
Proving Termination of Input-ConsumingLogi
 ProgramsJan{Georg Smaus�INRIA-Ro
quen
ourtBP 105, 78153 Le Chesnay Cedex, Fran
eAbstra
tA
lass of predi
ates is identi�ed for whi
h termination does not dependon left-to-right exe
ution. The only assumption about the sele
tion rule isthat derivations are input-
onsuming, that is, in ea
h derivation step, theinput arguments of the sele
ted atom do not be
ome instantiated. Thisassumption is a natural abstra
tion of previous work on programs with delayde
larations. The method for showing that a predi
ate is in that
lass isbased on level mappings,
losely following the traditional approa
h for LD-derivations. Programs are assumed to be well and ni
ely moded, whi
h aretwo widely used
on
epts for veri�
ation. Many predi
ates terminate undersu
h weak assumptions. Knowing these predi
ates is useful even for programswhere not all predi
ates have this property.1 Introdu
tionTermination of logi
 programs has been widely studied for LD-derivations,that is derivations where the leftmost atom in a query is always sele
ted [1, 3,7, 8, 9, 10, 12℄. These works are based on the following idea: when an atoma in a query is sele
ted, it is possible to pin down the size1 of a. This size
annot
hange via further instantiation. It is then shown that for the atomsintrodu
ed in this derivation step, it is again possible to pin down their sizewhen eventually they are sele
ted, and these atoms are smaller than a.This idea has also been applied to arbitrary derivations [6℄. Sin
e norestri
tion is imposed on when an atom
an be sele
ted, it is required that inea
h query in a derivation, the size of ea
h atom is always bounded. Programsthat ful�ll this requirement are
alled strongly terminating. The
lass ofstrongly terminating programs is very limited.For most logi
 programs, it is ne
essary for termination to require a
er-tain degree of instantiation of an atom before it
an be sele
ted. This
anbe a
hieved using delay de
larations [2, 16, 17, 18, 19, 22, 23℄. The problemis that, depending on what kind of delay de
larations and sele
tion rule areused, it is often not possible to pin down the size of the sele
ted atom, sin
ethis size may depend on the resolution of other atoms in the query that are�Formerly: University of Kent at Canterbury, United Kingdom.1The te
hni
al meaning of \pinning down the size" di�ers among di�erent methods.This will be dis
ussed in Se
t. 7.

not yet resolved. Nevertheless, the approa
hes by Mar
hiori and Teusink [17℄and Martin and King [18℄, and to a limited extent L�uttringhaus-Kappel [16℄are based on the idea des
ribed above.Our approa
h falls between the two extremes of making no assumptionsabout the sele
tion rule on the one hand and making very spe
i�
 assump-tions on the other. We believe that a reasonable minimal requirement fortermination
an be formulated in terms of modes:In ea
h derivation step, the input arguments of the sele
ted atom
annot be
ome instantiated.In other words, an atom in a query
an only be sele
ted when it is suÆ
ientlyinstantiated so that the most general uni�er (MGU) with the
lause head doesnot bind the input arguments of the atom. We
all derivations whi
h meetthis requirement input-
onsuming.This paper is about identifying predi
ates for whi
h all input-
onsumingderivations are �nite. Other works in this area have usually made spe
i�
assumptions about the sele
tion rule and the delay de
larations, for examplelo
al sele
tion rules [17℄, delay de
larations that test arguments for ground-ness or rigidness [16, 18℄, or the default left-to-right sele
tion rule of mostProlog implementations [19, 22, 23℄. In
ontrast, we show how previous re-sults about LD-derivations
an be generalised, the only assumption aboutthe sele
tion rule being that derivations are input-
onsuming.We exploit that under
ertain
onditions, it is enough to rely on a relativede
rease in the size of the sele
ted atom.Example 1.1 Consider the usual append program, where the �rst two ar-gument positions are input positions. The following is an input-
onsumingderivation. The sele
ted atom is always underlined. On the right hand side,we indi
ate some of the variable bindings made in this derivation.append([1℄; [℄; As); append(As; [℄; Bs); (As = [1jAs0℄)append([℄; [℄; As0); append([1jAs0℄; [℄; Bs) ; (Bs = [1jBs0℄)append([℄; [℄; As0); append(As0; [℄; Bs0) ; (As0 = [℄)append([℄; [℄; Bs0); 2 (Bs0 = [℄)When append([1jAs0℄; [℄; Bs) is sele
ted, it is not possible to pin down its sizein any meaningful way. In fa
t, nothing
an be said about the length of the(input-
onsuming) derivation asso
iated with append([1jAs0℄; [℄; Bs) withoutknowing about other atoms whi
h might instantiate As0. However, the deriva-tion
ould be in�nite only if some derivation asso
iated with append([℄; [℄; As0)was in�nite. Our method is based on su
h a dependen
y between the atomsof a query.As dis
ussed in Se
t. 7, previous approa
hes [6, 16, 17, 18℄
annot formallyshow termination of derivations with
oroutining su
h as the one above.Even though the
lass of programs for whi
h all input-
onsuming derivationsare �nite is obviously larger than the
lass of strongly terminating programs,it is still quite limited. The following example illustrates this.

