University of

"1l Kent Academic Repository

Kolling, Michael and Rosenberg, John (1996) Blue - A Language for Teaching
Object-Oriented Programming. In: Proceedings of the 27th SIGCSE Technical
Symposium on Computer Science Education. . pp. 190-194. ACM, Philadelphia,
Pennsylvania, USA ISBN 0-89791-757-X.

Downloaded from
https://kar.kent.ac.uk/21393/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21393/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

BLUE — A LANGUAGE FOR TEACHING

OBJECT-ORIENTED PROGRAMMING

Michael Kdlling and John Rosenberg
University of Sydney, Australia
{mik,johnr}@cs.usyd.edu.au

ABSTRACT

Teaching object-orientedprogramming has clearly
become an importanpart of computer scienceducation.
We agree with many others that the best placeeach it is
in the CSlintroductory course.Many problems withthis
have beeneported inthe literature. These mainlyresult

Several results of attempts of teachingodject-oriented
language in an introductory course have been published
[3,6,7,8,10,11,12]. While the use of object-orientation was
generally seen as a clear improvement, many problems with
the specific languageand environmentsused have been
reported. This prompted us to examine availédohguages
for their appropriateness for teachingnd led us to the

from inadequate languages and environments. Blue is a neveonclusion (in[4]) that a new programmintanguage and

language and integrated programming environment,
currently under development explicitlyfor object-oriented
teaching. We expectear advantagesrom the use oBlue
for first year teachingcompared tousing other available
languages. This paper describesthe design principles on
which the language was basedand the most important
aspects of the language itself.

1 INTRODUCTION

Object-oriented languageare becoming increasingly

widely used in software projects. Their importance for state-

of-the-art software development iw generallyaccepted,
and they have achieved popularity with academics and
practitioners alike. Aghis trend has become clear, many
tertiary institutions have included the teaching ofoaject-
oriented language somewhere timeir curriculum. Often,
this has led to avide variety of problems. Mandifferent
approaches have bedaken to the teaching obbject-
oriented conceptand to addresthe problemgelated to it.
The main questions include:

when to teach the first object-oriented language

what set of concepts tmclude or excludefrom the
course, and

what programming language to use.

We havearguedearlier [4] (as havenany othersbefore
us [1,2,8]) that introducing ambject-oriented language as

environment is needed.

We propose thalevelopment of a languagthat is
designed specifically for teaching. Often it has bagued
that universitiesand colleges cannoafford to teach"toy"
languages, since thdyave anobligation to provide their
students with real-world skills for real-world jobs. This has
led many institutions toadopt C++ as their teaching
language.

We agreethat a graduate must be a competent
programmer inC++ or a similarwidely usedlanguage. It
is our firm belief, however, that experience with one year of
a good teaching languaged one year of C++ produces
better C++ programmers than two years of C++.

This paperwill describeBlue, the language wlave
developed, insome detail. It will focus on thianguage
design and leave the description of the environment, also an
integral part of the project, to [5]. We williscussdesign
principles, and the reasons for the varidesign decisions.
When we give examples of problems with existing
languages weavill mainly useC++. This doesnot mean
that other languages do not have these or similar problems.
We arguedabout other languages in [dhduse C++ here
because itseems to be the mostidely known object-
oriented languagand it isthe main competitor foevery
new language considered for CS1.

2 PRINCIPLES

the first programming language in the first course has many

benefitsandcan greatlyimprove ease oflearning (mainly
by avoiding a "paradigm switch").

Proceedings of27th SIGCSETechnical Symposium on
Computer Scienc&ducation, Philadelphia, Pennsylvania,
U.S.A., SIGCSE Bulletin 28,1, March 1996, pp 190-194.

The design of Blue waguided by aset of basic
principles that were used to make decisions ablitidual
languagessues. These principlesre basednainly on an
educationalviewpoint, having the goal of thédevelopment
of a teaching language clearly mind. Wearenot trying
to compete withreal-world production languagedut we
believe that wecan makesignificant improvements to the
quality of programming languages as an educational tool.

We will first discuss these design principles and then, in
the next section, talk aboirtdividual languagaéssues and
the application of the principles.

Principle 1: No Conceptual Redundancy

Maybe themost confusingaspect of manyexisting
languages is theiability to achievethe same thing in a
variety of differentways. Whatcan beflexibility for the
expert is usually confusion to the beginner.

The mostfundamental example othis is the object
model in many object-orientedlanguages. InC++, for
instance, an object can exist on the stack, or on the heap,
might be created explicitly, implicitly or by assignment, its
constructormight beexecuted omot, it might bedeleted
automatically or not, alldepending ondetails of the
declaration and use of the object.

From a formal point of view, all this is amnecessary
complication. It has its basis only in thequirement to
develop highly optimised code, an issue completely
irrelevant for introductory courses. At the samme it
hides the issues we really wantteach behind anountain
of language details.

Our principle states that there should be one defihed
mechanism to express each concept that we want to teach.

Principle 2: Clean Concepts

The principle of "clean concepts'states that the
concepts we want tdeach should beepresented in the
language in a way that directly reflects the theoreticadiel
and is notcompromised bysecondaryissues. Anexample
of a violation of this principle inC++ is the dynamic
dispatch mechanism.

We consider dynamic dispatch to lmne of the
fundamental characteristics of object-orientmaguages, yet
in C++ the dynamic dispatch of dunction must be
explicitly defined for individual functions (called "virtual
functions" in C++). Thisintroduces awide variety of
possible problems for beginnef@nd for many more
advancedprogrammers as well) innderstandingand using
this mechanism.

Again, thereason forthe particularimplementation of
this construct in C++ is efficiency.

Principle 3: Readability

The readability of a language isignificant in several
aspects.

Firstly, learning by example is one of the strongest
learning mechanisms in programming.

The second aspect of readabilitytigt it helpsstudents
to understandheir own programs. It is possible @woid
certain errorghat areonly introduced because dhe poor
syntax of a language. C is the most infamous example of a
language that supports obscure prograens,unfortunately
C++ has inherited its difficulties.

Principle 4: Software Engineering Support

it We do not want our students to write just any programs,
we want them to writegood programs. Software
engineering as a discipline hateveloped anumber of
mechanismsand guidelines that supporgjood program
development. While many of those mechanisms (such as
assertionsand pre and post conditions) can beéncluded in
programs written in just about any language, they not
part of the actual definition of many languages. Tdften
leads tothe result that thewreeither not taughproperly,
taught only later in the curriculum, oot taken seriously
by the students.

In addition tothe aboveprinciples, an overalguiding
philosophy of our language design was not to inveahy
new features. It igempting for alanguage designer to
develop completely new syntaxand constructs. Our
approachhas been evolutionarsatherthan revolutionary.
There is a considerabigangerthat alanguage which is
revolutionary fails (or at least fails to benplemented).
Ada is anexample,where it took manyyears toproduce
acceptable compilers (although many very competent
people worked on Ada), becausthe languagedesigners
could not resistadding every useful construct theyould
think of to the language.

It is more promising talevelop ateaching language by
extracting thegood aspectérom existing languages, and
avoiding techniqueghat have been recognised tcause
difficulties. This also assures that thechniques which
students learrwith Blue are relevant later when other
languages are introduced.

3 SPECIFIC LANGUAGE ISSUES

Blue is a pure object-oriented languaie does not
supportdevelopment of non-class-based code).supports
strong static typing, singlaheritance, automatidynamic

dispatch, generic classes, garbage collectiad, apowerful

Who has notinteractive developmergnvironment. All of theobject-

experienced or at least seen many others flip through a boolriented conceptare represented ithe language in alean

about a programming languagesading nothing but the
example programs?

This is not a character flaw of the student, butatural
andvalid way of learningthat should beencouraged (in
conjunction with othetechniques). Having a programming

and consistent way.

This section will discuss some languagssues we
consider interesting from theducationalviewpoint. Space
prohibits us from discussing all aspectsBiie or delving
into minute detail. We believehowever, thatthis

language that actually hints at its semantics with its syntaxdescription provides the reader with an overall impression of

is a great help in doing so. Such supportazfdability can
be achieved by favouring expressikeywords over abstract
symbols. A further advantage of the usekejwords rather

the language and its characteristics.

than symbols is that they can be looked up in the index of a

good text book, thus supporting independent learning.

3.1 General Language Constructs

Class Structure

Every class isdefined in asingle file. There is no
distinction between amterfacefile and animplementation
file. This avoids code duplication and inconsistencies.
Thereis, however, a distinctiorbetweenthe interface and
implementationview. Tools exist to look at thmterface
or the implementation of a class.

classclassnamés superclass
-- here is the comment describing the
-- class in general
usesother_classl, other_class2
internal
var
count : integer
name : string
routines
internal routines here
interface
creation (parametery
body of creation routine here
routines
interface routines here
end class

Figure 1: Structure of a Blue class

Figure 1 shows an overview of the general structure of a

class. The locations of the definitions of different parts of a
class (such as constants, variables, inteamal interface
routines)are fixed andalways appear inthe sameorder.
Generalcomments to assist witlhinderstandingthe code
may be placed anywhere. The different parts of a class are:
the headercontaining the class namand anoptional
super class from which it inherits

the class commentescribingthe class's functionality.

(A standard format for this comment will lolefined and

a class browser will be able to use it for searching and

display of a class library.)

a list of other classes used by this class

internal entities:

instance constants and variables

internal routines

interface entities:

the creationroutine. (There isonly one creation
routine and it is alwaydefined atthe beginning of the
interface.)

interface routines

There are no variables on the interface.

This structure may seem restrictive to C++
programmers, but it greatly increases ¢asewith which a
class can be read and underst@mdihciple 3). It is also an
application of principle 1. Allowing, for exampleariable
definition anywhere inthe codemay seem convenient, but
for beginners theprice they pay in terms of confusion
seems clearly highaghan the gain in convenience. As an

-3-

important side effect, this structure also eases the
development of tools for the programming environment.

Routines

Routine declarations always start with the routine name.
They then list the routinparameterandthe return values.
Figure 2 shows an example.

set (n: integer; s: string) -> (ok: boolean; os: staté

)

Figure 2: Example of a routine header

A clear distinction is made betweenthose parameters
which are passednto a function and those which are
returned from it. Note that a functi@an returnmore than
one value.

This definitionavoidssome of the type problems that
can occur in connectionwith reference parameters and
inheritance.

Having the name at the beginning of tbeclaration
simplifies the lookup of a routine in a class for a human
reader. It makes it easy to sadmwn the list of names of
routines in a clasmterface. Precedinghe names with
types andckeywordsmoves the namowardsthe middle of
the header and makes it harder to find.

The body of the routine is strictlystructured as well
(figure 3).

routinenamgparametery-> (return valueyis

-- routine comment
precondition

pre conditions
var

variable declarations
do

instructions
postcondition

post conditions
endroutinename

Figure 3: Structure of a routine definition

Pre and post conditions are optional. If tlaeg present
they are part of theinterface ofthe function. They are
always checked at runtime. Variables have taldmared in
thevar section. This structurserves the same purpose as
the strictness in the class structure: it makes definitions
easy to find and supports readability and understandability of
the code. Itis based on principles 1, 2 and 4.

Variables

Variablesmay be initialised atdeclaration (figure 4).
Any valid expression (including function calls) may ured
for their initialisation.

var
num : integer
count : integer := 0
name : string := get_name (fname)

Figure 4: Variable declarations

Apart from its value, each variable has a stsgociated
with it. The three possible statesare uninitialised
undefinedanddefined Each variabléhat is not initialised
at declaration is inthe stateuninitialised Using an
uninitialised variable in an expressiogsults in a runtime

loop
statement-list
exit onconditionl
statement-list
[exit on condition2
statement-lis}

end loop

Figure 5: Structure of a loop

Each statement list can be empty. A loop ragtain
one or more exit statements. Bgplacing severaloop

error. Once a variable is assigned a value, it enters the statonstructs with a single one, we apply principletiys

defined It never returns to the uninitialised state.
The undefined state can be used inprograms to
explicitly pass or returnundefinedparametersand results.

Variables can be set to be undefined and checks for that stalsommon algorithmsand should be supported

are available.

This mechanism is alsased toensure return oproper
values from functions. Initiallyeach return value of a
function is uninitialised Returning from a function with
an uninitialised value results in a runtime errthnus
ensuring thatevery result value was explicitlyassigned.
(The result may beundefined if the function wants to

easing teachingand learning of the language, without
losing readability. It has aldmeenargued(e.g. in[9]) that
internal loop exits make iteasier toimplement some
in an
introductory language.

3.2

This section describes some details ofdbgect-oriented
constructs in Blue. Thesare the parts of language
definition with which wewere particularly dissatisfied in

Object-Oriented Constructs

express explicitly that it can not return a meaningful value.) existing languages.

This mechanisndetects agroup of commonerrors
frequently made by beginners (principle 4).

Predefined Types

Some typesare predefined irthe languagé They are
integer, real, boolean, strirmpndarray. Nocharactertype
exists. A character is handled as a string of length one.

Strings are fully dynamic. Nepacehas to beallocated
explicitly by the programmeiandthe stringcangrow and
shrink without defined restrictions during program
execution.

Arrays aredynamic aswell. Thearray boundsare not
part of the type definitiomndcan bechangeddynamically
(the problem ofspaceallocation is handled bythe Blue
runtime system). Thisavoids tedious repetitivecode

The Object Model

All objects are treated in auniform manner. All
variables containreferences toobjects. Assignments
always pass references to objects. Objersnevercreated
at runtime without an explicitreationinstruction. Blue
distinguishes two different kinds of classes: maniftdstses
and dynamic classes. Manifest classese those whose
objects all exist automatically. Objects of a manifdass
are never created atintime. Examples of manifestasses
are integer, boolean and enumeration classes.

Dynamic classesare those whose objects comato
existenceonly by explicit creation. Examplesre arrays
and arbitrary user defined classes.

It is important tounderstandhe differencebetweenthis

concerned with dynamic space allocation in other languageslogical distinctionandthe distinction of storagenodes in

It therefore avoidsode duplication and awhole group of
commonerrors (principle4). In addition, by removing
low-level problems from the language, it allows the
teacher/programmer to concentrate bigh-level issues,
thus supporting principle 2.

Control Structures

Threecontrol structures exist: an if-statementmalti-
branch case-statememind aloop. The if and case-
statements are similar to those supported by other
languagesand donot needfurther explanation. There is
only one loop structure in Blue. The loop constrearn be
used to achieve the semantics of whitpeatand for loops
as well as more general definitions (figure 5).

We do not distingish betweenciassand atype in Blue —they
are synonymous in our context.

other languages. IBlue it can never happehat different
storage models exist fodifferent classes. It is also
guaranteed that two objects of the same dassalways be
treated inthe same way (which isot true in mostother
languages).

This model avoidsall questions aboutvhether or not
references tmbjectscan be passed around, whetbbjects
are deleted automatically, lifetime questions, etc. lased
on principles 1 and 2.

Some syntactic sugdcalledaliases) isprovided sothat
the natural syntax for objects such as integeas be
utilised.

2At least from thelogical view of the language. This does not
mean that a particularimplementation has to actually
implement all variables as references. fensible
implementation would probably storesome values, such as
integers, directly.

Information Hiding

While few of the individual language constructs are new,
their combination isjJeading to a language definiticthat
has a distinctharacter, differindrom previously available

Blue supports strict information hiding that cannot be languages. We expethis language to be a significant
broken. Variables cannot Imeadevisible on theinterface improvement in the teaching of object-oriented
and no references tmternal variablescan be passedut. programming.

This not only enables but guaranteesproper information

The implementation of anntegrated programming

hiding (principles 2 and 4). environment, including an editor, a compilend a
debuggerhas started. Aull language definition has not

Inheritance

Inheritance is intended only to model pure is-a

yet been published, but should be available soon.

relationships. Usingnheritance to avoid an indirection REFERENCES

when re-usingcode (modelling a usage relationshipith
inheritance) orjust to avoid writing an objectidentifier 1.
before a function call (syntactical laziness) is not
recommended. Consequently, Blue does not allow hiding or
interface redefinition of inheritedroutines. The

implementation of routines may bedefined, since this 2.
does not affect the inheritance relationship (thegmepost
conditionsstill have to bemet, though, enablinggome
semantic restrictions to be expressed). 3.

Interfaces

Interface routine calls are always dynamicaligpatched.
No construct exists in thdanguage to influence the
semantics of routine call instructions.

It is not possible tooverload routine names tocall
different routines of the same class whealled with
different parameter typeombinations. Althouglkexamples
can be found wherthis technique issensibly applied, we
have come across more examples whefeaidls to errors in
the code. In addition, a side effect of this mechanism is that.
error reporting of a faulty routine caliends to be vague
(since the correct types of tiparametergannot bereported
with certainty).

4 CONCLUSION

Existing programming languages have clear
shortcomings for the introduction object-orientation to 9.
beginners, resulting inunnecessary difficulties in the
teachingand learning process. These difficultiemise

mainly from too manyredundantconstructs,relevant to 1q.

expertsbut not to beginnersand the compromising of
important concepts for the gain efficiency. Whilethis
can beimportant for professional program development, it
complicates teaching significantly. Weve developed a
language specifically for teaching object-oriented

programming to beginners which avoids these problems. 12.

Few new concepthiave been introduced. Instead, we
have concentrated orremoving problemsand combining
positive aspects of existing languages. Tieduces the
risk of introducing new problemsind ensuregelevance of
the acquired knowledge when moving to other languages.

%Except for restricted change of parametgpes (contra-
variance).

11.

R. Decker, St. Hirshfield: Top-Down Teaching:
Object-Oriented Programming in CS 1 ACM,
SIGCSE 1993, pp. 270-273.

R. DeckerSt. Hirshfield: The Top 10 Reasons Why
Object-Oriented Programming Can't Baught in CS
1, ACM, SIGCSE 1994, pp. 51-55.

R.C. Holt: Introducing Undergraduates toObject
Orientation Using the Turing Language ACM,
SIGCSE Bulletin, 25, 3, Sept. 1993, pp. 324-328.

Kdlling, M., Koch, B. and Rosenberg, J.
Requirements for a First YearObject-Oriented
Teaching LanguageACM SIGCSE Bulletin, 27, 1,
March 1995, pp. 173-177.

M. Kdlling and J. Rosenberg:An Object-Oriented
Program Development Environment for thEirst
Programming Course submitted to SIGCSE
Technical Symposium, 1996.

D. Mazaitis: The Object-OrientedParadigm in the
Undergraduate Curriculum: A Survey of
Implementations and IssyesCM, SIGCSE Bulletin,
25, 3, Sept. 1993, pp. 58-64.

Dung Nguyen inUsing C++ in CS1/CS2 ACM,
SIGCSE 1994, p. 384.

R.J. Reid: The Object-OrientedParadigm in CS1
ACM, SIGCSE 1993, pp. 265-269.

E. Robertsioop Exits & Structured Programming:
Reopening theDebate SIGCSE Bulletin, 27, 1,
March 1995, pp. 268-272.

S. Skublics, P. WhitefeachingSmalltalk as &irst
Programming LanguageACM, SIGCSE 1991, pp.
231-234.

M.C. Temte: Let's Begin Introducing the Object-
Oriented ParadigmACM, SIGCSE 1991, pp. 73-77.

Eugene Wallingford inUsing C++ in CS1/CS2
ACM, SIGCSE 1994, p. 384.

