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Abstract� There is increasing interest in models of system development which use Multiple Viewpoints� Each viewpoint
o�ers a di�erent perspective on the target system and system development involves parallel re�nement of the multiple
views� Our work particularly focuses on the use of viewpoints in Open Distributed Processing �ODP� which is an ISO�ITU
standardisation framework� Multiple viewpoints� though� prompt the issue of consistency between viewpoints� This paper
describes an interpretation of consistency which is general enough to meet the requirements of consistency in ODP�
Furthermore� the paper investigates strategies for checking this consistency de�nition� Particular emphasis is placed on
mechanisms to obtain global consistency �between an arbitrary number of viewpoints� from a series of binary consistency
checks� The consistency checking strategies we develop are illustrated using the formal description technique LOTOS�

Keywords� Viewpoints� Consistency� ODP� Formal Description Techniques� LOTOS�

� Introduction

There has been signi�cant recent interest in using viewpoints in system development� In such modelling� each
viewpoint o�ers a di�erent perspective on the target system and system development involves parallel re�nement
of the multiple views� Notable proponents of viewpoints modelling include ���	 ��
	 ��	 ���	� All these approaches
prompt the central issue of viewpoint consistency� i�e� how to check that multiple speci�cations of the system do
not con�ict with one another and are �in some sense
 consistent� Our perspective on consistency is tinged by the
particular application of viewpoints that our work has been targetted at� viz� the viewpoints model de�ned in the
ISO�ITU Open Distributed Processing �ODP� standardisation framework� ODP de�nes a generic framework to
support the open interworking of distributed systems components� A central tenet of ODP is the use of viewpoints
in order to decompose the task of specifying distributed systems� ODP supports �ve viewpoints� Enterprise�
Information� Computational� Engineering and Technology� In contrast to many other viewpoint models ODP
viewpoints are prede�ned and in this sense static� i�e� new viewpoints cannot be added� Each of the viewpoints
has a speci�c purpose and is targetted at a particular class of speci�cation� A complete ODP speci�cation should
contain a description of the system from each of the de�ned viewpoints� In addition� formal description techniques
�FDTs� are variously applicable to the speci�cation requirements of the di�erent viewpoints� For example� Z ���	
is being proposed for the information viewpoint and LOTOS ��	 for the computational viewpoint�
Figure � ��	 depicts the relationships that are involved in relating ODP viewpoints� Development yields

a speci�cation that de�nes the system being described more closely� The term development embraces many
mechanisms for evolving descriptions towards implementations� one of which is re�nement� Because all �ve
viewpoint speci�cations will eventually be realized by one system� there must be a way to combine speci�cations
from di�erent viewpoints during development� this is known as uni�cation� For speci�cations in di�erent FDTs
to be combined or uni�ed� a translation mechanism is needed to transform a speci�cation in one language to a
speci�cation in another language� Consistency is a relation between groups of speci�cations�

In our work on consistency we distinguish between intra and inter language consistency checking� Intra
language consistency considers how multiple speci�cations in the same language can be shown to be consistent�
while inter language consistency considers relations between speci�cations in di�erent FDTs� The latter issue is
a signi�cantly more demanding topic than the former�

�This work was partially funded by British Telecom Research Labs�� Martlesham� Ipswich� U�K� and the Engineering and Physical
Sciences Research Council under grant number GR�K������
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Figure �� Relating Viewpoints

In order to inform the de�nition of consistency we choose it is worth considering what we require of such a
de�nition� We o�er the following list as a set of general requirements� The consistency de�nition we seek must�

� be applicable intra language for many di�erent FDTs� e�g� must make sense between two Z speci�cations
and also between two LOTOS speci�cations�

� be applicable inter language between di�erent FDTs� e�g� relate a Z speci�cation to a LOTOS speci�cation�

� support di�erent classes of consistency check� There are many di�erent forms of consistency and the
appropriate check to apply depends on the viewpoint speci�cations being considered and the relationship
between these viewpoints �
	� For example� it would be inappropriate to check two speci�cations which
express exactly corresponding functionality with the same notion of consistency that is applicable to checking
consistency between speci�cations which extend each other�s functionality�

� support global consistency� Much of the work� to date� on consistency has only considered the case of
two viewpoints �what we will call binary consistency�� for full generality we need any arbitrary number of
viewpoints greater than zero�

� allow viewpoints to relate to the target system in di�erent ways� Thus� not only are there di�erent forms of
consistency check� but within a consistency check� speci�cations are related in di�erent ways� For example�
the enterprise speci�cation is likely to express global requirements� while the computational speci�cation
de�nes an interaction model� Thus� the relationship between the system being developed and the enterprise
speci�cation is very di�erent from the relationship of the system to the computational speci�cation�

The last point prompts our work on� so called� unbalanced consistency in which each viewpoint is potentially related
to the system under development by a di�erent development relation� For example� the enterprise viewpoint may
be related by a logical satisfaction relation while the computational viewpoint may be related by a behavioural
conformance relation� Note also that unbalanced consistency is needed to support inter language consistency�
This aspect of our work represents a signi�cant departure from existing theoretical work on relating partial
speci�cations� e�g� ��	 ���	� which has universally looked at� what we call� balanced consistency�

We have considered viewpoint consistency for ODP in a number of papers �
	 ��	 ��	 ���	 and most fully in
��	� In particular� we have located a general de�nition of consistency and investigated properties of the de�nition�
However� the issue of strategies for checking consistency remains open� In response� this paper considers� in
general terms� strategies for checking consistency according to our basic de�nition� The main contribution of
the paper is to investigate how to obtain global consistency incrementally from a series of� probably binary�
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consistency checks� The paper will highlight a number of di�erent classes of consistency checking� These vary
from the very poorly behaved� where� realistically� it is impossible to check global consistency incrementally� to
the very well behaved� where all groups of speci�cations are trivially consistent� Throughout we will illustrate
the consistency checking problem using LOTOS and Z� although� particular emphasis will be placed on LOTOS�

The paper begins by reviewing our interpretation of consistency in section � and proving some simple properties
of the de�nition� Then in section � we present background on LOTOS and some of its development relations�
Section � highlights basic strategies for checking global consistency� In particular� two classes of consistency
checking are identi�ed� when a unique least developed uni�cation does not exist and when such a unique least
development can be found� These two classes are considered separately in sections 
 and � respectively� Then
section � discusses another restricted class of consistency checking� i�e� balanced consistency checking� Concluding
remarks are presented in section ��

� A General Interpretation of Consistency

We will give general de�nitions of the consistency checking relationships� consistency� both intra and inter
language� and uni�cation� First though we present the notation that we will work with� Importantly� this notation
re�ects the search for a general interpretation of consistency by de�ning very general notational conventions�

Notation� We begin by assuming a set DES of formal descriptions� which contains both formal speci�cations in
languages such as LOTOS and Z and semantic descriptions in notations such as labelled transition systems and
ZF set theory�

We assume a set DEV � P�DES � DES� of development relations� These are written dv and if X dv X�

then� in some sense� X is a valid development of X�� Our concept of a development relation generalises all notions
of evolving a formal description towards an implementation and thus embraces the many such notions that have
been proposed� In particular� DEV contains re�nement relations� equivalences and relations which can broadly be
classed as implementation relations ���	 such as the LOTOS conformance relation conf� These di�erent classes of
development are best distinguished by their basic properties� Re�nement is typically re�exive and transitive �i�e�
a preorder�� equivalences are re�exive� symmetric and transitive� and implementation relations are only re�exive�

Our general de�nition of consistency which follows does not require that development relations support any
speci�c properties and we have considered the consequences of such unconstrained development elsewhere ��	�
However� this paper is particularly concerned with strategies for incremental consistency checking and in order
to obtain a rich enough theory to work with we will have to put some immediate constraints on development�
Firstly� we assume all our development relations are re�exive� This is a natural requirement� although� it can be
problematic for inter language consistency� We will say more about the position of inter language consistency
later�

In addition to re�exivity� we will assume transitivity of development� This is slightly restrictive as it rules
out implementation relations �e�g� LOTOS conf�� but it seems necessary in order to obtain a rich enough theory�
Furthermore� this paper is motivated by the search for incremental development strategies and transitivity of
development seems a prerequisite of such incremental evolution of speci�cations� In particular without transitivity�
we may develop a speci�cation A into a speci�cation B and then evolve B into C and �nd that C is not a
development of A� So� this paper assumes transitivity and re�exivity of the development relations used� i�e� they
are preorders�

We will need to talk about sets of possible developments of a speci�cation� Thus� we introduce the following
notation�

De�nition � For X � DES and dv � DEV �

D�X� dv� � fX� � X� dv Xg�

So� D�X� dv� is the set of all developments of X by dv�
We must also consider what interpretation of equivalence �which we denote �� we should adopt� A natural�

and standard� interpretation is��

X �dv X
� i� X dv X� � X� dv X

Thus� two descriptions are equivalent if and only if they are both developments of the other� With transitivity
of dv this interpretation gives us that two speci�cations in any cycle by the relation dv are equivalent� �dv will
play the role of identity in our theory� The following results can be easily determined �see ��	 for proofs��
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Proposition �
�i� �dv is an equivalence�
�ii� dv is a partial order with identity �dv�

Another important property of equivalence is that two equivalent descriptions have identical development sets�
i�e� every description that is a development of one will be a development of the other� Furthermore� this situation
only arises when the two descriptions are equivalent by �dv � This demonstrates that during system development
we really can choose any one of a set of equivalent speci�cations without a�ecting the possibilities for future
development�

In order to simplify presentation� we will consider strict development� i�e� relations dv which are subsets of the
relations dv with equivalence by �dv factored out�

De�nition �
Overlining is an operation that can be applied to an arbitrary partial order� dv� with the following e�ect�	

dv � dvn �dv�

dv enables us to consider directly the part of dv that excludes identical descriptions by �dv� dv is strict with
regard to dv in the same way that � is strict with regard to �� Note in particular that dv is not re�exive� as all
descriptions are equivalent to themselves�

Descriptions are written in formal techniques� A formal technique is characterised by the set of possible
descriptions in the notation� a set of associated development relations and a set of semantic maps� For a particular
formal technique ft we denote the set of all descriptions in ft as DESft� the set of all development relations as
DEVft and the set of all semantic maps as SEMft�

Basic De�nition� In its general form consistency is a check which takes any number of descriptions� X�� X�� ���� Xn�
and returns true if all the descriptions are consistent and false otherwise� This check will be performed according to
a group of development relations� dv�� dv�� ���� dvn� one per description� and is denoted� C�dv�� X���dv�� X������dvn� Xn��

a shorthand for which is
���n

C �dvi�Xi�� The validity of the check has two elements� type correctness and consistency�
Type correctness ensures that the consistency check being attempted is sensible� For example� it would

prevent a development relation being applied to a speci�cation written in a di�erent language to that which the
development relation is de�ned over� Type correctness becomes an issue when determining an appropriate inter
language consistency check to apply� For simplicity� in this paper all consistency checks will be assumed to be
type correct�
Intuitively we view n speci�cations X�� X�� ���� Xn as consistent if and only if there exists a physical implemen�

tation which is a realization of all the speci�cations� i�e� X�� X� through to Xn can be implemented in a single
system� However� we can only work in the formal setting� so we express consistency in terms of a common �formal�
description� X� and a list of development relations� dv�� dv�� ���� dvn� De�nition � states that n descriptions are
consistent if and only if a description can be found which is a development of X� according to dv�� X� according
to dv�� through to Xn according to dvn� and the description is internally valid� written ��X�� The structure of
the consistency check is depicted in �gure � and is formalized in de�nition �� We denote this interpretation of
consistency as C�

De�nition � �Consistency�
���n

C �dvi�Xi� holds� i� �X � DES s�t� �X dv� X� � ���� X dvn Xn� ���X��

The internal validity check in the above de�nition formalizes the notion of implementability� It is required because
descriptions relate to physical implementations in di�erent ways for di�erent languages and� in particular� for
some FDTs not all speci�cations are implementable� For some FDTs it is possible to �nd a description which
is a common development of a pair of speci�cations� but is not itself implementable� The property ��X� is
true if and only if the description X has a real implementation� Thus� � acts as a receptacle for properties of
particular languages that make descriptions in that language unimplementable� For example� a Z speci�cation
which contains contradictions would not be internally valid� e�g� a Z speci�cation that contains an operation
�n� � INjn� � 
� n� � �	 has no real implementation� This ensures that de�nition � in the case that n�� coincides
with what is commonly called �consistency
 of a single speci�cation�

Uni�cation is the mechanism by which descriptions are composed in such a way that the composition is a
development of all the descriptions�
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Figure �� A Consistency Check

De�nition 	 �Uni�cation Set�
U�dv�� X���dv�� X������dvn� Xn� � fX � DES � X dv� X� � ���� X dvn Xng�

We will use the notation
���n

U �dvi�Xi� as a shorthand for U�dv�� X���dv�� X������dvn� Xn�� The uni�cation set is the

set of all common developments of a list of descriptions� i�e� the set of all uni�cations� Clearly�
���n

C �dvi�Xi� holds
if and only if �X � U such that ��X�� In fact� one approach to consistency checking is to perform a uni�cation
and then to show that this uni�cation is internally valid ��	�

The following result can be immediately observed�

Proposition �
f�dv�� X��� ���� �dvn� Xn�g 	 f�dv��� X

�
��� ���� �dv

�
m� X

�
m�g �
 U�dv�� X������dvn� Xn� � U�dv��� X

�
������dv

�
m� X

�
m�

Proof

If
���n

U �dvi�Xi� � � the result follows trivially� So� take X �
���n

U �dvi�Xi� i�e� X dv� X� � ���� X dvn Xn� For any
X�
j s�t� � � j � m� X dv�j X

�
j since by the hypothesis �Xi �for � � i � n� such that dvi � dv�j and Xi � X�

j� So�
X � U�dv��� X

�
������dv

�
m� X

�
m�� as required� �

This proposition expresses the obvious result that a uni�cation of n speci�cations is a uni�cation of a subset of
the n speci�cations� An immediate corollary of proposition � is�

Corollary �
���n

U �dvi�Xi� � U�dvi� Xi�����dvj� Xj� for � � i� j � n�

Our interpretation of consistency� C� meets the requirements for a de�nition of consistency that we highlighted
earlier� in the following ways�

� Di�erent development relations can be instantiated which are appropriate both to di�erent FDTs and to
assessing di�erent forms of consistency�

� Both intra and inter language consistency are incorporated� In particular� note that in most cases X�� X�� ���� Xn

in the above de�nition will all be speci�cations� however� X will commonly be a semantic representation� In
particular� if some of X�� X�� ���� Xn are in di�erent languages then X is likely to be in a common semantic
notation�

� Consistency checking between an arbitrary number of descriptions can be supported and checked according
to a list of development relations� Binary consistency� e�g� C�dv�� X���dv�� X��� is just a special case of this
global consistency� Binary consistency is a binary relation� we will often write it as X� Cdv��dv� X��

� Both balanced and unbalanced consistency are incorporated� Unbalanced consistency arises if dvi 
� dvj for
some i 
� j�






It is beyond the scope of this paper to fully document the properties of our interpretation of consistency� the
interested reader is referred to ��	� however� a number of classes of consistency will be used later in this paper
and are� thus� reviewed in the following subsections�

Complete Consistency� It is possible that the application of a consistency check on a particular FDT may
always be consistent� i�e� any set of descriptions chosen from the language will be consistent� This property is
called complete consistency and is de�ned as�

De�nition 
 Complete Consistency
A formal description technique� ft� is completely consistent according to a group of development relations dv�� ���� dvn

if and only if for all X�� ���� Xn in DESft�
���n

C �dvi�Xi��

Thus� if an FDT is known to be completely consistent there is no need to undertake consistency checking� This�
for example� is the case for LOTOS speci�cations when balanced consistency according to extension or trace
preorder are being considered� These examples will be returned to in section ��

Implementation Complete� There are a number of languages in which all speci�cations are internally valid�
This� for example� is the case with LOTOS and behavioural speci�cation languages� such as LOTOS� Estelle and
SDL� in general� We will discuss this aspect of the LOTOS language further in section �� Thus� we introduce the
following notation��

Notation � �Implementation Complete�
A formal technique ft is called implementation complete i� �X � DESft� ��X��

Pairwise Consistency� An important issue is in what way we can determine consistency� for example� can we
assert consistency between three or more descriptions by performing a series of pairwise consistency checks� In
order to determine this we consider the notion of a pairwise consistency check��

De�nition � �Pairwise Consistency� Descriptions X�� X�� ���� Xn are pairwise consistent according to devel	
opment relations dv�� dv�� ���dvn i� �i� j s�t� � � i� j � n� Xi Cdvi�dvj Xj �

The following result characterizes the broad relationship between pairwise and normal consistency�

Proposition �
�i� Consistency implies pairwise consistency�
�ii� Pairwise consistency of three or more speci�cations does not imply consistency�

Proof
�i� Assume �X � DES s�t� �X dv� X� � X dv� X� � ���� X dvn Xn� ���X�� Now clearly Xi Cdvi�dvj Xj for
any � � i� j � n since X can act as the internally valid common development�
�ii� We demonstrate this by counterexample� Consider the three speci�cations� S� � �x�� y� � INjx� � y�	� S� �
�x�� z� � INjx� � z�	 and S� � �z�� y� � INjz� 
� y�	� Intuitively these are balanced pairwise consistent� i�e� S� C S��
S� C S�� S� C S�� but� they are not globally consistent� �

Intuitively� the second part of the above proposition arises because pairwise consistency only requires the existence
of a common development for each of the consistuent binary checks� Thus� many binary consistency results may
exist each of which focuses on a di�erent commondevelopment� This is not su�cient to induce �global
 consistency
which requires the existence of a single common development�

Balanced Consistency� Balanced consistency re�ects the situation in which the speci�cations being checked

for consistency are at the same level of abstraction� balanced consistency is written�
���n

C dvXi�

De�nition � �Balanced Consistency�
���n

C �dvi�Xi�� is balanced i� dvi � dvj� �i� j s�t� � � i� j � n�

Once again we can consider the special case of binary balanced consistency� X� Cdv�X�� X�� X�� which is often
written as Cdv�
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Notation Meaning

P
���P � denotes a transition� i�e�

P can do � and consequently behaves as P ��
�
�
 re�exive and transitive closure of i��

P
��
��
P � �Q�Q� �P

�
�
Q ���Q� �

�
P �

P
�
�
 �P � � P

�
�
P �

P
�

�

 
 �P � �P
�
�
P �

Table �� Derived transition denotations

� Background on LOTOS

Subsequent sectios of this paper apply the framework to the FDT LOTOS ��	� However� introducing LOTOS
is beyond the scope of this paper� thus� this section will assume familiarity with the language� An introduction
to LOTOS can be found in ��	� We reiterate the standard de�nitions of a number of the LOTOS development
relations which we will use in this paper� First we introduce some notation�

Notation� In the followingP� P �� Q�Q� stand for processes� L is the alphabet of observable actions associated with
a certain process� while i is the invisible or internal action� We use the variable � to range over L� Furthermore�
L� denotes strings �or traces� over L� The constant � � L� denotes the empty string� and the variable � ranges
over L�� In table � the notion of transition is generalised to traces�
Using the notation derived in table �� we can de�ne the following�

Tr�P � � f� � L� j P
�
�
g� denotes the set of traces of a process P �

P after � � fP � j P
�
�
P �g� denotes the set of all states reachable from P by the trace ��

Ref�P� �� � fX j �P � � �P after ��� s�t� �� � X � P �
�

�

g� denotes the refusals of P after ��

Trace Preorder� An important category of system properties that one would like have satis�ed� are safety
properties� Safety properties state that something bad should not happen� where something bad can be interpreted
as a certain trace of the speci�cation� Observe that if S is a safety property� then ���� �� we have if �� �
�� then S���� 
 S����� i�e� if S holds for the trace ��� it also holds for all its pre�xes� In particular� all safety
properties hold for the empty trace ��

When a speci�cation is re�ned� it seems reasonable to require that the re�nement is at least as safe as the
speci�cation� This intuition is re�ected by the trace preorder�

De�nition 
 �trace preorder�
Given two process speci�cations P and Q� then P is a trace re�nement of Q� denoted P �tr Q� i� Tr�P � � Tr�Q�

Reduction� In addition to safety properties the liveness �or deadlock� properties of a system are also important�
A liveness property states that something good must eventually happen� It may be required that a development
of a speci�cation does not deadlock in a situation where the speci�cation would not deadlock� in other words�
every trace that the speci�cation must do� the development must do as well� A re�nement relation that combines
both the preservation of safety and liveness properties is the reduction relation� red� de�ned in ��	�

De�nition � �reduction�
Given two process speci�cations P and Q� then P �deterministically� reduces Q� denoted P red Q� i��


� P �tr Q� and

�� �� � Tr�Q�� Ref�P� �� � Ref�Q� ��

Extension� Another re�nement relation proposed in ��	 is the extension relation� This relation allows new
possible traces to be introduced� while preserving the liveness properties of the speci�cation� Extension seems
particularly relevant in the context of partial speci�cation�

De�nition �� �extension�
Given two process speci�cations P and Q� then P extends Q� denoted P ext Q� i��

�




� Tr�P � 	 Tr�Q�� and

�� �� � Tr�Q�� Ref�P� �� � Ref�Q� ��

Testing Equivalence� A standard interpretation of equivalence is given by the testing equivalence relation� In
particular� notice that P te Q �
 P red�red�� Q �
 P ext�ext�� Q� So� testing equivalence is a sensible
identity in the sense of � for both red and ext�

De�nition �� �testing equivalence�
P te Q i� Tr�P � � Tr�Q� � �� � Tr�P �� Ref�P� �� � Ref�Q� ���

Internal Validity� At least theoretically� we can view all LOTOS speci�cations as implementable� Even degen�
erate speci�cations� such as those containing deadlocks� for example� have a physical implementation equivalent�
Thus� all LOTOS descriptions are internally valid� This is a fundamental characteristic of behavioural languages
that distinguishes them from logically based speci�cation notations�

Proposition 	
LOTOS is implementation complete�

This proposition is important as it considerably simpli�es the class of consistency that must be considered for
LOTOS�

� Basic Strategies for Consistency Checking

Up to this point we have investigated consistency in terms of a set of possible uni�cations� i�e� descriptions

X�� X�� ���� Xn are consistent if� �rstly� the set of possible uni�cations
���n

U �dvi�Xi� is non�empty and� secondly� the
set contains an internally valid description� Such a uni�cation set could be very large and often in�nite� Clearly�
if a system development trajectory is to be provided for viewpoint models then it is important that we reduce
the choice of uni�cation� In particular� we would like to select just one description from the set of uni�cations�
This would enable an incremental development strategy in which a group of viewpoints are uni�ed and then this
uni�cation is further composed with another group of viewpoints� This situation amounts to obtaining global
consistency from a series of non�global �probably binary� consistency checks and uni�cations� The objective of
the remainder of this paper is to characterise the uni�cation that should be chosen from the uni�cation set�

This section considers basic strategies for consistency checking� In particular� the issue of representative
uni�cation is considered in subsection ���� Then general formats for binary consistency checking are considered
in section ��� and the central issue of least developed uni�cation is discussed in ���� These basic strategies will be
used in later sections when we consider the properties required in order to realise a binary consistency checking
strategy�

��� Representative Uni�cation

A particular uni�cation algorithm will construct just one member of the uni�cation set� Importantly� we need to
know that the uni�cation that we construct is internally valid if and only if an internally valid uni�cation exists�
otherwise we may construct an internally invalid uni�cation despite the fact that an alternative uni�cation may
be internally valid�
Thus� we introduce the concept of a representative uni�cation� which is de�ned as follows��

De�nition �� X �
���n

U �dvi�Xi� is a representative uni�cation i� ��X� �
���n

U �dvi�Xi� s�t� ��X��� �
 ��X��

The following result is very straightforward��

Proposition 


ft is implementation complete and X�� ���� Xn � DESft �
 �X �
���n

U �dvi�Xi� X is a representative uni�cation�

So� this result implies that for a language such as LOTOS� representativeness of uni�cation does not arise�
We would certainly expect the uni�cation functions that we adopt to yield a representative uni�cation and it

would be a major �aw in the strategy if it did not� As a re�ection of this� for the remainder of this paper we will
assume representativeness of the uni�cation functions that we consider�

�



��� Binary Consistency Checking Strategies

We would like to obtain global consistency through a series of binary consistency checks� We have found that naive
pairwise checking does not give us this� see proposition �� However� a combination of binary consistency checks and
binary uni�cation of the form shown in �gure � should intuitively work� i�e� X� and X� are checked for consistency�
then a uni�cation of X� and X� is obtained� which is checked for consistency against X�� then a uni�cation of
X� and the previous uni�cation is performed� This process is continued through the n viewpoint descriptions�
Thus� the base case is a binary consistency check and then repeated uni�cation and binary consistency checks
are performed against the next description� Of course� this is just one possible sequence of binary consistency
checks� We would like to obtain full associativity results which support any appropriate incremental consistency
checking strategy� However� as an archetypal approach� the binary consistency checking strategy of �gure � will
serve as an initial focus for our investigations�
The advantages of such incremental consistency checking strategies are that they do not force the involvement

of all viewpoints in every consistency check� In particular� it may be possible to incrementally correct inconsisten�
cies� In addition� such an approach will aid maintaining structure when unifying� One of the main problems with
uni�cation algorithms is that the generated uni�cation is almost certain to be devoid of high level speci�cation
structure �e�g� operators such as j�	j in LOTOS are expanded out� ���	� This is a big problem if the uni�cation is
to be further developed� It is very unlikely that a single uni�cation of a large group of viewpoints will be able to
reconcile the structure of all the views� however� an incremental focus of restructuring may be possible�

The next de�nition characterises the binary consistency checking strategy that we are interested in� We denote
the strategy  U � where U is a particular binary uni�cation function�  incorporates a series of binary consistency
checks� each of which uses U to perform the binary uni�cation� U has the general form�

U � �DEV �DES� � �DEV �DES� � P�DES�

i�e� it takes two pairs �each comprising a development relation and a description� and yields a set of descriptions�
A typical application of the function� e�g�

U �dv�X��dv�� X��

generates a set of descriptions� which are� intuitively� possible uni�cations of X and X� according to dv and
dv� respectively� We will investigate the suitability of speci�c binary uni�cation functions by instantiating these
functions for U in  U � Thus�  U gives us a general structure for obtaining global consistency from a series of
binary uni�cations� but it is parameterised on the particular binary uni�cation function to use� Obviously� the
spectrum of possible instantiations of U is very large� from functions that yield all possible binary uni�cations� i�e�
U � to functions which select just one uni�cation� Clearly� our ultimate objective is to use a uni�cation function
which yields a single uni�cation� however� this will not turn out to be possible in all cases� Thus� at this stage
we have chosen to be most general and let U generate a set of uni�cations�

De�nition ��

 U �dv�� X�������dvn� Xn�
def
�

���Y� � U �dv�� X���dv�� X�� � ��Y��� � 	 Step 

��Y� � U �dv� � dv�� Y���dv�� X�� � ��Y��� � 	 Step �
��Y� � U �dv� � dv� � dv�� Y���dv�� X�� � ��Y��� � 	 Step �

���
���

��Yn�� � U �dv� � dv� � ����� dvn��� Yn����dvn��� Xn��� � ��Yn���� � 	 Step n	�
��Yn�� � U �dv� � dv� � ����� dvn��� Yn����dvn� Xn� � ��Yn����� 	 Step n	


Thus� each step in the algorithm considers a uni�cation set using the binary uni�cation function U � The ith
step is satis�ed if a description� Yi� can be found in the set of uni�cations generated by the function U that is
internally valid and can be used to satisfy the i! �st step� A depiction of  U � with n � �� is given in �gure �� It
should be apparent that consistency checking is implicit in each step� Thus� the existence of an internally valid
ith uni�cation� Yi� ensures that Yi�� and Xi�� are consistent� Clearly� if an internally valid uni�cation does not
exist for a particular step then consistency would be lost�

�
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In addition notice how when we have performed a binary uni�cation� e�g� U �dv� Y ��dvi� Xi�� the next binary
uni�cation will intersect dv and dvi� this ensures that the �nal uni�cation �using transitivity of development� is
a development by dvi of Xj for all j�

As mentioned earlier the uni�cation construction function� U � yields a set of uni�cations� which could be a
singleton� We assume U satis�es the following constraints��

De�nition �	
A binary uni�cation function U is valid if and only if�

�U �i� U �dv�X��dv�� X�� � U�dv�X��dv�� X�� and
�U �ii� U�dv�X��dv�� X�� 
� � �
 U �dv�X��dv�� X�� 
� ��

These are minimal constraints that ensure U is a sensible binary uni�cation method� �U�i� guarantees that the
uni�cations generated by U are in the set of all uni�cations obtained by U �remember U is our base uni�cation
function� see de�niton �� and �U�ii� ensures that if a uni�cation exists� U will not yield the empty set� Using these
constraints we can show that if our binary consistency checking strategy is satis�ed then consistency follows��

Proposition �
Assuming dvi� � � i � n� is a preorder and U satis�es �U�i� and �U�ii��

���n

	U �dvi�Xi� �

���n

C �dvi�Xi��

Proof

Assume
���n

	U�dvi�Xi� holds� Now from step n�� in  U we deduce�
�Y s�t� Y �dv� � dv� � ���� dvn��� Yn�� � ���
Y dvn Xn � ���
��Y � ���

We will show that Y is the required common development of X� through to Xn to give us
���n

C �dvi�Xi�� Firstly� ���
and ��� give us immediately that ��Y � and Y dv Xn� Now from ��� and Yn�� � U �dv������dvn��� Yn����dvn��� Xn���
we can deduce that Y dvn�� Yn�� and Yn�� dvn�� Xn��� thus� from transitivity of dvn�� we have Y dvn�� Xn���
We can perform similar arguments down through the construction of  to determine that Y dvn�� Xn�� � ����

Y dv� X� � Y dv� X�� Thus� Y is the required common development and
���n

C �dvi�Xi� holds� �

Using this result we can show that performing  with the full uni�cation set function� i�e� instantiating U for U �
is equal to consistency� Clearly� we would expect this to be the case and if it was not we would have to worry
about  �

Proposition �
Assume dvi� � � i � n� is a preorder� Then�

 U �dv�� X���dv�� X������dvn� Xn� �
���n

C �dvi�Xi��

Proof
��
� U trivially satis�es �U�i� and �U�ii�� thus we can use the previous result� proposition �� to give this direction
of implication�

���� Assume
���n

C �dvi�Xi� holds� i�e� �Y �
���n

U �dvi�Xi� such that ��Y �� We will show that Y can act as the
uni�cation in all steps of  � Firstly� the internal validity requirement of each step will clearly be satis�ed for Y �
In addition� using corollary � we get� Y � U�dv�� X���dv�� X�� and thus step �� Step � follows since Y dv� Y�� by
our assumption and Y dv� � dv� Y from the re�exivity of development� i�e� Y � U�dv� � dv�� Y ��dv�� X��� Using
similar arguments we can get step � and all steps up to n�� as required� �

However� if we use a valid uni�cation construction function �i�e� one that satis�es �U�i� and �U�ii�� other than U
the converse to proposition � does not� in general� follow� i�e� C 
�
  U � and we clearly require this direction if
 is to be used�

Example � We will give two simple examples of why a simple binary consistency checking strategy may not give
global consistency� The �rst example is for LOTOS and the second is for Z�
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LOTOS� Consider the three LOTOS speci�cations� P� �� i� a� stop�	i� b� stop� P� �� a� stop�	i� b� stop and P� ��
a� stop� Further consider the consistency check Cred�P�� P�� P��� where red is the LOTOS reduction relation�
which re�nes through reduction of non	determinism �see section ��� The three speci�cations are consistent by
reduction since P� is a reduction of all three speci�cations� However� if we attempt a binary consistency checking
algorithm and started with P� and P� we may choose as the uni�cation of these two the process P �� i� b� stop�
and Cred�P� P�� does not hold�

Z� Consider the three Z speci�cations� S� � �n� � IN j n� � 
 � n� � �	� S� � �n� � IN j n� � 
 � n� � �	�
and S� � �n� � IN j n� � 
	� The �rst two speci�cations could be uni�ed to yield �n� � IN j n� � �	� which is not
consistent with the third� But� the third speci�cation could act as a re�nement of all three�

These examples suggest the class of uni�cations that we must select� Speci�cally� we should choose the least
developed uni�cation� i�e� the one that is most abstract and is� in terms of development� closest to the original
descriptions� In both the above examples this will give the required result� In the LOTOS example P� itself should
have been chosen as the uni�cation of P� and P� as it is the least reduced uni�cation� up to testing equivalence�
Similarly� in the Z example either of the identical speci�cations S� or S� should have been chosen initially� The
issue is that we could choose a uni�cation of two descriptions that is too developed to be reconciled with a third
description� while a less developed uni�cation that could be reconciled� exists� The problem is evolving the two
original speci�cations unnecessarily far towards the concrete during uni�cation� We will consider the issue of least
developed uni�cations next�

��� Least Developed Uni�cations

In traditional single threaded �waterfall� models of system development the issue of least development does not
arise� This is because� assuming development is a preorder� each description is a least development of itself� i�e� is a
development of itself �because of re�exivity� and is less developed than any other development� Unfortunately� the
situation is not so straightforward when we generalise to viewpoints and when we must reconcile the development
trajectory of more than one description�

First our interpretation of least developed uni�cation� We assume dvi� � � i � n� are preorders�

De�nition �
 �Least Developed Uni�cation�

X �
���n

U �dvi�Xi� is a least developed uni�cation i� ���X� �
���n

U �dvi�Xi�� s�t� X
n

�dvi X
���

where
n

�dvi is a shorthand for dv� � ���� dvn�

This de�nition ensures that a uni�cation which X is a strict development of does not exist� Notice the inter�
pretation of development� that X and X� are related by dv� � ��� � dvn� i�e� the set of uni�cations is ordered
by the intersection of the development relations used in uni�cation� Figure 
 depicts a typical situation� X� X�

and X�� are uni�cations of X� and X� and X� X� and X�� are ordered by dv� � dv�� In this diagram X is the
least developed uni�cation of X� and X�� dv� � ��� � dvn is a natural interpretation of development between
uni�cations because all descriptions in the uni�cation set that are descendents of a least developed uni�cation X
are developments of X by all relevant development relations�

Note that another way of looking at the least development is that it is a maximal element in the set of possible
developments� Thus� by reversing the point of reference we can exchange least for maximal� At some points
in the text it will be most convenient to make this reversal and talk in terms of maximal elements of sets of
developments�

Unfortunately� for inter language consistency� the least developed of the set of uni�cations is a problematic

concept� Speci�cally� descriptions in the uni�cation set�
���n

U �dvi�Xi�� are likely to be in a di�erent notation from
X�� ���� Xn� thus it is unlikely that the uni�cations can be related in a type correct manner using dv� � �� � dvn�
Thus� this de�nition and the remaining theory will only be applied to intra language consistency� Ongoing work
is addressing generalisation of least developed uni�cation to the inter language setting�

It is also disappointing to discover that for arbitrary development relations �even when constrained to be
preorders and in the intra language setting� the least developed uni�cation will not necessarily be unique� �By
way of clari�cation� here we are talking about uniqueness up to equivalence� where equivalence is interpreted as
�n