Example 1.2 Consider the following program, where for both predi
ates,the �rst position is the only input position.permute([℄, [℄).permute(Y, [U | X℄) :-delete(Y, U, Z),permute(Z, X). delete([X|Z℄, X, Z).delete([U|Y℄, X, [U|Z℄) :-delete(Y, X, Z).Then we have the following in�nite input-
onsuming derivation:permute([1℄; W); (W = [U0jX0℄)delete([1℄; U0; Z0); permute(Z0; X0) ; (Z0 = [1jZ00℄)delete([℄; U0; Z00); permute([1jZ00℄; X0) ; (X0 = [U00jX00℄)delete([℄; U0; Z00); delete([1jZ00℄; U00; Z000); permute(Z000; X00) ;delete([℄; U0; Z00); delete(Z00; U00; Z0000); permute([1jZ0000℄; X00) ; : : :To ensure termination even for programs like the one above, most authorshave made stronger assumptions about the sele
tion rule, thereby negle
tingthe important
lass for whi
h assuming input-
onsuming derivations is suf-�
ient. We have attempted to formulate our results as generally as possibleto make them widely appli
able.The rest of this paper is organised as follows. The next se
tion �xesthe notation. Se
tion 3 introdu
es well and ni
ely moded programs andSe
tion 4 shows that for these, it is suÆ
ient to prove termination for one-atom queries. Se
tion 5 then deals with how one-atom queries
an be provento terminate. In Se
t. 6 we sket
h how the method presented here
ould beapplied. Se
tion 7 dis
usses the results and the related work.2 PreliminariesOur notation follows Apt [1℄ and Etalle et al. [12℄. For the examples we useProlog syntax. We re
all some important notions. The set of variables ina synta
ti
 obje
t o is denoted as vars(o). A synta
ti
 obje
t is linear ifevery variable o

urs in it at most on
e. The domain of a substitution � isdom(�) = fx j x� 6= xg.For a predi
ate p=n, a mode is an atom p(m1; : : : ;mn), where mi 2fI ;Og for i 2 f1; : : : ; ng. Positions with I are
alled input positions,and positions with O are
alled output positions of p. We assume that a�xed mode is asso
iated with ea
h predi
ate in a program. To simplify thenotation, an atom written as p(s; t) means: s is the ve
tor of terms �llingthe input positions, and t is the ve
tor of terms �lling the output positions.An atom p(s; t) is input-linear if s is linear, output-linear if t is linear.A query is a �nite sequen
e of atoms. Atoms are denoted by a, b, h,queries by B, F , H, Q, R. We write a 2 B if a is an atom in B. A derivationstep for a program P is a pair hQ; �i; hR; ��i, where Q = Q1; p(s; t); Q2 andR = Q1; B;Q2 are queries; � is a substitution; p(v;u) B a renamed variant

of a
lause in P and � an MGU of p(s; t)� and p(v;u). We
all p(s; t)� thesele
ted atom and R�� the resolvent of Q� and h B. A derivation stepis input-
onsuming if dom(�) \ vars(s�) = ;.2A derivation � for a program P is a sequen
e hQ0; �0i; hQ1; �1i; : : : whereea
h pair hQi; �ii; hQi+1; �i+1i in � is a derivation step. Alternatively, we alsosay that � is a derivation of P [fQ0�0g. We sometimes denote a derivationas Q0�0;Q1�1; : : :. An LD-derivation is a derivation where the sele
ted atomis always the leftmost atom in a query. An input-
onsuming derivation isa derivation
onsisting of input-
onsuming derivation steps.If (F; a;H); (F;B;H)� is a step in a derivation, then ea
h atom in B� is adire
t des
endant of a, and b� is a dire
t des
endant of b for all b 2 F;H.We say b is a des
endant of a if (b; a) is in the re
exive, transitive
losure ofthe relation is a dire
t des
endant. The des
endants of a set of atoms are de-�ned in the obvious way. Consider a derivation Q0; : : : ;Qi; : : : ;Qj ;Qj+1; : : :.We
all Qj;Qj+1 an a-step if a is an atom in Qi and the sele
ted atom inQj ;Qj+1 is a des
endant of a.3 ModesIn this se
tion we introdu
e well moded and ni
ely moded programs, whi
hare standard
on
epts used for veri�
ation of logi
 programs [2, 5, 11, 12, 13℄.Well-modedness has been introdu
ed by Dembinski and Ma luszy�nski [11℄and widely used sin
e. In Mer
ury it is even mandatory that programs arewell moded (possibly after reordering of atoms by the
ompiler), whi
h is oneof the reasons for its remarkable performan
e [24℄.De�nition 3.1 [well moded℄ A query Q = p1(s1; t1); : : : ; pn(sn; tn) is wellmoded if for all i 2 f1; : : : ; ng and L = 1vars(si) � i�1[j=L vars(tj) (1)The
lause p(t0; sn+1) Q is well moded if (1) holds for all i 2 f1; : : : ; n+1g and L = 0. A program is well moded if all of its
lauses are well moded.Note that a one-atom query p(s; t) is well moded if and only if s is ground.Another widely used
on
ept is the following.De�nition 3.2 [ni
ely moded℄ A query Q = p1(s1; t1); : : : ; pn(sn; tn) isni
ely moded if t1; : : : ; tn is a linear ve
tor of terms and for all i 2 f1; : : : ; ngvars(si) \ n[j=i vars(tj) = ;: (2)2Sin
e the MGU is unique up to variable renaming, we may assume that wheneverpossible, an MGU � is used su
h that dom(�) \ vars(s�) = ;.

