����

���� R
D
 da Cunha and T
R
 Hopkins
 Parallel preconditioned Conjugate�Gradients methods
on transputer networks
 Transputer Communications� ����!���"���� ���	
 Also as TR����	�

Computing Laboratory� University of Kent at Canterbury� U
K

��	� R
D
 da Cunha and T
R
 Hopkins
 A parallel implementation of the restarted GMRES
iterative method for nonsymmetric systems of linear equations
 Advances in Computa�
tional Mathematics� ��	�!�
�"���� April ����
 Also as TR����	� Computing Laboratory�

University of Kent at Canterbury

���� E
F
 D�Azevedo and C
H
 Romine
 Reducing communication costs in the Conjugate Gradi�
ent algorithm on distributed memory multiprocessors
 Research Report ORNL�TM�������
Oak Ridge National Laboratory� ����

���� J
J
 Dongarra� J
 Du Croz� S
 Hammarling� and R
J
 Hanson
 An extended set of FOR�

TRAN Basic Linear Algebra Subprograms
 ACM Transactions on Mathematical Software�
�����!�"��� ����

��
� J
J
 Dongarra� R
A
 van de Geijn� and R
C
 Whaley
 A users� guide to the BLACS v�
�

Technical report� Computer Science Department� University of Tennessee� ���	

���� I
S
 Du�� R
G
 Grimes� and J
G
 Lewis
 Users� guide for the Harwell�Boeing sparse matrix

collection
 Report TR�PA�����
� CERFACS� October ����

���� I
S
 Du�� M
 Marrone� and G
 Radicati
 A proposal for user level sparse BLAS " SPARKER
working note (�
 Report TR�PA������� CERFACS� October ����

���� S
C
 Eisenstat
 A note on the generalized Conjugate Gradient method
 SIAM Journal of
Numerical Analysis� ��!	��"	
�� ���	

���� H
C
 Elman� Y
 Saad� and P
 Saylor
 A hybrid Chebyshev Krylov subspace algorithm

for solving nonsymmetric systems of linear equations
 SIAM Journal of Scienti�c and
Statistical Computing� �!���"���� ���

���� R
 Fletcher
 Conjugate Gradient Methods for Inde�nite Systems� volume ��
 of Lecture
Notes in Mathematics� pages �	"��
 Spring�Verlag� Heidelberg� ���

���� Message Passing Interface Forum
 MPI! A message�passing interface standard
 TR CS��	�

���� University of Tennessee� November ���	

��

��	� R
W
 Freund
 A transpose�free quasi�minimal residual algorithm for non�Hermitian linear
systems
 Submitted to SIAM Journal of Scienti�c and Statistical Computing

���� R
W
 Freund
 Implementation details of the coupled QMR algorithm
 Numerical Analysis
Manuscript ������ AT'T Bell Laboratories� October ����

���� R
W
 Freund� G
H
 Golub� and N
M
 Nachtigal
 Iterative solution of linear systems
 Acta

Numerica� �!��"���� ����

��
� R
W
 Freund� G
H
 Golub� and N
M
 Nachtigal
 Recent advances in Lanczos�based itera�
tive methods for nonsymmetric linear systems
 RIACS Technical Report ��
��� Research
Institute for Advanced Computer Science� NASA Ames Research Center� ����
 To appear

on Algorithmic trends for Computational Fluid Dynamics in the
��s

���� R
W
 Freund and M
 Hochbruck
 A Biconjugate Gradient�type algorithm for the itera�
tive solution of non�Hermitian linear systems on massively parallel architectures
 RIACS
Technical Report ��
��� Research Institute for Advanced Computer Science� NASA Ames

Research Center� ����
 To appear on Computational and Applied Mathematics I�Algorithms
and Theory

���� A
 Geist� A
 Beguelin� J
 Dongarra� W
 Jiang� R
 Manchek� and V
S
 Sunderam
 PVM 	
user�s guide and reference manual
 Research Report ORNL�TM������� Oak Ridge National

Laboratory� May ���	

���� G
H
 Golub and C
F
 Van Loan
 Matrix Computations
 Johns Hopkins University Press�
Baltimore� �nd edition� ����

�	�� R
G
 Grimes� D
R
 Kincaid� and D
M
 Young
 ITPACK �
� user�s guide
 Report No

CNA����� Center for Numerical Analysis� University of Texas at Austin� August ����

�	�� W
 Gropp and B
 Smith
 Simpli�ed linear equation solvers users manual
 ANL��	���
Argonne National Laboratory� February ���	

�	�� L
A
 Hageman and D
M
 Young
 Applied Iterative Methods
 Academic Press� New York�

����

�		� R
J
 Harrison
 TCGMSG Send�receive subroutines " version �
��
 User�s manual� Battelle

