
Lifetime Dependence Models Generated by Multiply
Monotone Functions

Daniel H. Alai1 Zinoviy Landsman2

School of Mathematics, Statistics and Actuarial Science
University of Kent, Canterbury, Kent CT2 7NZ, UK

Department of Statistics, Actuarial Research Center
University of Haifa, Mount Carmel, Haifa 31905, Israel

Abstract

We study a family of distributions generated from multiply monotone functions
that includes a multivariate Pareto and, previously unidentified, exponential-
Pareto distribution. We utilize an established link with Archimedean survival
copulas to provide further examples, including a multivariate Weibull distribu-
tion, that may be used to fit light, or heavy-tailed phenomena, and which exhibit
various forms of dependence, ranging from positive to negative. Because the
model is intended for the study of joint lifetimes, we consider the effect of trun-
cation and formulate properties required for a number of parameter estimation
procedures based on moments and quantiles. For the quantile-based estimation
procedure applied to the multivariate Weibull distribution, we also address the
problem of optimal quantile selection.

Keywords: Multiply monotone functions; Archimedean survival copulas; Pareto
distribution; Weibull distribution; Multivariate truncation

1d.h.alai@kent.ac.uk
2landsman@stat.haifa.ac.il



1 Introduction

We consider constructions of multivariate distributions, introduced in Hendriks and
Landsman (2017), generated from multiply monotone functions; see Williamson (1956).
This family includes a multivariate Pareto distribution as a special case. The Pareto
is an important and well-known distribution due to its ability to capture heavy-tailed
phenomena; see e.g. Mardia (1962), Arnold (1985) and Embrechts et al. (1997). Further-
more, truncation is an inherent feature of the peaks over threshold method used to study
extreme value distributions and relevant to statistical theory in general. More recently,
the multivariate Pareto distribution has received considerable attention in finance and
insurance; see e.g. Chiragiev and Landsman (2007), Asimit et al. (2010), Vernic (2011)
and Alai et al. (2016). In the latter, the nature of the application required the multi-
variate distribution to be truncated, yielding some interesting theoretical results as well
as estimation procedures.

Applications in actuarial science, for both life and general insurance, often require
truncated distributions. It is well-known that for general insurance, claims are often
subject to a deductible. This is an important feature of the data, which needs to be
addressed appropriately by the claims severity distribution. For joint lifetime modelling,
as in Alai et al. (2016), relevant data is conditional upon individuals surviving to a
certain age; for example, the pension age. Public pension sustainability, the shift in
employer-sponsored pension plans from defined benefit to defined contribution, and
the buying-out of existing pensions via the purchase of bulk annuities are all very
important consequences of changes in longevity that can be captured via an appropriate
dependence structure between lives. With this application in mind, we establish tools
that allow for a richer variety of dependence between lifetimes, whilst addressing the
inherent truncation in the data. This is instrumental in the pricing and risk management
of life-benefit products such as bulk annuities.

In this paper, we study the effect of both univariate and multivariate truncation
on distributions generated from multiply monotone functions. We consider the impact
of truncation on parameter estimation techniques that rely on moments and quantiles.
Following Hendriks and Landsman (2017), let X = (X1, . . . , Xn) be a multivariate
random vector with strictly positive components Xi > 0 such that its joint survival
function is given by

P (X1 > x1, . . . , Xn > xn) = h

( n∑
i=1

λixi

)
, xi ≥ 0, (1)

for λi > 0,∀i, where h is d-times monotone, d ≥ n. That is, for k ∈ {1, . . . , d},

(−1)kh(k)(x) ≥ 0, x > 0. (2)

In the special case that λi = 1, ∀i, we retrieve the Schur-constant survival function;
see e.g. Caramellino and Spizzichino (1994) and Nelsen (2005). To ensure we have a
survival function with a well-defined inverse, we assume h(x) is strictly decreasing for
x ≥ 0. The joint density of any subset of X exists and can be found by taking the
derivative of the function h an appropriate number of times. For example, the density
of X is given by

fX(x1, . . . , xn) = (−1)nλ1 · · ·λnh(n)
( n∑

i=1

λixi

)
≥ 0, xi > 0,
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and the density of Xi is given by

fi(xi) = (−1)λih
(1)(λixi) ≥ 0, xi > 0.

The marginal survival function of Xi could be determined from the density above, or
directly from the joint survival function as follows:

P (Xi > xi) = P (X1 > 0, . . . , Xi−1 > 0, Xi > xi, Xi+1 > 0, . . . , Xn > 0)

= h(λixi), xi ≥ 0.

It is clear that the function h always behaves as a survival function, whether for the
n-variate joint distribution, a univariate marginal distribution, or anything in between.
As such, we require

h(0) = 1, lim
x→∞

h(x) = 0. (3)

Relationship to Archimedean Survival Copulas

The requirements on h are identical to those of Archimedean copula generators, and
hence, the multivariate distribution we consider has intimate links with this family of
copulas. In general, the literature on copulas is vast; they represent a very important
tool in the dependence modelling arsenal; see e.g. Frees and Valdez (1998), Nelsen
(1999), McNeil et al. (2005) and McNeil and Nešlehová (2009) as well as Genest and
Rivest (1993), Genest et al. (1995) and Hofert et al. (2012) for more on estimation
procedures.

In order to showcase the various forms of dependence that can be attained via
the construction of Hendriks and Landsman (2017), which includes both positive and
negative dependence, we demonstrate the effects of selecting well-known Archimedean
copula generators to form distributions as given by Equation (1). In each case, we
demonstrate the necessary steps to address truncation and provide explicit expressions
to obtain parameter estimates.

In some detail, provided that h satisfies the conditions in Equations (2) and (3), it
is the generator of an Archimedean survival copula. In Hendriks and Landsman (2017),
it is shown that a multivariate distribution is identically specified either through the
Archimedean survival copula with generator h whose marginal survival distributions
also follow the functional form of h, or through the joint survival function as given by
Equation (1).

Let the marginal distributions of the Xi have survival functions that are given by
P (Xi > xi) = h(λixi) = pi and apply Archimedean survival copula Ĉ with generator h,

Ĉ(p1, . . . , pn) = h(h−1(p1) + . . .+ h−1(pn)),

where h−1 is the inverse of h such that h(h−1(p)) = p and h is d-times monotone, d ≥ n;
see e.g. Nelsen (1999) and McNeil and Nešlehová (2009). Consequently, we have that

P (X1 > x1, . . . , Xn > xn) = Ĉ(P (X1 > x1), . . . , P (Xn > xn))

= Ĉ(p1, . . . , pn)

= h
(
h−1(p1) + . . .+ h−1(pn)

)
= h

(
h−1(h(λ1x1)) + . . .+ h−1(h(λnxn))

)
= h

(
λ1x1 + . . .+ λnxn

)
.
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The other direction is shown similarly, and hence the two constructions are equivalent.

Organization of the paper: In Section 2 we consider the truncated moments and
quantiles of the univariate distribution generated by h. We address the effect of multi-
variate truncation on the moments of the marginal distributions as well the distribution
of the minimum and maximum in Section 3. We consider some examples of multivariate
distributions in Section 4, providing all the necessary details for moment and quantile
estimation procedures. In Section 5 we consider the quantile-based estimation proce-
dure and address the problem of selecting optimal quantile levels. Section 6 concludes
the paper.

2 Univariate Truncation

In the following two sections, we derive some relevant properties of multivariate distri-
butions specified via the joint survival function. We address, first, univariate truncation
of the marginal distribution, followed by multivariate truncation.

2.1 Multiply Monotone Generator h

For X = (X1, . . . , Xn) with strictly positive components Xi > 0, we have

P (X1 > x1, . . . , Xn > xn) = h

( n∑
i=1

λixi

)
, xi ≥ 0,

λi > 0,∀i, where h is d-times monotone, d ≥ n. We refer to h as the multiply monotone
generator of the multivariate distribution of X. We presently introduce the antideriva-
tives of h, of which we make ample use below.

h(−1)(x) = −
∫ ∞
x

h(y)dy,

h(−2)(x) = −
∫ ∞
x

{
−
∫ ∞
y

h(z)dz

}
dy,

and so on. Recursively, we have that

h(−k)(x) = −
∫ ∞
x

h(−(k−1))(y)dy.

We generally apply the antiderivatives with argument λx + c for constants λ and c;
substitution yields

h(−k)(λx+ c) =

∫ ∞
x

(−1)λh(−(k−1))(λy + c)dy.

