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Abstract

A class of predicates is identified for which termination does not depend
on left-to-right execution. The only assumption about the selection rule is
that derivations are input-consuming, that is, in each derivation step, the
input arguments of the selected atom do not become instantiated. This
assumption is a natural abstraction of previous work on programs with delay
declarations. The method for showing that a predicate is in that class is
based on level mappings, closely following the traditional approach for LD-
derivations. Programs are assumed to be well and nicely moded, which are
two widely used concepts for verification. Many predicates terminate under
such weak assumptions. Knowing these predicates is useful even for programs
where not all predicates have this property.

1 Introduction

Termination of logic programs has been widely studied for LD-derivations,
that is derivations where the leftmost atom in a query is always selected [1, 3,
7, 8,9, 10, 12]. These works are based on the following idea: when an atom
a in a query is selected, it is possible to pin down the size' of a. This size
cannot change via further instantiation. It is then shown that for the atoms
introduced in this derivation step, it is again possible to pin down their size
when eventually they are selected, and these atoms are smaller than a.

This idea has also been applied to arbitrary derivations [6]. Since no
restriction is imposed on when an atom can be selected, it is required that in
each query in a derivation, the size of each atom is always bounded. Programs
that fulfill this requirement are called strongly terminating. The class of
strongly terminating programs is very limited.

For most logic programs, it is necessary for termination to require a cer-
tain degree of instantiation of an atom before it can be selected. This can
be achieved using delay declarations [2, 16, 17, 18, 19, 22, 23]. The problem
is that, depending on what kind of delay declarations and selection rule are
used, it is often not possible to pin down the size of the selected atom, since
this size may depend on the resolution of other atoms in the query that are
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not yet resolved. Nevertheless, the approaches by Marchiori and Teusink [17]
and Martin and King [18], and to a limited extent Liittringhaus-Kappel [16]
are based on the idea described above.

Our approach falls between the two extremes of making no assumptions
about the selection rule on the one hand and making very specific assump-
tions on the other. We believe that a reasonable minimal requirement for
termination can be formulated in terms of modes:

In each derivation step, the input arguments of the selected atom
cannot become instantiated.

In other words, an atom in a query can only be selected when it is sufficiently
instantiated so that the most general unifier (MGU) with the clause head does
not bind the input arguments of the atom. We call derivations which meet
this requirement input-consuming.

This paper is about identifying predicates for which all input-consuming
derivations are finite. Other works in this area have usually made specific
assumptions about the selection rule and the delay declarations, for example
local selection rules [17], delay declarations that test arguments for ground-
ness or rigidness [16, 18], or the default left-to-right selection rule of most
Prolog implementations [19, 22, 23]. In contrast, we show how previous re-
sults about LD-derivations can be generalised, the only assumption about
the selection rule being that derivations are input-consuming.

We exploit that under certain conditions, it is enough to rely on a relative
decrease in the size of the selected atom.

Example 1.1 Consider the usual append program, where the first two ar-
gument positions are input positions. The following is an input-consuming
derivation. The selected atom is always underlined. On the right hand side,
we indicate some of the variable bindings made in this derivation.

append([1],[], As), append(As, [],Bs) ~ (As = [1]As])
append(], [], As’), append([1|As'], ], Bs) ~ (Bs = [1[Bs'])
append([], [|, As'), append (s, [], Bs') ~ (As" = ])
append([], [|, Bs') ~ O (Bs' = [])
When append([1|As'], [], Bs) is selected, it is not possible to pin down its size
in any meaningful way. In fact, nothing can be said about the length of the
(input-consuming) derivation associated with append([1|As’],[],Bs) without
knowing about other atoms which might instantiate As’. However, the deriva-
tion could be infinite only if some derivation associated with append([], [], As’)

was infinite. Our method is based on such a dependency between the atoms
of a query.

As discussed in Sect. 7, previous approaches [6, 16, 17, 18] cannot formally
show termination of derivations with coroutining such as the one above.