Paci�c Northwest Laboratory� January ���	

�	�� M
A
 Heroux
 A proposal for a sparse BLAS toolkit " SPARKER working note (�
 Report

TR�PA������� CERFACS� October ����

�	�� M
R
 Hestenes and E
L
 Stiefel
 Method of Conjugate Gradients for solving linear systems

Journal of Research National Bureau of Standards� ��!�	�"���� ����

��

�	
� W
H
 Holter� I
M
 Navon� and T
C
 Oppe
 Parallelizable preconditioned Conjugate Gra�
dient methods for the Cray Y�MP and the TMC CM��
 Technical report� Supercomputer
Computations Research Institute� Florida State University� December ����

�	�� N
M
 Nachtigal� S
C
 Reddy� and L
N
 Trefethen
 How fast are nonsymmetric matrix
iterations
 SIAM Journal on Matrix Analysis and Applications� �	�	�!���"���� ����

�	�� T
C
 Oppe� W
D
 Joubert� and D
R
 Kincaid
 NSPCG user�s guide " version �
�
 Report
No
 CNA���
� Center for Numerical Analysis� University of Texas at Austin� April ����

�	�� A
 Pindor
 Experiences with implementing PIM �Parallel Iterative Methods� package on
KSR�
 In Supercomputing Symposium �
�� Toronto� June ����

���� Y
 Saad
 Krylov subspace methods for solving large unsymmetric systems
 Mathematics

of Computation� 	�!���"��
� ����

���� Y
 Saad and M
H
 Schultz
 Conjugate Gradient�like algorithms for solving nonsymmetric
linear systems
 Mathematics of Computation� �������!���"���� ����

���� Y
 Saad and M
H
 Schultz
 GMRES! a generalized minimal residual algorithm for solving
nonsymmetric linear systems
 SIAM Journal of Scienti�c and Statistical Computing� �!��
"

�
�� ���

��	� G
L
G
 Sleijpen and D
R
 Fokkema
 BiCGSTAB�L� for linear matrices involving unsym�
metric matrices with complex spectrum
 ETNA� �!��"	�� September ���	

���� P
 Sonneveld
 CGS� a fast Lanczos�type solver for nonsymmetric linear systems
 SIAM
Journal of Scienti�c and Statistical Computing� ��!	
"��� ����

���� G
 Stellner� S
 Lamberts� and T
 Ludwig
 NXLIB User�s Guide
 Technical report� In�

stitut f)ur Informatik� Lehrstuhl f)ur Rechnertechnik und Rechnerorganisation� Technische
Universit)at M)unchen� October ���	

��
� H
A
 van der Vorst
 Bi�CGSTAB! A fast and smoothly converging variant of Bi�CG for
the solution of nonsymmetric linear systems
 SIAM Journal of Scienti�c and Statistical

Computing� �	!
	�"
��� ����
 Also as Report No
 ������ Mathematical Institute� University
of Utrecht

�	

Reference manual

A Reference manual

In this section we provide details of each individual subroutine in PIM
 Each entry describes
the purpose� the name and parameter list� storage requirements� function dependencies and
restrictions of the respective routine

For each iterative method routine we also provide a description of the implemented algo�
rithm
 Vectors and scalar values are denoted by lower case letters and matrices by capital
letters
 Subscripts indicate either the iteration or a vector column� the latter in the case of a

matrix

Each computational step in the algorithm is numbered� if a routine su�ers a breakdown the

step number where the failure occurred is returned in IPAR��
�

Whenever an underscore appears it indicates the type of a variable or function �REAL�

DOUBLE PRECISION� COMPLEX� DOUBLE COMPLEX� and should be replaced by S� D� C or Z� which�
ever is appropriate

The COMPLEX and DOUBLE COMPLEX PIM routines compute inner�products using the BLAS
CDOTC and ZDOTC routines respectively

��

Reference manual Description of parameters

A�� Description of parameters

The parameters used in an iterative method routine are

Parameter Description

X A vector of length IPAR���

On input� contains the initial estimate
On output� contains the last estimate computed

B The right�hand�side vector of length IPAR���

WRK A work vector used internally �see the description
of each routine for its length�

IPAR see below

PAR see below
MATVEC Matrix�vector product external subroutine
TMATVEC Transpose�matrix�vector product external subroutine
PRECONL Left�preconditioning external subroutine

PRECONR Right�preconditioning external subroutine
P SUM Inner�product external function
P NRM Vector norm external function

PROGRESS Monitoring routine

IPAR �input�

Element Description

� Leading dimension of A
� Number of rows or columns of A �depending

on partitioning�
	 Block size �for cyclic partitioning�
� Number of vector elements stored locally
� Restarting parameter used in GMRES� GCR and RBi�CGSTAB

 Number of processors
� Processor identi�cation
� Preconditioning

�! No preconditioning
�! Left preconditioning
�! Right preconditioning
	! Symmetric preconditioning

� Stopping criterion �see Table ��
�� Maximum number of iterations allowed

��

Reference manual Description of parameters

IPAR �output�

Element Description

�� Number of iterations
�� Exit status!

�! converged to solution

"�! no convergence has been achieved
"�! �soft��breakdown� solution may have been found
"	! �hard��breakdown� no solution

"�! con�ict in preconditioner and stopping criterion selected�
if IPAR����� or IPAR����� then IPAR�����

"�! error in stopping criterion 	� rTk zk
 �
"
! stopping criterion invalid on PIM CHEBYSHEV

"�! no estimates of eigenvalues supplied for PIM CHEBYSHEV

"�! under�ow while computing �� on PIM CGEV

"�! over�ow while computing �� on PIM CGEV

"��! under�ow while computing �n on PIM CGEV

"��! over�ow while computing �n on PIM CGEV

�	 If IPAR���� is either "� or "	� it gives the step number in
the algorithm where a breakdown has occurred

PAR �input�

Element Description

� The value of � for use in the stopping criterion

PAR �output�

Element Description

� The left�hand side of the stopping criterion selected

	 Minimum real part of the eigenvalues of Q�AQ�

� Maximum real part of the eigenvalues of Q�AQ�

� Minimum imaginary part of the eigenvalues of Q�AQ�

 Maximum imaginary part of the eigenvalues of Q�AQ�

�

Reference manual External routines

A�� External routines

Purpose

To compute the matrix�vector product� transpose�matrix�vector product� left�preconditioning�

right�preconditioning� global sum of a vector� vector norm� and to monitor the progress of the
iterations

Note The coe�cient matrix and the preconditioning matrices can be made available to
MATVEC� TMATVEC� PRECONL and PRECONR using COMMON blocks

Synopsis

Matrix�vector product v � Au

SUBROUTINE MATVEC�U�V�IPAR�

precision U����V���

INTEGER IPAR���

Parameters Type

U INPUT
V OUTPUT
IPAR INPUT

Transpose matrix�vector product v � ATu

SUBROUTINE TMATVEC�U�V�IPAR�

precision U����V���

INTEGER IPAR���

Parameters Type

U INPUT
V OUTPUT
IPAR INPUT

Left preconditioning v � Qu

SUBROUTINE PRECONL�U�V�IPAR�

precision U����V���

INTEGER IPAR���

Parameters Type

U INPUT
V OUTPUT
IPAR INPUT

Right preconditioning v � Qu

SUBROUTINE PRECONR�U�V�IPAR�

precision U����V���

INTEGER IPAR���

Parameters Type

U INPUT
V OUTPUT
IPAR INPUT

��

Reference manual External routines

Synopsis

Parallel sum

SUBROUTINE P SUM�ISIZE�X�

INTEGER ISIZE

precision X���

Parameters Type

ISIZE INPUT
X INPUT�OUTPUT

Parallel vector norm

precision FUNCTION P NRM�LOCLEN�U�

INTEGER LOCLEN

precision U���

Parameters Type

LOCLEN INPUT
U INPUT

Monitoring routine

SUBROUTINE PROGRESS�LOCLEN�ITNO�

� NORM�X�RES�

� TRUERES�

INTEGER LOCLEN�ITNO

precision NORM�X����RES����

� TRUERES���

Parameters Type

LOCLEN INPUT
ITNO INPUT
NORM INPUT
X INPUT

RES INPUT

TRUERES INPUT

Notes

�
 Replace precision by REAL� DOUBLE PRECISION� COMPLEX� DOUBLE COMPLEX

�
 In the monitoring routine PROGRESS above� the array TRUERES contains the value of the

true residual rk � b� Axk only if IPAR��� is �� � or 	

��

Reference manual PIM CG

A�� PIM CG

Purpose

Solves the system Q�AQ�x � Q�b using the CG method

Synopsis

PIMSCG�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDCG�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCCG�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZCG�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ��IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

None

��

Reference manual PIM CG

Algorithm A�� CG

�� r� � Q��b� AQ�x��

�� p� � r�
	� �� � rT� r�
�� w� � Q�AQ�p�
�� �� � pT�w�

for k � �� �� � � �

� �k�� � �k��	�k��

�� xk � xk�� � �k��pk��

�� rk � rk�� � �k��wk��

�� check stopping criterion
�� � sk � Q�AQ�rk
�� � �k � rTk rk
�� � �k � rTk sk
�	 � �k � �k	�k��

�� � pk � rk � �kpk��

�� � wk � sk � �kwk��

�
 � �k � �k � ��k�k��

endfor

��

Reference manual PIM CGEV

A�� PIM CGEV

Purpose

Solves the systemQ�AQ�x � Q�b using the CGmethod� returns� at each iteration� the estimates

of the smallest and largest eigenvalues ofQ�AQ� derived from the associated Lanczos tridiagonal
matrix

Synopsis

PIMSCGEV�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDCGEV�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ��IPAR������IPAR������

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 �� �� �� ��� ���

Function dependencies

BLAS COPY� AXPY� DOT

LIBPIM

Notes

� If more accuracy is required in the computation of the estimates of the eigenvalues� the

user may modify the value of the maximum number of iterations allowed in the routine
BISECTION ��les pim���single�src�pimscgev�f or pim���double�src�pimdcgev�f�

� Not available in COMPLEX or DOUBLE COMPLEX versions

��

Reference manual PIM CGEV

Algorithm A�� CGEV

�� r� � Q��b� AQ�x��

�� p� � r�
	� �� � rT� r�
�� w� � Q�AQ�p�
�� �� � pT�w�

for k � �� �� � � �

� �k�� � �k��	�k��

�� xk � xk�� � �k��pk��

�� rk � rk�� � �k��wk��

�� check stopping criterion
�� � sk � Q�AQ�rk
�� � �k � rTk rk
�� � �k � rTk sk
�	 � �k � �k	�k��

�� � pk � rk � �kpk��

�� � wk � sk � �kwk��

�
 � �k � �k � ��k�k��

�� � compute estimates of eigenvalues
endfor

��

Reference manual PIM CGNR

A�� PIM CGNR

Purpose

Solves the system Q�A
TAQ�x � Q�A

T b using the CGNR method

Synopsis

PIMSCGNR�X�B�WRK�IPAR�SPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDCGNR�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCCGNR�X�B�WRK�IPAR�SPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZCGNR�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ��IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

None

�	

Reference manual PIM CGNR

Algorithm A�� CGNR

�� r� � Q��A
T b� ATAQ�x��

�� p� � r�
	� �� � rT� r�
�� w� � Q�A

TAQ�p�
�� �� � pT�w�

for k � �� �� � � �

� �k�� � �k��	�k��

�� xk � xk�� � �k��pk��

�� rk � rk�� � �k��wk��

�� check stopping criterion
�� � sk � Q�A

TAQ�rk
�� � �k � rTk rk
�� � �k � rTk sk
�	 � �k � �k	�k��

�� � pk � rk � �kpk��

�� � wk � sk � �kwk��

�
 � �k � �k � ��k�k��

endfor

��

Reference manual PIM CGNE

A�� PIM CGNE

Purpose

Solves the system Q�AA
TQ�x � Q�b using the CGNE method

Synopsis

PIMSCGNE�X�B�WRK�IPAR�SPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDCGNE�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCCGNE�X�B�WRK�IPAR�SPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZCGNE�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ��IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

None

��

Reference manual PIM CGNE

Algorithm A�� CGNE

�� r� � Q��b� AATQ�x��

�� p� � r�
	� �� � rT� r�
�� w� � Q�AA

TQ�p�
�� �� � pT�w�

for k � �� �� � � �

� �k�� � �k��	�k��

�� xk � xk�� � �k��pk��

�� rk � rk�� � �k��wk��

�� check stopping criterion
�� � sk � Q�AA

TQ�rk
�� � �k � rTk rk
�� � �k � rTk sk
�	 � �k � �k	�k��

�� � pk � rk � �kpk��

�� � wk � sk � �kwk��

�
 � �k � �k � ��k�k��

endfor

�

Reference manual PIM BICG

A�� PIM BICG

Purpose

Solves the system Q�AQ�x � Q�b using the Bi�CG method

Synopsis

PIMSBICG�X�B�WRK�IPAR�SPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDBICG�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCBICG�X�B�WRK�IPAR�SPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZBICG�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ��IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

None

��

Reference manual PIM BICG

Algorithm A�� Bi�CG

�� r� � Q��b� AQ�x��

�� r� � p� � p� � r�
	� �� � rT� r�
�� w� � Q�AQ�p�
�� �� � pT�w�

for k � �� �� � � �

� �k�� � �k��	�k��

�� xk � xk�� � �k��pk��

�� rk � rk�� � �k��wk��

�� check stopping criterion
�� � rk � rk�� � �k��Q�A

TQ� pk��

�� � sk � Q�AQ�rk
�� � �k � rTk rk
�	 � �k � rTk sk
�� � �k � �k	�k��

�� � pk � rk � �kpk
�
 � pk � rk � �k pk
�� � wk � sk � �kwk

�� � �k � �k � ��k�k��

endfor

��

Reference manual PIM CGS

A�	 PIM CGS

Purpose

Solves the system Q�AQ�x � Q�b using the CGS method

Synopsis

PIMSCGS�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDCGS�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCCGS�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZCGS�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ���IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

None

��

Reference manual PIM CGS

Algorithm A�	 CGS

�� r� � Q��b� AQ�x��

�� p� � s� � r� � r�
	� �� � rT� r�

for k � �� �� � � �
�� wk�� � Q�AQ�pk��

�� �k�� � rT� wk��

� �k�� � �k��	�k��

�� tk�� � sk�� � �k��wk��

�� wk�� � sk�� � tk��

�� xk � xk�� � �k��wk��

�� � rk � rk�� � �k��Q�AQ�wk��

�� � check stopping criterion
�� � �k � rT� rk
�	 � �k � �k	�k��

�� � sk � rk � �ktk��

�� � wk � tk�� � �kpk��

�
 � pk � sk � �kwk

endfor

�

Reference manual PIM BICGSTAB

A�
 PIM BICGSTAB

Purpose

Solves the system Q�AQ�x � Q�b using the Bi�CGSTAB method

Synopsis

PIMSBICGSTAB�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDBICGSTAB�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCBICGSTAB�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZBICGSTAB�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ���IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

None

�

Reference manual PIM BICGSTAB

Algorithm A�� Bi�CGSTAB

�� r� � Q��b� AQ�x��

�� r� � r�
	� p� � v� � �
�� �� � �� � �� � �

for k � �� �� � � �

�� �k � rTk��rk��

� �k � �k�k��	��k���k���
�� pk � rk�� � �k�pk�� � �k��vk���
�� vk � Q�AQ�pk
�� �k � rT� vk

�� � �k � �k	�k
�� � sk � rk�� � �kvk
�� � if jj s jj
 macheps soft�breakdown has occurred

�	 � tk � Q�AQ�sk
�� � �k � tTk sk	t

T
k tk

�� � xk � xk�� � �kpk � �ksk
�
 � rk � sk � �ktk
�� � check stopping criterion

endfor

�

Reference manual PIM RBICGSTAB

A��� PIM RBICGSTAB

Purpose

Solves the system Q�AQ�x � Q�b using the restarted Bi�CGSTAB method

Synopsis

PIMSRBICGSTAB�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDRBICGSTAB�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCRBICGSTAB�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZRBICGSTAB�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK �����IPAR�����IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

�
 The degree of the MR polynomial �the maximum degree is ��� must be stored in
IPAR���
 If the user needs to use a larger degree then the parameter IBDIM� de�ned
on PIM RBICGSTAB must be changed accordingly

	

Reference manual PIM RBICGSTAB

Algorithm A�� RBi�CGSTAB

�� r � Q��b� AQ�x�

�� r � r

	� u� � �
�� �� � �� � � �� � � �

for k � �� �� � � �

�� �� � ����
for j � �� �� � � � restart� �

� �� � rTj r

�� � � ���	��
�� �� � ��
�� ui � ri � �ui� i � �� � � � � j

�� � uj�� � Q�AQ�uj
�� � � � uTj�� r

�� � � � ��	�
�	 � ri � ri � �ui��� i � �� � � � � j

�� � rj�� � Q�AQ�rj
�� � x� � x� � �u�

endfor
�
 � check stopping criterion

�� � �� � rT� r�� �
�
� � rT� r�	��

for j � �� 	� � � � restart
�� � �i�j � rTj ri	�i� rj � rj � �i�jri
�� � �j � rTj rj � �

�
j � rT� rj	�j

endfor
�� � �restart � � � ��restart�

�j � ��j �
Prestart

i�j�� �j�i�i� j � restart� �� � � � � �

�� � ��� � �j�� �
Prestart��

i�j�� �j�i�i��� j � �� � � � � restart� �

�� � x� � x� � ��r�
�	 � r� � r� � ��restartrrestart
�� � u� � u� � �restarturestart
�� � u� � u� � �juj� j � �� � � � restart� �
�
 � x� � x� � ���j rj� j � �� � � � restart� �

�� � r� � r� � ��jrj� j � �� � � � restart� �

endfor

�

Reference manual PIM RGMRES

A��� PIM RGMRES

Purpose

Solves the system Q�AQ�x � Q�b using the restarted GMRES method

Synopsis

PIMSRGMRES�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDRGMRES�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCRGMRES�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZRGMRES�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ���IPAR�����IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�� SCAL� TRSV

LIBPIM

Notes

�
 The size of the orthonormal basis �maximum of �� vectors� must be stored in IPAR���

If the user needs to use a larger basis then the parameter IBDIM� de�ned on PIM RGMRES

must be changed accordingly

�
 The user must supply a routine to compute the ��norm of a vector

�

Reference manual PIM RGMRES

Algorithm A�
 RGMRES

�� r� � Q��b� AQ�x��

�� �� � jjr�jj�
for k � �� �� � � �

	� g � ��k��� �k��� � � ��
T

�� V� � rk��	�k��

for j � �� �� � � � � restart
�� Ri�j � V T

i Q�AQ�Vj � i � �� � � � � j

� *v � Q�AQ�Vj �
Pj

i��Ri�jVi
�� Rj���j � jj*vjj�
�� Vj�� � *v	Rj���j

�� apply previous Givens�s rotations to R��j

�� � compute Givens�s rotation to zero Rj���j

�� � apply Givens�s rotation to g
�� � if jgj��j
 RHSSTOP then

perform steps �	 and �� with restart	 j
stop

endif
endfor

�	 � solve Ry � g �solution to least�squares problem	
�� � xk � xk�� � V y �form approximate solution	

�� � rk � Q��b�AQ�xk�
�
 � �k � jjrkjj�

endfor

Reference manual PIM RGMRESEV

A��� PIM RGMRESEV

Purpose

Solves the system Q�AQ�x � Q�b using the restarted GMRES method� returns� at each itera�

tion� the estimates of the smallest and largest eigenvalues of Q�AQ� obtained from the upper
Hessenberg matrix produced during the Arnoldi process

Synopsis

PIMSRGMRESEV�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDRGMRESEV�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCRGMRESEV�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZRGMRESEV�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ���IPAR�����IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�� SCAL� TRSV

LAPACK HSEQR

LIBPIM

Notes

�
 The size of the orthonormal basis �maximum of �� vectors� must be stored in IPAR���
 If
the user needs to use a larger basis then the parameter IBDIM� de�ned on PIM RGMRESEV

must be changed accordingly

�

Reference manual PIM RGMRESEV

�
 The user must supply a routine to compute the ��norm of a vector

	
 A box containing estimates of the eigenvalues of Q�AQ� is returned in DPAR�
�� DPAR����
DPAR���� DPAR���� these values representing the minimum and maximum values in the
real and imaginary axes� respectively

Algorithm A��� RGMRESEV

�� r� � Q��b� AQ�x��
�� �� � jjr�jj�

for k � �� �� � � �

	� g � ��k��� �k��� � � ��
T

�� V� � rk��	�k��

for j � �� �� � � � � restart

�� Ri�j � V T
i Q�AQ�Vj � i � �� � � � � j

� *v � Q�AQ�Vj �
Pj

i��Ri�jVi
�� Rj���j � jj*vjj�
�� Vj�� � *v	Rj���j

�� apply previous Givens�s rotations to R��j

�� � compute Givens�s rotation to zero Rj���j

�� � apply Givens�s rotation to g

�� � if jgj��j
 RHSSTOP then

perform steps �	 and �� with restart	 i
stop

endif

endfor
�	 � solve Ry � g �solution to least�squares problem	
�� � xk � xk�� � V y �form approximate solution	
�� � compute eigenvalues of Hrestart
�
 � rk � Q��b�AQ�xk�
�� � �k � jjrkjj�

endfor

�

Reference manual PIM RGCR

A��� PIM RGCR

Purpose

Solves the system Q�AQ�x � Q�b using the restarted GCR method

Synopsis

PIMSRGCR�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDRGCR�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCRGCR�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZRGCR�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK �����IPAR�����IPAR������IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

�
 The restarting value must be stored in IPAR���

�

Reference manual PIM RGCR

Algorithm A��� RGCR

�� r� � Q��b� AQ�x��

for k � �� �� � � �

�� P� � rk��

xk � xk��� rk � rk��

for j � �� �� � � � � restart

	� Wj � Q�AQ�Pj

�� �j � WT
j Wj

�� �j � rTk Wj	�j

� xk � xk � �jPj

�� rk � rk � �jWj

�� check stopping criterion
�� q � Q�AQ�rk

�� � Pj�� � rk �
Pj

i�� q
TWi	�iPi

endfor
endfor

��

Reference manual PIM QMR

A��� PIM QMR

Purpose

Solves the system Q�AQ�x � Q�b using the QMR method with coupled two�term recurrences

Synopsis

PIMSQMR�X�B�WRK�IPAR�SPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDQMR�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCQMR�X�B�WRK�IPAR�SPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZQMR�X�B�WRK�IPAR�DPAR�MATVEC�TMATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ���IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

�
 The weights � are kept constant �� � �� throughout the iterations
 Please refer to ����
for a discussion on other choices for �

��

Reference manual PIM QMR

Algorithm A��� QMR

�� r� � Q��b� AQ�x��

�� �� � jjr�jj�
	� v� � r�	��
�� w� � �r�	��
�� p� � q� � d� � �

� c� � �� �� � �� �� � �� �� � �� �� � ��� � � �
for k � �� �� � � �

�� �k � wT
k vk

�� if �k�� � � hard�breakdown has occurred

�� if �k � � hard�breakdown has occurred
�� � pk � vk � ��k�k	�k���pk��

�� � qk � wk � ��k�k	�k���qk��

�� � vk�� � Q�AQ�pk
�	 � �k � qTk vk��

�� � �k � �k	�k
�� � vk�� � vk�� � �kvk
�
 � wk�� � Q�A

TQ�qk � �kwk

�� � �k�� � jj vk��jj�
�� � �k�� � jj wk��jj�
�� � �k � ���k���	��ck��j�kj�
�� � ck � �	

q
� � ��k

�� � �k � ��k���kc
�
k	��kc

�
k���

�� � dk � pk�k � ��k��ck�
�dk��

�	 � xk � xk�� � dk
�� � rk � Q��b�Q�Axk�

�� � check stopping criterion
�
 � if �k�� � � hard�breakdown has occurred
�� � if �k�� � � hard�breakdown has occurred
�� � vk�� � vk��	�k��

�� � wk�� � wk��	�k��

endfor

��

Reference manual PIM TFQMR

A��� PIM TFQMR

Purpose

Solves the system Q�AQ�x � Q�b using the TFQMR method with ��norm weights �see ��	�

Algorithm �
���

Synopsis

PIMSTFQMR�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDTFQMR�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCTFQMR�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZTFQMR�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ���IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �	 ��

Function dependencies

BLAS COPY� AXPY� � DOT� DOTC�

LIBPIM

Notes

�
 The user must supply a routine to compute the ��norm of a vector

�	

Reference manual PIM TFQMR

Algorithm A��� TFQMR

�� r� � Q��b� AQ�x��

�� w� � y� � r�
	� v� � Q�AQ�y�
�� d� � �
�� �� � jjr�jj�

�
� � �� � �
�� r� � r�
�� �� � rT� r�

for k � �� �� � � �

�� �k�� � rT� vk��

�� � �k�� � �k��	�k��

�� � y�k � y�k�� � �k��vk��

for m � �k � �� �k

�� � wm�� � wm � �k��Q�AQ�ym
�	 �
m � jjwm��jj�	�m��

�� � cm � �	
p
� �
�m

�� � �m � �m��
mcm
�
 � �m � c�m�k��

�� � dm � ym � �
�m���m��	�k���dm��

�� � xm � xm�� � �mdm
�� � �m � �m

p
m� �

�� � if �m
 � check stopping criterion
endfor

�� � �k � rT� w�k��

�� � �k � �k	�k��

�	 � y�k�� � w�k�� � �ky�k
�� � vk � Q�AQ�y�k�� � �k�Q�AQ�y�k � �kvk���

endfor

��

Reference manual PIM CHEBYSHEV

A��� PIM CHEBYSHEV

Purpose

Solves the system AQ�x � b using the Chebyshev acceleration

Synopsis

PIMSCHEBYSHEV�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PSSUM�PSNRM�PROGRESS�

PIMDCHEBYSHEV�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�PROGRESS�

PIMCCHEBYSHEV�X�B�WRK�IPAR�SPAR�MATVEC�PRECONL�PRECONR�PCSUM�PSCNRM�PROGRESS�

PIMZCHEBYSHEV�X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PZSUM�PDZNRM�PROGRESS�

Storage requirements

Parameter No
 of words

X� B IPAR���

WRK ��IPAR���

IPAR �

PAR �

Possible exit status values returned by IPAR����! � �� �
 ��

Function dependencies

BLAS COPY� AXPY� SWAP� � DOT� DOTC�

LIBPIM

Notes

�
 Only stopping tests �� � and � are allowed

�
 The box containing the eigenvalues of I � Q�AQ� must be stored in DPAR�
�� DPAR����
DPAR���� DPAR���� these values representing the minimum and maximum values in the
real and imaginary axes� respectively

��

Reference manual PIM CHEBYSHEV

Algorithm A��� CHEBYSHEV

�� Set parameters for iteration�

� If DPAR�
� � ��I �Q�A� � DPAR��� �in the real axis	�

� � �DPAR���� DPAR�
��	��� DPAR���� DPAR�
��
� � �	��� DPAR���� DPAR�
��

� If DPAR��� � ��I �Q�A� � DPAR��� �in the imaginary axis	�
�� � �max�DPAR���� DPAR����
� � �

� If DPAR�
� � Re���I �Q�A�� � DPAR��� and
DPAR��� � Im���I �Q�A�� � DPAR��� �in the complex plane	�

p �
p
��DPAR���� DPAR�
��	�

q �
p
��DPAR���� DPAR����	�

d � �DPAR�
� � DPAR����	�
�� � �p� � q��	��� d��

� � �	��� d�

�� f � �Q�b
for k � �� �� � � �

	� �k �

��

��

�� k � �
��� ��	����� k � �

��� �k���
�	����� k � �

�� w � �I �Q�AQ��xk
�� xk�� � �k����I �Q�A�xk � f� � ��� ��xk� � ��� ��xk��

� check stopping criterion
endfor

�

Reference manual PIM SETPAR

A��� PIM SETPAR

Purpose

Sets the parameter values in the arrays IPAR and PAR

Synopsis

PIMSSETPAR�IPAR�SPAR�LDA�N�BLKSZ�LOCLEN�BASISDIM�NPROCS�PROCID�

PRECONTYPE�STOPTYPE�MAXIT�EPSILON�

INTEGER IPAR���

REAL SPAR���

INTEGER LDA�N�BLKSZ�LOCLEN�BASISDIM�NPROCS�PROCID�

PRECONTYPE�STOPTYPE�MAXIT

REAL EPSILON

PIMDSETPAR�IPAR�DPAR�LDA�N�BLKSZ�LOCLEN�BASISDIM�NPROCS�PROCID�

PRECONTYPE�STOPTYPE�MAXIT�EPSILON�

INTEGER IPAR���

DOUBLE PRECISION DPAR���

INTEGER LDA�N�BLKSZ�LOCLEN�BASISDIM�NPROCS�PROCID�

PRECONTYPE�STOPTYPE�MAXIT

DOUBLE PRECISION EPSILON

Storage requirements

Parameter No
 of words

IPAR �

PAR �

Notes

�
 When using the COMPLEX and DOUBLE COMPLEX PIM routines� call PIMSSETPAR and
PIMDSETPAR respectively

��

Reference manual PIM PRTPAR

A��	 PIM PRTPAR

Purpose

Prints the parameter values on the arrays IPAR and PAR

Synopsis

PIMSPRTPAR�IPAR�SPAR�

INTEGER IPAR���

REAL SPAR���

PIMDPRTPAR�IPAR�DPAR�

INTEGER IPAR���

DOUBLE PRECISION DPAR���

Storage requirements

Parameter No
 of words

IPAR �

PAR �

Notes

�
 May be called only on a processing element with I�O capability

�
 When using the COMPLEX and DOUBLE COMPLEX PIM routines� call PIMSPRTPAR and
PIMDPRTPAR respectively

��

Reference manual INIT

A��
 INIT

Purpose

Initialises a vector of length n with the scalar value alpha
 Based on the level � BLAS routine

COPY

Synopsis

SINIT�N�ALPHA�SX�INCX�

REAL ALPHA�SX���

INTEGER N�INCX

DINIT�N�ALPHA�DX�INCX�

DOUBLE PRECISION ALPHA�DX���

INTEGER N�INCX

CINIT�N�ALPHA�CX�INCX�

COMPLEX ALPHA�CX���

INTEGER N�INCX

ZINIT�N�ALPHA�ZX�INCX�

DOUBLE COMPLEX ALPHA�ZX���

INTEGER N�INCX

Storage requirements

Parameter No
 of words

X IPAR���

Notes

None

��

Index

Example programs

dense storage� ��
description of� ��
Eigenvalues estimation and Chebyshev

acceleration� �	

PDE storage� �

PDE� matrix�vector product for parallel

vector architectures� ��
preconditioners� ��

results� ��
External routines

description of� ��

inner�product and vector norm� ��
matrix�vector product� ��
monitoring the iterations� ��
preconditioning step� ��

synopsis of� 	�

Inner�product

see External routines� ��
Installation procedures� ��

Building the examples� �

Building the PIM core functions� ��

Cleaning�up� �

Using PIM in your application� ��

Iterative methods
Bi�CG� �

routine� ��
Bi�CGSTAB� �
routine� �	

CG� �
routine� ��

CG with eigenvalues estimation� �
routine� �	

CGNE� �
routine� ��

CGNR� �

routine� ��
CGS� �
routine� ��

Chebyshev acceleration� ��

routine�
�
GCR� ��
routine�
�

GMRES� �

routine� ��
GMRES with eigenvalues estimation� �
routine� ��

increasing parallel scalability of� �	
overview�

QMR with coupled two�term recur�

rences� ��

routine�
	
Restarted Bi�CGSTAB� �
routine� ��

TFQMR� ��

routine�
�

Matrix�vector product

see External routines� ��

Naming convention of routines� ��

Obtaining PIM� ��

Parallelism

data partitioning� ��
programming model� ��

Parameters

description of� 	�
printing� ��
setting�
�

Preconditioning step

��

see External routines� ��

Stopping criteria� �	

Supported architectures and environments�

��

Vector initialisation� ��

Vector norm
see External routines� ��

��

