University of

"1l Kent Academic Repository

Smaus, Jan-Georg (1999) Modes and Types in Logic Programming. Doctor
of Philosophy (PhD) thesis, University of Kent at Canterbury.

Downloaded from
https://kar.kent.ac.uk/21739/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21739/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

MODES AND TYPES IN LOGIC PROGRAMMING

A THESIS SUBMITTED TO
THE UNIVERSITY OF KENT AT CANTERBURY
IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By
Jan-Georg Smaus

December 1999

Abstract

This thesis deals with two themes: (1) construction of abstract domains for mode anal-
ysis of typed logic programs; (2) verification of logic programs using non-standard se-
lection rules.

(1) Mode information is important mainly for compiler optimisations. The precision
of a mode analysis depends partly on the expressiveness of the abstract domain. We
show how specialised abstract domains may be constructed for each type in a typed
logic program. These domains capture the degree of instantiation of a term very pre-
cisely. The domain construction procedure is implemented using the Godel language
and tested on some example programs to demonstrate the viability and high precision
of the analysis.

(2) We provide verification methods for logic programs using selection rules other
than the usual left-to-right selection rule. We consider five aspects of verification: termi-
nation; and freedom from (full) unification, occur-check, floundering, and errors related
to built-ins. The methods are based on assigning a mode, input or output, to each ar-
gument position of each predicate. This mode is only fixed with respect to a particular
execution. For termination, we first identify a class of predicates which terminate under
the assumption that derivations are input-consuming, meaning that in each derivation
step, the input arguments of the selected atom do not become instantiated. Input-
consuming derivations can be realised using block declarations, which test that certain
argument positions of the selected atom are non-variable. To show termination for
a program where not all predicates terminate under the assumption that derivations
are input-consuming, we make the stronger assumption that derivations are left-based.
This formalises the “default left-to-right” selection rule of Prolog. To the best of our
knowledge, this work is the first formal and comprehensive approach to this kind of
termination problem. The results on the other four aspects are mainly generalisations
of previous results assuming the left-to-right selection rule.

ii

Acknowledgements

I am grateful to the many people who helped me write my PhD thesis.

The research of this thesis was partly carried out in the project ‘Detecting and
Exploiting Determinacy in Logic Programs’ led by Andy King at the University of Kent
at Canterbury and Pat Hill at the University of Leeds. Andy King was also my PhD
supervisor. I would like to thank Andy and Pat for their critical guidance and friendly
encouragement.

I was very fortunate to be a member of the logic programming group at the Univer-
sities of Leeds and Kent. I would like to thank Florence Benoy, Andrew Heaton, Jacob
Howe and Jonathan Martin for the productive and enjoyable time we spent together.

I also thank Eerke Boiten, Naomi Lindenstrauss, Fred Mesnard and Erik Poll, who
proofread parts of my thesis. Maarten Steen has given me much advice on organisational
matters.

Many colleagues have inspired my work. I would like to mention Krzysztof Apt,
Tony Bowers, Henning Christiansen, Michael Codish, Bart Demoen, Sandro Etalle,
Fergus Henderson, Lee Naish and Salvatore Ruggieri.

I gratefully acknowledge the financial support from the EPSRC and the Com-
puting Laboratory of the University of Kent at Canterbury. During the first two
years of my PhD studies I was employed as a research associate under EPSRC Grant
No. GR/K79635, and in the remaining time, I received an E. B. Spratt Bursary.

I made many friends during the time I spent in Canterbury, most of them through
my ‘lunch group’ or through the orchestra of Kent University. They have made these
three and a half years a wonderful time. When I leave Canterbury this summer, T will
become another outpost of this circle of friends which already spans all over Europe,
and even further.

I am grateful to my family for their continuing support. Last but not least, I thank

Bénédicte, my muse.

iii

Preface

Modes and types are two widely used concepts in analysis and verification of logic
programs. On the analysis side, modes and types allow us to infer information about
the program which is useful for compiler optimisations, helping to generate more efficient
code. On the verification side, modes and types allow us to prove a number of desirable
properties of the program, such as occur-check freedom and termination. Some logic
programming languages even go as far as only admitting programs that meet certain
mode and type requirements. This has great benefits in terms of efficiency and reliability
of software.

The separations between the above areas are not clearcut. Moreover, the notions
of mode and type have differing meanings depending on the context in which they are
used. There is a whole spectrum of such meanings.

This thesis treats two substantially different themes. However, both are related to

modes and types. The two themes are
e the construction of abstract domains for mode analysis of typed logic programs,
e the verification of logic programs for non-standard selection rules.

Modes and types have quite different, albeit certainly related, meanings for the two
themes. Within each theme, our usage of these notions follows widespread conven-
tions. To avoid confusion, it seems therefore reasonable to keep the two themes clearly
separated.

This gives rise to the following structure of this thesis. The thesis has three parts:
an introductory part and two parts corresponding to the two themes. Part I is divided
into two chapters. Chapter 1 consists of two separate introductions for Parts IT and ITI.

Chapter 2 puts the two themes into context by giving an overview of the whole spectrum

iv

of mode and type concepts that are used in the literature, which encompasses the
concepts used in this thesis.

The work presented in Part II has been accepted for presentation at the 9th Inter-
national Workshop on Logic-Based Program Synthesis and Transformation
(LOPSTR’99) [SHK99a]. The work presented in Part IIT is based on three confer-
ence papers [SHK98, SHK99b, Sma99], two of which the author has written together
with Pat Hill and Andy King.

Contents

Abstract
Acknowledgements

Preface

I Introduction and Background

1 Introduction

1.1 Mode Analysis for Typed Logic Programs
1.1.1 Previous Work
1.1.2 Exploiting Type Declarations
1.2 Non-Standard Derivations
1.2.1 Correctness Properties of Programs
1.2.2 Termination of Input-Consuming Derivations
1.2.3 Ensuring Input-Consuming Derivations
1.2.4 Termination and block Declarations
1.2.5 Further Aspects of Verification
1.2.6 Weakening Some Conditions
1.2.7 Related Work and Conclusion

2 Notions of Modes and Types

2.1 Modes e
2.1.1 Descriptive versus Prescriptive Modes
2.1.2 The Granularity

2.2 Types . . .o
2.2.1 What isa Type?«
2.2.2 Non-ground Types L
2.2.3 Polymorphism
2.2.4 Descriptive versus Prescriptive Types

2.3 Combining Modes and Types,
2.3.1 Directional Typeso
2.3.2 A Declarative View of Modes

2.4 Summary L e e

vi

© 00~ D W w W

10
10
11
12
12

IT Mode Analysis for Typed Logic Programs

3 The Structure of Types and Terms

3.1
3.2
3.3
3.4
3.5

Introduction Lo
Motivating and Illustrative Examples
Notation and Terminology
Relations between Types
Traversing Concrete Terms

4 Abstract Domains for Mode Analysis

4.1
4.2
4.3
4.4
4.5

Abstractionof Terms,
Traversing Abstract Terms.
Abstract Compilation
Implementation and Results
Discussion and Related Work

III Non-Standard Derivations

5 Correctness Properties of Programs

5.1
5.2
5.3

5.4
5.5
5.6
0.7

Why Non-Standard Derivations?
Notation and Terminology
Modes and Permutations.

Permutation Well Moded Programs
Permutation Well Typed Programs
Type-Consistent Programs

6 Termination of Input-Consuming Derivations

6.1
6.2
6.3
6.4
6.5
6.6

Termination and the Selection Rule.
Existential vs. Universal Termination
Controlled Coroutining
Showing that a Predicate is Atom-Terminating
Applying the Method
Discussion e e

7 Ensuring Input-Consuming Derivations

7.1
7.2
7.3
74
7.5

The Simplicity of block Declarations
Terminology Related to block Declarations
Permutation Simply Typed Programs
Permutation Robustly Typed Programs
Summary of the Correctness Properties

vii

24

26
26
27
28
29
33

40
40
44
46
49
50

54

56
56
99
61
61
62
63
65
68
69
70

72
72
74
74
77
82
83

8 Termination and block Declarations

8.1 Two Approaches to the Termination Problem
8.2 Left-Based Derivations oo
8.3 Termination and Speculative Bindings

8.3.1 Termination by not Using Speculative Bindings

8.3.2 Termination by not Making Speculative Bindings
8.4 Termination and Atom-Terminating Predicates
85 Discussion L

9 Further Aspects of Verification
9.1 Unification Free Programs,
9.2 Occur-Check Freedom,
9.3 Floundering
9.4 Errors Related to Built-ins
9.4.1 The Connection between Delay Declarations and Type Errors . .
9.4.2 Exploiting Constant Types
9.4.3 Atomic Positions Lo
9.5 Discussion Lo e e e e

10 Weakening Some Conditions

10.1 Simplifying the block Declarations
10.1.1 Permutation Simply Typed Programs Using Constant Types
10.1.2 Programs that Respect Atomic Positions
10.1.3 Exploiting the Fact that Derivations Are Left-Based

10.2 Weakening Input-Linearity of Clause Heads

10.3 Generalising Modes L

10.4 Discussion o Lo e e e e

11 Related Work and Conclusion
11.1 Related Work
11.1.1 The Significance of “Pinning Down the Size” of an Atom
11.1.2 Guarded Horn Clauses
11.1.3 Coroutining and Terminating Logic Programs
11.1.4 Strong Termination
11.1.5 Generating Delay Declarations Automatically
11.1.6 Verification Using Modes and Types
11.1.7 Termination of LD-Derivations
11.1.8 Termination for Local Selection Rules
11.1.9 Directional Types o
11.1.10 Termination by Imposing Depth Bounds
11.1.11 Beyond Success and Failure
11.1.12 Termination of Well-Moded Programs
11.1.13 3-Universal Termination
11.1.14 Assertion-Based Debugging of (Constraint) Logic Programs . . .
11.2 Conclusion L
11.2.1 Some Distinctive Novel Ideas
11.2.2 Open Problemso
11.2.3 Summary of Part ITT

98
98
99
100
101
102
105
111

112
112
115
116
117
117
118
119
120

121
121
121
123
124
126
129
129

Part 1

Introduction and Background

Chapter 1

Introduction

In this chapter, we will give two separate introductions for Parts I and I11I, respectively.
As mentioned in the preface, both parts make use of notions of mode and type, but they
use these notions in quite different ways.

In Part I, a mode is a characterisation of the degree of instantiation of a term.
A type is a set of terms defined by means of a declaration, as provided in typed logic
programming languages such as Godel [HL94] or Mercury [SHC96].

In Part ITI, a mode is a specification of each argument position of each predicate in a
program as either input or output. A fype is any set of terms closed under instantiation.

In Chapter 2, we will consider the relationships between these notions in more detail.

1.1 Mode Analysis for Typed Logic Programs

In Part IT we provide a generic method for constructing abstract domains for mode anal-
ysis of typed logic programs. A mode is a characterisation of the degree of instantiation
of a term at a certain point in the execution of a program. Mode analysis is concerned
with finding the modes of a program. We now present an introduction to mode analysis
using abstract domains and then proceed to the actual contribution of Part II.

1.1.1 Previous Work

The following example illustrates the notions of degree of instantiation and point in the
execution.

Example 1.1 Consider the following program' for the append predicate.

append (Xs,Ys,Zs) :-
Xs = [1,
Ys = Zs.
append(Xs,Ys,Zs) :-
Xs = [X|Xsl1],
Zs = [X|Zs1],
append(Xs1,Ys,Zs1).

!The program is in so-called normal form, defined in Section 3.3.

4 CHAPTER 1. INTRODUCTION

append(Xs,Ys,Zs) :- ground (ground) .
ground (Xs),
iff(¥s,Zs). iff (X,X).

append(Xs,Ys,Zs) :-
iff_and(Xs,X,Xsl), iff_and(ground,ground,ground) .
iff_and(Zs,X,Zsl), iff_and(any,ground,any).
append(Xs1,Ys,Zs1). iff_and(any,any,ground) .

iff_and(any,any,any) .

Figure 1: An abstraction of append

When we assume an initial query append([1, 2], [3, 4],Cs) and the standard left-to-right
selection rule, then we can say that at each point in the execution just before an atom
append(s, t,u) is called, s and ¢ have the following degree of instantiation: they are
ground. Moreover, for every computed answer, Cs is instantiated to a ground term. <«

Information as in the above example can be derived using abstract interpretation [CCT77].
Here we will look at a particular technique of abstract interpretation called abstract com-
pilation [CD94, CD95, DW86, HWD92], meaning that an abstract program is evaluated
using a concrete semantics.

Example 1.2 Corresponding to the program in Example 1.1 is the abstract program
shown in Figure 1. Note that the abstract program is obtained by replacing all unifica-
tions in the concrete program with calls to ground, iff and iff_and. These calls are
called abstract unifications. The abstract unifications operate on abstract terms any and
ground, where ground represents a term that is definitely ground and any represents
any term. For example, iff_and(s,t,u) expresses that s is a ground term if and only if
t and u are both ground terms. This reflects that on the concrete level, a list is ground
if and only if its head and tail are ground.