Even though the class of programs for which all input-consuming derivations
are finite is obviously larger than the class of strongly terminating programs,
it is still quite limited. The following example illustrates this.



Example 1.2 Consider the following program, where for both predicates,
the first position is the only input position.

permute([1, [1). delete([X1Z1, X, Z).
permute(Y, [U | XI) :- delete([U|Y], X, [UIZ]) :-
delete(Y, U, Z), delete(Y, X, Z).

permute(Z, X).

Then we have the following infinite input-consuming derivation:

permute([1], W) (W= [U'|X'])
delete([1],U,Z'), permute(Z’, X’) ~ (z' =11]2")
delete([], U Z”) permute([1]Z"],X) ~ (X' = [U"x"])
delete([],U,Z"),delete([1|Z2"],U",Z2"), permute(Z"" X" ) ~
delete([],U’,Z"),delete(2",U", "), permute([1|Z""], X") ~

To ensure termination even for programs like the one above, most authors
have made stronger assumptions about the selection rule, thereby neglecting
the important class for which assuming input-consuming derivations is suf-
ficient. We have attempted to formulate our results as generally as possible
to make them widely applicable.

The rest of this paper is organised as follows. The next section fixes
the notation. Section 3 introduces well and nicely moded programs and
Section 4 shows that for these, it is sufficient to prove termination for one-
atom queries. Section 5 then deals with how one-atom queries can be proven
to terminate. In Sect. 6 we sketch how the method presented here could be
applied. Section 7 discusses the results and the related work.

2 Preliminaries

Our notation follows Apt [1] and Etalle et al. [12]. For the examples we use
Prolog syntax. We recall some important notions. The set of variables in
a syntactic object o is denoted as wars(o). A syntactic object is linear if
every variable occurs in it at most once. The domain of a substitution o is
dom(o) = {z | zo # z}.

For a predicate p/n, a mode is an atom p(mq,...,my), where m; €
{I,0} for i € {1,...,n}. Positions with I are called input positions,
and positions with O are called output positions of p. We assume that a
fixed mode is associated with each predicate in a program. To simplify the
notation, an atom written as p(s,t) means: s is the vector of terms filling
the input positions, and t is the vector of terms filling the output positions.
An atom p(s, t) is input-linear if s is linear, output-linear if t is linear.

A query is a finite sequence of atoms. Atoms are denoted by a, b, h,
queriesby B, F', H, (), R. We write a € B if a is an atom in B. A derivation
step for a program P is a pair (@, 0); (R, o), where Q = Q1,p(s,t), Q2 and
R = Q1, B, Q)2 are queries; 0 is a substitution; p(v,u) < B a renamed variant



of a clause in P and o an MGU of p(s, t)f and p(v,u). We call p(s,t)0 the
selected atom and Rfo the resolvent of Q8 and h < B. A derivation step
is input-consuming if dom(o) Nwvars(sf) = 0.2

A derivation ¢ for a program P is a sequence {(Qo, 0p); (Q1,61); ... where
each pair (Q;, 0;); (Q;11,0;11) in £ is a derivation step. Alternatively, we also
say that £ is a derivation of PU{Qyfy}. We sometimes denote a derivation
as Qobo; Q101;.... An LD-derivation is a derivation where the selected atom
is always the leftmost atom in a query. An input-consuming derivation is
a derivation consisting of input-consuming derivation steps.

If (F,a,H); (F,B, H)# is a step in a derivation, then each atom in Bf is a
direct descendant of a, and b6 is a direct descendant of b for allb € F, H.
We say b is a descendant of a if (b, a) is in the reflexive, transitive closure of
the relation is a direct descendant. The descendants of a set of atoms are de-
fined in the obvious way. Consider a derivation Qo;...;Qi;...;Q;; Qjy1;- - ..
We call Q;;Qj4+1 an a-step if a is an atom in @; and the selected atom in
Qj: Qj+1 is a descendant of a.

3 Modes

In this section we introduce well moded and nicely moded programs, which
are standard concepts used for verification of logic programs [2, 5, 11, 12, 13].

Well-modedness has been introduced by Dembinski and Matuszyriski [11]
and widely used since. In Mercury it is even mandatory that programs are
well moded (possibly after reordering of atoms by the compiler), which is one
of the reasons for its remarkable performance [24].

Definition 3.1 [well moded] A query Q = pi(s1,t1),...,pn(Sn,ty) is well
moded if for all € {1,...,n} and L =1

i—1
vars(s;) C U vars(t;) (1)
j=L

The clause p(tg,Sp+1) < @ is well moded if (1) holds for all ¢ € {1,...,n+
1} and L = 0. A program is well moded if all of its clauses are well moded.

Note that a one-atom query p(s,t) is well moded if and only if s is ground.
Another widely used concept is the following.

Definition 3.2 |nicely moded] A query @ = pi(s1,t1),...,pn(Sn,ty) is

nicely moded if ti,...,t, is a linear vector of terms and for alls € {1,...,n}
n
vars(s;) N U vars(t;) = 0. (2)
j=i

2Since the MGU is unique up to variable renaming, we may assume that whenever
possible, an MGU ¢ is used such that dom(o) Nvars(sf) = 0.



The clause C = p(tg,sp+1) < @ is nicely moded if @ is nicely moded and
n

vars(ty) N U vars(t;) = 0. (3)
j=1

A program is nicely moded if all of its clauses are nicely moded.

Note that a one-atom query p(s,t) is nicely moded if and only if vars(s) N
vars(t) = () and t is linear. We can thus state the following proposition
which follows from the definitions.

Proposition 3.1 A one-atom query p(s,t) is well and nicely moded if and
only if s is ground and t is linear.

Example 3.1 The program in Ex. 1.2 is well and nicely moded in mode
{permute(I, 0), delete(I, O, O)}. It is neither well moded nor nicely moded
in mode {permute(0, I), delete(O, I, I)}, however it can easily be made well
and nicely moded by interchanging the two body atoms in the second clause.

The example shows that multiple modes of a predicate can be obtained by
maintaining multiple (renamed) versions of a predicate, which differ in the or-
der of atoms in the clause bodies. This is why some authors assume that each
predicate has a fixed mode [12, 19, 24]. However, in those works, assuming
a fixed mode is, from a formal point of view, a real restriction.

In this paper, assuming a fixed mode for each predicate is not at all a
restriction. It is merely for notational convenience that we assume, in all
formal statements, a “left-to-right” data flow in the above definitions. Our
results generalise to multiple modes without having multiple versions of each
predicate, since we consider derivations where the textual position of an atom
within a query is irrelevant for its selection. For reasons of space, we cannot
explain this in more detail, and refer to [20, Subsect. 5.3].

The following lemmas state persistence properties of well-modedness and
nicely-modedness.

Lemma 3.2 Every resolvent of a well moded query () and a well moded
clause C, where vars(C) Nwvars(Q) = 0, is well moded [2, Lemma 16].

Lemma 3.3 Every resolvent of a nicely moded query () and a nicely moded
clause C', where vars(C) Nwvars(Q) = () and the head of C' is input-linear, is
nicely moded [2, Lemma 11].

For input-consuming derivations, the requirement that the clause head is
input-linear can be dropped. It is assumed that the selected atom is suffi-
ciently instantiated, so that a multiple occurrence of the same variable in the
input arguments of the clause head cannot cause any bindings to the query.
Note that requiring input-linear clause heads is a severe restriction since it
rules out input arguments of the selected atom being tested for equality.



Lemma 3.4 Every resolvent of a nicely moded query @ and a nicely moded
clause C, where the derivation step is input-consuming and wvars(C) N
vars(Q) = 0, is nicely moded. (Proof see [21].)

For a nicely moded program and query, it is guaranteed that every input-
consuming derivation step only instantiates other atoms in the query that
occur to the right of the selected atom.

Lemma 3.5 Let P be a nicely moded program, Q = Q1,p(s, t), Q2 a nicely
moded query, and (@, 0); (Q1,B,Q2, o) an input-consuming derivation step.
Then dom(c) Nwvars(Qq) = 0.

PROOF. Since the derivation step is input-consuming, dom (o) Nvars(Q) C
vars(t). Thus since @Q is nicely moded, dom (o) Nwvars(Qy) = 0. 0

This section mainly served the purpose of recalling some well-known mode
concepts. However, Lemma 3.4 is an original result.

4 Controlled Coroutining

In this section we define atom-terminating predicates. A predicate p is atom-
terminating if (under certain conditions) all input-consuming derivations of a
query p(s, t) are finite. Like Etalle et al. [12], we then show that termination
for one-atom queries implies termination for arbitrary queries.

For LD-derivations, it is almost obvious that it is sufficient to show termi-
nation for one-atom queries, and it only requires that programs and queries
are well moded [12, Lemma 4.2]. Given an LD-derivation ¢ for a query
ai,.-.,an, the sub-derivations for each a; do not interleave, and therefore £
can be regarded as a derivation for a; followed by a derivation for as and so
forth. The following example illustrates that in the context of interleaving
sub-derivations (coroutining), this is by no means obvious.

Example 4.1 Consider the usual append program

append([1,Y,Y).
append ([X|Xs],Ys, [X1Zs]) :-
append (Xs,Ys,Zs).

in mode append(7, I, O) and the query
append([] ], 4s), append([1|4s], [, Bs), append (Bs, [}, As).

This query is well moded but not nicely moded. Then we have the following
infinite input-consuming derivation:

append({[], [], As), append([1|As], [], Bs), append(Bs, [|, As) ~

)
append(], [}, As), append(As, [J, Bs'), append ([1[Bs'] [, As) ~+
append([) [, [1]4s']), append([1|4s'], ], BS"), append(Bs’, |, As') ~» ..

This well-known termination problem of programs with coroutining has been
identified as circular modes [19].



To avoid the problem, we require programs and queries to be nicely moded.
Recall that by Prop. 3.1, a one-atom query p(s,t) is well and nicely moded
if and only if s is ground and t is linear.

Definition 4.1 [atom-terminating predicate/atom] Let P be a well and nice-
ly moded program. A predicate p in P is atom-terminating if for each
well and nicely moded query p(s,t), all input-consuming derivations of P U
{p(s,t)} are finite. An atom is atom-terminating if its predicate is atom-
terminating.

The following lemma says that an atom-terminating atom cannot proceed
indefinitely unless it is repeatedly fed by some other atom. It is similar to [22,
Lemma 4.2]. For space reasons, we cannot state the precise differences, but
note that here, we do not require that clause heads are input-linear. There is
a lemma [20, Lemma 6.2] which subsumes [22, Lemma 4.2] and Lemma 4.1,
but using this lemma would complicate this paper considerably.

Lemma 4.1 Let P be a well and nicely moded program and F,b, H a well
and nicely moded query where b is an atom-terminating atom. An input-
consuming derivation of P U {F,b, H} can have infinitely many b-steps only
if it has infinitely many a-steps, for some a € F. (Proof see [21].)

The following theorem is a consequence of Lemma 4.1 and states that atom-
terminating atoms on their own cannot produce an infinite derivation.

Theorem 4.2 Let P be a well and nicely moded program and @ a well
and nicely moded query. An input-consuming derivation of P U {Q} can be
infinite only if it contains infinitely many steps where an atom is resolved
that is not atom-terminating. (Proof see [21].)

Theorem 4.2 provides us with the formal justification for restricting our at-
tention to one-atom queries. Thus the question is how it can be shown that
a predicate is atom-terminating.

5 Showing that a Predicate is Atom-Terminating

Termination proofs usually rely, more or less explicitly, on measuring the size
of the input in a query [1, 3, 7, 8, 9, 10, 12]. We agree with Etalle et al. [12]
that it is reasonable to make this dependency explicit. This gives rise to the
concept of moded level mapping [12], which is an instance of level mapping [6].
Bp denotes the set of ground atoms using predicates occurring in P.

Definition 5.1 [moded level mapping] Let P be a program. |.| is a moded
level mapping if

1. it is a level mapping, that is a function |.| : Bp ~ N,



2. for any t and u, |p(s,t)| = |p(s,u)|.

For a € Bp, |al is the level of a.

Thus the level of an atom only depends on the terms in the input positions.
The following concept is useful for proving termination for a whole pro-
gram incrementally, by proving it for one predicate at a time [1].

Definition 5.2 [depends on] Let p, g be predicates in a program P. We say
p refers to ¢ if there is a clause in P with p in its head and ¢ in its body,
and p depends on ¢ (written p 3 q) if (p,q) is in the reflexive, transitive
closure of refers to. We write p Jqgif p dgand ¢ 2 p, andp = qifp dgq
and g O p.

Abusing notation, we shall also use the above symbols for atoms, where
p(s,t) 3 q(u,v) stands for p J ¢, and likewise for J and ~. Furthermore,
we denote the equivalence class of a predicate p with respect to = as [px.

The following definition provides us with a criterion to prove that a pred-
icate is atom-terminating.

Definition 5.3 [ICD-acceptable] Let P be a program and |.| a moded level
mapping. A clause C = h < B is acceptable for input-consuming
derivations (with respect to |.|) if for every substitution 6 such that C6
is ground, and for every a € B such that a = h, we have |hf| > |af]|. We
abbreviate acceptable for input-consuming derivations by ICD-acceptable.

A set of clauses is ICD-acceptable with respect to |.| if each clause
is ICD-acceptable with respect to |.|.

Let us compare this concept with some similar concepts in the literature:
recurrent [6], well-acceptable [12] and acceptable [4, 10] programs.

Like Decorte and De Schreye [10] and Etalle et al. [12] but unlike Apt and
Pedreschi [4] and Bezem [6], we require |hf| > |af| only for atoms a where
a =~ h. This is consistent with the idea that termination should be proven
incrementally: to show termination for a predicate p, it is assumed that all
predicates ¢ with p 7 ¢ have already been shown to terminate. Therefore we
can restrict our attention to the predicates ¢ where ¢ ~ p.

Like Bezem but unlike Apt and Pedreschi, Decorte and De Schreye and
Etalle et al., our definition does not involve models or computed answer
substitutions. Traditionally, the definition of acceptable programs is based
on a model M of the program, and for a clause h « aq,...,a,, |hO] >
|a;@] is only required if M = (ai,...,a;—1)0. The reason is that for LD-
derivations, a1, ..., a;_1 must be completely resolved before a; is selected. By
the correctness of LD-resolution [15] and well-modedness [5], the accumulated
answer substitution 6, just before a; is selected, is such that (a1,...,a;-1)0
is ground and M = (ay,...,a;—1)0.

Such considerations count for little when derivations are merely required
to be input-consuming. This is illustrated in Ex. 1.2. In the third line of



the derivation, permute([1|Z"],X') is selected, although there is no instance
of delete([],U’,2") in the model of the program. This problem has been
described by saying that delete makes a speculative output binding [19, 23].

Theorem 5.1 Let P be a well and nicely moded program and p be a predi-
cate in P. Suppose all predicates ¢ with p 7 ¢ are atom-terminating, and all
clauses defining predicates g € [p]» are ICD-acceptable. Then p, and hence
every predicate in [p]n, is atom-terminating. (Proof see [21].)

Obviously the above theorem applies in particular if there exists no ¢ such
that p 3 ¢, in which case trivially all predicates ¢ with p 1 ¢ are atom-
terminating.

Example 5.1 We now give a few examples. We denote the term size of a
term ¢, that is the number of function and constant symbols that occur in ¢,
as T'Size(t).

The clauses defining append(7, I, O) (Ex. 4.1) are ICD-acceptable, where
|append (s, s2,t)| = T'Size(s1). Thus append(/, I, O) is atom-terminating.
The same holds for append(O, O, I), defining |append(t1, t2, s)| = T'Size(s).

The clauses defining delete(I, O, O) (Ex. 1.2) are ICD-acceptable, where
|delete(s,t1,t2)| = T'Size(s). Thus delete(I, O, O) is atom-terminating.
The same holds for delete(O, I, I), defining |delete(t, s1, s2)| = T'Size(s2).

In a similar way, we can show that permute(O,I) is atom-terminating.?

However, permute(/, 0) is not atom-terminating.
The book on the Godel language [14, page 81] shows a program that
contains a clause, which in Prolog would be written as

slowsort(X,Y) :-
permute (X,Y),
sorted(Y).

The meaning and the modes of the predicates should be obvious from their
names, and there are delay declarations to ensure that derivations are input-
consuming. The predicate slowsort is not atom-terminating, but it could
be made atom-terminating by replacing permute (X,Y) with permute(Y,X),
so that permute is used in the mode in which it is atom-terminating.

Note that according to the Godel specification, no guarantees are given
about the selection rule that go beyond ensuring that derivations for the
above program are input-consuming. Hence the program is not guaranteed
to terminate even for a “well-behaved” query such as slowsort([1,2],Y).
Even though Hill and Lloyd do not claim that the program terminates, one
would still expect it to do so. However, we can modify the program as stated,
and guarantee that the modified program terminates using the method of this

paper.

3Here we assume that the program is made well and nicely moded by interchanging the
body atoms of the second clause.



nqueens (N,Sol) :- safe_aux([]1,_,_).

sequence(N,Seq) , safe_aux([M|Ms],Dist,N) :-
permute(Seq,Sol), no_diag(N,M,Dist),
safe(Sol). Dist2 is Dist+1,
safe_aux(Ms,Dist2,N).
safe([]).
safe([N|Ns]) :- no_diag(N,M,Dist) :-
safe_aux(Ns,1,N), Dist =\= N-M,
safe(Ns). Dist =\= M-N.

Figure 1: A program for n-queens

Figure 1 shows a fragment from a program for the n-queens problem. The
mode is {nqueens(I, 0), sequence(I, O), permute(I, O), safe(]), is(0,I),
safe_aux(/l,I,I), nodiag(l,I,I), =\=(I,I)}. Again using as level mapping
the term size of one of the arguments, one can see that the clauses defining
{no_diag, safe_aux, safe} are ICD-acceptable and thus these predicates are
atom-terminating. Note that for efficiency reasons, this program relies on
input-consuming derivations where atoms using safe are selected as early as
possible [22].

As a more complex example, consider the following program, whose mode
is {plus_one(I),minus_two([),minus_one(/)}.

plus_one(X) :- minus_two(succ(X)).

minus_two(succ(X)) :- minus_one(X).
minus_two (0).

minus_one(succ(X)) :- plus_one(X).
minus_one(0).
We define
|[plus_one(s)|] = 3xTSize(s)+4
Iminus_two(s)] = 3xTSize(s)
Iminus_one(s)] = 3xTSize(s)+ 2

Then the program is ICD-acceptable and therefore all predicates are atom-
terminating.

We see that whenever in some argument position of a clause head, there
is a compound term of some recursive data structure, such as [X|Xs], and
all recursive calls in the body of the clause have a strict subterm of that
term, such as Xs, in the same position — then the clause is ICD-acceptable
using as level mapping the term size of that argument position. Since this
situation occurs very often, it can be expected that an average program
contains many atom-terminating predicates. However, it is unlikely that in
any real program, all predicates are atom-terminating.

The last example shows that more complex scenarios than the one de-
scribed above are possible, but we doubt that they would often occur in



practice. Therefore level mappings such as the one used in the example will
rarely be needed.

Consider again Def. 5.3. Given a clause h < aq,...,a, and an atom
a; ~ h, we require |hf| > |a;0| for all grounding substitutions 6, rather than
only for @ such that (a1, ...,a;—1)0 is in a certain model of the program. This

is of course a serious restriction. In Ex. 1.2, assuming mode permute(/, O),
there cannot exist a moded level mapping such that |permute(Y, [U|X])0] >
|permute(Z, X)#)| for all #. That however is not surprising since permute(/, O)
is not atom-terminating.

Similarly, there cannot be a moded level mapping such that the usual
recursive clause for quicksort, in the usual mode, is ICD-acceptable, al-
though we conjecture that quicksort is atom-terminating. This shows a
limitation of our method. The author is currently working on ways of over-
coming this limitation, but the fact remains that many predicates are not
atom-terminating.

6 Applying the Method

The requirement of input-consuming derivations merely reflects the very
meaning of input: an atom must only consume its own input, not produce it.
Thus if one accepts that (appropriately chosen) modes are useful for verifi-
cation and reflect the programmer’s intentions, then one should also accept
this requirement and regard any violation of it as pathological. This does not
exclude multiple modes, that is, the same program being used in a different
mode at each run.

The requirement of input-consuming derivations is trivially met for LD-
derivations of a well moded query and program, since the leftmost atom in
a well moded query is ground in its input positions. It can also be ensured by
using delay declarations as in Godel [14] that require the input arguments of
an atom to be ground before this atom can be selected. Moreover, it might be
ensured using guards as in GHC [25]. Finally, it can be ensured using delay
declarations that check for partial instantiation of the input arguments, such
as the block declarations of SICStus. Note that under certain conditions,
delay declarations can ensure input-consuming derivations with respect to
several, alternative modes [20, Chapter 7] [22].

Consequently, this paper is mainly aimed at logic programs with delay
declarations, but unlike previous work [2, 16, 17, 18, 19, 22, 23], abstracts
from the details of particular delay constructs. We only assume what we
see as the basic purpose of delay declarations: ensuring that derivations are
input-consuming.

As we have said in the introduction, the class of predicates for which
all input-consuming derivations terminate is quite limited. In an average
program, some predicates are atom-terminating but some are not. In general,

*In particular, this means that it is met in Mercury [24].



one has to make stronger assumptions about the selection rule. We sketch
three ways in which the method presented here might be incorporated into a
more comprehensive method for proving termination. This boils down to the
question: how do we deal with predicates that are not atom-terminating?

The first way has actually been developed already [22]. We have pre-
viously considered atom-terminating predicates in a more concrete setting
than here and called them robust predicates. The default left-to-right selec-
tion rule of most Prolog implementations is assumed. It is exploited that the
textual position of atoms using robust predicates in clause bodies is irrele-
vant for termination. The other atoms must be placed such that the atoms
producing their input occur earlier.

Secondly, we could build on a technique by Martin and King [18]. They
consider coroutining derivations, but impose a bound on the depth of each
sub-derivation by introducing auxiliary predicates with an additional argu-
ment that serves as depth counter. Applying the results of this paper, we
only have to impose this depth bound for the predicates that are not atom-
terminating. For the atom-terminating predicates, we can save the overheads
involved in this technique.

Thirdly, we could use delay declarations as they are provided for example
in Godel [14]. For the atom-terminating predicates, it is sufficient to check for
partial instantiation of the input positions using a DELAY ... UNTIL NONVAR...
declaration. For the other predicates, it must be ensured that the input po-
sitions are ground using a DELAY...UNTIL GROUND... declaration. Note that
according to its specification, Gédel does not guarantee a (default) left-to-
right selection rule, and therefore delay declarations are crucial for termina-
tion. Note also that a groundness test is usually more expensive than a test
for partial instantiation. To the best of our knowledge, there has never been
a systematic treatment of the question when GROUND declarations are needed,
and when NONVAR declarations are sufficient.

7 Discussion

We have identified the class of predicates for which all input-consuming
derivations are finite. An input-consuming derivation is a derivation where
in each step, the input arguments of the selected atom are not instantiated.
Predicates can be shown to be in that class using the notions of level mapping
and acceptable clause [7, 10, 12].

Most previous approaches, including approaches for programs with delay
declarations, can only show termination making stronger assumptions about
the selection rule [16, 17, 18]. We have argued in the previous section that
knowing the predicates that terminate under our weaker assumptions is useful
even for programs where not all predicates have this property.

This paper builds on our own previous work [22], but attempts to for-
mulate the results more abstractly, without getting involved in the details of
particular delay constructs. For example, we previously imposed a restriction



that all clause heads in a program must be input-linear, which is necessary so
that block declarations can ensure input-consuming derivations. In this pa-
per, we do not impose this restriction. Hence if input-consuming derivations
can be ensured without imposing this restriction, say by using guards as in
GHC [25], then the results of this paper could be applied to show termination.

We have claimed that most other approaches to termination rely on the
idea that the size of an atom can be pinned down when the atom is selected.
Technically, this usually means that the atom is bounded with respect to
some level mapping [4, 6, 12, 18]. There are exceptions though [8, 10], where
termination can be shown for the query, say, append([X],[], Zs) using as level
mapping the term size of the first argument, even though the term size of [X] is
not bounded. However, the method only works for LD-derivations and relies
on the fact that any future instantiation of X cannot affect the derivation for
append([X],[],Zs). Therefore it is effectively possible to pin down the size of
append([X], [], Zs).

In contrast, we show that under certain conditions, it is enough to rely
on a relative decrease in the size of the selected atom, even though this size
cannot be pinned down. This is crucial to show termination of derivations
with coroutining. More precisely, we exploit that an atom in a query cannot
proceed indefinitely unless it is repeatedly fed by some other atom occurring
earlier in the query. This implies that every derivation for the query is finite.

Bezem [6] has identified the class of strongly terminating programs, which
are programs that terminate under any selection rule. While it is shown that
every total recursive function can be computed by a strongly terminating
program, this does not change the fact that few existing programs are strongly
terminating. Transformations are proposed for three example programs to
make them strongly terminating, but the transformations are complicated
and ad-hoc.

On the whole, there seems to be a strong reluctance to give up the idea
that the size of an atom must be pinned down when the atom is selected. This
is true even for Bezem [6]. It is also true for Marchiori and Teusink [17], who
assume a local selection rule, that is a rule under which only most recently
introduced atoms can be resolved in each step. Martin and King [18] achieve
a similar effect by bounding the depth of the computation introducing aux-
iliary predicates. It is more difficult to assess Liittringhaus-Kappel [16] since
his contribution is mainly to generate delay declarations automatically rather
than prove termination.” However in some cases, the delay declarations that
are generated require an argument of an atom to be a rigid list before that
atom can be selected, which is similar to [17, 18]. Such uses of delay decla-
rations go well beyond ensuring that derivations are input-consuming.

None of the above approaches [6, 16, 17, 18] can formally show termination
under the weak assumptions we make here, even for derivations as trivial as
the one in Ex. 1.1. Apt and Luitjes [2] give conditions for the termination

For the reader familiar with that work, it is not said how programs are shown to be
safe.



of append, but those are ad-hoc and do not address the general problem.
Naish [19] gives heuristics to ensure termination, but no formal results.

We have assumed that queries are well and nicely moded, which means
that the atoms in the query are ordered® so that there is a left-to-right data-
flow. As a topic for future work, we envisage to prove termination of programs
where these conditions are relaxed, such as programs using layered modes [13].
We believe that the crucial idea will be the same as in this paper, namely
that one must rely on a relative decrease in size of the selected atom in each
derivation step, rather than an absolute one. Therefore this paper should
provide a good basis for this extension.
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