2.2 Moments of the Truncated Marginal Distribution

Consider the truncation of Xi with truncation point τ , τXi = Xi|Xi > τ . We refer to
this as univariate truncation since nothing is claimed about the level of the remaining
marginal distributions Xj, j 6= i; we address multivariate truncation in Section 3. We
provide a useful result for the raw moments of Xi and τXi.
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Theorem 1 Consider X = (X1, . . . , Xn) with strictly positive components and marginal
survival functions hi(λixi), λi > 0,∀i, for d-times monotone hi, d ≥ n. If finite, the kth

raw moment, which we denote αk, for k ∈ {1, 2, . . . , d}, of Xi and τXi = Xi|Xi > τ ,
τ ≥ 0, are given by

αk(Xi) = (−1)kk!
h
(−k)
i (0)

λki
,

αk(τXi) = hi(λiτ)−1
k∑
j=0

(−1)jτ k−j
k!

(k − j)!
h
(−j)
i (λiτ)

λji
,

where h
(−k)
i (x) = −

∫∞
x
h
(−(k−1))
i (y)dy and h

(0)
i (x) = hi(x).

Proof. We prove the result directly. In general, we assume integrals corresponding to
finite moments are well-defined; for specific hi, one can be more precise and relate the
existence of moments to values of the canonical parameter θ.

αk(τXi) = hi(λiτ)−1
∫ ∞
τ

xk(−1)λih
(1)
i (λix)dx.

Apply integration by parts with u = xk and dv = (−1)λih
(1)
i (λix)dx; consequently,

du = kxk−1dx and v = −h(0)i (λix).

αk(τXi) = hi(λiτ)−1
{
− xkh(0)i (λix)

∣∣∣∞
x=τ

+

∫ ∞
τ

kxk−1h
(0)
i (λix)dx

}
.

We use the result provided in Lemma 1 in Williamson (1956); it states that for d-times
monotone function f , limx→∞ x

kf(x) = 0 for k ∈ {1, . . . , d}. Consequently, we have
that

αk(τXi) = hi(λiτ)−1
{
τ kh

(0)
i (λiτ) +

∫ ∞
τ

kxk−1h
(0)
i (λix)dx

}
= hi(λiτ)−1

{
τ kh

(0)
i (λiτ) +

(−1)k

λi

∫ ∞
τ

xk−1(−1)λih
(0)
i (λix)dx

}
.

Notice that the remaining integral is exactly what we began with, only the power
of x and the level of function hi have each reduced by one. We reiterate the same
procedure; apply the same integration by parts, noting that h

(−1)
i (x) = −

∫∞
x
h
(0)
i (y)dy

and therefore has the same relationship as h
(0)
i with h

(1)
i ; and finally, use the same

result given in Williamson (1956), noting that limx→∞ x
k−1h

(−1)
i (λix) = 0 since h

(−1)
i is

(d+ 1)-times monotone. We have that

αk(τXi) = hi(λiτ)−1
{
τ kh

(0)
i (λiτ)

+
(−1)k

λi

{
τ k−1h

(−1)
i (λiτ) +

(−1)(k − 1)

λi

∫ ∞
τ

xk−2(−1)λih
(−1)
i (λix)dx

}}
= · · · = hi(λiτ)−1

{
(−1)0τ kh

(0)
i (λiτ) + (−1)1τ k−1k

h
(−1)
i (λiτ)

λi

+ (−1)2τ k−2k(k − 1)
h
(−2)
i (λiτ)

λ2i
+ · · · + (−1)(k−1)τ

k!

1!

h
(−(k−1))
i (λiτ)

λ
(k−1)
i

+
(−1)kk!

0!λki

∫ ∞
τ

(−1)λih
(−(k−1))
i (λix)dx

}
.
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Finally, notice that the remaining integral, where the power of x has reduced to zero, is
h
(−k)
i (λiτ); this produces the result for truncation, in order to show the result without

truncation, set τ = 0 and note that hi(0) = 1.
As a result of Theorem 1, the mean and variance, denoted µ2, of τXi, if finite, are

given by

α1(τXi) = τ − h
(−1)
i (λiτ)

λihi(λiτ)
,

µ2(τXi) =
2h

(−2)
i (λiτ)

λ2ihi(λiτ)
− h

(−1)
i (λiτ)2

λ2ihi(λiτ)2
.

If we let the truncation point be zero, we retrieve the expectation and variance found
in Hendriks and Landsman (2017).

2.3 Truncated Quantiles

The use of quantiles is very important for estimating heavy-tailed distributions. We
provide a lemma below that is useful when considering the truncated minimum of X;
see Section 3.2.

Lemma 1 Consider X = (X1, . . . , Xn) with strictly positive components and marginal
survival functions hi(λixi), λi > 0,∀i, for d-times monotone hi, d ≥ n. Let τXi =
Xi|Xi > τ . The quantile of level p for τXi, 0 < p < 1, is given by

qτXi(p) =
h−1i ((1− p)hi(λiτ))

λi
.

Proof. Consider the distribution function of τXi,

FτXi(x) =
P (τ < Xi ≤ x)

P (Xi > τ)
=
P (Xi > τ)− P (Xi > x)

P (Xi > τ)
= 1− P (Xi > x)

P (Xi > τ)
= 1− hi(λix)

hi(λiτ)
.

Inverting this function produces the desired result.

Remark 1 An interesting example to which the results of Theorem 1 and Lemma 1
apply is found in a multivariate random vector with strictly positive components Xi > 0
such that its joint survival function is given by

P (X1 > x1, . . . , Xn > xn) = h

(
n∑
i=1

h−1 (hi (λixi))

)
, xi ≥ 0,

for λi > 0,∀i, where h and hi, ∀i, are d-times monotone, d ≥ n. We aim to study this
distribution in future research.

3 Multivariate Truncation

Presently, we consider applying n-dimensional truncation to the random vector X =
(X1, . . . , Xn) with distribution generated by d-times monotone h, d ≥ n, as given in
Equation (1). Let τX = {X|X > τ}, where τ = τ ·1n, and τXi = {Xi|X > τ}. Below,
we consider the moments of τXi as well as the minimum and maximum of τX, τX(1)

and τX(n).
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Remark 2 Although subtle, notice that the left subscript, which indicates truncation, is
bold in the case of multivariate truncation and plain in the case of univariate truncation.
The difference is important, and only in the case of the truncated minimum do we find
that τX(1) = τX(1); see Section 3.2.

3.1 Mixed Moments of the Marginals

To obtain the variance-covariance structure of the multivariate truncated model con-
sidered here, we require the mixed moments of the marginal distributions.

Theorem 2 Consider X = (X1, . . . , Xn) with distribution generated by d-times mono-
tone h via Equation (1), d ≥ n. Let τXi = {Xi|X > τ}. If finite,

E
[ n∏
i=1

Xki
i

]
= (−1)kh(−k)(0)

n∏
i=1

ki!

λkii
,

E
[ n∏
i=1

τX
ki
i

]
= h(λSτ)−1

k1∑
j1=0

· · ·
kn∑
jn=0

h(−
∑n
l=1 jl)(λSτ)

n∏
i=1

(−1)jiτ ki−ji

(ki − ji)!
ki!

λjii
,

where λS =
∑n

i=1 λi, k =
∑n

i=1 ki, k ∈ {1, 2, . . . , d}, and ki ∈ {0} ∪ Z+; furthermore,
where h(−k)(x) = −

∫∞
x
h(−(k−1))(y)dy and h(0)(x) = h(x).

Proof. We prove the result directly.

E
[ n∏
i=1

τX
ki
i

]
= h(λSτ)−1

∫ ∞
τ

· · ·
∫ ∞
τ

(−1)n

{
n∏
i=1

xkii λi

}
h(n)

(
n∑
l=1

λlxl

)
dxn · · · dx1.

In the case there exist ki = 0, then, without loss of generality, for m < n, re-order the
Xi such that ki > 0 for i = 1, . . . ,m and ki = 0 for i = m + 1, . . . , n. Evaluating the
integrals that subsequently correspond to ki = 0 is straightforward. Calculating each
integral reduces the level of the function h by one and changes the relevant portion of
its argument from λlxl to λlτ , ultimately to become λSτ . For each integral we also lose
a factor of −λi. Consequently, we have that

E
[ n∏
i=1

τX
ki
i

]
= h(λSτ)−1

∫ ∞
τ

· · ·
∫ ∞
τ

(−1)m

{
m∏
i=1

xkii λi

}
h(m)

(
m∑
l=1

λlxl +

n∑
l=m+1

λlτ

)
dxm · · · dx1.