�dvi

for dv�� ���� dvn the relevant development relations� Throughout the remainder of the paper� when we talk

about uniqueness� we mean unique up to equivalence��
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Example � If we have four descriptions
 X�� X�� X� and X�
 and the development relations between descriptions
indicated in �gure �� both X� and X� are least developed uni�cations of X� and X�� i�e� they are clearly both
in U�dv�� X���dv�� X�� and neither has an ancestor by dv� � dv� in U�dv�� X���dv�� X��� Furthermore� examples
of this form are characteristic of situations that foil  � Speci�cally� consider the development relations in �gure
�� In this situation we may unify X� and X� to X� and then fail to �nd a common development with X� even
though X� could act as the required common development of X�� X� and X��

We can illustrate such a situation by considering the LOTOS consistency check C��tr� X���ext� X����tr � X���
where�

X� �� a� b� c� stop X� �� a� stop X� �� a� stop�	c� stop and X� �� a� b� stop

Now both X� and X� �amongst others� are least uni�cations from within U��tr � X���ext� X�� �a subset of the
relevant development relations is shown in �gure ��� In particular� notice that X� and X� are not related by �tr

�ext� thus� neither is less developed than the other� Furthermore� if we now consider the full consistency check�
C��tr� X���ext� X����tr� X��� the choice of least developed uni�cation is extremely signi�cant� since X� �tr X�

but X� 
�tr X�� Thus� in order to perform this consistency check we need to check against the set of all least
developed uni�cations of X� and X�� which would include both X� and X��

In response to these observations we will divide our discussion of least developed uni�cation into two parts� First�
we will consider the situation in which the least developed uni�cation is not unique� then we will discuss the
situation in which it is unique� These two cases will be discussed in the following two sections� In the former
case we consider uni�cation according to the set of all least developed uni�cations� This is a compromise of our
ultimate objective which is to locate a single uni�cation� but it allows us to� in general� reduce the speci�cation
set to some extent� Our objective is to consider the consequence of using the least developed uni�cation set as
uni�cation function� If this gives us the required relationship between  and C� then we will attempt to be more
selective from amongst the least developed uni�cation set and locate under what circumstances we can take just
one element from the set�

� Non Unique Least Developed Uni�cation

��� Relating Consistency and Least Development

We de�ne the least developed uni�cation set� which we denote LU�dv�� X�������dvn� Xn� or
���n

LU�dvi�Xi�� as follows��

De�nition �� �Least Developed Uni�cation Set�
���n

LU�dvi�Xi� � fX � X �
���n

U �dvi�Xi� � ���X� �
���n

U �dvi�Xi�� s�t� X
n

�dvi X
�g�
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Thus� the least developed uni�cation set is the set of all uni�cations that do not have a non�equivalent ancestor
in the uni�cation set� In order to use LU as the uni�cation function in  we must show that LU is valid with
regard to U � i�e� it satis�es conditions �U�i� and �U�ii�� The �rst of these is straightforward� it follows directly
from the next proposition�

Proposition 

���n

LU�dvi�Xi� �
���n

U �dvi�Xi��

Proof

Take X �
���n

LU�dvi�Xi�� by the de�nition of LU� X �
���n

U �dvi�Xi�� �

Corollary �
LU�dv�X��dv�� X�� � U�dv�X��dv�� X��

�U�ii� though is more di�cult and obtaining this validity constraint is central to showing that  LU is equal to C�
We will have to impose certain �well behavedness
 constraints on development in order to obtain this property�
With the constraints that we have already imposed on development� i�e� preorder� these properties give us a
set of requirements that development in a particular formalism must satisfy in order for it to be used in our
framework of uni�cation� In order not to lose the �ow of our current argument we will refrain for the moment
from consideration of these constraints� they will be discussed in section 
��� For the moment we simply state the
result that we want� section 
�� will provide proofs� We actually need a stronger property than �U�ii� in order to
prove the forthcoming theorem� �� The property that we need is��

Property �

X �
���n

U �dvi�Xi� �
 �X� �
���n

LU�dvi�Xi� s�t� X
n

�dvi X
��

This property states that all uni�cations have an ancestor in the least developed uni�cation set� In other words�

all uni�cations are developments� by
n

�dvi� of a least developed uni�cation� Notice� a least developed uni�cation

is a development of itself� Further notice� implicit in the condition of the uni�cation
���n

U �dvi�Xi� 
� �� You may
think that such a requirement would naturally hold� but section 
�� shows that this is not the case� Once we have
property � we can easily obtain �U�ii�� it is an immediate corollary of the following more general result��

Proposition �

Property 
 �
 �
���n

U �dvi�Xi� 
� � �

���n

LU�dvi�Xi� 
� ���

Proof

Assume
���n

U �dvi�Xi� 
� � and take X �
���n

U �dvi�Xi�� Now we can use property � to get �X� �
���n

LU �dvi�Xi�� So�
���n

LU�dvi�Xi� 
� �� as required� �

Corollary �
Property 
 �
 �U�dv�X��dv�� X�� 
� � �
 LU�dv�X��dv�� X�� 
� ���

We now have enough theory to tackle the main concern of this section� obtaining global consistency from binary
consistency checking and to relate C to  LU �

Theorem �
Given property 
 and LU a representative uni�cation strategy�

���n

C �dvi�Xi� �  LU �dv�� X������dvn� Xn�

Proof
The �rst section of the appendix contains an induction proof �proposition ���� where  LU is a slightly stronger

constraint than  LU � that
���n

C �dvi�Xi� �
  LU�dv�� X������dvn� Xn�� From an examination of the conditions
of  � if LU is representative�  LU �dv�� X������dvn� Xn� �
  LU �dv�� X������dvn� Xn�� In addition� proposition �
gives us the other direction of implication� �

�
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Figure �� In�nite chain of candidate "least� developed uni�cations

This is the result we are seeking� it states that subject to property � holding and LU a representative uni�ca�
tion strategy we can equate the binary consistency checking strategy  LU with consistency� i�e� if each binary
uni�cation considers the set of all least developed uni�cations then we will obtain consistency� However� in or�
der� to obtain this identity we it is su�cient to verify property �� The next subsection considers constraints on
development that realise this property�

��� Constraints on Development

The di�culty surrounding obtaining property � �and hence constraint �U�ii�� is that the chain of candidate least
uni�cations may be in�nite� as depicted in �gure � and a maximal member of the chain� Yi� may not exist� This
is unlikely to arise in practice� but� is theoretically possible for arbitrary preorders� Notice that it is certain that
the uni�cation set can be in�nite� e�g� consider the LOTOS ext relation� We would like to locate a constraint on
development that prevents the uni�cation set being in�nitely increasing in the manner highlighted� Property �
states�

X �
���n

U �dvi�Xi� �
 �X� �
���n

LU�dvi�Xi� s�t� X
n

�dvi X
��

i�e� if the uni�cation set is non�empty all uni�cations are descendents of a least developed uni�cation� In order
to characterise when this property can be obtained we need some de�nitions�

De�nition �� For S � DES and dv � DEV �

M �S� dv� � ��Y � S s�t� ���Y � � S s�t� Y dv Y ����

Such a Y is called a maximal element of S�

Thus� M �S� dv� will hold if and only if the set S of descriptions has a maximal element by dv� i�e� an element�
Y � which has no ancestor by dv in S� When we are considering maximal elements of uni�cation sets we will talk
about maximal uni�cations�

The next two de�nitions are interpretations of standard mathematical concepts� see for example ���	�

De�nition �
 An in�nite set of descriptions fX�� X�� ���g is said to be an in�nitely ascending chain X�� X�� ���

according to dv i� Xi dv Xi�� for all i � IN�

De�nition �� �Well Founded Set�
S is called a well founded �WF� set by dv i� �S� � S� �S� 
� � �
 M �S�� dv���

Thus� a partial order �S� dv� is well founded �WF� if and only if all non�empty subsets of S have at least
one maximal element� Clearly� we could consider dual de�nitions which focus on the opposite direction of the
development partial order� e�g� minimal elements of ancestors by development� However� our focus is on evolution
of descriptions towards development�
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Notice that a maximal element of a set is not necessarily unique up to equivalence� There could be a number
of uni�cations with no ancestor by development in the uni�cation set� see for example �gure ��

The following is a standard result from mathematical set theory� see ���	 for example �a proof of the result is
reproduced in ��	��

Proposition ��
�i� �S� dv� is well founded�

�


�ii� There is no in�nitely ascending chain in �S� dv��

With these concepts we can characterise under what circumstances property � can be obtained�

Proposition ��

�i� There is no in�nite ascending chain by
n

�dvi of descriptions in
���n

U �dvi�Xi��

�


�ii� X �
���n

U �dvi�Xi� �
 �X� �
���n

LU�dvi�Xi� s�t� X
n

�dvi X
��

i�e� �i� �
 property 
�

Proof
By contradiction� so� assume �i�� Now ��ii� gives�

�X �
���n

U �dvi�Xi� s�t� ���X � �
���n

LU �dvi�Xi� s�t� X
n

�dvi X
���

Now consider the following construction��

�� X� � X�

�� Select X� �
���n

U �dvi� Xi� such that X�

n

�dvi X�� Such an X� must exist� otherwise X� would be a least

developed uni�cation and a development by
n

�dvi of itself� which contradicts out assumption of ��ii��

�� If X�� X�� ���� Xj �
���n

U �dvi�Xi� for j � �� such that X�

n

�dvi X� � X�

n

�dvi X� � ��� � Xj��

n

�dvi Xj�

have already been chosen� then a description Xj�� such that Xj

n

�dvi Xj�� can be found� Such an Xj��

must exist otherwise Xj would be a least developed uni�cation and by transitivity of development and an

ancestor by
n

�dvi of X�� which would contradict our assumption of ��ii��

This construction will generate an in�nite ascending chain by
n

�dvi of descriptions X�� X�� X�� ��� �
���n

U �dvi�Xi��
which contradicts our assumption of �i� as required� �

Using this result we can obtain the following important corollary��

Corollary 	

�i� �
���n

U �dvi�Xi��
n

�dvi� is well founded�

�


�ii� Property 
�

This result characterises the properties that are required of
���n

U �dvi�Xi� in order to obtain property �� In order
to use a particular FDT we would actually like to know that any combination of development relations and
descriptions in the language will yield a uni�cation set that satis�es� property �� We will clearly obtain this if an
FDT up holds the following�

Property �
FDT ft satis�es property � i�

�X�� ���� Xn � DESft � �dv�� ���� dvn � DEVft �
���n

U �dvi�Xi��
n

�dvi� is well founded

��



Another way to express property � is�

�X�� ���� Xn � DESft � �dv�� ���� dvn � DEVft� �
n

�D�xi� dvi��
n

�dvi� is well founded�

since
n

�D�xi� dvi� �
���n

U �dvi�Xi��
In order to verify that property � holds for a particular FDT we would like to obtain a constraint that can be

realistically checked for actual development relations� Thus� we consider a series of �Well Behavedness
 properties
on development� These results are listed in the appendix� but not proved� The interested reader is referred to ��	
for a complete discussion of these properties and proofs of results� If a particular FDT can be shown to satisfy
any of these properties then property � and hence property � will follow� which in turn imply that a binary
consistency checking strategy using least developed uni�cation sets can be safely used�

� Unique Least Developed Uni�cation

Clearly� we would like to unify to a single description� So� far we have only considered situations in which we
have to test every element of a set of uni�cations in order to obtain global consistency� Although� the set of
least developed uni�cations is likely to be signi�cantly smaller than the full uni�cation set� it could still be very
large� This subsection considers under what circumstances we can safely select any member from the set of least
developed uni�cations and know that further consistency checking and uni�cation with the chosen uni�cation
will yield global consistency� In order to do this we need to impose stronger constraints on the uni�cation set� In
particular� we must ensure that uni�cation sets possess a greatest element�

De�nition �� An element X � S is a greatest element of a partially ordered set� �S� dv�� i� �X� � S� X � dv X�
We denote such a greatest element as g�S� dv�� If a greatest element does not exist g�S� dv� ���

It is worth pointing out again that we are considering uniqueness up to equivalence� Thus� in e�ect� the description
that is generated by g�S� dv� will be randomly chosen from within an equivalence class� Greatest elements are
stronger than maximal elements since for greatest elements all other members of the set must be developments
of the greatest element� This is not required with maximal elements for which their may exist elements that are
not ancestors or descendents of a maximal element� We introduce the following obvious notation�

Notation �

If it exists� we call g�
���n

U �dvi�Xi��
n

�dvi� the greatest uni�cation�

We have a number of immediate results� proofs of these results can be found in ��	�

Proposition ��
�i� A greatest element is a maximal element�

�ii� If it exists� g�
���n

U �dvi�Xi��
n

�dvi� �
���n

LU �dvi�Xi�� i�e� the greatest element is a least developed uni�cation�
�iii� A greatest element is unique up to equivalence�

�iv� Assuming property 
 �X�X � �
���n

LU�dvi�Xi�� X �n

�dvi

X� �
 g�
���n

U �dvi�Xi��
n

�dvi� 
���

The last of these results is important as it shows that the existence of a greatest uni�cation is the only circumstance
that will yield a unique least developed uni�cation� i�e� the least developed uni�cation is unique up to equivalence
if and only if the uni�cation set has a greatest element�

As expected� the property that we will impose on the uni�cation set� in order to allow us to choose any member
of the set of least developed uni�cations� is that it has a greatest element� i�e�

Property �

If
���n

U �dvi�Xi� 
� � then g�
���n

U �dvi�Xi��
n

�dvi� 
���

We assume the following greatest uni�cation function� L��

De�nition ��

If g�
���n

U �dvi�Xi��
n

�dvi� �� then
���n

L �dvi�Xi� � � otherwise
���n

L �dvi�Xi� � fg�
���n

U �dvi�Xi��
n

�dvi�g�

��



So� the function L returns the empty set if a greatest uni�cation does not exist and a singleton set containing
the greatest uni�cation otherwise� Now we need to validate that L up holds �U�i� and �U�ii�� These arise as
immediate consequences of the next results �proofs can be found in ��	�

Proposition ��
Given property ��

�i�
���n

L �dvi�Xi� �
���n

U �dvi� Xi��

�ii�
���n

U �dvi�Xi� 
� � �

���n

L �dvi�Xi� 
� �

We can also consider the equivalent of property � for L�

Property 	

X �
���n

U �dvi�Xi� �
 X
n

�dvi Y where Y �
���n

L �dvi�Xi��

We can see that this property follows directly from the existence of a greatest element�

Proposition �	
Property � �
 property ��

Proof
���n

U �dvi�Xi� 
� � �

���n

L �dvi�Xi� 
� �� the result follows immediately from the de�nition of L� �

We will also use the following simple result

Proposition �

Given property ��
Y � L�dv�X��dv�� X �� � Y � � L�dv�X��dv�� X���dv��� X��� �
 Y � dv � dv� Y �

Proof
Clearly� Y � � U�dv�X��dv�� X���dv��� X���� but we can use corollary � to get Y � � U�dv�X��dv�� X�� and by the
de�nition of L we have Y � dv � dv� Y � as required� �

We are now in a position to relate binary consistency strategies to global consistency when greatest uni�cations
exist� We seek an associativity result and in order to express this clearly we consider a function � which is derived
from L� The function returns a pair� with �rst element the intersection of the development relations considered
and second element the greatest uni�cation� Notice a bottom element is returned as greatest uni�cation if either
a greatest uni�cation does not exist or one of the descriptions given as an argument is unde�ned�

De�nition ��
��dv�X��dv�� X�� � �dv � dv�� Y �

where
if X �� � X� �� � L�dv�X��dv�� X�� � � then Y ��
otherwise Y � L�dv�X��dv�� X���

We will prove associativity of � by relating the two possible binary bracketings of � to L�dv�X��dv�� X���dv��� X����

Proposition ��
Given property ��
r���dv�X����dv� � X���dv��� X����� �dv�dv��dv�� Y where Y � L�dv�X��dv�� X���dv��� X��� and r is the right projec	
tion function� which yields the second element of a pair�

Proof
Take Y � r���dv�X����dv� � X���dv��� X����� and Y � � L�dv�X��dv�� X���dv��� X���� By transitivity of devel�
opment Y � U�dv�X��dv�� X���dv��� X���� so by the de�nition of L we get Y dv � dv� � dv�� Y �� Also� let
Y �� � r���dv�� X���dv��� X����� By� proposition �
 Y � dv� � dv�� Y ��� Also� Y � � U�dv�X��dv�� X���dv��� X��� so
Y � dv X and therefore� Y � � U�dv�X��dv� � dv��� Y ���� But� Y � L�dv�X��dv� � dv��� Y ���� so� it is the great�
est element in U�dv�X��dv� � dv��� Y ��� and thus� Y � dv � dv� � dv�� Y � This gives us Y dv � dv� � dv�� Y � and
Y � dv � dv� � dv�� Y and thus� Y �dv�dv��dv�� Y �� as required� �

��



Proposition ��
Given property ��
r�����dv�X��dv� � X����dv��� X���� �dv�dv��dv�� Y where Y � L�dv�X��dv�� X���dv��� X ���

Proof
Similar to proof of proposition ��� �

Now if we de�ne equality pairwise as�

�dv�X� � �dv�� X�� i� dv � dv� � X �dv�dv� X�

the following result is straightforward�

Corollary 
 Given property �
��dv�X����dv� � X���dv��� X ���� � ����dv�X��dv� � X����dv��� X���

Proof
Follows immediately from previous two results� propositions �� and ��� �

This is a full associativity result which gives us that any bracketing of ��dv�� X��� ���� �dvn� Xn� is equal� Since
� is just an alternative coding of L that facilitates clarity of expression� we have full associativity of L and
that a consistency strategy using L can be composed of any ordering of binary consistency checks� in particular�
 L � C� So� if greatest uni�cations exist� we can obtain global consistency from any appropriate series of binary
consistency checks� This is an important result that arises from a very well behaved class of uni�cation�

We know that the existence of a greatest uni�cation will allow us to safely choose just one description from the
least developed uni�cation set� What conditions can we impose on development in order to obtain the existence
of such a greatest element#
In a similar way to in section 
�� we generalise the condition we require to all possible uni�cations that can

be performed in an FDT�

Property 
 An FDT� ft� satis�es property � i��

�X�� ���� Xn � DESft � �dv�� ���� dvn � DEVft� �
���n

U �dvi�Xi� 
� � �
 g�
���n

U �dvi�Xi��
n

�dvi� 
����

This property ensures that any possible combination of descriptions and development relations in ft will generate
a uni�cation set with a greatest element� Satisfaction of this property will guarantee that we can always safely
select just one element from the least developed uni�cation set� The interested reader is referred to the appendix
for a list of well behavedness properties on development which imply this property�

� Strategies for Checking Balanced Consistency

The majority of work to be found in the literature on consistency has addressed more restricted classes of
consistency than we have considered� In particular� to date� balanced consistency has almost exclusively been
focused on� So� what happens to the theory considered so far in this paper in these circumstances# This section
then restricts itself to balanced intra language consistency and dv a preorder�

We have a number of preparatory de�nitions� The following is the standard set theoretic notion of a lower
bound of a set�

De�nition �� X � DESft is a lower bound of Z � DESft i� �X
� � Z� X dv X�� The set of all lower bounds

of Z is denoted� lb�Z� dv�� If a lower bound does not exist lb�Z� dv� � �

A lower bound of Z is a development of all elements of Z� Notice a lower bound does not have to be a member
of Z in contrast to a maximal or greatest element� It should be clear that for balanced consistency lower bounds
correspond to uni�cations� i�e� Udv�X�� ���� Xn� � lb�fX�� ���� Xng� dv�� In particular� the fact that the ordering of
descriptions in balanced uni�cation is unimportant is re�ected by the descriptions being interpreted as a set in
lb�
In standard fashion we can also de�ne the concept of a greatest lower bound�

��



De�nition �	 For Z � DESft glb�Z� dv� is a lower bound such that all other lower bounds are a development
of glb�Z� dv�
 i�e� glb�Z� dv� � lb�Z� dv� � ��X � lb�Z� dv�� X dv glb�Z� dv��� If a greatest lower bound does not
exist glb�Z� dv� ���

It should again be clear that a greatest lower bound of a set of descriptions is a greatest uni�cation of the

descriptions� In particular� note that the ordering of the uni�cation set by
n

�dvi in the general �unbalanced� case
has been collapsed to just dv�
We can now de�ne consistency in this restricted setting��

De�nition �
 Cdv�X�� ���� Xn��
 �X � lb�fX�� ���� Xng� dv� s�t� ��X��

With this theory we can also simply characterise when all descriptions in an FDT are balanced consistent by dv�
i�e� the FDT is completely consistent by dv�

Proposition �

�Z � DESft � dv � DEVft� �X � lb�Z� dv� � ��X� �
 �X�� ���� Xn � DESft� Cdv�X�� ���� Xn� holds�

Proof
Straightforward� �

i�e� if all subsets of DESft have a lower bound then all speci�cations are consistent by dv�
An alternative check for complete consistency is that an internally valid terminal element exists for dv� A

development relation dv has a terminal or bottom element� denoted �dv� if and only if �X � DESft� �dv dv X�

Proposition ��
DESft has an internally valid bottom element �
 �X�� ��� Xn � DESft� Cdv�X�� ���� Xn� holds�

Proof
Immediate� �

Example � As a simple illustration for LOTOS C�tr
and Cext are completely consistent� since all groups of

speci�cations have common re�nements� For example� the process stop� which o�ers only the empty trace is a
bottom element for �tr and the process that o�ers a choice of all possible actions at all points in the computation
is a bottom element for ext�

What� in this restricted setting� enables us to obtain global consistency from binary consistency# We would like
to locate an equivalent of the existence of greatest uni�cations� As indicated earlier� the greatest lower bound
gives us this equivalent�

Proposition ��
glb�fX�� ���� Xng� dv� 
�� �
 glb�fX�� ���� Xng� dv� � Ldv�X�� ���� Xn��

Proof
By de�nition� �

So� the property that we require for balanced consistency checking to be performed incrementally is�

Property �
�fX�� ���� Xng � DESft � �dv � DEVft� lb�fX�� ���� Xng� dv� 
� � �
 glb�fX�� ���� Xng� dv� 
���

This property ensures that if a lower bound exists then a greatest lower bound can be found� i�e� the uni�cation
of X�� ���� Xn is non�empty implies a greatest uni�cation exists� It is clear from the theory of greatest uni�cations
we have presented and from set theory that taking greatest lower bounds is associative� i�e�

glb�fglb�fX�� X�g� dv�� X�g� dv� � glb�fX�� glb�fX�� X�g� dv�g� dv�

With these concepts we can identify what is the most well behaved class of development�

De�nition �� �DESft � dv� is cocomplete i� �S � DESft� glb�S� dv� 
���

Cocompleteness is related to the standard concept of a complete partial order� see for example ���	� which considers
the existence of least upper bounds as opposed to greatest lower bounds in our framework� If development is
cocomplete for a particular FDT according to a development relation then all speci�cations are balanced consistent
and we can adopt any relevant incremental consistency checking strategy� All descriptions are consistent since
a lower bound exists for all collections of descriptions and incremental consistency checking strategies are well
behaved since a single greatest uni�cation always exists�

��



	 Concluding Remarks

This paper has presented a general interpretation of consistency for multiple viewpoint models of system devel�
opment and investigated possible consistency checking strategies� Our interpretation of consistency is extremely
broad� embracing intra and inter language consistency� balanced and unbalanced consistency and both binary and
global consistency� This generality arises as a direct consequence of the requirements of viewpoints modelling in
Open Distributed Processing�

The main original contribution of this paper is the investigation of possible strategies for consistency checking�
These address the issue of obtaining global consistency incrementally through a series of� possibly binary� consis�
tency checks� thus� enabling global consistency to be deduced from a number of smaller consistency checks� This
topic has been investigated in the past� but only in the context of a restricted class of consistency� In particular�
this is the �rst paper to investigate consistency checking strategies for as general an interpretation of consistency
as ours� The main di�erence between our theory and earlier work is that we handle unbalanced consistency�

As a re�ection of our general handling of consistency a spectrum of classes of consistency checking have been
identifed� These range from the very poorly behaved to the very well behaved� These classes are summarised in
the following table�

Class of Consistency Implications

Unbalanced Inter lang� No results
Unbalanced Intra lang� Not WF unif� set No incremental cons� checking
Unbalanced Intra lang� WF unif� set Set of least developed uni�cations
Unbalanced Intra lang� Greatest unifs� Unique incremental cons� checking

Balanced Intra lang� Not WF unif� set No incremental cons� checking
Balanced Intra lang� WF without glb�s Set of least developed uni�cations
Balanced Intra lang� glbs always exist Unique incremental cons� checking
Balanced Intra lang� Cocomplete Completely consistent and

unique incremental cons� checking

In general� the consistency problem is more straightforward and well behaved the further down the table you go�
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Appendix

The appendices of this paper collect together a number of results that we have not had the room to consider in
the main text�

Results for Section �

Proposition ��
Given property 
�

�X � U�dv�� X������dvm� Xm� �
  LU �dv�� X������dvm� Xm�
where
 LU �dv�� X������dvm� Xm� �
���Y� � LU�dv�� X���dv�� X�� � X � U�dv�� X���dv�� X��� �
��Y� � LU�dv� � dv�� Y���dv�� X�� � X � U�dv� � dv�� Y���dv�� X��� �
��Y� � LU�dv� � dv� � dv�� Y���dv�� X�� � X � U�dv� � dv� � dv�� Y���dv�� X��� �

���
���

��Ym�� � LU�dv� � ����� dvm��� Ym����dvm��� Xm��� � X � U�dv� � ����� dvm��� Ym����dvm��� Xm���� �
��Ym�� � LU�dv� � ����� dvm��� Ym����dvm� Xm� � X � U�dv� � ����� dvm��� Ym����dvm� Xm����

Notice that we are not considering  directly� rather we consider the uni�cation strategy  which adds a second
condition on every step of the algorithm� This condition states that X� the original uni�cation� is in the uni�cation
set relevant to that step� Carrying this condition will simplify the induction proof that we perform and clearly
gives us a stronger result than we actually need� We will relate to  as a corollary to this theorem�

Proof
We prove this result using induction on the number of descriptions �and hence development relations� that are
considered� i�e� induction on m above� We will prove two base cases in order to indicate the pattern of the proof�
This pattern is re�ected in the proof of the inductive step�
Base Case �� m���
Notice m � � does not exist �although a trivial formulation could be given�� We wish to prove�

��



�As� �X � U�dv�� X���dv�� X�� �
 ��a� �Y� � LU�dv�� X���dv�� X�� �
�b� X � U�dv�� X���dv�� X���

This is straightforward� Firstly� �b� follows immediately from our assumption� �As�� then �a� is a direct conse�
quence of �b� from �U�ii��
Base Case �� m���
We wish to prove�
�As� �X � U�dv�� X���dv�� X���dv�� X�� �


��a� �Y� � LU�dv�� X���dv�� X�� � �b� X � U�dv�� X���dv�� X�� �
�c� �Y� � LU�dv� � dv�� Y���dv�� X�� � �d� X � U�dv� � dv�� Y���dv�� X���

Firstly� by observing that from corollary �X � U�dv�� X���dv�� X���dv�� X�� implies thatX � U�dv�� X���dv�� X��
we can reproduce the argument of base case � to obtain �a� and �b��

Now from �a� and �b� we can use property � to get �Y �
� � LU�dv�� X���dv�� X�� such that X �dv� � dv�� Y �

�

and since X dv� X� from our assumption� �As�� we have X � U�dv� � dv�� Y
�
���dv�� X�� which gives us �d� and

then we can use �U�ii� to get �Y� � LU�dv� � dv�� Y
�
���dv�� X��� i�e� �c�� This completes the veri�cation of base

case ��

Inductive Step�
We wish to prove that� proposition ��� �
 proposition ���� where�
Proposition ��� states�
�As�i� �X � U�dv�� X������dvn� Xn� �

������ �Y� � LU�dv�� X���dv�� X�� � X � U�dv�� X���dv�� X�� �
����� �Y� � LU�dv� � dv�� Y���dv�� X�� � X � U�dv� � dv�� Y���dv�� X�� �

���

���

���

���n��� �Yn�� � LU�dv� � ���� dvn��� Yn����dvn��� Xn��� � X � U�dv� � ���� dvn��� Yn����dvn��� Xn��� �
���n��� �Yn�� � LU�dv� � ���� dvn��� Yn����dvn� Xn� � X � U�dv� � ���� dvn��� Yn����dvn� Xn��

Proposition ��� states�
�As�ii� �X � U�dv�� X������dvn��� Xn��� �

������ �Y� � LU�dv�� X���dv�� X�� � X � U�dv�� X���dv�� X�� �
����� �Y� � LU�dv� � dv�� Y���dv�� X�� � X � U�dv� � dv�� Y���dv�� X�� �

���

���

���

���n��� �Yn�� � LU�dv� � ���� dvn��� Yn����dvn��� Xn��� � X � U�dv� � ���� dvn��� Yn����dvn��� Xn��� �
���n��� �Yn�� � LU�dv� � ���� dvn��� Yn����dvn� Xn� � X � U�dv� � ���� dvn��� Yn����dvn� Xn� �
���n� �Yn � LU�dv� � ���� dvn� Yn����dvn��� Xn��� � X � U�dv� � ���� dvn� Yn����dvn��� Xn����

So� assume proposition ���� It is clear that the �rst n�� steps of proposition ���� i�e� ������ ������ ���� ���n����
���n���� can be obtained directly from proposition ���� So� we need that proposition ��� and assumption �As�ii�
imply ���n�� We know� �Yn�� � LU�dv�� ����dvn��� Yn����dvn� Xn� and X � U�dv�� ����dvn��� Yn����dvn� Xn�
from ���n���� so we can use property � to get that �Y �

n�� � LU�dv� � ��� � dvn��� Yn����dvn� Xn� such that
X �dv�� ����dvn����dvn Y �

n��� which implies that X � U�dv�� ����dvn� Y �
n����dvn��� Xn��� since X dvn�� Xn��

from �As�ii�� This gives us the second half of ���n� and the �rst half follows directly from �U�ii��

By the principle of mathematical induction� the result follows� �

WellBehavedness Properties arising from Section ���

The following four well behavedness properties �WBC�� WBC�� WBC� and WBC�� all imply property � �see ��	
for proofs�� Thus� if any of them can be shown to hold for a particular uni�cation problem then theorem � will
hold and we will be able to obtain global consistency from binary consistency in the manner highlighted�

��



The �rst such well behavedness property states that �i� development sets are well founded and �ii� if two
development sets are well founded then the intersection of the development sets is also well founded�

De�nition �� �Well Behaved Condition � �WBC���
For an FDT� ft� we say that development is well behaved �condition 
� i� �X � DESft � �dv � DEVft

�i� �D�X� dv�� dv� is WF�
�ii� �D�X� dv�� dv� � �D�X�� dv��� dv�� are WF �
 �D�X� dv� �D�X�� dv��� dv � dv�� is WF�

A stronger formulation of the second of these conditions� �WBC��ii�� that may be easier to prove is�

�Z � DESft� �Z� dv� � �Z�� dv�� are WF �
 �Z � Z�� dv � dv�� is WF�

This condition is stronger since it is de�ned over all subsets of DESft� not just the subsets that are development
sets by dv and dv�� It should also be clear that from associativity of � and �� �WBC��ii� implies�

�D�X�� dv��� dv�� � ����� �D�Xn� dvn�� dvn� are WF �
 �
n

�D�Xi� dvi��
n

�dvi� is WF�

An alternative is the following condition��

De�nition �
 �Well Behaved Condition � �WBC���

Development is well behaved �condition �� in FDT ft i� �dv�� ���� dvn � DEVft �DESft �
n

�dvi� is well founded�

This states that all non�empty subsets of DESft have a maximal element by
n

�dvi� This is clearly a strong
condition as it acts over all subsets of DESft not just those arising from development�

Both WBC� and WBC� in some way impose well behavedness constraints on
n

�dvi� i�e� they require that the
intersection of the development relations being used are well behaved in some sense� This focus on the intersection
of development relations is not ideal� It would be better if we could check a well behavedness property on each
of the development relations individually and not have to consider the interplay of these relations when their
intersection is taken� In this way we would be able to check all the development relations individually for a
particular FDT and know that we can intersect them as we like� An obvious constraint to consider is well

foundedness of constituent development relations� i�e� can we deduce that
n

�dvi is well founded if dvi is well
founded for all � � i � n� Unfortunately� this does not turn out to be straightforward see ��	� The closest general
result we can get is the following�

De�nition �� �Well Behaved Condition � �WBC���
Development is well behaved �condition �� in FDT� ft� i�

�i� �dv � DEVft� dv is well founded�

�ii� �dv� dv� � DEVft� �dv��dv� �

So� we have failed to push well behavedness totally out to checks on individual development relations� i�e� we still
need to relate equivalence in the distinct development relations� However� the following very strong constraint
will succeed in this respect� If development yields a �nite development set then property � follows� In some
circumstances this very strong condition will be su�cient to obtain the result we require�

De�nition �� �Well Behaved Condition 	 �WBC	��
For an FDT� ft� we say development is well behaved �condition �� i�� �X � DESft � �dv � DEVft� D�X� dv�
is �nite�

Well Behavedness Conditions arising from Section �

The following two well behavedness conditions imply property 
� They play a similar role to the conditions
WBC�� WBC�� WBC� and WBC� considered in the previous subsection of this appendix�

The �rst condition that will ensure property 
 corresponds to WBC� of section 
���

De�nition �� �Well Behaved Condition a �WBCa��
For an FDT� ft� development is well behaved �condition a� i� �X � DESft � �dv � DEVft

�




�i� g�D�X� dv�� dv� 
��

�ii� g�D�X� dv�� dv� 
�� � g�D�X� � dv��� dv�� 
�� �D�X� dv��D�X� � dv�� 
� � �
 g�D�X� dv��D�X� � dv��� dv�
dv�� 
��

The following is an alternative condition that corresponds to WBC� of section 
���

De�nition �� �Well Behaved Condition b �WBCb��
For an FDT� ft� development is well behaved �condition b� i� �dv�� ��� dvn � DEVft� �S � DESft� �S 
� � �


g�S�
n

�dvi� 
����

In a similar way to in the previous section we would also like to derive a property that we can check solely on
individual development relations� without having to consider the interplay of these relations on intersection� The
following proposition demonstrates that this cannot be easily obtained�

Proposition ��
�S � DESft s�t� S 
� ��

�i� g�S� dv� 
�� and g�S� dv�� 
��


�


�ii� g�S� dv � dv�� 
���

Proof
By counterexample� So� assume �i�� i�e� �S � DESft s�t� S 
� �� g�S� dv� 
�� and g�S� dv�� 
��� Consider
the set S� � DESft with two elements� i�e� S

� � fX�� X�g and assume that X� dv X�� X� dv� X� and the
identities hold �i�e� X� dv X�� X� dv� X�� X� dv X� and X� dv� X�� and no other relations hold between X�

and X�� This gives us X� � g�S�� dv� and X� � g�S�� dv��� So� our assumption of �i� is not invalidated� but�
dv � dv� � f�X�� X��� �X�� X��g� so both X� and X� are maximal elements by dv � dv� and neither are greatest
elements� Thus� g�S�� dv � dv�� ��� and S� is the required counterexample� �

So� in the same way as we struggled to push well foundedness solely into development we are struggling to push
the existence of greatest elements solely into the constituent development relations� The following shows that the
strong condition that we �nally used to do this in the previous section does not work here�

Proposition ��
S is �nite and non	empty 
�
 g�S� dv� 
���

Proof
Consider the set S� used as the counterexample in the last propositon� ��� S� is �nite but has no greatest element�
�

So� enforcing �niteness of development sets cannot guarantee the existence of greatest elements in uni�cation
sets� We are left then with a smaller set of well behavedness properties for this section�

��


