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Abstract

Computable analysis is an extension of classical discrete computability by en-
hancing the normal Turing machine model. It investigates mathematical anal-
ysis from the computability perspective. Though it is well developed on the
computability level, it is still under developed on the complexity perspective,
that is, when bounding the available computational resources. Recently Kawa-
mura and Cook developed a framework to define the computational complexity
of operators arising in analysis. Our goal is to understand the effects of com-
plexity restrictions on the analytical properties of the operator. We focus on
the case of norms over C[0,1] and introduce the notion of dependence of a norm
on a point and relate it to the query complexity of the norm. We show that
the dependence of almost every point is of the order of the query complexity
of the norm. A norm with small complexity depends on a few points but, as
compensation, highly depends on them. We briefly show how to obtain similar
results for non-deterministic time complexity. We characterize the functionals
that are computable using one oracle call only and discuss the uniformity of
that characterization.

This paper is a significant revision and expansion of an earlier conference
version [1].

Keywords: Computable analysis, computational complexity, oracle Turing
machine, polynomial time computable functional, norm, non-deterministic
complexity

Contents

1 Introduction 2

∗Corresponding author, +33(0)3 54 95 84 22
Email address: mathieu.hoyrup@loria.fr (Mathieu Hoyrup)

Preprint submitted to Elsevier July 25, 2013



2 Definitions and Preliminary Results 5

2.1 Notations and basic definitions . . . . . . . . . . . . . . . . . . . 5
2.2 Polynomial time computable functionals . . . . . . . . . . . . . . 5

2.2.1 Oracle Turing machine . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Polynomial time oracle Turing machine . . . . . . . . . . 6
2.2.3 Representation of C[0, 1] . . . . . . . . . . . . . . . . . . . 6

3 Norms 7

3.1 Dependence of a norm on a point . . . . . . . . . . . . . . . . . . 8
3.2 Relevant points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Complexity of norms 16

4.1 Query complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Relating query complexity, dependence and relevant points . . . 17
4.3 Non-deterministic complexity . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Essential points and sufficient sets . . . . . . . . . . . . . 23

4.4 Sufficient sets and non-deterministic complexity . . . . . . . . . . 24

5 One oracle access 26

5.1 Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Summary and open question 31

6.1 Open question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1. Introduction

Computable analysis had been developed since the early days of computer
science and digital computation. It was introduced by A. Turing in 1936 [2], A.
Grzegorczyk in 1955 [3], and D. Lacombe in 1955 [4]. Computable analysis is
an extension of classical discrete computability by enhancing the normal Turing
machine model. It is a reductionist approach where the infinitary object (for
example, a real number) is deconstructed into some finitary representation such
as Cauchy sequences. Given a function f : R → R, computability of f in this
context simply means the existence of a Turing machine that when successively
fed increasingly accurate representations of x ∈ R, will be able to successively
output increasingly accurate representation of the function value f(x). Com-
putable analysis is probably the most realistic approach to continuous com-
putation and hence considered as the most suitable theoretical framework for
numerical algorithms. For a comprehensive treatment of the subject, especially
from the computability perspective, see [5]. See also [6] for a treatment of the
complexity-theoretic investigations.

An approach to computable analysis is the so-called Type-Two Theory of Ef-
fectivity (TTE) which enables one to extend computability theory from discrete
spaces to many continuous spaces arising in mathematical analysis [5, 7]. On
the other side, computational complexity theory over continuous spaces is still
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in its infancy. A theory applicable to the space of real numbers, particularly
compact spaces of real numbers, has been developed by Ko and Friedman [8, 6]
and has given many results. The notions of input size and complexity measure
are well defined over such spaces since they can be easily reduced to the discrete
case. However, this theory is not readily extendible to “larger” spaces such as
the space C[0, 1] of continuous real functions defined over the unit interval, and
more generally, an abstract theory is still lacking.

The first approaches to address this problem have been developed by Weihrauch
[9] on metric spaces, and by Schröder [10] who argues that in order to express
computational complexity in terms of first-order time functions (as in the dis-
crete setting), one must restrict to σ-compact spaces. Indeed, points of a given
size necessarily live in a compact subset so if the size of each point is a natural
number then the space must be a countable union of compact sets. Recently
Kawamura and Cook [11] developed a framework applicable to the space C[0, 1]
(which is not σ-compact), using higher-order complexity theory and in particu-
lar second-order polynomials. In particular their theory enables them to prove
uniform versions of older results about the complexity of solving differential
equations, as well as new results [12, 13].

Our goal in this article is to study the complexity of operators defined over
the space C[0, 1], and particularly to understand the implications of complexity
restrictions on the analytical properties of the operator. Looking for connec-
tions between mathematical analysis and the theory of computation is an old
and fruitful field of investigation. The most famous example is the fact that
on many sorts of topological spaces, a computable function must be contin-
uous. Furthermore, the continuous functions are exactly the functions that
are computable relative to some oracle. Topology is always hidden behind
computability notions, which explains why higher-order recursion theory and
computable analysis are intimately related to descriptive set theory. Such a
correspondence between computation and topology also comes up in complex-
ity theory: bounds on the available resources during computation are reflected
in analytical constraints over the functions to be computed, confining them to
live in a smaller space. Examples of this principle appear in several places.
Townsend [14] characterized relativized polynomial classes of type-2 relations
by means of topological notions: for instance if A is an alphabet then a subset
of (A∗)A

∗

is in ΣP1 relative to some oracle (written ΣP1 in his paper) if and only
if it is a “polynomially open set” in a certain sense. In analysis, a real function
f : [0, 1] → R is polynomial time computable relative to an oracle if and only if
it has a polynomial modulus of uniform continuity [6].

This paper is a first study along these lines of the complexity theory (recently
developed by Kawamura and Cook) over C[0, 1], in which such correspondences
are not known to date. Some typical questions are: What are the topological
implications of limiting the resources of a machine computing a functional?
What is the class of functionals that are computable in polynomial time relative
to an oracle? Observe that a bound on a resource such as time imposes two
conditions on the machine operation: it restricts its internal computation time
as well as the queries submitted to the oracle. We mostly concentrate on the
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second constraint, expressed in terms of query complexity.
The potential limitations imposed by resource bounds on the computation

of functionals over C[0, 1] come from the representation of the input functions
f ∈ C[0, 1] which does not give a global view on f but local information only. The
whole function is not approximated, for example, by piecewise linear functions,
but rather the oracle evaluates the function on demand at queried points, in
addition to giving a modulus of continuity of f to the machine. The penny-
pinching character of the oracle describing the input is due to the huge amount
of information a function contains (one can see [15] for a quantitative analysis
of this fact). As a result, little can be known about f in polynomial time, and
classical operators such as taking the supremum or the integral of a function
are not polynomial time computable because a machine needs exponential time
to evaluate its input on the whole interval.

In this paper, we do not consider general functionals but we focus on the
simpler case of norms over C[0, 1]. We try to answer the general problem: what
are the analytical effects of bounding the computational resources to compute
a norm? As explained above, bounding the number of queries submitted to
the oracle prevents the machine from evaluating its input f ∈ C[0, 1] at too
many points, hence a norm with low query complexity should “depend” on a
small set of points. This idea is formalized by introducing two notions: the
quantitative notion of dependence of a norm on a point and the qualitative
notion of relevance of a point w.r.t. a norm. Intuitively, a norm ‖·‖ has a high
degree of dependence on a point if changing f around that point results in a big
change in the value ‖f‖ . We then show how the query complexity of the norm
influences these properties. A norm with low complexity depends on a small set
but, as compensation, the dependence on that set is very high.

In the above discussion we have been exclusively focusing on deterministic
complexity. We also carry out a similar analysis in the case of non-deterministic
complexity. We introduce the notions of an essential point and sufficient set
and establishing a characterization of the norms that are computable in non-
deterministic polynomial time relative to an oracle.

We then investigate the extreme case when only one oracle call is allowed
for the machine computing a functional and obtain a characterization of such
functionals. Surprisingly, the argument to obtain such a characterization is
much more involved than expected. It contains subtleties that make it non-
uniform in terms of complexity.

The paper is organized as follows. Section 1 is an introduction. In Section
2 we present the background on complexity in analysis needed for our results;
particularly, the oracle Turing machine model, the second order polynomial time
complexity introduced by Kawamura and Cook, and the representation of the
space C[0, 1]. In Section 3 we formalize the notions of dependence of a norm on a
point and of relevant points w.r.t. a norm. We prove some primitive properties
of these constructs which also illustrate their intuitive meanings. Section 4 is
the core of the paper. It starts by defining the basic notions of complexity
that we need in our study such as ‘bounding class’ and ‘query complexity’.
Then we present the relationships between the analytical constructs defined in
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the previous section and these complexity notions in order to finally obtain an
analytical characterization of polynomial time computable norms. After that
we investigate the same questions for non-deterministic complexity. In Section 5
we characterize the class of functionals that are computable by an oracle Turing
machine submitting only one query to the oracle. Section 6 concludes the paper
with open questions to be investigated in the future.

2. Definitions and Preliminary Results

2.1. Notations and basic definitions

Σ denotes the alphabet {0, 1}. The length of a finite word u over Σ is denoted
by |u|.

Let A ⊆ [0, 1] and β ∈ [0, 1]. The distance of β to A is d(β,A) = inf{|α−β| :
α ∈ A}. Given r > 0, the neighborhood of A of radius r is N(A, r) = {β ∈
[0, 1] : d(β,A) < r}. If α ∈ [0, 1], we simply write N(α, r) = N({α}, r) =
{β ∈ [0, 1] : |α − β| < r}. We will also consider the closed neighborhood
N(A, r) = {β : d(β,A) ≤ r}.

We assume the space C[0, 1] of continuous functions from [0, 1] to R with the
usual structure of real vector space. The uniform norm is defined by ‖f‖

∞
=

maxx∈[0,1] |f(x)|. The L1-norm is defined by ‖f‖
1

=
∫ 1

0
|f(x)|dx.

If f ∈ C[0, 1] then the support of f is Supp(f) = {x ∈ [0, 1] : f(x) 6= 0}.
Observe that Supp(f) is an open set. We say that f is supported on a set
A ⊆ [0, 1] if Supp(f) ⊆ A. hα,r denotes the maximal 1-Lipschitz function
supported on N(α, r).

Lip1 ⊆ C[0, 1] denotes the set of 1-Lipschitz functions from [0, 1] to R.
A norm F over C[0, 1] is weaker than a norm G if there is a constant c

such that F (f) ≤ c ·G(f) for all f ∈ C[0, 1], or equivalently convergence in the
G norm implies convergence in the F norm: if G(fk) converge to 0 then so do
F (fk).

2.2. Polynomial time computable functionals

We briefly recall the formalism of [11].

2.2.1. Oracle Turing machine

An oracle Turing machine M taking as input a finite string u ∈ Σ∗ and
consulting an oracle given by a function ϕ : Σ∗ → Σ∗ is denoted Mϕ(u).

A function ϕ : Σ∗ → Σ∗ is regular if |u| ≤ |v| implies |ϕ(u)| ≤ |ϕ(v)| for all
u, v ∈ Σ∗. The size of a regular function ϕ is the function |ϕ| : N → N defined
by |ϕ|(n) = |ϕ(0n)| (as ϕ is regular, 0n can be replaced by any word of length
n).

The pairing of two regular functions ϕ,ψ : Σ∗ → Σ∗ is the regular function
〈ϕ,ψ〉 defined by 〈ϕ,ψ〉(0u) = ϕ(u)10|ψ(u)| and 〈ϕ,ψ〉(1u) = ψ(u)10|ϕ(u)|.
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2.2.2. Polynomial time oracle Turing machine

Second-order polynomials are defined inductively in the following way:
every positive integer is a second-order polynomial, every first-order variable n
is a second-order polynomial, if P and Q are second-order polynomials then so
are P +Q, PQ and X(P ) where X is a second-order variable.

An oracle Turing machine M runs in polynomial time if there is a second-
order polynomial P (n,X) such that for any regular function ϕ and input u ∈ Σ∗,
Mϕ(u) halts in at most P (|u|, |ϕ|) steps.

2.2.3. Representation of C[0, 1]

For n ∈ N, let Dn = { p
2n : p ∈ N, 0 ≤ p ≤ 2n} and D =

⋃

n Dn be the set of
dyadic rational numbers in the interval [0, 1]. Every string u ∈ Σ∗ represents a
dyadic rational du whose binary expansion is 0.u.

A modulus of continuity of a function f ∈ C[0, 1] is a function µ : N → N

such that if |x− y| ≤ 2−µ(n) then |f(x) − f(y)| ≤ 2−n.
An approximation function of f is a function fD : D × N → D such that

|fD(d, n) − f(d)| ≤ 2−n. We can assume w.l.o.g. that fD(d, n) ∈ Dn.
We represent µ by the function µ(u) = 0µ(|u|). We represent fD by the

function fD : Σ∗ ×Σ∗ → Σ∗ defined by fD(u, v) = w such that dw = fD(du, |v|).
If µ is a modulus of continuity of f and fD an approximation function of f

then 〈µ, fD〉 is a representation of f .
A functional F : C[0, 1] → R is computable if there is an oracle Turing

machine M such that for any f ∈ C[0, 1], any representation ϕ of f and any
n ∈ N written in unary notation, Mϕ(n) halts and outputs a dyadic number d
such that |F (f) − d| ≤ 2−n.

Definition 2.1. A functional F : C[0, 1] → R is polynomial-time computable if
it is computable by an oracle Turing machine that runs in polynomial time.

Example 2.1. Assume (qn)n∈N
is a polynomial-time computable enumeration of

the dyadic rational numbers in the interval [0, 1], i.e. there is a polynomial-time
computable function ψ : Σ∗ → Σ∗ such that qn = dψ(0n). Define the functional

F0(f) =
∑

n∈N

|f(qn)|
2n

.

F0 is a norm over C[0, 1]. It can be easily verified that F0 can be computed by
a machine with computational time bounded by a second-order polynomial in
terms of the size of (a representation of) f and the precision parameter.

A relativized oracle Turing machine is an oracle Turing machine that has
access to an auxiliary oracle A ∈ {0, 1}N and queries A(n) by writing the binary
expansion of n on an extra query tape. The representation of functions in
C[0, 1] is natural in the precise sense that it is admissible: a functional F :
C[0, 1] → R is computable by a relativized oracle Turing machine if and only
if it is continuous w.r.t. the topology of the uniform norm (see [5] for precise
results on admissibility of representations). In particular, a norm is computable
by relativized oracle Turing machines if and only if it is weaker than the uniform
norm.

6



3. Norms

Ko [16] introduced the class NPR of NP real numbers and showed that it
coincides with the class of maximum values of polynomial time computable
functions over [0, 1]. The separation problem PR = NPR lies between the prob-
lems P = NP and EXP = NEXP. Friedman [17] obtained similar results for the
integral values of polynomial time computable functions. These results show
that separating complexity classes of real numbers is as difficult as in the case
of sets of strings. However the situation is different for complexity classes of
functionals: Ko and Friedman [8] proved that the functional mapping f ∈ C[0, 1]
to max{f(x) : x ∈ [0, 1]} is not polynomial-time computable (in a certain sense
that is weaker than the one of Cook and Kawamura used here, Definition 2.1),
while there is a way to express the fact that it is an NP functional. Simi-

larly, the functional mapping f ∈ C[0, 1] to
∫ 1

0
f(x) dx can be proved not to be

polynomial-time computable.
The main reason why lower bounds are much easier to achieve in the case

of functionals lies in the fact that time restrictions not only bound the internal
computation time of a machine but also limit its access to the input – it con-
trasts with the classical setting where time restrictions usually do not prevent
the machine to access its input entirely. Hence a machine running in polynomial
time does not have time enough to evaluate the input function on a large set so it
can hardly distinguish between some very different functions. It suggests that if
a machine computes a norm, bounding its computation time must have implica-
tions on the topology induced by the norm, which raises the following question:
what are the topologies induced by polynomial-time computable norms?

We already know from Ko and Friedman [8] that the uniform norm and the
L1 norm are not polynomial-time computable. Using the same kind of argu-
ments, we can compare the topology induced by a polynomial-time computable
norm with some standard topologies. We recall that convergence in probability
is strictly weaker than L1-convergence, which is strictly weaker than uniform
convergence.

Proposition 3.1. The following hold for a polynomial-time computable norm F :

(i) F is strictly weaker than the uniform norm,

(ii) F is incomparable with the L1 norm,

(iii) convergence under F is incomparable with convergence in probability,

(iv) F is not complete,

Proof. (i), (ii) and (iii) It is sufficient to prove that convergence in F does not im-
ply convergence in probability (hence it does not imply neither L1-convergence
nor uniform convergence) and that uniform convergence does not imply F -
convergence (hence neither convergence in probability nor L1-convergence imply
F -convergence). We construct two sequences fk and fk such that F (fk) → 0
but fk does not converge to 0 in probability, and gk converge to 0 in L1 but not
in the norm F .
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For each k, letQk be the query set of the machine on function 0 with modulus
m(p) = p + k and input k. Let fk(x) = min(1, 2kd(x,Qk)). fk is 2k-Lipschitz,
it is null on Qk so the machine cannot distinguish between fk and 0, hence it
outputs a rational number q such that |q| = |q−F (0)| < 2−k, so F (fk) < 2−k+1.
Let gk = 1−fk: as the size of Qk is polynomial in k, ‖gk‖1

≤ 2−k|Qk| converges
to 0 so fk converges to 1 in the L1-norm hence in probability.

So fk converge to 0 in the norm F but does not converge to 0 in probability,
and gk converge to 0 in L1-norm but not in the norm F .
(iv) A polynomial-time computable norm is weaker than the uniform norm by
definition. If it is complete then by the Bounded Inverse Theorem [18] it must
be equivalent to the uniform norm, which is impossible.

Hence polynomial-time computable norms live in a reduced space, outlined
by these properties. Our goal is to circumscribe more accurately complexity
classes of norms by having a finer look into their analytical properties. The
subsequent notions of dependence of a norm on a point and of relevance of a
point w.r.t. a norm will make it possible.

3.1. Dependence of a norm on a point

Let F be a norm over C[0, 1] and α ∈ [0, 1]. Intuitively, one would say that
the norm of a function depends on its value at α if modifying it at α only changes
its norm. But two problems appear: first we consider continuous functions so
modifying a function f at α is not possible without modifying f also around α;
second, if f = 0 then modifying f anywhere will automatically change F (f) = 0
to some positive value, as F is a norm. To get around these issues, the solution
consists in defining a quantitative dependence notion that relates the size of the
neighborhood of α on which f is modified to the alteration of the value F (f).
As F is a norm, it has a certain homogeneity that allows us to focus on the
function f = 0 only.

From now on we assume that F is a norm over C[0, 1] that is weaker than
the uniform norm.

Definition 3.1. Let F be a norm on C[0, 1] that is weaker than the uniform
norm and α ∈ [0, 1]. The dependence of F on α ∈ [0, 1] is the function
dF,α : N → R defined by

dF,α(n) = sup{l : ∃f ∈ Lip1,Supp(f) ⊆ N(α, 1/l)

and F (f) > 2−n}
= inf{l : ∀f ∈ Lip1,Supp(f) ⊆ N(α, 1/l)

implies F (f) ≤ 2−n}.

Observe that the first set is downward closed, so the two definitions are
equivalent.

For every α and n, dF,α(n) ≥ 1. Indeed, if l < 1 then every function is
supported on N(α, 1/l) = [0, 1]. For every α, dF,α is nondecreasing, unbounded
and dF,α(n) ≤ 2c · 2n if F ≤ c · ‖.‖

∞
.
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One easily checks that the set

{l : ∀f ∈ Lip1,Supp(f) ⊆ N(α, 1/l) implies F (f) ≤ 2−n}

is closed, so the infimum is a minimum.
We recall that hα,r is the maximal 1-Lipschitz function supported onN(α, r).

When the norm is monotonic, i.e. |f | ≤ |g| implies F (f) ≤ F (g),

dF,α(n) = sup
{

l : F (hα,1/l) > 2−n
}

.

Let us illustrate Definition 3.1 on a few examples.

Example 3.1. Let F be the uniform norm. For all α ∈ [0, 1] and n ∈ N, 2n ≤
dF,α(n) ≤ 2n+1. The dependence of a point w.r.t. to the uniform norm is
maximal.

Example 3.2. Let F be the L1 norm. For all α ∈ [0, 1] and n ∈ N, 2
n−1

2 ≤
dF,α(n) ≤ 2

n+1
2 . While exponential, the dependence of a point w.r.t. the L1

norm is smaller than for the uniform norm.

Example 3.3. Let Q = {q0, q1, . . .} ⊆ [0, 1] be a countable dense set and F (f) =
∑

i 2
−i|f(qi)|. For all i and n ≥ i, dF,qi

(n) ≥ 2n−i: intuitively, the norm of a
function depends much on its value on Q. Moreover, it does not depend much
on points that are “far away” from the points qi and the dependence on almost
every point (in the sense of Lebesgue measure) is bounded by a polynomial.
Indeed, let α be such that |α − qi| ≥ ǫ/i2 for all i: one has dF,α(n) ≤ n2/ǫ
for all n. To show that, let f ∈ Lip1 with Supp(f) ⊆ N(α, ǫ/n2). f is null on
{q0, . . . , qn} so F (f) =

∑

i>n 2−i|f(qi)| ≤ 2−n as ‖f‖∞ ≤ 1. Observe that the
set of such α has measure ≥ 1 − ǫπ2/3 which can be made arbitrarily close to
1. So for almost all α, dF,α is bounded by a polynomial (which depends on α).

Example 3.4. Given a, b ∈ [0, 1] such that 0 < b − a < 1/2, we construct a
compact set Ka,b in the following way. It is a variation of the third-middle
Cantor set. To each w ∈ {0, 1}∗ is associated a closed interval Iw such that
Iw0 ∪ Iw1 ⊆ Iw. Ka,b is defined as the intersection over n ∈ N of

⋃

w∈{0,1}n Iw.

If ǫ is the empty word then let Iǫ = [a, b]. Given Iw we define Iw0 and Iw1. Iw0

and Iw have the same left endpoint, Iw1 and Iw have the same right endpoint

and |Iw0| = |Iw1| = |Iw|2. One has |Iw| = (b− a)2
|w|

< 2−2|w|

.
Given p, let n be such that 2n−1 < p ≤ 2n. Let Qn = {q1, . . . , q2n} be the

left endpoints of the intervals Iw for w ∈ {0, 1}n. As |Iw| < 2−2n ≤ 2−p, Qn is
2−p close to Ka,b in the Hausdorff metric. The size of Qn is 2n < 2p which is
polynomial in p.

Now we define a measure µa,b supported on Ka,b. Ka,b is homeomorphic
to the Cantor space: a point x ∈ Ka,b is mapped to the infinite sequence
s0s1 . . . such that x ∈ Is0...sn

for all n. µa,b is defined as the image of the
uniform measure over the Cantor space under this mapping. For instance one
has µa,b(Iw) = 2−|w|.

The point is that the functional C[0, 1] → R which maps f to
∫

|f |dµa,b is
polynomial-time computable. Indeed, to evaluate the integral at precision 2−p,
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let n be such that 2n−1 < µf (p+1) ≤ 2n, evaluate f at Qn with precision 2−p−1

and output the average of the values.
Now we define a measure µ supported on [0, 1] and such that the L1(µ)-norm

is polynomial-time computable. Consider the set of dyadic intervals [k/2n, k +
1/2n] with n ≥ 2 and 0 ≤ k < 2n. Let [ai, bi] be the enumeration of this
set derived from the enumeration of pairs (k, n) in lexicographic order. Let
µ =

∑

i 2
−iµai,bi

and F be the L1(µ) norm.

Claim 3.1. If α ∈ ⋃

iKai,bi
then dF,α(n) ≥ c 2n

n for some c and all n.

Proof. Let α ∈ Kai,bi
. We prove that dF,α(n) ≥ c 2n−i−2

n for some c and all n.
Let w be such that α ∈ Iw. As hα,1/l is 1-Lipschitz, hα,1/l ≥ 1

2l on Iw if

|Iw| ≤ 1
2l so

∫

hα,1/l dµi ≥ 2−|w|

2l . As |Iw| < 2−2|w|

, |Iw| ≤ 1
2l is satisfied as soon

as |w| ≥ log log(2l). Let then |w| = ⌈log log(2l)⌉:
∫

hα,1/l dµi >
1

4l log(2l) . If

l = 2n−i−2

n then
∫

hα,1/l dµi > 2i−n so F (hα,1/l) > 2−n, so dF,α(n) ≥ 2n−i−2

n .
The proof actually works only if n is sufficiently large so that l > 1/2, so one
gets the result for all n by choosing a suitable constant c.

Proposition 3.2. For each n ∈ N, the function α 7→ dF,α(n) is continuous.
Moreover one has for all α, β,

|dF,α(n) − dF,β(n)| ≤ |α− β|dF,α(n)dF,β(n).

Proof. Let l < dF,α(n), f ∈ Lip1 with Supp(f) ⊆ N(α, 1/l) and F (f) > 2−n.
Supp(f) ⊆ N(β, 1/l + |α − β|) so dF,β(n) ≥ l/(1 + l|α − β|). As it is true for
every l < dF,α(n), dF,β(n) ≥ dF,α(n)/(1+dF,α(n)|α−β|) so dF,α(n)−dF,β(n) ≤
|α − β|dF,α(n)dF,β(n). Exchanging α and β gives the result. As dF,α(n) is
bounded by c · 2n for some c, it implies that α 7→ dF,α(n) is continuous.

Proposition 3.3. If a norm F is weaker than a norm G then there exists k
such that for all α and n, dF,α(n) ≤ dG,α(n+ k).

Proof. Straightforward from the definition, using k such that F ≤ 2kG.

However, non equivalent norms may not be distinguished by their depen-
dence functions. If F is a norm then F (f)+|f(0)−f(1)| and F (f)+|f(0)|+|f(1)|
are generally non-equivalent but have exactly the same dependence functions.

Definition 3.2. The maximal dependence of a norm F is the function DF :
N → R defined by

DF (n) = max
α∈[0,1]

dF,α(n).

For every norm F that is weaker than the uniform norm, there exists a
constant c such that DF (n) ≤ c ·2n. The next result gives a lower bound, which
is optimal as it is reached by the L1 norm.

Proposition 3.4. For every norm F there exists c > 0 such that DF (n) ≥ c·2n
2

for all n.

10



Proof. Let N ∈ N \ {0}. On easily checks that the sum
∑N
i=0 hi/N,1/N equals

the constant function 1
N . By triangular inequality, F (1)

N ≤ ∑

i F (hi/N,1/N ) ≤
(N+1) maxi F (hi/N,1/N ) so there exists i ∈ {0, . . . , N} such that F (hi/N,1/N ) ≥
F (1)

N(N+1) . Let 0 < c <
√

F (1)/4 and N = ⌈c2n
2 ⌉. One has F (1)

N(N+1) >
F (1)

(N+1)2 >

2−n if n is sufficiently large, so DF (n) ≥ dF, i
N

(n) ≥ N ≥ c2
n
2 . Changing c one

can obtain the inequality for all n.

As we will see later (Proposition 3.5), there exists a point whose dependence
is at least c · 2n

2 .
Each point of high dependence has an influence on the value of the norm,

but does not usually determine that value. However, the next theorem shows
that the whole set of points of high dependence taken together determine the
value of the norm up to some precision. Let

Rn,l = {α : dF,α(n) ≥ l}.

As α 7→ dF,α(n) is continuous, Rn,l is a closed set.

Theorem 3.1. Let l ≤ DF (n). If f ∈ Lip1 is null on Rn,l then F (f) ≤ l22−n+6.

Proof idea. Decompose f as a sum of small functions supported on intervals of
length at most 2/l. Each small function is supported on a small neighborhood
of radius 1/l of some point α satisfying dF,α(n) ≤ l, so the norm of each small
function is at most 2−n. The number of small functions is quadratic in l, which
gives the result.

We now present the detailed proof. We actually prove that if f is more-
over nonnegative then F (f) ≤ l22−n+5. It gives the result for general f by
decomposing f = f+ − f− where f+ and f− are nonnegative.

Lemma 3.1. Let α ∈ [0, 1] and g ∈ Lip1. If Supp(g) is disjoint from Rn,l and
contained in N(α, 1/l) then F (g) ≤ 2−n+1.

Proof. If dF,α(n) ≤ l then F (g) ≤ 2−n. Otherwise, g(α) = 0 and we decompose
g into the sum of two 1-Lipschitz functions g0, g1 supported on (α − 1/l, α)
and (α, α + 1/l) respectively. For each i ∈ {0, 1}, either gi = 0 or there exists
β ∈ Supp(gi). In the latter case, gi is supported on N(β, 1/l) and dF,β(n) < l
so F (gi) ≤ 2−n. As a result, F (g) ≤ F (g0) + F (g1) ≤ 2−n+1.

Proof of Theorem 3.1. If l ≤ 1 then Rn,l = [0, 1] so F (f) = 0. We assume now
that l > 1. Let A = { 2k

l : k ∈ N, k ≤ l
2} and B = { 2k+1

l : k ∈ N, k ≤ l−1
2 }. Let

dA(x) = d(x,A) and dB(x) = d(x,B). Observe that dA + dB = 1
l .

Let f ∈ Lip1 be nonnegative. Define for n, i ≥ 0 the following functions,
depicted in Figure 1:

g2n = min
(

2n
l + dA, f

)

, f0 = g0,

g2n+1 = min
(

2n+1
l + dB , f

)

, fi+1 = gi+1 − gi.

11



(a) f (b) g0 ≤ g1 ≤ g2 = f

(c) g0 ≤ dA (d) g1 ≤ 1

l
+ dB (e) f = g2 ≤ 2

l
+ dA

Figure 1: The functions gi

For all i ≥ 0, gi is 1-Lipschitz, so f0 is 1-Lipschitz and fi+1 is 2-Lipschitz.
One has g2n ≤ g2n+1 ≤ g2n + 2dB and g2n+1 ≤ g2n+2 ≤ g2n+1 + 2dA so
0 ≤ f2n+1 ≤ 2dB and 0 ≤ f2n+2 ≤ 2dA. In particular, f2n+1 = 0 on B and
f2n = 0 on A.

Assume that Supp(f) is disjoint from Rn,l. As l ≤ DF (n), Rn,l 6= ∅ so f
vanishes at some point. As f is 1-Lipschitz, ‖f‖∞ ≤ 1 so fk = 0 for all k ≥ l+1:
indeed, gk = gk−1 = f .

For each i, Supp(fi) ⊆ Supp(f) is also disjoint from Rn,l. As fi is null on A

or B, fi

2 is the sum of at most l+3
2 functions g satisfying the conditions of Lemma

3.1 so F (fi) ≤ (l + 3)2−n+1. As f = f0 + . . .+ fk with k = ⌈l + 1⌉ − 1 < l + 1,
F (f) ≤ (l + 2)(l + 3)2−n+1 ≤ l22−n+5 as l ≥ 1.

This result gives a strategy to evaluate the norm of a function. Indeed, let

ǫ > 0 and l = 2
n−7

2
√
ǫ. Theorem 3.1 implies that if f, g ∈ Lip1 coincide on Rn,l

then |F (f) − F (g)| ≤ F (f − g) ≤ ǫ (applying the theorem to f−g
2 ∈ Lip1) so in

order to know the norm of f up to ǫ, it is sufficient to evaluate f on Rn,l.

3.2. Relevant points

Intuitively, the norm of a function f depends on the values of f on points of
high dependence, i.e. points α whose function dF,α is large. Several questions
arise: at which points a machine computing a norm should evaluate its input
function? Can we separate the points into two classes, the points that are
relevant to compute the norm and the points that are not, according to the
growth of their dependence function? To answer the second question, we need
to find a threshold. The example of the L1 norm shows that one cannot hope in
general to have points whose dependence function grows faster than 2

n
2 , so the

threshold should be at most of the order of 2
n
2 . Proposition 3.4 suggests (but

does not imply) that points whose dependence is at least 2
n
2 might always exist.

It is indeed the case as Proposition 3.5 below shows. We can then choose 2
n
2 as

a threshold that separates [0, 1] into the two classes of relevant and irrelevant
points. The interest of these notions will be demonstrated by Theorems 3.2, 4.1
and 4.2.

Definition 3.3. Let F be a norm over C[0, 1]. A point α is relevant w.r.t. F
if there exists c > 0 such that dF,α(n) ≥ c · 2n

2 for all n.

12



First observe that the set R of relevant points is a countable union of growing
compact sets,

Rk = {α : ∀n, dF,α(n) ≥ 2
n
2 −k} =

⋂

n

R
n,2

n
2

−k

R =
⋃

k

Rk.

As dF,α(n) ≥ 1 for all α and n, Rk = {α : ∀n > 2k,dF,α(n) ≥ 2
n
2 −k}.

Proposition 3.4 can be strengthened: relevant points always exist and are
dense, which fits with the intuition that a norm should “look everywhere” to
separate different functions.

Proposition 3.5. Let F be a norm. The set of relevant points is dense.

Proof. Let p ∈ N \ {0} and a ∈ [2−p, 1 − 2−p]. We construct a relevant point
α ∈ N(a, 2−p). Let c ∈ N be such that F (ha,2−p) > 2−c. α will be the limit
of a sequence αn defined by induction on n, satisfying F (hαn,2−n−p) > 2−2n−c.
Start with α0 = a.

Given αn, we decompose hαn,2−n−p as a sum of four functions. (see Figure
2). Let β1 = β2 = αn, β3 = αn−2−n−p−1 and β4 = αn+2−n−p−1. hαn,2−n−p =

Figure 2: hαn,2−n−p =
∑4
i=1 hβi,2−n−p−1

∑4
i=1 hβi,2−n−p−1 so by triangular inequality there exists αn+1 ∈ {β1, β2, β3, β4}

such that F (hαn+1,2−n−p−1) ≥ F (hαn,2−n−p)/4 > 2−2n−2−c.
As |αn − αn+1| ≤ 2−n−p−1, αn is a Cauchy sequence, let α be its limit.

One has |α − αn| ≤ 2−n−p so hαn,2−n−p is supported on N(α, 2−n−p+1). As
F (hαn,2−n−p) > 2−2n−c, dF,α(2n + c) ≥ 2n+p−1. Let k ≥ c+3

2 − p. For every
n > 2k > c, dF,α(n) ≥ 2

n
2 −k.

Proposition 3.3 directly implies that if a norm F is weaker than a norm G,
then every point that is relevant for F is relevant for G.

Let us illustrate the notion of relevant point on a few examples.

Example 3.5 (Example 3.1 continued). Let F be the uniform norm. Every point
is relevant, and R = R0 = [0, 1].

Example 3.6 (Example 3.2 continued). Let F be the L1 norm. Every point is
relevant, and R = R1 = [0, 1].

Example 3.7 (Example 3.3 continued). Let F (f) =
∑

i 2
−i|f(qi)|. Every qi is

relevant and Ri contains {q0, . . . , q2i}. Whether R contains only the numbers
qi depends on the way they are distributed in the unit interval:

13



1. let us consider the canonical enumeration of the dyadic rationals, defined
in the following way: for i = 2n+k with 0 ≤ k < 2n, let qi = (2k+1)2−n.
The important feature of this enumeration is that dyadic rationals are far
from each other, in terms of their indices: if i < j then |qi − qj | ≥ 1

j .

Indeed, let n be such that 2n ≤ j < 2n+1: |qi − qj | ≥ 2−n ≥ 1
j .

Lemma 3.2. If (qi)i∈N is the canonical enumeration of the dyadic rationals
then R = D. Moreover if α /∈ D then dF,α(n) ≤ 2(n + 1) for infinitely
many n.

Proof. Let α /∈ D and n0 ∈ N. Assume dF,α(n) > 2(n+ 1) for all n ≥ n0.
First, F (hα, 1

2(n0+1)
) > 2−n0 so there exists i ≤ n0 such that |α − qi| <

1
2(n0+1) otherwise the first n0 +1 terms in the sum defining F are null and

the norm is at most 2−n0 . Take i ≤ n0 minimizing |α − qi|. As α 6= qi
there exists n > n0 such that |α − qi| ≥ 1

2(n+1) . Take n minimal. Again,

F (hα, 1
2(n+1)

) > 2−n so there exists j ≤ n such that |α − qj | < 1
2(n+1) . As

|α − qj | < |α − qi|, j > n0 ≥ i. Now, |qi − qj | ≤ |α − qi| + |α − qj | <
1
2n + 1

2(n+1) <
1
n ≤ 1

j , which gives a contradiction.

More generally, and by the same argument, if f is non-increasing and i < j

implies |qi−qj | ≥ f(j) then if α /∈ D, dF,α(n) ≤ f(n+1)
2 for infinitely many

n. In particular if f(n) = o(2
n
2 ) then R = D.

2. we now consider the case when the sequence (qi)i∈N accumulates quickly
at a point α /∈ D, in which case α may be relevant. For instance, if
|q2i − α| < 2−2i then one easily checks that dF,α(n) ≥ 2

n
2 −2 for all n, so

α is relevant.

Example 3.8 (Example 3.4 continued). Let F (f) =
∫

|f |dµ where µ is the mea-
sure defined in Example 3.4. The set of relevant points contains

⋃

iKai,bi
. Hence

we have an example of a polynomial-time computable norm with an uncountable
set of relevant points.

The terminology is justified by the next result: the value F (f) up to some
precision (decreasing to 0 as k grows) only depends on the values of f on Rk,
so the points of Rk are relevant to evaluate the norm of a function.

Theorem 3.2. Let F be a norm that is weaker than the uniform norm. There
exists a constant c such that if f ∈ Lip1 is null on R2k then F (f) ≤ c · 2−k.

We first need a few lemmas.

Lemma 3.3. For every α ∈ [0, 1] and n ∈ N there exists β such that |α− β| ≤
1/(2dF,α(n)) and dF,β(n+ 2) ≥ 2dF,α(n).

Proof. Let l < dF,α(n) and f ∈ Lip1 be supported on N(α, 1/l) and F (f) >
2−n. Let h1, h2 be the maximal 1-Lipschitz functions supported on [0, α] and
[α, 1] respectively. Let f1 = min(f, h1), f2 = min(f, h2) and f3 = f4 = (f −
f1 − f2)/2. All fi are 1-Lipschitz and are supported on N(βi, 1/(2l)) for some

14



h1 h2

α

f

(a) f , h1 and h2

h1

α

f1

(b) f1

h2

α

f2

(c) f2

Figure 3: f = f1 + f2 + f3 + f4

βi ∈ N(α, 1/(2l)). As f = f1+f2+f3+f4 there exists i such that F (fi) > 2−n−2,
which implies dβi

(n+ 2) > 2l.
To each l < dF,α(n) is associated some βl. By compactness of [0, 1], there

exists an accumulation point β when l tends to dF,α(n). By continuity, β satisfies
the conditions.

Lemma 3.4. For every α ∈ [0, 1] and every n ∈ N there exists β such that

|α− β| ≤ 1/dF,α(n) and dF,β(n+ p) ≥ 2
p−3
2 dF,α(n) for all p ∈ N.

Proof. We iteratively apply Lemma 3.3. Let β0 = α. Given βp, let βp+1 be
obtained by applying Lemma 3.3 to βp and n + 2p. One has dF,βp

(n + 2p) ≥
2pdF,α(n) and |βp−βp+1| ≤ 2−p−1/dF,α(n). βp is a Cauchy sequence, let β be its
limit. As |β−βp| ≤ 2−p/dF,α(n), a function supported on N(βp, 2

−p/dF,α(n)) is
supported on N(β, 2−p+1/dF,α(n)) so dF,β(n+2p) ≥ 2p−1dF,α(n). As dF,β(n+
2p+ 1) ≥ dF,β(n+ 2p) ≥ 2p−1dF,α(n) we get the result.

We will need the following refinement of Theorem 3.1.

Lemma 3.5. There exists a constant c such that for all ǫ and all f ∈ Lip1, if
|f | ≤ ǫ on Rn,l then F (f) ≤ cǫ+ l22−n+6.

Proof. Let c be such that F ≤ c‖.‖∞ . We decompose f into a sum f = g + h
of 1-Lipschitz functions such that ‖g‖

∞
≤ ǫ and h = 0 on Rn,l. g and h are

defined as g(x) = f(x) if |f(x)| ≤ ǫ, g(x) = −ǫ if f(x) ≤ −ǫ and g(x) = ǫ if
f(x) ≥ ǫ, and h = f − g.

One easily checks that g and h are 1-Lipschitz. As f = g+h, F (f) ≤ F (g)+
F (h) by triangular inequality. F (g) ≤ cǫ and F (h) ≤ l22−n+6 by Theorem
3.1.

Proof of Theorem 3.2. Lemma 3.4 gives

R2k,l ⊆ N
(

⋂

n≥2k

R
n,2

n−3
2

−kl
, 1/l

)

.
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Assume l ≥ 2
3
2 . The set

⋂

n≥2k R
n,2

n−3
2

−kl
is contained in Rk. Indeed, if

n ≥ 2k then l2
n−3

2 −k ≥ 2
n
2 −k.

As a result, if f ∈ Lip1 is null on Rk then |f | ≤ 1/l on R2k,l, so by Lemma

3.5 F (f) ≤ c
l + l22−2k+6 for some c. Now take l = 2

k
2 : F (f) ≤ c2−

k
2 + 2−k+6 ≤

c′2−
k
2 for some c′ that only depends on c (strictly speaking, the result is proved

for k ≥ 3 as we need l ≥ 2
3
2 . However, the result can be obtained for all k by

changing the constant c′).

The result can easily be generalized from the case of 1-Lipschitz functions
to any f ∈ C[0, 1].

Corollary 3.1. Let F be a norm that is weaker than the uniform norm. There
exists c ∈ N such that if f ∈ C[0, 1] is null on R2µf (p) then F (f) ≤ c ·2−p, where
µf is a modulus of continuity of f .

Proof. Let c0 be such that F ≤ c0‖.‖∞ . Let L = 2µf (p)−p+1. Let k = µf (p).
There exists an L-Lipschitz function g which is null on R2k and such that
‖f − g‖

∞
≤ 2−p. Indeed, let pi = i2−µf (p) for i = 0 to 2µf (p). Let g(pi) = 0 if

d(pi,R2k) < 2−µf (p), g(pi) = f(pi) otherwise and extend g to a linear function
between two consecutive points. One easily checks that g satisfies the required
condtions.

First, F (f − g) ≤ c02
−p. Applying Theorem 3.2 to g/L gives F (g) ≤

c1L2−µf (p) ≤ c12
−p for some constant c1, so F (f) ≤ c02

−p + c12
−p.

4. Complexity of norms

We now show how the complexity of a norm has an influence on the shape
of the norm, which can be measured by the way it depends on the points and
by the size of the set of relevant points. A complexity restriction on a norm has
two different effects: it bounds the internal computation time of the machine,
reducing its computational power, and it bounds the number and size of the
queries to the oracle representing the input, which reduces its knowledge of the
input. We focus on the second type of restriction only, measured by the number
of queries submitted to the oracle. To capture exactly the effects of this second
type of restriction, we allow an extra oracle to a machine, giving it arbitrary
computational power.

4.1. Query complexity

Definition 4.1. A bounding class is a class T of functions t : N → R satisfying
the following conditions:

• T contains the constant function 1,

• T is closed downwards: if t′ ≤ t and t ∈ T then t′ ∈ T ,

• T is stable under multiplication by a polynomial.
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In particular T contains all the (first-order) polynomials. The class POLY
of functions that are bounded by polynomials is a bounding class. We say that
a bounding class T is sub-exponential if for every t ∈ T and ǫ > 0, t = o(2ǫn).
The class POLY is an example of a sub-exponential bounding class.

Here we represent the null function z ∈ C[0, 1] using the modulus µz(p) = p
and the approximation function zD(q, p) = 0. Given an oracle Turing machine
M and n ∈ N, run M on input n and oracle 〈µz, zD〉. q is an oracle query if
the machine eventually asks the oracle for the value of zD(q, p) for some p. Let
Qn be the set of oracle queries.

Definition 4.2. Let T be a bounding class. A norm over C[0, 1] has query

complexity in T if it is computable by a relativized oracle Turing machine
with an extra oracle A ∈ {0, 1}N for which the function n 7→ |Qn| belongs to T .

A bound on the time complexity always induces a bound on the query com-
plexity: if a norm ‖.‖ is computable by a machine that on oracle ϕ and input
n, halts in time t(|ϕ|, n), then ‖.‖ has query complexity t(id, n). In particular,
every polynomial-time computable norm has polynomial query complexity.

4.2. Relating query complexity, dependence and relevant points

we are now able to relate the query complexity of a norm to the way it
depends on points. The results are based on the following simple observation:
if a norm F depends on a point then a machine computing F must query the
oracle around that point.

Lemma 4.1. The following equivalent statements hold for all α, n:

Rn,l ⊆ N(Qn+1, 1/l)

α ∈ N(Qn+1, 1/dF,α(n))

dF,α(n) ≤ 1/d(α,Qn+1).

Proof. Let l = 1/d(α,Qn+1). If f ∈ Lip1 is supported on N(α, 1/l) then f = 0
on Qn+1. One can choose a representation of f satisfying fD(q, p) = 0 for
q ∈ Qn+1. The machine cannot distinguish f from 0 so it must output a
rational number r such that |r| = |r − F (0)| < 2−n+1. As |r − F (f)| < 2−n+1,
we conclude F (f) < 2−n. As a result, dF,α(n) ≤ l.

The notions of dependence and relevant points enable us to express formally
the intuition that a polynomial-time computable norm cannot depend on a large
set of points, as a machine computing it in polynomial-time only has little time
to evaluate its input. It is more generally true of any norm that has low query
complexity.

Theorem 4.1. Let F be a norm that is weaker than the uniform norm and
T a bounding class. If F has query complexity in T then for almost every α,
dF,α ∈ T .

In particular if T is sub-exponential then the set of relevant points has
Lebesgue measure 0.
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Proof. Let t ∈ T be such that |Qn| ≤ t(n) for all n. Let Ui =
⋃

nN(Qn,
1

2t(n)(n+i+1)2 )

and Ai = [0, 1] \ Ui. One has

µ(Ui) ≤
∑

n

1

(n+ i+ 1)2
≤ 1

i
.

so µ(Ai) ≥ 1 − 1
i . Let α ∈ Ai and n ∈ N : as α /∈ N(Qn,

1
2t(n)(n+i+1)2 ),

dF,α(n) ≤ 1/d(α,Qn+1) ≤ 2t(n + 1)(n + i + 2)2 by Lemma 4.1. The function
n 7→ 2t(n+ 1)(n+ i+ 2)2 belongs to T .

Moreover,

Theorem 4.2. Let F be a norm that is weaker than the uniform norm and T
a sub-exponential bounding class. If F has query complexity in T then the set
of relevant points has Hausdorff dimension 0.

Proof. We slightly refine the preceding proof. For s > 0, we replace the sets Ui
by V si =

⋃

nN
(

Qn, (t(n)(n+ i)2)−1/s
)

.

Again,
⋂

i V
s
i contains all the relevant points as (t(n)(n + i)2)1/s = o(2

n
2 ),

and its dimension is ≤ s. As it is true for any s > 0, the set of relevant points
has Hausdorff dimension 0.

In particular, if F is polynomial-time computable then most of the points
are irrelevant. In other words, F depends on a small set. As we show now, it
is balanced by the fact that it highly depends on some points. We know from
Proposition 3.5 that there exist points whose dependence function is at least
of the order of 2

n
2 and the example of the L1 norm shows that the coefficient

1
2 cannot be increased in general. However for polynomial-time computable
norms, the coefficient can be taken arbitrarily close to 1. First, one easily
improves Proposition 3.4.

Proposition 4.1. Let F be a norm that is weaker than the uniform norm and
T a bounding class. If F has query complexity in T then λn. 2n

DF (n) ∈ T .

Proof. Let t ∈ T be such that |Qn| ≤ t(n) for all n. Let l < F (1)2n/(3t(n)). Let
g = 1

t(n)

∑

q∈Qn
hq,1/l. g ∈ Lip1 and g = λx.1/(lt(n)) on Qn so F (1/(lt(n)) −

g) ≤ 2−n+1, hence F (g) ≥ F (1)/(lt(n))−2−n+1. As a result there exists q ∈ Qn
such that F (hq,1/l) ≥ F (1)/(lt(n))− 2−n+1 > 2−n, so DF (n) ≥ dF,q(n) ≥ l. As
it is true for any l < F (1)2n/(3t(n)), DF (n) ≥ F (1)2n/(3t(n)).

For instance if F has polynomial query complexity then DF (n) ≥ 2n

P (n) for

some polynomial n. In particular, the fact that a polynomial-time computable
norm cannot be weaker than the L1-norm can be read from the maximal de-
pendency functions using Proposition 3.3: the maximal dependency function of
the L1-norm is about 2

n
2 , which is much smaller than the maximal dependence

function of a polynomial-time computable norm.
We now raise the question whether the bound given by Proposition 4.1 is

reached: is there some α such that λn. 2n

dF,α(n) ∈ T ? We leave the question
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open, but in the case when T is the class of functions that are bounded by
polynomials, we are able to prove that dF,α can be larger than 2(1−ǫ)n for any
ǫ > 0. More precisely,

Theorem 4.3. Let F be a polynomial-time computable norm. There exist α ∈
[0, 1] and c > 0 such that dF,α(n) ≥ 2n−c

√
n log n for all sufficiently large n. The

set of such α is even dense.

Proof idea. The idea is to start from some triangular function hα0,l and to
decompose it as a sum of many smaller triangular functions. As most of them
will be far away from the query sets of the machine computing the norm, their
norms will be very small. As the sum of the norms of all the small functions
is bounded below by the norm of the initial function, one of the few functions,
hα1,l′ that are close to the query set must have a large norm. Applying the same
argument to the smaller function and iterating to infinity produces a sequence
αi converging to some α which will satisfy the conclusion of the theorem.

Lemma 4.2. Let k, p, n ∈ N and α ∈ [2−k, 1−2−k]. There exists β ∈ N(α, 2−k)
such that

F (hβ,2−p−k) ≥ 1

P (n)
(2−p−1F (hα,2−k) − 2p−n+1).

Proof. We decompose hα,2−k as a sum of 22p functions hβi,2−p−k , i = 1 . . . , 22p

where βi ranges over the set B = {α ± j2−p−k : 0 ≤ j < 2p} of cardinality
2p+1 − 1 (see Figure 4). Each β is the center of at most 2p functions, so

Figure 4: hα,2−k =
∑22p

i=1 hβi,2−p−k . Here, p = 3.

F (hα,2−k) ≤ 2p
∑

β∈B
F (hβ,2−p−k).

We split B into a disjoint union B0∪B1: β ∈ B0 iff d(β,Qn) < 2−p−k. First,
|B0| ≤ 2|Qn|. Indeed, to each β ∈ B0 one can associate some q ∈ Qn such that
|β − q| < 2−p−k. This mapping is two-to-one so |B0| ≤ 2|Qn|.

Let M = maxβ∈B0 F (hβ , 2
−p−k). Observe that M = 0 if B0 = ∅. If β ∈ B1

then F (hβ,2−p−k) ≤ 2−n+1, so

F (hα,2−k) ≤ 2p
∑

β∈B0

F (hβ,2−p−k) + 2p
∑

β∈B1

F (hβ,2−p−k)

≤ 2p|B0|M + 2p−n+1|B1|
≤ 2p+1P (n)M + 22p−n+2.
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As a result,

M ≥ 1

P (n)
(2−p−1F (hα,2−k) − 2p−n+1).

If the term on the right-hand side is positive then M is positive so B0 6= ∅
and M = F (hβ,2−p−k) for some β ∈ B0. If the right-hand side is nonpositive
then every β satisfies the required condition.

Claim 4.1. There exist k0 and d such that for all k ≥ k0 and p = ⌈d
√
k log(k)⌉,

2−p−2−k−
√
k

P (2p+ 4 + k +
√
k)

> 2−(p+k)−
√
p+k.

Proof. We look for p satisfying
√
p+ k−

√
k > 2 + logP (2p+ 4 + k+

√
k). Let

d0 be the degree of P and d > 2d0. Let p = ⌈
√
k log k⌉ ∈ o(k).√

p+ k −
√
k ∼ p

2
√
k
≥ d log k/2 and 2 + logP (2p + 4 + k +

√
k) ∼ d0 log k

so the inequality is satisfied for all sufficiently lage k.

Lemma 4.3. If F (hα,2−k) > 2−k−
√
k then there exists β ∈ N(α, 2−k) such that

F (hβ,2−p−k) > 2−p−k−
√
p+k where p = ⌈

√
k log k⌉.

Proof. Let p ∈ N and n = ⌈2p + 3 + k +
√
k⌉. Applying Lemma 4.2 gives

β ∈ N(α, 2−k) such that

F (hβ,2−p−k) ≥ 2−p−2−k−
√
k

P (2p+ 4 + k +
√
k)
.

When p tends to infinity, the right-hand side eventually exceeds 2−(p+k)−
√
p+k.

Actually, it happens early.
As a result, F (hβ,2−p−k) > 2−(p+k)−

√
p+k for p = ⌈d

√
k log k⌉, if k ≥ k0.

Proof of Theorem 4.3. Observe that if the result holds for a norm F ′ = NF
with N ∈ N then the result holds for F .

Lemma 4.3 provides d and k0. We define by induction αi, pi, ki. We start
from k0, α0 ∈ [2−k0 , 1 − 2−k0 ] and we assume that F (hα0,2−k0 ) > 2−λk0 ,
multiplying F by a constant if necessary. Applying Lemma 4.3 to αi and ki
gives β. Let pi = ⌈d

√
ki log(ki)⌉, αi+1 = β and ki+1 = ki + pi. One has

F (hαi,2−ki > 2−ki−
√
ki and |αi − αi+1| < 2−ki for all i.

As ki is increasing, αi is a Cauchy sequence so it converges to some α. One
has |αi − α| ≤ 2−ki+1.

Let ni = ⌈ki +
√
ki⌉ for some i. hαi,2−ki is supported on N(α, 2−ki+2) and

F (hαi,2−ki ) > 2−ki−
√
ki ≥ 2−ni so dF,α(ni) ≥ 2ki−2.

One has ni+1 − ki ∼ ki+1 − ki ∼ d
√
ki log ki, so if i is sufficiently large then

ni+1 − ki ≤ (d+ 1)
√
ki log ki ≤ (d+ 1)

√
ni log(ni).

Now given n ∈ N, let i be such that ni ≤ n < ni+1. If i is sufficiently large
then ki ≥ n−(d+1)

√
n log n so dF,α(n) ≥ dF,α(ni) ≥ 2ki−2 ≥ 2n−(d+1)

√
n log n−2.

As a result, for all sufficiently large n, dF,α(n) ≥ 2n−(d+2)
√
n log n.
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We do not know whether this result can be improved: is the bound provided
by Proposition 4.1 reached? In other words, is there α such that dF,α(n) ≥ 2n

P (n)

for some polynomial P and all n? Adapting the proof of Theorem 4.3 we are only
able to prove the existence of α such that dF,α(n) ≥ 2n

P (n) for some polynomial

P and infinitely many n.
We end this section by a characterization of the norms that have polynomial

query complexity.
A family of compact sets Kk ⊆ [0, 1] can be polynomially covered if there

exists a polynomial P (n, k) such that for each n, k there exists a set An,k of
cardinality bounded by P (n, k) that Kk ⊆ N(An,k, 2

−n). Observe that the
family Kai,bi

from Examples 3.4 and 3.8 can be polynomially covered.

Proposition 4.2. A norm has polynomial query complexity if and only if for
every k, Rk can be polynomially covered, uniformly in k.

Proof sketch. If a norm has polynomial query complexity then by Lemma 4.1,
Rk ⊆ R2(n+k),2n ⊆ N(Q2(n+k)+1, 2

−n). We then use the assumption that
|Q2(n+k)+1| is polynomial in n, k.

Conversely, assume that Rk ⊆ N(An,k, 2
−n) for some set An,k of cardinality

bounded by P (n, k) for some polynomial P . We can assume w.l.o.g. that the
points of An,k belong to Dn. The additional oracle provides two types of infor-
mation: given n, k, it provides the set An,k and given n, k, p and a list of |An,k|
values, it provides a 2−p-approximation of ‖f‖ where f is the piecewise linear
function with the corresponding values on An,k. We now describe the machine
computing the norm. On input p, the machine asks for µf (p), then asks the
auxiliary oracle for Aµf (p),2µf (p), evaluates f on the latter set at precision 2−p

and then using the returned values, asks the auxiliary oracle for the norm of the
corresponding piecewise linear function and outputs that value. Corollary 3.1
tells us that the output value is within c2−p of the value norm of f , for some
constant c. Taking c into account, the machine can be adjusted to compute
the norm. It is routine to check that the oracle can be coded as an element of
{0, 1}N and that the queries of the machines are polynomial in p and the size of
the representation of f .

4.3. Non-deterministic complexity

The uniform norm and the L1 norm behave similarly from the perspective of
their dependence functions and sets of relevant points: they have the same set
of relevant points, namely the whole interval [0, 1], their dependence functions
are about 2n and 2

n
2 respectively, at each point. From a complexity perspective,

it is reflected in the fact that they have similar deterministic complexity, which
is exponential. However, the uniform norm is computable in non-deterministic
polynomial-time while the L1-norm is not (we give details below). Our question
is: how is that difference reflected in the analytical properties of these norms?
In this section we refine the notions of dependence function and relevant point
to account for non-deterministic query complexity of norm.

Let us first explain briefly what it means for a real functional to be com-
putable in non-deterministic polynomial time.
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4.3.1. Background

A non-deterministic oracle Turing machine M computes a functional F :
C[0, 1] → R for any f ∈ C[0, 1], any representation ϕ of f and any n ∈ N,
Mϕ(0n) halts on each computation path and outputs a dyadic rational d such
that

• for all computation paths, d < F (f) + 2−n.

• for at least one computation path, d > F (f) − 2−n.

Definition 4.3. A functional F : C[0, 1] → R is computable in non-deterministic
polynomial time if it is computable by a non-deterministic oracle Turing ma-
chine that runs in polynomial time.

That definition induces a notion of NP real number: x is an NP real number if
the constant functional F (f) = x is computable in non-deterministic polynomial
time. One easily checks that we get the same notion as the one defined by Ko
[16]. Ko [16] proved that if f ∈ C[0, 1] is polynomial-time computable then ‖f‖∞

is an NP real number. Using Kawamura and Cook’s framework it is possible to
make the result uniform:

Theorem 4.4 (essentially in [16]). The uniform norm, as a functional from
C[0, 1] to R, is computable in non-deterministic polynomial time.

Proof sketch. On oracle f , the machine simply guesses the point where f reaches
its maximum, evaluates f at that point and outputs the value. More precisely,
on input n and oracle representing f , the machine asks for m := mf (n), guesses
some d′ ∈ Dm and evaluates f at d′ with precision n and outputs the value
given by the oracle. The correct guesses are the dyadic rationals that are close
to the points where f reaches its maximum.

However the situation is different for the L1 norm.

Proposition 4.3. No non-deterministic polynomial-time computable norm is
weaker than the L1 norm.

Proof. Assume a machine M computing a norm F in non-deterministic poly-
nomial time. Let f(x) = 1 be the constant function. We assume that F (1) ≥ 1,
multiplying F by some natural number if necessary. Run M on input n and
with an oracle representing f with modulus m(p) = p+ n. As ‖f‖

1
≥ 1, there

must exist a path p on which the machine outputs a number > 1 − 2−n. Let
Qn be the set of oracle queries of the machine to the approximation function.
The size of Qn is polynomial in n. Now let gn(x) = max(1 − 2nd(x,Qn), 0).
gn coincides with f on Qn and its modulus is bounded by m(p) = p + n. Run
M on input n and with an oracle representing gn with modulus m(p) = p+ n,
giving the same values as f on Qn. On the path p, the execution of M will
be exactly the same as with f so it will give the same output, which implies
that F (gn) > 1− 2−n+1. However ‖gn‖1

≤ 2−n|Qn| which tends to 0 as |Qn| is
polynomial in n.
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4.3.2. Essential points and sufficient sets

Here we refine the notion of dependence function in two ways: it is a local
notion in the sense that each f ∈ C[0, 1] has its own function; we break the
symmetry by looking at small perturbations of f that make the value of the
norm distinctly decrease (while the dependency function looks at perturbations
that make the value change, up or down). Indeed, non-deterministic complexity
is inherently an asymmetric notion: the output value is large if at least one path
returns 1, the value is small if all paths return 0.

We recall that a point is relevant if, intuitively, a deterministic machine com-
puting the norm has to evaluate its input at that point (Lemma 4.1); conversely,
it is sufficient for the machine to evaluate its input on the relevant points (The-
orem 3.2). We introduce the following notion: a point is essential if, intuitively,
a non-deterministic machine has to evaluate its input at that point, in at least
one of its non-deterministic computation paths. Again, the notion is purely an-
alytical, i.e. it is defined only in terms of the norm and not from computational
considerations.

Definition 4.4. Given a norm F , a function f ∈ C[0, 1] and α ∈ [0, 1],

ηF,f,α(n) = sup{l : ∃g ∈ Lip1,Supp(g) ⊆ N(α, 1
l )

and F (f + g) < F (f) − 2−n}
= inf{l : ∀g ∈ Lip1,Supp(g) ⊆ N(α, 1

l )

implies F (f + g) ≥ F (f) − 2−n}.

We say that α is essential (w.r.t. to F and f) if ηF,f,α(n) ≥ 2
n
2 −k for some

k and all n.

The larger ηF,f,α is, the more essential is α. The function ηF,f,α is closely
related to the dependence function dF,α.

Proposition 4.4.

sup
f∈C[0,1]

ηF,f,α(n) = dF,α(n).

Proof. Let l < ηF,f,α(n) for some f . There exists g ∈ Lip1 supported on
N(α, 1/l) and such that F (f + g) < F (f) − 2−n. One has F (g) ≥ F (f) −
F (f + g) > 2−n so dF,α(n) ≥ l.

Conversely, let l < dF,α(n) and g ∈ Lip1 be supported on N(α, 1/l) and such
that F (g) > 2−n. Let f = −2g: F (f + g) = F (g) = F (f)− F (g) < F (f)− 2−n

so ηF,f,α(n) ≥ l.

As a result, if α is essential for some function f then α is relevant.

Definition 4.5. Given a norm F , a function f ∈ C[0, 1] and A ⊆ [0, 1], A is
n-sufficient w.r.t. f if for all g ∈ Lip1 such that is null on A, F (f + g) ≥
F (f) − 2−n.
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If A is n-sufficient then knowing f on A is sufficient to compute its norm
up to precision 2−n. The notion of essential point will only be used to derive
properties of sufficient sets, via the following fact: a sufficient point must belong
to any sufficient set (up to some precision).

Proposition 4.5. If A is n-sufficient and α /∈ A then ηF,f,α(n) ≤ 1
d(α,A) .

As a result, if α is essential then it must be 2−
n
2 +k-close to any n-sufficient

set, for some k and all n.

Proof. Let l = 1
d(α,A) . If g ∈ Lip1 and Supp(g) ⊆ N(α, 1

l ) then Supp(g) is

disjoint from A so F (f + g) ≥ F (f) − 2−n, so ηF,f,α(n) ≤ l.

4.4. Sufficient sets and non-deterministic complexity

The relationship between sufficient sets and non-deterministic complexity is
given by the following simple observation.

Proposition 4.6. Let M be a nondeterministic machine computing the norm
F . Consider a path of Mf (d) (with modulus p 7→ max(mf (p+ 1), p+ 1)) which
outputs F (f) up to 2−n−1. Let Q be the set of oracle queries: Q is n-sufficient.

Proof. Let g ∈ Lip1 such that g = 0 on Q. f + g has modulus p 7→ max(mf (p+
1), p+1) and on Q the oracle evaluating f+g can answer as the oracle evaluating
f , so Mf+g(n+ 1) = Mf (n+ 1) on that path so F (f + g) ≥ F (f) − 2−n.

Corollary 4.1. If a norm is in NP then for every f and n, there is an n-
sufficient set of size poly(f, n). The set of essential points has measure 0 and
even Hausdorff dimension 0.

Example 4.1. Let F be the uniform norm, f ∈ C[0, 1] and α ∈ [0, 1]. Let d
be the maximal distance of α to points β such that |f(β)| ≥ ‖f‖

∞
− 2−n.

1
d+2−n ≤ ηF,f,α(n) ≤ 1

d . In particular, if there is only one maximal point α then
ηF,f,α(n) is unbounded, while ηF,f,β is bounded for β 6= α. If there are at least
two maximal points then ηF,f,α is bounded for every α.

So a point is essential if its the only maximal point (if there are two maximal
points, one can evaluate the function at one of them only, so no one is essential).

If f reaches its maximum at α then {α} is n-sufficient for all n.

Example 4.2. Let F be the L1 norm, f ∈ C[0, 1] and α ∈ [0, 1]. ηF,f,α(n) = 2
n
2 .

Every point is essential and an n-sufficient set A must contain at least about
2

n
2 points as N(A, 2−

n
2 ) must cover [0, 1] by Proposition 4.5.

Example 4.3. Let F be the norm on the dyadic rationals, f ∈ C[0, 1]. For each
rational qi, ηF,f,qi

(n) ≥ 2n−i so qi is essential. If d(α, qi) >
1

P (i) for all i then

ηF,f,α ≤ P (i) for all i, so α is not essential.

Now we get a characterization of the norms that are computable in non-
deterministic polynomial time relative to some oracle. Intuitively, such a norm
has a relatively small number of small sets such that every input function has a
sufficient set among them.
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Theorem 4.5. A norm F is in NP relative to an oracle if and only if there
exists a polynomial P and a function Q : {0, 1}P (M,n) → DP (M,n) such that for
all f ∈ Lip1 such that ‖f‖

∞
≤M , there exists u ∈ {0, 1}P (M,n) such that Qu is

n-sufficient for f .

Proof. Assume the existence of the function Q. We define an oracle A that is
able to compute the functionQ and a function FQ : N×{0, 1}P (M,n)×DP (M,n) →
D such that

∣

∣

∣
FQ(n, u, v) − inf

f∈Lip1
f=v on Qu

F (f)
∣

∣

∣
≤ 2−n.

Intuitively, n is the precision, u is the guess from which the set Qu of evaluation
points can be derived, and v is the list of approximate values of f on Qu. On
these inputs, FQ outputs a lower bound on F (f) that is as optimal as it can be,
given these informations.

The machine M computing F works as follows: given f ∈ Lip1 as oracle
and n as input, it evaluates f(0) at precision 1, from which it derives M ∈ N

such that ‖f‖
∞

≤M , it guesses some u ∈ {0, 1}P (M,|d|), computes Qu with the
help of A and evaluates f on Qu at precision n, which gives a list v of values.
Ask A for FQ(n+ 1, u, v) and return the value. If Qu is (n+ 1)-sufficient for f
then the value must be 2−n-close to F (f). By assumption, there exists u such
that Qu is (n+1)-sufficient for f . For other guesses u′, the value is smaller than
F (f), up to 2−n, by definition of FQ.

Conversely, let F be in NP relative to an oracle. Let M be a machine
computing the norm F in nondeterministic polynomial time, relative to some
oracle A. On each representation ϕ of a function f , each input n and each guess
u of size P (|ϕ|, n) for some polynomial P , M makes oracles queries to evaluate
f on a set Q of size at most P (|ϕ|, n). Q depends on ϕ, n and u. We show that
we can get rid of the dependence of Q on ϕ. Still, Q depends on |ϕ|.

Each d ∈ Q has size ≤ P (|ϕ|, n) so the size of the oracle answers is bounded
by |ϕ|(P (|ϕ|, n). To each guess u we associate the new guess v which consists of
u followed by P (|ϕ|, n) strings of length |ϕ|(P (|ϕ|, n). |v| is still polynomial in
|ϕ| and n. Now consider the machine M′ that on oracle ϕ, input n and guess
v, does the following: decompose v into u and the list of strings, simulate M
on input n, guess u and when a question is asked to the oracle, answer with
the next string in the list. Keep track of the oracle queries q0, . . . , qk. When
M stops, query the oracle ϕ at q0, . . . , qk and check whether the oracle answers
coincide with the list of strings in the same order. If they coincide then output
the final result of M, otherwise output 0.

The machine M′ runs in nondeterministic polynomial-time and computes
F . The point is that the oracle queries now depend on |ϕ|, the input n and the
guess v but not on ϕ itself.

Now all f ∈ Lip1 bounded by M have a representation ϕ whose size is
bounded by λp.p +M + c for some constant c. On input n + 1 and guess v of
length polynomial in n,M , let Qv be the set of oracle queries of the machine
M′, which is also polynomial in n,M . By Proposition 4.6, for each f ∈ Lip1

bounded by M , Qv is n-sufficient for some v.
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The fact that the L1-norm is not computable in non-deterministic polyno-
mial time can be read from the fact that it only has large sufficient sets.

5. One oracle access

In this section we investigate the extreme case of a functional whose “query
complexity1” is bounded by 1, i.e. a functional F : C[0, 1] → R that is com-
putable by a machine making at most one oracle call on each precision input
n. Technically, the representation of f contains two types of information: the
modulus of continuity of f and the values of f on the dyadic rationals. Here
we separate the representation of f into two oracles and restrict the machine to
perform one query to the approximation oracle.

We are able to characterize exactly this class of functionals. While the result
looks natural, the proof is more delicate than expected: it is what makes the
result interesting. As the last result (Proposition 5.1) shows, the argument hides
subtleties that make it non-uniform.

Observe that it is trivial to obtain a characterization of functionals F : (N →
N) → (N → N) that are computable by an oracle Turing machine such that to
compute F (f)(n), does only one oracle call to f . Obviously, the functional
F can be expressed as F (f)(n) = ϕ(f(ψ(n)) for some computable functions
ϕ,ψ : N → N. Indeed, let ϕ(m) = F (λx.m) and ψ(n) be the question asked by
the machine to the oracle on input n. If F is assumed to be polynomial-time
computable, then so are ϕ and ψ. The argument is much more elaborate on the
real numbers.

Theorem 5.1. For a functional F : C[0, 1] → R the following are equivalent:

1. F is computable by a (polynomial time) oracle Turing machine that does
at most one query to the approximation oracle,

2. there exist a (polynomial time) computable real number α ∈ [0, 1] and
a (polynomial time) computable real function φ : R → R which is uni-
formly continuous and whose modulus of uniform continuity is bounded by
a computable function (a polynomial) such that F (f) = φ(f(α)) for all
f ∈ C[0, 1].

Observe that φ is uniquely determined by φ(v) = F (λx.v) where λx.v is the
constant function with value v. If F is not constant then α can be proved to be
unique.

One could imagine a kind of BSS model of oracle computation for functionals,
where the machine is allowed to ask its oracle for the value f(α), giving α in
one step, and getting the value f(α) in one step as well (see [19] for the usual
BSS model). In such a model, it is obvious that a functional F computed by a
machine making one oracle call should be of the form F (f) = φ(f(α)). Theorem

1here we make informal use of this expression as the query complexity is only defined for
norms.
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5.1 tells us that this is also true for oracle machines working at finite precision.
Note however that the two models would not have the same computation power:
the uniform norm would not be computable in such a model, as the machine
should evaluate its input function on an infinite set (which, at finite precision,
can be approximated by evaluating the function on a finite set).

Proof.

Notation 5.1. Assume a functionm : N → N. Let Cm[0, 1] denote the set of con-
tinuous functions defined over the interval [0, 1] having a modulus of continuity
m.

We prove 1 ⇒ 2, the other direction is straightforward. Let M be an oracle
Turing machine computing F and such that on each input n the machine does
at most one oracle call to the approximation oracle. We have two cases.

Case 1. Assume F is constant. That is F (f) = a for some a ∈ R. Let
φ(y) = a and α = 0 for instance. Obviously, F is (polynomial-time) computable
if and only if φ is (polynomial-time) computable.

Case 2. Assume F is not constant. We first define φ(y) = F (gy) where gy
is the constant function with value y.

Let f0, g0 and n0 be such that |F (f0)−F (g0)| > 2−n0+1. Let m be a common
modulus of continuity for f0 and g0. We can assume w.l.o.g. that m(p) ≥ p
and m is nondecreasing, replacing m(p) with max(m(0),m(1), . . . ,m(p), p) if
necessary. Let M(p) = m(p+ 1). M ≥ m is also a modulus for f0 and g0.

When the machine computing F is run on oracle (M,ψ) and input n ≥ n0

for some approximation function ψ, the machine must consult ψ. Indeed, oth-
erwise it cannot distinguish between f0 and g0, which implies |F (f0)−F (g0)| ≤
2−n+1 ≤ 2−n0+1 contradicting the assumption. For every n ≥ n0, let (qn, pn)
be the query submitted by M(M,ψ)(n) to ψ ((qn, pn) does not depend on ψ, as
the machine is deterministic does not have consulted it yet).

Claim 5.1. φ is uniformly continuous and n 7→ pn+1 is a modulus of uniform
continuity for φ.

Proof. Assume |x−y| ≤ 2−pn+1 . Let r be a rational number such that |x− r| <
2−pn+1 and |y − r| < 2−pn+1 . When evaluating F (gx) and F (gy) at precision
2−n−1, the oracle can answer r to the query (qn+1, pn+1). The deterministic
machine will produce the same output, so |F (gx)−F (gy)| ≤ 2−n, hence |φ(x)−
φ(y)| ≤ 2−n.

Observe that the modulus of uniform continuity of φ is computable. In case
the machine runs in polynomial time, the modulus is bounded by a polynomial.

We now define α.

Claim 5.2. Assume α is an accumulation point of the sequence (qn)n∈N
. Then

1. Let f, g ∈ CM [0, 1]: if f = g on a neighborhood of α then F (f) = F (g).

2. Let f, g ∈ Cm[0, 1]: if f(α) = g(α) then F (f) = F (g).
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Proof. 1) Assume f = g on a neighborhood U of α where f, g ∈ CM [0, 1]. Both
functions f and g have representations ψf and ψg such that ψf (q, p) = ψg(q, p)
for every q ∈ U∩Q and p ∈ N. Since α is an accumulation point of (qn)n∈N

, there
exists an infinite set E ⊆ N such that for all k ∈ E we have qk ∈ U . Given the
representations ψf and ψg, the machine cannot distinguish between f and g for
input precisions k ∈ E, that is MM,ψf (k) = MM,ψg (k) = rk for every k ∈ E.
We have |rk − F (f)| ≤ 2−k and |rk − F (g)| ≤ 2−k, so |F (f) − F (g)| ≤ 2−k+1.
Given that E is infinite we have the desired result F (f) = F (g). This proves
the first part of the claim.

2) Now assume f(α) = g(α) with f, g ∈ Cm[0, 1]. There exists a function gn
such that: (1) gn coincides with f on N(α, 2−n), (2) ‖g − gn‖∞

≤ 2−n+1 and
(3) M is a modulus for gn (gn cannot have modulus m in general, this is why
we need to consider M). gn can be constructed as follows.

Let βn = max(α−2−n, 0) and γn = min(α+2−n, 1). Let δ1 = f(βn)−g(βn)
and δ2 = f(γn)− g(γn). We have |δ1| ≤ |f(βn)− f(α)|+ |f(α)− g(α)|+ |g(α)−
g(βn)| ≤ |βn − α| + 0 + |βn − α| ≤ 2−n+1. Similarly, |δ2| ≤ 2−n+1.

Now define gn : [0, 1] → R as follows. For βn ≤ x ≤ γn: gn(x) = f(x).
For x ≤ βn: gn(x) = g(x) + δ1. For x ≥ γn: gn(x) = g(x) + δ2. It can be
easily verified that gn satisfies the required properties. We have f = gn on a
neighborhood of α, so from Part (1) of the Claim we have F (f) = F (gn). As
F is continuous and gn converge to g in the uniform norm, F (gn) converge to
F (g) so F (f) = F (g). This completes the proof of Claim 5.2.

Claim 5.3. If (qn)n∈N
has more than one accumulation point, then F is constant

on Cm[0, 1].

Proof. Assume that (qn)n∈N
has two different accumulation points α and β.

Let f, g ∈ Cm[0, 1] be arbitrary. We will show that F (f) = F (g), hence F is
constant. We consider two cases. First, assume |g(β) − f(α)| ≤ |β − α|. Let h
be the linear function such that h(α) = f(α) and h(β) = g(β). By the current
assumption, h ∈ Lip1[0, 1] ⊆ Cm[0, 1] as m(p) ≥ p so by Claim 5.2 we have
F (f) = F (h) = F (g).

Next consider the case |g(β) − f(α)| > |β − α|. Without loss of generality
assume that f(α) > g(β). One can find h1, . . . , h2k+2 ∈ Lip1[0, 1] such that,
letting h0 = g and h2k+2 = f , h2i+1(β) = h2i(β) and h2i+2(α) = h2i+1(α),
i = 0, . . . , k. From Claim 5.2, F (g) = F (h1) = . . . = F (h2k+2) = F (f).

As F is not constant by assumption, the sequence (qn)n∈N
has a unique

accumulation point α. Recall the function φ(y) = F (gy) where gy is the constant
function with value y. By Claim 5.2, F (f) = φ(f(α)) for all f ∈ Cm[0, 1], as f
coincides with gf(α) at α.

Claim 5.4. φ is uniformly continuous and n 7→ pn+1 is a modulus of uniform
continuity for φ.

Proof. Assume |x−y| ≤ 2−pn+1 . Let r be a rational number such that |x− r| <
2−pn+1 and |y − r| < 2−pn+1 . When evaluating F (gx) and F (gy) at precision
2−n−1, the oracle can answer r to the query (qn+1, pn+1). The deterministic
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machine will produce the same output, so |F (gx)−F (gy)| ≤ 2−n, hence |φ(x)−
φ(y)| ≤ 2−n.

Observe that the modulus of uniform continuity of φ is computable. In case
the machine runs in polynomial time, the modulus is bounded by a polynomial.

In order to prove that α is (polytime) computable, we first show that the
speed of convergence of (qn)n∈N

to α is also a modulus of continuity for φ.

Claim 5.5. The function n 7→ − log2 |α − qn+1| − 1 is a modulus of uniform
continuity for φ. In other words, |x−y| ≤ 2|α−qn+1| implies |φ(x)−φ(y)| ≤ 2−n.

Proof. Let n ∈ N. Assume x, y ∈ R such that |x − y| ≤ 2−(− log2 |α−qn+1|−1) =
2|α− qn+1|. Then let f, g be the affine functions satisfying f(α) = x, g(α) = y,
and f(qn+1) = g(qn+1) = x+y

2 . As |x − y| ≤ 2|α − qn+1|, f, g ∈ Lip1[0, 1] ⊆
Cm[0, 1]. Then f and g have representations ψf and ψg that give the same answer
for the query (qn+1, pn+1). Hence, MM,ψf (n + 1) = MM,ψg (n + 1). Thus we
have |F (f) − F (g)| ≤ 2−n. Therefore, |φ(x) − φ(y)| = |φ(f(α)) − φ(g(α))| =
|F (f) − F (g)| ≤ 2−n. This completes the proof of the Claim.

As φ is not constant, its modulus cannot be sub-linear, so qn must converge
quickly to α.

Claim 5.6. There exists k ∈ N such that for all n ∈ N the following holds:
|α− qn| ≤ 2k−n.

Proof. By assumption F is not constant, so φ is not constant. As we show now,
it implies that its modulus must be at least linear, i.e. m(n) ≥ n − k for some
k and all sufficiently large n.

Let a < b be such that φ(a) 6= φ(b). Let k ∈ N be such that |φ(a) − φ(b)| ≥
2−k(b− a). Let m be a modulus of uniform continuity of φ. Let n be such that
|φ(a) − φ(b)| > 2−n: one must have b − a ≥ 2−m(n). We divide the interval
[a, b] into intervals of length ≤ 2−m(n). We can take p = ⌊(b − a)2m(n)⌋ ≥ 1
subintervals. As φ does not vary more than 2−n on each subinterval, a repeated
use of the triangular inequality gives |φ(a) − φ(b)| ≤ p2−n ≤ (b− a)2m(n)−n so
m(n) ≥ n− k.

As m(n) = − log2 |α − qn+1| − 1 is a modulus of φ, one has |α − qn+1| ≤
2k−n−1. This completes the proof of the Claim.

To summarize, for every f ∈ Cm[0, 1], F (f) = φ(f(α)). Observe that the
construction of α may depend on m. We show that it does not.

Let m′ be a nondecreasing function satisfying m′(p) ≥ p and such that F
is not constant on Cm′ [0, 1]. The argument developed so far associates to m′ a
real number α′ ∈ [0, 1] such that F (f) = φ(f(α′)) for all f ∈ Cm′ [0, 1].

Claim 5.7. α′ = α.

Proof. Assume α′ 6= α. As φ is not constant there exist a, b such that φ(a) 6=
φ(b). a and b can be chosen arbitrarily close to each other: we can assume
without loss of generality that |a − b| ≤ |α − α′|. Let f be the affine function
satisfying f(α) = a and f(α′) = b. Then f is in Lip1[0, 1] ⊆ Cm[0, 1] ∩ Cm′ [0, 1].
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As a result, φ(f(α)) = F (f) = φ(f(α′)) which implies φ(a) = φ(b): we get a
contradiction.

As a result, for every f ∈ C[0, 1], F (f) = φ(f(α)). Indeed, f has a modulus
m′ ≥ m so F (f) = φ(f(α′)) = φ(f(α)).

Now, to compute α, we need a modulus m such that F is not constant on
Cm[0, 1]. The point is that m can be assumed to be m(n) = n + k for some
k. Indeed, as F is not constant and the Lipschitz functions are dense in C[0, 1],
there exist two such Lipschitz functions f0 and g0 such that F (f0) 6= F (g0). If
2k bounds the Lipschitz constants of f0 and g0 then m(n) = n+ k is a common
modulus for f0 and g0 so F is not constant on Cm[0, 1]. From this m, the
sequence qn can be computed (in polynomial time) so α can be computed (in
polynomial time) thanks to Claim 5.6.

This completes the proof of the theorem.

5.1. Uniformity

Our question is now: can α and φ be efficiently computed from F? As for φ,
the answer is positive: it can be easily recovered as φ(v) = F (λx.v). However
the proof of Theorem 5.1 is not fully uniform as to compute α, one first has to
find input functions witnessing that F is not constant. These objects can be
effectively found, but not necessarily efficiently. The next result shows that this
problem cannot be got around.

Proposition 5.1. There exist αk and φk such that αk is not computable in poly-
nomial time in k and φk is not constant but Fk(f) := φk(f(αk)) is computable
in time polynomial in k.

As Fk is not constant, the decomposition (αk, φk) of Fk is unique.

Proof. Let A ⊆ N be such that the problem k ∈ A is decidable in time 2k but not

in polynomial time. Let αk = 1 if k ∈ A, αk = 0 if k /∈ A. Let φk(x) = 2−2k · x.
Let Fk(f) = φk(f(αk)). First, αk is not polynomially computable in k.

Of course, each Fk is computable in polynomial time separately (for k is
fixed and hence constant). Moreover, we prove that Fk is polynomial time
computable, uniformly in k. In other words, there is an oracle Turing machine
M such that on oracle s representing f ∈ C[0, 1], Ms(k, n) halts in time bounded
above by a polynomial P (|s|, k, n) and outputs a rational r such that |Fk(f) −
r| ≤ 2−n.

Intuitively, if f does not vary much then it can be evaluated at 0 so com-
puting αk is not necessary; if f varies much then its modulus is large as well
as the size of the representation of f , which gives enough computation time for
evaluating αk.

Let µf and fD be a modulus and an approximation function of f . Given
inputs (n, k), the machine queries µf (0) to the oracle and next:

• if n ≤ 2k−µf (0)− 2, then query fD(0, 0) and output an approximation of

2−2k

fD(0, 0) with precision 2−n−1.
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• if n ≥ 2k − µf (0) − 1 then decide k ∈ A, compute αk accordingly, query

fD(αk, n) and output 2−2k

fD(αk, n).

First observe that |f(αk) − f(0)| ≤ |f(0) − f(1)| ≤ 2µf (0). If n ≤ 2k −
µf (0)−2, then |Mf (k, n)−F (f)| = |2−2k

fD(0, 0)−2−2k

f(αk)| = 2−2k |fD(0, 0)−
f(αk)| ≤ 2−2k

(|fD(0, 0)−f(0)|+|f(0)−f(αk)|) ≤ 2−2k

(1+2µf (0)) ≤ 2−2k+µf (0)+1 ≤
2−n−1. So the output value is a 2−n-approximation of Fk(f). The computations
are done in polynomial time.

If n ≥ 2k − µf (0) − 1 then the computation of αk runs in time ≤ 2k ≤
n+ µf (0) + 1 which is polynomial in n and µf (0). And it can be easily verified

that 2−2k

fD(αk, n) is a 2−n-approximation of Fk(f).

6. Summary and open question

We have introduced the dependence function dF,α of a norm F on a point α
(Definition 3.1) and the notion of a relevant point (Definition 3.3).

The norm of a function is determined by the values of the function on the
points of high dependence (Theorem 3.1). The set of relevant points is a growing
union of compact sets R =

⋃

k Rk. R is always dense (Proposition 3.5) and the
norm of a function at precision 2−k is determined by the value of the function
on R2µf (k) (Theorem 3.2). Hence a machine computing the norm can evaluate
its input function at the relevant points only. Moreover, the machine has to
evaluate its input around the relevant point: each relevant point must be close
to some oracle query (Lemma 4.1).

We have shown the effects of query complexity restrictions on the norm,
measured by the dependence function and the set of relevant points. In partic-
ular if a norm is computable in polynomial time then its set of relevant points
has Hausdorff dimension 0 (Theorem 4.2), almost every point has a polynomial
dependence function (Theorem 4.1) and there exist points of very high depen-
dence (Theorem 4.3). We also get a characterization of norms with polynomial
query complexity (Proposition 4.2).

We have carried out a similar analysis to understand the effects of non-
deterministic time complexity restrictions on the norm. We introduced the no-
tions of essential point and sufficient set (Definitions 4.4 and 4.5) and obtained
a characterization of the norms that are computable in non-deterministic poly-
nomial time relative to an oracle (Theorem 4.5).

We characterize the functionals F : C[0, 1] → R that are computable by
a Turing machine allowed to make at most one oracle query on each input
(Theorem 5.1). We show that the characterization is not fully uniform in terms
of complexity (Proposition 5.1).

6.1. Open question

Is it possible to obtain a nice characterization of the functionals F : C[0, 1] →
R that are polynomial-time computable relative to some oracle, i.e. to extend
Proposition 4.2 to the general case? More generally is it possible to extend our
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analysis from norms to general functionals over C[0, 1]? The dependence of a
functional on a point should be local, i.e. depend on the argument f ∈ C[0, 1]
of the functional: the functional F (f) = f(f(0)) intuitively depends on 0 and
f(0).
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