PIM 2.0
The Parallel Iterative Methods package for
Systems of Linear Equations
User’s Guide

(Fortran 77 version)

Rudnei Dias da Cunha
Mathematics Institute and National Supercomputing Centre
Universidade Federal do Rio Grande do Sul
Brasil

Tim Hopkins
Computing Laboratory
Unwversity of Kent at Canterbury
United Kingdom

Abstract

We describe PIM (Parallel Iterative Methods), a collection of Fortran 77 routines to
solve systems of linear equations on parallel computers using iterative methods.

A number of iterative methods for symmetric and nonsymmetric systems are avail-
able, including Conjugate-Gradients (CG), Bi-Conjugate-Gradients (Bi-CG), Conjugate-
Gradients squared (CGS), the stabilised version of Bi-Conjugate-Gradients (Bi-CGSTAB),
the restarted stabilised version of Bi-Conjugate-Gradients (RBi-CGSTAB), generalised min-
imal residual (GMRES), generalised conjugate residual (GCR), normal equation solvers
(CGNR aund CGNE), quasi-minimal residual (QMR) with coupled two-term recurrences,
transpose-free quasi-minimal residual (TFQMR) and Chebyshev acceleration.

The PIM routines can be used with user-supplied preconditioners, and left-, right- or
symmetric-preconditioning are supported. Several stopping criteria can be chosen by the
user.

In this user’s guide we present a brief overview of the iterative methods and algorithins
available. The use of PIM is introduced via examples. We also present some results obtained
with PIM concerning the selection of stopping criteria and parallel scalability. A reference
manual can be found at the end of this report with specific details of the routines and
parameters.

Contents
1 Introduction

2 An overview of the iterative methods

CG with eigenvalues estimationo 0L
CGNR and CGNEo
Bi-CG . . .
CGS . o
Bi-CGSTAB
RBi-CGSTAB.
GMRES
GMRES with eigenvalues estimation
GCR . .
QMR with coupled two-term recurrences
TFQMR

Chebyshev acceleration 0000

3 Internal details of PIM

3.1 Supported architectures and environments
3.2 Parallel programming model oL oL o
3.3 Data partitioning
3.4 Increasing the parallel scalability of iterative methods
3.5 Stopping criteria L

4 Using PIM
4.1 Naming convention of routines
4.2 Obtaining PIM e
4.3 Installing PIM 0. 0o e
Building the PIM core functions
Building the examples L0 L
Cleaning-up 0 e e
Using PIM in your application
4.4 Calling a PIM iterative method routine

Matrix-vector producto Lo
Preconditioning oL
Inner-products, vector norms and global accumulation

13
13
14
14
15
16

Monitoring the iterations Lo 26

4.6 Example programs Lo 27
4.6.1 Eigenvalues estimation and Chebyshev acceleration 29
4.6.2 Dense storage e e e e e e e e 30
4.6.3 PDE storage e e e e 30

A matrix-vector product for parallel vector architectures 34

4.6.4 Preconditionerso 35

4.6.5 Results e 36
Stopping criteria Lo 36

General results L L 36

Scalability o 37

5 Summary 37
References 40
A Reference manual 44
A.1 Description of parameters Lo e 45
A.2 External routines Lo e e 47
Note o o 47

Matriz-vector product v =Au e 47

Transpose matriz-vector productv =Alw 47

Left preconditioningv = Quo o 47

Right preconditioningv = Qu e 47

Parallel sum e e e e e 48

Parallel vector morm Lo 48

Monitoring routine e e e e e e e 48

A3 PIMCG o e e e e 49

A4 PIMCGEV e e ol

A5 PIMCGNR o e e e 23

A6 PIMCGNE e e %)

AT PIMBICG . . . o o e e 5Y4

A8 PIMCGS . . . o o o e e e e 59

A9 PIMBICGSTAB o o e e e e e e e e 61

A TOPIMRBICGSTAB o e e e e e e 63

A T1PIMRGMRES e e 65

A12PIMRGMRESEV o e e 67

AIZPIMRGCR . . . o v o e e e e e 69

AT4PIMQMR e e 71

ATSPIMTFQMR . . . o ottt e e e e e e e 73

A16 PIM_CHEBYSHEV o e 75
AT7TPIMSSETPAR o o 77
A8 PIMPRTPAR o vttt e e e 78
AL JINIT .. o e e e 79

1 Introduction

The Parallel Tterative Methods (PIM) is a collection of Fortran 77 routines designed to solve
systems of linear equations (SLEs) on parallel computers using a variety of iterative methods.
PIM offers a number of iterative methods, including

e Conjugate-Gradients (CG) [29],

e Conjugate-Gradients for normal equations with minimisation of the residual norm

(CGNR) [35],

e Conjugate-Gradients for normal equations with minimisation of the error norm (CGNE)

[10],
e Bi-Conjugate-Gradients (Bi-CG) [21],
e Conjugate-Gradients squared (CGS) [44],
e the stabilised version of Bi-Conjugate-Gradients (Bi-CGSTAB) [46],
e the restarted, stabilised version of Bi-Conjugate-Gradients (RBi-CGSTAB) [43],
e the restarted, generalised minimal residual (RGMRES) [42],
e the restarted, generalised conjugate residual (RGCR) [19],
e the quasi-minimal residual with coupled two-term recurrences (QMR) [24],
e the transpose-free quasi-minimal residual (TFQMR) [23] and
e Chebyshev acceleration [32].

The routines allow the use of preconditioners; the user may choose to use left-, right- or
symmetric-preconditioning. Several stopping criteria are also available.
PIM was developed with two main goals

1. To allow the user complete freedom with respect to the matrix storage, access and parti-
tioning;

2. To achieve portability across a variety of parallel architectures and programming environ-
ments.

These goals are achieved by hiding from the PIM routines the specific details concerning the
computation of the following three linear algebra operations

1. Matrix-vector (and transpose-matrix-vector) product
2. Preconditioning step
3. Inner-products and vector norm

Routines to compute these operations need to be provided by the user. Many vendors supply
their own, optimised linear algebra routines which the user may want to use.

A number of packages for the iterative solution of linear systems are available including
ITPACK [30] and NSPCG [38]. PIM differs from these packages in three main aspects. First,
while ITPACK and NSPCG may be used on a parallel vector supercomputer like a Cray Y-MP,
there are no versions of these packages available for distributed-memory parallel computers.
Second, there is no debugging support; this is dictated by the fact that in some multiprocessing
environments parallel I/O is not available. The third aspect is that we do not provide a collection
of preconditioners but leave the responsibility of providing the appropriate routines to the user.

In this sense, PIM has many similarities to a proposed standard for iterative linear solvers,
by Ashby and Seager [5]. In that proposal, the user supplies the matrix-vector product and
preconditioning routines. We believe that their proposed standard satisfies many of the needs
of the scientific community as, drawing on its concepts, we have been able to provide software
that has been used in a variety of parallel and sequential environments. PIM does not always
follow the proposal especially with respect to the format of the matrix-vector product routines
and the lack of debugging support.

Due to the openness of the design of PIM, it is also possible to use it on a sequential machine.
In this case, the user can take advantage of the BLAS [15] to compute the above operations.
This characteristic is important for testing purposes; once the user is satisfied that the selection
of preconditioners and stopping criteria are suitable, the computation can be accelerated by
using appropriate parallel versions of the three linear algebra operations mentioned above.

A package similar to PIM is the Simplified Linear Equation Solvers (SLES) by Gropp and
Smith [31], part of the PETSc project. In SLES the user has a number of iterative methods (CG,
CGS, Bi-CGSTAB, two variants of the transpose-free QMR, restarted GMRES, Chebyshev and
Richardson) which can be used together with built-in preconditioners and can be executed
either sequentially or in parallel. The package may be used with any data representation of
the matrix and vectors with some routines being provided to create matrices dynamically in
its internal format (a feature found on ITPACK). The user can also extend SLES in the sense
that it can provide new routines for preconditioners and iterative methods without modifying
SLES. It is also possible to debug and monitor the performance of a SLES routine.

Portability of code across different multiprocessor platforms is a very important issue. For
distributed-memory multiprocessor computers, a number of public-domain software libraries
have appeared, including PVM [28], TCGMSG [33], NXLIB [45], p4 [8] (the latter with support

for shared-memory programming). These libraries are available on a number of architectures

making it possible to port applications between different parallel computers with few (if any)
modifications to the code being necessary. In 1993 the “Message-Passing Interface Forum”, a
consortium of academia and vendors, drawing on the experiences of users of those and other
libraries, defined a standard interface for message-passing operations, called MPI [22]. Today
we have available implementations of MPI built on top of other, existing libraries, like the
CHIMP/MPI library developed at the Edinburgh Parallel Computer Centre [7], and the Unify
project [9] which provides an MPT interface on top of PVM. It is expected that native implemen-
tations will be available soon. In the previous releases of PIM (1.0 and 1.1) we had distributed
examples using PVM, TCGMSG, p4 and NXLIB; however from this release onwards we will
support only PVM, the “de-facto” standard for message-passing, and MPL.

We would like to mention two projects which we believe can be used together with PIM.
The first is the proposed standard for a user-level sparse BLAS by Duff et al. [18] and Heroux
[34]. This standard addresses the common problem of accessing and storing sparse matrices in
the context of the BLAS routines; such routines could then be called by the user in conjunction
with a PIM routine. The second is the BLACS project by Dongarra et al. [16] which provides
routines to perform distributed operations over matrices using PVM 3.1.

2 An overview of the iterative methods

How to choose an iterative method from the many available is still an open question, since any
one of these methods may solve a particular system in very few iterations while diverging on
another. In this section we provide a brief overview of the iterative methods present in PIM.
More details are available in the works of Ashby et al. [4], Saad [40][41], Nachtigal et al. [37],
Freund et al. [25][26] and Barrett et al. [6].

We introduce the following notation. CG, Bi-CG, CGS, Bi-CGSTAB, restarted GMRES,
restarted GCR and TFQMR solve a non-singular system of n linear equations of the form

Q1AQor = O1b (1)
where @1 and Q)2 are the preconditioning matrices. For CGNR, the system solved is
QA" AQax = Q1 A"D (2)
and for CGNE we solve the system
QIAAT Q= Qb (3)
CG The CG method is used mainly to solve Hermitian positive-definite (HPD) systems. The

method minimises the residual in the A-norm and in finite-precision arithmetic it terminates in
at most n iterations. The method does not require the coefficient matrix; only the result of a

matrix-vector product Awu is needed. It also requires a relatively small number of vectors to be
stored per iteration since its iterates can be expressed by short, three-term vector recurrences.

With suitable preconditioners, CG can be used to solve nonsymmetric systems. Holter
et al. [36] have solved a number of problems arising from the modelling of groundwater flow
via finite-differences discretisations of the two-dimensional diffusion equation. The properties
of the model led to systems where the coefficient matrix was very ill-conditioned; incomplete
factorisations and least-squares polynomial preconditioners were used to solve these systems.
Hyperbolic equations of the form

ou ou du

54‘01%‘1‘028—1] = f(z,y,1)

have been solved with CG using a Neumann polynomial approximation to A~! as a precondi-
tioner [11].

CG with eigenvalues estimation An important characteristic of CG is its connection to
the Lanczos method [29] which allows us to obtain estimates of the eigenvalues of Q1 AQ2
with only a little extra work per iteration. These estimates, p; and p,, are obtained from
the Lanczos tridiagonal matrix Tj whose entries are generated during the iterations of the
CG method [29, pp. 475-480, 523-524]. If we define the matrices A = diag(po, p1,-- -, Pr—_1),
Gy = diag(§o,&1, -+ &k—1) and

1 =05
1 —p3
B = 1
—Bk
L 1 -
where p; = ||ri||2, ri is the residual at the i-th iteration, & = pl Ap; and B = +Tri/rl jri g

are generated via the CG iterations (at no extra cost), we obtain the Lanczos’s matrix via the
relation

T, = A~'Bl'G.B,A! (4)

Due to the structure of the matrices By, A and G}, the matrix T} can be easily updated during
the CG iterations. The general formula for Ty, is

i = (ﬁfft*Q + gifl)/p;?—]v /81 = 01 t= 11 2% Tt k

b, = —fi—l/jiﬁ»l/(/)iflpi)s 1=1,2,..., k=1

where a; and b; are the elements along the diagonal and subdiagonal of T}, respectively.

The strategy employed to obtain the eigenvalue estimates is based on Sturm sequences [29,
pp. 437-439]. For the matrix Th, obtained during the first iteration of CG, the eigenvalues are
obtained directly from the quadratic equation derived from p(u) = det(Th — pl). We also set
an interval [c, d] = [u1, fn].

For the next iterations, we update the interval [c, d] using Gerschgorin’s theorem. This is
easily accomplished since at each iteration only two new values are added to Ty to give Tjpy1;
the updated interval is then

ary1| = |ox]),
Nk | + [or])

ag| = [br—1] — bk
d = max(d, |ag| + |br_1] + |b&

¢ = min(c,

?

The new estimates for the extreme eigenvalues are then computed using a bisection routine
applied to the polynomial p(u) = det(T)41 — p) which is computed via a recurrence expression
[29, pp. 437]. The intervals [c, 111] and [pn, d] are used in the bisection routine to find the new
estimates of 1 and p, respectively.

A possible use of this routine would be to employ adaptive polynomial preconditioners (see [2]
and [3]) where at each iteration information about the extreme eigenvalues of Q1 AQ> is obtained
and the polynomial preconditioner is modified to represent a more accurate approximation to
A~L This routine can also be used as a preliminary step before solving the system using the
Chebyshev acceleration routine, PIM_CHEBYSHEV.

CGNR and CGNE For nonsymmetric systems, one could use the CG formulation applied
to systems involving either AT A or AA"; these are called CGNR and CGNE respectively. The
difference between both methods is that CGNR minimises the residual || b — Az, ||2 and CGNE
the error || A7'b — 2, ||2. A potential problem with this approach is that the condition number
of ATA or AAT is large even for a moderately ill-conditioned A, thus requiring a substantial
number of iterations for convergence. However, as noted by Nachtigal et al. [37], CGNR is better
than GMRES and CGS for some systems, including circulant matrices. More generally, CGNR
and CGNE perform well if the eigenvalue spectrum of A has some symmetries; examples of such
matrices are the real skew-symmetric and shifted skew-symmetric matrices A = (T + oI),
T =TH ¢ real and o complex.

Bi-CG Bi-CG is a method derived to solve non-Hermitian systems of equations, and is closely
related to the Lanczos method to compute the eigenvalues of A. The method requires few vec-
tors per iteration and the computation of a matrix-vector product as well as a transpose-
matrix-vector product A”w. The iterates of Bi-CG are generated in the Krylov subspace

K(ro, A) = {rg,r0A, 79 A%, ...}, where rg = b — Axq.

A Galerkin condition w/r, =0, Vw € K(79, A"), is imposed on the residual vector where
7o 1s an arbitrary vector satisfying 7'5770 # 0. It is important to note that two sequences of
residual vectors are generated, one involving r, and A and the other 7, and AT but the solution
vector xj, is updated using only the first sequence.

Bi-CG has an erratic convergence with large oscillations of the residual 2-norm which usually
cause a large number of iterations to be performed until convergence is achieved. Moreover,
the method may break down, for example, the iterations cannot proceed when some quantities

(dependent on) become zerol.

CGS CGS is a method that tries to overcome the problems of Bi-CG. By rewriting some of
the expressions used in Bi-CQ, it is possible to eliminate the need for AT altogether. Sonneveld
[44] also noted that it is possible to (theoretically) increase the rate of convergence of Bi-CG at
no extra work per iteration. However, if Bi-CG diverges for some system, CGS diverges even
faster. It is also possible that CGS diverges while Bi-CG does not for some systems.

Bi-CGSTAB Bi-CGSTAB is a variant of Bi-CG with a similar formulation to CGS. However,
steepest-descent steps are performed at each iteration and these contribute to a considerably
smoother convergence behaviour than that obtained with Bi-CG and CGS. It is known that for
some systems Bi-CGSTAB may present an erratic convergence behaviour as does Bi-CG and

CGS.

RBi-CGSTAB The restarted Bi-CGSTAB, proposed by Sleijpen and Fokkema [43], tries to
overcome the stagnation of the iterations of Bi-CGSTAB which occurs with a large class of
systems of linear equations. The method combines the restarted GMRES method and Bi-CG,
being composed of two specific sections: a Bi-CG part where (I+1) v and r vectors are produced
(I being usually 2 or 4), and a minimal residual step follows, when the residuals are minimized.
RBi-CGSTAB is mathematically equivalent to Bi-CGSTAB if [= 1, although numerically their
iterations will usually differ. The method does not require the computation of transpose matrix-
vector products as in Bi-CG and a smaller number of vectors need to be stored per iteration
than for other restarted methods like GMRES.

GMRES The GMRES method is a very robust method to solve nonsymmetric systems.
The method uses the Arnoldi process to compute an orthonormal basis {v1,v2,..., v} of the
Krylov subspace KC(A,v1). The solution of the system is taken as xg + Viy, where Vi is a
matrix whose columns are the orthonormal vectors v;, and y; is the solution of the least-

squares problem Hpyr = || 7|21, where the upper Hessenberg matrix Hy, is generated during

!The PIM implementation of Bi-CG, CGS and Bi-CGSTAB sets 7o = ry but the user may modify the code if

another choice of 7y is desirable.

10

the Arnoldi process and ey = (1,0,0,...,0)". This least-squares problem can be solved using a
QR factorisation of Hy.

A problem that arises in connection with GMRES is that the number of vectors of or-
der n that need to be stored grows linearly with & and the number of multiplications grows
quadratically. This may be avoided by using a restarted version of GMRES; this is the method
implemented in PIM. Instead of generating an orthonormal basis of dimension k, one chooses a
value ¢, ¢ € n, and generates an approximation to the solution using an orthonormal basis of
dimension ¢, thereby reducing considerably the amount of storage needed. Although the restar-
ted GMRES does not break down [42, pp. 865], it may, depending on the system and the value
of ¢, produce a stationary sequence of residuals, thus not achieving convergence. Increasing the
value of ¢ usually cures this problem and may also increase the rate of convergence.

A detailed explanation of the parallel implementation of the restarted GMRES used can be
found in [13].

GMRES with eigenvalues estimation It is very easy to obtain estimates of the eigenvalues
of @1 AQ» at each iteration of GMRES, since the upper Hessenberg matrix Hy computed during
the Arnoldi process satisfies Q1 AQ2V, = Vi Hp. The eigenvalues of Hj approximate those of
Q1 AQ32, especially on the boundaries of the region containing A(Q1AQ2). The QR algorithm
can be used to obtain the eigenvalues of Hj. The LAPACK routine HSEQR [1, pp. 158-159] is
used for this purpose.

The routine PIM_RGMRESEV returns a box in the complex plane, defining the minimum and
maximum values along the real and imaginary axes. These values can then be used by the
Chebyshev acceleration routine, PIM_CHEBYSHEV.

GCR The GCR method is generally used in its restarted form for reasons similar to those
given above for GMRES. It is mathematically equivalent to the restarted version of GMRES
but it is not as robust. It is applicable to systems where the coefficient matrix is of the form
A = pIl + R, 1 complex and R real symmetric and A = uI + S, p real and S¥ = —8| arising
in electromagnetics and quantum chromodynamics applications respectively [4].

QMR with coupled two-term recurrences The QMR method by Freund and Nachtigal
[27] overcomes the difficulties associated with the Bi-CG method. The original QMR algorithm
uses the three-term recurrences as found in the underlying Lanczos process. In finite-precision
arithmetic, though, mathematically equivalent coupled two-term recurrences are more robust
than the three-term recurrences. PIM implements the coupled two-term recurrence version of
the QMR algorithm as described in [24].

11

TFQMR TFQMR is a variant of CGS proposed by Freund [23]. TFQMR uses all available
search direction vectors instead of the two search vectors used in CGS. Moreover, these vectors
are combined using a parameter which can be obtained via a quasi-minimisation of the residual.
The method is thus extremely robust and has the advantage of not requiring the computation of
transpose matrix-vector products. PIM offers TFQMR with 2-norm weights (see [23, Algorithm
5.1]).

Chebyshev acceleration The Chebyshev acceleration is a polynomial acceleration applied
to basic stationary methods of the form

Tpi1 = Grp + f

where G =1 — 1A, f = @Q1b. If we consider k iterations of the above method, the iterates
2 may be linearly combined such that y = Zl;:u cjx; is a better approximation to = A1,
The coefficients ¢; are chosen so that the norm of error vector is minimized and Zj?:O c; =1.1If
we assume that the eigenvalues of G are contained in an interval [, (], with —1 < o < f < 1,
then the Chebyshev polynomials satisfy the above conditions on the ¢;’s. We refer the user to
[32, pp. 4558, 332-339] for more details.

The Chebyshev acceleration has the property that its iterates can be expressed by short
(three-term) recurrence relations and, especially for parallel computers, no inner-products or
vector norms are needed (except for the stopping test). The difficulty associated with the
Chebyshev acceleration is the need for good estimates either for the smallest or largest eigen-
values of G if the eigenvalues are real, or in the case of a complex eigenspectrum a region in
the complex plane containing the eigenvalues of minimum and maximum modulus.

With PIM, the user may make use of two routines, PIM_CGEV and PIM_RGMRESEV, to obtain
such estimates. PIM_CGEV covers the case where the eigenvalues of G are real; for the complex
case, PIM_RGMRESEV should be used. To obtain appropriately accurate estimates, these routines
must be used with left-preconditioning, and should be allowed to run for several iterations. The
estimates for the eigenvalues of ()1 A should then be modified to those of I — Q1 A. This is done
by replacing the smallest and largest real values, r and s, by 1 — s and 1 — 7 respectively. The
imaginary values should not be modified.

We note that even if A has only real eigenvalues, G may have complex (or imaginary
only) eigenvalues. In this latter case, the Chebyshev acceleration is defined in terms of a
minimum bounding ellipse that contains the eigenvalues of G. If we obtain a box [r, s.t,u]
where 1 < Re(AMG)) < s and t < Im(A(G)) < u, then the axes of this ellipse are defined as

p= \/5(’1”—{-8)/2, q= \/5(75—4—71,)/2

These parameters for the Chebyshev iteration are computed by PIM_CHEBYSHEV. An example of
the use of this routine may be found in Section 4.5.

12

Figure 1: Selecting an iterative method.

Symmetric matrix?

PR

Eigenvalue Eigenvalue
estimation? estimation?
Transpose
CGEV CG RGMRESEV ,
matrix-vector product
CHEBYSHEV

available?

Bi-CG CG (1)
CGNR CGSs

Notes: CGNE Bi-CGSTAB
i-
(1) only for mildly non-
) OMR RBi-CGSTAB
symmetric systems
, TFQMR
(2) use a small restarting
. . RGMRES (2)
value if storage is at
i RGCR (2)
a premium
CHEBYSHEV

For nonsymmetric systems, one may use a combination of the routine PIM_RGMRESEV and
PIM_CHEBYSHEV as proposed by Elman et al. as a hybrid method [20, page 847].

To conclude this section, Figure 1 shows a diagram to aid in the selection of an iterative
method.

3 Internal details of PIM

3.1 Supported architectures and environments

PIM has been tested on scalar, vector and parallel computers including the Cray Y-MP2E /232,
Cray Y-MP C90/16256, SGI Challenge, Intel Paragon, TMC CM-52 and networks of worksta-
tions under PVM 3.3.6, CHIMP/MPI v1.2, Argonne MPI, p4 v1.2, TCGMSG 4.02 and Intel
NX. Table 1 lists the architectures and environments on which PIM has been successfully tested.

2The results obtained are based upon a beta version of the software and, consequently, is not necessarily
representative of the performance of the full version of this software.

13

Table 1: Computers where PIM has been tested

Architecture

Compiler and O/S

Sun SPARC

Sun SPARC

Sun SPARC

Sun SPARC

Sun SPARC

DEC AXP 4000/610
DEC AXP 3000/800
SGI IRIS Indigo
SGI IRIS Crimson
SGI Indy II

Cray Y-MP2E/232
Cray Y-MP C90/16256
SGI Challenge

Intel Paragon XP/S
IBM 9076 SP/1
Cray T3D

TMC CM-5

Sun Fortran 1.4 - SunOS 4.1.3

Sun Fortran 2.0.1 - SunOS 5.2

EPC Fortran 77 - SunOS 4.1.3

EPC Fortran 90 - SunOS 4.1.3

NAG Fortran 90 - SunOS 4.1.3

DEC Fortran 3.3-1 - DEC OSF/1 1.3
DEC Fortran 3.4-480 - DEC OSF/1 2.0
MIPS Fortran 4.0.5 - SGI IRIX 4.0.5F
MIPS Fortran 4.0.5 - SGI IRIX 4.0.5C
MIPS Fortran 5.0 - SGI IRIX 5.1.1
Cray Fortran 6.0 - UNICOS 7.0.5.2
Cray Fortran 7.0 - UNICOS 8.2.3
MIPS Fortran 5.2 - SGI IRIX 5.2
Portland if77 4.5 - OSF/1 1.2.6

IBM XL Fortran 6000 2.3 - AIX 3.2
Cray Fortran 8.0 - UNICOS 8.3.3

CM Fortran 77

3.2 Parallel programming model

PIM uses the Single Program, Multiple Data (SPMD) programming model. The main implica-
tion of using this model is that certain scalar values are needed in each processing element (PE).
Two of the user-supplied routines, to compute a global sum and a vector norm, must provide
for this, preferably making use of a reduction and/or broadcast routine like those present on

PVM 3.3.6 and MPL.

3.3 Data partitioning

With PIM, the iterative method routines have no knowledge of the way in which the user has
chosen to store and access either the coefficient or the preconditioning matrices. We thus restrict
ourselves to partitioning the vectors.

The assumption made is that each PE knows the number of elements of each vector stored
in it and that all vector variables in a processor have the same number of elements. This is
a broad assumption that allows us to accommodate many different data partitioning schemes,
including contiguous, cyclic (or wrap-around) and scattered partitionings. We are able to make

14

this assumption because the vector-vector operations used — vector accumulations, assignments
and copies — are disjoint element-wise. The other operations used involving matrices and vectors
which may require knowledge of the individual indices of vectors, are the responsibility of the
user.

PIM requires that the elements of vectors must be stored locally starting from position
1; thus the user has a local numbering of the variables which can be translated to a global
numbering if required. For example, if a vector of 8 elements is partitioned in wrap-around
fashion among 2 processors, using blocks of length 1, then the first processor stores elements
1, 3, 5 and 7 in the first four positions of an array; the second processor then stores elements
2, 4, 6 and 8 in positions 1 to 4 on its array. We stress that for most of the commonly used
partitioning schemes data may be retrieved with very little overhead.

3.4 Increasing the parallel scalability of iterative methods

One of the main causes for the poor scalability of implementations of iterative methods on
distributed-memory computers is the need to compute inner-products, a = u’v = 3" | wv;,
where u and v are vectors distributed across p processors (without loss of generality assume
that each processor holds n/p elements of each vector). This computation can be divided in

three parts

. . - n/p

1. The local computation of partial sums of the form 3; = le/ll u;v;, on each processor,

2. The reduction of the [3; values, where these values travel across the processors in some
efficient way (for instance, as if traversing a binary-tree up to its root) and are summed
during the process. At the end, the value of o = E§:1 3; is stored in a single processor,

3. The broadcast of « to all processors.

During parts 2. and 3. a number of processors are idle for some time. A possible strategy to
reduce this idle time and thus increase the scalability of the implementation, is to re-arrange
the operations in the algorithm so that parts 2. and 3. accumulate a number of partial sums
corresponding to some inner-products. Some of the algorithms available in PIM, including
CG, CGEV, Bi-CG, CGNR and CGNE have been rewritten using the approach suggested by
D’Azevedo and Romine [14]. Others, like Bi-CGSTAB, RBi-CGSTAB, RGCR, RGMRES and
QMR have not been re-arranged but some or all of their inner-products can be computed with
a single global sum operation.

The computation of the last two parts depends on the actual message-passing library being
used. With MPI, parts 2. and 3. are also offered as a single operation called MPT_ALLREDUCE.
Applications using the PVM 3.3.6 Fortran interface should however call PVMFREDUCE and then
PVMFBROADCAST.

An important point to make is that we have chosen modifications to the iterative methods
that reduce the number of synchronization points while at the same time maintaining their
convergence properties and numerical qualities. This is the case of the D’Azevedo and Romine
modification; also, in the specific case of GMRES, which uses the Arnoldi process (a suitable
reworking of the modified Gram-Schmidt procedure) to compute a vector basis, the computation
of several inner-products with a single global sum does not compromise numerical stability.

For instance, in the algorithm for the restarted GMRES (see Algorithm A.9), step 5 involves
the computation of 7 inner-products of the form VI-TV]-7 1=1,2,...,7. It is thus possible to
arrange for each processor to compute j partial sums using the BLAS routine DOT and store
these in an array. Then in a single call to a reduction routine, these arrays are communicated
among the processors and their individual elements are summed. On the completion of the
global sum the array containing the respective 7 inner-products is stored in a single processor
and is then broadcast to the remaining processors.

The CGS and TFQMR implementations available on PIM do not benefit from this approach.

3.5 Stopping criteria

PIM offers a number of stopping criteria which may be selected by the user. In Table 2 we
list the different criteria used; rp = b — Az is the true residual of the current estimate .,
zp. is the pseudo-residual (usually generated by linear recurrences and possibly involving the
preconditioners) and ¢ is the user-supplied tolerance. Note that the norms are not indicated:;
these depend on the user-supplied routine to compute a vector norm.

Table 2: Stopping criteria available on PIM

No. Stopping criterion
1 ||T‘]¢||<€

2 el <ello]l

3 riz <ellb]|

4 flzll<e

5 larll <ello]l

6 |zl <el[@uib]|

7T xp—xe—1 || <e

If speed of execution is of the foremost importance, the user needs to select the stopping
criterion that will impose the minimum overhead. The following notes may be of use in the
selection of an appropriate stopping criterion

16

1. If the stopping criterion selected is one of 1, 2 or 3 then the true residual is computed
(except when using TFQMR with either no preconditioning or left preconditioning).

2. The restarted GMRES method uses its own stopping criterion (see [42, page 862]) which
is equivalent to the 2-norm of the residual (or pseudo-residual if preconditioning is used).

3. If either no preconditioning or right-preconditioning is used and criterion 6 is selected,
the PIM iterative method called will flag the error and exit without solving the system
(except for the restarted GMRES routine).

4 Using PIM

4.1 Naming convention of routines
The PIM routines have names of the form
PIM_method

where _ indicates single-precision (S), double-precision (D), complex (C) or double-precision
complex (Z) and method is one of: CG, CGEV (CG with eigenvalue estimation), CGNR, CGNE,
BICG, CGS, BICGSTAB, RBICGSTAB, RGMRES, RGMRESEV (RGMRES with eigenvalue estimation),
and RGCR, QMR, TFQMR and CHEBYSHEV.

4.2 Obtaining PIM

PIM 2.0 is available via anonymous ftp from
unix.hensa.ac.uk, file /pub/misc/netlib/pim/pim20.tar.Z
and
ftp.mat.ufrgs.br, file /pub/pim/pim20.tar.gz
There is also a PIM World-Wide-Web homepage which can be accessed at
http://www.mat.ufrgs.br/pim-e.html

which gives a brief description of the package and allows the reader to download the software
and related documentation.
The current distribution contains

e The PIM routines in the directories single, double, complex and dcomplex

e A set of example programs for sequential and parallel execution (using PVM and MPT)
in the directories examples/sequential, examples/pvm and examples/mpi,

e This guide in PostScript format in the doc directory.

17

4.3 Installing PIM
To install PIM, unpack the distributed compressed (or gzipped), tar file:

uncompress pim20.tar.Z (or gunzip pim20.tar.gz)
tar xfp pim20.tar
cd pim

and edit the Makefile. The following variables may need to be modified

HOME Your top directory, e.g., /ful/users/fred

FC Your Fortran compiler of choice, usually £77

FFLAGS Flags for the Fortran compilation of main programs (example programs)

OFFLAGS Flags for the Fortran compilation of separate modules (PIM routines and modules of
examples)
NOTE: This must include at least the flag required for separate compilation (usually -c)

AR The archiver program, usually ar

HASRANLIB Either t (true) or £ (false), indicating if it is necessary to use a random library
program (usually ranlib) to build the PIM library

BLASLIB Kither the name of an archive file containing the BLAS library or —~1blas if the library
libblas.a has been installed on a system-wide basis

PARLIB The compilation switches for any required parallel libraries. This variable must be left
blank if PIM is to be used in sequential mode. For example, if PVM 3 is to be used, then
PARLIB would be defined as
-L$(PVM_ROOT)/1ib/$ (PVM_ARCH) -1fpvm3 -lpvm3 -lgpvm3

Each iterative method routine is stored in a separate file with names in lower case fol-
lowing the naming convention of the routines, e.g., the routine PIMDCG is stored in the file
pim20/double/pimdcg.£.

Building the PIM core functions PIM needs the values of some machine-dependent
floating-point constants. The single- or double-precision values are stored in the files
pim20/common/smachcons.f and pim20/common/dmachcons.f respectively. Default values are
supplied for the IEEE-754 floating-point standard, and are stored separately in the files
pim/common/smachcons.f.ieee754 and pim/common/dmachcons.f.ieee754 — these are used
by default. However if you are using PIM on a computer which does not support the IEEE-754
standard, you may:

18

1. type make smachcons or make dmachcons; this will compile and execute a program which
uses the LAPACK routine _LAMCH, to compute those constants, and the relevant files will
be generated.

2. edit either pim/common/smachcons.f.orig or pim/common/dmachcons.f.orig and re-
place the strings MACHEPSVAL, UNDERFLOWVAL and OVERFLOWVAL by the val-
ues of the machine epsilon, underflow and overflow thresholds to those of the particular
computer you are using, either in single- or double-precision.

To build PIM, type make makefiles to build the makefiles in the appropriate directories
and then make single, make double, make complex or make dcomplex to build the single-
precision, double-precision, complex or double complex versions of PIM. This will generate .o
files, one for each iterative method routine, along with the library file 1ibpim.a which contains
the support routines.

Building the examples Example programs are provided for sequential use, and for parallel
use with MPI and PVM?.

The example programs require a timing routine. The distribution comes with the file
examples/common/timer.f which contains examples of the timing functions available on the
Cray, the IBM RS/6000 and also the UNIX etime function. By default, the latter is used; this
file must be modified to use the timing function available on the target machine.

The PVM and MPI example programs use the Fortran INCLUDE statement to include the
PVM and MPI header files. Some compilers have a switch (usually -=I) which allows the user
to provide search directories in which files to be included are located (as with the IBM AIX
XL Fortran compiler); while others require the presence of those files in the same directory as
the source code resides. In the first case, you will need to include in the FFLAGS variable the
relevant switches (see §4.3); in the latter, you will need to install the PVM and MPI header
files (fpvm3.h and mpif.h respectively) by typing

make install-pvm-include INCFILE=<name-of-fpvm3.h>
make install-mpi-include INCFILE=<name-of-mpif.h>

where you should replace <name—of-fpvm3.h> and <name-of-mpif.h> by the full filename of
the required include files; for instance, if PVM is installed on /usr/local/pvm3 then you should

type
make install-pvm-include INCFILE=/usr/local/pvm3/include/fpvm3.h

Figure 2 shows the directory tree containing the examples. To build them, type make
followed by the name of a subdirectory of examples, e.g., make sequential/single/dense.

3The PVM examples use the “groups” library libgpvm.a which provides the reduction functions.

19

Figure 2: Directories containing the examples.

dense
. pde
single <§§§ pvp-pde
harwell-boeing

sequenti dense
double pde
harwell-boeing
complex dense
dcomplex—— dense

examples
. dense

single=—__ pde
pvm double=—__ dense

mpi pde
complex dense
dcomplex — dense

The example programs can also be built locally in those directories by changing to a specific
directory and typing make.

Cleaning-up You may wish to remove some or all of the compiled codes or other files installed
under the PIM directory; in this case you may type one of the following

make singleclean

make doubleclean

make complexclean

make dcomplexclean
make sequentialclean
make pvmclean

make mpiclean

make clean-pvm-include
make clean-mpi-include
make examplesclean
make makefilesclean
make realclean

which will clean-up the PIM routines, the examples, the Makefiles, the include files and all
generated files, returning the package to its distribution form.

20

Using PIM in your application To use PIM with your application, link your program with
the .o file corresponding to the PIM iterative method routine being called and with the PIM
support library 1ibpim.a.

4.4 Calling a PIM iterative method routine
With the exception of the Bi-CG, CGNR, CGNE and QMR methods, all the implemented

methods have the same parameter list as CG. The argument list for the double-precision im-
plementation of the CG method is

SUBROUTINE PIMDCG(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,
+ PDSUM, PDNRM, PROGRESS)

and for Bi-CG (as well as for CGNR, CGNE and QMR)

SUBROUTINE PIMDBICG(X,B,WRK,IPAR,DPAR,MATVEC,TMATVEC,PRECONL,PRECONR,
+ PDSUM, PDNRM, PROGRESS)

where the parameters are as follows

Parameter Description
X A vector of length IPAR(4)
On input, contains the initial estimate
On output, contains the last estimate computed

B The right-hand-side vector of length IPAR(4)
WRK A work vector used internally (see the description
of each routine for its length)
IPAR An integer array containing input-output parameters
_PAR A floating-point array containing input-output parameters
MATVEC Matrix-vector product external subroutine
TMATVEC Transpose-matrix-vector product external subroutine
PRECONL Left-preconditioning external subroutine
PRECONR Right-preconditioning external subroutine
P_SUM Global sum (reduction) external function
P_NRM Vector norm external function

PROGRESS Monitoring routine

Note in the example above that, contrary to the proposal in [5], PIM uses separate routines
to compute the matrix-vector and transpose-matrix-vector products. See the reference manual,
sections A.1 and A.2 for the description of the parameters above and the synopsis of the external

routine.

21

4.5 FExternal routines

As stated earlier, the user is responsible for supplying certain routines to be used internally by
the iterative method routines. One of the characteristics of PIM is that if external routines are
not required by an iterative method routine they are not called (the only exception being the
monitoring routines). The user only needs to provide those subroutines that will actually be
called by an iterative method routine, depending on the selection of method, preconditioners
and stopping criteria; dummy parameters may be passed in place of those that are not used.
Some compilers may require the presence of all routines used in the program during the linking
phase of the compilation; in this case the user may need to provide stubs for the dummy
routines. Section A.2 gives the synopsis of each user-supplied external routine used by PIM.

The external routines have a fixed parameter list to which the user must adhere (see §A.2).
Note that (from version 2.0 onwards) the coefficient and the preconditioning matrices do not
appear in the parameter list of the PIM routines. Indeed we regard the matrix-vector products
and preconditioning routines as operators returning only the appropriate resulting vector; thus
the PIM routines have no knowledge of the way in which the matrices are stored.

The external routines, however, may access the matrices declared in the main program via
COMMON blocks. This strategy hides from the PIM routines details of how the matrices are
declared in the main program and thus allows the user to choose the most appropriate storage
method for her problem; previous versions of PIM were more restrictive in this sense.

Matrix-vector product Consider as an example a dense matrix partitioned by contiguous
columns among a number of processors. For illustrative purposes we assume that N is an integer
multiple of NPROCS, and that LOCLEN=N/NPROCS. The following code may then be used

PROGRAM MATV

% A IS DECLARED AS IF USING A COLUMN PARTITIONING FOR AT LEAST
* TWO PROCESSORS.

INTEGER LDA

PARAMETER (LDA=500)

INTEGER LOCLEN

PARAMETER (LOCLEN=250)

DOUBLE PRECISION A(LDA,LOCLEN)

COMMON /PIMA/A

*

SET UP PROBLEM SOLVING PARAMETERS FOR USE BY USER DEFINED ROUTINES
THE USER MAY NEED TO SET MORE VALUES OF THE IPAR ARRAY
LEADING DIMENSION OF A
IPAR(1)=LDA
NUMBER OF ROWS/COLUMNS OF A
IPAR(2)=N
NUMBER OF PROCESSORS

* %

*

*

22

IPAR(6)=NPROCS
NUMBER OF ELEMENTS STORED LOCALLY
IPAR (4)=N/IPAR(6)
CALL PIM ROUTINE
CALL PIMDCG(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PDSUM,PDNRM,PROGRESS)
STOP
END

*

*

*

MATRIX-VECTOR PRODUCT ROUTINE CALLED BY A PIM ROUTINE. THE
ARGUMENT LIST TO THIS ROUTINE IS FIXED.
SUBROUTINE MATVEC(U,V,IPAR)
DOUBLE PRECISION U(*),V(*)
INTEGER IPAR(*)
INTEGER LDA
PARAMETER (LDA=500)
INTEGER LOCLEN
PARAMETER (LOCLEN=250)
DOUBLE PRECISION A(LDA,LOCLEN)
COMMON /PIMA/A

*

RETURN
END

The scheme above can be used for the transpose-matrix-vector product as well. We note that
many different storage schemes are available for storing sparse matrices; the reader may find
useful to consult Barrett et al. [6, pp. 57ff] where such schemes as well as algorithms to compute
matrix-vector products are discussed.

Preconditioning For the preconditioning routines, one may use the scheme outlined above
for the matrix-vector product; in some cases this may not be necessary, when there is no need
to operate with A or the preconditioner is stored as a vector. An example is the diagonal (or
Jacobi) left-preconditioning, where Q1 = diag(A)™!

PROGRAM DIAGP

INTEGER LDA

PARAMETER (LDA=500)
INTEGER LOCLEN
PARAMETER (LOCLEN=250)

* Q1 IS DECLARED AS A VECTOR OF LENGTH 250, AS IF USING AT LEAST
* TWO PROCESSORS.

DOUBLE PRECISION A(LDA,LDCLEN),Q1(LOCLEN)

COMMON /PIMQ1/Q1

EXTERNAL MATVEC,DIAGL,PDUMR,PDSUM,PDNRM

23

* SET UP PROBLEM SOLVING PARAMETERS FOR USE BY USER DEFINED ROUTINES
* THE USER MAY NEED TO SET MORE VALUES OF THE IPAR ARRAY
* LEADING DIMENSION OF A
IPAR(1)=LDA
* NUMBER OF ROWS/COLUMNS OF A
IPAR(2)=N
* NUMBER OF PROCESSORS
IPAR(6)=NPROCS
* NUMBER OF ELEMENTS STORED LOCALLY
IPAR(4)=N/IPAR(6)
* SET LEFT-PRECONDITIONING
IPAR(8)=1

DO 10 I=1,N
Q1(I)=1.0D0/A(I,I)
10 CONTINUE

CALL DINIT(IPAR(4),0.0D0,X,1)

CALL PIMDCG(X,B,WRK,IPAR,DPAR,MATVEC,DIAGL,PDUMR,PDSUM,PDNRM,PROGRESS)
STOP

END

SUBROUTINE DIAGL(U,V,IPAR)
DOUBLE PRECISION U(*),V(*)
INTEGER IPAR(*)

INTEGER LOCLEN

PARAMETER (LOCLEN=250)

DOUBLE PRECISION Q1 (LOCLEN)
COMMON /PIMQ1/Q1

CALL DCOPY(IPAR(4),U,1,V,1)
CALL DVPROD(IPAR(4),Q1,1,V,1)
RETURN

where DVPROD is a routine based on the BLAS DAXPY routine that performs an element-by-
element vector multiplication. This example also shows the use of dummy arguments (PDUMR).

Note that it is the responsibility of the user to ensure that, when using preconditioning, the
matrix @1 AQe must satisfy any requirements made by the iterative method being used with
respect to the symmetry and /or positive-definiteness of the matrix. For example, if A is a matrix
with arbitrary (i.e., non-constant) diagonal entries, then both diag(A4)~! A and A diag(A)~! will
not be symmetric, and the CG and CGEV methods will generally fail to converge. For these
methods symmetric preconditioning, diag(4)~1/2 A diag(4)~1/2, should be used.

Inner-products, vector norms and global accumulation When running PIM routines
on multiprocessor architectures, the inner-product and vector norm routines require reduction

24

and broadcast operations (in some message-passing libraries these can be supplied by a single
routine). On vector processors these operations are handled directly by the hardware whereas
on distributed-memory architectures these operations involve the exchange of messages among
the processors.

When a PIM iterative routine needs to compute an inner-product, it calls _DOT to compute
the partial inner-product values. The user-supplied routine P_SUM is then used to generate the
global sum of those partial sums. The following code shows the routines to compute the global
sum and the vector 2-norm ||u ||2 = Vulu using the BLAS DDOT routine and the reduction-
plus-broadcast operation provided by MPI

SUBROUTINE PDSUM(ISIZE,X)

INCLUDE ’mpif.h’

INTEGER ISIZE

DOUBLE PRECISION X(*)

DOUBLE PRECISION WRK(10)

INTEGER IERR

EXTERNAL DCOPY,MPI_ALLREDUCE

CALL MPI_ALLREDUCE(X,WRK,ISIZE,MPI_DOUBLE_PRECISION,MPI_SUM,
+ MPI_COMM_WORLD,IERR)

CALL DCOPY(ISIZE,WRK,1,X,1)

RETURN
END

DOUBLE PRECISION FUNCTION PDNRM(LOCLEN,U)

INCLUDE ’mpif.h’
INTEGER LOCLEN

DOUBLE PRECISION U(*)

DOUBLE PRECISION PSUM

INTEGER IERR

DOUBLE PRECISION DDOT

EXTERNAL DDOT

INTRINSIC SQRT

DOUBLE PRECISION WRK(1)

EXTERNAL MPI_ALLREDUCE

PSUM = DDOT(LOCLEN,U,1,U,1)

CALL MPI_ALLREDUCE(PSUM,WRK,1,MPI_DOUBLE_PRECISION,MPI_SUM,
+ MPI_COMM_WORLD,IERR)

PDNRM = SQRT(WRK(1))

RETURN
END

It should be noted that P_SUM is actually a wrapper to the global sum routines available on

a particular machine. Also, when executing PIM on a sequential computer, these routines are
empty i.e., the contents of the array X must not be altered in any way since its elements already
are the inner-product values.

The parameter list for these routines was decided upon after inspecting the format of the
global operations available from existing message-passing libraries.

Monitoring the iterations In some cases, most particularly when selecting the iterative
method to be used for solving a specific problem, it is important to be able to obtain feedback
from the PIM routines as to how an iterative method is progressing.

To this end, we have included in the parameter list of each iterative method routine an
external subroutine (called PROGRESS) which receives from that routine the number of vector el-
ements stored locally (LOCLEN), the iteration number (ITNO), the norm of the residual (NORMRES)
(according to the norm being used), the current iteration vector (X), the residual vector (RES)
and the true residual vector r, = b — Az, (TRUERES). This last vector contains meaningful
values only if IPAR(9) is 1, 2 or 3.

The parameter list of the monitoring routine is fixed, as shown in §A.2. The example below
shows a possible use of the monitoring routine, for the DOUBLE PRECISION data type.

SUBROUTINE PROGRESS(LOCLEN,ITNO,NORMRES,X,RES, TRUERES)
INTEGER LOCLEN,ITNO
DOUBLE PRECISION NORMRES
DOUBLE PRECISION X(*),RES(*),TRUERES (%)
EXTERNAL PRINTV
WRITE (6,FMT=9000) ITNO,NORMRES
WRITE (6,FMT=9010) ’X:’
CALL PRINTV(LOCLEN,X)
WRITE (6,FMT=9010) ’RESIDUAL:’
CALL PRINTV(LOCLEN,RES)
WRITE (6,FMT=9010) ’TRUE RESIDUAL:’
CALL PRINTV(LOCLEN,TRUERES)
RETURN
9000 FORMAT (/,I5,1X,D16.10)
9010 FORMAT (/,A)
END

SUBROUTINE PRINTV(N,U)
INTEGER N
DOUBLE PRECISION U(*)
INTEGER I
DO 10 I =1,N
WRITE (6,FMT=9000) U(I)
10 CONTINUE
RETURN
9000 FORMAT (4(D14.8,1X))

26

END

As with the other external routines used by PIM, this routine needs to be supplied by
the user; we have included the source code for the routine as shown above in the directory
/pim/examples/common and this may be used as is or can be modified by the user as required.
Please note that for large system sizes the routine above will produce very large amounts of
output. We stress that this routine is always called by the PIM iterative method routines; if no
monitoring is needed a dummy routine must be provide.

Note that some of the iterative methods contain an inner loop within the main iteration
loop. This means that, for PIM_RGCR and PIM_TFQMR, the value of ITNO passed to PROGRESS
will be repeated as many times as the inner loop is executed. We did not modify the iteration
number passed to PROGRESS so as to reflect the true behaviour of the iterative method being
used.

4.6 Example programs

In the distributed software the user will find a collection of example programs under the direc-
tory examples. The example programs show how to use PIM with three different matrix storage
formats including dense matrices, those derived from the five-point finite-difference discretisa-
tion of a partial differential equation (PDE) and the standard sparse representation found in
the Harwell-Boeing sparse matrix collection [17].

Most of the examples are provided for sequential and parallel execution, the latter with
separate codes for PVM 3.3.6 and MPI libraries. The examples involving the Harwell-Boeing
sparse format are provided for sequential execution only.

The parallel programs for the dense and PDE storage formats have different partitioning
strategies and the matrix-vector products have been designed to take advantage of these.

The systems solved have been set-up such that the solution is the vector z = (1,1,...,1)7,
in order to help in checking the results. For the dense storage format, the real system has the
tridiagonal coefficient matrix of order n = 500

and the complex system of order n = 100 has the form A = pl 4+ S, where S = S, =4 — 44
and

27

S = ()
1—i 0 144
1—i 0

The problem using the Harwell-Boeing format is NOS4 from the LANPRO collection of problems
in structural engineering [17. pp. 54-55]. Problem NOS4 has order n = 100 and is derived from a
finite-element approximation of a beam structure. For the PDE storage format the system being
solved is derived from the five-point finite-difference discretisation of the convection-diffusion

equation
*u du N ou
—€| =— 4+ =— | +cos(a)=— +sin(a)=— =0 6
on the unit square, with ¢ = 0.1, o = —7/6 and u = 22+ y? on QR. The first order terms were

discretised using forward differences (this problem was taken from [44]).
A different set of systems is used for the HYBRID examples with dense storage format. The
real system has a nonsymmetric tridiagonal coefficient matrix of order n = 500

and the complex system of order n = 100 has A defined as

2 -1+
2+ 2 —14:

2412 2 -1+
2+ 2

The examples include the solution of systems using different preconditioners. In the dense
and Harwell-Boeing formats the examples include diagonal and polynomial preconditioners; the
five-point PDE format includes a variant of the incomplete LU factorisation and polynomial
preconditioners. The polynomial preconditioners provided are the Neumann and the weighted
and unweighted least-squares polynomials found in [36].

28

4.6.1 Eigenvalues estimation and Chebyshev acceleration

Consider the use of Chebyshev acceleration to obtain a solution to a linear system whose
coefficient matrix has real entries only; the eigenvalues of the iteration matrix I — ()1 A are
known to lie in the complex plane. We can use a few iterations of the routine PIMDRGMRESEV to
obtain estimates of the eigenvalues of (1 A and then switch to PIMDCHEBYSHEV. Before the latter
is called a transformation on the extreme values on the real axis must be made as described in
Section 2.

In the example below, we use the Jacobi preconditioner as shown in §4.5. Note that the
vector X returned by PIMDRGMRESEV may be used as an improved initial vector for the routine
PIMDCHEBYSHEV. Both routines are combined in a loop to produce a hybrid method; the code
below is based on the algorithm given by Elman et al. [20, page 847].

PROGRAM HYBRID
INTEGER MAXIT
EXTERNAL MATVEC,PRECON,PDUMR,PDSUM,PDNRM2

* SET MAXIMUM NUMBER OF ITERATIONS FOR THE HYBRID LOOP
MAXIT=INT(N/2)+1

* SET LEFT-PRECONDITIONING
IPAR(8)=1
CALL DINIT(N,0.0DO,X,1)
DD 10 I = 1,MAXIT

* SET SMALL NUMBER OF ITERATIONS FOR RGMRESEV
IPAR(10)=3
CALL PIMDRGMRESV(X,B,WRK,IPAR,DPAR,MATVEC,PRECONR,PDUMR,PDSUM,PDNRM, PROGRESS)
IF (IPAR(12).NE.-1) THEN
IPAR(11) = I
GO TO 20
END IF

MODIFY REAL INTERVAL TO REFLECT EIGENVALUES OF I-QiA. BOX CONTAINING
THE EIGENVALUES IS RETURNED IN DPAR(3), DPAR(4), DPAR(5), DPAR(6),
THE FIRST TWO ARE THE INTERVAL ALONG THE REAL AXIS, THE LAST TWO ARE
THE INTERVAL ALONG THE IMAGINARY AXIS.

MU1 = DPAR(3)

MUN = DPAR(4)

DPAR(3) = 1.0DO - MUN

DPAR(4) = 1.0D0 - MU1

* ¥ ¥ ¥

*

SET NUMBER OF ITERATIONS FOR CHEBYSHEV
IPAR(10)=5
CALL PIMDCHEBYSHEV (X,B,DWRK,IPAR,DPAR,MATVEC,PRECON,PDUMR,PDSUM,PDNRM2,PROGRESS)
IF ((IPAR(12).EQ.0) .OR. (IPAR(12).EQ.-6) .OR.

29

+ (IPAR(12) .EQ.-7)) THEN
IPAR(11) = 1
GO TO 20
END TIF
10 CONTINUE
20 CONTINUE

4.6.2 Dense storage

For the dense case, the coeflicient matrix is partitioned by columns among the p processors,
which are considered to be logically connected on a grid (see Figure 3-A). Each processor stores
at most [n/p] columns of A. For the example shown in Figure 3-B, the portion of the matrix-
vector product to be stored in processor 0 is computed according to the diagram shown in
Figure 3-C. Basically, each processor computes a vector with the same number of elements as
that of the target processor (0 in the example) which holds the partial sums for each element.
This vector is then sent across the network to be summed in a recursive-doubling fashion until
the accumulated vectors, carrying the contributions of the remaining processors, arrive at the
target processor. These accumulated vectors are then summed together with the partial sum
vector computed locally in the target processor, yielding the elements of the vector resulting
from the matrix-vector product. This process is repeated for all processors. This algorithm is
described in [12].

To compute the dense transpose-matrix-vector product, AT w, each processor broadcasts to
the other processors a copy of its own part of u. The resulting part of the v vector is then
computed by each processor.

4.6.3 PDE storage

For the PDE storage format, a square region is subdivided into [+ 1 rows and columns giving a
grid containing 12 internal points, each point being numbered as i+ (5 — 1)1, 4,5 = 1,2,....1 (see
Figure 4). At each point we assign 5 different values corresponding to the center, north, south,
east and west points on the stencil («; j, i ;, Vi j, 0i,j, €i,j respectively) which are derived from
the PDE and the boundary conditions of the problem. Each grid point represents a variable;
the whole being obtained by solving a linear system of order n = 2.

A matrix-vector product v = Au is obtained by computing
Vij = 0 Ui+ Bigtiptg + Yigtio1g + 0ijui i1+ €t i1 (7)

where some of the «, 3, v, 6 and € may be zero according to the position of the point relative
to the grid. Note that only the neighbouring points in the vertical and horizontal directions are
needed to compute v; ;.

30

Figure 3: Matrix-vector product, dense storage format: A) Partitioning in columns , B) Exam-
ple and C) Computation and communication steps.

A T
\ J
A ,,I,
B) 7ABCDEFGH7 7a7
IJ K L O P b

c

d

e

f

g9

L J LhJ

Processors

<0§\

I\

!

Aa+Bb+Cc+Dd+Ee+Ff+Gg+Hh
la+Jb+Kc+Ld+Me+Nf+Og+Ph

C) [Aa+Bb+Cc+Dd+Ee+Ff+Gg+Hh
la+Jb+Kc+Ld+Me+Nf+Og+Ph

Cc+Dd+Gg+Hh
Kc+Ld+Og+Ph

—p Stepl
- Step 2

31

Figure 4: Matrix-vector product, PDE storage format.

Processor 0 Processor 1 Processor 2

6
H E DO

o wa™

a Boundary grid points (exchanged)
M cid points

<=> Data exchange

Five—point stencil

A parallel computation of (7) may be organised as follows. The grid points are partitioned
by vertical panels among the processors as shown in Figure 4. A processor holds at most [{/p]
columns of [grid points. To compute the matrix-vector product, each processor exchanges with
its neighbours the grid points in the “interfaces” between the processors (the points marked
with white squares in Figure 4). Equation (7) is then applied independently by each processor
at its local grid points, except at the local interfacing points. After the interfacing grid points
from the neighbouring processors have arrived at a processor, Equation (7) is applied using the
local interfacing points and those from the neighbouring processors.

This parallel computation offers the possibility of overlapping communication with the com-
putation. If the number of local grid points is large enough, one may expect that while Equation
(7) is being applied to those points, the interfacing grid points of the neighbouring processors
will have been transferred and be available for use. This method attempts to minimize the
overheads incurred by transferring the data (note that we only make gains if the asynchronous
transfer of messages is available). The example below is taken from the matrix-vector product
routine using MPI

32

SUBROUTINE PDMVPDE(NPROCS,MYID,LDC,L,MYL,COEFS,U,V,UEAST,UWEST)
INCLUDE ’mpif.h’
* Declarations...

* Send border U values to (myid+1)-th processor
MSGTYPE = 1000
TO = MYID + 1
CALL MPI_ISEND(U(EIO),L,MPI_DOUBLE_PRECISION,TO,MSGTYPE,
+ MPI_COMM_WORLD,SIDO,IERR)

* Post to receive border U values from (myid+1)—th processor
MSGTYPE = 1001
CALL MPI_IRECV(UEAST,L,MPI_DOUBLE_PRECISION,MPI_ANY_SOURCE,
+ MSGTYPE,MPI_COMM_WORLD,RIDO,IERR)

* Send border U values to (myid-1)-th processor
MSGTYPE = 1001
TO = MYID - 1
CALL MPI_ISEND(U(WIO),L,MPI_DOUBLE_PRECISION,TO,MSGTYPE,
+ MPI_COMM_WORLD,SID1,IERR)

* Post to receive border U values from (myid-l)-th processor
MSGTYPE = 1000
CALL MPI_IRECV(UWEST,L,MPI_DOUBLE_PRECISION,MPI_ANY_SOURCE,
+ MSGTYPE,MPI_COMM_WORLD,RID1,IERR)

* Compute with local grid points...

* Need "eastern" data,wait for completion of receive
CALL MPI_WAIT(RIDO,ISTAT,IERR)

* Compute with local interfacing grid points in the "east"...

* Need "west" data,wait for completion of receive
CALL MPI_WAIT(RID1,ISTAT,IERR)

* Compute with local interfacing grid points in the "west"...
* Release message IDs
CALL MPI_WAIT(SIDO,ISTAT,IERR)

CALL MPI_WAIT(SID1,ISTAT,IERR)

RETURN
END

The computation of the transpose-matrix-vector product for the PDE case is performed in a
similar fashion. Before the computation starts, each processor exchanges with its left and right

33

neighbouring processors the east and west coefficients corresponding to the interfacing grid
points?. The computation performed is then similar to the matrix-vector product described
above except that for each interfacing grid point we apply

Vij = QUi Vil jUit1, T Bio 1015t i1t T 611 (8)

Comparing (8) to (7) we see that the coefficients are swapped in the north-south and east-west
directions. Note that due to the partitioning imposed we do not need to exchange the north
and south coefficients.

A matrix-vector product for parallel vector architectures For parallel vector architec-
tures like the Cray Y-MP2E, the routines outlined above are not efficient, because of the small
vector lengths involved. A routine requiring the use of long vectors may be obtained by writing
the matrix-vector product for the 5-point stencil as a sequence of _AXPYs. The use of _AXPYs
also provides a better performance because these operations are usually very efficient on such

machines.
Consider the storage scheme described above i.e., five coefficients («, 3, v, § and €) are stored
per grid point, and numbered sequentially as i + (j — 1), 4,5 = 1,2,...,l. The coefficients can

. . 9 .
then be stored in five separate arrays of size n = [°. The matrix-vector product v = Au can
then be obtained by the following sequence of operations

vp = apup, k=1,2,...,n (9)
v = v+ By, k=1,2,....n—1 (10)
vy = v+ Yeup—1, k=2,3,...,n (11)
v = Uk +Opupr, k=12,....n—1 (12)
vy = vt epup—y, k=14+11+2,...,n (13)

and the transpose matrix-vector product v = AT is obtained similarly,

v = apup, k=1,2,...,n (14)
Vel = Vg1 +Prug, kE=12,....n—1 (15)
Vel = Vp—1 +ypun, k=2,3,...,n (16)
Vgl = Uy +0pup, k=1,2,....,n—1 (17)
V) = Up_tepup, k=I14+114+2,...,n (18)

Experiments on the Cray Y-MP2E/232 showed that this approach gave a three-fold improve-
ment in the performance, from 40MFLOPS to 140MFLOPS. A separate set of the PDE examples
containing these matrix-vector product routines are provided under the
pim20/examples/sequential/pvp-pde directory.

*This may only need to be done once if the coefficient matrix is unchanged during the solution of the system.

34

4.6.4 Preconditioners

The examples involving an incomplete LU factorisation as the preconditioner for the PDE case
are a modification of the usual ILU(0) method. This modification was made to allow the com-
putation of the preconditioning step without requiring any communication to be performed. To
achieve this we note that the matrices arising from the five-point finite-difference discretisation
have the following structure

(19)

where £ and F are diagonal matrices and «, [and «y are the central, north and south coefficients
derived from the discretisation (the subscripts are dropped for clarity). Each matrix B is
approximating the unknowns in a single vertical line on the grid on Figure 4.

To compute a preconditioner Q = LU, we modify the ILU(0) algorithm in the sense that
the blocks E and F' are discarded (because only the diagonal blocks are considered we refer to
this factorisation as IDLU(0)). The resulting L and U factors have the following structure

X 1

X ¥y 1

i X v 1

Y a@ p
Y 5.

U = i) Y: @ . (20)
. B
I Y &

where ¢, and ¥ are the modified coefficients arising from the ILU(0) algorithm. ;From the
structure of L and U it may be clearly seen that applying the preconditioning step reduces to the
solution of small (order 1), independent, triangular systems. Each of these systems correspond
to a vertical line in the grid; since it was partitioned in vertical panels, these systems can be
solved independently in each processor.

The polynomial preconditioners used can be expressed by
<Z Yot (1 = (diag(4)) " A)'> (diag(4)) " (21)
i=0

which can be easily computed as a sequence of vector updates and matrix-vector products using
Horner’s algorithm. Note that the v,,; coefficients define the kind of polynomial preconditioner
being used. The Neumann preconditioner is obtained when v,,; = 1.V:; the weighted and
unweighted least-squares polynomial preconditioners are those reported in [36]. The maximum
available degree of the polynomial for these latter two is m = 13.

4.6.5 Results

In this section we provide some results for the example programs discussed above.

Stopping criteria As pointed out earlier, the selection of the stopping criterion has a sub-
stantial effect on the execution time. Evidently, there is a trade-off between the time spent
on each iteration and the total number of iterations required for convergence. In Table 3 we
show, for each of the stopping criteria provided, the execution time per iteration when PIMDCG
is applied to the tridiagonal system (described in §4.6) of order n = 500 with diagonal left-
preconditioning. The increase in execution time of each stopping criterion with respect to
criterion 4 (the “cheapest” one) is shown.

Table 3: Effect of different stopping criteria on an iterative method routine.

Stopping Time(s)/

criterion k™ [| 7= |]2 iteration Increase
1 19 3.56x 10 0.3331 2.66
2 15 6.91x10% 0.3531 2.79
3 14 1.29 x 108 0.3286 2.62
4 18 3.32x 1071 0.1254 ——
5 14 6.45x 1077 0.1967 1.57
6 15 1.73x 107 0.2904 2.32
7 19 3.70x 1071 0.4148 3.31

General results We present below the results obtained from solving a system of n = 64

equations derived from the 5-point finite-differences discretisation of Equation (6).

36

We used both the IDLU(0) and the Neumann polynomial preconditioner of degree 1 as left-
preconditioners to solve this problem. The stopping criterion used was number 5 with ¢ = 10710
lo < 3.802x 10714, except
for PIMDRGMRES which stops its iterations when the norm of the residual is less than . The

and the 2-norm; using this criterion a solution will be accepted if || 2

maximum number of iterations allowed was 32 and the initial value of the solution vector was
(0,0....,0)". For the restarted GMRES and GCR the restarting value used was 10. The results
are reported for the double-precision versions of the routines.

Tables 4 and 5 show the results obtained with the PIM routines for the IDLU(0) and
Neumann preconditioners on a single workstation. A status value of 0 on exit from a PIM
routine indicates that the convergence conditions have been satisfied; a non-zero status value
indicates that a problem has been encountered. In particular a status value of —1 is returned
when the maximum number of iterations specified by the user has been exceeded. This example
is characteristic of the problems facing the user of iterative method i.e., not all methods converge
to the solution and some preconditioner may cause an iterative method to diverge (or converge
slowly). We stress that the methods that have failed to converge in this example do converge
for other systems.

Scalability In Table 6 we present the execution times obtained by solving the test problem
above, but with n = 16384 equations, with the PIMDRGMRES routine (using 10 basis vectors)
and the Neumann polynomial preconditioner (of first degreee) on the IBM SP/1, Intel Paragon
XP/S, Kendall Square Research KSR1, SGI Challenge, Cray Y-MP2E and Cray C9016E. The
PIMDRGMRES routine converged to a tolerance of 10713 in 70 iterations. The results for the Cray
machines were obtained with the modified matrix-vector product routines described in §4.6.3.
The results for the KSR1 are obtained using the KSRBLAS routines. The programs running
on the SGI Challenge are from the set of examples available with the PIM distributed software
using the PVM message-passing library. The results for the IBM SP/1 are obtained using
the IBM PVMe 2.0 version of PVM, which enables the use of the IBM SP/1 High Performance
Switch. Note that for the IBM SP/1, SGI Challenge and Intel Paragon XP/S superlinear effects
occur; we believe this is due to the specific memory organization of those machines (hierarchic
memories and/or the presence of a cache memory).

5 Summary

We have described in this report PIM, the Parallel Iterative Methods package, a collection of
Fortran 77 routines for the parallel solution of linear systems using iterative methods.

The package was designed to be used in a variety of parallel environments without imposing
any restriction on the way the coefficient matrices and the preconditioning steps are handled.
The user may thus explore characteristics of the problem and of the particular parallel architec-

37

Table 4: Example with IDLU(0) preconditioner.

Method E* Time(s) TSR Status
CG 32 0.0900 59.8747 -1
CGEV 32 0.1500 59.8747 -1
Bi-CG 32 0.1000 10.8444 -1
CGS 11 0.0500 1.8723 x 1011 0

Bi-CGSTAB 12 0.0400 1.1099 x 101!

—

)

RBi-CGSTAB 7 0.0300 3.7795 x 107! 0
RGMRES 3 0.0600 2.8045 x 1072 0
RGMRESEV 3 0.4500 2.8045 x 10712 0
RGCR 3 0.0800 2.8048 x 10~ '2 0
CGNR 32 0.0800 81.5539 -1
CGNE 32 0.0900 37.0570 -1
QMR 32 0.1200 1.7739 -1
TFQMR 11 0.0500 5.3482 x 10~ !t 0

Table 5: Example with Neumann polynomial preconditioner.

Method E* Time(s) TSR Status
CG 32 0.1000 41.9996 -1
CGEV 32 0.1300 41.9996 -1
Bi-CG 32 0.1000 13.8688 -1
CGS 14 0.0500 7.4345 x 10~11 0
Bi-CGSTAB 14 0.0500 5.3863 x 1012 0
RBi-CGSTAB 8 0.0500 8.4331 x 10~ 0
RGMRES 3 0.0600 4.0454 x 10! 0
RGMRESEV 3 0.3900 4.0454 x 101! 0
RGCR 3 0.0900 4.0455 x 101! 0
CGNR 32 0.0800 7.4844 x 107! -1
CGNE 32 0.1000 3.6205 x 102 -1
QMR 32 0.1600 1.1474 -1
TFQMR 14 0.1100 7.6035 x 10~ 0

38

Table 6: Execution time (in seconds) for test problem (n = 16384) solved by PIMDRGMRES with
the Neumann polynomial preconditioner (of first degreee).

IBM Intel Intel SGI Cray Cray Cray
p SP/1 Paragon XP/S iPSC/860* Challenge’ KSR1¥ T3D® Y-MP2E (9016
1 150.42 265.83 99.60 453.20
2 39.60 131.64 80.90 297.40 11.64
4 20.43 60.54 46.95 26.73 4.99
8 7.10 29.82 31.62 166.80
16 16.35 35.38 4.04
32 11.20

* W.H. Purvis, Daresbury Laboratory, U.K.
'S. Thomas, CERCA/Montréal

Y A. Pindor, U. of Toronto [39]

¢ P.T.M. Bulhoes, Cray Research Inc.

ture being used. Indeed, the performance of a PIM routine is dependent on the user-supplied
routines for the matrix-vector products, inner-products and vector norms and the computation
of the preconditioning steps.

PIM is an ongoing project and we intend to improve it and include other iterative methods.
We encourage readers to send their comments and suggestions; the authors may be contacted
via e-mail at either rudnei@mat.ufrgs.br or trh@ukc.ac.uk .

Acknowledgements

We would like to thank the National Supercomputing Centre (CESUP), Brazil, the National
Laboratory for Scientific Computing (LNCC/CNPq), Brazil, the Parallel Laboratory, University
wn Bergen, Norway, the Army High Performance Computing Research Center, Minnesota, USA
and Digital Equipment Corporation (via the Internet Alpha Program), who kindly made their
facilities available for our tests.

We also thank our collaborators, Matthias G. Imhof (MIT), Paulo Tibério M. Bulhoes (Cray
Research), Steve Thomas (CERCA /Montréal), Andrzej Pindor (University of Toronto), William
H. Purvis (Daresbury Laboratory, U.K.) and Ramiro B. Willmersdorf (LNCC, Brazil) for their
help on testing PIM.

This work was supported in part by the Army High Performance Computing Research

39

Center, under the auspices of Army Research Office contract number DAAL(03-89-C-0038 with
the University of Minnesota.

References

[1]

[10]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, 1992.

S.F. Ashby. Minimax polynomial preconditioning for Hermitian linear systems. Report
UCRL-JC-103201, Numerical Mathematics Group, Computing & Mathematics Research
Division, Lawrence Livermore National Laboratory, March 1990.

S.F. Ashby, T.A. Manteuffel, and J.S. Otto. A comparison of adaptive Chebyshev and least
squares polynomial preconditioning for Hermitian positive definite linear systems. Report
UCRL-JC-106726, Numerical Mathematics Group, Computing & Mathematics Research
Division, Lawrence Livermore National Laboratory, March 1991.

S.F. Ashby, T.A. Manteuffel, and P.E. Saylor. A taxonomy for Conjugate Gradient meth-
ods. SIAM Journal of Numerical Analysis, 27:1542-1568, 1990.

S.F. Ashby and M.K. Seager. A proposed standard for iterative linear solvers (version
1.0). Report UCRL-102860, Numerical Mathematics Group, Computing & Mathematics
Research Division, Lawrence Livermore National Laboratory, January 1990.

R. Barrett, M. Berry, T. Chan, J. Deminel, J. Donald, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the solution of linear systems: building
blocks for iterative methods. STAM, Philadelphia, 1993.

R.A.A. Bruce, J.G. Mills, and G.A. Smith. CHIMP/MPT user guide. EPCC-KTP-CHIMP-
V2-USER 1.2, Edinburgh Parallel Computer Centre, University of Edinburgh, June 1994.

R. Butler and E. Lusk. User’s guide to the p4 programming system. ANL-92/17, Argonne
National Laboratory, October 1992.

F.-C. Cheng, P. Vaughan, D. Reese, and A. Skjellum. The Unify system. User’s guide,
document for version 0.9.2, NSF Engineering Research Center, Mississippi State University,
September 1994.

E.J. Craig. The N-step iteration procedures. Journal of Mathematical Physics, 34:64-73,
1955.

40

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R.D. da Cunha. A Study on Iterative Methods for the Solution of Systems of Linear
FEquations on Transputer Networks. PhD thesis, Computing Laboratory, University of
Kent at Canterbury, July 1992.

R.D. da Cunha and T.R. Hopkins. Parallel preconditioned Conjugate-Gradients methods
on transputer networks. Transputer Communications, 1(2):111 125, 1993. Also as TR-5-93,
Computing Laboratory, University of Kent at Canterbury, U.K.

R.D. da Cunha and T.R. Hopkins. A parallel implementation of the restarted GMRES
iterative method for nonsymmetric systems of linear equations. Advances in Computa-
tional Mathematics, 2(3):261-277, April 1994. Also as TR-7-93, Computing Laboratory,
University of Kent at Canterbury.

E.F. D’Azevedo and C.H. Romine. Reducing communication costs in the Conjugate Gradi-
ent algorithm on distributed memory multiprocessors. Research Report ORNL/TM-12192,
Oak Ridge National Laboratory, 1992.

J.J. Dongarra, J. Du Croz, S. Hammarling, and R.J. Hanson. An extended set of FOR-
TRAN Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software,
14(1):1-17, 1988.

J.J. Dongarra, R.A. van de Geijn, and R.C. Whaley. A users’ guide to the BLACS v0.1.
Technical report, Computer Science Department, University of Tennessee, 1993.

LS. Duff, R.G. Grimes, and J.G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix
collection. Report TR/PA/92/86, CERFACS, October 1992.

LS. Duff, M. Marrone, and G. Radicati. A proposal for user level sparse BLAS SPARKER
working note #1. Report TR/PA/92/85, CERFACS, October 1992.

S.C. Eisenstat. A note on the generalized Conjugate Gradient method. SIAM Journal of
Numerical Analysis, 20:358-361, 1983.

H.C. Elman, Y. Saad, and P. Saylor. A hybrid Chebyshev Krylov subspace algorithm
for solving nonsymmetric systems of linear equations. SIAM Journal of Scientific and
Statistical Computing, 7:840-855, 1986.

R. Fletcher. Conjugate Gradient Methods for Indefinite Systems, volume 506 of Lecture
Notes in Mathematics, pages 73-89. Spring-Verlag, Heidelberg, 1976.

Message Passing Interface Forum. MPI: A message-passing interface standard. TR CS-93-
214, University of Tennessee, November 1993.

41

23]

[24]

28]

[29]

[30]

[31]

R.W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems. Submitted to STAM Journal of Scientific and Statistical Computing.

R.W. Freund. Implementation details of the coupled QMR algorithm. Numerical Analysis
Manuscript 92-12, AT&T Bell Laboratories, October 1992.

R.W. Freund, G.H. Golub, and N.M. Nachtigal. Iterative solution of linear systems. Acta
Numerica, 1:57-100, 1991.

R.W. Freund, G.H. Golub, and N.M. Nachtigal. Recent advances in Lanczos-based itera-
tive methods for nonsymmetric linear systems. RIACS Technical Report 92.02, Research
Institute for Advanced Computer Science, NASA Ames Research Center, 1992. To appear
on Algorithmic trends for Computational Fluid Dynamacs in the 90s.

R.W. Freund and M. Hochbruck. A Biconjugate Gradient-type algorithm for the itera-
tive solution of non-Hermitian linear systems on massively parallel architectures. RIACS
Technical Report 92.08, Research Institute for Advanced Computer Science, NASA Ames
Research Center, 1992. To appear on Computational and Applied Mathematics I-Algorithms
and Theory.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.S. Sunderam. PVM 3
user’s guide and reference manual. Research Report ORNL/TM-12187, Oak Ridge National
Laboratory, May 1993.

G.H. Golub and C.F. Van Loan. Matrizx Computations. Johns Hopkins University Press,
Baltimore, 2nd edition, 1989.

R.G. Grimes, D.R. Kincaid, and D.M. Young. ITPACK 2.0 user’s guide. Report No.
CNA-150, Center for Numerical Analysis, University of Texas at Austin, August 1979.

W. Gropp and B. Smith. Simplified linear equation solvers users manual. ANL-93/8,
Argonne National Laboratory, February 1993.

L.A. Hageman and D.M. Young. Applied Iterative Methods. Academic Press, New York,
1981.

R.J. Harrison. TCGMSG Send/receive subroutines — version 4.02. User’s manual, Battelle
Pacific Northwest Laboratory, January 1993.

M.A. Heroux. A proposal for a sparse BLAS toolkit SPARKER working note #2. Report
TR/PA/92/90, CERFACS, October 1992.

M.R. Hestenes and E.L. Stiefel. Method of Conjugate Gradients for solving linear systems.
Journal of Research National Bureau of Standards, 49:435-498, 1952.

42

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

W.H. Holter, .M. Navon, and T.C. Oppe. Parallelizable preconditioned Conjugate Gra-
dient methods for the Cray Y-MP and the TMC CM-2. Technical report, Supercomputer
Computations Research Institute, Florida State University, December 1991.

N.M. Nachtigal, S.C. Reddy, and L.N. Trefethen. How fast are nonsymmetric matrix
iterations. STAM Journal on Matriz Analysis and Applications, 13(3):778 795, 1992.

T.C. Oppe, W.D. Joubert, and D.R. Kincaid. NSPCG user’s guide — version 1.0. Report
No. CNA-216, Center for Numerical Analysis, University of Texas at Austin, April 1988.

A. Pindor. Experiences with implementing PIM (Parallel Tterative Methods) package on
KSR1. In Supercomputing Symposium 94, Toronto, June 1994.

Y. Saad. Krylov subspace methods for solving large unsymmetric systems. Mathematics
of Computation, 37:105-126, 1981.

Y. Saad and M.H. Schultz. Conjugate Gradient-like algorithms for solving nonsymmetric
linear systems. Mathematics of Computation, 44(170):417-424, 1985.

Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 7:856—
869, 1986.

G.L.G. Sleijpen and D.R. Fokkema. BiCGSTAB(L) for linear matrices involving unsym-
metric matrices with complex spectrum. FTNA, 1:11-32, September 1993.

P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM
Journal of Scientific and Statistical Computing, 10:36-52, 1989.

G. Stellner, S. Lamberts, and T. Ludwig. NXLIB User's Guide. Technical report, In-
stitut fur Informatik, Lehrstuhl fiir Rechnertechnik und Rechnerorganisation, Technische
Universitat Minchen, October 1993.

H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM Journal of Scientific and Statistical
Computing, 13:631-644, 1992. Also as Report No. 90-50, Mathematical Institute, University
of Utrecht.

43

Reference manual

A Reference manual

In this section we provide details of each individual subroutine in PIM. Each entry describes
the purpose, the name and parameter list, storage requirements, function dependencies and
restrictions of the respective routine.

For each iterative method routine we also provide a description of the implemented algo-
rithm. Vectors and scalar values are denoted by lower case letters and matrices by capital
letters. Subscripts indicate either the iteration or a vector column, the latter in the case of a
matrix.

Each computational step in the algorithm is numbered; if a routine suffers a breakdown the
step number where the failure occurred is returned in IPAR(13).

Whenever an underscore _ appears it indicates the type of a variable or function (REAL,
DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX) and should be replaced by S, D, C or Z, which-
ever is appropriate.

The COMPLEX and DOUBLE COMPLEX PIM routines compute inner-products using the BLAS
CDOTC and ZDOTC routines respectively.

44

Reference manual Description of parameters

A.1 Description of parameters
The parameters used in an iterative method routine are
Parameter Description

X A vector of length IPAR(4)
On input, contains the initial estimate

On output, contains the last estimate computed

B The right-hand-side vector of length IPAR(4)

WRK A work vector used internally (see the description
of each routine for its length)

IPAR see below

_PAR see below

MATVEC Matrix-vector product external subroutine

TMATVEC Transpose-matrix-vector product external subroutine

PRECONL Left-preconditioning external subroutine

PRECONR Right-preconditioning external subroutine

P_SUM Inner-product external function

P_NRM Vector norm external function

PROGRESS Monitoring routine

IPAR (input)

Element Description
1 Leading dimension of A
2 Number of rows or columns of A (depending

on partitioning)
Block size (for cyclic partitioning)

H~ W

Number of vector elements stored locally

Restarting parameter used in GMRES, GCR and RBi-CGSTAB
Number of processors

Processor identification

O ~J O Ot

Preconditioning

0: No preconditioning

1: Left preconditioning

2: Right preconditioning

3: Symumetric preconditioning

9 Stopping criterion (see Table 2)

10 Maximum number of iterations allowed

Reference manual Description of parameters

IPAR (output)
Element Description

11 Number of iterations
12 Exit status:
0: converged to solution
1: no convergence has been achieved
—2: “soft”-breakdown, solution may have been found
—-3: “hard”-breakdown, no solution
—4: conflict in preconditioner and stopping criterion selected;
if IPAR(8)=0 or IPAR(8)=2 then IPAR(9)#6
5: error in stopping criterion 3, 7’,{2/{. <0
—6: stopping criterion invalid on PIM_CHEBYSHEV
—7: no estimates of eigenvalues supplied for PIM_CHEBYSHEV
—8: underflow while computing) on PIM_CGEV
—9: overflow while computing p; on PIM_CGEV
10: underflow while computing u,, on PIM_CGEV
11: overflow while computing p,, on PIM_CGEV
13 If TPAR(12) is either —2 or —3, it gives the step number in
the algorithm where a breakdown has occurred

_PAR (input)
Element Description

1 The value of € for use in the stopping criterion

_PAR (output)
Element Description

The left-hand side of the stopping criterion selected
Minimum real part of the eigenvalues of Q1 AQ)>
Maximum real part of the eigenvalues of ()1 AQ)»
Minimum imaginary part of the eigenvalues of (J1AQ2
Maximum imaginary part of the eigenvalues of Q1 AQ2

S T W N

46

Reference manual External routines

A.2 External routines
Purpose

To compute the matrix-vector product, transpose-matrix-vector product, left-preconditioning,
right-preconditioning, global sum of a vector, vector norm, and to monitor the progress of the
iterations.

Note The coefficient matrix and the preconditioning matrices can be made available to
MATVEC, TMATVEC, PRECONL and PRECONR using COMMON blocks.

Synopsis
Matriz-vector product v = Au Left preconditioning v = Qu
SUBROUTINE MATVEC(U,V,IPAR) SUBROUTINE PRECONL(U,V,IPAR)
precision U(*) ,V(*) precision U(*) ,V(*)
INTEGER IPAR(%*) INTEGER IPAR(*)

Parameters Type Parameters Type

U INPUT U INPUT

v OUTPUT v OouUTPUT

IPAR INPUT IPAR INPUT
Transpose matriz-vector product v = AT u Ruight preconditioning v = Qu
SUBROUTINE TMATVEC(U,V,IPAR) SUBROUTINE PRECONR(U,V,IPAR)
precision U(x) ,V(*) precision U(x) ,V(*)
INTEGER IPAR(*) INTEGER IPAR(*)

Parameters Type Parameters Type

U INPUT U INPUT

v ouTpPUT v OUTPUT

IPAR INPUT IPAR INPUT

47

Reference manual External routines

Synopsis

Parallel sum Monitoring routine

SUBROUTINE P_SUM(ISIZE,X) SUBROUTINE PROGRESS(LOCLEN,ITNO,
INTEGER ISIZE + NORM,X,RES,
precision X(*) + TRUERES)

INTEGER LOCLEN,ITNO

Parameters Type -
precision NORM,X(*) ,RES(*),

ISIZE INPUT
X INPUT/OUTPUT * TRUERES ()
Parameters Type
Parallel vector norm LOCLEN INPUT
ITNO INPUT
. NORM INPUT
preciston FUNCTION P_NRM(LOCLEN,U) X INPUT
INTEG]?.R LOCLEN RES INPUT
precision U(*) TRUERES INPUT
Parameters Type
LOCLEN INPUT
U INPUT
Notes

1. Replace precision by REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX.

2. In the monitoring routine PROGRESS above, the array TRUERES contains the value of the
true residual r. = b — Axy only if TPAR(9) is 1, 2 or 3.

48

Reference manual PIM_CG

A.3 PIMCG
Purpose

Solves the system Q1 AQ2x = Q1b using the CG method.

Synopsis

PIMSCG(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PSSUM, PSNRM,PROGRESS)
PIMDCG(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PDSUM, PDNRM,PROGRESS)
PIMCCG(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PCSUM,PSCNRM,PROGRESS)

PIMZCG(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PZSUM, PDZNRM,PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 6*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (_DOT/DOTC)
LIBPIM

Notes

None

49

Reference manual

PIM_CG

Tk W N =

O© 00~ S

10 .
11 .
12,
13 .
14 .
15 .
16 .

Algorithm A.1 CG

. Ty = (21(() - A(ngro)

-Po=T0

- 00 = 7“/(1)7‘7“0

- wo = Q1AQ2po

&= p?;’wo
fork=1,2,...

1 = 0r—1/&k—1

T = Th—1 + QAp—1Pk—1
Tk =Tgk—1 — Qp_1WE_1
check stopping criterion

s = QLAQary,

Ok =TTk
O = ’r,{sk
Br = ok/0k—1

Pk = Tk + PrPr-1
W = S + Prwi_1
&k = 6 — Bilr

endfor

Reference manual PIM_CGEV

A.4 PIM_CGEV
Purpose

Solves the system @1 AQox = Q10 using the CG method; returns, at each iteration, the estimates
of the smallest and largest eigenvalues of (1 AQ2 derived from the associated Lanczos tridiagonal
matrix.

Synopsis
PIMSCGEV(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PSSUM,PSNRM,PROGRESS)
PIMDCGEV(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL, PRECONR,PDSUM,PDNRM,PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)

WRK 6%IPAR (4)+2*IPAR(10)+1
IPAR 13

_PAR 4

Possible exit status values returned by IPAR(12):

Function dependencies
BLAS _COPY, _AXPY, DOT
LIBPIM

Notes

e [f more accuracy is required in the computation of the estimates of the eigenvalues, the
user may modify the value of the maximum number of iterations allowed in the routine
BISECTION (files pim20/single/src/pimscgev.f or pim20/double/src/pimdcgev.f).

e Not available in COMPLEX or DOUBLE COMPLEX versions.

Reference manual

PIM_CGEV

Tk W N =

O© 00~ S

10 .
11 .
12,
13 .
14 .
15 .
16 .
17.

Algorithm A.2 CGEV

. Ty = (21(() - A(ngro)

- Po=To

- 00 = 7“/(1)7‘7“0

- wo = Q1AQ2po

&= p?;’wo
fork=1,2,...

1 = 0r—1/&k—1

T = Th—1 + QAp—1Pk—1
Tk =Tgk—1 — Qp_1WE_1
check stopping criterion
sp = Q1AQ2ry

Ok = TLTH

o = ’r,{sk

Br = o/ 0k—1

Pk =Tk + Brpr—1

W = S + Prwi_1

& = 6 — PRér1

compute estimates of eigenvalues

endfor

Reference manual PIM_CGNR

A.5 PIM_CGNR
Purpose

Solves the system Q1 AT AQox = Q1 A”b using the CGNR method.

Synopsis

PIMSCGNR(X,B,WRK,IPAR,SPAR,MATVEC,TMATVEC, PRECONL ,PRECONR ,PSSUM, PSNRM, PROGRESS)
PIMDCGNR(X,B,WRK,IPAR,DPAR,MATVEC,TMATVEC, PRECONL ,PRECONR ,PDSUM, PDNRM, PROGRESS)
PIMCCGNR(X,B,WRK,IPAR,SPAR,MATVEC,TMATVEC,PRECONL ,PRECONR ,PCSUM,PSCNRM, PROGRESS)

PIMZCGNR(X,B,WRK,IPAR,DPAR,MATVEC,TMATVEC, PRECONL ,PRECONR,PZSUM, PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 6*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (.DOT/DOTC)
LIBPIM

Notes

None

Reference manual

PTM_CGNR

Algorithm A.3 CGNR

1.ro = Q1(ATh — AT AQyx0)
2.po=ro
3. 00=r(T0
4. wo = Q1 AT AQapo
5. &= pgw@
fork=1,2,...
6. o 1=k 1/ 1
7. Tp=Tp_1+ Qp_1pE—1
8. Tk = Tk—1 — Xp—1WE_1
9. check stopping criterion
10. s, = QAT AQory,
11. o= rg'rk
12. 6, = ’r,{sk
13, Br=or/or-1
4. pp=ri+ Brpe—1
15. wp = sp + Bpwi_q
16. & =6k — file1

endfor

Reference manual PIM_CGNE

A.6 PIM_CGNE
Purpose

Solves the system Q1 AA” Qo2 = Q1) using the CGNE method.

Synopsis

PIMSCGNE(X,B,WRK,IPAR,SPAR,MATVEC,TMATVEC, PRECONL ,PRECONR ,PSSUM, PSNRM, PROGRESS)
PIMDCGNE(X,B,WRK,IPAR,DPAR,MATVEC,TMATVEC, PRECONL ,PRECONR ,PDSUM, PDNRM, PROGRESS)
PIMCCGNE(X,B,WRK,IPAR,SPAR,MATVEC,TMATVEC,PRECONL ,PRECONR ,PCSUM,PSCNRM, PROGRESS)

PIMZCGNE(X,B,WRK,IPAR,DPAR,MATVEC,TMATVEC, PRECONL ,PRECONR ,PZSUM, PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 6*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (.DOT/DOTC)
LIBPIM

Notes

None

[
[

Reference manual

PTM_CGNE

Tk W N =

O© 00~ S

10 .
11 .
12,
13 .
14 .
15 .
16 .

Algorithm A.4 CGNE

ro = Q1(b— AAT Qo)
- Po=To

- 00 = 7“/(1)7‘7“0

0= Q1AAT Qapy
&= p?;’wo
fork=1,2,...

ap—1 = 0k—1/&r—1

T = Th—1 + QAp—1Pk—1
Tk =Tp—1 — Qp—1WE—1
check stopping criterion
si. = QLAAT Qary,

o =riTk

O = ’r,{sk

Br = ok/0k—1

Pe =7k + Bebr—1

W = S + Prwi_1

& = 0 — Bl

endfor

Reference manual PIM_BICG

A.7 PIMBICG
Purpose

Solves the system Q1 AQox = Q1b using the Bi-CG method.

Synopsis

PIMSBICG(X,B,WRK,IPAR,SPAR,MATVEC,TMATVEC, PRECONL ,PRECONR,PSSUM, PSNRM, PROGRESS)
PIMDBICG(X,B,WRK,IPAR,DPAR,MATVEC,TMATVEC, PRECONL ,PRECONR ,PDSUM, PDNRM, PROGRESS)
PIMCBICG(X,B,WRK,IPAR,SPAR,MATVEC,TMATVEC,PRECONL ,PRECONR ,PCSUM,PSCNRM, PROGRESS)

PIMZBICG(X,B,WRK,IPAR,DPAR,MATVEC,TMATVEC, PRECONL ,PRECONR,PZSUM,PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 8*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (.DOT/DOTC)
LIBPIM

Notes

None

Reference manual PIM_BICG

Algorithm A.5 Bi-CG

. Ty = (21(() - A(ngro)

L To =Py =po =70

. po =7gro

- wo = Q1AQ2po

& = fup

fork=1,2,...
1 = pr—1/&k—1
T = Tp—1 + Qp—1Pk—1
Tk =Tgk—1 — Qp_1WE_1
check stopping criterion

10 =71 — g 1QIAT Qapr

11. Sk = (21A(22lk

12, pp=7lm

13. & =7l sk

4. b= pk/pk—]

5. pr =i+ Bepk

16 . pr =1k + Pk

17, wp = s + Prwyg

18. & =68 — e

endfor

Tk W N =

O© 00~ S

Reference manual PIM_CGS

A.8 PIMCGS
Purpose

Solves the system Q1 AQ2x = @1b using the CGS method.

Synopsis

PIMSCGS(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PSSUM, PSNRM,PROGRESS)
PIMDCGS(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR ,PDSUM, PDNRM, PROGRESS)
PIMCCGS(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PCSUM,PSCNRM,PROGRESS)

PIMZCGS(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PZSUM,PDZNRM,PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 10*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (_DOT/DOTC)
LIBPIM

Notes

None

Reference manual

PIM_CGS

Algorithm A.6 CGS

[

. Ty = (21(() - A(ngro)
LPoO=80=T0 =70
. po =7gro
fork=1,2,...
wr—1 = Q1AQ2pr—1
Ehe1 = 7 Wi
1 = pr—1/&k—1
the1 = Sk—1 — Q1 Wp—1
W1 = Sp—1 + g1
T = Th—1 + Qp_1Wk—1
10, re=rp1— ap 1Q1AQ2wy 1
11 . check stopping criterion

W N

O© 00 ~J O U

12, pp =7k

3. Br=pr/pr-

14. Sp =T+ ﬁktk—l

5. wi =tp—1+ Prpi—1

16 . pr = sp + Prwg
endfor

60

Reference manual PIM_BICGSTAB

A.9 PIM_BICGSTAB
Purpose

Solves the system Q1 AQ2x = Q1b using the Bi-CGSTAB method.

Synopsis

PIMSBICGSTAB(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PSSUM,PSNRM, PROGRESS)
PIMDBICGSTAB(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PDSUM, PDNRM, PROGRESS)
PIMCBICGSTAB(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PCSUM,PSCNRM,PROGRESS)

PIMZBICGSTAB(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PZSUM,PDZNRM,PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 10*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (_DOT/DOTC)
LIBPIM

Notes

None

61

Reference manual

PTM_BICGSTAB

O g

O© 00 ~J O Ot

10 .
11 .
12,
13 .
14 .
15 .
16 .
17.

Algorithm A.7 Bi-CGSTAB

. Ty = (21(() - A(ngro)

To =T0

.po=vp =0

po =y =wy=1
fork=1,2,...

P =TTk 1
Br = prog—1/(pr—1wk—1)
Pk = Tk=1 + Br(Pr—1 — Wr—10k—1)
v = Q1AQ2pk
&k =Tl oe
g = pr/Ek
Sl = Tf—1 — OLUL
if || s]| < macheps soft-breakdown has occurred
te = Q1AQ2sy,
wg = tz:sk/tztl‘:
T = Tp_1+ QpPp + WiSE
e = S — Wtk
check stopping criterion
endfor

62

Reference manual PIM_RBICGSTAB

A.10 PIM_RBICGSTAB
Purpose

Solves the system Q1 AQox = Q1b using the restarted Bi-CGSTAB method.

Synopsis

PIMSRBICGSTAB(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PSSUM,PSNRM,PROGRESS)
PIMDRBICGSTAB(X,B,WRK, IPAR,DPAR,MATVEC,PRECONL ,PRECONR,PDSUM,PDNRM, PROGRESS)
PIMCRBICGSTAB(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL ,PRECONR ,PCSUM,PSCNRM, PROGRESS)

PIMZRBICGSTAB(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL ,PRECONR,PZSUM,PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)

WRK (6+2*IPAR(5))*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies
BLAS _COPY, _AXPY, (_DOT/DOTC)
LIBPIM

Notes

1. The degree of the MR polynomial (the maximum degree is 10) must be stored in
IPAR(5). If the user needs to use a larger degree then the parameter IBDIM, defined
onn PIM_RBICGSTAB must be changed accordingly.

63

Reference manual

PTM_RBICGSTAB

Algorithm A.8 RBi-CGSTAB
1.r=0Q1(b— AQsx)
2.1 =
3. ug = ()
4. pp=l,a=0,w=1
fork=1,2,...
5. po=—wpo
for 7 =0,1,...restart — 1
6. p1 = ryl T
7. B=ap/p
8. p=pm
9. =7 —Pu;, 1=0,...,7
10 . ujr1 = Q1AQ2u;
1. &=ul 7
12, a=p/¢
13. ri=1r; —auiy;, t=0,...,7
14 . riv1 = Q1AQor;
15. Ty = T + aug
endfor
16 . check stopping criterion
17. or=rir, o =rdri/o
for j = 2 3 .restart
18 . Tij = Ly, /U,,/J == TiTi
19. 0']—7“17“] Vi =rgri/o;
endfor
20 Trestart = @ = Trostart
v = 7} — ﬁi;fﬂlt T;i%, J =restart —1,...,1
21. Y=+ Z}S?fﬂrt_] Tii%i+1, J=1,... restart — 1
22, xy =m0+ 7170
23. ro=ro— ’Y£-estal-tr1'esta1‘t
24 . wg = U0 = VyestartUrestart
25 . wo=mwy—yju;, jJ=1,...restart —1
26. xg=wx0+ ’y}’rj., j=1,...restart — 1
27. ro=r19— ’y}'r’j, g =1,...restart — 1
endfor

64

Reference manual PIM_RGMRES

A.11 PIM_RGMRES
Purpose

Solves the system Q1 AQ2x = @1b using the restarted GMRES method.

Synopsis

PIMSRGMRES (X,B,WRK,IPAR,SPAR,MATVEC,PRECONL , PRECONR,PSSUM,PSNRM, PROGRESS)
PIMDRGMRES (X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PDSUM, PDNRM, PROGRESS)
PIMCRGMRES (X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR ,PCSUM,PSCNRM, PROGRESS)

PIMZRGMRES (X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PZSUM,PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)

WRK (4+IPAR(5))*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (DOT/DOTC), _SCAL, _TRSV
LIBPIM

Notes

1. The size of the orthonormal basis (maximum of 50 vectors) must be stored in IPAR(5).
If the user needs to use a larger basis then the parameter IBDIM, defined on PIM_RGMRES
must be changed accordingly.

2. The user must supply a routine to compute the 2-norm of a vector.

Reference manual PIM_RGMRES

Algorithm A.9 RGMRES

1. Ty = (21(() - A(ngro)

2. fo = Iroll2
fork=1,2,...

3. g = (ﬁ]f—]vﬁk—]s"')T

4. Vi=r_1/Pr—1

for g =1,2,... restart
Rij=VIQ1AQV;, i=1,...,j
0 = QAQ2Vj — i, RijVi
Rjpr; = [19]]2
Vigr =0/ Rjv
apply previous Givens’s rotations to R. ;
10 . compute Givens’s rotation to zero Rjiq j
11. apply Grvens’s rotation to g
12 . if |gj+1| <RHSSTOP then
perform steps 13 and 14 with restart= j
stop
endif
endfor

13. solve Ry = g (solution to least-squares problem,)

O 0~ O Ot

14 . zp =z 1 + Vy (form approzimate solution)
15. T = (21(() - A(QZII{)
16 B = [lrell2

endfor

66

Reference manual PIM_RGMRESEV

A.12 PIM_RGMRESEV
Purpose

Solves the system Q1 AQox = Q1) using the restarted GMRES method; returns, at each itera-
tion, the estimates of the smallest and largest eigenvalues of Q1 AQ2 obtained from the upper
Hessenberg matrix produced during the Arnoldi process.

Synopsis

PIMSRGMRESEV (X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PSSUM, PSNRM, PROGRESS)
PIMDRGMRESEV (X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PDSUM,PDNRM, PROGRESS)
PIMCRGMRESEV(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PCSUM,PSCNRM,PROGRESS)

PIMZRGMRESEV (X,B,WRK,IPAR,DPAR,MATVEC,PRECONL,PRECONR,PZSUM,PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)

WRK (4+IPAR(5))*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (_DOT/DOTC), _SCAL, _TRSV
LAPACK _HSEQR

LIBPIM

Notes

1. The size of the orthonormal basis (maximum of 50 vectors) must be stored in IPAR(5). If
the user needs to use a larger basis then the parameter IBDIM, defined on PIM_RGMRESEV
must be changed accordingly.

67

Reference manual PIM_RGMRESEV

2. The user must supply a routine to compute the 2-norm of a vector.

3. A box containing estimates of the eigenvalues of ()1 AQ)> is returned in DPAR(3), DPAR(4),
DPAR(5), DPAR(6), these values representing the minimum and maximum values in the
real and imaginary axes, respectively.

Algorithm A.10 RGMRESEV

L. ro = Q1(b— AQ2x0)

2. Bo = [Iroll2

fork=1,2,...

3. 9= 0Fr1.Pk1..-)"

4. Vi=r1/Br

for 3 =1,2,... restart

5. Rij=V'QiAQyV;, i=1,...,j

6. b= QIAQLV; — Y 1| R jVi

7. R =9l

8. Viy1=0/Rjs1,

9. apply previous Giens’s rotations to R. ;
10 . compute Givens’s rotation to zero Ry j
11. apply Givens’s rotation to g
12, if |gj+1] <RHSSTOP then

perform steps 13 and 14 with restart=1

stop

enduf
endfor
13 . solve Ry = g (solution to least-squares problem,)
14 . zp =xp_1 + Vy (form approximate solution)
15. compute eigenvalues of Hyegtart
16. 7 =Q1(b— AQaxy)
17, B = llrell2
endfor

68

Reference manual PIM_RGCR

A.13 PIM_RGCR
Purpose

Solves the system Q1 AQ2x = Q1b using the restarted GCR method.

Synopsis

PIMSRGCR(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PSSUM,PSNRM,PROGRESS)
PIMDRGCR(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL, PRECONR,PDSUM,PDNRM, PROGRESS)
PIMCRGCR(X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PCSUM,PSCNRM, PROGRESS)

PIMZRGCR(X,B,WRK,IPAR,DPAR,MATVEC,PRECONL ,PRECONR,PZSUM,PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)

WRK (5+2*IPAR(5)) *IPAR(4)+2*IPAR(5)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (_DOT/DOTC)
LIBPIM

Notes

1. The restarting value must be stored in IPAR(5)

69

Reference manual

PTIM_RGCR

1.

2.

O© 0~ O Uk W

—
o

Algorithm A.11 RGCR

Ty = (21(() - A(ngro)
fork=1,2,...
Pr=ri
T = Th—1, Tk = Tk—1
foryp=1,2,..., restart
Wj = Q1AQ2P;
¢ = WjZ,TWj
aj =1 W;/(
T = 1) + o P;
T =1 — o W;
check stopping criterion
q=Q1AQar;
Pisi=rp— Xl ¢ Wi/ P
endfor
endfor

70

Reference manual PIM_QMR

A.14 PIM_QMR
Purpose

Solves the system Q1 AQ2x = Q1b using the QMR method with coupled two-term recurrences.

Synopsis

PIMSQMR(X,B,WRK,IPAR,SPAR,MATVEC, TMATVEC,PRECONL ,PRECONR,PSSUM, PSNRM, PROGRESS)
PIMDQMR(X,B,WRK,IPAR,DPAR,MATVEC, TMATVEC,PRECONL ,PRECONR,PDSUM, PDNRM, PROGRESS)
PIMCQMR(X,B,WRK,IPAR,SPAR,MATVEC, TMATVEC,PRECONL ,PRECONR,PCSUM, PSCNRM, PROGRESS)

PIMZQMR(X,B,WRK,IPAR,DPAR,MATVEC, TMATVEC,PRECONL ,PRECONR,PZSUM, PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 11*IPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (_DOT/DOTC)
LIBPIM

Notes

1. The weights w are kept constant (w = 1) throughout the iterations. Please refer to [24]
for a discussion on other choices for w.

71

Reference manual

PIM_QMR

S T W N~

o~

10 .
11 .
12,
13 .
14 .
15 .
16 .
17.
18 .
19 .
20 .
21.
22.
23.
24 .
25 .

Algorithm A.12 QMR

. Ty = (21(() - A(ngro)
- p1 = |[roll2
Lvp =710/p1
Lwy = —ro/p1
-po=¢qo=do=0
ceoo=leg=1,¢6=1,9=0,pp=-1lLw=1
fork=1,2,...
8 = w} vy,
if eg._1 = 0 hard-breakdown has occurred

if 6. = 0 hard-breakdown has occurred
pr = vk — (Ekdr/€k—1)Pr1
Qe = wr. — (Pedr/€k—1)qk—1
Vg1 = Q1AQa2py
€k = qf Vg1
Br = €x/
Ok41 = Uk1 — Frvk
w1 = QAT Qaq — Brwy
Prrt = |[Org1]]2
k1 = [Wil
Ve = (wprt1)/(wep—1|Br])
cr =1/4/1+92
M = =Nk 1PkCh/ (Brci_y)
d = prgk + (Ip—1c1)’d 1
T = Tp—1 + dj
e = Q1(b — Q2 Awy)
check stopping criterion
if pr+1 = 0 hard-breakdown has occurred
if Ekr1 = 0 hard-breakdown has occurred
Vp+1 = '{]k—H /Pk-H
WE1 = 117k+1/ﬁk-|—1
endfor

72

Reference manual PIM_TFQMR

A.15 PIM_TFQMR
Purpose

Solves the system Q1 AQ2x = Qb using the TFQMR method with 2-norm weights (see [23,
Algorithm 5.1]).

Synopsis

PIMSTFQMR (X,B,WRK,IPAR,SPAR,MATVEC,PRECONL , PRECONR,PSSUM,PSNRM, PROGRESS)
PIMDTFQMR (X,B,WRK,IPAR,DPAR,MATVEC,PRECONL ,PRECONR,PDSUM, PDNRM, PROGRESS)
PIMCTFQMR (X,B,WRK,IPAR,SPAR,MATVEC,PRECONL ,PRECONR,PCSUM,PSCNRM, PROGRESS)

PIMZTFQMR (X,B,WRK,IPAR,DPAR,MATVEC,PRECONL , PRECONR ,PZ3SUM,PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 10*xIPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, (.DOT/DOTC)
LIBPIM

Notes

1. The user must supply a routine to compute the 2-norm of a vector.

73

Reference manual

PIM_TFQMR

CO I & U i W N —

Nel

10 .
11 .

12,
13 .
14 .
15 .
16 .
17.
18 .
19.

21.
22.
23.
24 .

Algorithm A.13 TFQMR

. Ty = (21(() - A(ngro)
W1 =Y1=To

- g = Q1AQay
.dog=0
- 70 = ||roll2
0y =nm0=0
-‘FO =T

_ =T
PO =THT0
fork=1,2,...

Of—1 = TN'(?’Uk_l
1= pp1/0k1
Y2k = Y2k—1 — Qp—1Vk—1
form =2k — 1,2k
W41 = Wy — A1 Q1AQ2Ym
Om = ||wm+1||2/7-m71
em =1/4/1+ 62
Ton = Trn—10mCm
T = €2, Qg1
dm = Ym + (9,%1717]771_1/Oz/ﬁ,l)dm_l
T = Tm—1+ 7]'md'm
Km = Tmvm +1
if k;m < € check stopping criterion
endfor
Pl = T4 W1
B = pr/pr—1
Yoht1 = Wkl + BrlY2rk
v = Q1AQay2r 11 + Or(Q1AQ2y2k + Brvg—1)

endfor

74

Reference manual PIM_CHEBYSHEV

A.16 PIM_CHEBYSHEV
Purpose

Solves the system AQox = b using the Chebyshev acceleration.

Synopsis

PIMSCHEBYSHEV (X,B,WRK,IPAR,SPAR,MATVEC,PRECONL,PRECONR,PSSUM,PSNRM,PROGRESS)
PIMDCHEBYSHEV (X,B,WRK, IPAR,DPAR,MATVEC, PRECONL , PRECONR ,PDSUM, PDNRM, PROGRESS)
PIMCCHEBYSHEV (X,B,WRK,IPAR,SPAR,MATVEC,PRECONL ,PRECONR ,PCSUM,PSCNRM, PROGRESS)

PIMZCHEBYSHEV (X,B,WRK,IPAR,DPAR,MATVEC,PRECONL ,PRECONR ,PZSUM,PDZNRM, PROGRESS)

Storage requirements

Parameter No. of words

X, B IPAR(4)
WRK 5*xIPAR(4)
IPAR 13

_PAR 6

Possible exit status values returned by IPAR(12): @

Function dependencies

BLAS _COPY, _AXPY, _SWAP, (_DOT/DOTC)
LIBPIM

Notes
1. Only stopping tests 1, 2 and 7 are allowed.

2. The box containing the eigenvalues of I — ()1 AQ» must be stored in DPAR(3), DPAR(4),
DPAR(5), DPAR(6), these values representing the minimum and maximum values in the
real and imaginary axes, respectively.

Reference manual

PTIM_CHEBYSHEV

[\

Algorithm A.14 CHEBYSHEV

1. Set parameters for iteration:

=

S Ot

e [fDPAR(3) < A(I — Q1 A) < DPAR(4) (in the real axis):
o = (DPAR(4) — DPAR(3))/(2 — DPAR(4) — DPAR(3))
v = 2/(2 — DPAR(4) — DPAR(3))

e JfDPAR(5) < A(I — Q1 A) < DPAR(6) (in the imaginary axis):
02 = — max(DPAR(5), DPAR(6))
v=1

e If DPAR(3) < Re(\(I — Q1 A)) < DPAR(4) and
DPAR(5) < Im(A(I — Q1 A)) < DPAR(6) (in the complex plane):
p = \/2(DPAR(4) — DPAR(3))/2
¢ = /2(DPAR(6) — DPAR(5))/2
d = (DPAR(3) + DPAR(4))/2

= (0 + /(1 -)’

v=1/(1—-4d)
[=@b
fork=1,2,...
1, k=1
pr=1 (1—=0%/2)"1 k=2

(L= 10?0 k>2
w = (I - Q1AQ2)z;
T = pr(V((I = QrA)zp +)+ (1 = y)zp) + (1 = p)og_
check stopping criterion

endfor

76

Reference manual PIM_SETPAR

A.17 PIM_SETPAR
Purpose

Sets the parameter values in the arrays IPAR and _PAR.

Synopsis

PIMSSETPAR (IPAR,SPAR,LDA,N,BLKSZ,LOCLEN,BASISDIM, NPROCS,PROCID,
PRECONTYPE, STOPTYPE,MAXIT,EPSILON)
INTEGER IPAR(*)
REAL SPAR(x*)
INTEGER LDA,N,BLKSZ,LOCLEN,BASISDIM,NPROCS,PROCID,
PRECONTYPE, STOPTYPE,MAXIT
REAL EPSILON

PIMDSETPAR (IPAR,DPAR,LDA,N,BLKSZ,LOCLEN,BASISDIM, NPROCS,PROCID,
PRECONTYPE, STOPTYPE ,MAXIT,EPSILON)
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*)
INTEGER LDA,N,BLKSZ,LOCLEN,BASISDIM,NPROCS,PROCID,
PRECONTYPE, STOPTYPE ,MAXIT
DOUBLE PRECISION EPSILON

Storage requirements

Parameter No. of words

IPAR 13
_PAR 6
Notes

1. When using the COMPLEX and DOUBLE COMPLEX PIM routines, call PIMSSETPAR and
PIMDSETPAR respectively.

7

Reference manual PIM_PRTPAR

A.18 PIM_PRTPAR
Purpose

Prints the parameter values on the arrays IPAR and _PAR.

Synopsis

PIMSPRTPAR (IPAR,SPAR)
INTEGER IPAR(*)
REAL SPAR(*)

PIMDPRTPAR (IPAR,DPAR)
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*)

Storage requirements

Parameter No. of words

IPAR 13
_PAR 6
Notes

1. May be called only on a processing element with I/O capability.

2. When using the COMPLEX and DOUBLE COMPLEX PIM routines, call PIMSPRTPAR and
PIMDPRTPAR respectively.

78

Reference manual

_INIT

A.19 _INIT

Purpose

Initialises a vector of length n with the scalar value alpha. Based on the level 1 BLAS routine

_COPY.

Synopsis

SINIT(N,ALPHA,SX,INCX)
REAL ALPHA,SX(*)
INTEGER N, INCX

DINIT(N,ALPHA,DX,INCX)
DOUBLE PRECISION ALPHA,DX(*)
INTEGER N, INCX

CINIT(N,ALPHA,CX,INCX)
COMPLEX ALPHA,CX(*)
INTEGER N, INCX

ZINIT(N,ALPHA,ZX,INCX)
DOUBLE COMPLEX ALPHA,ZX(*)
INTEGER N, INCX

Storage requirements

Parameter No. of words
X IPAR(4)

Notes

None

79

Index

Example programs

dense storage, 24

description of, 22

Eigenvalues estimation and Chebyshev
acceleration, 23

PDE storage, 26

PDE, matrix-vector product for parallel
vector architectures, 28

preconditioners, 28

results, 29

External routines

description of, 18

inner-product and vector norm, 20
matrix-vector product, 18
monitoring the iterations, 21
preconditioning step, 19

synopsis of, 39

Inner-product

see External routines, 20

Installation procedures, 15

Building the examples, 16

Building the PIM core functions, 15
Cleaning-up, 16

Using PIM in your application, 17

Iterative methods

Bi-CG, 8
routine, 49
Bi-CGSTAB, 9
routine, 53
CG, 7
routine, 41
CG with eigenvalues estimation, 7
routine, 43
CGNE, 8

routine, 47

80

CGNR, 8
routine, 45
CGS, 9
routine, 51
Chebyshev acceleration, 10
routine, 67
GCR, 10
routine, 61
GMRES. 9
routine, 57
GMRES with eigenvalues estimation, 9
routine, 59
increasing parallel scalability of, 13
overview, 6
QMR with coupled two-term recur-
rences, 10
routine, 63
Restarted Bi-CGSTAB, 9
routine, 55
TFQMR, 10

routine, 65

Matrix-vector product
see External routines, 18

Naming convention of routines, 14
Obtaining PIM, 14

Parallelism
data partitioning, 12
programming model, 12
Parameters
description of, 37
printing, 70
setting, 69
Preconditioning step

see External routines, 19

Stopping criteria, 13
Supported architectures and environments,
11

Vector initialisation, 71
Vector norm
see External routines, 20

81

