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Abstract

Resolution K�transformations are faithful transformations between clause sets
 The
aim is to remove clauses like symmetry or transitivity from a clause set in order to
eliminate or reduce recursivity and circularity in this clause set
 It is shown that
for any set of such clauses� a resolution K�transformation is likely to exist and can
be found automatically
 Clause K�transformations may be applied to reduce the
search space of theorem provers� to eliminate loops in logic programs� to parallelise
closure computation algorithms and to support automated complexity analysis
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Chapter �

Introduction

When we develop and investigate logical systems� there are two closely related
aspects
 One aspect is to make statements about the system
 The other aspect is
to understand a new logical system in terms of another familiar system


Thus we have two logical systems L� and L� and a transformation � � L� � L�

We would like to be able to solve a problem in L� by transforming it to L�� �nding
the solution there� and then transforming this solution back to L�


We can divide this requirement into two parts� On the one hand� there is sound�
ness
 If we use � to transform a problem in L� into a problem in L�� �nd the
solution there and then transform the solution back to L�� it must be guaranteed
that this is indeed a solution for the original problem


On the other hand� there is completeness
 Completeness means that for every
problem in L�� we can �nd a solution by transforming the problem to L� and �nding
the solution there


Let us be a bit more speci�c and assume that the problems we want to solve are
theorem proving problems
 Then the above requirements translate into�

L� � Assumption � Conclusion

i� ���

L� � ��Assumption� � ��Conclusion�

Why should we want to transform a problem in a logical system L� into a
problem in L�� Well� the transformation should simplify the solution of the problem
in some sense
 A simpli�cation would be that properties that have to be formulated
explicitly in L� hold �automatically� in L�
 Thus our aim is to eliminate properties
� of L� where ���� is a tautology or in some other sense redundant in L�


Various transformations of this kind have been introduced in ���
 We want
to focus here on transformations of clause sets into clause sets
 Thus the logical
systems L� and L� are not really di�erent


The aim of this transformation is to get rid of self�resolving clauses
 A self�
resolving clause is one that can be resolved with a variable renamed copy of itself

If such a clause is part of a clause set that is to be refuted by an automated theorem
prover� or if it is part of a logic program� it is usually a major source of problems

In both cases the clause may be resolved with itself over and over again� with no
end


The basic idea is to turn this in�nite sequence of resolutions into a �nite one

We would like to add a �nite number of resolvents of the self�resolving clause� and
remove it afterwards
 The newly added clauses should not be self�resolving
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Of course the clause set should not lose any of its �meaning� by this transfor�
mation
 So actually we must �nd criteria which resolvents of a self�resolving clause
are needed� and which are not


We shall see how such a transformation works in general
 Of course the transfor�
mation depends on the clause we attempt to eliminate from the clause set
 We shall
speak of a transformation for a clause C if C is the clause we want to eliminate

The main focus of this paper is how a transformation for a clause can be found
automatically


��� Applications

There are at least four areas where interesting results can be obtained through the
study of self�resolving clauses�

� Automated theorem proving
 The search behaviour of a resolution�based the�
orem prover can be modi�ed by transforming the clause set that is to be
refuted


� Parallelising of closure computation algorithms


� Eliminating loops in logic programs
 This may be done by replacing a self�
resolving program clause with non�self�resolving clauses


� Automated complexity analysis


We shall not investigate here how the elimination of self�resolving clauses can
be exploited for automated complexity analysis
 This is explained in ��� and ���


For the other three areas� I shall now give some examples


����� Transitivity

The transitivity clause is a simple self resolving clause� and it will accompany us
throughout this paper
 It is de�ned as

C �� �P �x� y� � �P �y� z� � P �x� z��

Transitivity triggers in�nitely many resolutions
 Consider the clause P �a� b�� for
instance
 Resolving on the �rst literal of C� we can generate the following in�nite
sequence of resolvents�

�P �b� z� � P �a� z��
�P �b� z� � P �z� z�� � P �a� z���
�P �b� z� � P �z� z�� � P �z�� z��� � P �a� z���
� � �

Brand has shown for the transitivity of the equality predicate that only the �rst
of these resolvents is needed ���
 Actually this has nothing to do with a particular
property of equality� but is true for any transitive relation
 For any clause of the
form P �s� t�� where P is a transitive relation� it is su�cient to add the resolvent
between P �s� t� and C on the �rst literal�


Let us look at a small example
 Suppose we have a clause set that contains the
transitivity clause and

�Alternatively� we might have chosen the second literal of C� However� we must do this consis�
tently� Either we always take the �rst literal� or always the second�

�



C� � P �a� b� C� � P �b� c�
C� � P �c� d� C� � �P �a� d�

This clause set is unsatis�able
 Now for each clause we add a single resolvent
with the �rst literal of C
 We get

R� � �P �b� z� � P �a� z�
R� � �P �c� z� � P �b� z�
R� � �P �d� z� � P �c� z�

The clauses C�� C�� R�� and R� are su�cient to derive the empty clause
 The
transitivity clause is not needed anymore


This is not a coincidence
 For the transitivity clause� it is su�cient to add
resolvents as shown in the example
 Afterwards� the transitivity clause can be
removed


We can say that the newly added clauses do not express transitivity in general�
but rather express transitivity for this particular basic relation


We shall look at this clause set more closely in Example ��


For other clauses than transitivity� this is generally not so simple
 Nevertheless�
for many self�resolving clauses it is possible to add a limited number of resolvents
and remove the clause afterwards


We shall see how such a transformation can be characterised in general� and how
we can �nd a transformation automatically


Note that all the original clauses except for the one expressing transitivity must
remain in the clause set
 Intuitively� this can be explained as follows� Each clause in
a clause set expresses a certain property of a relation
 By removing transitivity� we
make the clause set weaker
 Something that was expressed before is not expressed
anymore
 To make up for this loss of meaning� all the other clauses must gain
meaning
 But for this the least thing we must expect is that the original meaning
of a clause D is not lost
 That is� ��D� must imply D� and since ��D� is a clause
set� this means that ��D� must contain D


����� A �Process View� of the Transformation

A clause like the transitivity clause can serve as a nucleus for a hyperresolution step

Hyperresolution with the transitivity clause takes two other clauses� the electrons�
as input partners and generates the hyperresolvent as output
 To continue the
previous example� the transitivity clause takes R�a� b� and R�b� c� as input and
produces R�a� c� as output


If we apply hyperresolution repeatedly� we successively compute the transitive
closure of a basic relation
 Actually we can identify the transitivity clause with a
process that computes the transitive closure of a relation
 From this point of view�
the transitivity clause is the active part� and the other clauses are the data


When we transformed the clause set of the previous example� we added three
clauses R�� R�� R�
 These clauses can also serve as nuclei for a hyperresolution
step
 For example� R� may take P �b� c� as input and produce P �a� c� as output

Taking R�� R�� and R� together� the transitive closure can be computed without
using the original transitivity clause


So we might say that we have replaced the �transitivity��process by three pro�
cesses R�� R�� and R�
 One aspect of this is that we have turned the passive
data contained in C�� C�� and C�� into active processes
 These processes are more
�specialised�� since they contain information about the data part
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The other aspect is parallelism
 The three processes can work in parallel� so we
have parallelised the closure computation process for the basic relation given by C��
C�� and C�


����� Loops in Logic Programs

Consider the Prolog program

married�heinz� hilde��
married�X� Y� � �married�Y� X��

For successful queries� say married�hilde�heinz�� this program works �ne

But the query married�heinz�gerda� will cause the Prolog system to run into an
in�nite loop� since the second clause can be used �which means� resolved upon� over
and over again


The solution to this problem is exactly the same as for the transitivity exam�
ple
 The self�resolving clause  married�X�Y� �� married�Y�X��! is removed� and
resolvents with all the fact clauses �in this case there is only one� are added instead


For the little program shown above we have

married�heinz� hilde��
married�hilde� heinz��

The transformed program can not run into an in�nite loop anymore


��� Finding Transformations

So far we have not given any proof that the transformations for transitivity and
symmetry shown above are sound and complete
 We have not even formulated
precisely how a transformation is de�ned� and what we mean by soundness and
completeness
 Nevertheless� the transformed Prolog program and the example of
the transitive closure computation lead us to believe that the transformations are
complete�
 Why is that so� Essentially it is because we reason about the semantics
of a clause
 We are so familiar with a property like transitivity that we can easily
tell that the newly added clauses are indeed su�cient to compute the transitive
closure of a relation


Of course this intuition is not enough
 We shall have to turn our concept of
transformation into a precise de�nition� and we shall have to prove that a trans�
formation for a clause is sound and complete
 More generally� we shall have to
�nd criteria so we can tell whether a function that might be a sound and complete
transformation for a clause really is a sound and complete transformation for that
clause
 All this is shown in ���
 We shall repeat the results� but not give the proofs


But then how do we �nd a function that might be a transformation for a clause�
a candidate� so to speak� Of course� this candidate should not be just any function�
but one that has a good chance to meet our criteria


Here again� semantic considerations and some good intuition may help
 In ���
and ���� several transformations have been found this way
 That is� a candidate is
constructed using an informal argument� but then the criteria are tested formally


From this point of view� �nding a transformation and understanding why it
works is essentially the same thing
 Taking transitivity� for example� the process
of �nding a transformation for this clause is guided by the idea that after the
transformation has been done� it should still be possible to compute the transitive
closure


�Soundness is trivial in these examples�

�




If we want to �nd a transformation for a clause automatically� this does no longer
work
 Unless we can describe our semantic considerations in an algorithmic way�
we must abstract from the semantics of a particular clause
 For an arbitrary clause
we must enumerate candidates systematically� and then check whether a candidate
is a transformation or not


Finding transformations automatically is the main focus of this paper
 We shall
see that for clauses like the transitivity clause or the symmetry clause there is a
�nite set of candidates that is likely to contain a function which indeed is a sound
and complete transformation for this clause
 I have implemented this search� and we
shall see several examples of transformations that have been found automatically


For prominent clauses like the ones mentioned above� this is not so impressive
because transformations for them have already been found by semantic considera�
tions
 However� we shall see the example of euclideanness where the transformation
found automatically is simpler than the transformation found by a semantic con�
sideration in ���


It is also possible to eliminate several clauses at the same time
 We shall treat
this point� too� but throughout most of this paper� we will assume that we want to
eliminate just one clause
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Chapter �

Clause K�Transformations

��� Notions and Notation

We now introduce some basic notions and naming conventions


If S is a �nite set� we denote the cardinality of S by �S or jS j
 If S is in�nite�
we write �S � �


The letters from the end of the alphabet usually denote variables
 The letters
from the beginning of the alphabet denote constants
 f� g� h denote functions� s and
t arbitrary terms
 P and R denote predicate symbols


If P is a n�ary predicate symbol and t��t��� � � �tn are arbitrary terms� then
P �t�� t�� � � � � tn� is an atom 


If A is an atom� A and �A are literals
 A is a positive literal and �A is a negative
literal
 Thus we do not say that an atom A is negative because it occurs in a formula
with a ��sign
 We are strict about this and say that �A is a negative literal


A clause is a disjunction of literals
 If �A���A�� � � ��An are the negative literals
and B�� B�� � � � Bm are the positive literals of a clause� there are three ways of writing
this clause�

As disjunction� �A� � �A� � � � � �An � B� � B� � � � � Bm

As implication� A� 	A� � � � 	 An � B� � B� � � � � Bm

As set� f�A���A�� � � ��An� B�� B�� � � � Bmg

We assume that the variables of a clause are universally quanti�ed
 Thus a clause
�as disjunction� is a closed formula
 Therefore it is clear that two occurrences of
the same variable in di�erent clauses have nothing to do with each other


However� when we come to resolution� it is better to enforce this condition in
a technical way
 This means that we imagine clauses to be available in in�nitely
many variable renamed copies
 Each time a clause is �used� �we shall see later what
�using clauses� means� for something� a new copy is taken


A unit clause or unary clause is a clause that contains only one literal
 We shall
usually blur the distinction between a unary clause and the literal that is contained
by this clause


If A is an atom� we say that A is the complement of �A� and �A is the comple�
ment of A
 For a literal L we write "L for its complement


A substitution � is an endomorphism on the free term algebra replacing a �nite
number of variables
 We write substitutions as sets fx� 
� t�� � � � � xn 
� tng
 A vari�
able renaming is a substitution fx� 
� y�� x� 
� y�� � � � � xn 
� yng� where
yi �� yj for i �� j and yi �� xj for all i� j � f�� �� � � � ng


��



We write s � instead of ��s� for the application of a substitution � to a term s

� � denotes the composition of the substitutions � and � 


A substitution � is called a uni�er of two terms or atoms s and t if s � � t �
 A
substitution � is called more general than � if there is a substitution �� such that
� � � ��


A most general uni�er for two terms s and t is a uni�er � such that all other
uni�ers � can be composed of � and some other substitution
 This means

s � � t � and
s � � t � implies � � � �� for some ���

���

The most general uni�er of two terms is unique up to variable renaming
 We
write mgu�s� t� for the most general uni�er of s and t


Two terms are uni�able if they have a uni�er
 We call two literals complementary
uni�able if they have di�erent signs and their atoms are uni�able


A substitution � is a matcher of s on t if s � � t


Two terms s and t are called variants if they have no variables in common and
there is a variable renaming 	 such that s 	 � t
 We say that s and t are �equal up
to variable renaming�


We say s � is an instance of s
 If s � does not contain variables� we call s � a
ground instance of s


A clause C subsumes a clause D if there is a substitution � such that C � 
 D

This means that C is an instance of a subclause of D
 In this case C implies D
 If
C � is a proper subset of D� we say that C subsumes D properly


The standard inference rule for many theorem provers is resolution�����
 Let
C� � L� � L� � � � � � Ln and C� � K� �K� � � � � �Km be two clauses where L� and
K� are complementary uni�able with mgu �
 Then the resolution rule is de�ned as
follows�

L� � L� � � � � � Ln

K� �K� � � � � �Km

��L� � � � � � Ln �K� � � � � �Km�
���

This is to be understood in the sense that the clause below the line can be
inferred from the two clauses above the line
 Of course this rule re#ects that the
clause below the line is a logical consequence of the two clauses above the line


L� and K� are the resolution literals
 We say that we resolve C� and C� on the
resolution literals
 We write

Res�C�� C�� � ��L� � � � � � Ln �K� � � � � �Km�� ���

and call Res�C�� C�� a resolvent of C� and C�


In order for this notation to be unambiguous we must say that resolution is
done on the �rst literal of C�� C�� respectively
 Often we will not worry about this
because we make statements that hold for every resolvent of two clauses$

We will sometimes say �C� is the resolution partner of C�� �and vice versa�


��� Self Resolution

Self resolution means resolution between two variable renamed copies of a clause

Let us consider the transitivity clause� for example
 The transitivity clause is de�ned
as �P �x� y� � �P �y� z� � P �x� z�
 Self resolution on this clause yields

��



�P �x� y� � �P �y� z� � P �x� z�

�P �x�� y�� � �P �y�� z�� � P �x�� z��
�P �x� y� � �P �y� z� � �P �z� z�� � P �x� z��

���

The resolvent obtained in a self resolution step is called self resolvent
 Coinci�
dentally the transitivity clause has only one self resolvent� up to literal ordering


The process of self resolution can be repeated
 We give a formal de�nition


De�nition ����� The de�nition is an inductive one
 Let C be a clause
 As usual
assume that clauses are variable renamed before resolution is performed


�
 C is a self resolvent of C


�
 If R and Q are self resolvents of C� then Res�R�Q� is a self resolvent of C


�

For certain clauses� �nding a transformation requires computing self resolvents

If we want to �nd a transformation automatically� we must generate the self resol�
vents automatically� of course


The de�nition says that resolution between arbitrary self resolvents results in
another self resolvent
 However it is not necessary to resolve arbitrary self resolvents
with each other
 All self resolvents can be obtained in resolution steps where one
of the resolution partners is the original clause
 This facilitates the computation


To express this point precisely we need a de�nition


De�nition ����� Let C be a clause
 We de�ne a function j�j on the self resolvents
of C that we call �level��

�
 jCj � 



�
 jRes�R�Q�j � jRj% jQj% �


�

The following corollary will show that it is su�cient to consider only resolvents
where one resolution partner is the original clause


Corollary ����� Let C be a clause and R� Q be self resolvents of C
 Then there
is a self resolvent P such that

Res�R�Q� � Res�P�C� ���

Proof�
The proof uses induction on jRes�R�Q�j


�
 jRes�R�Q�j � �

This case is trivial& just take P � R


�
 jRes�R�Q�j � m 
 �

jQj is smaller than m� therefore by induction hypothesis Q can be obtained by
resolution between some self resolvent Q� and C� that is
Q � Res�Q�� C�


We write Q� � Q� �Q� �Qrest� C � C� � Crest and R � R� �Rrest

This means� we split the literals upon which we resolve from the rest of the
respective clauses
 This can easily be seen in Fig
��� which illustrates the last

��
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Figure �
�� Original order
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�
�

��

Q� Qrest

Q�

HHHHHHH

Rrest Qrest C�

�
�

��

Crest

Rrest Qrest Crest

Figure �
�� Interchanged order

two resolution steps that are performed to get Res�R�Q�
 Each node in this
tree represents a clause
 The arcs indicate which clauses are resolved with each
other
 We want to show that we can �rst resolve between R and Q� before
resolving with C� that is� interchange the order of the last two resolutions


Essentially we must argue that uni�ability is not a�ected when the order of
the resolutions is interchanged
 In order to ensure that every resolution is done
with a fresh copy of a clause� let us assume that the function mgu introduces
fresh variables


Let us de�ne � �� mgu�Q�� C�� and � �� mgu�R�� Q� ��
 R� shares no vari�
ables with Q� or C�
 Therefore R� � � R� and R� � � � Q� � � 
 Thus � � is
a uni�er of R� and Q�� but it cannot be more general than mgu�R�� Q��


Furthermore Q� � � � C� � � 
 But then Q� mgu�R�� Q�� and
C� mgu�R�� Q�� must be uni�able


So we can �rst resolve between R and Q�� The substitution done in Q� will
not a�ect uni�ability with C�
 Res�R�Q�� is the clause P we are looking
for
 In the following equation� substitutions are neglected for readability

Fig
�� illustrates the resolution process when the last two resolutions are
interchanged


Res�R�Q� � Res�R�Res�Q�� C��

� Res�R� �Rrest�Res�Q� �Q� �Qrest� C� � Crest��

� Res�R� �Rrest� Q� �Qrest � Crest��

� Rrest �Qrest � Crest
� Res�Rrest �Q� �Qrest� C� � Crest�

� Res�Res�R� � Rrest� Q� �Q� �Qrest�� C� � Crest�

� Res�Res�R�Q��� C�

� Res�P�C� ���

So we have shown that Res�R�Q� can be obtained by resolution between an
appropriate self resolvent of C and C itself
 In other words� Res is associative


�

The previous corollary says� If we want to compute the self resolvents of level
n� it is su�cient to take all self resolvents of level n� � and resolve them with the
original clause


�Q� on the second literal� however�

��



��� General Clause K�Transformations

We shall now de�ne what a clause K�transformation is and see how it works
 We
start with an abstract de�nition
 This de�nition captures the essential properties of
clause K�transformations without describing how a clause K�transformation could
be constructed


However we have a much more concrete class of transformations in mind
 So
in Section �� we shall look extensively at an example that will show how a clause
transformation works
 This example is for illustration� and we cannot be very formal
at this point


The following section takes us back on the formal trail
 We shall become speci�c
about the abstract de�nition given in the �rst section
 Namely� we shall introduce
the resolution K�transformations


A clause K�transformation has to meet certain conditions
 Making our de�nition
speci�c means that we shall de�ne a class of transformations that meets most of
these conditions by construction


We want to remove a clause C from a clause set '
 The other clauses in ' must
be transformed such that satis�ability of ' is preserved
 The de�nition of resolution
K�transformations says that an arbitrary clause D is transformed by generating
resolvents between D and clauses of a clause set S�
 This set S� depends on C� of
course
 S� speci�es the transformation � in a constructive way


However� S� has to meet one non�trivial condition
 This is the so�called test
substitution set condition
 The veri�cation of this condition involves theorem prov�
ing and thus is indeed non�trivial
 Thus �nding a clause set S� that meets this
condition is the di�cult part


Working with resolution K�transformations we shall be able to concentrate on
this non�trivial condition
 The other conditions hold automatically


It is not known to me that there is a class of clause K�transformations that is
really di�erent from resolution K�transformations
 Thus from our point of view
the di�erence between the general de�nition of clause K�transformations and the
de�nition of resolution K�transformations is a di�erence concerning the level of
abstraction


It is conceivable� however� that one could �nd a class of clause K�transformations
that is not identical with the resolution K�transformations


So we have a clause set ' containing a certain clause C we would like to elim�
inate
 To this end we must transform the other clauses of the clause set
 The
transformation � should be sound and complete
 This means

' is satis�able i� ��' n C� is satis�able ���

At this point recall the following intuition� Removing C makes the clause set
weaker
 On the other hand� each transformed clause must be stronger than the
original clause
 When a clause D is transformed� D remains in the clause set� and
possibly� further clauses are added
 Thus ��D� contains D� which means that ��D�
implies D


The Eliminated Clause Must Become Redundant

An operational view will help us to get a �rst intuition for the properties a trans�
formation must have