When we assume an initial call append(ground,ground,_), all calls to append in
this abstract program will have the term ground in the first two arguments, and the only
answer for append is append(ground, ground, ground). It has been shown by Codish
and Demoen [CD95] that from this, it can be concluded that in the concrete program,
all calls to append have ground terms in the first two arguments, and all answers to
append have ground terms in all arguments — just as was observed in Example 1.1. <«

The technique of the above example has been developed further [CD94] to derive ground-
ness dependencies with more detail, using a more or less ad-hoc notion of type. This is
shown in the following example. Note that we are still assuming untyped languages.

Example 1.3 Figure 2 shows an alternative abstraction of the program in Example 1.1.
Without worrying about the details, observe that the abstract terms used in this ab-
straction would be terms such as integer, representing an integer,? list(integer),
representing a nil-terminated list of integers, 1ist(any), representing a nil-terminated
list whose elements could be arbitrary terms, and any, representing any term.

%Integers are just used as an example here.

1.1. MODE ANALYSIS FOR TYPED LOGIC PROGRAMS o

append (Xs,Ys,Zs) :- nil_dep(list(bot)).
nil_dep(Xs),
iff(¥s,Zs). iff (X,X).

append(Xs,Ys,Zs) :-
cons_dep(Xs,X,Xsl), cons_dep(list(A),B,1ist(C)) :-
cons_dep(Zs,X,Zsl), lub(A,B,C).
append(Xs1,Ys,Zs1). cons_dep(any,_,C) :-

C \== list(_).

Tub(A,A,A).
lub(A,A,bot).
lub(A,bot,A).
lub(any,A,B) :- A \== B.

Figure 2: An alternative abstraction of append

The concrete unification Xs = [X|Xs1] is abstracted as cons_dep(Xs,X,Xs1), which
relates an abstract term for the list Xs with the abstractions of its head X and its
tail Xs1. For example, if X is integer and Xs1 is list(integer), then Xs would be
list(integer). If however X is any and Xsl is list(integer), then Xs would be
list(any).

For example, assume an initial call append (1ist (any) ,1ist (any),_), meaning that
append is called with the first two arguments being instantiated to lists. Then all calls
to append in this abstract program will have list(any) in the first two arguments,
and the only answer for append is append(list(any),list(any),list(any)). For the
concrete program, this implies: if append is called with the first two arguments being
lists, then all subsequent calls to append also have lists in the first two arguments, and
all answers to append have lists in all arguments. Similarly, we could infer: if append is
called with the first two arguments being lists of integers, then all subsequent calls to
append also have lists of integers in the first two arguments, and all answers to append
have lists of integers in all arguments. q

Clearly, in order to abstract the append program as in the above example, one has
to know what a list is. The definition of a list underlying the above example is the
standard one: for any type 7, nil is of type 1ist(7); moreover, if h is of type 7 and ¢ is
of type 1ist(7), then cons(h,t) is of type 1ist(7). Codish and Demoen [CD94] are not
concerned with how such definitions could be derived in general, but only deal with a
specific set of types including integers, lists, difference lists, and trees, and provide the
definitions of the abstractions, such as the definition of cons_dep in the above example.
Of course, this set includes the most frequently used types and therefore much useful
information can already be inferred.

6 CHAPTER 1. INTRODUCTION

1.1.2 Exploiting Type Declarations

In typed logic programming languages, all types are defined by a type declaration. For
example, in Godel, the type of lists is defined as follows.

CONSTRUCTOR List/1.
CONSTANT Nil: List(u).
FUNCTION Cons: u * List(u) -> List(u).

The first line defines a type constructor List with one type parameter. We say that
List(u) is a polymorphic type, where u is a type parameter. In Sections 3.2 and 3.3, we
explain the syntax of Godel in more detail, but this example should be self-explanatory.
Throughout the rest of this section, we will use Godel type declarations to define types.

In Part I, we describe a method which takes a program, say the append program,
including the type declarations, and generates an abstract program similar to the one
in Example 1.3. In particular, the method generates the dependency predicates such as
cons_dep, whose construction seems quite ad-hoc in the work of Codish and Demoen,
since they are considering untyped languages.

To understand why this work is a proper generalisation of the work of Codish and
Demoen [CD94] and also Codish and Lagoon [CL96], we must look at some more com-
plex types. It is not surprising that when one introduces an ad-hoc notion of types into
an untyped programming language, one is unlikely to deal with types that are more
complex than, essentially, lists and trees. This is different when one considers typed
languages, as we do in Part II.

First consider the following type declarations

BASE IntegerList.
CONSTANT Nil: IntegerList.
FUNCTION Cons: Integer * IntegerList -> IntegerList.

These declarations define the type of integer lists, where we assume that Integer is
the usual built-in type. Note that IntegerList contains exactly the same terms as
List(Integer), and therefore it is reasonable to expect that the abstract domain char-
acterising the degree of instantiation of terms of type IntegerList should be the same
as the one sketched in Example 1.3. In our formalism, this is indeed the case.

Our formalism is based on a relation on types called “is a subterm type of”. Integer
and IntegerList are both subterm types of IntegerList, meaning that a term of type
IntegerList can have subterms of type Integer and subterms of type IntegerList.
If o is a subterm type of 7, and 7 is not a subterm type of o, then we say that o is a
non-recursive subterm type of 7. If o is a subterm type of 7, and 7 is a subterm type
of o, then we say that o is a recursive type of 7. Integer is a non-recursive subterm
type of IntegerList, and IntegerList is a recursive type of IntegerList.

The relation “is a non-recursive subterm type of” is a generalisation of the relation
“is a parameter of” which underlies the domain construction of Example 1.3. One
can argue that the type IntegerList has no raison d’étre since it is better to use the
instance List(Integer) of the polymorphic type List(u). However, we shall see other
examples of a non-recursive subterm type not being a parameter.

1.2. NON-STANDARD DERIVATIONS 7

Example 1.4 As another example, consider a family tree.

CONSTRUCTOR Family/1.
FUNCTION Person: u * List(Family(u)) -> Family(u).

For a person, we may want to store the name, the age, or any other attribute. The first
argument of Person is used for this purpose. Moreover, we want to store the list of
children of this person, that is, a list of family trees, one for each child. As an example,
consider Family(String). Our formalism constructs an abstract domain for this type

which can characterise that all the ¢

‘names” in the term
Person("Lisa", [Person("Frank", []),Person("Sara",[]1)])
are instantiated, whereas this is not true for the term

Person("Lisa", [Person(x, [1),Person(y, [1)]1).

The methods of Codish and Demoen [CD94] and Codish and Lagoon [CL96] cannot
deal with the above examples. We will see more examples in Part II.

The abstract domains used in our mode analysis are entirely in the spirit of previous
work [CD94, CL96], and the inherent complexity of our mode analysis is therefore
similar. In general, the complexity of a mode analysis depends on the complexity of
the type declarations. We will argue that the formalism presented in Part II provides
the highest degree of precision that a generic domain construction should provide. It
also helps to understand other, more ad-hoc and pragmatic domain constructions as
instances of a general theory. One could always simplify or prune down (widen) the
abstract domains for the sake of efficiency.

Our method has been implemented in Godel for Godel programs. We show for
some example programs that the analysis times compare well with a domain that only
distinguishes ground and non-ground terms [CD95].

1.2 Non-Standard Derivations

Part TIT is concerned with verification methods for logic programs that use non-standard
derivations, that is, they use a selection rule other than the usual left-to-right selec-
tion rule of Prolog. We consider five aspects of verification: termination, unification
freedom?, occur-check freedom, flounder freedom, and freedom from errors related to
built-ins.

Non-standard derivations are useful for a variety of purposes: multiple modes, par-
allel execution [AL95], the test-and-generate paradigm [Nai92], and certain uses of ac-
cumulators [EG99].

8 A program is called unification freeif it only requires (double) matching instead of the full unification
procedure.

8 CHAPTER 1. INTRODUCTION

For verification of logic programs [AE93, AL95, BC99, EBC99], in particular pro-
grams using non-standard derivations, it has been shown to be useful to assign a mode
(input or output) to each argument position of each predicate, and require certain cor-
rectness properties concerning those modes. We will adopt some correctness properties
that have previously occurred in the literature and also introduce some new ones.

Considering non-standard derivations does not imply that any atom in a query can be
selected for resolution at any time. For some aspects of verification, such as termination
or freedom from errors related to built-ins, it is necessary to ensure a certain degree
of instantiation of an atom before that atom is selected [AL95]. We will argue that
a reasonable minimal assumption is that derivations are input-consuming, that is, an
atom is only selected once it is sufficiently instantiated in its input arguments, so that
unification with a clause head does not instantiate these arguments any further.

Input-consuming derivations have not been defined in this form previously, although
the concept is related to (F)GHC [Ued86] and non-destructive programs [ER98]. This
is discussed in Section 11.1.

In existing implementations, input-consuming derivations can be ensured by delay
declarations [HL94, SIC98, SHCY6]. Using delay declarations, an atom in a query is
selected only if its arguments are instantiated to a specified degree. In particular, we
will consider block declarations. These are a simple kind of delay declaration where only
tests for partial instantiation are possible, but not, for example, tests for groundness.

Hence Part III of this thesis is aimed at verifying programs with delay declarations,
but we try to take the more abstract view and formulate results in terms of input-
consuming derivations wherever possible. This view has not been taken by other authors
previously [AL95, Lit93, MT95, MK97, Nai92].

We now give an overview of Part III. Note first the following general points:

e Section 5.2 defines most of the notation and terminology. Sections 7.2 and 8.2
introduce some further terminology related to delay declarations. In any case, the
index can be used to find the place where notation or terminology is introduced.

e Section 11.1 is devoted to the literature related to Part III. However, the related
literature is also considered throughout the rest of Part III wherever useful for
motivation or illustration.

1.2.1 Correctness Properties of Programs

In Chapter 5, we introduce a number of correctness properties concerning the modes of
a program. The following example gives a flavour of these properties.

Example 1.5 Consider the usual append/3 program (it will be given in Figure 10 on
page 57), where the first two arguments are input and the third is output. The query

append([1],[2],Xs), append([3], [4], Ys), append(Xs, Ys, Zs)

is “well-behaved” in that it meets all correctness properties we introduce.
In particular, note that the third atom has variables Xs and Ys in input positions,
and that these variables occur elsewhere in output positions. In other words, every

1.2. NON-STANDARD DERIVATIONS 9

variable has a producer. Moreover, note that Xs and Ys occur each only once in an
output position. In other words, every variable has at most one producer. Finally,
note that for each variable, the output occurrence precedes any input occurrence. If we
assumed the left-to-right selection rule, this could be interpreted as follows: every piece
of data is produced before it is consumed.

Having at most one producer is the main aspect of a well-known correctness property
called nicely-modedness, and having at least one producer is the main aspect of an equally
well-known correctness property called well-modedness. In contrast, the query

append([1],[2],Xs), append([3], [4], Xs), append(Xs, Vs, Zs)

is not nicely moded because there are two output occurrences of Xs, and it is not well
moded because there is no output occurrence of Ys. <

As can be seen in the above example, the correctness properties are traditionally defined
assuming that there is a left-to-right data flow in a query (or clause body) [AE93,
AL95, AM94, AP94b, BC99, EBC99, EG99]: every atom only uses as input data that
was produced by other atoms occurring to the left. With such a restricted view, it is
not possible to reason about programs where the textual order of atoms differs from
the data flow. We will therefore generalise these properties by considering them up
to permutation of a query. For example, a query is permutation nicely moded if some
permutation of it is nicely moded.

1.2.2 Termination of Input-Consuming Derivations

Input-consuming derivations formalise the natural meaning of input. For most pro-
grams, assuming input-consuming derivations is necessary for termination. For exam-
ple, it is easy to see that given the usual append program, an infinite derivation for the

query
append([1],[], As), append(As, [], Bs)

is obtained by always selecting the rightmost atom (see Figure 10 on page 57).

This raises the question whether assuming input-consuming derivations is sufficient
to ensure termination. In Chapter 6, we define a class of predicates for which this is
indeed the case. We present a method for showing that a predicate is in this class.
This method is based on level mappings, closely following the traditional approach for
derivations using the standard left-to-right selection rule [EBC99].

Note however that the class of predicates for which all input-consuming derivations
are finite is quite limited. Relying on this assumption alone cannot be a comprehensive
method of showing termination for realistic programs. This is also the reason why we
speak of a class of predicates and not of a class of programs. Within one program, some
predicates may be in that class and some may not.

10 CHAPTER 1. INTRODUCTION

1.2.3 Ensuring Input-Consuming Derivations

In Chapter 7, we show how block declarations, which are a particularly simple and
efficient kind of delay declaration, can be used to ensure that derivations are input-
consuming. The block declarations declare that certain arguments of an atom must be
non-variable before that atom can be selected for resolution.

Usually, one would have block declarations such that an atom is only selected when
its input positions are non-variable. However, this is sometimes not sufficient. Suppose
we have a predicate p/1 whose argument is input, and “p(£(1)).” is a clause defining
this predicate. The atom p(£(X)) is non-variable in its input position. Nevertheless its
selection would violate the requirement of an input-consuming derivation, since unifi-
cation with the clause head instantiates X. This and similar problems give rise to the
definition of two further correctness properties for programs. Despite these problems,
block declarations are adequate for ensuring input-consuming derivations in existing
implementations.

Previous literature on delay declarations has not recognised that the simplicity and
efficiency of block declarations give them a special role. There has never been a system-
atic account of when block declarations are sufficient to ensure any desired properties
such as termination, and when more complex constructs, say groundness checks, are
needed.

1.2.4 Termination and block Declarations

In Chapter 8, we present two approaches to showing or ensuring termination for pro-
grams with block declarations. As suggested above, it is often necessary to make
stronger assumptions about the selection rule rather than just to assume that deriva-
tions are input-consuming. We do so by assuming left-based derivations. This formalises
the “default left-to-right” selection rule of most existing Prolog implementations.

The first approach is relatively simple and tries to eliminate the well-known problem
of speculative output bindings [Nai92]. The approach consists of two complementary
methods: one exploits the fact that a program does not use any speculative bindings;
the other exploits the fact that a program does not make any speculative bindings.

The idea of the second approach is as follows: first, block declarations must be
used to ensure that derivations are input-consuming. Some predicates are known, by
Chapter 6, to terminate for all input-consuming derivations. For all other predicates,
the textual position of atoms using those predicates must be taken into account. More
precisely, the latter atoms must be placed sufficiently late, which ensures that they are
only selected once their input is completely instantiated.

Example 1.6 The following clause is part of a program for the well-known n-queens
problem. It is an example of the test-and-generate paradigm.

nqueens (N,Sol) :-
sequence (N, Seq),
safe(Sol),
permute (Sol,Seq) .

1.2. NON-STANDARD DERIVATIONS 11

A solution to the n-queens problem is encoded as a permutation of the list [1,...,n],
which represents the position of the queen in each row of the chess board. The predicate
sequence generates the list [1,...,n]. This list is then permuted using permute and the
solution candidates are tested for being legal configurations by the predicate safe. The
call to safe occurs before the call to permute to achieve coroutining of the two atoms
safe(Sol) and permute(Sol,Seq).

In the clause body, the call to permute is placed sufficiently late. Assuming left-
based derivations, this means that when permute is called, the input Seq is ground.
With less instantiated input, termination of permute could not be guaranteed. In
contrast, the predicate safe will frequently be called with partially instantiated lists
as input. However, this is not a problem because, as we will see, the assumption of
input-consuming derivations is sufficient to ensure termination of safe. N

Chapter 8 formalises and extends heuristics that have previously been proposed to
ensure termination of programs with block declarations under the assumption of a
default left-to-right selection rule [Nai92]. In this informal work, even the selection rule
itself is not formalised.

Most approaches to the termination problem for programs using non-standard der-
ivations abstract from the relevance of the textual order of atoms for the selection
rule. These approaches must either yield relatively weak results, or strengthen the
assumptions about the selection rule in some other way rather than assuming the default
left-to-right selection rule [AL95, Liit93, MT95, MK97].

1.2.5 Further Aspects of Verification

In Chapter 9, we study some further aspects of verification of logic programs using
non-standard derivations.

The first aspect is freedom from unification. This means that the unification proce-
dure can be replaced with so-called double matching. The idea is that when a selected
atom in a query is unified with the head of a clause, the input arguments of the clause
head are first bound to the input arguments of the selected atom. This fits with the idea
that derivations are input-consuming, since it means that the input arguments of the
selected atom are not instantiated. Afterwards, the output arguments of the selected
atom are bound to the output arguments of the clause. We will see that under certain
conditions, programs are free from unification.

The second aspect is freedom from occur-check. It is well-known that the unification
algorithm used in existing logic programming systems leaves out the occur-check for
efficiency reasons. We show that for programs meeting certain correctness conditions,
namely permutation nicely moded, input-linear programs, the occur-check can safely be
omitted.

The third aspect is freedom from floundering. A derivation flounders if it ends with
a non-empty query where no atom is sufficiently instantiated to be selected in accor-
dance with the block declarations. Freedom from floundering is an important aspect
of verification mainly because of its relationship to termination. In principle, termina-
tion and flounder freedom are conflicting aims. Clearly, termination could trivially be
ensured by having block declarations such that no atom can ever be selected, which

12 CHAPTER 1. INTRODUCTION

means that all derivations would flounder immediately. We show however that under
reasonable assumptions, namely that programs are permutation well typed, no deriva-
tions flounder. This implies that our methods for showing termination in no way rely
on trivial termination by floundering.

As the last aspect, we consider freedom from errors related to built-ins. These are
type errors, arising from calls like X is foo, or instantiation errors, arising from calls like
X is V. One previous proposal for preventing such errors uses well typed programs and
delay declarations to ensure that built-ins are only called when their input arguments
are ground [AL95]. Unfortunately, block declarations cannot test (directly) whether
an argument is ground. The main contribution of Section 9.4 is to show that under
certain conditions, block declarations are nevertheless sufficient. The method is based
on constant types, that is types consisting only of constants. The most prominent
examples would be integer or other numeric types. We exploit the fact that for a term
of constant type, being non-variable implies being ground.

1.2.6 'Weakening Some Conditions

In Chapter 10, we consider ways of simplifying the block declarations by omitting tests
that can be proven at compile time to be always met at runtime. This is particularly
useful for built-ins, since there is usually no direct way of having delay declarations for
those. We will also consider ways of weakening a restriction imposed for many results
in Part ITI, namely that the input arguments of each clause head contains no variable
more than once. This restriction is quite severe in that it prevents two input arguments
being tested for equality. Moreover, we consider a generalisation of the notion of a mode
of a program, allowing for a predicate to be used in different modes even within a single
execution of the program.

1.2.7 Related Work and Conclusion

Chapter 11 takes a look at the literature related to Part III. It then discusses some ideas
and features that are distinctive of this work, as well as some open problems. Finally,
it concludes the thesis with a summary of Part III.

Chapter 2

Notions of Modes and Types

This chapter gives an overview of mode and type concepts used in the literature, en-
compassing the uses made of these concepts in this thesis. In Section 2.1, we consider
modes, in Section 2.2, we consider types, and in Section 2.3, we consider ways of com-
bining the two concepts. Finally in Section 2.4, we recall very briefly the concepts of
modes and types as used in this thesis.

2.1 Modes

One of the distinctive features of logic programming, as opposed to other programming
paradigms, is that there is no a priori notion of input and output. The same program
can be used to compute answers to different problems [Apt97]. The following example
illustrates this.

Example 2.1 A program like the following is the standard example to introduce logic
programming to novices [Apt97, SS86].

direct_flight (rome, london).
direct_flight (paris, london).
direct_flight(paris, rome).
direct_flight(london, bristol).

connection(X, Y) :-
direct_flight(X, Y).

connection(X, Y) :-
direct_flight(X, Z),
connection(Z, Y).

This program can be used to answer questions of different kinds.

e Is there a flight connection from Rome to Bristol?

| ?- connection(rome, bristol).
yes

13

14 CHAPTER 2. NOTIONS OF MODES AND TYPES

e To which cities are there flight connections from Rome?

| ?- connection(rome, City).
City = london 7?7 ;

City = bristol 7 ;

no

e From which cities are there flight connections to Rome?

| ?- connection(City, rome).
City = paris 7 ;
no

e Where do I change planes flying from Paris to Bristol?

| ?- direct_flight(paris, City), direct_flight(City, bristol).
City = london 7?7 ;
no

These different ways of using a logic program are usually referred to by saying that the
program is used in different modes. For example, consider the second query above. The
first solution to this query is computed by the following derivation:

connection(rome,City)~» direct_flight(rome, City)~» O.

One way of characterising this derivation is by saying that the first argument positions
of connection and direct_flight, respectively, are used as input positions, whereas
the second positions are used as output positions.

Another way of characterising this is by saying that connection(rome,City)
and direct flight(rome,City) are call patterns in this derivation, whereas
connection(rome,london) and direct_flight(rome,london) are answer patterns. Or
more abstractly, connection(ground, free) and direct_flight(ground, free) are call
patterns, whereas connection(ground, ground) and direct_flight(ground, ground)
are answer patterns.

For the last query, assuming the standard left-to-right selection rule, we might also
say that the first atom is a producer of City and the second atom is a consumer of City.

All those characterisations suggest that modes are inextricably linked to the proce-
dural rather than the declarative view of logic programming. However, it is also possible
to take a declarative view of modes [Nai96], as we will discuss in Subsection 2.3.2.

We will now shed some light on different notions of modes occurring in the litera-
ture by comparing them under two criteria. The first criterion is how prescriptive or
descriptive the notion of modes is. The second criterion is the granularity with which
modes are characterised.

2.1.1 Descriptive versus Prescriptive Modes

This criterion is closely linked to the question: In which context and for which purpose
are modes used? Figure 3 shows a rough subdivision of the literature into three groups.

2.1. MODES 15

moded languages prescriptive
modes as verification tool
groundness analysis descriptive

Figure 3: Descriptive versus prescriptive modes

Groundness analysis

Mode analysis, more often called groundness analysis, is concerned with the question “at
a given program point, what is the degree of instantiation of variable £?7”, and in partic-

127~ Such information is useful for compiler optimisa-

ular, “is z bound to a ground term
tions such as the specialisation of unification, but also because it improves the precision
of other analyses [MS93]. It is also important for termination analysis [LS96, LS97].
Much research has been done on groundness analysis [AMSH94, AMSH98, BCHK97,
Cod97, CBGH97, CDY94, CD94, CD95, CGBH94, CL96, GGS99, HHK97, HACKO00,

KSH99, MS93, TLI7].

For the derivation on the facing page, it can be inferred that at the point just before
direct_flight is called, the first argument of direct_flight is a ground term, and at
the point after direct_flight is resolved, the second argument is also a ground term.

In this context, “mode” is a descriptive concept, that is, no assumptions are made
about how programs are — or should be — written. The analysis takes an arbitrary
program and describes the modes of this program. This is usually done using abstract
interpretation [CC77]. Since groundness is an undecidable property, this description
can only be approximate. For some program points an analysis might be able to infer
that a variable is bound to a ground term, but it cannot decide the groundness of every
variable for every program point.

One usually distinguishes goal-dependent and goal-independent groundness analy-
ses [CBGH97, CDY94, CGBH94, MS93]. In the former, one assumes that the program
is executed with an initial goal that is instantiated to a certain degree. This introduces
a slight prescriptive aspect into groundness analysis, since it assumes that programs
should be used in a certain way. Most of the literature on groundness analysis however
is relevant for goal-dependent and goal-independent groundness analyses alike.

Part II is about the construction of abstract domains for groundness analysis. In
the implementation, these domains are used for goal-dependent groundness analysis.

LA term is called ground if it does not contain variables.

16 CHAPTER 2. NOTIONS OF MODES AND TYPES

Modes as verification tool

Modes have been used for a variety of verification purposes [AM94, EG99]. For exam-
ple, they have been used to show that programs are occur-check free [AL95, AP94b],
unification free [AE93], successful [BC99], and terminating [EBC99]. Here it is assumed
that each argument position of each predicate is either input or output, and that the
program and initial goal fulfill certain correctness properties such as being well moded
or nicely moded. Usually, this approach is not concerned with how these modes are
determined.

For the derivation on page 14, one would say that for both predicates, the first
argument is input and the second is output, which can be denoted by writing the mode
of the program as {connection(/, O), direct_flight(l, O)}.

In this context, “mode” is a fairly prescriptive concept, since assumptions are made
about how programs should be written and used. If a program does not adhere to
the correctness property required for a certain verification purpose, the verification
method is not applicable. Part III of this thesis uses modes to verify properties such as
termination and occur-check freedom.

Moded languages

The most prescriptive approach to modes is to use a moded language, for example Mer-
cury [Hen92, SHC96]. In Mercury, the user has to declare the mode of some predicates,
while the mode of others is inferred. The program has to fulfill certain correctness
properties concerning these modes. Otherwise it is not accepted by the compiler.

These correctness properties restrict the class of legal programs and hence to a
certain extent limit the expressiveness of a language. On the other hand, as Mercury
shows, they allow the compiler to generate very efficient machine code.