The
lause C = p(t0; sn+1) Q is ni
ely moded if Q is ni
ely moded andvars(t0) \ n[j=1 vars(tj) = ;: (3)A program is ni
ely moded if all of its
lauses are ni
ely moded.Note that a one-atom query p(s; t) is ni
ely moded if and only if vars(s) \vars(t) = ; and t is linear. We
an thus state the following propositionwhi
h follows from the de�nitions.Proposition 3.1 A one-atom query p(s; t) is well and ni
ely moded if andonly if s is ground and t is linear.Example 3.1 The program in Ex. 1.2 is well and ni
ely moded in modefpermute(I ;O); delete(I ;O ;O)g. It is neither well moded nor ni
ely modedin mode fpermute(O ; I); delete(O ; I ; I)g, however it
an easily be made welland ni
ely moded by inter
hanging the two body atoms in the se
ond
lause.The example shows that multiple modes of a predi
ate
an be obtained bymaintaining multiple (renamed) versions of a predi
ate, whi
h di�er in the or-der of atoms in the
lause bodies. This is why some authors assume that ea
hpredi
ate has a �xed mode [12, 19, 24℄. However, in those works, assuminga �xed mode is, from a formal point of view, a real restri
tion.In this paper, assuming a �xed mode for ea
h predi
ate is not at all arestri
tion. It is merely for notational
onvenien
e that we assume, in allformal statements, a \left-to-right" data
ow in the above de�nitions. Ourresults generalise to multiple modes without having multiple versions of ea
hpredi
ate, sin
e we
onsider derivations where the textual position of an atomwithin a query is irrelevant for its sele
tion. For reasons of spa
e, we
annotexplain this in more detail, and refer to [20, Subse
t. 5.3℄.The following lemmas state persisten
e properties of well-modedness andni
ely-modedness.Lemma 3.2 Every resolvent of a well moded query Q and a well moded
lause C, where vars(C) \ vars(Q) = ;, is well moded [2, Lemma 16℄.Lemma 3.3 Every resolvent of a ni
ely moded query Q and a ni
ely moded
lause C, where vars(C) \ vars(Q) = ; and the head of C is input-linear, isni
ely moded [2, Lemma 11℄.For input-
onsuming derivations, the requirement that the
lause head isinput-linear
an be dropped. It is assumed that the sele
ted atom is suÆ-
iently instantiated, so that a multiple o

urren
e of the same variable in theinput arguments of the
lause head
annot
ause any bindings to the query.Note that requiring input-linear
lause heads is a severe restri
tion sin
e itrules out input arguments of the sele
ted atom being tested for equality.

Lemma 3.4 Every resolvent of a ni
ely moded query Q and a ni
ely moded
lause C, where the derivation step is input-
onsuming and vars(C) \vars(Q) = ;, is ni
ely moded. (Proof see [21℄.)For a ni
ely moded program and query, it is guaranteed that every input-
onsuming derivation step only instantiates other atoms in the query thato

ur to the right of the sele
ted atom.Lemma 3.5 Let P be a ni
ely moded program, Q = Q1; p(s; t); Q2 a ni
elymoded query, and hQ; ;i; hQ1;B;Q2; �i an input-
onsuming derivation step.Then dom(�) \ vars(Q1) = ;.Proof. Sin
e the derivation step is input-
onsuming, dom(�) \ vars(Q) �vars(t). Thus sin
e Q is ni
ely moded, dom(�) \ vars(Q1) = ;. 2This se
tion mainly served the purpose of re
alling some well-known mode
on
epts. However, Lemma 3.4 is an original result.4 Controlled CoroutiningIn this se
tion we de�ne atom-terminating predi
ates. A predi
ate p is atom-terminating if (under
ertain
onditions) all input-
onsuming derivations of aquery p(s; t) are �nite. Like Etalle et al. [12℄, we then show that terminationfor one-atom queries implies termination for arbitrary queries.For LD-derivations, it is almost obvious that it is suÆ
ient to show termi-nation for one-atom queries, and it only requires that programs and queriesare well moded [12, Lemma 4.2℄. Given an LD-derivation � for a querya1; : : : ; an, the sub-derivations for ea
h ai do not interleave, and therefore �
an be regarded as a derivation for a1 followed by a derivation for a2 and soforth. The following example illustrates that in the
ontext of interleavingsub-derivations (
oroutining), this is by no means obvious.Example 4.1 Consider the usual append programappend([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).in mode append(I ; I ;O) and the queryappend([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As):This query is well moded but not ni
ely moded. Then we have the followingin�nite input-
onsuming derivation:append([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As);append([℄; [℄; As); append(As; [℄; Bs0); append([1jBs0℄; [℄; As) ;append([℄; [℄; [1jAs0℄); append([1jAs0℄; [℄; Bs0); append(Bs0; [℄; As0); : : :This well-known termination problem of programs with
oroutining has beenidenti�ed as
ir
ular modes [19℄.

To avoid the problem, we require programs and queries to be ni
ely moded.Re
all that by Prop. 3.1, a one-atom query p(s; t) is well and ni
ely modedif and only if s is ground and t is linear.De�nition 4.1 [atom-terminating predi
ate/atom℄ Let P be a well and ni
e-ly moded program. A predi
ate p in P is atom-terminating if for ea
hwell and ni
ely moded query p(s; t), all input-
onsuming derivations of P [fp(s; t)g are �nite. An atom is atom-terminating if its predi
ate is atom-terminating.The following lemma says that an atom-terminating atom
annot pro
eedinde�nitely unless it is repeatedly fed by some other atom. It is similar to [22,Lemma 4.2℄. For spa
e reasons, we
annot state the pre
ise di�eren
es, butnote that here, we do not require that
lause heads are input-linear. There isa lemma [20, Lemma 6.2℄ whi
h subsumes [22, Lemma 4.2℄ and Lemma 4.1,but using this lemma would
ompli
ate this paper
onsiderably.Lemma 4.1 Let P be a well and ni
ely moded program and F; b;H a welland ni
ely moded query where b is an atom-terminating atom. An input-
onsuming derivation of P [fF; b;Hg
an have in�nitely many b-steps onlyif it has in�nitely many a-steps, for some a 2 F . (Proof see [21℄.)The following theorem is a
onsequen
e of Lemma 4.1 and states that atom-terminating atoms on their own
annot produ
e an in�nite derivation.Theorem 4.2 Let P be a well and ni
ely moded program and Q a welland ni
ely moded query. An input-
onsuming derivation of P [fQg
an bein�nite only if it
ontains in�nitely many steps where an atom is resolvedthat is not atom-terminating. (Proof see [21℄.)Theorem 4.2 provides us with the formal justi�
ation for restri
ting our at-tention to one-atom queries. Thus the question is how it
an be shown thata predi
ate is atom-terminating.5 Showing that a Predi
ate is Atom-TerminatingTermination proofs usually rely, more or less expli
itly, on measuring the sizeof the input in a query [1, 3, 7, 8, 9, 10, 12℄. We agree with Etalle et al. [12℄that it is reasonable to make this dependen
y expli
it. This gives rise to the
on
ept of moded level mapping [12℄, whi
h is an instan
e of level mapping [6℄.BP denotes the set of ground atoms using predi
ates o

urring in P .De�nition 5.1 [moded level mapping℄ Let P be a program. j:j is a modedlevel mapping if1. it is a level mapping, that is a fun
tion j:j : BP ; IN,

2. for any t and u, jp(s; t)j = jp(s;u)j.For a 2 BP , jaj is the level of a.Thus the level of an atom only depends on the terms in the input positions.The following
on
ept is useful for proving termination for a whole pro-gram in
rementally, by proving it for one predi
ate at a time [1℄.De�nition 5.2 [depends on℄ Let p; q be predi
ates in a program P . We sayp refers to q if there is a
lause in P with p in its head and q in its body,and p depends on q (written p w q) if (p; q) is in the re
exive, transitive
losure of refers to. We write p = q if p w q and q 6w p, and p � q if p w qand q w p.Abusing notation, we shall also use the above symbols for atoms, wherep(s; t) w q(u;v) stands for p w q, and likewise for = and �. Furthermore,we denote the equivalen
e
lass of a predi
ate p with respe
t to � as [p℄�.The following de�nition provides us with a
riterion to prove that a pred-i
ate is atom-terminating.De�nition 5.3 [ICD-a

eptable℄ Let P be a program and j:j a moded levelmapping. A
lause C = h B is a

eptable for input-
onsumingderivations (with respe
t to j:j) if for every substitution � su
h that C�is ground, and for every a 2 B su
h that a � h, we have jh�j > ja�j. Weabbreviate a

eptable for input-
onsuming derivations by ICD-a

eptable.A set of
lauses is ICD-a

eptable with respe
t to j:j if ea
h
lauseis ICD-a

eptable with respe
t to j:j.Let us
ompare this
on
ept with some similar
on
epts in the literature:re
urrent [6℄, well-a

eptable [12℄ and a

eptable [4, 10℄ programs.Like De
orte and De S
hreye [10℄ and Etalle et al. [12℄ but unlike Apt andPedres
hi [4℄ and Bezem [6℄, we require jh�j > ja�j only for atoms a wherea � h. This is
onsistent with the idea that termination should be provenin
rementally: to show termination for a predi
ate p, it is assumed that allpredi
ates q with p = q have already been shown to terminate. Therefore we
an restri
t our attention to the predi
ates q where q � p.Like Bezem but unlike Apt and Pedres
hi, De
orte and De S
hreye andEtalle et al., our de�nition does not involve models or
omputed answersubstitutions. Traditionally, the de�nition of a

eptable programs is basedon a model M of the program, and for a
lause h a1; : : : ; an, jh�j >jai�j is only required if M j= (a1; : : : ; ai�1)�. The reason is that for LD-derivations, a1; : : : ; ai�1 must be
ompletely resolved before ai is sele
ted. Bythe
orre
tness of LD-resolution [15℄ and well-modedness [5℄, the a

umulatedanswer substitution �, just before ai is sele
ted, is su
h that (a1; : : : ; ai�1)�is ground and M j= (a1; : : : ; ai�1)�.Su
h
onsiderations
ount for little when derivations are merely requiredto be input-
onsuming. This is illustrated in Ex. 1.2. In the third line of

the derivation, permute([1jZ00℄; X0) is sele
ted, although there is no instan
eof delete([℄; U0; Z00) in the model of the program. This problem has beendes
ribed by saying that delete makes a spe
ulative output binding [19, 23℄.Theorem 5.1 Let P be a well and ni
ely moded program and p be a predi-
ate in P . Suppose all predi
ates q with p = q are atom-terminating, and all
lauses de�ning predi
ates q 2 [p℄� are ICD-a

eptable. Then p, and hen
eevery predi
ate in [p℄�, is atom-terminating. (Proof see [21℄.)Obviously the above theorem applies in parti
ular if there exists no q su
hthat p = q, in whi
h
ase trivially all predi
ates q with p = q are atom-terminating.Example 5.1 We now give a few examples. We denote the term size of aterm t, that is the number of fun
tion and
onstant symbols that o

ur in t,as TSize(t).The
lauses de�ning append(I ; I ;O) (Ex. 4.1) are ICD-a

eptable, wherejappend(s1; s2; t)j = TSize(s1). Thus append(I ; I ;O) is atom-terminating.The same holds for append(O ;O ; I), de�ning jappend(t1; t2; s)j = TSize(s).The
lauses de�ning delete(I ;O ;O) (Ex. 1.2) are ICD-a

eptable, wherejdelete(s; t1; t2)j = TSize(s). Thus delete(I ;O ;O) is atom-terminating.The same holds for delete(O ; I ; I), de�ning jdelete(t; s1; s2)j = TSize(s2).In a similar way, we
an show that permute(O ; I) is atom-terminating.3However, permute(I ;O) is not atom-terminating.The book on the G�odel language [14, page 81℄ shows a program that
ontains a
lause, whi
h in Prolog would be written asslowsort(X,Y) :-permute(X,Y),sorted(Y).The meaning and the modes of the predi
ates should be obvious from theirnames, and there are delay de
larations to ensure that derivations are input-
onsuming. The predi
ate slowsort is not atom-terminating, but it
ouldbe made atom-terminating by repla
ing permute(X,Y) with permute(Y,X),so that permute is used in the mode in whi
h it is atom-terminating.Note that a

ording to the G�odel spe
i�
ation, no guarantees are givenabout the sele
tion rule that go beyond ensuring that derivations for theabove program are input-
onsuming. Hen
e the program is not guaranteedto terminate even for a \well-behaved" query su
h as slowsort([1; 2℄; Y).Even though Hill and Lloyd do not
laim that the program terminates, onewould still expe
t it to do so. However, we
an modify the program as stated,and guarantee that the modi�ed program terminates using the method of thispaper.3Here we assume that the program is made well and ni
ely moded by inter
hanging thebody atoms of the se
ond
lause.

nqueens(N,Sol) :-sequen
e(N,Seq),permute(Seq,Sol),safe(Sol).safe([℄).safe([N|Ns℄) :-safe_aux(Ns,1,N),safe(Ns).
safe_aux([℄,_,_).safe_aux([M|Ms℄,Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.Figure 1: A program for n-queensFigure 1 shows a fragment from a program for the n-queens problem. Themode is fnqueens(I ;O); sequen
e(I ;O); permute(I ;O); safe(I); is(O ; I);safe aux(I ; I ; I); no diag(I ; I ; I); =\=(I ; I)g. Again using as level mappingthe term size of one of the arguments, one
an see that the
lauses de�ningfno diag; safe aux; safeg are ICD-a

eptable and thus these predi
ates areatom-terminating. Note that for eÆ
ien
y reasons, this program relies oninput-
onsuming derivations where atoms using safe are sele
ted as early aspossible [22℄.As a more
omplex example,
onsider the following program, whose modeis fplus one(I); minus two(I); minus one(I)g.plus_one(X) :- minus_two(su

