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Abstract Peirce (1933) modified Venn diagrams by includifig
sequencesto introduce elements and disjunctive
Spider diagrams combine and extend Venn diagramsinformation into the SyStem. Recently, full semantics
and Euler circles to express constraints on sets and theirand inference rules have been developed for Venn-
relationships with other sets. These diagrams can usefullyPeirce diagrams (Shin, 1994) and Euler diagrams
be used in conjunction with object-oriented modelling (Hammer, 1995). This paper extends these
notations such as the Unified Modelling Language. This diagrammatic inference rules to spider diagrams.
paper summarises the main syntax and semantics of spider A more detailed discussion of spider diagrams is
diagrams and introduces four inference rules for reasoning conducted in section 2, where the main syntax and
with spider diagrams and a rule governing the equivalence semantics of the notation is introduced. Section 3
of Venn and Euler forms of Spider diagrams_ This paper introduces inference rules for reasoning with spider
also details rules for combining two spider diagrams to diagrams together with outline proofs of the validity of
produce a Sing|e diagram which retains as much of their SOme of the rules. Section 3 also introduces a rule which
combined semantic information as possible and discussesgoverns the equivalence of Venn and Euler forms of
disjunctive diagrams as one possible way of enriching the spider diagrams. Section 4 is concerned with the rules
system in order to combine spider diagrams so that no for combining two spider diagrams to produce a single

semantic information is lost. diagram which retains as much of their combined
Keywords Diagrammatic reasoning, visual formalisms. semantic information as possible. Section 5 indicates

one possible way of enriching the system in order to
1. Introduction combine spider diagrams so that no semantic

. . ) _information is lost.
In object-oriented software development, diagrammatic

modelling notations are used to specify systems. Recently,2. Spider diagrams
the Unified Modelling Language (UML) (Rumbaugh,
Jacobson, Booch, 1999) has become the Object This section introduces the main syntax and
Management Group’s (OMG) standard for such notations. sSemantics of spider diagrams; see (Gil, Howse, Kent,
In UML, constraints, such as invariants, preconditions and 1999) for more details and examples. Spider diagrams
postconditions, are expressed using the Object Constrain@re Euler circles augmented withaded regionsand
Language (OCL) (Warmer and Kleppe, 1998), essentially aspiders Spider diagrams also include the concepts of
stylised, but textual, form of first-order predicate logic, Schrodinger spidersand projections these are not
which is part of the UML standar€onstraint diagrams ~ Necessary for this paper and are omitted from this
(Kent, 1997) provide a diagrammatic notation for discussion. In (Gil, Howse, Kent, 1999), the distinction
expressing constraints and can be used in conjunction withis made between given and existential spiders; in this
UML and OCL.Spider diagram$Gil, Howse, Kent, 1999)  paper, all spiders are given.
emerged from work on constraint diagrams. They combine
and extend Venn diagrams and Euler circles to express
constraints on sets and their relationships with other sets. A contour is a simple closed plane curve. A
Euler circles (Euler, 1761) were introduced to illustrate boundary contouris not contained in and does not
relations between classes. This notation uses theintersect with any other contour. éistrict (or basic
topological properties of enclosure, exclusion and region) is the bounded region of the plane enclosed by a
intersection to represent the set-theoretic notions of subsetcontour. Aregionis defined as follows: any district is a
disjoint sets, and set intersection, respectively. Venn region; if r, and r, are regions, then the union,
(1880) modified this notation to represent logical intersection, or difference, of, and r, are regions
propositions. In Venn diagrams, all possible intersections provided these are non-empty. Zone (or minimal
of the closed curves must be shown and shading is used teegion) is a region having no other region contained
show that a particular region represents the empty set.within it. Contours and regions denote sets.

2.1. Syntactic elements of spider diagrams



A spideris a tree with nodes (calleige) placed in regions, zones, shaded zones and spidersDpf
different zones; the connecting edges (calledy are respectively.
straight lines. A spidetouchesa zone if one of its feet The Venn formof a spider diagram contains every
appears in that region. A spider may only touch a zone possible intersection of contours; otherwise, the diagram
once. A spider is said tmhabit the region which is the is in Euler form A spider diagram withn (non-

union of the zones it touches. For any spi&l¢he habitat boundary) contours has' 2ones if and only if it is in
of s, denotedn(s), is the region inhabited by The set of Venn form.
spiders touching region is denoted byg(r). Spiders are The spider diagrar® in figure 2.1 is in Venn form.

used to denote elements. In this paper, all spiders represenit has three non-boundary contouks B, C and two
given elements. Two distinct spiders denote distinct spiderssandt. The labek refers to the whole spider and
elements, unless they are joined Hiear by astrand not just to any particular node. There is a tie betvgeen

A tie is a double, straight line (an equals sign) andt in AnC-B and a strand betweenandt in
connecting two feet, from different spiders, placed in the B-(AOC). Here are some properties of (the
same zone. Theestof spiderss andt, written 1(s, t), is the denotation ofD:
union of those zones having the property that there is a _ _ _
sequence of spiders A-(BO O ={}, { Bn ¢ ASJ’

S=%, S, S .., S =t
such that, fori =0, ... ,n-1, s ands., are connected by a
tie in z Two spiders which have a non-empty nest are
referred to asmates If both the elements denoted by
spiderss andt are in the set denoted by the same zone in
the nest o6 andt, thens andt denote the same element.

A strand is a wavy line connecting two feet, from
different spiders, placed in the same zone. Web of
spiderss and t, written {(s, t), is the union of zoneg
having the property that there is a sequence of spiders

S=%, S, S, -, S =t
such that, fori = 0, ... ,n—1, s ands., are connected by a
tie or by a strand im. So 1(s, t) is a subregion of(s, t).
Two spiders with a non-empty web are referred to as Figure 2.1
friends Two spiders andt may (but not necessarily must)
denote the same element if that element is in the set
denoted by the web of andt. Clearly, if there is a tie
between feet, then a strand between those feet is redundanThe semantics of a spider diagrénis given in terms of
Similarly, multiple strands or ties between the same pairs the semantic functions
of feet are redundant. W:C_ SetU, ¢:S— U

In later sections, we will need to compare webs and
nests of spiders across diagrams. To facilitate this, we
extend the notation and usfs,t,D) and 1(s,t,D) to
denote the web and nest respectively of spidexsdt in
the diagranD.

sO(B-C)0(An C-B),
t0B-AnBnC)O(AnC-B),
StOANC-B O s=t stJAnB-C O s#t.

2.2. Semantics of spider diagrams

whereU is a given universal set &f andSetU denotes
the power set o). Contours are interpreted as subsets
of U, and spiders as elements Of The boundary
contour is interpreted as.

A zone is uniquely defined by the contours
containing it and the contours not containing it; its
r?nterpretation is the intersection of the sets denoted by
&he contours containing it and the complements of the
sets denoted by those contours not containing it. We
extend the domain @ to interpret regions as subsets of
U. First define¥: Z - SetU by

containing no spiders denotes the empty set. Shading
regionr which includes spiders has the effect of placing an
upper limit on the number of elements in the set denoted
by the region. An upper bound &r)|, but this might not

be a least upper bound.

A spider diagram is a finite collection of contours Y= ﬂlP(c) n ﬂw(o
(exactly one of which must be a boundary contour), cct (3 ac(3
spiders, strands, ties and shaded regions. For any spider
diagram D, we use C=C(D), R=R(D), Z=2(D), whereC*(2) is the set of contours containing the zane

Z* =Z*(D) and S = §D) to denote the sets of contours, C(2) is the set of contours not containirmgy and



Y()=U-Y¥(g, the complementof W(c). Since any
region is a union of zones, we may defleR - SetU
by
vin= | Jv@
z0Z(r)

where, for any regiom, Z(r) is the set of zones contained
inr.

The semantics of a diagranis the conjunction of the
following conditions.

Plane Tiling Condition: All elements fall within sets
denoted by zones:

Uw(z) =U
z0z

Spider Condition;: The element denoted by a spider is in
the set denoted by the habitat of the spider:

[ Jws owines)

sS

Strangers Condition The elements denoted by two
distinct spiders are distinct unless they fall within the set
denoted by the spiders’ web:

[Jwe=vm 0 ws,wd0wE(s Y
s,SttDtS

Mating Condition: If the elements denoted by two distinct

spiders fall within the set denoted by the same zone in the

spiders’ nest, then the elements are equal:
(1 O wewwovE o w=v0
S, tOS Z141( s ))
Shading Condition: The set denoted by a shaded zone

contains no elements other than those denoted by the

spiders:

[ Jw@ o Jws

- s0S

3. Reasoning with spider diagrams

We introduce rules for manipulating single diagrams.
We also give outline proofs of the validity of some of the
inference rules.

3.1. Rules of transformation

We introduce five rules for manipulating single
diagrams. The first four are inference rules that allow us to
obtain one diagram from a given diagram by removing,
adding or modifying diagrammatic elements. The last rule
governs the equivalence of the Euler and Venn forms of
spiders diagrams.

Rule 1: Introduction of a strand. A strand may be
drawn between the feet of any two spiders in the same
zone. Similarly, any tie may be replaced with a strand.

Example 3.1 Introducing a strand between two non-
connected feet in a zone weakens the information
contained in the diagram. In figure 3.1, the spideaad

u in diagramD represent distinct elements butDhthey
may represent the same elemenBefA.

Similarly, replacing a tie between the feet of two
spiders with a strand also weakens the semantic
information given by the diagram. If the element
denoted bys lies in A—B, then, inD, s andt are
necessarily equal whereasDhthey need not be.

O

Rule 2: Erasure of a diagrammatic element We may
erase:

the shading in an entire zone.

a complete spider on any non-shaded region and any
strand or tie connected to it. If removing a spider
disconnects any component of the ‘strand-tie graph’
in a zone, then the components so formed should be
reconnected using one or more strands to restore the
original component.

a contour. When a contour is erased:

— any shading remaining in only a part of a zone
should also be erased.

if a spider has feet in two regions which combine
to form a single zone with the erasure of the
contour, then these feet are replaced with a single
foot connected to the rest of the spider and any
ties connecting it in the new zone should be
replaced by strands.

D A B

A B

—

Figure 3.1

Example 3.2 In Figure 3.2, erasing the spideand its
two connecting strands disconnects spidexsdt in the
zoneA —B. However, the web of andt is the region
A —B, and this must not change with the deletioruof
Hence inD' the spiders are explicitly ‘reconnected’ by
joining them with a strand.

A B D

—

Figure 3.2



Example 3.3 The requirement that the region from which Rule 3: Spreading the feet of a spider If a diagram

a spider is removed should be non-shaded is a necessarljas a spides, then we may draw a node in any zane
one. Figure 3.3 illustrates that the removal of a spider from which does not contain a foot sfind connect it ts. If

a shaded zone may result in an invalid inference (seez contains the foot of another spidethen we may join
section 3.2). In diagram, the set corresponding to region the feet ofs andt with a strand or a tie or leave the feet
A—-B contains a single element, whereas Dn, the separated iz

corresponding set is empty.
Example 3.5 Rule 3 is illustrated by the diagrams in

figure 3.6. The inference fror® to D' requires two
applications of rule 3, but is clearly valid since it just
represents a weakening of information. Fr@nwe
know that the element corresponding delongs to
A — B Having spread its feet D', we may only infer
that this element belongs #olJ B.

In the zone corresponding £on B, we have chosen
to keep the feet ok andt separated; in the zone
Example 3.4 Erasing a contour can cause both syntactic corresponding t® — A, we have joined the feet efand
and semantic difficulties. t with a strand.

D D'

%

o

Figure 3.3

. o
A g |P g | A B | A B
— —_
Figure 3.4 Figure 3.6

Rule 4: Introduction of a contour. A new contour
may be drawn interior to the bounding rectangle
observing the partial-overlapping rule: each zone splits
into two zones with the introduction of the new contour.
well-formed, the partial shading must be erased and theEaCh foot of.a spider is replaceo! With a connected pair
of feet, one in each new zone. Likewise, each strand or

feet ofsin B should be replaced with a single foot. e bif db i of d :
The last part of rule 2 concerns semantic difficulties tie bifurcates and becomes a pair of strands or ties, one

connected with erasing a contour and is a little more subtle.iN €2ch néw zone.

Figure 3.4 illustrates the syntactic difficulties. Simply
erasing the contouk in the diagranD, the (new) zon®
becomes partially shaded and the spilBas two feet in
the new zond. To ensure that the resulting diagrérmis

, Example 3.6 In figure 3.7, a new contouB is
A R D A D introduced satisfying the partial overlapping rule. Each
A zone inD becomes a pair of zoneshn and each foot of
—— spiderss, t andu bifurcates to become two feet, one in
' each new zone. The strand and tie also bifurcate.
) A D A B D'
Figure 3.5 S
’ \ DA
Consider the diagranD shown in figure 3.5. The | > ‘t
diagram has a model in which the elements corresponding t
to spiderss andt both belong to the sét but are distinct;
namely, the model whereJ A—B andt A n B. When _
the contouB is removed, these two zon&s) B andA —B Figure 3.7

‘combine’ to form the single zonA in D'. Since it is Rule 5: Equivalence of Venn and Euler forms We

possible fors andt to represent distinct elementsAfthe
tie connecting them must be replaced with a strand.

may replace a diagrai in which some regions do not
exist by a diagranV(D) in Venn form where those
regions are shaded. All other diagrammatic elements—



other shaded regions, spiders, strands and ties—remairRule 1: Introducing a strand. Suppose two spiders

unchanged.
Conversely, we may replace a diagrBnm Venn form

andt have feet which are separated (that is, not joined
by a strand or a tie) in a zoadelonging to diagrarb.

which has a set of shaded zones containing no spider by det D’ be the diagram obtained from by adding a
diagramE where (some of) those regions do not exist. strand between the feet®fndt in z Then

Again, all other diagrammatic elements—other shaded

regions, spiders, strands and ties—remain unchanged.

The transition from the Euler to the Venn form of a
spider diagram is algorithmic. There are various known

algorithms for constructing a Venn diagram with

contours—for example, see (Hammer, 1995). Given a

spider diagramD in Euler form, first construct the
underlying Venn diagram whose set of contour€(B).

{st,D)={(st,D)0z
The Strangers Condition is the only semantic
condition which involves web of and t; for these
spiders the condition is

wE=w(® 0 ¢(9,¢(H0¥E(st D).

Since {(s,t,D) O {(s t,D"), we can infer the
corresponding condition fob'. All the other semantic

Shade any zones which were not present in the originalconditi_ons are identical fdd andD’, so the first part of
Euler formD. Finally add spiders, strands and ties in order fulé 1 is valid.

to replicate the strand-tie graph in each zondofThe
resulting spider diagram V4D), the Venn form oD.

Figure 3.8

To justify the validity of the second part of the rule,
supposeéD andD' are as described above except that, in
D, the spiders andt are joined by a tie ia In this case,
the web ofs andt is unchanged, but their nest changes
between the diagrams:

1(s,t,D') =1(s, t,D) -z
Thus it is only the Mating Condition which changes in

D'. Fors andt, the Mating Condition is a conjunction of
terms of the form

(W DY OYHOW) O Y(3=y(},

Example 3.7 Figure 3.8 illustrates the equivalence one term for each zonein the nest ofs andt. By
between the Euler and Venn forms of a spider diagram.lemma 3.1, we may infer the Mating Condition Df
The Euler formD does not contain zones corresponding to from that ofD.

AnBNnC or AnBn C. In the Venn formD', the

corresponding regions are shaded, but the strand-tie grapfRUl€ 2: Erasure of a diagrammatic elementErasing

in every other zone is the same as the corresponding grap

in D.

3.2. Validity of the inference rules.

In this section, we outline the proofs of validity of
some of the inference rules introduced in the previous
section. To say that a rulevalid, we mean that whenever

a diagramD’ is obtained from another diagrabh by a

e shading in a zone only changes the Shading
Condition by removing conjuncts, so the validity of the
first part of rule 2 follows by lemma 3.1.

The validity of the rule for erasing a spider follows
similarly. However, in passing from the semanticof
to that of D', one or more conjuncts may be lost from
the Spider, Strangers and Mating conditions.

Lack of space prevents us from including the proofs

(single) application of the rule, we may infer the semantics of validity of the remaining rules. These proofs may be

of D' from the semantics dD. (For further details, see
(Howse, Molina, Taylor, 1999).)

found in (Howse, Molina, Taylor, 1999).

Several of the rules amount to ‘throwing away’ some of 4. Combining Diagrams

the semantic information contained in a diagram, in the
sense described in the following lemma. Note that we
adopt the convention that the conjunction of an empty se

of propositions equates to true.
Lemma 3.1 If diagramsD andD' have semantics of the
form ID]Pi and .QR respectively, wher@ O |, thenD' is

1 1

a valid inference fronD.

Given two diagramd), andD,, we wish to combine

tthem to produce a single diagradbnwhich retains as

much of their combined semantic information as
possible. Of course, this is only meaningful if the pair
D4, D5 is consistent.

In this section we describe the construction of such a
combined diagramD. Even in simple cases, some
information contained in the pal;,, D, will be lost in
the combination. In the next section, we will indicate



one possible way of enriching the system of spider
diagrams to overcome this problem.

4.1. Comparing regions

To carry through the process of combining diagrams,
we will need to be able to identify corresponding regions
in different diagrams. For simplicity, we consider the case
where a diagranD’ is obtained from a diagrar® by
adding contours, so that

C(D) O C(D").
There is a natural mapping
a: Z(D) - R(D")
which may be defined inductively, with the inductive step
as follows. Suppose thBX is obtained fronD by adding a
single contour. According to Rule 4, each zanen D

bifurcates into two zoneg, andz, in D'; z, is that part of
z enclosed within the new contour ang; is that part ofz

lying outside the new contour (see Figure 4.1). In this case,

we define
a(2) =2z, 0 Zoye
Given any zone in D', there is a unique zorein D
such thatZ O a(2). The associationz — z defines a
mapping
B: Z(D") - Z(D).
The mappingsr andp are illustrated in figure 4.1.

(2 =2z U Zow, B(zn) =2 = B(Zow)
Figure 4.1
By taking unions of zones, these mappings extend to

mappings
a:R(D) - R(D'), B:R(D) - R(D).

The combined diagram clearly must contain any contour
which appears in eithdd; or D,, so the first step in
combining the diagrams is to construct a Venn diagram
whose set of contours is

C(Dy) O C(Dy).

From this underlying Venn diagram, we add
diagrammatic elements—shading, spiders, strands and
ties—to produce the final combined diagr®mSinceD
is obtained from each of the diagraM®;) andV(D,)
by adding contours, the ‘corresponding region’
mappings introduced in the previous section are defined
betweenV(D,;) andD and betwee¥(D,) andD. These
are denoted, respectively,, 8, anda,, B».

Any shaded zone in the Venn foriéD;) or V(D,)
must correspond to a shaded regioBiHence a zone
of D is shaded if and only iB(2) O Z*(V(D,)) or
Bx(2) O Z*(V(D,)). As a conseguence, we have:

Uz= U «ai@ 0 |J a3
24D  DZ(U B) 22\ B)

This step is illustrated in figure 4.2 (whdde = V(D,)
and D, = V(Dz))

D, D,

C

Figure 4.2

Next, we add spiders tD. Sincen(s) defines the
region to whichs belongs, intuition suggests that, for

These mappings are related as follows. For all regionseach spider, its habitat [ should be the intersection of

rdR(D), Ba(r)=r and for all regionsr' OR(D'),
r' O aB(r'). (The first of these statements says {has a
left inverse fora anda is a right inverse fof. It follows
thata is injective ang3 is surjective.)

4.2. The process of combining diagrams

Suppose two diagrani3; andD, are given which do
not contain conflicting information. To simplify the
process of combination, we first construct the equivalent
Venn form of each diagranv(D,) andV(D,) respectively.

the corresponding habitats \(D,) and V(D,). This is
not quite correct, however, since it does not take
account of regions which are known to be empty.

Dy D,

Figure 4.3



This is illustrated in figure 4.3. The habitat of the spider - they are not connected im if they are not

s in the combined diagram must exclude the redion B connected one of the regions z, and are either
since, fromD,, this corresponds to an empty set.We define not connected or connected by a strand in the
a region of a spider diagrab to beemptyif it is shaded other region;
and contains no spiders. We denoteHjy(D)) the set of - otherwise they are connected by a strard in
the empty zones &f(D):

E(V(D)) = Z*(V(D)) n {z0O Z(V(D)) | S(2) = {}} Example 4.1 Consider the diagrams given in figure

_ 4.5. SinceC(D,) =C(D,), it follows that each of the
For each spidersJ SV(Dy)) 0 V(Dz)), we need to  correspondence mappings B, a» B defined above is
belongs to both diagrani3; andD, then its habitat ifD is regions, it follows that
the intersection of its habitats in each diagram:
g n(t, D) = n(t, D1) n (t, D).

s SV(Dy) n SV(D2) The habitat of the spidaris equal in all three diagrams.
O n(s D) =au(n(s (VD)) n axn(s V(D) We need to consider separately each zonein
If sbelongs to exactly one of the diagramsandD, then which contains feet of both spiders. FBr—A, the
its habitat inD is reduced by removing from it the empty spiders are connected by a tie in one diagfiagh énd a
zones in the other diagram: strand in the other; hence in the combined diagram, they
s SV(Dy)) — V(D)) are connected by a tie. F&kn _B_, the spiders are
0 0 sheparﬁtedrin one rc1iiagr{;1d|ﬁ)1(§ ar;]d J%nbed by a sg;ljnq in
the other; hence the spiders should be separated in
0 nED)=ans Vo) - 2 | ax25 / P P
LGOEV(D) O A 5 P1 [ a < 8 |2
With these definitions, the composition of the two
diagrams in figure 4.3 is given in figure 4.4. g

A A B D
Figure 4.4
Finally, we consider strands and ties. Suppose two Figure 4.5

spiders are such that each has a foot in a zookthe

combined diagramD. Then z corresponds to zones

z = B1(2) andz = Bx(2) in V(D,) andV(D,), respectively.

Again there are several cases to consider.

* If neither diagramV(D;) nor V(D,;) contains both
spiders, then they should be joined by a strard In
this case, one spider belongsM{D;) and the other
belongs to V(D,), so we have no information
concerning their equality or otherwise if they belong to
z hence the spiders should be connected in the mos
general way.

« If exactly one of the diagram¥(D;) say, contains both
spiders, then they should be connectedimthe same
manner as i.

» If both diagrams contain both spiders then:

— they are connected by a tiegif they are joined by
a tie in one of the regiorrs, z, and a tie or strand in
the other region;

Example 4.2 This example illustrates that it is possible
for two spiders,s andt, to be separated im and be
joined by a tie ire,. As beforez; andz, denote zones in
D, andD,, respectively, which correspond to the zane
in the combined diagram containing feet of botk and

Consider the zonz=An Bn C in the composite
diagram D shown in figure 4.6 below. This zone
contains feet both afand oft. The zonez together with
tIhe corresponding zonex =f3:,(2) and z, = 3,(2) are
illustrated with thickened borders. Note tlsandt are
separated ig; but are tied ire,.

Although it is not possible for the elements
corresponding t@ andt both to belong toAn B n C,
this information is not captured iD. Thus it could be
argued that it is immaterial hosvandt are connected in
z. We have chosen to connect their feet with a strand so
that each pair of diagramd€);, D and D, D, is
consistent.



D, A D, semantic information ofD; and D, is captured in
disjunctive diagramD. Investigation of composing

= spider diagrams (i.e., combining two spider diagrams
& into one with no loss of information) is ongoing.

C
A g |D
C C
Figure 5.2
C
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