2.1.2 The Granularity

We now distinguish different mode concepts by another criterion: the granularity of the
formalism to characterise the instantiation of a term, or in other words, the degree of
precision with which the instantiation of a term can be characterised. Note that for
this criterion, we cannot easily draw a picture like the one in Figure 3 on the preceding
page, since there is no such obvious hierarchy. We distinguish between two-valued and
more fine-grained characterisations.

Two-valued characterisations

The lowest granularity is given when we have a characterisation which can only take two
possible values. Most groundness analyses only distinguish ground and possibly non-
ground terms [AMSH94, AMSH98, BCHK97, CD95, HHK97, HACK00, KSH99, MS93].
Likewise, the works which use modes for verification purposes only distinguish input and
output positions [AE93, AL95, AM94, AP94b, BC99, EBC99, EG99]. Part III of this
thesis also falls into this category, since we assume that an argument position is either
input or output.

2.2. TYPES 17

More fine-grained characterisations

The mode analyses by Codish and others [CD94, CL96] characterise the degree of in-
stantiation of the list, say, [1,z,5] by the abstract term list(any), that is, a list whose
elements cannot be characterised. Note that characterising this degree of instantiation
is only meaningful with some notion of #ype. Similar approaches have been taken by
Gallagher and de Waal [GW94] and Van Hentenryck et al. [VCL95], and in Part IT of
this thesis.

Other mode analyses that provide a relatively high degree of granularity but without
using any notion of type have been developed by Janssens and Bruynooghe [JB92] and
Tan and Lin [TL97].

The mode system of Mercury is based on instantiation states, which are a formalism
for asserting how instantiated a term is. With instantiation states, one could express,
say, that an argument position of a predicate is bound to a list of variables when the
predicate is called and to a ground list when the predicate succeeds. This is a refinement
of the notion of input and output.

2.2 Types

In logic programming, a type is usually a set of terms associated with an argument
position, reflecting the programmer’s understanding of what “kind” of term is expected
in this argument position. For example, as arguments to the predicate direct_flight
we might expect terms such as rome and paris, but not the number 3 or the list [3, 5].

Types have been shown to be useful in all programming paradigms, since they can
help detect logical errors in a program. However, types are not as widespread in logic
programming as in imperative and functional programming.

As before, we discuss different notions of types occurring in the literature looking
at them from various angles.

2.2.1 What s a Type?

First, we distinguish various approaches by how abstractly and generally the types are
described. Figure 4 shows a rough subdivision of the literature into five groups. In this
subsection, we ignore the existence of variables, that is, we only consider ground terms.

Built-in types in Prolog

Prolog is an untyped programming language. Nevertheless, in Prolog implementations,
there are usually a few built-in types such as integer or atom [ISO95, SIC98|. These are
only of any significance in connection with built-in predicates, for example functor/3.
Any call to functor where the third argument is a ground term other than an integer
results in a type error.

Ad-hoc types

Codish and Demoen [CD94] have shown how to derive type dependencies of logic pro-
grams using a specific set of types including integers, lists, difference lists, and trees.

18 CHAPTER 2. NOTIONS OF MODES AND TYPES

arbitrary types abstract, general

declared types

regular types

ad-hoc types

Y

built-in types in Prolog concrete. ad-hoc
7

Figure 4: Expressiveness, generality of type formalisms

They suggest that this choice is for illustrative purposes and that it could easily be
generalised, but as we will discuss in Section 4.5, the generalisation is by no means
obvious.

Regular types

Many authors have developed formalisms to characterise types in a more general way,
for example regular approximations [GW94, GL96, SG95a] or type graphs [VCL95]. The
work of Codish and Demoen has also been developed further in this respect [CL96]. In
all of these formalisms, an unlimited number of different types can be designed, but
restrictions are imposed which ensure that these types are, in some sense, regular.

Declared types

Typed logic programming languages such as Mercury [SHC96] or Gédel [HL94] provide
a syntax used to declare types. Each constant, function and predicate symbol used in a
program must have its type declared. The type declarations have to meet a number of
restrictions that can be syntactically checked. With these restrictions it is possible to
type-check programs at compile time. Part II of this thesis uses this notion of types.

Arbitrary types

The literature that uses types for verification purposes [AE93, AL95, AM94, AP94b,
BC99, BLR92] has the most general notion of type: any set of ground terms could be
a type. On the level of the theory, there is no need to impose any restrictions. Part I11
of this thesis uses this notion of types.

2.2. TYPES 19

2.2.2 Non-ground Types

In the previous subsection, we disregarded the possibility that a type might contain non-
ground terms, or in other words, that a non-ground term might have a type. Considering
non-ground terms adds another dimension to the classification of different approaches
to types. Therefore this aspect should be studied separately.

In typed logic programming languages such as Mercury [SHC96] or Gédel [HL94], a
variable has a type which is inferred from the declared types of the surrounding symbols.
This ensures that the type of a term does not change via further instantiation. Hence
the degree of instantiation and the type of a term are completely different issues. In
contrast, Codish and others [CD94, CL96] would use, say, list(any) to represent a list
whose elements cannot be characterised, and they would refer to list(any) as a type. In
Part II, we also introduce objects such as list(any), but we call them abstract terms,
not types, since they only characterise the instantiation of a term, not its type.

Summarising, in typed logic programming languages, a non-ground term has a type
which will not change via further instantiation. In the terminology used by some works
on groundness analysis, a non-ground term also has a type, but this type represents the
degree of instantiation of a term and hence may change via further instantiation.

The literature that uses types for verification purposes [AE93, AL95, AM94, AP94b,
BC99, BLRI2] defines a type as any set of terms closed under instantiation. Compared
to requiring that a type must be a set of ground terms, this has the advantage that
one can reason about programs that operate on non-ground data structures. For ex-
ample, the predicate append can be used to append two lists whose elements are not
instantiated. Part 111 also defines types in this way.

Defining a type as a set of terms closed under instantiation links the notion of type
to that of mode. Therefore, we will consider non-ground types further in Section 2.3.

2.2.3 Polymorphism

Perhaps more important than the fact that the predicate append can be used to append
two lists whose elements are not instantiated, is the fact that append can be used to
append two lists regardless of the type of the list elements. Using a predicate for terms
of different types in this way is called (parametric) polymorphism.

A polymorphic type is a type that is parametrised by another type. For example,
the type list(integer) is the type of integer lists and is composed of a type constructor
list and a type integer. For any type 7, there is a type list(7). Note that allowing for
type-checking at compile time, as practised in typed programming languages, is a much
harder problem for polymorphic languages than for monomorphic ones [Hen93, Hil93,
Mil78, MO84].

Part II of this thesis deals with groundness analysis of polymorphically typed pro-
grams. Previous works only allowed for very restricted forms of polymorphism. The
works which use types for verification purposes [AE93, AL95, AM94, AP94b, BC99,
BLR92], including Part IIT of this thesis, do not treat polymorphism explicitly.

There is another notion of polymorphism called ad-hoc polymorphism, but this is
usually called overloading [Mil78, Str67]. For example, the constant nil may be used

20 CHAPTER 2. NOTIONS OF MODES AND TYPES

typed languages prescriptive
types as verification tool
fype analysis descriptive

Figure 5: Descriptive versus prescriptive types

to denote the empty list as well as the empty tree. We are not concerned with ad-hoc
polymorphism in this thesis.

2.2.4 Descriptive versus Prescriptive Types

As with modes, we can compare notions of types with respect to how descriptive and
prescriptive they are. Figure 5 shows a subdivision of the literature into three groups.
Note that this subdivision is very similar to the one we had for modes (Figure 3 on
page 15).

Type analysis

Type analysis [CD94, CL96, GGS99, VCL95] is concerned with the question “what is
the type of an argument or a variable?”. This question can be qualified further by

e specifying the types of the arguments of the query with which the program is used,
e specifying program points of interest, such as the entry or exit point of a predicate.

In this context, “type” is a descriptive concept, and type analysis is inseparably linked
to mode analysis. Saying that z is bound to a list can be viewed as a statement about
the type of z as well as the degree of instantiation of z. Type analysis is a particularly
precise kind of mode analysis, as described in Subsection 2.1.1, and further in the next
section.

Type analysis is usually done using abstract interpretation [CC77]. The points made
about abstract interpretation on page 15 apply here as well.

Types as verification tool

Just as type analysis is a particularly precise kind of mode analysis, types as verification
tool [AE93, AL95, AM94, AP94b, BC99, BLR92] can be regarded as a refinement of
modes as verification tool, and have been used for the same purposes. In addition to
assuming that each argument position of a program is either input or output, a type is
associated with each argument position. The program and initial goal have to be well
typed, which is a property ensuring that all computed answers have terms of the correct

2.3. COMBINING MODES AND TYPES 21

type in each argument position. Usually, this approach is not concerned with how the
type of each argument position is determined.

Just like modes as verification tool (page 16), “type” is a fairly prescriptive concept
here, since assumptions are made about how programs should be written and used.
Part TIT of this thesis uses this notion of type.

Typed languages

As with modes, the most prescriptive approach to types is having a typed language such
as Mercury [Hen92, SHC96] or Godel [HL94]. Part IT deals with typed languages and
hence uses this prescriptive notion of types. In typed languages, the user has to declare
the types of each constant, function and predicate symbol used.? The type declarations
have to meet a number of restrictions that can be syntactically checked. These ensure
at compile time that no type errors can occur. That is, a predicate cannot be called
with an argument not having the declared type.

2.3 Combining Modes and Types

We have seen on page 17 that fine-grained characterisations of the instantiation of a
term often use some notion of type. On the other hand, we have seen in Subsection 2.2.2
that the degree of instantiation of a term plays a role in some concepts of types. Hence,
modes and types are closely related. We now look at two ways of developing this
relationship.

2.3.1 Directional Types

A natural way of joining modes and types is by the notion of directional types [BM95,
BLR92, RNP92]. A directional type for an argument of a predicate has the form o — 7.
It is an assertion that if the argument is instantiated to a degree specified by o at
call time, then it will be instantiated to a degree specified by 7 when the predicate
returns. For example, the predicate append in forward mode could be specified by
append(list — list, list—list, free— list) which should be read as: if append is called
with the first and second arguments being lists, then for any answer, all arguments will
be instantiated to lists.

Directional types have two aspects [BM95]. One is input-output correctness: if a
call satisfies the input assertion, then the answer should specify the output assertion. It
does not depend on the selection rule. The other is call correctness: If a call satisfies its
input assertion, all triggered calls should also satisfy their input assertion. This aspect
depends on the selection rule.

Both Part IT and Part III of this thesis use formalisms that resemble directional
types. The formalisms allow to express the intuition that, say, append is used in forward
mode, although the precise meanings of the formalisms differ of course. To illustrate
this point, we now show how this would be expressed. In Part IT, simplifying the syntax

2This requirement could sometimes be relaxed since the types of some symbols can be reconstructed
from the context.

22 CHAPTER 2. NOTIONS OF MODES AND TYPES

somewhat, this intuition would be expressed by saying that append(list,list,any) is
a call pattern and append(list,list,list) is an answer pattern. In Part III, it would
be expressed by saying that the mode of append is append(/, I, Q) and the type is
append(list,list,list).

2.3.2 A Declarative View of Modes

To understand Naish’s declarative view of modes [Nai96], we must first understand
his notion of type. It often happens that the success set of a program, that is, the
set of ground atoms that are true in all its models, contains atoms that are not true
according to the programmer’s intentions. For example, the success set of the usual
append program contains the atom append([],7,7). A type is a set of atoms specified by
the programmer which excludes such unintended atoms. For example, a natural type
of append would be the set of all ground atoms append(s, t,u) where s,t,u are lists.

It is desirable that any call to a logic program can only give answers that are in the
type. Calls that could result in answers not in the type should be considered unsafe.
Suppose we are wondering whether a call to append(s, ¢, u) is safe. If we knew that all
ground instances of append(s, ¢, u) that are in the success set of append are also in the
type of append, then we would know that the call append(s, ¢, u) is safe. However, there
is no way we could know the success set without actually executing the program.

Therefore, we have to approximate the success set. A mode of a program is any
set of ground atoms which is a superset of the success set. One mode suggested for
append is {append(s,t,u) | s € list A (t € list <= wu € list)}. Consider again the
question whether a call is safe. If the call is append(]], X, X), then it has a ground instance
append([],7,7) which is in the mode but not in the type, and it is therefore unsafe. If
the call is append([], X, []), then for all instances in the mode, X must be bound to a list,
and hence all instances in the mode are also in the type and the call is safe. In short,
the mode together with the type encode the requirement that either the second or the
third argument must be a list for a call to be safe, which means that either the second
or the third argument must be input. This shows how procedural information can be
derived from this declarative view.

2.4 Summary

In this chapter, we gave an overview of mode and type concepts used in the literature,
by looking at these concepts from different angles. We now recall the most important
properties of the mode and type concepts used in Parts II and III of this thesis.