Let us consider a very simple clause A � B that is an element of some clause
set '
 A and B may contain variables� so that there may be many di�erent instan�
tiations of A and B
 We can imagine this clause as an assertion� a simple statement
of the fact that �A implies B�


��



On the other hand� we can look at this clause as a procedure� or an operation

When the procedure �nds an instance of A� it will generate an instance of B
 This
makes sense when we think of resolution based theorem proving
 A� B combined
with the resolution technique forms a procedure
 Whenever A occurs� it may be
resolved with A � B to give B as output
 This is the original setting� without
transformation involved


Now let us look at the transformed clause set
 In the transformed clause set�
A� B should no longer be needed
 Neither should ��A� B� be needed� because
we want to eliminate A� B and not transform it
 The �rst point is that we would
still like to be able to derive B� provided that A is given
 In the transformed clause
set� we can make use of stronger preconditions than in the original set in order to
derive B
 To be precise� we can use ��A� instead of A
 Thus it would be sensible
to require that ��A� � B is a tautology
 Then B could be derived and everything
would be �ne


A closer look shows that this is not su�cient
 If we said that in the transformed
clause set� we can make use of stronger preconditions� then we must also make sure
that these stronger preconditions are maintained for further inferences$ Let us go
back to the original setting� An instance of B� say B�� is derived from an instance
of A� say A�
 B� however may be used for further inferences
 In particular� B� itself
could be an another instance of A� say A��
 A�� is used by the clause A � B to
derive another instance of B� say B��


All this must be simulated in the transformed setting
 If all we have is that
��A� � B is a tautology� we can derive B�
 But B� �� A��� is not strong enough to
derive B��
 We need ��A� � ��B� to be a tautology
 Then it is possible to derive
��B�� �� ��A����� and from this we can derive ��B���
 This implies that we derived
B��� because ��B��� contains B��


This is illustrated by the following picture�

Without Transformation�
A� ��A� B�

B� �� A��� ��A� B�
B��

With Transformation�
��A�� �taut

��B�� �� ��A���� �taut
��B���

In ��� a de�nition of clause K�transformations is given capturing precisely the
above condition


The de�nition is more general than what we have considered until now
 Rather
than removing one clause C� we might also remove several clauses at the same time

That is� we remove a clause set C
 The following de�nition is only slightly more
complicated than it would be if we restricted ourselves to removing only one clause


Throughout most of this paper� we shall only consider clause K�transformations
for one clause
 In this case C is a singleton


De�nition ����� A function � mapping clauses to �possibly in�nite� clause sets
is called a K�transformation for a clause set C i�

�
 D � ��D� for all clauses D


�
 C 	D � ��D� is a tautology for all clauses D


�
 ��D� � D�� � ��D�� � ��D�� is a tautology for all ground clauses D� and
D�


��



D�
�

g

Dg
�� ��Dg� � D�

gg

�

�

D �
���D� � D�

Figure �
�� A lifting property for transformations

�
 Let D be a clause and Dg be a ground instance of D
 If D� is a ground
instance of a clause in ��Dg�� it is also a ground instance of a clause in ��D�


�
 For all clauses C � A� 	 A� � � � 	An � B� �B� � � � �Bm in C and all ground
instances C� of C�

����A��� 	 � � � 	 ����An�� � ����B��� � � � � � ����Bm��

is a tautology


����� � �� means the variables introduced by � are universally quanti�ed


For a clause set ' let ��'� �� �D����D�

�

The above de�nition is not constructive
 It states precisely the properties of
clause K�transformations that are necessary to prove their soundness and com�
pleteness
 Let us have a brief look at each of the conditions


The �rst condition states that the original clause D is still necessary in the
transformed clause set because it may be used in inferences with other clauses than
the ones in C


Condition � guarantees soundness of the transformation
 The transformed
clauses must be implied by the original clauses


Condition � relates transformations of single literals or parts of a clause with
transformations of the whole clause
 ��D�� ���D�� denotes the set of all disjunc�
tions that can be formed taking one clause from ��D�� and one clause from ��D���
that is fE� � E�jEi � ��Di�g
 The condition suggests that once we know how to
transform literals� we know how to transform entire clauses
 On the ground level
this is indeed the case
 A ground clause is transformed by forming the disjunc�
tion of all transformed literals
 For non�ground clauses� we must be careful because
transforming one literal may a�ect the instantiation of the variables in other literals


Condition � states a certain homomorphism between instantiation and trans�
formation� or in other words� a lifting property
 It is illustrated in Fig
 ��
 The
horizontal arrows mean the transformation �� the vertical arrows stand for some
ground substitutions
 You can see in the graph that there are two paths leading
from D to D�
 The order of making a clause ground and transforming it may be
interchanged in a certain sense


Finally Condition � is the interesting one
 It is the precise formulation of our
intuitive argument that ��A� � ��B� must be a tautology


��



Theorem ����� �Soundness and Completeness of �� Let ' is a clause set and
C 
 '
 Suppose � is a clause K�transformation for C
 Then ' is satis�able if and
only if ��' n C� is satis�able


This theorem is proven in ���
 Soundness is easy
 It follows directly from the
second point of Def
 ��


The completeness proof is very long and complicated
 The basic idea is to
transform refutation graphs
 If the original clause set ' is unsatis�able� then the
empty clause can be derived from '


A refutation graph is a more abstract way to represent such a derivation
 Each
clause used in the derivation is represented by a node in the graph
 Two literals
are connected by an edge if they are resolved with each other in the derivation

Intuitively� if each literal is connected with another literal� this means that all
literals are resolved away
 Thus such a graph represents a derivation of the empty
clause


Now the completeness proof assumes that there is a refutation graph for the
original clause set '
 This graph is transformed by replacing each occurrence of
a clause C � C �and some of the neighbours of C� by an appropriate clause in
��' n C�


The new graph represents a derivation of the empty clause for the transformed
clause set ��' n C�


��� An Example

Unfortunately we are not ready yet to introduce the transformations that we will
eventually use� namely� the resolution K�transformations
 We still need some for�
malism to give a precise de�nition
 In order not to lose track of where we are
heading� we shall give an example
 Some of the concepts remain vague at this
point� however


If C is the clause to be removed� a clause D is transformed by adding resolvents
between C and D
 We will see that this can be understood as adding clauses that
resemble C� but are more speci�c
 Rather than having the general version of C� we
have clauses that express everything about C that may ever be relevant for D
 So
much for intuition


C itself may not be su�cient� however
 In general� a transformation � is char�
acterised by a set of clauses
 We will call this set S�
 In order to transform a clause
D� we have to add resolvents between D and all the clauses in S�
 This set may
contain C itself as well as self resolvents of C and clauses that are subsumed by C

Finding such a set S� is non�trivial in general� but we will start with an example
where it is trivial
 Namely� S� contains C only


The conditions ��� of Def
 �� are ful�lled by such a transformation
 The di�cult
part is to �nd a set S� such that Condition � is ful�lled


Example ��	�� Consider C � R�x� y� 	 R�y� z� � R�x� z�� i
e
 the transitivity
clause for the binary relation R
 In this case the transformation is characterised by
C itself� i
e
 S� � fCg
 We choose one negative literal of C that we call the selected
literal
 Transformation is done by resolution on this literal
 Let us simply choose
the �rst literal of C


If we transform a unary clause R�s� t�� we get this clause and the resolvent
between this clause and C


��R�s� t�� � fR�s� t�� R�t� z� � R�s� z�g

You see that for unit clauses� this transformation is very simple
 Recall that z
is implicitly universally quanti�ed


��
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� b��
��

� c��
��

� d��
��s s

Figure �
�� A simple basic relation and its transitive closure

Let us apply � to a concrete clause set ( consisting of unit clauses in order to
get a feeling of how the transformation works and why it is sound and complete�
and� last not least� why it may have a positive e�ect on the e�ciency of theorem
proving
 Let

( � fR�a� b�� R�b� c�� R�c� d�g�

Have a look at Fig
��
 The solid lines depict the basic relation
 The dotted lines
depict the transitive closure� i
e
 the unit clauses that can be inferred by resolution
with the transitivity clause C


Now we transform (


��(� � fR�a� b���z�R�b� z� � R�a� z�

R�b� c���z�R�c� z� � R�b� z�

R�c� d���z�R�d� z� � R�c� z�g

It can easily be seen that from ��(�� we can prove the ground unary clauses
R�a� c�� R�b� d�� and R�a� d�� which is no more and no less than what can be proven
from the original set ( � fCg


Recall that the newly added clauses can be regarded as processes
 For example
R�b� z� � R�a� z� generates R�a� c� when it is given the input R�b� c�


Replacing the �process� transitivity by three little �processes� has two main
aspects


One aspect is parallelism
 If we imagine that in automated theorem proving one
clause may be not used in several inferences at the same time� then our transformed
clause set has an advantage compared to the original set
 Each newly added clause
can be involved in one inference� so we can conduct several inferences at the same
time
 As far as my work is concerned� the aspect of parallelism remains on the con�
ceptual level
 I propose a technique to transform clause sets in order to preprocess
them for automated theorem proving
 The theorem prover itself is not our concern
here� but if a theorem prover indeed works in the described way� transforming may
have a positive e�ect on e�ciency


The other aspect is removing redundancies
 Using resolution as an inference
rule� we can derive new clauses from a clause set as follows� For a clause set '� all
possible resolutions between two clauses in ' are performed
 The new clauses are
added to '
 Then this process is repeated
 When no more resolutions are possible�
we are �nished�


Suppose we want to compute the closure of ( � fCg without using a resolution
K�transformation
 We write (i for the clause set in the i�th iteration


�In general we may not expect termination� since predicate logic is not decidable�

�




(� � fR�a� b�� R�b� c�� R�c� d�� R�x� y� 	R�y� z� � R�x� z�g

(� � (� �

fR�b� z� � R�a� z�� R�x� a� � R�x� b��

R�c� z� � R�b� z�� R�x� b� � R�x� c��

R�d� z� � R�c� z�� R�x� c� � R�x� d�g

(� � (� �

fR�a� c�� R�b� d��

R�b� a� � R�a� b�� R�b� b� � R�a� c�� R�c� a� � R�b� b�� � � �g

(� � (� � fR�a� d�� � � �g

(� � � � �

The clauses in (� can be resolved in �� ways$ Often two resolutions will have
the same result
 Furthermore� many of the clauses will never be used again
 Take
R�b� b� � R�a� c�� for example
 Looking at Fig
�� we can easily tell that we will
never infer R�b� b�


So (� contains a lot of useless clauses� but it does not contain R�a� d�
 We need
a further resolution step to obtain the complete transitive closure
 And even now�
how do we know that we are �nished�

Now in contrast suppose we had transformed ( �rst
 Let us write (� for ��(�


(�
� � fR�a� b�� R�b� c�� R�c� d��

R�b� z� � R�a� z�� R�c� z� � R�b� z�� R�d� z� � R�c� z�g

(�
� � (�

� � fR�a� c�� R�b� d�� R�c� z� � R�a� z�� R�d� z� � R�b� z�g

(�
� � (�

� � fR�a� d�� R�d� z� � R�a� z�g

This is an exhaustive list of all the clauses that can be derived from (� by
resolution
 Much fewer clauses are generated in order to compute the transitive
closure� than if we consider (
 From (� in�nitely many clauses can be derived� and
looking at (�� it is hard to see that we have already computed the transitive closure
and may stop
 We could just as well continue generating useless clauses forever

From (�

�� in contrast� no further clauses can be inferred

The trick is to resolve the transitivity clause itself only on the �rst literal
 There

are no direct resolutions with the transitivity clause on the second literal
 Resolution
on the second literal of the transitivity clause is done indirectly� that is� in later
resolution steps


But it is not trivial that we may do this� i
e
 that completeness is guaranteed

We will see clauses other than transitivity where it is not su�cient to resolve on
the �rst literal of the clause itself


It is Condition � of Def
 �� that has to be checked to make sure that such a
transformation is complete
 This is proven in ���
 We shall check the condition
for the transitivity clause
 Take P �a� b� 	 P �b� c� � P �a� c� as a ground instance
of C


����R�a� b�� 	 ����R�b� c�� � ����R�a� c��

is
�However it would not be fair to say that �� is better than � because we need only two iterations

instead of three to compute the transitive closure� After all� we had to do the transformation �rst�
which can be counted as an iteration� too� The advantage lies in the breadth of the search rather
than in the depth�

��



�R�a� b� 	 �R�b� z� � R�a� z��
	R�b� c� 	 �R�c� z� � R�b� z���

� R�a� c� 	 �R�c� z� � R�a� z��

which is in fact a tautology

This was one ground instance� but the transformation works for other ground

instances just as well
 The reason is that when we unify any ground literal R�s� t�
with R�x� y� �the selected literal�� only x and y are instantiated
 The structure of
s and t is irrelevant for the transformation
 Therefore Condition � holds for all
ground instances


P �a� b� 	 P �b� c� � P �a� c� is a prototypical ground instance of C
 It has all the
properties relevant for the transformation itself and for the veri�cation of soundness
and completeness


In other examples� the set of prototypical instances is not so simple

We have seen how a resolution K�transformation is applied to unary clauses


We have also seen that to verify that a resolution K�transformation is complete� it
must be applied to �prototypical� unary clauses
 To round o� the example� let us
see how the transformation is applied to a clause of more than one literal


Condition � of Def
 �� suggests how this must be done
 We have seen there
that we have to be careful about the instantiation of variables when transforming
non�ground clauses
 In the case of transitivity� we do not have this problem because
the variables of the transformed clause are not instantiated


Take R�s� t� �R�q� r�� for example


��R�s� t� � R�q� r�� � ��R�s� t�� ���R�q� r��

� fR�s� t�� R�t� z� � R�s� z�g �

fR�q� r�� R�r� z�� � R�q� z��g

� fR�s� t� � R�q� r��

R�r� z�� � R�q� z�� � R�s� t��

R�t� z� � R�s� z� � R�q� r��

R�t� z� 	R�r� z�� � R�s� z� � R�q� z��g

Note that we used a variable renamed copy of C to transform R�q� r�

We now leave our example and continue introducing formal concepts that will

eventually allow us to generalise what we have seen here for the transitivity clause


�

��� Resolution K�Transformations

We have de�ned clause K�transformations by postulating certain properties
�Def
 ���
 The problem with this de�nition is that it is not constructive
 We shall
not solve this problem in the most general way
 This means� there is no algorithm
�known to me� that will� given an arbitrary clause� construct a transformation that
meets the conditions of Def
 ��
 But we shall�

�
 present a de�nition of transformations such that conditions ��� will be met
by construction
 It has been said in Example �� that such a transformation
will be characterised by a clause set S�
 A clause is transformed by resolving
it with the clauses in S�
 Thus all conditions will become trivial except for

��



Condition �
 This condition must be veri�ed individually for each S�
 If the
transformation characterised by S� does meet Condition �� we may call it a
resolution K�transformation


�
 replace the test of Condition � by a more feasible test
 This means testing
Condition � for a limited set of substitutions rather than for all ground substi�
tutions
 This set can be enumerated systematically� and if we look at clauses
without function symbols� it is even �nite�


�
 investigate di�erent ways to �nd candidates for S� such that the transforma�
tions � are likely to meet Condition �


Let us start with point ��
 The de�nition of the limited set of substitutions we
have in mind is not so simple in general� and we must understand this de�nition
before we can understand how it is veri�ed that a clause set S� characterises a
transformation for a clause C


From now on we shall write � for the transformation characterised by S�� even
though we do not know exactly yet how � is constructed from S�


����� Test Substitutions

The set of test substitutions actually depends on S�
 Assume that for each clause
S � S�� there is a literal �LS � S that we call the selected literal
 To make clear
syntactically which literal is the selected literal� we shall always assume that the
selected literal is the �rst literal


Note that the selected literals are negative
 Later we shall do uni�cation� and
for this purpose we need positive literals
 Therefore we take the complements of the
selected literals� and we call these characteristic literals
 Call the set of characteristic
literals L�
 It should be clear that L� is derived from S� in a trivial way


For a literal L and a non�empty set of literals K we de�ne mgu�L�K� as simul�
taneous uni�er of L and all literals in K
 This means L mgu�L�K� � K mgu�L�K�
for all K � K
 If K is empty we de�ne mgu�L�K� as the identity substitution


De�nition ��
�� Let C � A� 	 � � � 	 An � An�� � � � � � Am be a clause and L�
be a set of positive literals


Starting with )� �� f
g� where 
 is the identity substitution� we iteratively
de�ne a set of test substitutions
 For i � �� � � � �m

)i ��
�

��	i��

� � fmgu�Ai ��K� j K 
 L�g ���

where for a substitution � and a set of substitutions *� � � * denotes the set
f� � � j � � *g


Finally we de�ne

) �� )m� ��
�

If � � )� we call C � a test instance

�

The de�nition of the set of test substitutions is a bit complicated� and the set
itself can be very large
 However we shall see that for the clauses we want to
investigate� the test substitutions turn out to be very simple
 Let us state the
following points about test substitutions�

�This also holds for certain clauses containing function symbols� However� the clause must not
generate new terms through resolution� We shall see in Section �� what it means for a clause to
generate new terms�

��



� C must not share variables with any literal in L�$ This does not contradict
Example �� where the transformation was characterised by the clause itself

Recall what was said on page ��� Each time a clause is �used� for something�
a new copy is taken
 In the example we had two variable renamed copies of
C� One is an element of S� and as such characterises the transformation� the
other one is a copy we instantiate in some way or the other in order to test
the transformation with this instance
 Of course this point must be carefully
considered when it comes to implementation


� Furthermore� the variables of the characteristic literals in L� must not share
variables among each other


� If in the course of the iterative construction of a � � )� some Ai is uni�ed
with a literal in L� and later some Aj is uni�ed with the same literal in L��
then a fresh copy of the literal in L� must be taken each time


� The case K � � is important
 By this it is ensured that one of the test
substitutions is the identity substitution
 We will mostly investigate examples
where this is the only relevant test substitution


� When computing the most general uni�er of two terms� it happens frequently
that we are free to choose whether to replace x by y or vice versa
 Depending
on how we do this� we will often end up with several test substitutions that
instantiate C to clauses that are equal up to variable renaming
 There is no
need to consider these substitutions separately
 A good way to think about
it is the following� If in doubt instantiate into L� rather than into C
 If the
substitution you receive does not instantiate any variables in C� you might as
well forget it


� We do not have to worry about how a test substitution instantiates the vari�
ables in L�� because the test substitution is not applied to the literals in L��
it is applied to the clause C
 Therefore we can restrict the scope of a test
substitution to the variables of C


To illustrate these points we shall �rst look at a simple example� our well�
known transitivity clause
 Afterwards we shall look at an example that reveals how
complicated the de�nition is� but that has nothing to do with a transformation
that is investigated in this work
 The reason is that for the transformations we
encountered� the test substitution set was very simple


Example ��
�� Let
C � R�x� y� 	R�y� z� � R�x� z� and
L� � fR�u� v�g
Then ) is computed as follows�

)� � 
 � fmgu�R�x� y�� ��� mgu�R�x� y�� fR�u� v�g�g

� f
g�

)� � 
 � fmgu�R�y� z�� ��� mgu�R�y� z�� fR�u�� v��g�g

� f
g�

)� � 
 � fmgu�R�x� z�� ��� mgu�R�x� z�� fR�u��� v���g�g

� f
g�

) � f
g�

Have another look at the points listed above and see how they are re#ected in
the example


��



�

Now we turn to a more complicated example


Example ��
�� Let
C � R�x� y� � R��� y� � R�y� z� and
L� � fR��� u�� R�v� ��g

Then we have

)� � 
 ��
mgu�R�x� y�� ��� mgu�R�x� y�� fR��� u�g��

mgu�R�x� y�� fR�v� ��g�� mgu�R�x� y�� fR��� u�� R�v� ��g�
�
�

�
�

� fx 
� �g� fy 
� �g� fx 
� �� y 
� �g

�
�

)� � 
 ��
mgu�R��� y�� ��� mgu�R��� y�� fR��� u��g��

mgu�R��� y�� fR�v�� ��g�� mgu�R��� y�� fR��� u��� R�v�� ��g�
��

fx 
� �g ��
mgu�R��� y�� ��� mgu�R��� y�� fR��� u��g��

mgu�R��� y�� fR�v�� ��g�� mgu�R��� y�� fR��� u��� R�v�� ��g�
��

fy 
� �g ��
mgu�R��� y�� ��� mgu�R��� y�� fR��� u��g��

mgu�R��� y�� fR�v�� ��g�� mgu�R��� y�� fR��� u��� R�v�� ��g�
��

fx 
� �� y 
� �g ��
mgu�R��� y�� ��� mgu�R��� y�� fR��� u��g��

mgu�R��� y�� fR�v�� ��g�� mgu�R��� y�� fR��� u��� R�v�� ��g�
�

�
�

� fx 
� �g� fy 
� �g� fx 
� �� y 
� �g

�
�

You see that many of the most general uni�ers that have to be considered in the
above sets do not even exist
 The ones that do exist are already contained in )��
so that no new substitutions are added in this step


Note that in the computation of )�� we have renamed u and v to u� and v�

However u� and v� are used several times& they are not renamed for each mgu
occurring in the above computation
 This is safe because the substitutions in )� do
not interfere with each other
 Each substitution in )� is applied to C alternatively�
not in composition


)� � 
 ��
mgu�R�y� z�� ��� mgu�R�y� z�� fR��� u���g��

mgu�R�y� z�� fR�v��� ��g�� mgu�R�y� z�� fR��� u���� R�v��� ��g�
��

fx 
� �g ��
mgu�R�y� z�� ��� mgu�R�y� z�� fR��� u���g��

mgu�R�y� z�� fR�v��� ��g�� mgu�R�y� z�� fR��� u���� R�v��� ��g�
��

fy 
� �g ��
mgu�R�y� z�� ��� mgu�R�y� z�� fR��� u���g��

��



mgu�R�y� z�� fR�v��� ��g�� mgu�R�y� z�� fR��� u���� R�v��� ��g�
��

fx 
� �� y 
� �g ��
mgu�R�y� z�� ��� mgu�R�y� z�� fR��� u���g��

mgu�R�y� z�� fR�v��� ��g�� mgu�R�y� z�� fR��� u���� R�v��� ��g�
�

�
�

� fy 
� �g� fz 
� �g� fy 
� �� z 
� �g

��
�
fx 
� �g� fx 
� �� y 
� �g� fx 
� �� z 
� �g� fx 
� �� y 
� �� z 
� �g

��
�
fy 
� �g� fy 
� �� z 
� �g

��
�
fx 
� �� y 
� �g� fx 
� �� y 
� �� z 
� �g

�
�

�
fy 
� �g� fz 
� �g� fy 
� �� z 
� �g� fx 
� �g� fx 
� �� y 
� �g�

fx 
� �� z 
� �g� fx 
� �� y 
� �� z 
� �g� fy 
� �g� fy 
� �� z 
� �g�

fx 
� �� y 
� �g� fx 
� �� y 
� �� z 
� �g
�
�

�

Single Test Substitutions

Now we have seen a complicated example for test substitutions that should make
clear how the de�nition works in principle
 Fortunately this is not the typical case
for the clauses we want to investigate
 Rather� the �rst example ���� is typical
 Let
us see precisely why the test substitutions are so simple in that example


If all characteristic literals �� L�� have the form R�x�� x�� � � � xn�� where the
variables xi are all di�erent� then mgu�Ai�K� is trivial


For one thing all clauses in L� are simultaneously uni�able in this case
 This
means there is a substitution � such that L� � L�� for all L�L� � L�


For all K � L�� mgu�Ai�K� does not need to substitute for variables in Ai
 But
we said earlier that it is only relevant what the test substitutions do to the variables
of C� and in this sense� all test substitutions are the identity substitution


It must not be neglected that for a literal R�x�� x�� � � � xn� in L�� all the xi must
be di�erent$ Otherwise� uni�cation might force two arguments of Ai to be equal�
and such a uni�er would no longer be the identity substitution


So let us state�

Corollary ��
�	 �Corollary �
� in ���� If all characteristic literals �� L�� have
the form R�x�� x�� � � � xn�� where the xi are all di�erent variables� then the test
substitution set ) contains the identity substitution only


����� Simultaneous Resolution

We have seen in Example �� that transforming a clause is done by resolving this
clause with clauses contained in a set S� that characterises the transformation
 We
shall now generalise our concept of transformations


Recall what the restricted setting was� S� is a singleton� and we transform
only unary clauses �literals�
 To generalise means to consider the transformation of
clauses of arbitrary length� where S� may contain several clauses


We de�ne simultaneous resolution between a clause D and a clause set S�

Simultaneous resolution is very similar to hyperresolution
�����


De�nition ��
�
 Let S� be a set of clauses where each clause has at least one
negative literal
 For each clause S � S�� there is a literal �LS � S that we call the
selected literal
 To make clear syntactically which literal is the selected literal� we

��



simultaneous uni�er

Figure �
�� Simulteneous resolution between D and the clauses S�� � � � � Sn

always assume that the selected literal is the �rst literal
 Thus we can write S as
�LS � +S


Let D be a clause
 Furthermore� let fL�� L�� � � � � Lng 
 D be a set of positive lit�
erals of D
 Note that Li �� Lj for i �� j$ Then we can write D � L� � � � � � Ln � +D


Thus we separate the literals upon which we resolve from the rest clause +D

Now we pair each positive literal Li with a clause Si � S�
 Unlike the Li� the

Si do not have to be all di�erent


If �L�� L�� � � � � Ln� and �LS� � LS� � � � � � LSn� are uni�able with uni�er �� we de�ne�

Res�D�L�� � � � � Ln� S�� � � � � Sn� �� � +S� � +S� � � � � � +Sn � +D�� ����

If �L�� L�� � � � � Ln� and �LS� � LS� � � � � � LSn� are not uni�able�
Res�D�L�� � � � � Ln� S�� � � � � Sn� is not de�ned


We say� Res�D�L�� � � � � Ln� S�� � � � � Sn� is the simultaneous resolvent between D
and the clauses S�� � � � � Sn on the resolution literals Li and the selected literals LSi 

We call this operation simultaneous resolution


This operation is illustrated by Fig
 ��

unit�

�

����� De�nition of �

A resolution K�transformation is characterised by a clause set S� as it has already
occurred many times
 For each clause� the selected literal must be �xed� which we
point out by writing the selected literal �rst
 This means� if S� and S�

� are equal
except for the order of literals in one clause� then S� and S�

� represent di�erent
transformations$

Given S�� we take the set of all simultaneous resolvents between D and clauses
in S�
 This set is the result of the transformation
 Formally�

De�nition ��
�� Let C �� A� 	 � � � 	 An � An�� � � � � � Am be a clause
 Let S�
be a set of clauses and LS de�ned as in Def
 ��
 Let ) be the set of test substitutions
for S� and C as de�ned by Def
 ��
 For a clause D we de�ne

�However we assume� as usual� that each copy of a clause in S� is variable renamed�

��



��D� � fRes�D�L�� � � � � Ln� S�� � � � � Sn� j n � 
� Si � S�� Li � Dg ����

It follows from the de�nition of simultaneous resolution that Li �� ,Lj for i �� j


Once again� note that n can be 
� thus ensuring that ��D� contains D


� is called a resolution K�transformation for C if it meets the following condi�
tion�

����A� �gr� 	 � � � 	 ����An �gr� � ����An�� �gr� � � � � � ����Am �gr� ����

is a tautology for all � � )� where �gr is a grounded version of �� all variables
x in the codomain of � are mapped to unique constants ax


This condition is called the test substitution set condition


�

We say �S� characterises ��


Sometimes we speak of a �transformer� rather than a resolution K�transforma�
tion


��D� is a clause set� but we shall often interpret this clause set as a formula

This means that we regard the clauses in the set as joined by conjunction


Let us illustrate how simultaneous resolution� and thus resolution K�transfor�
mations� work by looking at an example


Example ��
�� Consider the following clause�

C �� R�x� y� 	 R�x� z� � R�z� y�� ����

This clause formulates a property called �euclideanness�
 This clause cannot be
eliminated in the same way the transitivity clause is eliminated
 That means� it
will not su�ce to have S� contain C itself
 ��� proposes a transformation for this
clause that is characterised by the following clause set�

S� �� fR�x�� y�� 	 R�x�� z�� � R�z�� y���

R�x��� y��� 	 R�y��� z��� 	 R�y��� v��� � R�v��� z���g ����

For each clause� the �rst literal is the selected literal as usual


Let us transform D �� R�s� t� � R�q� r� with the transformer characterised
by S�
 Fig
 �� shows some of the possible simultaneous resolution steps


It has been said that one of the clauses generated when a clause D is transformed
is D itself
 This case is shown by the right picture of the second row of Fig
 ��

This is the marginal case� namely� that no resolution is done at all
 This case must
by no means be neglected


How many simultaneous resolvents are there all together� Each positive literal
of R�s� t��R�q� r� can be resolved with either literal of S�� or not be resolved at all

Thus there are three possibilities per positive literal� resulting in �� � � di�erent
resolvents
 Five of these are shown in Fig
 ��
 The remaining four combinations
should be easy to construct


Each resolvent of Fig
 �� is a simultaneous resolvent� and the set of all simulta�
neous resolvents is the result of the transformation


�

��



�R�t� z� �R�t� v� R�v� z� �R�q� z�� �R�q� v�� R�v�� z��

R�s� t� R�q� r�

�R�x�� y�� �R�y�� z�� �R�y�� v�� R�v�� z��

�R�x� y� �R�y� z� �R�y� v� R�v� z�

�R�t� z� �R�t� v� R�v� z� �R�q� z�� �R�z�� r�

R�s� t� R�q� r�

�R�x�� y�� �R�x�� z�� R�z�� y��

�R�x� y� �R�y� z� �R�y� v� R�v� z�

R�s� t� R�q� r�

R�s� t� R�q� r�

�R�s� z� R�z� t� �R�q� z�� R�z�� r�

R�s� t� R�q� r�

�R�x�� y�� �R�x�� z�� R�z�� y��

�R�x� y� �R�x� z� R�z� y�

�R�s� z� R�z� t� R�q� r�

R�s� t� R�q� r�

�R�x� y� �R�x� z� R�z� y�

Figure �
�� Some possible resolutions for R�s� t� �R�q� r�

����	 Soundness and Completeness of �

We have now seen a constructive de�nition of transformations� characterised by a
clause set S�
 The only condition that will have to be tested individually is the
test substitution set condition ����


Theorem ��
�
 �Theorem �
� in ���� Let ' is a clause set and C � '
 Suppose � is
a resolution K�transformation for C
 Then ' is satis�able if and only if ��' n fCg�
is satis�able�


Thus if a resolution K�transformation satis�es condition ����� it is faithful


��� Eliminating Clause Sets

We can generalise what we have seen above
 Rather than eliminating just one clause
C from a clause set '� we can eliminate a subset C of '


Of course we could have presented all de�nitions and theorems up to here in the
more general way� but I believe that the test substitutions and the test substitution
set condition are already complicated enough as it stands
 On the other hand� once

�In ��	� this theorem is given for a clause set C rather than a clause C� This generalisation is
treated in the next section�

��



we have understood how resolution K�transformations work for the elimination of
one clause� it is easy to understand the general case


Furthermore� we shall treat the issue of �nding a resolution K�transformation

Most of the statements we make in this context only apply to the elimination of
one clause
 To be precise� we shall present a search procedure for the elimination
of one clause that is complete in a certain sense
 We shall also present a search
procedure for the elimination of several clauses at the same time� but we shall waive
completeness since the search space is too large


Our description of the search for a transformation for one clause will be quite
detailed� whereas in the case of several clauses� it will be rough


For all of these reasons� we shall treat the issue of eliminating several clauses
separately


Now let us continue to do so

If we eliminate a subset C of '� the remaining clauses �that is� ' n C� have to be

transformed such that ' is satis�able if and only if ��' n C� is satis�able
 Nothing
new up to here


As before� the transformation is characterised by a clause set S�
 Typically this
set consists of the clauses in C plus some of their self resolvents� resolvents� and
subsumed clauses


The test substitution set condition must be generalised� but this is very easy�

If a clause set S� meets the test substitution set condition for each clause
C � C� then S� characterises a resolution K�transformation for C


Recall that the test substitution set is constructed by unifying the literals of a
clause C with literals from a set L�� the set of characteristic literals
 L� depends
on S� in a straightforward way �see page ���


When we check the test substitution set condition for a clause set C� we must
compute an individual test substitution set for each C � C
 This test substitution
set may be more complicated than in the examples before� but this is only because
S� will typically be larger� since it is supposed to characterise a transformation for
a clause set C rather than a single clause C


The construction of the test substitution set has not changed
 Each test substi�
tution set depends on one clause C � C and a clause set S�
 There is no interde�
pendence between the clauses in C as far as the test substitutions are concerned


De�nition ����� Let C and S� be sets of clauses
 For each C � C� let us write )C

for the set of test substitutions for C and S� �see Def
 ���

S� characterises a resolution K�transformation for C if for all C � C and all

� � )C �

����A� �gr� 	 � � � 	 ����An �gr� � ����An�� �gr� � � � � � ����Am �gr� ����

is a tautology

�

So far eliminations for clause sets do not seem to be much more complicated
than eliminations of a single clause
 However this only concerns the veri�cation
that a clause set S� characterises a transformation for a clause set C


Finding this set S� is a completely di�erent matter$ We have said that �typically
this set consists of the clauses in C plus some of their self resolvents� resolvents� and
subsumed clauses�
 Even if we impose restrictions such as limiting the length of
these clauses� usually this is still a huge set$ In order to even have a chance of
�nding a clause set S� that does the job we must be very careful about checking
simple candidates for S� before the more complicated candidates


�




We shall turn to this question in the next chapter� where we describe the search
for a clause set S�� and in Chapter ��� where we treat the implementation of this
search


��	 Summary

In this chapter� we have seen what a clause K�transformation is� we have introduced
the criteria that must be ful�lled for a clause K�transformation� and we have seen
how a clause K�transformation eliminates redundancies in an inference system
 We
have introduced all formal concepts we need


This formalism has been developed in ���� although the de�nitions are slightly
di�erent sometimes
 For example� ��� says explicitly that D � ��D�� whereas our
de�nition of resolution K�transformations contains this case implicitly


When we have a clause set S�� we know how to check whether the transformation
characterised by S� is faithful
 But we do not know much about what might
be a reasonable candidate for S�
 This is important whether we want to �nd a
transformation by hand or automatically
 In the next chapter we shall investigate
the question how clause K�transformations can be found


��



Chapter �

Finding Resolution

K�Transformations

In ��� it is said that S� is �usually C together with some of its self resolvents and
subsumed clauses�


For most of the clauses I investigated� my experience is that S� should contain
clauses that are subsumed by C
 I have not found much evidence that it is worth�
while to investigate self resolvents
 Self resolvents are important in at least two
contexts� but not in a way that could easily be exploited for our purposes
 We shall
treat this aspect in Section ��


Until now we should say that �nding a set S� and selected literals for a clause
C such that ���� holds is a creative process
 For many clauses C however there
is a �nite set in which we are likely to �nd a set S� that will yield a sound and
complete transformer
 This set was discovered investigating a particular clause from
the viewpoint of semantics� and therefore I shall introduce my technique with this
example


��� Semantic Consideration

Let us consider a clause with a ��place predicate� namely�

C �� R�w� x� y� 	 R�x� y� z� � R�w� x� z�� ����

We want to �nd a clause set S� that characterises a transformation for this
clause
 We have seen how this works for the transitivity clause �see Example ���

Therefore our �rst try would be to take S� � fCg� where �R�w� x� y� is the selected
literal


The selected literal has only variables as arguments
 All variables are di�erent

Thus Theorem �� applies and we only need to test one single ground instance

���R�a� b� c�� 	���R�b� c� d�� � ���R�a� b� d�� is

�R�a� b� c� 	 ��x�R�b� c� x� � R�a� b� x��

	R�b� c� d� 	 ��x�R�c� d� x� � R�b� c� x���

� �R�a� b� d� 	 ��x�R�b� d� x� � R�a� b� x���� ����

At this point we should give some intuition for this relation
 We start o� with a
binary relation R� and de�ne� R�a� b� c� i� R��a� b� and R��b� c�
 If we consider the
graph of R�� then R�a� b� c� means intuitively� There is a path from a to c leading
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Figure �
�� The basic relation given by R�a� b� c�� R�b� c� d� and R�b� d� e�

through b and no other point
 If R is closed under ����� R�a� b� c� means� There is
a path from a to c leading �rst through b and then possibly through other points

Note that the path from a to b must be direct� that is� an edge


We must be careful about this intuition
 For every binary relation R�� we can
indeed de�ne R in the way described above


Vice versa it does not always make sense
 That means� we can construct a
��place relation R for which there is no binary relation R� in the sense explained
above
 As long as we stick to the intuition� we are misled to believe that �� is
already the transformer we are looking for


This is not the case
 ���� is not a tautology� and we can also give an example
to see that �� is not a complete transformation


Example ����� Let fR�a� b� c�� R�b� c� d�� R�b� d� e�g be our basic ��place relation

It is depicted by Fig
��
 At this point we see that the idea of a binary relation R�

of which R is derived is not appropriate here
 For the idea to be appropriate� the
basic relation would have to contain R�a� b� d�
 However� R�a� b� d� can be derived
using ����
 In a further step� we can derive R�a� b� e�
 This is the whole closure of
the basic relation under ����


Now in contrast suppose we had transformed the basic relation using ��
 We
have

C� � R�a� b� c�

C� � R�b� c� d�

C� � R�b� d� e�

R� � R�b� c� x� � R�a� b� x�

R� � R�c� d� x�� � R�b� c� x��

R� � R�d� e� x��� � R�b� d� x���

From this we can derive R�a� b� d�� but we cannot derive R�a� b� e�

�

The aim of a resolution K�transformation is to remove a clause from a clause
set and replace it by more concrete clauses
 This must be done such that we can
still derive all consequences of the original clause set
 Now what does �� do� If
R�a� b� c� is part of the basic relation� �� adds R�b� c� x� � R�a� b� x� to the clause
set
 However the example showed that evidently this clause is too concrete
 Clauses
of this kind will not be general enough to derive all the original consequences


��



One natural idea is to make R�b� c� x� � R�a� b� x� more general
 This clause has
a negative literal and a positive literal
 From the operational view this clause gets
an instance of R�b� c� x� as input and produces an instance of R�a� b� x� as output

If you consider that we input unary ground clauses into R�b� c� x� � R�a� b� x� to
get other unary ground clauses as output� then it is intuitive that the input literal
of R�b� c� x� � R�a� b� x� must be generalised
 After all� it is R�b� c� x� that has to
be uni�ed with a ground literal� not R�a� b� x�


Another way to look at it is to start with the original clause C and make it more
speci�c
 Let us look at C from a semantic point of view
 Comparing the �rst and
the last literal of C we note that they both start with  R�w� x!
 Having only unary
ground clauses and C� this implies an invariant of the resolution process� In order
to derive R�r� s� t�� the basic relation must contain a literal of the form R�r� s� u� for
some constant term u
 Therefore it is probably safe to instantiate C in these very
arguments
 Transforming R�a� b� c�� for example� we add R�a� b� y� 	 R�b� y� x� �
R�a� b� x� to the clause set


If we still want to express the transformation in terms of a clause set S�� we have
to construct a clause whose resolvent with R�a� b� c� is
R�a� b� y� 	R�b� y� x� � R�a� b� x�
 This clause is

R�w� x� v� 	 R�w� x� y� 	 R�x� y� z� � R�w� x� z� ����

where R�w� x� v� is the selected literal

These were intuitive ideas and by no means precise arguments
 We have to prove

formally that the intuition was right

If we take S��

� fR�w� x� v� 	 R�w� x� y� 	 R�x� y� z� � R�w� x� z�g
and select R�w� x� v� we have to test
���R�a� b� c�� 	���R�b� c� d�� � ��R�a� b� d��
which is

�R�a� b� c� 	 ��x� y�R�a� b� x� 	 R�b� x� y� � R�a� b� y��

	R�b� c� d� 	 ��x� y�R�b� c� x� 	 R�c� x� y� � R�b� c� y���

� �R�a� b� d� 	 ��x� y�R�a� b� x� 	 R�b� x� y� � R�a� b� y���� ��
�

This is in fact a tautology� so we have found a sound and complete transformer
for R�w� x� y� 	 R�x� y� z� � R�w� x� z�


��� Eliminating Clauses by Adding Instances

The transformer � for the previous example clause
C � R�w� x� y� 	 R�x� y� z� � R�w� x� z� was found by a semantic consideration
 We
looked at some basic relation and asked � �What kind of conclusions must we be
able to draw in our transformed clause set�� With some intuition we guessed an S�
that did the job
 Now there are two things to be remarked about this transformer�

� The original clause C is not even needed in S�


� The clauses that � adds when transforming unit clauses� happen to be in�
stances of C where some of the variables of C are replaced by terms occurring
in the transformed clause


I said �happen to be instances�� but could this not be the general case�

�basic facts� so to speak

��



We eliminate a clause C by adding more or less concrete instances of C to the
clause set
 How concrete� The test substitution set condition gives us the criterion
for this question


There is a similar example in ���
 A transformer for the euclideanness clause is
found by a semantic consideration much like the one we have made here


In the previous example as well as in the euclideanness example in ��� we
are completely dumbfounded at �rst that pre�xing the clause with a literal that
contains variables that do not occur elsewhere should yield a transformer for this
clause
 After all� we are making C longer� we are working with a clause that is
subsumed by C
 And where do these new variables suddenly come from�

If we look at resolution K�transformations as adding instances of C� these ques�
tions become quite clear
 Pre�xing a clause C with a literal and resolving with a
unit clause is just a technique to obtain instances of C
 Some of the variables in this
literal are fresh� while others occur in C
 The latter variables will be instantiated
by terms in the unit clause� thus determining in which way C is instantiated
 The
former variables will be instantiated� too� but as they do not share with C� C will
not be a�ected by this


Pre�xing a clause C with a literal will be used so often from now on that it
deserves a formal de�nition


De�nition ����� Let C be a clause that has a predicate symbol P of arity m

Then

�P��x�� x�� � � � � xm� ����

is a pre�x literal for C

�

The idea is that the xi may or may not occur in C� but �may or may not� is
not a formal condition� of course


It may well be that a clause has more than one predicate symbol
 Any of these
can be used to create pre�x literals


Thus C extended by a pre�x literal gives us a candidate for S�


����� One Extreme Case

For a clause C with an n�place predicate P � we can always �nd a transformer that
is just as sound and complete as it is useless
 Take

S� �� f�P �x�� x�� � � � � xn� � Cg where x�� x�� � � � � xn �� C ����

Have a look at ����
 For each Ai �gr � � adds C and� as always� Ai �gr 
 Thus

��Ai �gr� � fAi �gr � Cg ����

Now the test substitution requires

�A� � � 	 C� 	 � � � 	 �An � � 	 C� � �An�� � � 	 C� � � � � � �Am � � 	 C� ����

to be a tautology
 We make some simple equivalence transformations

C 	 A� � � 	 � � � 	 An � � � �C 	 �An�� � � � � � � � Am � ��� �
�C 	 A� � � 	 � � � 	 An � � � C� 	

�C 	 A� � � 	 � � � 	 An � � � �An�� � � � � � � � Am � ��� �
C � �A� � � 	 � � � 	An � � � An�� � � � � � � � Am � ��

����

�A� � � 	 � � � 	 An � � � An�� � � � � � � � Am � �� is an instance of C and thus
follows from C
 Thus ���� is indeed a tautology


��



Intuitively this transformation is complete because C is not really eliminated
 If
there is any unit clause P �s�� s�� � � � � sn� the transformer will add a trivial instance
of C� namely C itself� to the clause set


Of course� this is not the kind of transformation we look for� but it is conceptually
important to understands what a transformer does in the worst case


����� The Other Extreme Case

We have seen the transitivity example �see Example ���� where transformation
works by resolving with the transitivity clause itself� and euclideanness� where trans�
formation works by resolving with the euclideanness clause itself plus one other
clause
 How does this �t into the scheme presented above� Quite well� as we shall
see
 In these cases we were lucky enough to �nd a pre�x literal that is identical to
a negative literal that already occurs in the clause


It will su�ce to look at transitivity to make this point clear

We have seen in Example �� that S� � fR�x� y� 	 R�y� z� � R�x� z�g with

R�x� y� as selected literal gives us a transformation for C
 For a unit clause R�a� b�
we have

��R�a� b�� � fR�a� b���z�R�b� z� � R�a� z�g� ����

Now we present a slightly di�erent transformer�

S��
� fR�x� y� 	 R�x� y� 	 R�y� z� � R�x� z�g ����

where the �rst R�x� y� is selected

If we look at clauses as sets then there is no di�erence between the two trans�

formers� but for now just accept that the clause has two occurrences of the same
literal
 Let us transform R�a� b� again

���R�a� b�� � fR�a� b���z�R�a� b�	 R�b� z� � R�a� z�g� ����

There is not much of a di�erence between ���� and ����& the two clause sets are
equivalent
 If this does not convince you� it must certainly convince you that

�R�a� b� 	 ��z�R�a� b� 	 R�b� z� � R�a� z��
	R�b� c� 	 ��z�R�b� c� 	 R�c� z� � R�b� z���
� R�a� c� 	 �z�R�a� c� 	 R�c� z� � R�a� z�

is a tautology


����� The General Case

Of course I am not really suggesting to prefer ���� over ����
 I am just suggesting a
way to look at transformers and to look for transformers
 To �nd a transformer for
C� systematically generate all potential pre�x literals �L
 There are only �nitely
many of them�
 This will yield a �nite set S� of candidates �L � C for S�
 The
selected literal is always the pre�x literal
 Now inspect every subset of S� to
see whether the test substitution holds for this set
 If it does� we have found a
transformer


If a pre�x literal happens to be identical with a literal in C� an optimisation is
possible
 Instead of taking �L � C take �L � �C n f�Lg� as a candidate for S�

This is what is done in the transitivity example


We have seen the extreme cases� The pre�x literal shares no variables with C
vs
 the pre�x literal is identical to another negative literal of C
 We have also seen

�modulo renaming of the variables that do not occur in C

��



that the former case is de�nitely not what we are looking for� whereas the latter
case is ideal


It should be no surprise that between these extreme cases� we would like to have
a pre�x literal that shares as many variables as possible with C
 This yields rather
concrete instances of C
 The more concrete the instances of C are� the more the
transformer helps to reduce the number of possible inferences in automated theorem
proving


This point will be re#ected when we turn to implementation
 We shall attempt
to �nd pre�xed clauses where the pre�x literal is as concrete as possible


����	 Excluding Positive Literals

One further observation will help to reduce the number of candidates for S�
 If we
want to transform a clause C � A� 	 � � � 	An � An�� � � � � �Am� no pre�x literal
should equal any Ai for i � n % �� � � �m


The reason is the following� If a literal L is transformed� an instance of C would
be added that has the form �� � �� � � � L � � ��
 As always� L remains in the clause set�
too� giving us something like L 	 �� � �� � � � L � � ��� which is equivalent to L
 But let
us formulate this idea precisely


Corollary ����� Let C � A�	 � � �	An � An��� � � ��Am be a clause and assume
that for some k � fn % �� � � � �mg and some clause set S��

S� �� S�� � fAk 	 A� 	 � � � 	 An � An�� � � � � �Amg ����

characterises a resolution K�transformation � for C
 Then �� is also a resolution
K�transformation for C


Proof�
Consider the test substitution set condition ����
 In order to check this conditon�
the transformation has to be applied to positive ground literals only
 Thus if we
show that

���L� is equivalent to ��L� ��
�

for any positive ground literal L� we are done
 Since C is a tautology �it contains
the literals �Ak and Ak�� resolution on the literals �Ak and L results in a clause
that contains L� and thus is subsumed by the unit clause L
 ��L� contains this new
clause� whereas ���L� does not


As always� the unit clause L is contained in ��L�� so the new clause containing
L can be removed without changing satis�ability� resulting in ���L�
 Thus ���L�
and ��L� are equivalent


�

����� Another Restriction for Pre�x Literals

I have described the way to �nd pre�x literals� instantiate the pre�x literal with
the variables of the clause in all possible ways
 For the examples I have studied� I
observed however that if a transformer was found for some clause� there was also
some transformer where the pre�x literal was a generalisation of a literal of the
clause


This means that for a clause C � A� � � � � �An and a pre�x literal L� there
should be a matcher � such that L� � Ai for some i
 � may only instantiate the
variables that do not occur in C


��



Take C � p�x� y� 	 p�y� z� � p�x� z�� for example
 Following the restriction de�
scribed above� we would allow p�x� v� as pre�x literal� but we would not allow
p�v� x�� because no literal in C has x as second argument


This restriction reduces the search space� and I have not encountered an example
where we fail to �nd any transformer because of this restriction
 However we may
fail to �nd a particular transformer because of this restriction
 Furthermore� so far
I have no proof that we cannot fail to �nd any transformer because we impose this
restriction


In Chapter �� we shall see how we can automate the process of �nding a trans�
formation
 The program leaves the choice whether or not to restrict the search for
pre�x literals to the user


��� Euclideanness Revisited

In the last section I presented a heuristic for �nding a transformer for a clause
C
 This has been implemented so that this kind of transformer can be found
automatically� if it exists
 The program is called Transformator
 In order to test
Transformator I took another look at an example that was already examined
by Ohlbach� Gabbay� and Plaisted ������ euclideanness
 We have already seen
euclideanness
 It is de�ned by ����


The transformer presented in ��� is shown in ����

This transformer is found by a semantic consideration that is analogous to the

one in Section ��
 A graph is drawn for some simple example and the operational
�behaviour� of certain clauses is investigated in order to add the right �arrows�
into the graph


Of course I was very interested to see whether Transformator would �nd this
transformer automatically


Well� it probably would have enumerated this transformer some time� but �rst
it came up with

S� � fR�v� z� 	R�x� y� 	 R�x� z� � R�z� y�g� ����

Let us have a look at the test substitution set condition

��R�a� b�� 	��R�a� c�� � ��R�c� b�� is

�R�a� b� 	 ��xy�R�x� y� 	 R�x� b� � R�b� y��

	R�a� c� 	 ��xy�R�x� y� 	 R�x� c� � R�c� y���

� �R�c� b� 	 ��xy�R�x� y� 	 R�x� b� � R�b� y���� ����

This is indeed a tautology� so � is a transformer for the euclideanness clause

This transformer is characterised by a clause set S� that is a singleton� and thus it
is much simpler than the one presented in ���� where S� consists of two clauses


��� Horn Clauses without Function Symbols

The clauses we have examined contain no function symbols
 They match the fol�
lowing pattern

R�x��� x
�
�� � � � � x

r
�� 	 R�x��� x

�
�� � � � � x

r
�� 	 � � � 	 R�x�n� x

�
n� � � � � x

r
n�

� R�x�n��� x
�
n��� � � � � x

r
n��� ����

��



where not all variables have to be di�erent�

Actually we could also allow function symbols
 For example� we might have

R�f�x� y�� � R�f�y� x��
 The essential point is that such a clause does not gen�
erate new terms through self resolution
 This is di�erent from a clause like con�
densed detachment that may generate an in�nite sequence of new terms �see Section
���
 In our context� a clause like R�f�x� y�� � R�f�y� x�� is essentially the same as
R�x� y� � R�y� x�
 Therefore it would only complicate the matter if we considered
function symbols here


Symmetry� transitivity� re#exivity� euclideanness� certain permutation properties
are all expressed by clauses of this kind
 I only claim so far that my method works
well for this kind of clauses


We shall now look at a �nite subclass of these clauses exhaustively
 This is to
illustrate that the technique for �nding transformers I propose is an e�ective one

We could easily extend this study to larger clauses


Some simple and natural properties binary relations can have are expressed by
clauses of the form

R�u� v� 	 R�w� x� � R�y� z� or R�w� x� � R�y� z�� ����

The variables here are meta�variables� which means that in concrete examples usu�
ally some variables occur more than once
 Up to variable renaming� there are only
�nitely many such clauses
 The most na�-ve consideration would yield �� � �� or
�� � �� clauses� respectively� but some simple observations will reduce this number
tremendously
 These are

� Clauses that can be obtained from each other by exchanging two variables
should not be considered separately
 This is not precisely the same thing as
renaming� but almost


� The order of the two negative literals is irrelevant


� Clauses that can be obtained from each other by exchanging the �rst with the
second argument in each literal should not be considered separately


� Tautologies should not be considered at all


� Clauses that are equivalent to shorter clauses should not be considered


For each clause in this clause� I tried to �nd a transformation automatically

First I wanted to demonstrate that my heuristic is a suitable one
 Furthermore�
some of these clauses represent common properties of relations
 Others� of course�
seem quite arti�cial


Table �� shows the results
 In all cases the �rst literal is the selected literal

Clause no
� is the euclideanness clause� no
� is symmetry� no
�� is transitivity


No
�� is also a nice clause� we might call it �circularity�
 Its transformer was by
far the hardest to �nd� but was still found in few seconds
 It is the only one of the
above examples where S� consists of more than one clause


The other clauses are not so intuitive

It is not accidental that for clause no
��� S� contains the clause itself� but the

order of the literals is interchanged
 Coincidentally this clause had been input to
Transformator as R�x� x� 	R�y� z� � R�z� y�
 The program interchanged the
literals because the second literal of the original clause must be selected for the
transformation to be complete
 Of course we could have interchanged the literals
in the original clause so that S� literally contains the clause itself
 However it is

�If they are all di
erent� this would yield a very trivial example�

��



Clause S� for this clause pr�

� R�x� x� 	 R�x� y� � R�y� z� fR�x� x� 	 R�x� y� � R�y� z�g no
� R�x� x� 	 R�x� y� � R�z� y� fR�x� y� 	 R�x� x� � R�z� y�g no
� R�x� x� 	 R�x� y� � R�y� x� fR�x� y� 	 R�x� x� � R�y� x�g no
� R�x� x� � R�x� y� fR�x� x�� R�x� y�g no
� R�x� x� 	 R�y� y� � R�x� y� fR�x� x� 	R�y� y� � R�x� y�g no
� R�x� y� 	R�x� z� � R�y� z� fR�v� y� 	 R�x� y� 	 R�x� z� � R�y� z�g yes
� R�x� y� � R�y� x� fR�x� y�� R�y� x�g no
� R�x� y� � R�x� x� fR�x� y�� R�x� x�g no
� R�x� y� 	 R�y� x� � R�x� z� fR�x� y� 	 R�y� x� � R�x� z�g no

�
 R�x� y� 	 R�y� x� � R�x� x� fR�x� y� 	 R�y� x� � R�x� x�g no
�� R�x� y� 	R�y� z� � R�x� z� fR�x� y� 	 R�y� z� � R�x� z�g no

or fR�y� z� 	 R�x� y� � R�x� z�g
�� R�x� y� 	R�y� z� � R�z� x� fR�x� v� 	 R�x� y� 	 R�y� z� � R�z� x�� yes

R�v� x� 	 R�x� y� 	 R�y� z� � R�z� x�g
�� R�x� x� 	 R�y� z� � R�x� y� fR�y� z� 	 R�x� x� � R�x� y�g no
�� R�x� x� 	R�y� z� � R�x� z� fR�y� z� 	 R�x� x� � R�x� z�g no
�� R�x� x� 	 R�y� z� � R�y� y� fR�y� z� 	 R�x� x� � R�y� y�g no
�� R�x� x� 	 R�y� z� � R�z� y� fR�y� z� 	 R�x� x� � R�z� y�g no

Table �
�� Transformers for clauses of length � and � with binary predicates

instructive to see that in some examples� the transformation is characterised by the
clause itself� but the choice of the selected literal is signi�cant$

The last column in the table says whether the pre�x literal was really needed�
or whether it happened to be identical with one literal already appearing in the
clause
 There are two examples where the pre�x literal is actually needed� namely
euclideanness and what we called �circularity�
 This is not much� but at least these
two examples are among the more interesting ones in the list
 Apart from that�
there are other examples when we take predicates with more than two arguments
or clauses with more than three literals �e
g
 see Section ���
 So it can be claimed
that systematically generating pre�x literals is an e�ective way to �nd transformers


For clause no
 �� �transitivity�� two transformers are given
 This is not to say
that transitivity is the only clause for which more than one transformer exists
 The
table just shows the �rst transformer Transformator found for each clause


I made sure however� that if the transformer given requires a pre�x literal in the
strict sense� then there is no transformer that does not


I emphasise that the above list is exhaustive�
 Among all clauses of this class
there was not a single one for which no proper �i
e
 not of the kind of Section ���
transformer was found$

We could easily expand this class of clauses by taking predicates with more
than two arguments or longer clauses
 Of course this makes it much harder to �nd
a transformation


��� The Role of Self Resolvents

We have de�ned self resolution in Section ��
 In this chapter we have neglected
it so far
 In ��� there is a strong emphasis on self resolvents
 To �nd a clause set
S� that characterises a transformation for a clause C� it is proposed to take C and
some of its self resolvents
 The set of self resolvents may be in�nite� but it can be

�modulo the mentioned �equivalences�

�




enumerated
 Thus one could systematically enumerate all sets of self resolvents and
check for each set whether it ful�lls the test substitution set condition


Nobody claims that this procedure must yield a transformer for every clause

Evidence that this procedure is e�ective would have to come from examples� that is�
clauses where this technique found a transformation
 This is no di�erent from the
heuristic I propose �pre�xed clauses�� and for this reason I presented the examples
of Section �� to demonstrate that my heuristic is e�ective
 The examples of Section
�� make it easy to believe that we could go on like this for bigger clauses� even if
the complexity would certainly become a problem then


As far as self resolvents are concerned� my experience is that they are important
in two contexts�

����� Condensed Detachment

This is a clause containing a function symbol
 We shall look at condensed detach�
ment in Section ��
 It is also thoroughly investigated in ���
 There S� contains
in�nitely many self resolvents of the condensed detachment clause
 Thus the trans�
formation may add in�nitely many clauses
 This is not a suitable input for an
automated theorem prover
 In ��� it is shown how these in�nitely many clauses can
be transformed such that they can be input to an automated theorem prover
 This
may result in dramatic improvements of e�ciency


Condensed detachment is an important clause� actually the standard example of
a simple clause making automated theorem proving extremely hard
 Thus �nding
a transformer for this clause is in itself an impressive result
 However� it requires a
very sophisticated argument to cope with the in�nitely many clauses the transformer
generates at �rst


Thus it may well be that self resolvents are important to �nd transformers for
other clauses similar to condensed detachment� but I would not know how one could
automate the process of coping with in�nity� such that the process of �nding such a
transformer is completely automated
 I do not say that it is not possible� however


����� Permutation Properties

A permutation property is expressed by a clause of the form

C �� R�x�� x�� � � � � xn� � R�x���
� x���
� � � � � x��n
� ����

where the xi are all di�erent variables and � � f�� �� � � � � ng � f�� �� � � � � ng is a
permutation
 Such a clause is called a permutation clause


In a beginner!s textbook �e
g
 see ���� about algebra we �nd that a permutation
has a degree d� such that

�d � id

This means� permuting a tuple d times we will return to the original tuple

The following corollary says how permutation clauses can be transformed


Corollary ��
�� A transformation for a permutation clause C is characterised by
all self resolvents of C from level
 
 to level d� �


Proof�
Let us write Si for the self resolvent of level i
 Then the self resolvents up to the

�The �level� was de�ned in Def� ���

��



�d� ��th level are

S� � R�x�� x�� � � � � xn� � R�x���
� x���
� � � � � x��n
�
S� � R�x�� x�� � � � � xn� � R�x����
� x����
� � � � � x���n
�
S� � R�x�� x�� � � � � xn� � R�x����
� x����
� � � � � x���n
�





Sd�� � R�x�� x�� � � � � xn� � R�x�d����
� x�d����
� � � � � x�d���n
�

����

S� �� fS�� S�� � � � Sd��g
 For the test substitution set condition replace each x�
by ai


��R�a�� a�� � � � � an�� � ��R�a���
� a���
� � � � � a��n
��

is�
BBBBB�

R�a�� a�� � � � � an�	
R�a���
� a���
� � � � � a��n
�	
R�a����
� a����
� � � � � a���n
�	





R�a�d����
� a�d����
� � � � � a�d���n
�

�
CCCCCA
�

�
BBBBB�

�R�a���
� a���
� � � � � a��n
�	
R�a����
� a����
� � � � � a���n
�	





R�a�d����
� � � � � a�d���n
�	
R�a�d��
� R�a�d��
� � � � � a�d�n
�

�
CCCCCA

It can easily be seen that the right and the left side are equal up to the order
of literals
 The essential point is that the last line of the right side equals the �rst
line of the left side� because �d � id


�

Thus in order to eliminate permutation clauses� S� should contain self resolvents�
but in a predictable way
 With the above corollary we have solved the problem of
�nding a transformation for permutation clauses once and for all


By the way� the heuristic I proposed� that is� generating pre�xed literals as
candidates for S�� �nds the transformers for permutation clauses� too
 At least in
theory


Consider R�x�� x�� x�� x�� x
� � R�x�� x�� x�� x
� x��
 There are ���� pre�xed
clauses for this clause
 Do not worry about how I came up with this number

Roughly speaking� �ve of these are the self resolvents that characterise the trans�
formation
 It would be an understatement to say that �nding a �ve element sub�
set having a certain property in a ���� element set is like �nding a needle in a
haystack� � �

Conclusion

Thus we have seen two contexts in which self resolvents are useful� one of which is
so complicated that it is hard to see that a transformation of this kind could be
found automatically� whereas the other is trivial in the sense that the result can be
given once and for all


I have not encountered any other contexts where self resolvents are useful for
�nding transformations
 Of course this is not to say that there might not be other
contexts


In Chapter �� we shall treat the issue of implementation
 Should there be
any other examples where a transformation for a clause can be characterised by
a �nite number of self resolvents� My program �Transformator� is prepared
for it
 That is� I have implemented a search process that systematically tries sets
of self resolvents of a clause C as candidates for S�� where S� characterises the
transformation
 Actually this had been implemented before the idea of pre�xed
clauses was born


��



I emphasise that the example of condensed detachment is in itself very impor�
tant
 It is de�nitely much more important than most of the examples of Section
��� which are rather arti�cial


I only say that it seems to be very di�cult to generalise the argument in ���
to �nd transformers for other clauses than condensed detachment
 I concentrated
mainly on �nding transformers automatically
 Therefore the relevance of self resol�
vents is rather limited for our purposes


��� Condensed Detachment

Now we will look at an important clause containing a function symbol� namely�
condensed detachment
 Refuting clause sets that contain the condensed detachment
clause can be surprisingly di�cult
 This is not alone for the fact that the condensed
detachment clause contains a function symbol
 The condensed detachment clause
may generate new terms for ever and ever by continued resolution
 We shall soon
see why


We have not addressed the question yet whether the concept of eliminating a
clause by adding instances of it also works for such a clause


Unfortunately our result for the condensed detachment clause is a negative
one� but not in the sense that we cannot �nd a transformer for the condensed
detachment clause� but rather that the transformer is pathological
 In the typical
setting where the condensed detachment clause occurs this transformer adds the
condensed detachment clause itself� rather than more speci�c instances of condensed
detachment
 Thus nothing is gained


We present these results anyway for two reasons
 First� also a negative result is
instructive in some way
 Secondly� the approach presented here might be useful for
other clauses containing function symbols


Hans J�urgen Ohlbach presents a transformer for the condensed detachment
clause that is indeed useful
 For some clause sets containing the condensed de�
tachment clause dramatic improvements in the performance of automated theorem
proving have been achieved using this transformer


Condensed detachment is the predicate logic encoding of the modus ponens rule

�Predicate logic encoding� means that the terms in predicate logic are interpreted
as formul� in some object logic� say propositional logic for our purposes
 Predicate
logic is our meta logic
 So we make statements in predicate logic about propositional
logic
 t�x� means �x is a true formula�� t�i�x� y�� means �x implies y�
 Then modus
ponens writes as

C �� t�w� 	 t�i�w� x�� � t�x�� ����

Its meaning is simply the following� If w is true and if it is true that w implies
x� then x is also true


Let us see why the condensed detachment clause generates new terms
 Suppose
we have two clauses t�a� and t�b�
 Resolving each of these with the condensed
detachment clause on the �rst literal we get the clauses

t�i�a� x�� � t�x� and t�i�b� x�� � t�x� ����

Now we can resolve these two clauses with each other� which yields

t�i�a� i�b� x��� � t�x� ����

i�a� i�b� x�� is a new term generated through resolution
 We could go on like this
forever


��



Na��ve Approach

Let us �rst try the method introduced in Section �� in the most na�-ve way
 The
variables occurring in ���� are w and x� so the candidates for pre�x literals are
t�w� and t�x�
 Let us look �rst at S� � ft�w� 	 t�w� 	 t�i�w� x�� � t�x�g
 Then
��t�a�� 	��t�i�a� b��� � ��t�b�� becomes

�t�a� 	 ��x�t�a� 	 t�i�a� x�� � t�x��

	t�i�a� b�� 	 ��x�t�i�a� b�� 	 t�i�i�a� b�� x�� � t�x���

� �t�b� 	 ��x�t�b� 	 t�i�b� x�� � t�x��� ��
�

This is not a tautology
 So let us try S� � ft�x� 	 t�w� 	 t�i�w� x�� � t�x�g
instead
 ��t�a�� 	��t�i�a� b��� � ��t�b�� becomes

�t�a� 	 ��x�t�x� 	 t�i�x� a�� � t�a��

	t�i�a� b�� 	 ��x�t�x� 	 t�i�x� i�a� b��� � t�i�a� b����

� �t�b� 	 ��x�t�x� 	 t�i�x� b�� � t�b��� ����

This is not a tautology either
 S� � f t�w� 	 t�w� 	 t�i�w� x�� � t�x��
t�x� 	 t�w� 	 t�i�w� x�� � t�x� g will not lead to success either� as can easily be
inspected


Finding � by an Operational View

The least thing that we can say is that my technique for �nding pre�x literals is
not able to �nd a transformer for the condensed detachment clause
 But we should
not yet give up the idea that eliminating a clause works by adding instances of it

In order to get a �rst idea what kind of instances are needed� we shall make the
simplifying assumption that we only transform unit clauses
 In the formal proofs�
we shall drop this assumption� of course


We shall take an operational view of the condensed detachment clause
 Consider
a unit clause t�i�s�� s���� where s�� s� are arbitrary terms
 From this clause� t�s��
might be derived through condensed detachment
 If s� has the form i�s�� s��� s�
might be derived in a later step and so forth
 Any clause that is derived might be
used as �input� for the condensed detachment clause
 If we consider the clauses in
our original clause set as �trivially derived�� we can also say that evidently nothing
else but a derived clause is ever used as input to the condensed detachment clause

So in order to get rid of the general condensed detachment clause� we must make
sure that appropriate instances of the condensed detachment are available instead


The condensed detachment clause has two negative literals t�w� and
t�i�w� x��� that is two �inputs�� from the operational point of view
 Any clause
that is derived might serve as t�w� or as t�i�w� x��� we cannot predict that
 Does
this mean that we have to add two instances of the condensed detachment clause
for each such clause� No� we can choose with which literal we want to instantiate
as long as we do it in the same way for all transformed clauses
 After all� deriving
a unit clause by condensed detachment requires two other unit clauses� say t�s��
and t�i�s��� s���
 Without transformation� t�w� is uni�ed with t�s��� and t�i�w� x�� is
uni�ed with t�i�s��� s���
 To this end� s� and s�� must be uni�able
 Now� in contrast�
suppose we transform the clause set before starting our derivations
 Depending on
which literal we choose� either t�s��	t�i�s�� x�� � t�x� or t�s���	t�i�s

�
�� s��� � t�s��

will be added to the clause set
 But one of these clauses will su�ce to replace the
general condensed detachment clause� we do not need both


��



First we try �rst to instantiate t�w�
 The following three examples illustrate
how � should work


��t�a�� � ft�a��

��x�t�a� 	 t�i�a� x�� � t�x��g

��t�i�a� b��� � ft�i�a� b���

��x�t�i�a� b�� 	 t�i�i�a� b�� x�� � t�x���

	��x�t�b� 	 t�i�b� x�� � t�x��g

��t�i�a�i�b� c����� � ft�i�a�i�b� c�����

��x�t�i�a� i�b� c��� 	 t�i�i�a� i�b� c��� x�� � t�x���

��x�t�i�b� c�� 	 t�i�i�b� c�� x�� � t�x���

	��x�t�c� 	 t�i�c� x�� � t�x��g

Looking at the �rst and second element in each of the above sets we see that we
could easily simplify these sets in the same way that
p�a� b� 	 ��x�p�a� b� 	 p�b� x� � p�a� x�� can be simpli�ed to
p�a� b� 	 ��p�b� x� � p�a� x�� �see Section ���
 We shall not do so at this point
for the sake of conceptual clarity


Of course we can de�ne � formally


��t�s�� �� ft�s�g ����t�s��� ����

The auxiliary function �� is de�ned as follows�

���t�s�� �� f�x�t�s� 	 t�i�s� x�� � t�x�g if s is a variable or constant
���t�i�s�� s���� �� f�x�t�i�s�� s��� 	 t�i�i�s�� s��� x�� � t�x�g

����t�s��� else
����

For every positive literal �unit clause�� � gives us a �nite set
 This is because
� is de�ned inductively on the structure of terms� and there is no such thing as an
in�nite term in our setting


Describing � by a Clause set

The above de�nition is easy to understand� but it is not obvious that a resolution
K�transformation is de�ned
 For this we would need a clause set S� together with
some selected literals
 Let us de�ne

S� �� ft�y� 	 t�y� 	 t�i�y� z�� � t�z��

t�i�v�� y�� 	 t�y� 	 t�i�y� z�� � t�z��

t�i�v�� i�v�� y��� 	 t�y� 	 t�i�y� z�� � t�z��

t�i�v�� i�v�� i�v�� y���� 	 t�y� 	 t�i�y� z�� � t�z��

� � �g ����

This set suggests already that we will have to extend the de�nition of pre�x
literals� but we are not ready to do so yet


Note that the su�x of each clause is the condensed detachment clause� but
with variables y and z instead of w and x as before
 This should help to avoid
confusion when we unify between S� and C in order to verify the test substitution
set condition


��



S� is in�nite� and we will have to argue carefully why it still characterises the
same transformation as ����


A literal t�i�s�� i�s�� � � � � i�sn� a� � � ����� where si are arbitrary terms and a is a
constant� will only unify with �nitely many pre�x literals in S�& to be precise�
with all pre�x literals from t�y� through t�i�v�� i�v�� � � � � i�vn� y� � � ����
 In this case
��t�i�s�� i�s�� � � � � i�sn� a� � � ����� is certainly �nite


In contrast� a literal t�i�s�� i�s�� � � � � i�sn� w� � � ����� where w is a variable� will
unify with all pre�x literals in S�
 But for all m � n� the resolvent between

t�i�s�� i�s�� � � � � i�sn� w� � � ���� ����

and

t�i�v�� i�v�� � � � � i�vm� y� � � ���� 	 t�y� 	 t�i�y� z�� � t�z� ����

is always some variable renamed copy of

t�y� 	 t�i�y� z�� � t�z�� ����

We consider these variable renamed copies as one single clause� and it is in this
sense that

� S��C� is �nite for any clause C


� S� characterises the transformation � as de�ned by ����


The Test Substitution Set Condition

Now that we have a candidate for a resolution K�transformation we must check the
test substitution set condition


At this point we will drop the assumption that we only transfrom unit clauses$
The test substitution set condition allows no such restriction


First we must compute the test substitution set
 We have

C � t�w� 	 t�i�w� x�� � t�x� ����

and

L� � ft�y�� t�i�v�� y��� t�i�v�� i�v�� y���� t�i�v�� i�v�� i�v�� y����� � � �g� ����

From this we get

)� � fw 
� y� w 
� i�v�� y�� w 
� i�v�� i�v�� y��� w 
� i�v�� i�v�� i�v�� y���� � � �g

)� � )� �

fx 
� y�� x 
� i�v��� y
��� x 
� i�v��� i�v

�
�� y

���� x 
� i�v��� i�v
�
�� i�v

�
�� y

����� � � �g

)� � )�

) � )� ��
�

For a test substitution � � )� C � will have the form

t�i�v�� i�v�� � � � � i�vn� y� � � ����	
t�i�i�v�� i�v�� � � � � i�vn� y� � � ����� i�v��� i�v

�
�� � � � � i�v

�
m� y

�� � � ����
� t�i�v��� i�v

�
�� � � � � i�v

�
m� y

�� � � ����
����

Now we must replace all variables by constants
 Then we have to check whether

��



�
t�i�a�� i�a�� � � � i�an� an��� � � ����	 ���

�y��t�i�a�� i�a�� � � � i�an� an��� � � ����	 ���
t�i�i�a�� i�a�� � � � i�an� an��� � � ���� y�� � t�y��	

�y��t�i�a�� i�a�� � � � i�an� an��� � � ����	 ���
t�i�i�a�� i�a�� � � � i�an� an��� � � ���� y�� � t�y��	










�y��t�i�an� an���� 	 t�i�i�an� an���� y�� � t�y��	 �n % ��

�y��t�an��� 	 t�i�an��� y�� � t�y��
�

�n % ��V�
t�i�i�a�� i�a�� � � � i�an� an��� � � ���� i�b�� i�b�� � � � i�bm� bm��� � � �����	 �n % ��

�y��t�i�i�a�� i�a�� � � � i�an� an��� � � ���� i�b�� i�b�� � � � i�bm� bm��� � � �����	 �n % ��
t�i�i�i�a�� � � � i�an� an��� � � ��� i�b�� � � � i�bm� bm��� � � ���� y�� � t�y��	

�y��t�i�b�� i�b�� � � � i�bm� bm��� � � ����	 �n % ��
t�i�i�b�� i�b�� � � � i�bm� bm��� � � ���� y�� � t�y��	

�y��t�i�b�� i�b�� � � � i�bm� bm��� � � ����	 �n % ��
t�i�i�b�� i�b�� � � � i�bm� bm��� � � ���� y�� � t�y��	










�y��t�i�bm� bm���� 	 t�i�i�bm� bm���� y�� � t�y��	 �n % m % ��

�y��t�bm��� 	 t�i�bm��� y�� � t�y��
�

�n % m % ��

���
t�i�b�� i�b�� � � � i�bm� bm��� � � ����	 �n % m % ��

�y��t�i�b�� i�b�� � � � i�bm� bm��� � � ����	 �n % m % ��
t�i�i�b�� i�b�� � � � i�bm� bm��� � � ���� y�� � t�y��	

�y��t�i�b�� i�b�� � � � i�bm� bm��� � � ����	 �n % m % ��
t�i�i�b�� i�b�� � � � i�bm� bm��� � � ���� y�� � t�y��	










�y��t�i�bm� bm���� 	 t�i�i�bm� bm���� y�� � t�y��	 �n % �m % ��

�y��t�bm��� 	 t�i�bm��� y�� � t�y��
�

�n % �m % ��

Figure �
�� The test substitution set condition for the �rst transformer

��t�i�a�� i�a�� � � � � i�an� an��� � � �����	
��t�i�i�a�� i�a�� � � � � i�an� an��� � � ����� i�b�� i�b�� � � � � i�bm� bm��� � � �����
� ��t�i�b�� i�b�� � � � � i�bn� bm��� � � �����

����

is a tautology
 This is the monstrous formula of Fig
��


Line �n%m% �� can be derived from �������� and �n% ��
 The lines �n%m% ��
through �n % �m % �� can be derived because they are identical to lines �n % ��
through �n % m % ��
 This is also true if either n or m are zero
 Thus the test
substitution set condition holds


Corollary ����� The clause set S� as de�ned by ���� characterises a resolution
K�transformation for the condensed detachment clause


So we have found a sound and complete transformer for the condensed detach�
ment clause� and in spite of the fact that S� is in�nite� � will only add a �nite

��



number of clauses when transforming a clause set
 Of course the transformation
could be implemented more elegantly if it could be described in terms of a �nite
clause set� but at least it is clear that it can be implemented
 We will not need to
argue about the structure of some in�nite result� or represent it in some �nite way

The result is �nite$

Disadvantage of This Transformer

Unfortunately� there is a serious problem with this transformer
 We argued on page
�� that even if a positive literal uni�es with in�nitely many pre�x literals in S��
the resolvent would always be the same� namely ����
 But ���� is nothing else but
the condensed detachment clause$ This means that if one of the clauses in the
clause set we want to transform has the form t�i�s�� i�s�� � � � � i�sn� w� � � ����� we gain
nothing by the transformation


This insight is not completely new� however
 Let us reconsider the euclideanness
clause� for example
 If we transform some unit clause that has a variable as second
argument� say R�a� x�� the transformation will add the euclideanness clause itself�
which is what we wanted to eliminate
 This is true whether we take the transformer
���� or the transformer ����


Intuitively one might say that transforming a very general clause will not yield
a very speci�c result


In the context of the condensed detachment clause� transforming unit clauses
of the form t�i�s�� i�s�� � � � � i�sn� w� � � ���� is something we will frequently have to
do
 Typically we want to show that some propositional logic formula is a tautology
by using some axiom schemes together with the condensed detachment clause

As we already mentioned� the terms of our meta logic �predicate logic� represent
formul. in our object logic �propositional logic�
 Axiom scheme means nothing else
but that such a term may contain �predicate logic� variables that stand for some
propositional formul.


A Slightly Better Transformer

There is one other thing we have not tried out yet
 On page �� it is said that we can
either add instances of the condensed detachment clause where t�w� is instantiated�
or where t�i�w� x�� is instantiated
 We have seen the former� but not the latter


The transformation is characterised by

S� �� ft�i�y� z�� 	 t�y� 	 t�i�y� z�� � t�z��

t�i�v�� i�y� z��� 	 t�y� 	 t�i�y� z�� � t�z��

t�i�v�� i�v�� i�y� z���� 	 t�y� 	 t�i�y� z�� � t�z��

� � �g ����

Compared to ����� t�y� is replaced by t�i�y� z�� in the pre�x literals
 The trans�
formation characterised by S� meets the test substitution set condition� too� but
we refrain from proving this
 The proof is much like for the �rst transformation


If we transform a unit clause t�i�s�� i�s�� � � � i�sn��� sn� � � ���� with this trans�
former� we will get n clauses
 The �rst transformer generated n % � clauses
 Tech�
nically this is for the following reason� In both cases the pre�x literals form an
in�nite chain of terms t�i�x�� i�x�� � � � i�xi��� si� � � ����� but the second transformer
starts this chain at a later point& it has no pre�x literal t�x�


There is another way to understand this
 The �rst transformer will generate an
instance

��



t�i�s�� i�s�� � � � i�sn��� sn� � � ���� 	 t�i�i�s�� i�s�� � � � i�sn��� sn� � � ���� y�� � t�y� ����

even if the nesting depth of all other clauses rules out that a clause uni�able with
t�i�i�s�� i�s�� � � � i�sn��� sn� � � ���� y�� will ever be derived
 In this sense� the second
transformer is most likely superior to the �rst


There is a second advantage
 In order for this transformer to generate the con�
densed detachment clause itself� in which case it would turn useless� it is necessary
that there is a unit clause t�i�x�� i�x�� � � � i�sn� i�w�� w��� � � ���� among the clauses
to be transformed �w� and w� are variables�
 With the �rst transformer� it was
su�cient that the last term was a variable in order for this worst case to happen

If w� is a term other than a variable� the second transformer will not generate the
condensed detachment clause� whereas the �rst will


Thus we still have the problem that our transformer might be pathological in
the sense that it does not eliminate the clause it is supposed to eliminate� but we
reduced the cases in which this will happen


As far as the condensed detachment clause is concerned� it must be admitted
that the second transformer is as pathological as the �rst
 However� the general
idea might work for other clauses that generate new terms by resolution� and we
have worked out that the choice of the selected literal may be of importance


��	 Finding Transformations for Clause Sets

It has been said on page �� that rather than eliminating one clause C� we can also
eliminate a clause set C 
 In this case S� should contain clauses in C plus some of
their self resolvents� resolvents� and subsumed clauses�


We shall now become more speci�c about �nding a clause set S� that charac�
terises a transformation for a clause set C


Recall that when we looked for a transformer for one clause C� we considered
a set S� �see page ���
 Let us rather write SC here� to emphasise that this set
depends on C
 This set contains clauses that might go into S�
 That is� S� is a
subset of SC 
 One possibility is that SC is the set of self resolvents of C �as proposed
in ����� or else it may consist of pre�xed clauses


Suppose we have decided on the way to construct this candidate set SC 
 We shall
now describe how we could enumerate clause sets S� that are likely to characterise
a resolution K�transformation for a clause set C


So we have a clause set C �� fC�� � � � � Cng that we want to eliminate


�
 For each Ci� construct the set SCi
that contains clauses that might characterise

a transformation for Ci
 Thus we have a set fSC� � � � � �SCn
g


�
 Since each SCi
contains clauses that might characterise a transformation for

Ci� it is reasonable to assume that a clause set S� that characterises a trans�
formation for C should contain clauses from the SCi




Therefore the next step is to generate �small� subsets Si of each SCi

 This

gives us a set S�� � � � � Sn
 No Sj should be the empty set� because this would
mean that the clause Cj �which is in C� has not contributed to the construction
of S� at all


�
 Now we might generate a few resolvents between the clauses from the SCi



For each resolution one partner should be in some Si and the other partner
in some Sj � where i �� j


�Actually it is not necessary that S� contains all clauses in C� We shall see an example where
S� does not contain all clauses in C�

��



�
 Take the union of all Si together with the generated resolvents


�
 For each clause in this set� select a negative literal
 The resulting clause set
�where the selected literals are marked� is a candidate for S�


A clause set S� generated in the described way indeed consists of �clauses in C
plus some of their self resolvents� resolvents� and subsumed clauses
�

The number of candidates that can be generated in this way is astronomic� and
still this procedure does not enumerate all S� that consist of �clauses in C plus
some of their self resolvents� resolvents� and subsumed clauses
�

Actually I have restricted the search described above even further
 The pro�
gram Transformator restricts the number of resolvents that may be added �see
point ��� to

	
n
�




 The idea is to allow one resolution between each pair �Si� Sj�


We shall see� however� that the practical results are not too bad
 I have imple�
mented this search� and the transformers presented in the following examples were
found by my program Transformator


Example ����� The �rst example is to illustrate that the search space is gigantic

Consider

C� �� R�x� y� 	 R�y� z� � R�x� z�

C� �� R�x� y� 	 R�x� z� � R�y� z�

C �� fC�� C�g ����

Suppose we try to �nd a transformation that is characterised by self resolvents

We shall only take self resolvents up to level � into account


The �rst clause has one direct self resolvent� the second clause has two
 Together
with the original clauses we get that SC� has � elements� and SC� has � elements


There are �� � � � � subsets of SC� of at least one element& likewise� there are
�� � � � � subsets of SC� 
 Thus there are � � � � �� ways to generate fS�� S�g


Now suppose that for a given fS�� S�g� we allow to add one resolvent
 Only one$
There are at most � clauses in S�� and at most � clauses in S�
 Thus there are at
most � � � � � ways to choose the two resolution partners


Assuming that we have chosen two resolution partners� each partner has at most
� negative literals and exactly one positive literal� resulting in at most � % � � �
possibilities for resolution


S� consists of the union of S� and S�� and possibly the added resolvent
 S� and
S� together have at most � elements
 The added resolvent has � negative literals�
whereas the original clauses C� and C� have two negative literals� and their self
resolvents have � negative literals
 Recall that for each clause in S�� a negative
literal must be selected
 There are at most � � �� � �� � ��
 ways to do so


Now of course� to get an upper bound for the number of candidates for S� under
these restricted conditions� we must multiply the numbers of possibilities at each
stage� that is

�� � � � � � ��
 � �
���
 ����

Our bounds were very rough
 Actually Transformator comes up with a
number of �
��� candidates for S�
 This is still terrible enough


It should be clear that one has to be very careful about the order in which the
elements of a set of this size are inspected
 The above computation of an upper
bound shows that there are several choice points
 If we represent each choice point
as an edge and the choices as arcs of a tree� we could say that each of the �
���
candidates is a leaf in that tree 
 Transformator inspects this tree in a way that
resembles breadth��rst�search


�




�

Example ����� In spite of the exploding size of the search space� we can often �nd
transformations for several clauses
 Let us see how transitivity and symmetry can
be removed at the same time


C �� fR�x� y� 	 R�y� z� � R�x� z��

R�x� y� � R�y� x�g

S� � fR�x� y� 	 R�y� z� � R�x� z��

R�x� y�� R�y� x��

R�y� x� 	 R�y� z� � R�x� z�g ����

The �rst two clauses in S� are the original clauses� the third is obtained by
resolving transitivity and symmetry
 Coincidentally the resulting clause is the eu�
clideanness clause


This transformation is presented in ���� but was also easily found by
Transformator
 It took about 

�� seconds to �nd this transformer


�

Example ����� We shall now give an example that illustrates that our search for
a transformation is not complete
 Consider

C� �� R�x� y� � R�y� x�

C� �� R�x� y� 	 R�y� z� � R�z� x�

C �� fC�� C�g ����

C� is symmetry� C� is what we called �circularity�
 Transformator found
the following transformation�

S� � fR�x� y�� R�y� x��

R�x�w� 	R�x� y� 	 R�y� z� � R�z� x��

R�w� x� 	R�x� y� 	 R�y� z� � R�z� x�g ����

Recall that C� and C� occur in Table ��
 C� is no
 �� C� is no
 ��
 If we look
at the transformations presented there� we see that we must simply take the union
of the two clause sets that represent transformations for C� and C�� respectively

This union is the set S� that characterises a transformation for both clauses at the
same time


Actually Transformator found S� in another way
 It only considered one
pre�xed clause for C�
 The other one was added because� coincidentally� it is a
resolvent of the pre�xed clause and the symmetry clause


Now there is an interesting point about C� and C�
 By one resolution step� we
can obtain the transitivity clause
 On the other hand� if we resolve transitivity and
symmetry� we can obtain C�
 Therefore we would expect that the transformation
for symmetry and transitivity together of Example �� is also a transformation for
C
 This is indeed the case


Transformator cannot �nd this transformation� however
 The reason is that
the S� of Example �� consists of C� plus two resolvents between C� and C�
 One
of these happens to be the transitivity clause� the other one happens to be the eu�
clideanness clause
 Transformator allows only

	
�
�



� that is� one resolvent between

C� and C� to be added to S�


��



Of course we could have omitted this restriction� but then again the search
space would have been even larger
 Improving this search for arbitrary sets of
clauses would certainly require a thorough theoretic analysis aimed to reduce the
search space


�

Example ����	 Our last example is a transformation for euclideanness and �cir�
cularity�


C �� fR�x� y� 	 R�y� z� � R�z� x��

R�x� y� 	 R�x� z� � R�y� z�g

S� � fR�x� y� 	 R�y� z� � R�z� x��

R�w� z� 	 R�x� y� 	R�x� z� � R�y� z��

R�z� v� 	 R�v� w� 	 R�x� y� 	R�x� z� � R�y� z�g ��
�

�

��
 Complexity

In this chapter we have described how a resolution K�transformation can be found

I have implemented these ideas� which will be the subject of the next chapter

My program is called Transformator and it can be used both for �nding a
transformation and for using it


In this section we shall investigate a few aspects of the complexity of �nding a
transformation and using a transformation
 This is done here rather than in the
next chapter because our analysis is essentially a theoretical one
 We shall make
statements about the size of the sets that have to be searched for a transforma�
tion
 This means that the statements have little if anything to do with the actual
implementation of Transformator


We shall argue that other aspects of complexity� namely those concerning the
implementation of Transformator� are negligible


We must make clear which aspects of complexity we want to investigate
 Possible
questions would be�

� How complex is it to �nd a resolution K�transformation for a clause of a given
size� This could be divided into di�erent parts such as� How complex is it
to compute self resolvents� to compute pre�xed clauses� to compute � for the
test substitution candidates etc
 Finally� how complex is it to prove the test
substitution set condition�

� How complex is it to transform a clause set of a given size using a transfor�
mation characterised by a certain S��

��
�� Finding a Transformation

Actually we shall neglect most of the questions listed above� and the justi�cation
for this is an empirical one
 It results from the experience with my Prolog program
Transformator� which will be described in Chapter ��


I have conducted several pro�ling experiments
 A pro�le of a Prolog program
gives information about how often a predicate was called during execution� how
much time was used up in the calls etc
 From these experiments it became absolutely
clear that in the process of �nding a resolution K�transformation� almost all of the
CPU time is used up in the attempts to prove the test substitution set condition
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Less than two percent of the CPU time is used up in predicates not directly related
to the proofs
 Considering how complex automated theorem proving is it seems
likely that for more complex clauses� this result should be even clearer
 In other
words� the length of the proof attempts grows worse than anything else


It is not very meaningful to attempt to express this more precisely
 After all�
how much time is used in the proofs depends on certain parameters determined by
the user
 The user can set these such that most of the time is used for other things
than for proving
 But then he will probably never �nd a transformer$ This will
become clear in Chapter ��


So as far as �nding a transformation for a clause C is concerned� almost every�
thing depends on three aspects�

�
 How many candidates for S� have to be tested�

�
 How many test substitutions are there�

�
 How complex is a candidate for S�� and� as a consequence� how complex is
formula �����

We shall now look at these questions


How many candidates for S� have to be tested�

Let us consider a clause

C �� R�x��� � � � � x�n� � R�x��� � � � � x�n� � � � � � R�xm�� � � � � xmn� ����

We have neglected here that some of the atoms may be negated because it is of
no importance for our analysis
 So we consider a clause of m literals
 There is only
one predicate symbol� which has arity n
 If we had several predicate symbols� we
would simply have to consider them separately


Some of the variables may be identical� of course

Assume we want to �nd a resolution K�transformation for C by investigating

pre�xed clauses
 We have seen in Section �� that there are two ways of doing this

We shall now consider the more general way


Corollary ��
�� Suppose we consider the following pre�x literals� A pre�x literal
is a literal that has R as predicate symbol� and some arguments of the literal are
instantiated with variables occurring in C


Let V be the number of variables occurring in C
 Then there are at most �V %��n

pre�x literals� which is less or equal �m � n % ��n

Proof�
This is a simple combinatoric argument
 We take a fresh instance of a literal with
R as functor
 Now we can choose the number j of arguments we want to instantiate
�j � n�
 Once we have chosen j� we have to choose which j arguments to instantiate

There are n arguments� so there are actually

	
n
j



possibilities for this choice
 Once

we have chosen which arguments we instantiate� we must for each argument choose
a variable from C used in this instantiation
 There are V variables� so there are V j

possibilities to do so�

Taking the sum for all choices of j we get

nX
j��

�
n

j

�
V j�n�j � �V % ��n ����

�If we allow double occurrences of variables� that is� Otherwise we would get V 	

V�j�	

possibili�

ties� and V j would be an upper limit for this� Actually Transformator does not consider double
occurrences of variables

��



The factor �n�j was added so it could be seen easily that the term on the left
side of the equation is simply the binomial expansion of the term on the right side


All in all� C has n �m arguments� so V can be n �m at most
 Thus we get

�V % ��n � �m � n % ��n ����

�

Now in contrast suppose we restrict the number of pre�x literals as it has been
proposed in Section ��


Corollary ��
�� Suppose we consider the following pre�x literals� A pre�x literal
is found by taking a fresh instance of an atom with R as functor and partially
unifying this atom with a literal occurring in C


Then there are at most m � �n pre�x literals

Proof�
So we have a fresh instance of an atom with R as functor
 Now we can choose from
m literals of C that we may use for partial instantiation
 Once we have done this
choice� we may choose for each of the n arguments whether or not to instantiate it

There are �n possibilities to do so
 Thus we have at most

m � �n ����

pre�x literals

�

Both of the above corollaries only give rough upper bounds for the number of
pre�x literals
 First� we neglected that we exclude pre�x literals that are equal to
a positive literal occurring in C �see Section ���


Furthermore� in the case of Corollary ��� the number of variables V will usually
be signi�cantly smaller than m � n
 For many prominent clauses like transitivity�
euclideanness� and the permutation clauses V actually equals m�n

� 
 We can also
reduce the number of pre�x literals by excluding double occurrences of a variable
in a pre�x literal


In the case of Corollary ��� there is another reason why the upper bound is
rough
 Many of the pre�x literals in consideration actually turn out to be equal

Take the euclideanness clause ����� for example
 If we take the fresh atom R�v� w�
and unify it with R�x� y� in the �rst argument� we will get R�x�w�
 If we unify
R�v� w� with R�x� z� in the �rst argument� we will also get R�x�w�
 The upper
bound of m��n given in Corollary �� assumes that this pre�x literal is enumerated
twice


Anyway� one point should be clear� If n is greater than �� �m � n % ��n grows
much faster than m � �n
 Since my experience suggests that we do not fail to �nd
transformers by restricting the pre�x literals in the proposed way� it is strongly
recommended to do so


Example ��
�� We give a little example to get a feeling for the upper bounds and
the actual number of pre�x literals
 Consider

C �� R�w� x� y� 	 R�x� y� z� � R�w� x� z�� ����

We have already seen this clause in Section ��
 Here we have n � �� m � ��
and V � �
 According to Corollary ��� we have at most �� % ��� pre�xed clauses�
which is ���
 The actual number of pre�xed clauses is ��


If we impose the mentioned restriction on pre�x literals� Corollary �� says there
will be at most � � �� pre�xed clauses� which is ��
 The actual number of pre�xed
clauses is ��


��



�

So far we have only considered how many pre�x literals there are
 This is� we
have said how many members the set S� has �see page ���
 A candidate for S� is
a subset of this set
 Thus there are actually �jS�j candidates for S�


This is not as bad as it sounds� however
 We shall see that the search for a
transformer is done such that candidates for S� that are singletons are preferred
and investigated �rst
 Often � can be characterised by a singleton


How Many Test Substitutions are there�

For the clauses we investigated� there was usually only one test substitution
 Corol�
lary �� explains why this was so
 When we look at clauses not containing function
symbols� the only case where we have to consider several test substitutions is that
the pre�x literal contains the same variable more than once


In principle the number of test substitutions can be enormous


Corollary ��
�	 Consider the clause C �� A� 	 � � � 	 An � An�� � � � � � Am
 Let
l �jL� j �recall that L� is the set of characteristic literals� see page ���
 Then there
are at most

��l�
m

����

test substitutions

Proof�
Have a look at equation ����


We give an inductive argument
 There is one substitution in )�� and � � ��l�
�



Now suppose that )i contains at most ��l�
i

substitutions
 For each � � )i� the
atom Ai��� can simultaneously be uni�ed with any subset K of L�
 There are �l

such subsets� so that )i�� contains at most ��l�
i
� ��l� substitutions


) is de�ned as )m
 Thus ) contains at most ��l�
m

substitutions

�

Again things are not as bad as it seems at �rst
 Often L� is a singleton� and
some of the test substitutions are unnecessary because they result in tautologies�
which are of no use in S�
 Furthermore� some of the resulting clauses may be
equivalent


Example ��
�
 Consider

C �� R�x� x� 	R�x� y� � R�y� z� ����

This is clause no
� of Table ��
 Corollary �� gives us an upper bound of ����
�

� �
for the number of test substitutions
 Actually there are only three relevant test
substitutions in this example


�

How Complex is the Test Substitution Set Condition�

To compute ����� � is computed separately for each literal of C
 Thus it is obvious
that the size of ���� depends on the length of C in a linear way


Now for the transformation of each literal Ai
 Ai is transformed by resolving it
with one of the literals in S�� or with none of them
 Thus ��Ai� contains jS� j %�
clauses


We can not say in general how many clauses S� contains for an arbitrary clause
C� but we can say that the size of formula �� depends on the cardinality of S� in
a linear way


We could not have expected any better result than this� but unfortunately� it is
bad enough� considering that the complexity of proving a formula is exponential


��



��
�� The Complexity of the Transformation Itself

We shall now turn to a completely di�erent question
 Once we have found a trans�
former� how complex is it to use it�

The last section has given us a hint to this question
 For one thing� a clause
set is transformed by transforming each clause in this clause set separately
 That
is� there is no dependency between the di�erent clauses in this set
 Thus we get an
obvious and very important result�

The time complexity of transforming a clause set ( is linear in the
number of clauses of (


Another question is� How complex is it to transform a single clause D� Recall
Def
 ��
 To generate a simultaneous resolvent� each positive literal of D is resolved
with one clause in S�� or not resolved at all
 Thus for each positive literal of D�
there are jS� j %� choices


Corollary ��
�� Let D be a clause and p be the number of positive literals of D

Let � be the transformation characterised by the clause set S�
 Then we have

j��D� j� �jS� j %��p ����

Proof� ��D� is de�ned as the union of all simultaneous resolvents between D and
S�
 Each positive literal can be resolved with any clause in S�� or not be resolved
at all
 This gives �jS� j %��p possibilities


�

Conclusion

We have only touched a few aspects of the complexity of clause K�transformations

It has become clear that �nding a transformation can be very complex in principle


On the other hand� applying the transformation is harmless
 There is a linear
relation between the size of the original clause set and the size of the transformed
clause set


This suggests that for a useful clause K�transformation� the clause to be removed
must be small relative to the clause set that is transformed
 Clauses like transitivity
and euclideanness are small by all means and �nding transformations for them is
easy


��



Chapter �

Implementation

In the previous chapters we have introduced di�erent algorithms or heuristics� we
might say� for �nding resolution K�transformations
 Now of course we would like to
automate this process


To be precise� we want to automate the following�

� Given a clause set S�� we want to transform a clause set ( with the trans�
former that is characterised by S�
 Afterwards we can use the transformed
clause set as input for a theorem prover


� Given a clause set S� and a clause C �or a clause set C �� we want to verify
whether S� characterises a resolution K�transformation for C �or C�
 This
involves automated theorem proving� and therefore no guarantee for termina�
tion can be given


� Given a clause C �or a clause set C�� we want to �nd a transformer for C
�or C�
 This search requires checking the test substitution set condition for
di�erent transformations


The tasks are listed in hierarchical order� so to speak
 The second task includes
the �rst� and the third task includes the second


I have written a Prolog program that performs these tasks
 The program is called
Transformator
 Transformator can be used on the Prolog interpreter level

If you want to �nd a transformer for some clause or just verify that a transformer is
complete� it is convenient to use Transformator this way
 Of course this requires
some basic knowledge of Prolog


Using Transformator on the interpreter level is certainly not convenient if
you want to transform �large� clause sets
 For this reason� I wrote a �le interface

Thus Transformator can be called on the operating system level
 The input �le
contains a clause set where the clause to be removed is marked in some way
 The
output �le contains the transformed clause set
 Using Transformator in this
way requires no knowledge of Prolog


I chose Prolog because we deal with logic formul. �clauses etc
�� and these can
be expressed very naturally in Prolog term syntax
 Furthermore� it lies in the nature
of our problem that we deal with multiple solutions
 For a clause C� there may be
several transformers
 Prolog is very suitable for enumerating these solutions


Outline of this Chapter

Section �� gives a very short overview of what Transformator computes

The following sections describe in some detail how Transformator works


There are several options the user can set� and for understanding the options it is

��



necessary to understand how Transformator works
 On the other hand� to use
Transformator� it is not necessary to understand all options that can be set
 If
an option is not set� �hopefully� reasonable default values are assumed


The description of Transformator is intended to abstract from the actual
programming language� Prolog
 Algorithms are shown using the usual �pseudo�
Pascal��notation
 Therefore we shall not speak of predicates� but rather of func�
tions� although this is not technically correct
 A reader not famliliar with logic
programming might not know what a predicate is� but she would certainly have an
idea of what a function is


There is a problem about this� however
 Prolog predicates are ideal for enumer�
ating multiple solutions
 On each subsequent call� a predicate is backtracked and
the next solution is computed
 This does not readily translate into the concept of a
function
 In these cases I have not translated the predicate into a function
 We use
the more general notion of an algorithm then� and rather than returning a result�
we shall simply say that we output the result
 The algorithm may then continue
and compute the next solution


The algorithm descriptions are simple enough so this should not be di�cult to
understand


Sections �� and �� give an exhaustive and technically precise description of how
Transformator is used
 But once again� it is not possible to understand in all
detail how Transformator is used without understanding how it works


For the reader who does not want to go into detail� it is recommended to read
Section ��� skip over Sections �� through �� and continue with Section �� or ��

These last sections contain references to the previous sections so that it is easy to
go into more detail as it is desired


Typographic Conventions

For text that occurs literally in Transformator� for text that is typed to the
terminal� and for �lenames we use typewriter font


On the meta level� that is to denote a predicate or other object in
Transformator in an abstract way� we use italic font
 For example we write
�option is called� if option stands for some option


We use sans serif font for function names
 Functions do not appear in the actual
code� but only in the �pseudo�Pascal� algorithm descriptions


Variable names occurring in these algorithm descriptions are written in slanted

font


��� Introduction to Transformator

We shall now look at the functions Transformator computes
 That is� only the
�rst three are functions
 The fourth� �nd upsilon is an algorithm that� in principle�
never stops
 It may compute more than one result� even in�nitely many� but it may
also compute no result at all


In the actual Prolog program� �nd upsilon is a predicate that enumerates multiple
solutions on backtracking
 This means of course that a solution that is found can
be used before other solutions are produced


Transforming Clauses� upsilon

upsilon�D�S�� computes ��D�
 Thus it returns a set of clauses
 Here D is a clause
and S� is a set of clauses that characterises the transformation �
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Transforming Clause Sets� upsilon list

While upsilon is used to transform one clause� upsilon list is used to transform sets
of clauses
 upsilon list�D�S�� calls upsilon for all clauses in D and returns the union
of all the results


Verifying the Test Substitution Set Condition� tss condition

Since �rst order logic is not decidable� in general we may not expect that any proof
procedure terminates
 When we call tss condition�C�S��time�� a theorem prover will
be given time milliseconds to prove that S� characterises a resolution K�transforma�
tion for C
 if tss condition returns true� we know that S� characterises a resolution
K�transformation for C
 If it returns false� this does not imply that S� does
not characterise a resolution K�transformation for C� It only means that
this could not be proven in the given time


tss condition also works for clause sets C rather than a single clause C �see
Section ���


Find a transformer� �nd upsilon

�nd upsilon can not be modeled as a function in a reasonable way� because it may
compute anything from zero to in�nitely many solutions
 These solutions are �out�
put�� whatever that means
 A solution is a clause set S� that characterises a
resolution K�transformation for the clause C


In the previous chapter we have introduced two di�erent ways of �nding candi�
date clauses for S�� either we create self resolvents� or we create pre�xed clauses

Transformator allows the user to choose between the two ways
 In either case
the search space will be enlarged in steps or iterations� we might say
 During the
�rst iteration� the test whether some S� characterises a resolution K�transformation
is limited to a certain time
 In the next iteration� this limit will be multiplied by
some factor
 This technique guarantees completeness in the sense that for a clause
a transformer of the kind we described will eventually be found� if it exists
 We
shall consider this enumeration process in more detail later


The time limit and the factor can also be determined by the user� thus controlling
the search in a certain way


�nd upsilon also works for clause sets C rather than a single clause C �see
Section ���
 However we shall not describe in detail how the search for S� is
realised for this case


��� Structure of Transformator

The central module is called killer
 In killer all functions supplied to the outside
are de�ned�
 Let us understand the structure of Transformator by sketching
what happens when �nd upsilon�C� is called�

�
 A candidate clause set S� �see page ��� is computed
 We hope that some
subset of S� will be the S� that characterises a resolution K�transformation

This computation depends on an integer L
 Initially it is �
 �L� stands for
�limit�
 The computation can be done in two ways�

�a� Look for self resolvents
 S� consists of all self resolvents that can be
obtained from C in L resolution steps
 Every non�empty subset of S� is

�If Transformator is used through the �le interface� there is an additional module interface
that translates the commands in the input �le into calls to killer�
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a candidate for S�
 The predicates that are related to the computation
of these self resolvents can be found in the module selfres


�b� Look for pre�xed clauses
 S� consists of all pre�xed clauses of C
 On
page �� it is explained that for clauses not containing function symbols�
S� is �nite
 Here the number L takes a slightly di�erent role
 Every
non�empty subset of S� having at most L elements is a candidate for
S�


�
 For each candidate S� the test substitution set condition is checked
 Test
instances C � are created
 upsilon is called to compute ��Ai �gr� for each
atom Ai of C
 The results are composed so that the formula of equation ����
is generated
 Then a theorem prover is called to check whether this formula
is a tautology


If it can be proven within a certain time that the candidate meets the test
substitution set condition� output it �and try to �nd the next solution if
desired�
 If not� try the next candidate


�
 If no candidate could be proven to meet the test substitution set condition�
go back to ��� but increment L and multiply the time limit by some factor
�which would have to be speci�ed�


Fig
�� gives an overview of the modules that form Transformator
 An ar�
row means that there are predicate calls from the pointing module to the pointed
module
 Now that we understand the basic structure of Transformator� we shall
explain some modules in more detail


��� Finding Candidates for S�� selfres

The module selfres contains the predicates that are related to computing self
resolvents of a clause C
 We have seen in the previous chapter that generating self
resolvents is one way to �nd transformers


We know that there may be in�nitely many self resolvents
 Therefore we must
enumerate them systematically
 There is a function that takes a clause C and a
number as arguments and computes all self resolvents up to this level
 This function
is shown in Fig
��


self resolvents�C� level� level � 
 ��C�� �Llevel�� � � � � �L� �� �� self resolvents�C�
level ��� Llevel �� all resolvents�C �Llevel�� � �Llevel �Llevel�� � � � � �L� � fuselfcompCom�
putation of self resolvents

The function all resolvents computes the list of all resolvents between C and
the clauses in Llevel�� 
 Corollary �� says that this is su�cient to compute all self
resolvents up to level level


self resolvents returns a list of lists of clauses
 Note that this is necessary for the
recursive call of self resolvents


The list �Llevel � � � � �L� � does not contain clauses that are tautologies
 These are
�ltered out
 From Corollary �� it is clear that tautologies are of no use in S�


When we form self resolvents in order to �nd transformers� there are two sim�
pli�cations that can be made�

� Subsumed clauses can be removed


� Clauses can be shortened using factoring

We shall now explain these simpli�cations


�
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Figure �
�� Overview of Transformator

	���� Eliminating Subsumed Clauses� subsumption

The list of self resolvents may contain clauses that are subsumed by other clauses

Subsumption of clauses is de�ned on page ��


Consider the transitivity clause� for example
 Resolution on the �rst negative
literal will yield the same resolvent as resolution on the second literal
 This is not
the case with all clauses� however
 I do not know how it could be decided looking
at a clause C whether self resolution will result in identical clauses or not


Therefore Transformator �rst generates all self resolvents� even if some of
them happen to be identical


The module subsumption contains predicates that have the task of removing
such redundant clauses
 Removing redundant clauses is expandable� of course

Therefore it is left as a choice to the user how much subsumption testing he wants
to be performed


The subsumption testing must be built into the process of generating self resol�
vents
 Suppose we have already computed �Ln� � � � � L��� that is� the self resolvents
up to the nth level
 Furthermore� we have computed the set of all resolvents of C
with the clauses in Ln
 Call this set L�

n��
 L
�
n�� may contain duplicates and clauses

that are subsumed by other clauses

The user can choose between three levels of subsumption testing�

� No subsumption testing
 Ln�� is L�
n��
 Thus the list of self resolvents com�

��



puted in this iteration may contain duplicates


� Subsumption testing within L�
n��
 Ln�� is instantiated to the list containing

the members of L�
n�� that are not strictly subsumed by another clause in

L�
n��
 If two clauses in L�

n�� are identical up to variable renaming� only one
clause is taken into Ln��
 One would expect that proper subsumption cannot
occur within self resolvents of the same level
 It can occur however� if we
modify each clause by factoring it
 This will be explained later


� �Global� subsumption testing
 Clauses in L�
n�� are tested for subsumption

by another clause in L�
n�� as well as for subsumption by a clause in a list in

�Ln� � � � � L��


The second level is the default

Now we turn our attention to another simpli�cation used by selfres� called

�factoring� or �condensing�


	���� Shortening Clauses� condensing

�Condensing� or �factoring� is another simpli�cation
 It is not a simpli�cation of
a clause set� however� but of a single clause


As an example consider the clause P �x��P �a�
 P �a� implies P �x��P �a�
 Fur�
thermore� P �x� implies P �a�
 Recall that x is considered as universally quanti�ed

Therefore P �x� � P �a� implies P �a�
 Together this implies that P �a� is equivalent
to P �x� � P �a�


Let us state this generally
 Let C be a clause
 If there are clauses C��C�� and
D and a substitution � such that

C � C� � C� �D
C� � � C�

C� � � C� and D� � D
����

then C� � D is equivalent to C
 Therefore we can replace C with C� �D
 We
say that C is condensed to C� �D


Condensing can be repeated� of course
 The user can choose whether self resol�
vents should be condensed or not by calling one of the following predicates�

� Self resolvents are condensed as long as possible
 This is the default


� Self resolvents are not condensed


Now that we have studied the module selfres and its children� we will turn to
the second strategy for �nding transformers� and to the module
prefixed clauses


��� Finding Candidates for S�� prefixed clauses

In order to �nd for a clause set S� that characterises a resolution K�transformation�
I have proposed another technique than the one presented in ���
 I described this
technique in Section ��
 All in all� this technique was simpler to implement than
the technique of �nding self resolvents


When we transform clauses without function symbols� the set of pre�x literals
is �nite
 And it is also �nite in a practical sense
 In the whole process of �nding S�
that characterises a resolution K�transformation� computing the candidates takes
very little time$ Practically all of the time is used up in the attempts to prove
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the test substitution set condition
 Therefore it can be a�orded to compute all
candidates at the very beginning before any candidate is tested for ����


The analogy of the function self resolvents �see page ��� is the function
pre�x clauses
 pre�x clauses�C� returns the set of all clauses composed of C plus
a pre�x literal
 Each clause in this set has fresh variables$

There are two ways to �nd pre�x literals �see page ����

� Take a fresh literal whose predicate occurs in the clause and partially instan�
tiate this literal with variables occurring in the clause
 All literals obtained
in this way are candidates for a pre�x literal


� Take only literals that are generalisations of literals that actually occur in the
clause
 This is the default


The way pre�x literals are computed di�ers considerably depending on which
pre�x literals are taken into consideration


	�	�� All Pre�xed Clauses are Considered

To compute a pre�xed clause for a clause C� �rst we collect all variables of C

Then we take a fresh instance of a predicate symbol of C
 Now we instantiate the
arguments of this fresh literal with some variables of C
 A literal generated in this
way is a pre�x literal
 Attaching it as a negative literal to C gives us a pre�xed
clause


prefix clauses collects all pre�xed clauses


An important point is that this is done in such a way that in the list of all pre�xed
clauses� the pre�xed clauses whose pre�x literals share many variables with C occur
before the pre�xed clauses whose pre�x literals share few variables with C


Take C � R�w� x� y� 	 R�x� y� z� � R�w� x� z�� for instance

R�w� x� y� 	 R�w� x� y� 	 R�x� y� z� � R�w� x� z� will be enumerated before
R�w� x� v�� 	 R�w� x� y� 	 R�x� y� z� � R�w� x� z�� and the latter before
R�v�� x� v�� 	 R�w� x� y� 	 R�x� y� z� � R�w� x� z�


We have seen in Section �� that the more variables the pre�x literals share with
the rest of the clause� the better the transformer is


The search for a clause set S� is done such that the clauses occurring early in
the list of all pre�xed clauses are preferred as candidates for S�


There are three other properties of prefix clauses that re#ect some of the
points made in Section ��

� The pre�x literal must share at least one variable with the input clause
 Oth�
erwise our transformer is useless �see Section ���


� For example� R�w� x� y� 	 R�w� x� y� 	 R�x� y� z� � R�w� x� z� is contracted to
R�w� x� y� 	 R�x� y� z� � R�w� x� z�
 In general� if the pre�x literal happens
to be identical with a negative literal� this negative literal is removed
 Tech�
nically� a clause containing the same literal twice will not be constructed in
the �rst place
 Conceptually� we should regard this as an optimisation �see
Section ���


� A pre�x literal must not equal a positive literal in the clause �see Section ���


These were all the pre�xed clauses we can get� but we can impose a restriction
such that fewer pre�xed clauses will be computed


��



	�	�� Restricting the Set of Pre�x Literals

So now we only consider pre�x literals that are generalisations of literals occurring
in the clause C
 Thus the pre�x literals are generated by taking a fresh instance
of a literal having a predicate symbol of C and partially instantiating that instance
with some literal of C


As before this is done in such a way that in the list of all pre�xed clauses� the
pre�xed clauses whose pre�x literals share many variables with C occur before the
pre�xed clauses whose pre�x literals share few variables with C


��� The Main Module� killer

killer de�nes all predicates that are accessible from the outside
 killer calls
predicates de�ned in other modules
 Fig
 �� gives an overview of the modules and
their relationships


We have said on page �� what we expect Transformator to do
 So killer

supplies the function upsilon� which is used to compute a resolution K�transforma�
tion for a clause C
 upsilon list computes a transformation for clause lists instead
of single clauses


Furthermore� tss condition is supplied to check the test substitution set condi�
tion


And then� �nd upsilon is de�ned to �nd a transformer for a clause automatically

killer uses the predicates de�ned in selfres and instances to �nd candidates

for S�� generates logic formul. and passes these to some automated prover in order
to check the test substitution set condition


Much in killer depends on the options set by the user
 These concern mainly
two aspects�

� Do we look for self resolvents or for pre�xed clauses as candidates for S��

� Which automated theorem prover do we use�

In �� we shall investigate the second aspect

Now we look at the �rst aspect
 Here we distinguish between two versions of

�nd upsilon�

� �nd self upsilon applies when we look for a transformation characterised by
self resolvents


� �nd pre�x upsilon applies when we look for a transformation characterised by
pre�xed clauses


I hope this avoids confusion


	���� S
 Consists of Self Resolvents

One way to look for transformers is to have S� contain self resolvents of the clause
to be removed
 The user can set a #ag to choose this kind of search
 This is not
the default


�nd upsilon was introduced on page ��
 Here we call it �nd self upsilon to empha�
sise that the transformation we look for is characterised by self resolvents
 Fig
��
sketches how this algorithm �or predicate� works


�nd self upsilon�C�initial�factor� level �� 
 � time �� time limit�level� initial�
factor�SR �� self resolvents�C� level� +S� � SR L �� select literals� +S��S� � Ltss condition�C�
S�� time� S� fuselfFinding �� characterised by self resolvents

��



As the line level �� 
 � suggests� �nd self upsilon can �nd anything from zero
to in�nitely many solutions
 Therefore it does not make much sense to model this
predicate as a function


In reality the Prolog predicate find upsilon enumerates the solutions one by
one
 In the real code the forall� and for�statements are backtrackable predicates
 I
wrote level �� 
 � rather than level � IN because this correctly re#ects how the
enumeration takes place� Small solutions are enumerated �rst$

There is an important point not re#ected in a forall�statement occurring in this
algorithm description� and also in others� Whenever subsets are enumerated� this
is done such that small subsets come before large subsets�


The function time limit can be described by the following simple formula�

time limit�level� initial� factor� �� initial � factorlevel ��
�

This means that for the self resolvents of level 
� the time limit has the value
initial
 Whenever the level is increased by one� the time limit is multiplied by factor

factor should be greater than �� of course


The function self resolvents computes the set of all self resolvents of C up to level
level�
 I emphasise �up to�$ It does not only compute the self resolvents that have
exactly this level


+S� is a subset of SR� thus a set of self resolvents
 However� it is not speci�ed
what the selected literals are
 This is what select literals is used for
 It returns a set
containing several copies of +S�
 In each copy� other literals are marked as selected
literals


For example� if +S� is a set of three clauses and each clause has two negative
literals� select literals returns �� � � copies of +S�� because there are � ways to choose
the selected literals


tss condition returns true if it could be proven in time milliseconds that S�
characterises a resolution K�transformation for C


In�nity

We can spot two sources of in�nity in Fig
��
 The one is the line
level �� 
 � 
 The other source is that testing the test substitution set condition
requires automated theorem proving
 The only way we could control this in�nity is
having an argument time for the function tss condition that limits the time for the
proof


Note that the actual Prolog predicate find upsilon enumerates one S� after
the other
 We shall now have another close look at how this enumeration is done


Consider Fig
��
 On the horizontal axis there are the candidates for S�
 Con�
sidering that we can only handle �nite sets S�� the set of all potential S�� that is�
the set of all �nite subsets of the set of self resolvents� is in�nite but enumerable


On the vertical axis there is the proof length �or proof time� if you want�

Each vertical line stands for a proof attempt
 Some of the proof attempts are

not �nite
 The candidates for S� become larger and larger� therefore the proofs that
succeed become longer and longer
 Not necessarily� of course� but as a tendency


We guarantee completeness by a sort of diagonalisation

First we cover the proofs below the lowest diagonal line� then below the second�

and so on
 Our strategy is not only complete� but it also attempts to �nd a small
S�
 First we expect ���� to be easier to prove for a small S�� and second we expect
that a small S� characterises a better transformer


�Actually I had to modify the Prolog predicate sublist for this purpose�
�When we introduced self resolvents in Fig��� we said that it returns a list of lists� This was

necessary for the recursive call� From now on we shall neglect this minor point�

��
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Figure �
�� Self resolvents
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Figure �
�� Pre�xed literals

The performance of this strategy will be very sensible with respect to the initial
CPU time limit and the factor by which this limit is multiplied in each iteration

Ideally� they should be such that the set S� is caught in the �rst try
 The number
of candidates for S� grows exponentially� with the level of self resolvents
 Thus if
S� escapes the �rst time due to a time�out� it has to be re�found in a much larger
set


On the other hand� we should not waste too much CPU time trying to prove

formul. that are not tautologies
 My experience with the leanTAP theorem prover
is that these calls of a proof procedure will not terminate unless timed out
 The
Otter prover� however� will usually terminate before being timed out


Example 	�
�� Let us look at permutation clauses
 Take

C �� R�x�� x�� � � � � xn� � R�xn� x�� x�� � � � � xn��� ����

We have seen in Corollary �� that the transformer for this clause is characterised
by the set of all self resolvents of C up to the �n� ��th level


For n � �� the leanTAP theorem prover needed about 

�� milliseconds to prove
the test substitution set condition& for n � �� it took about �
� milliseconds
 An
increase of n by one caused the proof to last around �
� times longer
 Thus the
example suggests that it is reasonable to let the CPU�time rise exponentially with
the level of self resolvents


Recall that the initial CPU time limit and the factor can be given as arguments

The defaults are �
 milliseconds and a factor of two


�

�Even if the number of self resolvents depends on the level only by a linear function� the number
of subsets of the set of self resolvents grows exponentially�

��



	���� S
 Consists of Pre�xed Clauses

By default� we search for a transformer where S� consists of pre�xed clauses

Here we shall speak of �nd pre�x upsilon rather than �nd upsilon to emphasise

that we look for a transformation characterised by pre�xed clauses

�nd pre�x upsilon is shown in Fig
��


�nd pre�x upsilon�C�initial�factor� PC �� pre�x clauses�C�cardin �� � � time

�� time limit�cardin� initial� factor�S� �PC where /S� �cardin tss condition�C�
S�� time� S� fuprefFinding �� characterised by pre�xed clauses

Let us compare Fig
�� and Fig
��
 The most important di�erence is that
pre�x clauses is called before time limit
 In contrast� the call to self resolvents is

nested into the for�loop
 pre�x clauses is only called once
 For a clause without
function symbols� the set of pre�xed clauses is �nite
 It is computed at the very
beginning of the search


However we prefer a small S� to a big S�
 cardin stands for the cardinality of
the present S� candidate


In�nity

When we look at clauses without function symbols� PC is a �nite set
 S� is a subset
of this set
 Thus in contrast to ��� �nd pre�x upsilon can not �nd in�nitely many
solutions
 However� checking the test substitution set condition for some clause set
S� will still not terminate in general


Furthermore� we are interested in �nding a set S� as small as possible that
characterises a transformation
 Therefore we start enumerating all subsets of PC
having size �
 Again� we limit the CPU�time for checking the test substitution set
condition
 If this does not yield a transformer� we enumerate all subsets of size less
or equal � and multiply the CPU�time limit by some factor� and so forth


Fig
�� illustrates how this works
 Compare this to Fig
��$ We have only one
source of in�nity
 The horizontal axis is �nite
 Nevertheless we apply a similar kind
of diagonalisation for reasons of e�ciency
 We prefer a solution in the lower left
corner
 So this is where we start our search


Example 	�
�� The proofs of the test substitution set condition for the clauses of
Table ���� took between 

� and � milliseconds� except for clause no
�� which took
�� milliseconds� but clause no
�� is the only clause for which S� has two elements�
so this is no surprise


For the clause shown in Section ��� the proof took about seven milliseconds

�

No matter how we choose our candidates for S�� our diagonalisation ensures
that every S� that ful�lls the test substitution set condition will eventually be
given enough time for the proof to succeed


	���� The Test Substitution Set Condition� tss condition

We shall now look at tss condition

tss condition�C�%S��time� serves to check the test substitution set condition


C is a clause� S� is a list of clauses� and time is a limit for the CPU time �in
milliseconds�


tss condition works as is shown in Fig
��

tss condition�C� S�� time� L� �� char lits�S��one � condition�L�� formula ��

tssc formula�C�� S�� prove�formula� time�) �� test substitutions�C� L��� � )
formula �� tssc formula�C�� S�� � prove�formula� time� falsetruefutssTesting the
test substitution set condition

��



char lits computes the set of characteristic literals �see Def
 ���

one � condition checks the condition of Corollary ��
 If this condition is ful�lled�

we must consider only one test substitution �
 � simply �freezes� the variables of
C
 When we look at clauses without function symbols� this condition is ful�lled
unless one variable occurs twice as argument of the same characteristic literal


The then�Case

The function tssc formula computes the formula ����
 The function prove calls
some automated theorem prover and gives this prover time milliseconds to prove
that formula is a tautology
 If the prover succeeds� S� does indeed characterise a
resolution K�transformation for C
 Thus true is returned


If the prover does not succeed� false is returned
 This may be due to the time
limit and thus by no means implies that S� does not characterise a resolution
K�transformation for C $

The else�case

If the condition of Corollary �� is not ful�lled� test substitutions is called to compute
) �see Def
 ���
 Technically� not )� but the test instances are computed
 At no
time do we keep substitutions as a data structure


If ���� fails for any test substitution� the loop is interrupted and false is returned

Otherwise� true is returned


	���	 Otter or leanTAP

The test substitution set condition is checked by a theorem prover� of course
 The
user can choose between two theorem provers
 tss condition works very di�erently
depending on the proof procedure the user chooses
 There are three possibilities�

� The leanTAP prover is used
 The leanTAP prover is written in Prolog
 It is very
small� and for short clauses �transitivity� euclideanness etc
� it performs well

Apart from that� calling a Prolog predicate from a Prolog program seems a lot
more trustworthy than making systems calls from a Prolog program� which

we have to do if we want to use a non�Prolog prover
 Therefore leanTAP is
used by default


� The Otter theorem prover is used
 Otter is very fast
 However this shows
only when proving formulas of a certain size
 Usually a time span of� say�
one second is neglectable when we are talking about theorem proving
 For
our purposes it is not$ Typically we will test dozens or hundreds of formul.
before we encounter an S� that characterises a transformation
 The actual
proof for S� may only take a few milliseconds


Apart from that� the Otter theorem prover can not be forced to quit after less
than one second
 So it is pointless to use Otter if the proof is to be timed out
after less than one second


� Another possibility is to use leanTAP as long as the CPU time limit is smaller
than a certain number speci�ed by the user� and use Otter as soon as the
CPU time limit is at least this number
 Recall that the CPU time limit is
computed by a function time limit �see page ���
 Roughly speaking the CPU
time increases with the size of the candidate for S�


A reasonable choice would be to switch to Otter as soon as the proof time
limit exceeds one second
 For one thing� Otter can not be timed out earlier


��



Furthermore� one second is about the order of magnitude where Otter starts

to perform better than leanTAP 


A leanTAP Pitfall

In theory S� is a set of clauses
 In Transformator� this set is represented as a list

In theory the elements of a set are in no order
 In practice� the members of a list

are in some order
 Depending on this order� the transformation of a formula yields
di�erent results
 Of course these di�erences are of a very trivial kind
 Nothing is
di�erent except of the order of subformul. in a conjunction


The problem is that leanTAP sometimes reacts very� very sensibly to such di�er�
ences$ Recall the clause R�x� y� 	 R�y� z� � R�z� x� �see Table ���
 Here S� has
two elements
 Depending on the order of these elements tss condition will run
several milliseconds or several hours
 And one can easily imagine that the formul.
in question are not very large


How can we solve this problem in general� It would be hopeless to predict in
advance which permutation of S� will result in the shortest running time of prove
and permute S� accordingly
 In order to mitigate the problem we allow the user to
have all representations of S� tested rather than just one


If S� has two or three elements� testing all its permutations is not much of a
problem
 If S� has more elements� it is absolutely out of question to test all the
permutations


By default� only one representation of S� will be tested


tss condition and Otter

Otter is a very powerful theorem prover written by William McCune �see ����

Otter is written in C and is basically non�interactive
 Input and output is done via
standard input and output
 These can be redirected by UNIX c� pipes as usual
 So
typically Otter would be called by something like

otter � input��le 
 output��le ����

Fortunately it is not necessary to create �les for the communication between
Transformator and Otter
 The two programs communicate via streams
 SICStus
�

 provides predicates for stream input and output


This starts with the call

exec�otter� �pipe�In�� null� null�� PID� ����

The variable In is instantiated to a stream that is used by Otter as input
 The
output and error streams are connected to �dev�null


Otter does not start to work on this input before the stream is closed
 Now
Transformator writes the formula ���� �in Otter syntax� onto this stream
 Fur�
thermore� it writes some other things that are required for an Otter input �le


It is possible to set a #ag in the input stream or �le such that the CPU time
for the proof search is limited
 Thus Transformator delegates the responsibility
of limiting the CPU time to Otter directly rather than interfering while Otter is
running


The only disadvantage is that the limit must be one second at least
 However�

for problems of a very small size leanTAP should be favoured anyway

When the formula is written onto the stream� the stream is closed� and

wait�PID� 	
�
�� ����

��



causes Transformator to wait until Otter has �nished its work
 The second
argument
 of wait is the exit status of Otter
 It is ����� i� Otter �nds a proof

Termination of Otter is guaranteed because of the time limit


��� Eliminating Clause Sets

tss condition and �nd upsilon also work for clause sets C rather than a single clause
C
 Thus we can verify that a clause set S� characterises a transformation for a
clause set C� and we can also attempt to �nd a clause set S� that characterises a
transformation for a clause set C


The former is easy� whereas the latter is not� due to the gigantic search space

It has been shown in Section �� how candidates for S� can be generated
 Of course
it is crucial to enumerate simple candidates �rst
 It would be hopeless to �nd a
transformation by inspecting the candidates in a �depth��rst�search��way


We shall not describe in detail how the search is realised
 The basic idea is a
diagonalisation as described on page ��
 From Section �� it should be clear that
this diagonalisation is much more complicated than in the case of the elimination
of just one clause