Consider the integral with respect to xm, the relevant terms are h(m), −λm, and xkmm ;
the remaining terms can be pushed out of this integral. The following remains:∫ ∞

τ

(−1)xkmm λmh
(m)

(
m∑
l=1

λlxl +
n∑

l=m+1

λlτ

)
dxm.

Notice that this integral closely resembles the kthm raw moment of τXm; what is remark-
able is that the level of h is m, rather than one, and that the argument of h includes a
positive constant

∑m−1
l=1 λlxl+

∑n
l=m+1 λlτ . This positive constant presents no difficulty,

in fact, neither does the level of h. Applying the same techniques used in Theorem 1,
we find this integral equal to

km∑
jm=0

(−1)jmτ km−jm
km!

(km − jm)!

h(m−(jm+1))
(∑m−1

l=1 λlxl +
∑n

l=m λlτ
)

λjmm
.

7



Substituting this back into our equation for E
[∏n

i=1 τX
ki
i

]
and arranging the terms

appropriately, we obtain

E
[ n∏
i=1

τX
ki
i

]
= h(λSτ)−1

km∑
jm=0

(−1)jm
τ km−jm

(km − jm)!

km!

λjmm
×

∫ ∞
τ

· · ·
∫ ∞
τ

(−1)(m−1)

{
m−1∏
i=1

xkii λi

}
h(m−(jm+1))

(
m−1∑
l=1

λlxl +
n∑

l=m

λlτ

)
dxm−1 · · · dx1.

We proceed, as above, by addressing the integral with respect to xm−1; again, we apply
the same techniques used in Theorem 1 and obtain

E
[ n∏
i=1

τX
ki
i

]
= h(λSτ)−1

km∑
jm=0

(−1)jmτkm−jm

(km − jm)!

km!

λjmm

km−1∑
jm−1=0

(−1)jm−1τkm−1−jm−1

(km−1 − jm−1)!

km−1!

λ
jm−1

m−1
×

∫ ∞
τ

· · ·
∫ ∞
τ

(−1)(m−2)

{
m−2∏
i=1

xkii λi

}
h(m−(jm+1)−(jm−1+1))

(
m−2∑
l=1

λlxl +

n∑
l=m−1

λlτ

)
dxm−2 · · · dx1.

We continue in this way until we obtain

E
[ n∏
i=1

τX
ki
i

]
= h(λSτ)−1

k1∑
j1=0

· · ·
km∑
jm=0

h(m−
∑m
l=1(jl+1))(λSτ)

m∏
i=1

(−1)jiτ ki−ji

(ki − ji)!
ki!

λjii
.

Notice that the sum and product may include terms corresponding to i = m + 1 to
i = n since they do not alter the expression. Furthermore, notice that the level of
h, m −

∑m
l=1(jl + 1) = −

∑m
l=1 jl = −

∑n
l=1 jl, the latter equality since jl = 0 for

l = m + 1, . . . , n. This completes the result in the case of multivariate truncation, in
order to show the result without truncation, set τ = 0 and note that h(0) = 1.

As a result of Theorem 2, we obtain, if finite, the mean and variance of τXi and the
covariance of τXi and τXj, i 6= j.

α1(τXi) = τ − h(−1)(λSτ)

λih(λSτ)
,

µ2(τXi) =
2h(−2)(λSτ)

λ2ih(λSτ)
− h(−1)(λSτ)2

λ2ih(λSτ)2
,

Cov(τXi, τXj) =
h(−2)(λSτ)

λiλjh(λSτ)
− h(−1)(λSτ)2

λiλjh(λSτ)2
.

If we let the truncation point be zero, we retrieve the expectation and variance found
above, and the covariance found in Hendriks and Landsman (2017).

3.2 Minimum and Maximum of the Truncated Distribution

Consider, again, X = (X1, . . . , Xn) with distribution generated by d-times monotone
h via Equation (1), d ≥ n. Let X(1) = min(X), τX = {X|X > τ}, and τX(1) =
X(1)|X(1) > τ . Notice that the distribution of the truncated minimum is equal to the
minimum of the truncated joint distribution; that is τX(1) = τX(1) = min(τX). To see
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this, consider the survival probability of the truncated minimum for x > τ ,

P (τX(1) > x) = P (X(1) > x|X(1) > τ)

= P (X1 > x, . . . , Xn > x|X1 > τ, . . . , Xn > τ)

= P (τX1 > x, . . . , τXn > x)

= P (τX(1) > x).

It is more convenient to truncate the minimum, since the distribution of the minimum
is trivially obtained via survival function,

P (X(1) > x) = P (X1 > x, . . . , Xn > x) = h(λSx).

Therefore, the truncated moments of X(1) can be found via Theorem 1 by replacing λi
with λS. The mean and variance of the truncated minimum are given by

α1(τX(1)) = τ − h(−1)(λSτ)

(λS)h(λSτ)
,

µ2(τX(1)) =
2h(−2)(λSτ)

(λS)2h(λSτ)
− h(−1)(λSτ)2

(λS)2h(λSτ)2
.

Furthermore, we obtain the quantiles of τX(1) via Lemma 1,

qτX(1)
(p) =

h−1((1− p)h(λSτ))

λS
.

We can also consider the maximum of the truncated distribution, τX(n) = max(τX).
Notice that in contrast to the truncated minimum, the order of truncating and taking
the maximum is not reversible. Furthermore, in order to provide tractable equations
for moments of the maximum we require the constraint λi = λ,∀i.

Corollary 3 Consider X = (X1, . . . , Xn) with distribution generated by d-times mono-
tone h via Equation (1), d ≥ n, and λi = λ for all i. Let X(n) = max(X) and

τX(n) = max(X)|X > τ . If finite, the kth raw moment, for k ∈ {1, 2, . . . , d}, of X(n)

and τX(n), τ ≥ 0, are given by,

αk(X(n)) =
n∑
i=1

(−1)i+1

(
n

i

)
(−1)kk!

h(−k)(0)

(iλ)k
,

αk(τX(n)) = h(nλτ)−1
n∑
i=1

(−1)i+1

(
n

i

) k∑
j=0

(−1)jτ k−j
k!

(k − j)!
h(−j)(nλτ)

(iλ)j
,

where h(−k)(x) = −
∫∞
x
h(−(k−1))(y)dy and h(0)(x) = h(x).

Proof. We start with the distribution function of the maximum of the truncated
random vector and apply the inclusion-exclusion result for probability.

P (τX(n) ≤ x) = P (X(n) ≤ x|X > τ ) =
P (τ < X ≤ x · 1n)

P (X > τ )

=
n∑
i=0

(−1)i
(
n

i

)
h(iλx+ (n− i)λτ)

h(nλτ)
.
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Differentiate to find the density.

fτX(n)
(x) = h(nλτ)−1

n∑
i=1

(−1)i
(
n

i

)
h(1)(iλx+ (n− i)λτ)iλ, x > τ.

Notice that the summation starts from i = 1, since the term corresponding to i = 0 is
zero. The kth raw moment is given by

αk(τX(n)) = h(nλτ)−1
∫ ∞
τ

xk
n∑
i=1

(−1)i
(
n

i

)
iλh(1)(iλx+ (n− i)λτ)dx

= h(nλτ)−1
n∑
i=1

(−1)i+1

(
n

i

)∫ ∞
τ

xk(−iλ)h(1)(iλx+ (n− i)λτ)dx.

We find ourselves in familiar territory; applying the techniques used in Theorem 1, we
find that the integral above is equal to

k∑
j=0

(−1)jτ k−j
k!

(k − j)!
h(−j)(nλτ)

(iλ)j
,

which, when substituted into the equation produces the desired result; this completes
the result in the case of truncation, in order to show the result without truncation, set
τ = 0 and note that h(0) = 1.

As a result of Corollary 3, we obtain, if finite, the mean and variance of τX(n).

α1(τX(n)) = τ −
n∑
i=1

(−1)i+1

(
n

i

)
h(−1)(nλτ)

iλh(nλτ)
,

µ2(τX(n)) =
n∑
i=1

(−1)i+1

(
n

i

)
2h(−2)(nλτ)

(iλ)2h(nλτ)
−
{ n∑

i=1

(−1)i+1

(
n

i

)
h(−1)(nλτ)

iλh(nλτ)

}2

.

4 Examples

We provide six examples of multivariate distributions generated by multiply monotone
functions h, which may be referred to as a multivariate Pareto, Clayton, Gumbel,
Frank, Ali-Mikhail-Haq (AMH), and exponential-Pareto distribution, respectively. The
generators of these distributions, for various suitable levels of θ, are plotted in Figure
1; we return to this figure in more detail below.

4.1 Pareto Distribution

In order to obtain the multivariate Pareto distribution studied in, for example, Chiragiev
and Landsman (2007) and Alai et al. (2016), we define h such that

h(x) = (1 + x)−
1
θ , x ≥ 0, θ ∈ R+,

h−1(x) = x−θ − 1.

The function h is plotted in Figure 1a for several values of θ, where the greatest value
of θ coincides with the heaviest tail, and so on. Of the six examples we consider, the
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Pareto has the heaviest tail. For this reason, the first two antiderivatives of h exist only
if θ is restricted to values less than one and one-half, respectively; they are given by

h(−1)(x) =
θ(1 + x)

θ−1
θ

θ − 1
, 0 < θ < 1,

h(−2)(x) =
θ2(1 + x)

2θ−1
θ

(θ − 1)(2θ − 1)
, 0 < θ <

1

2
.

Figure 1: The generator function h.

(a) Pareto, θ ∈ {0.25, 0.50, 1,2}. (b) Clayton, θ ∈ {0.25, 0.50, 1,2}.

(c) Gumbel, θ ∈ {1, 2, 4,8}. (d) Frank, θ ∈ {−4,−1, 1, 4}.

(e) AMH, θ ∈ {−0.95,−0.25, 0.25, 0.75}. (f) Exponential-Pareto, θ ∈ {1, 2, 4,8}.

Consequently, we find the mean, variance, covariance and correlation of the marginal

11



distributions of τX using Theorems 1 and 2.

α1(τXi) =
λ−1i + τ(λ−1i λS + θ−1 − 1)

θ−1 − 1
, 0 < θ < 1,

µ2(τXi) =
θ−1(λ−1i + λ−1i λSτ)2

(θ−1 − 1)2(θ−1 − 2)
, 0 < θ <

1

2
,

Cov(τXi, τXj) =
(λ
− 1

2
i λ

− 1
2

j + λ
− 1

2
i λ

− 1
2

j λSτ)2

(θ−1 − 1)2(θ−1 − 2)
, 0 < θ <

1

2
,

Corr(τXi, τXj) = θ, 0 < θ <
1

2
.

Notice that the correlation between any of the marginal distributions is always θ, pro-
vided that 0 < θ < 1

2
, and does not depend on the truncation point τ . Although not

particularly enlightening, the correlation for the Pareto distribution can be found in
Figure 2a; we provide it for comparison’s sake.

If we apply the parametrization used in Alai et al. (2016) given by λi = σ−1, ∀i and
θ = α−1, we obtain

α1(τXi) =
σ + τ(n+ α− 1)

α− 1
, α > 1,

µ2(τXi) =
α(σ + τn)2

(α− 1)2(α− 2)
, α > 2,

Cov(τXi, τXj) =
(σ + τn)2

(α− 1)2(α− 2)
, α > 2,

Corr(τXi, τXj) =
1

α
, α > 2.

Notice that the covariance disagrees with what is shown in Theorem 2 of Alai et al.
(2016), which appears to be the result of an error in the very last step of their proof.
However, it seems the only consequence of that error is that their reported correlation
should read 1

α
instead of σ2

(σ+τn)2α
; their estimation results are not affected.

We presently consider three estimation techniques, two based on moments and one
based on quantiles. Although beyond the scope of this work, we aim to more thoroughly
consider the performance of these estimators and to compare them with maximum
likelihood estimators, where applicable, in future research.

Mean-Variance Estimation

We consider two estimation techniques based on the method of moments, which we
describe briefly. Consider data from a multivariate distribution governed by generator
h and suppose λi = λ,∀i. Denote by τX

(j) the jth joint observation of the multivariate
truncated distribution, j ∈ {1, . . . ,m}. Furthermore, let τX

(j)
(1) denote the minimum of

each joint observation and τX(1) the collection of j minima.
The first estimation technique is based on the sample means and sample variances of

the joint observations. Denote with a1 and m̃2 the sample mean and unbiased variance.

12



Figure 2: The correlation between marginal distributions for τ ∈ {0, 1, 2, 5}.

(a) Pareto. (b) Clayton.

(c) Gumbel. (d) Frank.

(e) AMH. (f) Exponential-Pareto.
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For each j,

a1(τX
(j)) =

1

n

n∑
i=1

τX
(j)
i ,

m̃2(τX
(j)) =

1

n− 1

n∑
i=1

(τX
(j)
i − a1(τX(j)))2.

Trivially, the expectation of a1(τX
(j)) is given by α1(τX1). The expectation of m̃2(τX

(j))
is also readily found.

E[a1(τX
(j))] = α1(τX1),

E[m̃2(τX
(j))] = α2(τX1)− E[τX1τX2].

The above two expectations on the left-hand sides can be replaced by averages over
the samples (i.e. average of the sample means and sample variances). The theoretical
expressions on the right-hand sides are obtained from Theorem 2. Hence, this system
of equations is able to yield estimates θ̂ and λ̂.

The second estimation technique is based on the sample average and unbiased vari-
ance of the minima

a1(τX(1)) =
1

m

m∑
j=1

τX
(j)
(1) ,

m̃2(τX(1)) =
1

m− 1

m∑
i=1

(τX
(j)
(1) − a1(τX(1)))

2.

Since the sample of minima are independent and identically distributed, we have that

E[a1(τX(1))] = α1(τX(1)),

E[m̃2(τX(1))] = µ2(τX(1)).

The sample mean and variance can be used on the left-hand sides above. The theoretical
expressions on the right-hand sides are obtained from Theorem 1. Hence, this system
of equations is able to yield estimates θ̂ and λ̂.

Both of the above mean-variance estimation procedures were implemented in Alai
et al. (2016) specifically for the multivariate Pareto distribution. Notice that we have
presented them in the general case, and hence, they can be implemented for the remain-
ing five examples.

Quantile Estimation

In addition to the two mean-variance based estimation procedures above, we also inves-
tigate an estimation technique based on the sample quantiles of the observed minima

τX(1); see Alai et al. (2016) for an application of this estimation procedure to the multi-
variate Pareto distribution. Notice that the distribution of the minimum is straightfor-
ward; from Section 3.2, we know the survival function is given by h with adjusted scale
parameter λS. This means we can apply Lemma 1 in order to obtain the quantiles. For
the Pareto, we have that

qτX(1)
(pi) = λ−1S

(
(1− pi)−θ(1 + λSτ)− 1

)
.
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Solving for λS, we obtain

λS =
(1− pi)−θ − 1

q(pi)− (1− pi)−θτ
.

Together with levels p1 and p2, this produces the following equation that can be used
to find θ̂.

q(p1)− (1− p1)−θτ
(1− p1)−θ − 1

=
q(p2)− (1− p2)−θτ

(1− p2)−θ − 1
.

In order to estimate θ, replace theoretical quantiles, q(pi), with sample quantiles, q̂(pi),

and solve numerically. Finally, λS is estimated using θ̂ and sample quantile with level
p3.

λ̂S =
(1− p3)−θ̂ − 1

q̂(p3)− (1− p3)−θ̂τ
.

This estimation procedure depends on the function h, as such, we return to it in the
remaining five examples.

4.2 Clayton Generator

Closely related to the above multivariate Pareto distribution is the generator of the
Clayton copula. If we let h take the form of the Clayton generator, we obtain

h(x) = (1 + θx)−
1
θ , x ≥ 0, θ ∈ R+,

h−1(x) =
1

θ

(
x−θ − 1

)
.

The generator is plotted in Figure 1b for several values of θ, where, as is the case with
the Pareto, greater values of θ correspond to heavier tails. The first two antiderivatives
are still easily found, but given the nature of the tails, demand restrictions on θ.

h(−1)(x) =
(1 + θx)

θ−1
θ

θ − 1
, 0 < θ < 1,

h(−2)(x) =
(1 + θx)

2θ−1
θ

(θ − 1)(2θ − 1)
, 0 < θ <

1

2
.

These antiderivatives can be used to formulate mean-variance estimators as alluded to
above. Using Theorem 2, we find the mean, variance, covariance and correlation of the
marginal distributions of τX.

α1(τXi) =
λ−1i + λ−1i λSτ

1− θ
, 0 < θ < 1,

µ2(τXi) =
(λ−1i + θλ−1i λSτ)2

(1− θ)2(1− 2θ)
, 0 < θ <

1

2
,

Cov(τXi, τXj) =
θ(λ

− 1
2

i λ
− 1

2
j + θλ

− 1
2

i λ
− 1

2
j λSτ)2

(1− θ)2(1− 2θ)
, 0 < θ <

1

2
,

Corr(τXi, τXj) = θ, 0 < θ <
1

2
.

Just as with the Pareto, the correlation in the case of the Clayton generator does not
depend on λi nor τ ; see Figure 2b for the plot.
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Although we do not elaborate on the mean-variance estimators, we do consider the
quantile estimation procedure based on the minimum, τX(1). From Lemma 1, we obtain
the following quantiles, for 0 < pi < 1,

qτX(1)
(pi) = θ−1

((
(1− pi)−θ − 1

)
λ−1S + (1− pi)−θθτ

)
.

Solving for λS, we obtain

λS =
(1− pi)−θ − 1

θ(q(pi)− (1− pi)−θτ)
,

which, with p1 and p2 and their corresponding sample quantiles yields an equation for
θ able to produce θ̂,

(1− p1)−θ̂ − 1

q̂(p1)− (1− p1)−θ̂τ
=

(1− p2)−θ̂ − 1

q̂(p2)− (1− p2)−θ̂τ
,

where q̂(pi) is the sample quantile. Finally, with p3 and sample quantile q̂(p3), we have

λ̂S =
(1− p3)−θ̂ − 1

θ̂(q̂(p3)− (1− p3)−θ̂τ)
.

Just as with the Pareto, the quantile estimation technique for the Clayton generator es-
timates θ first, using sample quantiles with levels p1 and p2, and subsequently estimates
λS using θ̂ and sample quantile with level p3.

4.3 Gumbel Generator: Weibull Distribution

Let h be the generator of the Gumbel copula.

h(x) = exp(−x
1
θ ), x ≥ 0, θ ∈ [1,∞),

h−1(x) =
(
− ln(x)

)θ
.

The plot of h for several values of θ is given in Figure 1c, where greater values of θ
correspond to heavier tails.

Remark 3 The consequence of letting h be the generator of the Gumbel copula produces
the well-known Weibull distribution; a result we use to readily generate observations in
the numerical example of Section 5.

The antiderivatives can be expressed using the incomplete gamma function; we need
not restrict θ any further for these to exist. We have, for θ ≥ 1,

h(−1)(x) = −θΓ(θ, x
1
θ ),

h(−2)(x) = θ
(
Γ(2θ, x

1
θ )− xΓ(θ, x

1
θ )
)
,

where Γ(s, x) is the incomplete gamma function, given by

Γ(s, x) =

∫ ∞
x

ts−1e−tdt.
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We provide some details.

h(−1)(x) = −
∫ ∞
x

exp(−y
1
θ )dy.

Consider the substitution y = zθ; we have dy = θzθ−1dz and that x < y < ∞ implies
x

1
θ < z <∞, since θ is positive.

h(−1)(x) = −
∫ ∞
x

1
θ

θzθ−1e−zdz

= −θ
∫ ∞
x

1
θ

zθ−1e−zdz = −θΓ(θ, x
1
θ ).

The second antiderivative is dealt with via the same substitution, followed by an appli-
cation of integration by parts.

h(−2)(x) = −
∫ ∞
x

−θΓ(θ, y
1
θ )dy

= θ

∫ ∞
x

1
θ

θzθ−1Γ(θ, z)dz.

Apply integration by parts, u = Γ(θ, z) and dv = θzθ−1dz; we have du = −zθ−1e−zdz
and v = zθ.

h(−2)(x) = θ
(
zθΓ(θ, z)

∣∣∣∞
x

1
θ

+

∫ ∞
x

1
θ

z2θ−1e−zdz
)

= θ(−xΓ(θ, x
1
θ ) + Γ(2θ, x

1
θ )),

since limz→∞ z
θΓ(θ, z) = 0 by applying L’Hôpital’s Rule.

As a result of Theorem 2, we can obtain all the moments of interest required to
establish mean-variance estimators. We provide the mean, variance, covariance and
correlation of the marginal distributions τXi below.

α1(τXi) = τ +
θeκ

λi
Γ
(
θ, κ
)
,

µ2(τXi) =
θeκ

λ2i

(
2Γ
(
2θ, κ

)
− 2κθΓ

(
θ, κ
)
− θeκΓ

(
θ, κ
)2)

,

Cov(τXi, τXj) =
θeκ

λiλj

(
Γ
(
2θ, κ

)
− κθΓ

(
θ, κ
)
− θeκΓ

(
θ, κ
)2)

,

Corr(τXi, τXj) =
Γ
(
2θ, κ

)
− κθΓ

(
θ, κ
)
− θeκΓ

(
θ, κ
)2

2Γ
(
2θ, κ

)
− 2κθΓ

(
θ, κ
)
− θeκΓ

(
θ, κ
)2 ,

where κ = λSτ
1
θ . In contrast with the previous two examples, the correlation is not

easy to interpret. It is still independent of the λi, but is no longer independent of the
truncation point τ . In Figure 2c we plot the correlation for several values of τ . The
bold line represents the case with no truncation; as the truncation point increases, the
correlation decreases. From Figure 2c, it can be seen that the Gumbel generator is able
to produce correlation between zero and 0.5, with greater values of θ corresponding to
higher positive correlation. The relationship between positive correlation and heavy tails
is expected; by defining the joint distribution via functional form h given in Equation
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(1), it implies that having strong positive correlation is related to obtaining high joint
survival probabilities for large values.

From Lemma 1, we obtain the quantiles of τX(1) for 0 < pi < 1.

qτX(1)
(pi) =

(
− ln(1− pi)λ

− 1
θ

S + τ
1
θ

)θ
.

Solving for λS, we obtain

λS =

(
ln(1− pi)
τ

1
θ − q(pi)

1
θ

)θ
,

which, with p1 and p2 and corresponding sample quantiles q̂(p1) and q̂(p2) yield an

equation for θ able to produce θ̂,

ln(1− p1)
τ

1

θ̂ − q̂(p1)
1

θ̂

=
ln(1− p2)
τ

1

θ̂ − q̂(p2)
1

θ̂

.

Finally, with p3, sample quantile q̂(p3) and estimate θ̂, we have

λ̂S =

(
ln(1− p3)
τ

1

θ̂ − q̂(p3)
1

θ̂

)θ̂
.

In the presence of truncation, the Pareto, Clayton, and Gumbel generators result in
estimating θ first, and λ, second. For the remaining examples, we find the reverse.
However, before continuing, we consider the special case of the Gumbel generator where
θ = 1.

Independence

Let h be given by the Gumbel generator with θ = 1, in which case the marginal
distributions are independent.

h(x) = e−x, x ≥ 0,

h−1(x) = − ln(x),

and hence

P (X1 > x1, . . . , Xn > xn) =
n∏
i=1

P (Xi > xi).

Furthermore,

h(−1)(x) = −e−x,
h(−2)(x) = e−x,

which means, Theorem 2 yields

α1(τXi) = τ + λ−1i ,

µ2(τXi) = λ−2i .

Finally, the quantiles of τX(1) for 0 < pi < 1 are given by

qτX(1)
(pi) = τ − λ−1S ln(1− pi).
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4.4 Frank Generator

Next, we consider the generator of the Frank copula,

h(x) = −θ−1 ln
(
1 + e−x(e−θ − 1)

)
, x ≥ 0, θ ∈ R\{0},

h−1(x) = − ln

(
e−θx − 1

e−θ − 1

)
.

The plot of h for several values of θ is given in Figure 1d. In contrast to the previous
examples, the lower curves correspond to greater values of θ. However, from the plot,
it becomes immediately clear that we no longer have the ability to capture heavy-tailed
phenomena; in other words, all values of θ produce relatively light tails.

One benefit of the light tails is that we find the antiderivatives without having to
restrict the values of θ. We have, for θ 6= 0,

h(−1)(x) =
Li2(−e−x(e−θ − 1))

θ
,

h(−2)(x) =
Li3(−e−x(e−θ − 1))

θ
,

where Lis(z) is the polylogarithm function, given by

Li2(z) =

∫ 0

z

ln(1− t)
t

dt,

Lis+1(z) = −
∫ 0

z

Lis(t)

t
dt, s ∈ {2, 3, . . .}.

We provide some details.

h(−1)(x) = −
∫ ∞
x

−θ−1 ln(1 + e−y(e−θ − 1))dy.

Apply the substitution z = −e−y(e−θ − 1); we have dz = e−y(e−θ − 1)dy, which means
dy = −z−1dz. The lower limit of integration is −e−x(e−θ − 1) and the upper limit is
zero.

h(−1)(x) = θ−1
∫ ∞
x

ln(1 + e−y(e−θ − 1))dy

= θ−1
∫ 0

−e−x(e−θ−1)

ln(1− z)

−z
dz

= −Li2(−e−x(e−θ − 1))

θ
.

The second antiderivative is found by, once again, applying the same substitution.

h(−2)(x) =

∫ ∞
x

Li2(−e−y(e−θ − 1))

θ
dy

=

∫ 0

−e−x(e−θ−1)

Li2(z)

θ(−z)
dz

=
Li3(−e−x(e−θ − 1))

θ
.
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As a result of Theorem 2, we can obtain, amongst others, the mean, variance,
covariance and correlation of the marginal distributions τXi.

α1(τXi) = τ − Li2(κ)

λi ln(1− κ)
,

µ2(τXi) =
−2Li3(κ)

λ2i ln(1− κ)
− Li22(κ)

λ2i ln2(1− κ)
,

Cov(τXi, τXj) =
−Li3(κ)

λiλj ln(1− κ)
− Li22(κ)

λiλj ln2(1− κ)
,

Corr(τXi, τXj) =
−Li3(κ) ln(1− κ)− Li22(κ)

−2Li3(κ) ln(1− κ)− Li22(κ)
,

where κ = −e−λSτ (e−θ − 1). As with the Gumbel, the Frank correlation is difficult to
interpret except in graphical form; we plot the correlation as a function of θ for various
levels of τ in Figure 2d. The bold line corresponds to the case of no truncation, and the
correlation decreases (in absolute value) as the truncation point increases. Notice that
the range of correlations one is able to capture using the Frank generator goes from
−1 to 0.5; this added flexibility is a trade-off to the inability to capture heavy-tailed
phenomena, one that we also see in the case of the AMH generator below.

The quantiles of τX(1) for 0 < pi < 1 are given by Lemma 1.

qτX(1)
(pi) = −λ−1S ln

(
e1−pi(1 + e−λSτ (e−θ − 1))− 1

e−θ − 1

)
,

which, unlike in the case of the Pareto, Clayton, and Gumbel examples, cannot be
solved for λS, rather for θ.

θ = − ln

(
eλSτ (1− epi−1)

eλS(τ−q(pi))epi−1 − 1
+ 1

)
.

By specifying levels p1 and p2, we obtain an equation of λS able to yield estimate λ̂S
using sample quantiles q̂(p1) and q̂(p2).

1− eλ̂S(τ−q̂(p1))ep1−1

1− eλ̂S(τ−q̂(p2))ep2−1
=

1− ep1−1

1− ep2−1
.

Finally, together with sample quantile q̂(p3), we estimate θ,

θ̂ = − ln

(
eλ̂Sτ (1− ep3−1)

eλ̂S(τ−q̂(p3))ep3−1 − 1
+ 1

)
.

4.5 Ali-Mikhail-Haq Generator

We consider the generator for the AMH copula, given by

h(x) =
1− θ
ex − θ

, x ≥ 0, θ ∈ [−1, 1),

h−1(x) = ln

(
1− θ
x

+ θ

)
.
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We plot h for several values of θ in Figure 1e, where, like with the Frank generator, lower
curves correspond to greater values of θ. Similarly, we find that the AMH generator is
unable to capture heavy-tailed phenomena. We have, for θ ∈ [−1, 1)\{0},

h(−1)(x) =
1− θ
θ

ln(1− θe−x),

h(−2)(x) =
1− θ
θ

Li2(θe
−x),

where Li2(z) =
∫ 0

z
ln(1−t)

t
dt is the dilogarithm function. We provide some details; con-

sider the first antiderivative.

h(−1)(x) = −
∫ ∞
x

1− θ
ey − θ

dy.

Apply the following substitution, z − 1 = θ(ey − θ)−1; this means dy = −1
z(z−1)dz, the

lower limit of integration is θ(ex − θ)−1 + 1 and the upper is one. We obtain

h(−1)(x) =
1− θ
θ

∫ 1

θ(ex−θ)−1+1

z−1dz

=
1− θ
θ

(
− ln(θ(ex − θ)−1 + 1)

)
=

1− θ
θ

ln(1− θe−x).

The second antiderivate is found by applying the substitution z = θe−y, resulting in
dy = −z−1dz below.

h(−2)(x) = −
∫ ∞
x

1− θ
θ

ln(1− θe−y)dy

= −1− θ
θ

∫ 0

θe−x

ln(1− z)

−z
dz

=
1− θ
θ

Li2(θe
−x).

As a result of Theorem 2, we can obtain, among others, the mean, variance, covari-
ance and correlation of the marginal distributions τXi.

α1(τXi) = τ − ln(1− κ)

λi

1− κ
κ

,

µ2(τXi) =
2Li2(κ)

λ2i

1− κ
κ
− ln2(1− κ)

λ2i

(1− κ)2

κ2
,

Cov(τXi, τXj) =
Li2(κ)

λiλj

1− κ
κ
− ln2(1− κ)

λiλj

(1− κ)2

κ2
,

Corr(τXi, τXj) =
Li2(κ)κ− ln2(1− κ)(1− κ)

2Li2(κ)κ− ln2(1− κ)(1− κ)
,

where κ = θe−λSτ . We plot the correlation over θ for several values of τ in Figure 2e;
the bold line corresponds to τ = 0. We find that both positive and negative correlation
can be captured and that the greater the truncation point, the lower, in absolute value,
the correlation.
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From Lemma 1, we find the quantiles of τX(1), for 0 < pi < 1.

qτX(1)
(pi) = λ−1S ln

(
eλSτ − θpi

1− pi

)
,

which, like in the case of the Frank generator, can be solved for θ, not λS.

θ =
eλSτ − (1− pi)eλSq(pi)

pi
.

Together with levels p1 and p2 and their corresponding sample quantiles, we can find
an equation to estimate λS.

eλ̂Sτ − (1− p1)eλ̂S q̂(p1)

eλ̂Sτ − (1− p2)eλ̂S q̂(p2)
=
p1
p2
.

Finally, together with p3 and corresponding sample quantile q̂(p3), we can estimate θ.

θ̂ =
eλ̂Sτ − (1− p3)eλ̂S q̂(p3)

p3
.

4.6 Product Exponential-Pareto

Finally, consider the generator given by

h(x) =
e−

x
θ

(1 + x)
1
θ

, x ≥ 0, θ ∈ R+.

The inverse h−1 requires the use of the Lambert function W , it is given by

h−1(x) = W (x−θe)− 1,

where y = xex ⇐⇒ x = W (y). A plot of h for several values of θ is given in Figure
1f. From this plot, we notice the similarity of the exponential-Pareto generator to the
Pareto and Clayton generators. However, the tails are not sufficiently heavy to require
restrictions on θ when calculating the antiderivatives. We have, for θ > 0,

h(−1)(x) = −e
1
θ θ1−

1
θΓ
(

1− 1

θ
,
x+ 1

θ

)
,

h(−2)(x) = e
1
θ θ2−

1
θ

(
Γ
(

2− 1

θ
,
x+ 1

θ

)
− x+ 1

θ
Γ
(

1− 1

θ
,
x+ 1

θ

))
.

We provide some details. Consider the first antiderivative.

h(−1)(x) = −
∫ ∞
x

e−
y
θ (1 + y)−

1
θ dy.

Apply the substitution z = y+1
θ

; dy = θdz. We obtain

h(−1)(x) = −
∫ ∞
x+1
θ

e
1
θ
−z(θz)−

1
θ θdz

= −e
1
θ θ1−

1
θ

∫ ∞
x+1
θ

z(1−
1
θ
)−1e−zdz

= −e
1
θ θ1−

1
θΓ
(

1− 1

θ
,
x+ 1

θ

)
.
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To find the second antiderivative, apply the same substitution and subsequently apply
integration by parts.

h(−2)(x) =

∫ ∞
x

e
1
θ θ1−

1
θΓ
(

1− 1

θ
,
y + 1

θ

)
= e

1
θ θ2−

1
θ

∫ ∞
x+1
θ

Γ
(

1− 1

θ
, z
)
dz.

Let u = Γ
(
1− 1

θ
, z
)
, du = −z(1− 1

θ
)−1e−zdz; and dv = dz, v = z.

h(−2)(x) = e
1
θ θ2−

1
θ

(
zΓ
(

1− 1

θ
, z
)∣∣∣∣∞

x+1
θ

+

∫ ∞
x+1
θ

z(2−
1
θ
)−1e−zdz

)
= e

1
θ θ2−

1
θ

(
Γ
(

2− 1

θ
,
x+ 1

θ

)
− x+ 1

θ
Γ
(

1− 1

θ
,
x+ 1

θ

))
,

since limz→∞ zΓ(1− 1
θ
, z) = 0 by applying L’Hôpital’s Rule.

As a result of Theorem 2, we obtain, among others, the mean, variance, covariance
and correlation of the marginal distributions τXi.

α1(τXi) = τ +
θeκκ

1
θ

λi
Γ
(

1− 1

θ
, κ
)
,

µ2(τXi) =
θ2eκκ

1
θ

λ2i

(
2Γ
(

2− 1

θ
, κ
)
− 2κΓ

(
1− 1

θ
, κ
)
− eκκ

1
θΓ2
(

1− 1

θ
, κ
))

,

Cov(τXi, τXj) =
θ2eκκ

1
θ

λiλj

(
Γ
(

2− 1

θ
, κ
)
− κΓ

(
1− 1

θ
, κ
)
− eκκ

1
θΓ2
(

1− 1

θ
, κ
))

,

Corr(τXi, τXj) =
Γ
(

2− 1
θ
, κ
)
− κΓ

(
1− 1

θ
, κ
)
− eκκ 1

θΓ2
(

1− 1
θ
, κ
)

2Γ
(

2− 1
θ
, κ
)
− 2κΓ

(
1− 1

θ
, κ
)
− eκκ 1

θΓ2
(

1− 1
θ
, κ
) ,

where κ = λSτ+1
θ

. A plot of the correlation as a function of θ for several values of τ is
given in Figure 2f. The correlation in the case of the exponential-Pareto is essentially
a mixture of the Pareto correlation and the case of independence; as θ increases, the
exponential function dominates and acts to reduce the correlation. This feature is
unique to the exponential-Pareto; in the other examples, correlation is a monotone
function of θ. Furthermore, an increase in the truncation point τ reduces the correlation.

The quantiles of τX(1) for 0 < pi < 1 are found using Lemma 1.

qτX(1)
(pi) =

W ((1− pi)−θ(1 + λSτ)e(1+λSτ))− 1

λS
,

which, like in the case of the Frank and AMH generators, can be solved for θ, but not
λS.

θ =
λS(τ − q(pi)) + ln(1 + λSτ)− ln(1 + λSq(pi))

ln(1− pi)
.

Together with levels p1 and p2, we have an equation able to yield estimate λ̂S,

λS(τ − q(p1)) + ln(1 + λSτ)− ln(1 + λSq(p1))

λS(τ − q(p2)) + ln(1 + λSτ)− ln(1 + λSq(p2))
=

ln(1− p1)
ln(1− p2)

.

Finally, with p3 and corresponding sample quantile, we obtain

θ̂ =
λ̂S(τ − q̂(p3)) + ln(1 + λ̂Sτ)− ln(1 + λ̂S q̂(p3))

ln(1− p3)
.
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5 Optimal Quantile Selection

In the preceding section we considered three estimation procedures for θ and λS for
six examples. The last of these estimation procedures is based on the quantiles of
the truncated minimum τX(1) and requires three sample quantiles. In this section, we
investigate how to select these three quantiles optimally.

5.1 Specifying the Objective Functions

We base our optimality criteria on statistical estimation theory developed in Landsman
(1996). Consider a sample of independent and identically distributed X1, . . . , Xn with
density f(x, ϑ), ϑ ∈ Θ ⊂ R, differentiable with respect to ϑ for almost all x ∈ R. The
Fisher information about parameter ϑ contained in some statistic Tn(X1, . . . , Xn) is
defined as

ITn(ϑ) =

∫
R

(
∂ ln fTn(x, ϑ)

∂ϑ

)2

fTn(x, ϑ)dx.

A higher Fisher information is indicative of more precise estimation. Consider sample
quantiles q̂(p1), . . . , q̂(pk) with corresponding levels 0 < p1 ≤ . . . ≤ pk < 1. Theorem 1 in
Landsman (1996) shows that the Fisher information contained in the sample quantiles,
Iq̂(p1),...,q̂(pk)(ϑ), is asymptotically equal to nIk(p1, . . . , pk), with Ik(p1, . . . , pk) defined as

Ik(p1, . . . , pk) =
k∑
i=0

(βi+1 − βi)2

pi+1 − pi
,

where p0 = 0, pk+1 = 1, βi = f(q(pi), ϑ)∂q(pi)/∂ϑ, for i = 1, . . . , k and β0 = βk+1 = 0.
We find optimal quantiles p?1, . . . , p

?
k, such that Ik is maximized. In the case of using

two sample quantiles, i.e. k = 2, we obtain the following objective function:

I2(p1, p2) =
β2
1

p1
+

(β2 − β1)2

p2 − p1
+

β2
2

1− p2
,

and in the case of using one sample quantile, we obtain

I1(p1) =
β2
1

p1
+

β2
1

1− p1
=

β2
1

p1(1− p1)
.

The presence of truncation considerably complicates the optimal quantile selection prob-
lem. Hence, we presently consider the case where τ = 0; we aim to address the case
where τ > 0 in future research.

5.2 The Case with no Truncation

In general, the density and quantile functions of X(1), as introduced in Section 3.2, are
given by

f(x) = −λSh(1)(λSx),

q(p) = λ−1S h−1(p̌),

where p̌ = 1− p. Notice that in the absence of truncation, λS is trivially isolated in the
equation for q(p).

λS =
h−1(p̌)

q(p)
.
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Consequently, one equation using two sample quantiles q̂(p1) and q̂(p2) could be formu-
lated to estimate θ.

h−1(p̌1; θ)

q(p1)
=
h−1(p̌2; θ)

q(p2)
.

Hence, in the case with no truncation, one can readily estimate θ first using two quan-
tiles, and subsequently estimate λS using one quantile. Note that this is also done in
the case with truncation for the Pareto, Clayton and Gumbel examples, but not for the
Frank, AMH and exponential-Pareto.

In order to obtain optimal quantile levels, we need to derive the β functions outlined
above. We have that

f(q(p)) = −λSh(1)(h−1(p̌)),
and the partial derivatives of the quantile function with respect to parameters θ and λS
are

∂q(p)

∂θ
= λ−1S

∂h−1(p̌)

∂θ
,

∂q(p)

∂λS
= −λ−2S h−1(p̌),

respectively. As a result, the corresponding β functions with respect to parameters θ
and λS are given by

β(θ) = −h(1)(h−1(p̌))∂h
−1(p̌)

∂θ
,

β(λS) = λ−1S h(1)(h−1(p̌))h−1(p̌).

The ability to find optimal quantile levels p?1 and p?2 to estimate θ depends on whether
β(θ) is proportional to a function that does not depend on θ or λS, where the constant
of proportionality does not depend on quantile level p. Notice that β(θ) is always
proportional to a function that does not depend on λS, whether or not on θ depends on
the generator h. If h is able to satisfy the criteria, then the objective function I2(p1, p2)
can be maximized. In the case of the Pareto, Gumbel and exponential-Pareto generators
considered in Section 4, this can be achieved. We obtain, up to constant that does not
depend on p,

β(θ) ∝ p̌ · ln p̌, for the Pareto and exponential-Pareto,

β(θ) ∝ p̌ · ln p̌ · ln(− ln p̌), for the Gumbel.

In these examples, we can subsequently determine optimal quantile level p?3 to estimate
λS since β(λS) is always proportional to a function that does not depend on λS; whether
or not it depends on θ is irrelevant since we can substitute θ̂ for θ, if required.

The Pareto example has already been investigated in Alai et al. (2016), they found
optimal p?1 and p?2 were given by 0.6385 and 0.9265, respectively. These quantiles would,
consequently, serve as optimal for the exponential-Pareto distribution as well. The
relevant objective function for the Gumbel generator is given by

c · I2(p1, p2) =
(p̌1 · ln p̌1 · ln(− ln p̌1))

2

p1
+

(p̌2 · ln p̌2 · ln(− ln p̌2))
2

p̌2

+
(p̌2 · ln p̌2 · ln(− ln p̌2)− p̌1 · ln p̌1 · ln(− ln p̌1))

2

p2 − p1
,
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for some positive constant c that does not depend on p1 or p2. We find, for the Gumbel
generator, that optimal p?1 and p?2 are given by 0.1322 and 0.9627, respectively. In Figure
3, we plot c · I2 over p1 for several values of p2; notice that as p2 approaches p?2, the
maximum value of c · I2 increases.

Figure 3: Gumbel, c · I2 versus p1 for select values of p2.

(a) p2=0.25. (b) p2=0.5.

(c) p2=0.75. (d) p2=0.90.

(e) p2=0.95. (f) p2=0.99.

If θ is known or estimated, either with optimal or non-optimal quantiles, λS can be
optimally estimated for any generator function h. We provide the β(λS) functions for
the Pareto, Clayton, and Gumbel generators; note that the Pareto example has already
been considered in Alai et al. (2016). We have, up to constant that does not depend on
p,

β(λS) ∝ p̌ · (1− p̌θ), for the Pareto and Clayton,

β(λS) ∝ p̌ · ln p̌, for the Gumbel.
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The above β(λS) can be used to define relevant objective functions I1(p); since θ is known,
we require only one sample quantile to estimate λS, hence we use I1(p). Notice that in
the case of the Gumbel generator, θ is not required to determine the optimal quantile
level p?3, but is required to find estimate λS. For the Pareto and Clayton generators,
the objective function is given by

c · I1(p3) =
p̌3(1− p̌θ3)2

p3
,

for some positive constant c that does not depend on p3. In Figure 4, we plot the
objective function over p3 for various levels of θ; the plots for θ = 1 and θ = 2 are
comparable to Figures 3b and 3a, respectively, in Alai et al. (2016). Finally, in Figure
5a, we plot p?3, for the Pareto and Clayton generators, as a function of θ.

Figure 4: Pareto and Clayton, objective function versus p3 for select values of θ.

(a) θ=0.25. (b) θ=0.5.

(c) θ=1. (d) θ=2.

For the Gumbel generator, the objective function is given by

c · I1(p3) =
p̌3(ln p̌3)

2

p3
,

for some positive constant c that does not depend on p3. Optimal p?3 is found to be
0.7968; refer to Figure 5b for a plot of c · I1(p3).
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Figure 5: Optimal p?3 for the Pareto, Clayton, and Gumbel generators.

(a) Pareto and Clayton, optimal p?3 versus θ. (b) Gumbel, c · I1(p3) versus p3.

5.3 A Numerical Example using the Gumbel Generator

Let τX(1) = min(X)|min(X) > τ , where the joint survival function of X = (X1, . . . , Xn)
is given by

P (X1 > x1, . . . , Xn > xn) = h

(
n∑
i=1

λixi

)
, xi ≥ 0,

for h given by the Gumbel generator function. Consequently, the survival function of
X(1) is also given by the Gumbel generator with argument λSx, where λS =

∑n
i=1 λi.

In other words, as noted above in Remark 3, X(1) follows a Weibull distribution with
scale and shape parameters λS and θ, respectively.

Consequently, it is not difficult to simulate samples of τX(1) and estimate λS and θ
using sample quantiles. Suppose θ = 2 and λS = 1; refer to Figure 1c for a plot of the
survival function. Using these parameter values, it can further be seen from Figure 1c
that truncation points of one, two and five represent weak, moderate and strong levels
of truncation. In Table 1, we show the estimation results using samples of size 100,000.
Each column represents the estimation for one generated sample with truncation point
τ , for which four pairs of estimates {θ, λS} are found. The first, using optimal quantile
levels as determined above, i.e. using p?1, p

?
2 and p?3, given by 0.1322, 0.9627 and 0.7968,

respectively. The remaining, using some arbitrarily selected quantile levels; the most
accurate pair is indicated in bold. It is important to note that each of the four pair
of estimates, for a given τ , are based on the same simulated sample. The results of
Table 2 and 3 are analogous to Table 1 based on samples of size 1,000, and 10,000,000,
respectively. We include the latter for illustrative purposes; we do not anticipate an
application with 10,000,000 observations.

From Table 1 it is apparent that a sample size of 100,000 is more than adequate
to calibrate the model; although the optimal quantile levels produce the most accurate
estimates for τ = 0 and τ = 5, the other quantile levels also perform well. In fact,
using quantile levels of 0.5 and 0.95 to estimate θ and 0.95 to estimate λS produces
the most accurate estimation for τ = 1 and τ = 2; note that this is attributed to
random fluctuation since results using a sample size of 10,000,000 always yield the
optimal quantile estimates most accurate; see Table 3. Notice that we consider the pair
of estimates {θ̂, λ̂S} when determining the most accurate, rather than each estimate in

isolation; this is because θ̂ also plays a role in estimating λ̂S, rendering the estimates
inseparable.
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Table 1: Estimation results with a sample size of 100, 000.

θ = 2;λS = 1. τ 0 1 2 5

{p?1, p?2} θ̂ 1.9952 1.9581 1.9933 2.0146

{p?3} λ̂S 1.0075 0.9577 0.9804 1.0221

{0.5, 0.95} θ̂ 2.0015 1.9834 1.9912 1.9802

{0.95} λ̂S 1.0178 0.9983 0.9831 0.9572

{0.25, 0.75} θ̂ 2.0026 1.9565 2.0183 1.9698

{0.75} λ̂S 1.0103 0.9564 1.0284 0.9365

{0.75, 0.95} θ̂ 1.9915 1.9755 1.9852 1.9785

{0.95} λ̂S 1.0067 0.9839 0.9712 0.9534

Table 2: Estimation results with a sample size of 1, 000.

θ = 2;λS = 1. τ 0 1 2 5

{p?1, p?2} θ̂ 2.0113 2.0409 1.9537 2.8449

{p?3} λ̂S 1.0209 1.1160 0.8951 6.4397

{0.5, 0.95} θ̂ 1.9771 2.0035 1.9177 2.5005

{0.95} λ̂S 1.0311 0.9768 0.7542 3.2879

{0.25, 0.75} θ̂ 1.9539 1.8738 1.5142 3.6743

{0.75} λ̂S 1.0585 0.8496 0.4464 55.9336

{0.75, 0.95} θ̂ 2.0209 2.1593 2.3160 2.0786

{0.95} λ̂S 1.0819 1.3081 1.6986 1.1878
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In Table 2 we see that the level of truncation plays a role for smaller sample sizes.
Although the optimal quantiles produce the most accurate estimation when τ = 0, the
optimal quantile estimates for τ = 5 are less impressive. Furthermore, we find a large
spread of estimates when τ 6= 0 and hence will need to carefully consider optimal quan-
tile estimation in the presence of truncation in future research. Since optimal quantile
levels were chosen based on minimizing the variance of the corresponding estimators, it
is no surprise that they are most reliable, if not always most accurate.

Table 3: Estimation results with a sample size of 10, 000, 000.

θ = 2;λS = 1. τ 0 1 2 5

{p?1, p?2} θ̂ 2.0005 2.0009 2.0002 2.0053

{p?3} λ̂S 1.0000 1.0017 1.0008 1.0105

{0.5, 0.95} θ̂ 2.0011 2.0017 2.0029 2.0118

{0.95} λ̂S 0.9988 1.0041 1.0059 1.0249

{0.25, 0.75} θ̂ 1.9997 1.9982 1.9983 2.0092

{0.75} λ̂S 0.9994 0.9974 0.9975 1.0184

{0.75, 0.95} θ̂ 2.0025 1.9979 2.0009 2.0072

{0.95} λ̂S 1.0004 0.9971 1.0018 1.0142

6 Conclusion

In this paper, we consider a multivariate distribution based on generator function h.
This general approach to constructing a distribution includes, as a special case, the
multivariate Pareto used to study joint lifetimes in Alai et al. (2016). There is a link
between the family of distributions we consider and Archimedean copula generators,
which we use to supply examples based on well-known generators from the Clayton,
Gumbel, Frank and Ali-Mikhail-Haq copulas. Furthermore, we suggest a new distri-
bution given by combining the Pareto and exponential structure. We provide moment
and quantile results in the presence of multivariate truncation and revisit known esti-
mation techniques in order that they may be used to gain insight in the pricing and risk
management of life-benefit products such as bulk annuities. Finally, we consider opti-
mal quantile selection for quantile-based estimation procedures and provide a numerical
example using a multivariate Weibull distribution.
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