In Part II, modes are

e descriptive: the modes of a program are analysed, not prescribed;
e fine-grained: the modes are characterised very precisely.
In Part II, types are

e declared: a syntax for this purpose is provided in typed programming languages;

24. SUMMARY 23

e prescriptive: we consider typed programming languages, where a program must
meet certain criteria concerning the types before it can be accepted by the com-
piler;

e polymorphic: a type can be parametrised by another type;
e independent of instantiation: the type of a term does not change via instantiation.
In Part III, modes are

o (relatively) prescriptive: the programs must meet certain criteria concerning the
modes for our methods to be applicable;

e coarse: it is only possible to declare that arguments are input or output.
In Part III, types are

e “arbitrary”: on the level of the theory, any set of terms (closed under instantiation)
could be a type;

o (relatively) prescriptive: the programs must meet certain criteria concerning the
types for our methods to be applicable;

e closed under instantiation: if a term has a type, then it continues to have that
type even after it has been further instantiated.

Part 11

Mode Analysis for Typed Logic
Programs

24

Chapter 3

The Structure of Types and
Terms

This part of the thesis describes a mode analysis for typed logic programs using abstract
interpretation. It is divided into two chapters. This chapter is concerned with concrete
terms, which are the data used in the programs we want to analyse. We define relations
between the types in a program giving rise to certain structural properties of terms
which the mode analysis is supposed to characterise.

In the next chapter, we will then define abstract terms to characterise these struc-
tural properties, as well as the actual mode analysis.

3.1 Introduction

Types are used in programming to restrict the underlying syntax so that only meaningful
expressions are allowed. This enables most typographical errors and inconsistencies in
the knowledge representation to be detected by the compiler. As a consequence, an
increasing number of applications using typed logic programming languages such as
Mercury [SHC96] or Godel [HL94] are being developed.

Modes characterise the degree to which program variables are instantiated at certain
program points. This information can be used to underpin optimisations such as the spe-
cialisation of unification and the removal of backtracking, and to support determinacy
analysis [HK97]. When a mode analysis is formulated in terms of abstract interpreta-
tion, the program execution is traced using descriptions of data (the abstract domain)
rather than actual data, and operations on these descriptions rather than operations on
the actual data. A simple domain for mode analysis has two elements ground and non-
ground to distinguish between ground and possibly non-ground terms. More complex
domains can characterise partially instantiated data structures with more precision.

The main contribution of this part of the thesis is to describe a generic method of
deriving precise abstract domains for mode analysis from the type declarations of a typed
program. Each abstract domain is specialised for a particular type and characterises
varying degrees of instantiation of terms of this type. In particular it characterises
the property of termination. This property is well-known for lists as mil-termination
and is here generalised to arbitrary types. Observe that termination of terms is closely

26

3.2. MOTIVATING AND ILLUSTRATIVE EXAMPLES 27

related to the termination of programs that operate on these terms. For example, if
the predicate Append is called with the first argument being a nil-terminated list, all
invoked calls to Append also have the first argument being a nil-terminated list, and
Append is guaranteed to terminate.

The procedure for constructing such domains is implemented (in Godel) for Godel
programs. By incorporating the constructed domains into a mode analyser, we see that
although the precision of the analysis is significantly improved, the analysis times (for
the programs tested) compare well with a domain that only distinguishes ground and
non-ground terms.

The abstract domains are used in an abstract compilation [CD95, DW86, HWD92]
framework: a program is abstracted by replacing each unification with an abstract coun-
terpart, and then the abstract program is evaluated by applying a standard operational
semantics to it.

We believe that this work is the natural generalisation of work by Codish and oth-
ers [CD94, CL96] and takes the idea presented there to its limits: our abstract domains
provide the highest degree of precision that a generic domain construction should pro-
vide. It thus helps to understand other, more ad-hoc and pragmatic domain construc-
tions as instances of a general theory.

This chapter is organised as follows. Section 3.2 introduces three examples. Sec-
tion 3.3 defines some syntax. Section 3.4 defines relations between types. Section 3.5
defines termination of a term, as well as functions that extract certain subterms of a
term.

3.2 DMotivating and Illustrative Examples

We introduce three examples that are used throughout Part II. The syntax is that of
the typed language Godel [HL94]. Variables and (type) parameters begin with lower
case letters; other alphabetic symbols begin with upper case letters. We use Integer
(abbreviated as Int) to illustrate a type containing only constants (1,2,3...).

Example 3.1 This is the usual list type. We give its declarations to illustrate the type
description language of Godel.

CONSTRUCTOR List/1.
CONSTANT Nil: List(u).
FUNCTION Cons: u * List(u) -> List(u).

List is a (type) constructor; u is a type parameter that can be instantiated to any type
such as Int or List(Int); Nil is a constant of type List(u); and Cons is the usual
constructor for lists whose elements must all have the same type. We use the standard
list notation [...|...] where convenient. It is common to distinguish nil-terminated lists
from open lists. For example, [| and [1, x,y] are nil-terminated, but [1,2|y] is open. <

Example 3.2 This example was invented to counter a common point of criticism that
“list flattening” cannot be realised in Godel, that is terms such as [1,[2,3]] cannot
be defined, let alone flattened. The Nests module formalises nested lists by the type
Nest(v).

28 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMS

IMPORT Lists, Integers.
CONSTRUCTOR Nest/1.
FUNCTION E: v -> Nest(v);

N: List(Nest(v)) -> Nest(v).

A trivial nest is constructed using function E, a complex nest by “nesting” a list of
nests using function N. The notable property of the declaration for N is that the range
type, Nest(v), is a proper sub“term” (in the syntactic sense) of the argument type
List(Nest(v)). We have seen a similar type declaration in Example 1.4. We use this
example throughout to demonstrate that this work is a non-trivial generalisation of pre-
vious approaches to abstract domain construction [CD94, CL96, TL97]. The Integers
module is imported since we frequently use Nest(Int) as an example. q

Example 3.3 A table is a data structure containing an ordered collection of nodes,
each of which has two components, a key (of type String) and a value, of arbitrary
type. We give part of the Tables module which is provided as a system module in
Godel.

IMPORT Strings.
BASE Balance.
CONSTRUCTOR Table/1.
CONSTANT Null: Table(u);

LH, RH, EQ: Balance.
FUNCTION Node:

Table(u) * String * u * Balance * Table(u) -> Table(u).

Tables is implemented in Godel as an AVL-tree [Emd81]: A non-leaf node has a key
argument, a value argument, arguments for the left and right subtrees, and an argument
which represents balancing information. <

3.3 Notation and Terminology

The set of polymorphic types is given by the term structure T'(3;, U) where X is a finite
alphabet of constructor symbols which includes at least one base (constructor of arity
0), and U is a countably infinite set of parameters (type variables). We define the
order < on types as the order induced by some (for example lexicographical) order on
constructor and parameter symbols, where parameter symbols come before constructor
symbols. Parameters are denoted by u,v. A tuple of distinct parameters ordered with
respect to < is denoted by u. Types are denoted by o, p, T, ¢, w and tuples of types are
denoted by &, 7.

Let ¥t be an alphabet of function (term constructor) symbols which includes at
least one constant (function of arity 0) and let ¥, be an alphabet of predicate sym-
bols. Each symbol in Xy (respectively %) has its type as subscript. If fi. . - € 3y
(respectively pir,..5,) € ¥p) then (71,...,7) € T(%;,U)* and 7 € T(%;,U) \U. If
ftri.rnry € Xy, then every parameter occurring in (7q,...,7,) must also occur in 7.
This condition is called transparency condition. We call 7 the range type of

3.4. RELATIONS BETWEEN TYPES 29

Jeri.mn7y- A symbol is often written without its type if it is clear from the context.
Terms and atoms are defined in the usual way [HL94, HT92]. In this terminology, if

I Thus in general, the type of a

a term has a type o, it also has every instance of o.
term is not unique. However the most general type of a term is unique up to parameter
renaming. If V' is a countably infinite set of variables, then the triple L = (X,,X¢,V)
defines a polymorphic many-sorted first order language. Variables are denoted
by x,y; terms by t,r,s; tuples of distinct variables by z,%; and a tuple of terms by ¢.
The set of variables in a syntactic object o is denoted by vars(o).

A substitution (denoted by #) is a mapping from variables to terms which is the
identity almost everywhere. The domain of a substitution 6 is dom(6) = {z | 20 # z}.
The application of a substitution 8 to a term ¢ is denoted as tf. Type substitutions
are defined analogously and denoted by 1.

Programs are assumed to be in normal form. Thus a literal® is an equation of
the form z = y or z = f(7), where f € ¥y, or an atom Q(7), where Q € ¥,. A query
G is a conjunction of literals. A clause is a formula of the form Q(y) + G. If S'is a
set of clauses, then the tuple P = (L, S) defines a polymorphic many-sorted logic
program.

3.4 Relations between Types

An abstract term characterises the structure of a concrete term. It is a crucial choice
in the design of abstract domains which aspects of the concrete structure should be
characterised [TL97, VCL95]. In this part of the thesis we show how this choice can be
based naturally on the information contained in the type declarations. This is formalised
in this section. We describe how function declarations relate types to one another.

Definition 3.1 [subterm type] A type o is a direct subterm type of ¢ (denoted
as o< ¢) if there is firi..mry € Xy and a type substitution ¢ such that 79 = ¢ and
Titp = o for some i € {1,...,n}. The transitive, reflexive closure of < is denoted as <*.
If 0 <* ¢, then o is a subterm type of ¢. <

Throughout Part II, we impose two restrictions on the language declarations we consider.
We first need to define a simple type.

Definition 3.2 [simple type] A simple type is a type of the form C (@), where C' € 3.
g

The restrictions are as follows:

Simple Range Condition: For all f € Xy, T is a simple type.

TLewTrsT)

Reflexive Condition: For all C' € ¥, and types 0 = C(5),7 = C(7), if o <* 7,
then o is a sub“term” (in the syntactic sense) of 7.

!For example, the term Nil has type List(u), List(Int), List(Nest(Int)) etc.
2We ignore negated literals here. In the implementation, negated literals may occur in the analysed
program, but they are ignored in the analysis, which means that they do not contribute any information.

30 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMS

We do not know of any real programs that violate these conditions. In particular, they
are met by all examples in Section 3.2. We now motivate the need for these restrictions.

The Simple Range Condition allows for the construction of an abstract domain for
a type such as List(o) to be described independently of the type o. An example of a
violation of this condition would be to declare

FUNCTION F: String -> List(Float).

in addition to the declarations in Example 3.1. Then we would have the pathological
situation that a term of type List(Float) can have subterms of type String, Float
and List(Float), whereas for all o # Float, List(c) can only have subterms of type
o and List(o). In Mercury [SHC96] and in typed functional languages such as ML or
Haskell [Tho99], this condition is enforced by the syntax. For example, the list type
would be declared in Haskell as

data List u = Nil | Cons u (List u)
and adding another declaration such as
data List Float = F String

would be illegal. Being able to violate the Simple Range Condition can be regarded as
an artefact of the Godel syntax.
An example of a violation of the Reflexive Condition would be to declare

FUNCTION F: List(List(u)) -> List(u).

in addition to the declarations in Example 3.1. Then a term of type List(Int) could
have subterms of type List(Int), List(List(Int)), List(List(List(Int))) etc. The
condition ensures that, for a program and a given query, there are only finitely many
types and hence, the abstract program has only finitely many abstract domains.

Definition 3.3 [recursive type and non-recursive subterm type] A type o is a recursive
type of ¢ (denoted as o ¢) if o <* ¢ and ¢ <* 0.

A type o is a non-recursive subterm type of ¢ (denoted as o<« ¢) if ¢ £* o
and there is a type 7 such that o<1 and 7 <t ¢. We write N (¢) = {0 | o }. If
N(¢p) ={o1,...,0m} and 0 < 0y for all j € {1,...,m — 1}, we abuse notation and
denote the tuple (o1,...,0,) by N(¢) as well. q

Note that for example, Int > Int, although one might find it counterintuitive to think
of Int as recursive type. Note moreover that in the above definition, 7 < ¢ includes
the case that 7 = ¢. The definition has been designed to achieve uniformity of the
presentation.

It follows immediately from the definition that if o <« ¢, then o 4 ¢. The relation <
can be visualised as a type graph (similarly defined by Janssens and Bruynooghe [JB92],
Somogyi [Som87] and Van Hentenryck et al. [VCL95]). The type graph for a type ¢ is
a directed graph whose nodes are subterm types of ¢. The node ¢ is called the initial
node. There is an edge from o1 to o9 if and only if o9 <oq. The recursive types of ¢ are
all the types in the strongly connected component (SCC) of ¢, and the non-recursive

3.4. RELATIONS BETWEEN TYPES 31

YN

List(u) Nest(v) List(Nest(v)) Table(u) | Balance
7 7~ 7~
u % u String

Figure 6: Some type graphs, with initial node highlighted

subterm types are all the types ¢ not in the SCC of ¢ but such that there is an edge
from the SCC to 0. The finiteness of this graph is ensured by the Reflexive Condition.
Our domain construction relies on the fact that A/(¢) is finite.

Example 3.4 In Figure 6 there is a type graph for each of the examples in Sec-
tion 3.2. Trivially Int > Int. However, List(u) > List(u) is non-trivial in that,
in the type graph for List(u), there is a path from List(u) to itself. Furthermore
List(Nest(v)) < Nest(v). Non-recursive subterm types of simple types are often pa-
rameters, as in A (List(u)) = (u) and N (Nest(v)) = (v). However, this is not always
the case, since N'(Table(u)) = (u,Balance, String). N

It is important that the relation < is closed under instantiation of its arguments.

Lemma 3.1 Let 0,¢ be types and v a type substitution. If o<¢ then oyp<apy). If
o <" ¢ then oip <* .

PROOF. For the first statement, there is fi,, .,) € ¥y and a type substitution)’
such that for some i € {1,...,n}, 1,90’ = o and 79’ = ¢. Consequently 7;4'¢) = o1 and
T = b, so o1p A P1p. The second statement follows from the first. O

The following lemma states another useful property of the relations <* and <.

Lemma 3.2 Let ¢, 7,0 be types so that o <* 7<* ¢ and o 1 ¢. Then 7 < ¢.

PROOF. Since o i ¢, it follows that ¢ <* 0. Thus, since o <* 7, it follows that ¢ <* 7.
Furthermore 7 <* ¢, and therefore 7 > ¢. O

The following lemma ensures that the abstract domains defined later are well-defined.
It states that any sequence of non-recursive subterm types terminates.

Lemma 3.3 Let 7 € T(X;,U) \ U and I' C ;. Let I be a non-empty index set
(finite or infinite) starting at 1 and {(C;(u;), i, %) | i € I} a sequence where C € T,
71 = Ci(u1)yr = 7, dom(1p1) C uy and, for each i € I where 7 > 1:

o C; €T, dom(v;) C @; and C;(;)h; = Tithi—1,

e ;€ T(T,U) and 7; «C;_1(uj—1).

32 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMS

T4 73 T2 71

Figure 7: The sequence of non-recursive subterm types

Then I and hence {(C;(u;), 7i, ;) | i € I} is finite.

PROOF. Let 9y be the identity substitution. The sequence is illustrated in Figure 7.
First note that, by Lemma 3.1 and Definition 3.3, for each 7 € I where 7 > 2, we have
Ti'l/}ifl 4* Ti,ﬂ[Ji,Q. Thus, for all i,j € I where 7 > j, Tiiﬁi,l g* Tj’t/)j,}

Let d(p) be the number of occurrences of constructors in a type p. If Ty C 3, define

D(T,p) = d(p) + 2(> d(a>).
(%))

CeTo \oeN(C

The proof is by induction on D(I',7). Since 7 ¢ U, it follows that D(I',7) > 1. If
D(F,T) =1, then 7 = Cl(ﬂl), N(Cl(’ftl)) C U and |I| < 2.

Suppose that D(T',7) = M > 1. Assume that, for all types p and sets of constructors
'y C T such that D(Ty,p) < M, the result holds. Since the result obviously holds
if |I| < 2, suppose |I| > 2 so that 79 is not a parameter. Consider the sequence
{(Ci(u;), i) | © € I'} where I' is an index set starting at 2, ¢| is the identity
substitution and, for each i € I', we have C;j(u;)y; = 7). Since 7; «C;_1(u;—1),
Pipy = 1 for each i € I'. As in the first paragraph, for each i € I',)i | <* 1.
However, 15 <t C'y(@1). Thus, by the Reflexive Condition and Lemma 3.2, for each 7 € I',
we have C; # C4. Thus, for each i € I', we have C; € TV where I' =T\ {C}}. However,

D(I',73) =d(r2) + D(T,7) —d(r) = Y d(o).
geN(C1 (1))

Hence, as d(7) > 0 and 5 € N (Cy(a)), D(T',72) < M and we can use the induction
hypothesis. Hence I’ is finite.

Assume now that I’ is maximal with respect to the above conditions and that |I'| = N’
and suppose K = N' 4+ 1 € I. (If K ¢ I, then, as I’ is finite, I is finite.) Then
Tk} | = u where u is parameter since, if Ty | = Ck (UK)Py, then K also satisfies
the above conditions so that I’ is not maximal. Thus ¢, is the identity substitution
and Tg = u. By the transparency condition, since 7x <* Cy(u1), v € u1. As Y1 =
Yhe_ 41, we have Y1 =1 and T _1 € uitp1. Hence d(trpr—1) < d(7) so that

DT, 7Y —1) < D(T', 7).

3.5. TRAVERSING CONCRETE TERMS 33

77777777777777777777777777777777

ET) N[E(7)]) (D] || N
L”y//””’”””””””” oo ””’”\\yﬂ’ ”””
7

Figure 8: Term tree for N([E(7)])"¢**(")

Hence, the inductive hypothesis can be applied to the remaining sequence starting at
T . Thus the subsequence starting at 7x is finite and therefore the complete sequence
starting at 7 is finite. O

3.5 Traversing Concrete Terms

We now define termination of a term, as well as functions that extract certain subterms
of a term.

From now on, we shall often annotate a term ¢ with a type ¢ by writing t*. The use
of this notation always implies that the type of £ must be a (possibly trivial) instance of
¢. The annotation ¢ gives the (type) context in which ¢ is used. If S is a set of terms,
then S? denotes the set of terms in S, each annotated with ¢.

Definition 3.4 [subterm] Let t® be a term. Then ¢ is a subterm of ¢* at depth 0.

If s = fir. 70,7 (51,--.,50) and for some type substitution), s is a subterm of ¢
at depth d, then sg“p is a subterm of t* at depth d + 1 for i € {1,...,n}. We write
57 <* t? if 57 is a subterm of ¢? at some depth d (s” <t? when d = 1). 4

It can be seen that s”<*t® implies 0 <* . When the superscripts are ignored, the
above is the usual definition of a subterm. The superscripts provide a uniform way of
describing the “polymorphic type relationship” between a term and its subterms, which
is independent of further instantiation.

Example 3.5 x' is a subterm of E(x)"***(") and 7V is a subterm of E(7)"=*("). a

Definition 3.5 [recursive subterm| Let s” and ¢” be terms such that s” <*¢7, and ¢
a type such that o >~ ¢ and 7<*¢. Then s? is a ¢-recursive subterm of ¢7. If
furthermore 7 = ¢, then s? is a recursive subterm of ¢”. <

In particular, for every type ¢, a variable is always a ¢-recursive subterm of itself. The
correspondence between subterms and subterm types can be illustrated by drawing the
term as tree that resembles the corresponding type graph.

Example 3.6 The term tree for t = N([E(7)])"***(") is given in Figure 8 where the node
for ¢ is highlighted. Each box drawn with solid lines stands for a subterm. We can map
this tree onto the type graph for Nest(v) in Figure 6 by replacing the subgraphs enclosed

34 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMS

with dotted lines with corresponding nodes in the type graph. Thus the recursive
subterms of ¢ occur in the boxes corresponding to nodes in the SCC of Nest(v). All
subterms of ¢ except 7V are recursive subterms of ¢.

Note that E(7)¥st(¥) is a Nest (v)-recursive subterm of [E(7)]tst(Mest(V)) (in Defi-
nition 3.5, take 0 = ¢ = Nest(v) and 7 = List(Nest(v))). However, E(7)" is not a
recursive subterm of [E(7)]445t(™),

regarded as a recursive subterm of that list depends on the context. <

Thus whether or not a member of a list should be

We now define termination of a term. Consider a term ¢?, where ¢ is simple. Termina-
tion of ¢t means that no recursive subterm of ¢? is a variable. The formal definition is
slightly more general.

Definition 3.6 [termination function Z] Let ¢” be a term and ¢ be a type such that
T < ¢. Define Z(t7,¢) = false if a ¢-recursive subterm of ¢7 is a variable, and true
otherwise.

A term ¢ is terminated if ¢ = fi,, . - (t1,...,t,) and Z(7,7) = true® A term
is open if it is not terminated. For a set S of terms define Z(S7,¢) = A,cq Z(t7, ¢).
We omit 7 in the expression Z(t7, ¢) whenever 7 = ¢. 4

Example 3.7 Any variable x is open. The term 7 has no variable subterm, therefore
Z(7,Int) = true and 7 is terminated. The term [x]*°*(®) has itself and Nillist(w)
as recursive subterms, therefore Z([x],List(u)) = true and [x] is terminated. How-
ever, [x]kist(Nest(v)) hag x¥est(v) a5 a Nest (v)-recursive subterm, and so it follows that

Z([x]LiSt(NeSt(v)),Nest(v)) = false. Furthermore, N([x])"¢5*(") has x"¢s*(") as a, recursive
subterm, so Z(N([x]),Nest(v)) = false and N([x]) is open. 4

The abstract domain should not only characterise termination, but also the instantiation
of subterms of a term. We define functions which extract sets of subterms from a term.

Definition 3.7 [extractor £7 for o] Let ™ be a term and ¢, o be types such that 7 ¢
and o0 € N (¢). Let R be the set of ¢-recursive subterms of 7. Define

E(t",¢) =wvars(R) U {s|r” € R and s7 «rf}.

For a set S7 of terms define £7(S7,¢) = U;cs E7(17, ¢). As with Z, we write £7(17, T)
simply as £7(t, 7). N

Example 3.8 For the term N([E(7)]) of type Nest(Int), we have

E(N([E(7)]), Nest(v)) = {7}.

The type Table(u) has three non-recursive subterm types u, Balance and String,
and so there are three extractor functions: &, which extracts all value subterms;
gBalance " which extracts all arguments containing balancing information; and £5t*ing,
which extracts all key subterms. In particular, this means that for a term ¢ of type

Table(String), both £5t71%¢(¢) and £%(¢) would contain terms of type String. 4

3Note that this includes the case that ¢ is a constant.

3.5. TRAVERSING CONCRETE TERMS 35

Note that a priori, the extracted terms have no type annotation. This is because, in
the proofs, we sometimes need to write an expression such as £7(£°(t,)%, ¢), which
reads: first compute £P(t, 7), then annotate it with pi, then pass it to £7.

Note also that if £ has a ¢-recursive subterm which is a variable, then this variable
is always extracted. Intuitively this is because this variable might later be instantiated
to a term which has variable subterms of type o. Thus the property “€7(¢", ¢) does not
contain variables” is closed under instantiation of ¢.

The following lemma shows that Z and £7 can be expressed in terms of the im-
mediate subterms of a term. This provides the basis for defining the abstraction of a
(normal form) equation in a concrete program, which naturally involves a term and its
immediate subterms. Actually, we could have defined Z and £7 by this property, but
the definition using subterms is probably more intuitive.

Lemma 3.4 Let t = f; . ~(t1,...,t,) be a term and o € N'(7). Then

2(t,r) = N2
T >}]IT
E(t,m) = {tilm=0} U |JET(T, 7).
T >X}]T
PROOF. Let r” be a T-recursive subterm of ¢;’, for some i € {1,...,n} where 7; > 7.

Then by Definitions 3.4 and 3.5, p >< 7 and r? <* {7, and hence r” is a recursive subterm
of 17.

Now let r” be a recursive subterm of ¢”. Then either r» = t" or, for some i € {1,...,n},
r? <*¢7". In the latter case, by Definitions 3.4 and 3.5, p<* 7, 7;<7 and p < 7. Hence,
by Lemma 3.2, 7; 1 7 so that 7 is a 7-recursive subterm of ¢;'.

Thus the recursive subterms of ¢ are ¢, together with the 7-recursive subterms of ¢;', for
all 7; > 7. The result then follows from Definitions 3.6 and 3.7. O

The following lemmas are needed in the proof of Lemma 3.7, which is the key lemma
used to prove Theorem 4.3.

Lemma 3.5 Let ¢ be a type, ¥ a type substitution, and ¢ a term having a type which
is an instance of ¢1p. If s is a subterm of t#, then s has a type which is an instance of

T,

PROOF. Induction on the depth of subterms. O

Lemma 3.6 Let 01, 09,03 be types. If 01 1 09 and 091 1 g3 for some type substitution
1 then o1 < o3.

ProOF. By Lemma 3.1 it follows that o119 <* o3 and o3 <* o11). O

Consider simple types ¢ and 7 such that 7¢ < ¢ for some type substitution 1 (for
example ¢ = Nest(v), 7 = List(u) and and ¢ = {u/Nest(v)}). The following key
lemma, relates ¢ with 7 with respect to the termination and extractor functions.