(X)).minus_two(su

(X)) :- minus_one(X).minus_two(0).minus_one(su

(X)) :- plus_one(X).minus_one(0).We de�ne jplus one(s)j = 3 � TSize(s) + 4jminus two(s)j = 3 � TSize(s)jminus one(s)j = 3 � TSize(s) + 2Then the program is ICD-a

eptable and therefore all predi
ates are atom-terminating.We see that whenever in some argument position of a
lause head, thereis a
ompound term of some re
ursive data stru
ture, su
h as [XjXs℄, andall re
ursive
alls in the body of the
lause have a stri
t subterm of thatterm, su
h as Xs, in the same position | then the
lause is ICD-a

eptableusing as level mapping the term size of that argument position. Sin
e thissituation o

urs very often, it
an be expe
ted that an average program
ontains many atom-terminating predi
ates. However, it is unlikely that inany real program, all predi
ates are atom-terminating.The last example shows that more
omplex s
enarios than the one de-s
ribed above are possible, but we doubt that they would often o

ur in

pra
ti
e. Therefore level mappings su
h as the one used in the example willrarely be needed.Consider again Def. 5.3. Given a
lause h a1; : : : ; an and an atomai � h, we require jh�j > jai�j for all grounding substitutions �, rather thanonly for � su
h that (a1; : : : ; ai�1)� is in a
ertain model of the program. Thisis of
ourse a serious restri
tion. In Ex. 1.2, assuming mode permute(I ;O),there
annot exist a moded level mapping su
h that jpermute(Y; [UjX℄)�j >jpermute(Z; X)�j for all �. That however is not surprising sin
e permute(I ;O)is not atom-terminating.Similarly, there
annot be a moded level mapping su
h that the usualre
ursive
lause for qui
ksort, in the usual mode, is ICD-a

eptable, al-though we
onje
ture that qui
ksort is atom-terminating. This shows alimitation of our method. The author is
urrently working on ways of over-
oming this limitation, but the fa
t remains that many predi
ates are notatom-terminating.6 Applying the MethodThe requirement of input-
onsuming derivations merely re
e
ts the verymeaning of input: an atom must only
onsume its own input, not produ
e it.Thus if one a

epts that (appropriately
hosen) modes are useful for veri�-
ation and re
e
t the programmer's intentions, then one should also a

eptthis requirement and regard any violation of it as pathologi
al. This does notex
lude multiple modes, that is, the same program being used in a di�erentmode at ea
h run.The requirement of input-
onsuming derivations is trivially met for LD-derivations of a well moded query and program,4 sin
e the leftmost atom ina well moded query is ground in its input positions. It
an also be ensured byusing delay de
larations as in G�odel [14℄ that require the input arguments ofan atom to be ground before this atom
an be sele
ted. Moreover, it might beensured using guards as in GHC [25℄. Finally, it
an be ensured using delayde
larations that
he
k for partial instantiation of the input arguments, su
has the blo
k de
larations of SICStus. Note that under
ertain
onditions,delay de
larations
an ensure input-
onsuming derivations with respe
t toseveral, alternative modes [20, Chapter 7℄ [22℄.Consequently, this paper is mainly aimed at logi
 programs with delayde
larations, but unlike previous work [2, 16, 17, 18, 19, 22, 23℄, abstra
tsfrom the details of parti
ular delay
onstru
ts. We only assume what wesee as the basi
 purpose of delay de
larations: ensuring that derivations areinput-
onsuming.As we have said in the introdu
tion, the
lass of predi
ates for whi
hall input-
onsuming derivations terminate is quite limited. In an averageprogram, some predi
ates are atom-terminating but some are not. In general,4In parti
ular, this means that it is met in Mer
ury [24℄.

one has to make stronger assumptions about the sele
tion rule. We sket
hthree ways in whi
h the method presented here might be in
orporated into amore
omprehensive method for proving termination. This boils down to thequestion: how do we deal with predi
ates that are not atom-terminating?The �rst way has a
tually been developed already [22℄. We have pre-viously
onsidered atom-terminating predi
ates in a more
on
rete settingthan here and
alled them robust predi
ates. The default left-to-right sele
-tion rule of most Prolog implementations is assumed. It is exploited that thetextual position of atoms using robust predi
ates in
lause bodies is irrele-vant for termination. The other atoms must be pla
ed su
h that the atomsprodu
ing their input o

ur earlier.Se
ondly, we
ould build on a te
hnique by Martin and King [18℄. They
onsider
oroutining derivations, but impose a bound on the depth of ea
hsub-derivation by introdu
ing auxiliary predi
ates with an additional argu-ment that serves as depth
ounter. Applying the results of this paper, weonly have to impose this depth bound for the predi
ates that are not atom-terminating. For the atom-terminating predi
ates, we
an save the overheadsinvolved in this te
hnique.Thirdly, we
ould use delay de
larations as they are provided for examplein G�odel [14℄. For the atom-terminating predi
ates, it is suÆ
ient to
he
k forpartial instantiation of the input positions using a DELAY : : : UNTIL NONVAR : : :de
laration. For the other predi
ates, it must be ensured that the input po-sitions are ground using a DELAY : : : UNTIL GROUND : : : de
laration. Note thata