Furthermore� we do not claim any kind of completeness of this search
 Of course
it would have been possible� given a clause set C� to enumerate all sets that consist
of clauses in C� self resolvents of clauses in C� clauses subsumed by clauses in C� and
resolvents between all of the latter
 Practically� it would be impossible to inspect
all of these sets


As long as we do not have any further theoretical criteria to reduce this search
space� all we can do is impose certain restrictions that seem reasonable following
our intuition
 The examples of Section �� show that this works quite well


��	 Other Modules

The module make formulae contains predicates that actually generate the logic
formul. that have to be veri�ed to check the test substitution set condition


lists and clauses contains some auxiliary predicates that relate to lists and to
the terms that represent clauses
 The predicates are similar to usual list predicates
like member� append


The predicates in lists and clauses are used by all other modules
 This is
not depicted in Fig
�� to keep the picture simple


help de�nes some predicates that print help messages for the user


leantap contains the leanTAP theorem prover
 nnf contains a predicate that
computes the negation normal form for an arbitrary formula
 These two modules
were designed by Bernhard Beckert and Joachim Posegga ������ with minor changes
by myself


Finally� interface de�nes some predicates that manage the �le interface �see
Section ���


��
 Meta Predicates

Let us make some general remarks about the implementation of Transformator


�The strange number of ����� has to do with a peculiarity of UNIX c� calls� The Otter manual
says that Otter returns the status ��� i
 a proof is found� However this only refers to the low�order
eight bits of the exit status� So in order to translate the status obtained by wait into the status
described in the Otter manual� we have to cut o
 the second byte� that is� divide by ��� �����
Note that ����� � ��� � ��� �see ��� p����	��

�




Transformator uses meta predicates very often
 A meta predicate is a pred�
icate that deals with information about the execution state of the program
 For
example� it could be queried whether a variable is instantiated at a certain point
of time
 Such a thing cannot be expressed in Pure Prolog
 Two other important
examples are the use of time out and the interaction with Otter


One could name single reasons for each use of a meta predicate
 On a more
abstract level however there is one very important reason� the dual function of
Prolog variables 


On the one hand Prolog variables serve the purpose that variables in a program�
ming language always serve� to represent an object
 In a sense which depends on
the programming language the variables will �nally be instantiated to the objects
that are the result of the computation


Now what is an object in our context� Essentially our domain is logic � and our
objects are logic formul�� clauses and clause sets in particular
 In general� logic
formul. contain logic variables
 In our representation of formul.� logic variables
and Prolog variables are identi�ed
 This is sensible even if it were only for the

interaction with leanTAP � which uses the same technique


However this also constituted one of the di�culties of the programming task�
keeping the two purposes of variables carefully apart� not allow logic variables to
be instantiated by mistake and the like


��� Using Transformator Directly

Transformator is written in the Prolog programming language� more precisely�
in SICStus Prolog ���
 For an introduction to Prolog see ���
 For the particular�
ities of the SICStus �

 implementation see ���


Transformator only runs under SICStus ���� not under earlier ver�
sions� I use several built�in predicates of SICStus �

� such as uni�cation with
occurs check


This section explains how Transformator is used on the Prolog interpreter
level
 If Transformator is to be used to �nd a transformation for some clause or
to verify that some clause set S� characterises a transformation� this is a convenient
way to use Transformator


It is also possible to transform clauses and clause sets on the Prolog interpreter
level
 It is not very convenient� however
 For this task� it is recommended to use
the �le interface described in the next section


Using Transformator on the Prolog interpreter level requires some basic
knowledge of Prolog� of course
 Furthermore� it is necessary to understand how
the objects we deal with are represented


Following the convention used in Prolog manuals� and also in the language itself�
predicate�arity means that the predicate predicate has arity arity
 For example we
might say �we used append��� in order to express that we used append and that
append has three arguments


When no confusion can arise� we shall often identify a predicate with a call to
that predicate
 E
g
 we say �the predicate succeeds� instead of �the call to this
predicate succeeds�


	���� Representation of Clauses and Clause Sets

Function� predicate� and constant symbols can be arbitrary Prolog atoms
 Logic
variables are represented as Prolog variables
 Logic atoms are represented in a
canonical way� that means� a logic atom composed of symbols following the above

��



rules �Prolog atoms for non�variable symbols� Prolog variables for variables� is syn�
tactically identical to the representation of this logic atom in Transformator


At this point I should say that we must not confuse Prolog atoms and logic
atoms$ Prolog atoms will serve as function� predicate� or constant symbols
 A logic
atom is composed of a predicate symbol and argument terms �see page ���


Literals are not represented as such
 Only in a clause can an atom be known as
representing a positive or negative literal


Clauses are represented by Prolog terms of the form

clause�P �N � ����

where P and N are Prolog lists 
 The elements of P and N are logic atoms
 P
stands for the set of positive literals and N stands for the set of negative literals

The only way to recognize the logic atoms in N as negative is their position in this
list


For example the transitivity clause for a predicate p is represented as

clause��p�X� Z��� �p�X� Y�� p�Y� Z��� ����

Clause sets are represented as Prolog lists of clauses

When we say �C is a clause�� we mean �C is instantiated to a Prolog term

representing a clause according to the above syntax�


	���� Loading Transformator

Transformator is supplied as a directory containing �� SICStus modules�
 Recall
that Transformator runs under the SICStus ��� interpreter� usually invoked
by sicstus�
 Loading Transformator in a SICStus interpreter is done by the
call

use module�killer��

The other SICStus modules are called from the killer module automatically


	���� Predicates

It has been said that there are three �or if transforming clause sets is counted sep�
arately� four� tasks Transformator can perform
 These are explained in Section
��
 For each of these tasks� there is a corresponding Prolog predicate


Apart from these� the user can set certain options
 Technically� setting an option
is also done calling a predicate
 But here we shall only treat the four main predicates
supplied by Transformator


Some predicates have several versions with di�erent arities
 The reason is very
simple
 There are some arguments that the user may� but does not need to give� to
the predicate
 If the argument is not supplied� a default value is assumed


We shall now list the predicates� explain them shortly and say what arguments
they require


upsilon��

upsilon�D�S��transformed� instantiates transformed to ��D�
 ��D� is a set of
clauses represented as a list


At the time of the call� D must be a clause
 S� must be a list of clauses
where each clause has its own set of variables
 D and S� must not share variables

transformed must not be instantiated


�and four shellscripts �see next section�

��



If these conditions are met upsilon always succeeds
 It is basically a functional
predicate


upsilon list��

While upsilon�� is used to transform one clause� upsilon list�� is used to
transform sets of clauses
 upsilon list� DL�S��transformed� calls upsilon for
all clauses in DL and appends the resulting clause lists to obtain transformed


At the time of the call� DL must be a clause list
 S� must be a list of clauses
where each clause has its own set of variables
 DL and S� must not share vari�
ables
 Two clauses in DL may share variables� however
 transformed must not be
instantiated


upsilon list is also a functional predicate� of course


tss condition�	 ��

tss condition�C�S��time� holds if S� can be proven to characterise a resolution
K�transformation for C in time milliseconds


tss condition�C�S�� holds if S� can be proven to characterise a resolution
K�transformation for C in �



 milliseconds


At the time of the call� C must be a clause or list of clauses
 S� must be a list
of clauses where each clause has its own set of variables
 time must be a positive
integer


find upsilon�	 �� �
 ��

find upsilon�C�S�� instantiates S� to a list of clauses that characterises a reso�
lution K�transformation for C� if it succeeds


find upsilon�C�S��total� is the same as before� only that the argument total
is a limit for the total time �in milliseconds� the search may last
 If no transformer
was found by that time� the predicate fails
 The time limit refers to real time
rather than CPU time
 The limit is quite rough� because it would be anything but
good programming style for a Prolog program to test a time limit every twenty
milliseconds
 Using time limits at all is bad enough$ Practically this is not a
problem


When we call find upsilon�C�S��initial time�factor�� the arguments
initial time and factor are used to control the search
 This is explained in Sec�
tion ��
 initial time is the initial time in milliseconds


Finally there is find upsilon�C�S��initial time�factor�total�
 This should be
clear


At the time of the call� C must be a clause or list of clauses
 S� must be
uninstantiated
 initial time and total must be positive integers� factor must be a
#oat or integer greater than �


When one of the versions of find upsilon having two� three� or four arguments
is called� this invokes a call to find upsilon��� where default values are assumed
for initial time� factor� and total
 The default values are�

initial time � �
 �milliseconds�

factor � �

total � �








 �milliseconds� � �� days

��



Predicate Description page

instances S� consists of pre�xed clauses �default� ��
selfres S� consists of self resolvents ��

leantap The prover leanTAP is used �default� ��
otter The prover Otter is used ��
switch�ms� The prover Otter is used for proofs whose time limit

is at least ms milliseconds
��

noperms Only one representations of S� is checked �default� ��
perms All permutations of S� are checked ��
someprefixes A pre�x literal must be a generalisation of a literal

occurring in the clause �default�
��

allprefixes A pre�x literal is a literal with at least one variable
from the original clause

��

condense Self resolvents are shortened by condensation
�default�

��

nocondense Self resolvents are not shortened by condensation ��
no subsumption No subsumption tests are done for S� ��
min subsumption No self resolvents are considered that are subsumed

by other self resovents of the same level �default�
��

max subsumption No self resolvents are considered that are subsumed
by other self resovents of any level

��

silent Transformator runs in silent mode 0
verbous Proof attempts are reported �default� 0

Table �
�� List of options

	���	 Options

Various options were introduced throughout this chapter
 Technically these are
realised by predicates of arity 
 or � that are asserted or retracted from the database

This is not done by the user directly
 It would be awkward to have to retract the

!Otter!�#ag in order to use leanTAP � for example
 The user just calls predicates
with generic names
 There are Prolog clauses in the database that will actually
retract and assert the former predicates
 Table �� gives an overview of all options
and defaults
 The third column contains references to the pages where these options
are explained in detail


	���� Help

Apart from the main predicates and the options� there are a few predicates related
to help
 These are

� Call help�� and you see which options you can set and which help messages
you can obtain


� Call explain�� to get a very brief description of Transformator


� Call flags�� to get the current setting of all options


� Call defaults�� to set all options to their default values


���
 Using the File Interface

This section explains how Transformator is used via the �le interface
 The
structure of this section is similar to the last section


��



The �le interface is designed for interaction with the Otter theorem prover

This is not to be confused with the internal use of the Otter theorem prover in
Transformator
 The idea is that an Otter input �le can be pre�processed using
a resolution K�transformation


Thus the input �le for the killer transformation program is very much like an
Otter input �le� or in other words� an Otter input �le can be used as input for
Transformator after a little editing


The Otter syntax is explained in detail in ���


Essentially� an Otter input �le contains a clause set
 If we want to transform
this clause set with a resolution K�transformation� we have to mark the clause we
want to remove
 Then we give this �le to the transformation program
 The output
of Transformator contains the transformed clause set� which can be given to
Otter for proving


If we only want to �nd a transformation or verify that a clause set S� char�
acterises a transformation� this can also be done using the �le interface� although
this can more conveniently be done using the SICStus interpreter directly �see pre�
vious section�
 If the user wants to solve several problems� it is also faster to use
Transformator on the interpreter level because the Prolog program has to be
loaded only once� and then the user can make as many queries as desired


Anyway� using the �le interface� the syntax for the input �le is always in an
Otter�like fashion


	��
�� Input File Syntax

On page �� it has been said that there are three tasks we want to perform
 For
each� a shellscript is provided so that actually there is a program for each


It should be clear that the di�erent tasks require di�erent inputs
 For example�
it does not make sense to give the clause set S� as input if this is exactly what we
want Transformator to �nd


However� the routine reading the input does not take this into consideration

Thus the syntax of the input �le can be described in a uniform way� independent
of which of the programs we use
 If we give an input that does not make sense in
the particular context� e
g
 give the clause set S� as input if we want to �nd S�� it
does not hurt
 This input will simply be ignored


Otter accepts clause lists as well as logic formul� as input
 However�
Transformator computes a transformation of clauses
 Therefore
Transformator only accepts clause lists
 Applying the transformation to general
formul. would require transforming the formula in clause normal form �rst


Transformator requires the use of Prolog style variables� i
e
� a variable starts
with a capital letter or an underscore
 Otter understands Prolog variables� but a
#ag has to be set


Otter maintains three lists of clauses called sos� usable� and passive
 It is not
relevant for our purposes what these mean� only that Transformator preserves
the distinction
 That is� if a clause D is contained in the list sos in the input
�le� the result of transforming D is written to the list sos in the output �le� and
accordingly for the other lists


Thus clause lists are input in real Otter syntax� and they are actually �under�
stood� by Transformator
 Transformator can read in the clause lists and
transform the clauses contained in them


Furthermore� there are a few commands� or options� especially designed for
Transformator
 In other words� these commands are only �understood� by
Transformator
 These are in a syntax similar to Otter syntax� but each option
is preceded by !killer ! to avoid confusion with Otter commands


��



Everything else is not �understood� by Transformator
 Any line in the
input �le that is not �understood� will simply be forwarded to the output �le
 It is
assumed that it is some Otter command
 If it is not� this is Otter!s problem$

The following lines in the input �le are understood by Transformator�

� killer list�remove�� This marks the beginning of the list of clauses that
are to be eliminated
 Of course this list can consist of one clause only


The list has to be terminated by the line �end of list�� �this is usual Otter
syntax�


� killer list�s ups�� This marks the beginning of the list of clauses in
S�
 Just as before� the list has to be terminated by the line �end of list��

� killer set��ag�� This is to set the #ag �ag
 The #ags will be explained
later


� killer clear��ag�� This is to withdraw a #ag


� killer assign�parameter�value�� This is to assign a value to a parameter

The parameters will be explained later


	��
�� Commands

It has been said in the last section that Transformator is supplied as a directory
containing �� SICStus modules and four shellscripts �see next section�
 When we
use the �le interface� this directory must be our working directory


When we use Transformator on the SICStus interpreter level� we have predi�
cates for each task Transformator can perform
 Using the �le interface� we have
a command for each task
 Each command corresponds to a shellscript that starts
Prolog and calls the according Prolog predicates


In each case� the input �le is given as an argument
 The output is written to
standard output and can be redirected using UNIX c� pipes


In the following list of commands� S� stands for the clause list contained in the
input �le and started by the line killer list�s ups�� C stands for the clause list
following the line killer list�remove�
 This should be clear from the description
of the input �le syntax


� transform transforms the clause lists in the input �le using the transfor�
mation characterised by the clause set S�
 The transformed clause lists are
written to standard output


� tss condition veri�es that S� characterises a resolution K�transformation
for C
 Depending on the success of this veri�cation� a message is written to
standard output


� find upsilon tries to �nd a transformation for C
 The result is written to
standard output


� find�transform tries to �nd a transformation for C and transforms the
other clause lists using this transformation
 The transformed clause lists are
written to standard output


��



Parameter Description page

switch The prover Otter is used for proofs whose time limit
is at least the value assigned to this parameter �in
milliseconds�
 Must be set to a positive integer


��

initial time or
time

Sets the time limit �in milliseconds� for proofs dur�
ing the �rst iteration
 Must be set to a positive
integer


��

total time Sets the time limit �in milliseconds� for the whole
process of �nding a transformation
 Must be set to
a positive integer


0

factor Sets the factor by which the time limit is multiplied
for subsequent iterations
 Must be set to an integer
or #oat 
 �


��

solution number When the command find upsilon is used� this pa�
rameter can be used to choose the number of solu�
tions for S� that should be output
 Must be set
to a positive integer
 If this option is not set� the
number defaults to �


0

Table �
�� List of parameters

	��
�� Options and Parameters

Various options were introduced throughout this chapter
 Furthermore� when we
used the SICStus interpreter directly� some of the predicates had various arguments

When we use the �le interface� all these options can be chosen and all the arguments
can be given to the predicates just as well
 Technically this is done in a uniform
way� following the style of Otter #ags and parameters


All options listed in Table �� except switch�value�� silent� and verbous can
be set simply by having a line �killer set�option��� in the input �le
 When this
�le is processed� this line is directly translated into a Prolog call to the predicate
option


It is also possible to clear an option� but not recommended� because it is con�
fusing to do so
 For example� killer clear�leantap� will cause Otter to be used
to test the test substitution set condition
 However� it is much more sensible to use
killer set�otter� for this purpose


A parameter is assigned a value using killer assign�parameter�value�
 The
parameters are listed in Table ��
 The last column contains references to the pages
where the meaning of the parameters is explained in more detail


Example 	����� A simple example will illustrate most of the points we have made
in this section
 Consider the �le example�

set�hyper�res��

set�prolog�style�variables��

killer�assign�initial�time�����

killer�assign�factor����

list�sos��

p�a�b��

p�b�c��

end�of�list�

list�usable��

p�d�e��

end�of�list�

��



p�k�l��

list�passive��

�p�a�c��

end�of�list�

killer�list�remove��

�p�X�Y� � �p�Y�Z� � p�X�Z��

end�of�list�

banana�

If we now type

find�transform example � example�out

on the shell� the output �le example�out looks as follows�

set�hyper�res��

set�prolog�style�variables��

p�k�l��

banana�

list�usable��

��p�e�����
�� � p�d�����
��

p�d�e��

end�of�list�

list�sos��

��p�b��	�	��� � p�a��	�	���

p�a�b��

��p�c��	����� � p�b��	�����

p�b�c��

end�of�list�

list�passive��

��p�a�c���

end�of�list�

The clause lists usable� sos� and passive were transformed using the trans�
former for transitivity


Note that in the input �le� p�k�l� does not occur in a clause list
 It is isolated

Therefore it is not recognised as a clause
 Instead� it is forwarded to the output �le

Neither is the string �banana�� �understood� by Transformator
 It is not sure
whether Otter can make anything out of it� but Transformator does not care$

��



Chapter �

Conclusion and Outlook

Based on the de�nition of resolution K�transformations given by Ohlbach ���� I have
shown how such transformations can be found automatically for arbitrary sets of
clauses


A resolution K�transformation for a clause set C is characterised by a clause
set S�� and clauses are transformed by resolving them with clauses in S�
 The
de�nition of resolution K�transformation requires that S� has to meet the test
substitution set condition
 A priori there is no restriction as to how a reasonable
candidate for S� is found


Now I say that in general� S� should consist of pre�xed clauses of clauses in C

A pre�xed clause for a clause C is a clause that has an additional negative literal
as �rst literal� and else is like C
 Resolution is done on this literal
 Thus if we
transform unit clauses� the extra literal is resolved away� leaving an instance of C
where some arguments are instantiated by terms occurring in the transformed unit
clause
 Thus we may look at resolution in this context as a technique to add more
speci�c instances of a clause C


This paper as well as ��� contain examples where a transformation for a clause
C is characterised by C itself
 We have seen that this case can be regarded as an
optimisation of the general case


For permutation clauses� saying that S� should consist of pre�xed clauses does
not lead to reasonable results
 Here self resolvents of the permutation clause are
better
 I gave a general description of these transformations that applies to all
permutation clauses
 So it is not necessary to test di�erent sets of self resovents

For this class of clauses the result can be given once and for all


I have implemented the search for a clause set S� that characterises a transfor�
mation� both under the assumption that S� should consist of pre�xed clauses� or
that it should consist of self resolvents
 Looking back� I only found the former to
be useful


The program Transformator works for clause sets C� which is a generalisation
of the case that we want to eliminate only one clause
 For the elimination of only
one clause I claim a kind of completeness of the search for a transformation


I have investigated a small class of clauses exhaustively and found a transfor�
mation for every clause in this class
 This class includes the symmetry� transitivity�
and euclideanness clauses


I did not attempt to achieve completeness for the general case that C consists
of several clauses
 We assumed that in this case� S� should consist of clauses
from C� self resolvents� subsumed clauses� and resolvents among all these
 This
characterisation is so general that it would have been hopeless to enumerate all
such sets systematically
 It would be interesting to develop the theory further to
the end of having stronger criteria for S��candidates
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However� for examples like the set consisting of the euclideanness clause and the
symmetry clause� Transformator succeeded in �nding a transformation
 Other
examples were given


This work mainly concerns clauses without function symbols
 The results also
apply for clauses that contain function symbols in a harmless way
 �Harmless�
means that no new terms are generated by resolution with the clause


I have given a negative result for one clause containing a function symbol in
a �non�harmless� way� namely� condensed detachment
 The result is negative not
in the sense that we cannot �nd a transformation
 We can �nd a transformation
according to our de�nition� but it is pathological
 So another open question is
whether the idea developed there may be useful for the elimination of other clauses
of this kind


I have not focussed on the applications of resolution K�transformations� but
rather on the process of �nding resolution K�transformations
 It has been said that
there are at least four areas where resolution K�transformations may be applied�
reduce the search space of theorem provers� eliminate loops in logic programs� paral�
lelise closure computation algorithms and support automated complexity analysis


For all of these areas� it has been outlined in ��� how resolution K�transfor�
mations may be used� but especially the areas of parallelising closure computation
algorithms and supporting automated complexity analysis still need much develop�
ment


My program Transformator may serve as a tool to study the area of auto�
mated theorem proving� since clause sets in Otter syntax can be transformed� and
then the behaviour of Otter for the original clause set and the transformed clause
set can be compared
 It would probably not be di�cult to do the same for other
provers
 The few experiments I have done suggest that Otter is not so easily fooled�

whereas for leanTAP � the transformation can mean the di�erence between a proof
that can be found and a proof that cannot
 But these results are by no means
representative� and an extended series of experiments has yet to be done


�
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