36 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMS

Lemma 3.7 Let ¢ and 7 be simple types such that 71 > ¢ for some 1, let ¢ be a term
having a type which is an instance of 71, and o € N (¢). Then

Z(t,¢) = Z(t,r) A N\NEZE(t 7)Y,) (1)
PEN(T)
pY<Ip

Ev,¢) = Jermyu (JET(EP (), 9) (2)
C

PrROOF. The proof consists of four parts. In Part 1, we define a number of sets of
subterms of . We then show six propositions which say that each expression occurring
in (1) and (2) can be expressed in terms of these sets. In Part 2 we show how the left
and right hand sides of both (1) and (2) can be related using these sets. This is then
used in Part 3 to show (1), and in Part 4 to show (2).

PART 1: To avoid confusion between the many symbols occurring in the proof, keep in
mind that ¢, 7, 0 and 1 occur in the statement and thus are fized. We use f as an
abbreviation for f/ .1 -1y (not fir,..7,,r), as earlier in this chapter), and 7 to denote

(r1,...,7rn). Superscripts are omitted where irrelevant. Define
R = {r*|r¥is a ¢ recursive subterm of t"%}
S = {ri| f(®™" € Rand ¢/ = o}
A = {r¥|r¥is a T-recursive subterm of ¢"}.

Note that, by Lemma 3.5, each r“ € A has a type which is an instance of wt). Further-
more for all p € N(7) define

B ={ri| f(r)""" € A and 7/y/ = p}.

Note that, by Lemma 3.5, each r; € B has a type which is an instance of 7,9y (= pi).
For all p € N(7) with pi) 1 ¢ define

CP = {r¥|r¥is a ¢-recursive subterm of some s*¥,s € B*}
D’ = {r| f(®)7Y € CP and 1}y = o}.

S1-S6 state how these sets relate to the computations of (1) and (2).

S1 Z(t™,$) = false if and only if vars(R) # 0.

S2 Z(t,7) = false if and only if vars(A) # 0.

S3 E7(tV, ¢) = vars(

S4 For each p € N(7), E(t,7) = vars(4) U BP.

S5 For each p € N (1) with pip > ¢, Z(EP(t,7)PV, ¢) = false iff vars(CP U A) # (.
)

S6 For each p € N(7) with pip 1 ¢, E7(EP(t, 7)Y, $) = vars(A) Uwvars(CP) U D?.

3.5. TRAVERSING CONCRETE TERMS 37

S1 and S2 follow from Definition 3.6 and the definitions of R and A. S3 and S4 follow
from Definition 3.7 and the definitions of R, S, A and B”. S5 and S6 are proved below.
First we prove Sb.

Z(EP(t,T)PV, @) = false +—=

(by S4)

Z((vars(A) U BP)PY, ¢) = false =
(by Def. 3.6)
vars({r* | r¥ is a ¢—recursive subterm of s”¥,s € vars(A) U B*}) £ <
(by Def. 3.5)

vars(A) Uvars({r¥ | r is a ¢—recursive subterm of s?¥,s € B?}) #) <=
(by Def. of C?)
vars(A) Uwvars(CP) # (.

We now prove S6.

50(5[) (ta 7-)["/1’ ¢) =
(by S4)
E7((vars(A) U BP)PY, @) =
(by Def. 3.7)
vars({r* | r is a ¢—recursive subterm of s?¥,s € vars(A) U B?}) U
{ri | f(7)7Y" is a ¢p—recursive subterm of s?¥,s € B, 7l})/ = 0} =
(by Def. 3.5)
vars(A) Uvars({r® | r* is a ¢—recursive subterm of s*¥,s € B*})U
{ri | f(F)™? is a ¢p—recursive subterm of s*¥,s € B?,7/¢y = o} =
(by Def. of C?, D?)
vars(A) Uwvars(CP) U DP.

PART 2: Let r* be a subterm of ¢ at depth d. We show by induction on d that ¥ € R
if and only if 7 € A or r*¥ € C” for some p € N (1) with pip > ¢. For d = 0 this
follows from the definitions of R and A.

Suppose now that r“ is a subterm of ¢ at depth d > 0. Then there exists a subterm
(7)Y of t7 at depth d — 1 such that for some i € {1,...,n}, r = r; and w = 7/’

“=7: Assume that Y € R. Since wy > ¢, it follows from Lemma 3.2 that 711 a ¢
so that f(7)"%'¥ € R. By the induction hypothesis there are two possibilities:

a) f(7)"Y € A. Since 74’ >4 7, either w > 7 or waiT. If w a7 then r* € A. If
w< T, that is w € N(7), then r € B and hence r*¥ € C%, and therefore r*¥ € C?
for some p € N (7).

b) (77" e CP for some p € N(r) with pp 1 ¢. Since wip 1 ¢ it follows that
rev e CP.

“<”: Again we break this up into cases:

38 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMS

a) ¥ € A. Since w < 7, it follows by Lemma 3.2 that 74 1 7 so that f(7)7% € A.
By the induction hypothesis f(7)" %% € R. Since w 1 7 and 7¢ 1 ¢, it follows
by Lemma 3.6 that r“¥ € R.

b) r¥¥ € CP for some p € N(1) with pyp > ¢. By definition of C” there are two
possibilities: either r € B”, in which case w = p and f(7)"% € A, or wi) = ¢
and f(f)lelw is a subterm of an element of B”. In the latter case, by Lemma 3.2,
Tp'p s so that f(F)T VY e CP.

In both cases, by the induction hypothesis f(7)”*'% € R. In the first case, since
w = p and pyp > ¢, it follows that r“¥ € R. In the second case, since wip > ¢,
Y ¢ R.

PART 3: We prove (1). By S1, Z(t"™Y, ¢) = false if and only if vars(R) # (. By Part
2, vars(R) # 0 if and only if vars(A) # 0 or vars(C?) # 0 for some p € N(7) with
pY <1 ¢. Then, by S2 and S5, this holds if and only if

Z(t,T) A /\Z(E”(t, 7)Y, ¢) = false.

PEN(9)
PP

PART 4: We prove (2) by showing that:

vars(R)U S = U (vars(A) U B?) U U (vars(C*) U DP).
pY=0c pe<acp

The result then follows from S3, S4, and S6.

“C”: For a variable z € R it follows by Part 2 that z € A, or z € C? for some p € N (1)
with pi > ¢. For a term r € S, there is f(7)” Y'Y € R such that r = r;, and 79/ = 0.
By Part 2, either f(7)7% € A, or f(7)" %% € C for some p € N'(7) with pip < .

Assume first f(7)"Y" € A. We show that r € B” for some p € N(7) with pyp = o,
namely p = 7/¢'. Since by construction of A, 7/¢' <* 7, we only have to show that not
7/ 1 7. By Lemma 3.6, 7/¢)' > 7, together with 71 > ¢, would imply 7/4'1p > .
This however is a contradiction, since it follows from 7)1/t = o that 79" «1 ¢.

Assume now f (7)™ Y% € C for some p € N'(7) with pth b1 ¢. Since 7/4)'sh = o it follows
that r € D*.

“D”: For a variable x € A, or z € C? for some p € N (1) with pip 1 ¢, it follows by
Part 2 that = € R.

Secondly assume r € B? for some p € N(7) with pip = 0. By definition, there is
f(®™* € A such that r = r; and 7/¢)' = p. By Part 2, f(7)"¥Y € R, and since
T/p'p = o, it follows that r € S.

Thirdly assume r € DP for some p € N (1) with pip 1 ¢. By definition, there is
f(A)T¥Y € CP such that r = r; and 7/¢'yp = 0. By Part 2, f(F)"¥'Y € R, and since
/' = o, it follows that r € S. O

3.5. TRAVERSING CONCRETE TERMS 39

Example 3.9 First let ¢ = 7 = List(u) and v be the identity. Then by Definition 3.3
there is no p such that p € N'(7) and pt > ¢. Therefore in both equations of Lemma 3.7,
the right half of the right hand side is empty. Furthermore there is obviously exactly
one p such that piy = o, namely p = 0. Thus the equations read

Z(t,7) = Z(,7) (1)
er(t,r) = E°(t7) (2)
In the same way, Lemma 3.7 reduces to a trivial statement for the Tables module

(Example 3.3) and in fact for many types that are commonly used. However for Exam-
ple 3.6, Lemma 3.7 says that

Z([E(T)]EtMest) Nest(v)) = Z([E(7)],List(u)) A Z(E*([E(7)], List(u)), Nest(v))
(1)
EV([E(7)]4stWest (") Nest(v)) = 0 U EY(EY([E(7)], List(u)), Nest(v))
(2)
<

In this chapter, we have defined the aspects of the structure of a (concrete) term which
we want to characterise. First, we are interested in termination of a term. Secondly, we
group the subterms of a term together according to their types. This is done using the
extractor functions. In the next chapter, we will define abstract terms based on these
concepts.

Chapter 4

Abstract Domains for Mode
Analysis

In this chapter, we describe a mode analysis using abstract domains based on the ter-
mination and extractor functions introduced in the previous chapter.

This chapter is organised as follows. Section 4.1 defines the abstract domains and the
abstraction function for terms. Section 4.2 defines termination and extractor functions
for abstract terms, in analogy to the functions for concrete terms. Section 4.3 defines an
abstract program and shows how its semantics approximates its concrete counterpart.
Section 4.4 reports on experiments. Section 4.5 discusses the results and related work.

4.1 Abstraction of Terms

We first define an abstract domain for each type. Each abstract domain is a term struc-
ture, built using the constant symbols Bot, Any, Ter, Open, and the function symbols
CA, for each C € ¥,. The meaning of these symbols will be explained shortly.

Definition 4.1 [abstract domain] If ¢ is a parameter, define
Dy = {Bot, Any}.

If C(a) is a simple type with N (C(u)) = (o1,...,0m) and ¢ = C(u)y where 1) is a type
substitution, define

Dy = {CAby,... by, Ter) | bj € Dy} U {C*(Any, ..., Any, Open), Bot, Any}.
—_——

m times
Dy is the abstract domain for ¢. If b € Dy, then b is an abstract term for ¢. <

By Lemma 3.3, every abstract domain is well-defined. We shall see later that if an
abstract term C’A(bl,...,bm,Ter) abstracts a term ¢, then each b; corresponds to a
non-recursive subterm type o; of C'(@). The b; characterises the degree of instantiation
of the subterms extracted by £797. In particular, the value Any for b; corresponds to the
case when a variable is extracted by £ from ¢. Thus, if ¢ is a non-variable open term,
each b; must have the value Any.

40

4.1. ABSTRACTION OF TERMS 41

The termination flags Ter and Open in the last argument position of an abstract
term are not abstract terms but Boolean flags. The flag Ter abstracts the property of
a term being terminated (and thus corresponds to true) and Open that of being open
(and thus corresponds to false). Note that for some types, for example Int, a term
can be open only if it is a variable. In these cases, the termination flag is omitted in
the implementation (see Section 4.4). We keep it in the theory for the sake of a uniform
presentation.

Example 4.1 Consider the examples in Section 3.2 (see also Figure 6 on page 31).
Drnt = {Int*(Ter), Int*(Open), Bot, Any}.

The following examples illustrate that Definition 4.1 is “parametric”.

DiList(tnt) = {ListA(i,Ter) | i € Dine} U{List*(Any, Open), Bot, Any}
DList(string) = {ListA(i, Ter) | i € Dstring | U{List*(Any, Open), Bot, Any}
Dristw) = {ListA(i, Ter) | i € Dy} U{List*(Any, Open), Bot, Any}.

Some further examples are, assuming that u < Balance < String:

Dpalance = {BalanceA(Ter), BalanceA(Upen), Bot, Any}
Dstring = {String”(Ter), String”(Open), Bot, Any}
DTable(Int) = {TableA(i, b, s, Ter) | i € D1nt, b € Dralance, S € DString}U
{Table”(Any, Any, Any, Open), Bot, Any}
Dyest(tnt) = {Nest“(i, Ter) | i € Drny} U {Nest(Any, Open), Bot, Any}.

We now define an order on abstract terms which has the usual interpretation that
“smaller” stands for “more precise”. Since the least upper and greatest lower bound of
two abstract terms with respect to this order always exist, it follows that each abstract
domain is a lattice.

Definition 4.2 [order < on abstract terms] For the termination flags define Ter <
Open. For abstract terms, < is defined as follows:

Bot < b if b # Bot,
b < Any if b # Any,
CA(b1,...,bm,c) < CADY,... by, c) ifc<c and b; <b, j€{l,...,m}.

For a set S of abstract terms, let LIS denote the least upper bound of S with respect
to the order <. N

We now define the abstraction function for terms. This definition needs an abstraction
of truth values as an auxiliary construction. The abstraction function formalises the
relationship between concrete and abstract terms, so that the results of a mode analysis
can be interpreted. The abstraction function is never actually computed during the
analysis.