ording to its spe
i�
ation, G�odel does not guarantee a (default) left-to-right sele
tion rule, and therefore delay de
larations are
ru
ial for termina-tion. Note also that a groundness test is usually more expensive than a testfor partial instantiation. To the best of our knowledge, there has never beena systemati
 treatment of the question when GROUND de
larations are needed,and when NONVAR de
larations are suÆ
ient.7 Dis
ussionWe have identi�ed the
lass of predi
ates for whi
h all input-
onsumingderivations are �nite. An input-
onsuming derivation is a derivation wherein ea
h step, the input arguments of the sele
ted atom are not instantiated.Predi
ates
an be shown to be in that
lass using the notions of level mappingand a

eptable
lause [7, 10, 12℄.Most previous approa
hes, in
luding approa
hes for programs with delayde
larations,
an only show termination making stronger assumptions aboutthe sele
tion rule [16, 17, 18℄. We have argued in the previous se
tion thatknowing the predi
ates that terminate under our weaker assumptions is usefuleven for programs where not all predi
ates have this property.This paper builds on our own previous work [22℄, but attempts to for-mulate the results more abstra
tly, without getting involved in the details ofparti
ular delay
onstru
ts. For example, we previously imposed a restri
tion

that all
lause heads in a program must be input-linear, whi
h is ne
essary sothat blo
k de
larations
an ensure input-
onsuming derivations. In this pa-per, we do not impose this restri
tion. Hen
e if input-
onsuming derivations
an be ensured without imposing this restri
tion, say by using guards as inGHC [25℄, then the results of this paper
ould be applied to show termination.We have
laimed that most other approa
hes to termination rely on theidea that the size of an atom
an be pinned down when the atom is sele
ted.Te
hni
ally, this usually means that the atom is bounded with respe
t tosome level mapping [4, 6, 12, 18℄. There are ex
eptions though [8, 10℄, wheretermination
an be shown for the query, say, append([X℄; [℄; Zs) using as levelmapping the term size of the �rst argument, even though the term size of [X℄ isnot bounded. However, the method only works for LD-derivations and relieson the fa
t that any future instantiation of X
annot a�e
t the derivation forappend([X℄; [℄; Zs). Therefore it is e�e
tively possible to pin down the size ofappend([X℄; [℄; Zs).In
ontrast, we show that under
ertain
onditions, it is enough to relyon a relative de
rease in the size of the sele
ted atom, even though this size
annot be pinned down. This is
ru
ial to show termination of derivationswith
oroutining. More pre
isely, we exploit that an atom in a query
annotpro
eed inde�nitely unless it is repeatedly fed by some other atom o

urringearlier in the query. This implies that every derivation for the query is �nite.Bezem [6℄ has identi�ed the
lass of strongly terminating programs, whi
hare programs that terminate under any sele
tion rule. While it is shown thatevery total re
ursive fun
tion
an be
omputed by a strongly terminatingprogram, this does not
hange the fa
t that few existing programs are stronglyterminating. Transformations are proposed for three example programs tomake them strongly terminating, but the transformations are
ompli
atedand ad-ho
.On the whole, there seems to be a strong relu
tan
e to give up the ideathat the size of an atom must be pinned down when the atom is sele
ted. Thisis true even for Bezem [6℄. It is also true for Mar
hiori and Teusink [17℄, whoassume a lo
al sele
tion rule, that is a rule under whi
h only most re
entlyintrodu
ed atoms
an be resolved in ea
h step. Martin and King [18℄ a
hievea similar e�e
t by bounding the depth of the
omputation introdu
ing aux-iliary predi
ates. It is more diÆ
ult to assess L�uttringhaus-Kappel [16℄ sin
ehis
ontribution is mainly to generate delay de
larations automati
ally ratherthan prove termination.5 However in some
ases, the delay de
larations thatare generated require an argument of an atom to be a rigid list before thatatom
an be sele
ted, whi
h is similar to [17, 18℄. Su
h uses of delay de
la-rations go well beyond ensuring that derivations are input-
onsuming.None of the above approa
hes [6, 16, 17, 18℄
an formally show terminationunder the weak assumptions we make here, even for derivations as trivial asthe one in Ex. 1.1. Apt and Luitjes [2℄ give
onditions for the termination5For the reader familiar with that work, it is not said how programs are shown to besafe.

of append, but those are ad-ho
 and do not address the general problem.Naish [19℄ gives heuristi
s to ensure termination, but no formal results.We have assumed that queries are well and ni
ely moded, whi
h meansthat the atoms in the query are ordered6 so that there is a left-to-right data-
ow. As a topi
 for future work, we envisage to prove termination of programswhere these
onditions are relaxed, su
h as programs using layered modes [13℄.We believe that the
ru
ial idea will be the same as in this paper, namelythat one must rely on a relative de
rease in size of the sele
ted atom in ea
hderivation step, rather than an absolute one. Therefore this paper shouldprovide a good basis for this extension.A
knowledgementsThe author would like to thank Floren
e Benoy for proofreading this paper,and Sandro Etalle and Pat Hill for some helpful
omments. This work wasfunded by EPSRC Grant No. GR/K79635.Referen
es[1℄ K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.[2℄ K. R. Apt and I. Luitjes. Veri�
ation of logi
 programs with delay de
larations.In V. S. Alagar and M. Nivat, editors, Pro
eedings of AMAST'95, LNCS, Berlin,1995. Springer-Verlag. Invited Le
ture.[3℄ K. R. Apt and D. Pedres
hi. Studies in pure Prolog: Termination. In J. W.Lloyd, editor, Pro
eedings of the Symposium in Computational Logi
, LNCS,pages 150{176. Springer-Verlag, 1990.[4℄ K. R. Apt and D. Pedres
hi. Modular termination proofs for logi
 and pureProlog programs. In G. Levi, editor, Advan
es in Logi
 Programming Theory,pages 183{229. Oxford University Press, 1994.[5℄ K. R. Apt and A. Pellegrini. On the o

ur-
he
k free Prolog programs. ACMTransa
tions on Programming Languages and Systems, 16(3):687{726, 1994.[6℄ M. Bezem. Strong termination of logi
 programs. Journal of Logi
 Program-ming, 15(1 & 2):79{97, 1993.[7℄ D. De S
hreye and S. De
orte. Termination of logi
 programs: The never-endingstory. Journal of Logi
 Programming, 19/20:199{260, 1994.[8℄ D. De S
hreye, K. Vers
haetse, and M. Bruynooghe. A framework for analysingthe termination of de�nite logi
 programs with respe
t to
all patterns. InPro
eedings of FGCS, pages 481{488. ICOT Tokyo, 1992.[9℄ S. De
orte and D. De S
hreye. Automati
 inferen
e of norms: A missing link inautomati
 termination analysis. In Pro
eedings of the 10th International Logi
Programming Symposium, pages 420{436. MIT Press, 1993.6Or more generally:
an be ordered (see [20, Subse
t. 5.3℄ or the dis
ussion after Exam-ple 3.1).

[10℄ S. De
orte and D. De S
hreye. Termination analysis: Some pra
ti
al propertiesof the norm and level mapping spa
e. In J. Ja�ar, editor, Pro
eedings of the15th JICSLP, pages 235{249. MIT Press, 1998.[11℄ P. Dembinski and J. Ma luszy�nski. AND-parallelism with intelligent ba
ktra
k-ing for annotated logi
 programs. In Pro
eedings of the 2nd International Logi
Programming Symposium, pages 29{38. MIT Press, 1985.[12℄ S. Etalle, A. Bossi, and N. Co

o. Termination of well-moded programs. Journalof Logi
 Programming, 38(2):243{257, 1999.[13℄ S. Etalle and M. Gabbrielli. Layered modes. Journal of Logi
 Programming,39:225{244, 1999.[14℄ P. M. Hill and J. W. Lloyd. The G�odel Programming Language. MIT Press,1994.[15℄ J. W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, 1987.[16℄ S. L�uttringhaus-Kappel. Control generation for logi
 programs. In D. S. Warren,editor, Pro
eedings of the 10th International Conferen
e on Logi
 Programming,pages 478{495. MIT Press, 1993.[17℄ E. Mar
hiori and F. Teusink. Proving termination of logi
 programs with delayde
larations. In J. W. Lloyd, editor, Pro
eedings of the 12th International Logi
Programming Symposium, pages 447{461. MIT Press, 1995.[18℄ J. C. Martin and A. M. King. Generating eÆ
ient, terminating logi
 programs.In M. Bidoit and M. Dau
het, editors, Pro
eedings of TAPSOFT'97, LNCS,pages 273{284. Springer-Verlag, 1997.[19℄ L. Naish. Coroutining and the
onstru
tion of terminating logi
 programs.Te
hni
al Report 92/5, University of Melbourne, 1992.[20℄ J.-G. Smaus. Modes and Types in Logi
 Programming. PhD thesis, Uni-versity of Kent at Canterbury, September 1999. Draft available fromwww.
s.uk
.a
.uk/people/staff/jgs5/thesis.ps.[21℄ J.-G. Smaus. Proving termination of input-
onsuming logi
 programs. Te
hni
alReport 10-99, Computing Laboratory, University of Kent at Canterbury, UnitedKingdom, 1999.[22℄ J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi
 programs withblo
k de
larations running in several modes. In C. Palamidessi, editor, Pro-
eedings of PLILP/ALP, LNCS. Springer-Verlag, 1998.[23℄ J.-G. Smaus, P. M. Hill, and A. M. King. Preventing instantiation errors andloops for logi
 programs with multiple modes using blo
k de
larations. InP. Flener, editor, Pro
eedings of LOPSTR'98, LNCS. Springer-Verlag, 1999.[24℄ Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury,an eÆ
ient purely de
larative logi
 programming language. Journal of Logi
Programming, 29(1{3), 1996.[25℄ K. Ueda. Guarded Horn
lauses. In E. Wada, editor, Pro
eedings of the 4thJapanese Conferen
e on Logi
 Programming, LNCS, pages 168{179. Springer-Verlag, 1986.