42 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS

Definition 4.3 [abstraction function « for terms] Let 7 = C(@) and let N (1) =
(01,...,0m). For the truth values define a(true) = Ter and a(false) = Open. If S is a

set of terms, define
a($) = Ufa(t) | t € S},

where a(t) is defined as:

Any if ¢ is a variable,
CHa(E7(t, 7)), - €7 (t, 7)), a(Z(8,7))) i = firymy) (B t)-

N

Note that this definition is based on the fact that a(f)) = Bot. From this it follows that
the abstraction of a constant ¢ = fi;y is C4(Bot,...,Bot, Ter).

The least upper bound of a set of abstract terms gives a safe approximation for
the instantiation of all corresponding concrete terms. Safe means that each concrete
term is at least as instantiated as indicated by the least upper bound. As we will see in
Section 4.3, our mode analysis can only give approximations of the instantiation of terms
in this sense. It can never infer that a term is definitely free, that is, an uninstantiated
variable. Inferring that a term is definitely free requires different techniques [BDB™96].

Example 4.2 We illustrate Definition 4.3.

a(7) = Int"(Ter) (1 =1Int,m =0,n=0)

a(Nil) (r = List(u), N (1) = (u),n = 0)
= List(a(0), a(Z(Nil,7)))
= List*(Bot, Ter)

a(Cons(7,Nil)) (r = List(u), N (1) = (u),n = 2)
= List*(U{(7)}, a(Z(Cons(7,Nil), 7)))
= List?(Int*(Ter), Ter).

Table 1 gives some further examples. Note that there is no term of type Int whose
abstraction is Int*(Open). N

The following is an auxiliary lemma needed for the proof of Lemma 4.2.

Lemma 4.1 Let t” be a term. Every subterm of ¢” is either a recursive subterm of ¢7,
or a subterm of a term in £7(t,7), for some o € N (7).

PROOF. The proof is by induction on the depth of subterms of ¢”. For the base case
observe that 7 is a recursive subterm of itself.

Now suppose the result holds for all subterms of ¢” up to depth i. Let r” be a subterm
of t7 at depth ¢ and w* «r?. If P is not a recursive subterm of ¢7, then r” is a subterm
of a term in E7(t,7) for some o € N(7), and thus w* is also a subterm of a term in
E7(t, 7). If rP is a recursive subterm of ¢7, then since p 1 7 and w < p, by Definition 3.3
either w <t 7 or w < 7. Thus either w* is a recursive subterm of t” or w € E¥(¢, 7). O

The following lemma shows that the abstraction captures groundness.

4.1. ABSTRACTION OF TERMS 43

Table 1: Some terms, their types, and abstractions

term type abstraction

X u Any

[7,x] List(Int) List(Any, Ter)

[71x] List (Int) List“(Any, Open)

E(7) Nest (Int) Nest(Int"(Ter), Ter)

[E(7)] List (Nest(Int)) List*(Nest?(Int“(Ter),Ter), Ter)
N([E(7)]) Nest (Int) Nest(Int"(Ter), Ter)
N([E(7),x]) Nest(Int) Nest“(Any, Open)

N([E(7)|x]) Nest(Int) Nest“(Any, Open)

Lemma 4.2 Let S be a set of terms having the same type. Then a variable occurs in
an element of S (that is S is non-ground) if and only if Any or Open occurs in «(S).

PrROOF. There are three cases depending on whether S is empty, contains a variable,
or neither.

CASE 1: S is empty. Then «(S) = Bot.
CASE 2: z € S for some variable z. Then «a(z) = Any and thus a(S) = Any.

CASE 3: S contains no variables but contains a non-variable term. Then the type of
terms in S is of the form 71 for some type substitution ¢ and simple type 7 = C(u).
Suppose that N'(7) = (o1,...,04) for some m > 0. Then there are abstract terms
bi,...,by and a termination flag b such that

a(S) = CAby, ... ,by,b).

There are two subcases.

CASE 3a: For some t € S and variable x, z” is a recursive subterm of ¢”. Then
Z(t,7) = Open. Hence b = Open and

a(S) = CA(by, ..., bm,Open).

CASE 3b: No term in S has a recursive subterm that is a variable. Then Z(¢,7) = Ter
for each ¢ € S. Hence, by Definition 4.2, b = Ter. The proof for this case is by induction
on the length of the longest <« -sequence (see Lemma 3.3) for 71¢). The base case is when
m = 0. Then by Lemma 4.1, every term in S is ground and a(S) = C*(Ter).

Now suppose m > 0. By Lemma 4.1, S contains a non-ground term if and only if
€% (t,T) contains a non-ground term for some ¢ € S and j € {1,...,m}. By Defini-
tion 4.3

a(S) = I_I{C““(oz(é"’1 (t,7)),...,a(E7™(t, 7)), Ter) | t7 € S}.

Thus, by Definitions 4.2 and 4.3, for each j € {1,...,m}, we have b; = a(€% (S, 7)). Let
je{l,...,m}. If £79 (S, 1) is empty, by Case 1 above, «(E% (S, 7)) = Bot. If £7i (S, 1)

44 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS

contains a variable, by Case 2 above, a(£77 (S, 7)) = Any. Otherwise, £% (S, 7) contains
a non-variable term and the terms in £% (S, 7) have type o1, for which, by induction
hypothesis, the result holds. Hence b; has an occurrence of Any or Open if and only if
E7 (S, T) contains a non-ground term. It follows that «(S) has an occurrence of Any or
Open if and only if S contains a non-ground term. O

4.2 Traversing Abstract Terms

In order to define abstract unification and, in particular, the abstraction of an equation
in a program, we require an abstract termination function and abstract extractors sim-
ilar to those already defined for concrete terms. The type superscript annotation for
concrete terms is also useful for abstract terms.

Definition 4.4 [abstract termination function and extractor for o] Let ¢ and 7 = C'(u)
be simple types such that T > ¢ for some 1, and N(7) = (o1,...,0m,). Let b be an
abstract term for an instance of 7.

1. Abstract termination function.

AZ(b™, ¢) = Open if b = Any

AZ(™, $) = Ter if b = Bot

AZW™, ¢) =cn NAZ(BTY,) if b= CA(by,...,bm,c).
0P

2. Abstract extractor for 0. Let o € N(¢).

AE7 (b, ¢) = Any if b = Any
AET (b, ¢) = Bot if b = Bot
AET(b™,¢) = U({b; | oj9p = o }U
[AE7MTY,) o ad}) it b=CA(br,...,bm,c).

N

As for the concrete termination functions and extractors, we omit the superscript 71 in
the expressions AZ(b7Y, ¢) and AE? (0™, ¢) whenever 7 = ¢ and 1) is the identity. In
this (very common) case, the abstract termination function is merely a projection onto
the termination flag of an abstract term (or Open if the abstract term is Any). Similarly,
the abstract extractor for o is merely a projection onto the j* argument of an abstract
term, where o = 0. Note the similarity between the above definition and Lemma 3.4.

Example 4.3

AZ(List*(Any, Ter)tst(Mest(v)) Nest(v)) = Ter A AZ(Any,Nest(v)) = Open.
AE' (ListA(Any, Ter)tist(est(v)) Nest(v)) = Any.
AZ(List”(Nest?(Int*(Ter), Ter), Ter) st (est(v)) Nest(v)) =
Ter A AZ(Nest?(Int*(Ter), Ter), Nest(v)) = Ter.
AE' (List”(Nest” (Int"(Ter), Ter), Ter) st (est(v)) Nest(v)) =

AE' (NestA(Int(Ter), Ter), Nest(v)) = Int“(Ter).

4.2. TRAVERSING ABSTRACT TERMS 45

N

The following theorem states the fundamental relationship between concrete and ab-
stract termination functions and extractors.

Theorem 4.3 Let ¢ and 7 = C'(@) be simple types such that 7 1 ¢ for some 1), and
o € N(¢). Let t™¥ be a term. Then

AZ(t™,¢) = AZ(a(t)™,) (1)
A&7V,) = AE7(a(t),9) (2)

PrOOF. The proof is by induction on the structure of ¢. First assume ¢ is a variable z
or a constant d. Here we omit the type superscripts because they are irrelevant.

a(Z(z,9)) = a(false) = Open = AZ(Any,¢) = AZ(a(z),P).

a(E%(z,9)) = U{a(z)} = Any = AE7(Any,¢) = AE(a(z),d).
a(Z(d,¢)) = a(true) = Ter = AZ(C4(Bot,...,Bot,Ter),¢) = AZ(a(d),q).

al7(d,¢)) =Ub = Bot = AE7(C4(Bot,...,Bot, Ter),¢) = AL (a(d), H).

Now assume ¢ is a compound term. Let N'(7) = (o1,...,04,). In the following sequences
of equations, * marks steps which use straightforward manipulations such as rearranging
least upper bounds or applications of « to sets. We show (1) working from right to left.

AZ(a(t)V, ¢) = (Definition 4.3)

AZ(CHa(ET (b, 7)), ..., a(ET™ (t, 7)), a(Z(t, 7))V, ¢) = (Definition 4.4)

alZ(t,T)) A /\ AZ(a(E% (t, 7)), ¢) = (* and hypothesis)
TP

alZ(t, 1)) A /\oz(Z(E”f (t, 7)Y, ¢)) = (+ and Lemma 3.7)
TP

We show (2), also working from right to left.

AE7 (a(t)™¥, @) = (Definition 4.3)
AET (CA(a(E7 (t, 7)), ..., a(E7m (8, 7)), (Z(t, 7))V, @) = (Definition 4.4)
U{a(E7 (8,7)) | ojp = o} U{AET((ET (¢,)Y, @) | e > $}) =

(* and hypothesis)
U Ut (2, 7))} U J{aE (€% (t,1)77, ¢))}) =
ojY=c ojP><ip
(* and Lemma, 3.7)
a(E7(tTY, b))

Example 4.4 This illustrates Theorem 4.3 for ¢ = 7¢) = List(u) and o = u.

a(Z([7],List(u))) = Ter = AZ(List*(Int*(Ter), Ter),List(u))
a(&%([7),List(u))) = IntA(Ter) = .AE%(List”(Int”(Ter),Ter),List(u)).

46 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS

4.3 Abstract Compilation

We now show how the abstract domains can be used in the context of abstract compi-
lation. We define an abstract program and show that it is a safe approximation of the
concrete program with respect to the usual operational semantics.

In a (normal form) program, each unification is made explicit by an equation. We
now define an abstraction of such an equation. Thus we define for each f € Xy, a
predicate which expresses the dependency between a(f(t1,...,t,)) and a(ty),. .., a(t,).

Definition 4.5 [abstract dependency fyep] Let fir ;. - € Xy where 7 = C(u) and
N(7) = (01,..-,0m). Then fyep(CA(ay,...,am,c),b1,...,b,) holds if

aj = U{bi| 7 =03 U{AET (b, T) | TixT}) forallj € {1,...,m} (1)
c = N AZ(7,7) (2)

T >X}T q

Example 4.5 To give an idea of how Definition 4.5 translates into code, consider Cons.
Assuming that Lub(a, b, ¢) holds if and only if ¢ = Li{a, b}, one clause for Consgep, might
be:

Cons_dep(List_a(c,Ter),b,List_a(a,Ter)) <-
Lub(a,b,c).

The first argument of Consgep, stands for a list, and the other arguments for the head
and tail of this list. Note however that the code is slightly simplified. The reason is
that unless the type of a, b, and ¢ is specified, there are infinitely many answers for
Lub(a,b,c), which causes a termination problem. Therefore, in the implementation,
this clause is parametrised with the type of a, b, and c. <

Lemma 4.4 If t = f(t1,...,t,) then fyep(a(t), a(t1),...,a(t,)) holds.
PROOF. Suppose N (1) = (01,...,0m) and 7 = C(u). By Definition 4.3

a(t) = CH (&7 (t,7)), .., €7 (8, 7)), Z(t, 7))
We must show (1) and (2) in Definition 4.5. First, we prove (1). For each o; € N(1),

a(E%(t, 1))

a{t;| mn=0;} U U E%(t],T)) (Lemma 3.4)
=U({alt) |7 =0j} Ul{a(é'”f (7, 7)) | i< T}) (moving « inwards)
=U{at) | =0} U{AE (a(t;),7) | s >a7}) (Theorem 4.3).

4.3. ABSTRACT COMPILATION 47

Equation (2) is proven in a similar way:

a(Z(t, 1))
=a(\ Z(t7,7)) (Lemma 3.4)
= /\TiD;T(Z (¢, 7)) (moving « inwards)
= TLKT AZ(a(t;)™,7) (Theorem 4.3).
T
a
Definition 4.6 [abstraction Y of a program] For a normal form equation e define
N(e):{e %fe%softheformzpzy
fdep(Z,y1,...,yn) if eis of the form x = f(y1,...,yn)-
For a normal form atom a and clause K = h < g1 A ... A g; define
N(a) =a
N(K) =R(h) <« X(g1)A... A\R(gp).
For a program P = (L, S) define
R(P) ={X(K) | K € S}U{faep(a,ai,...,an) | faep(a,ai,...,a,) holds}.
N

Example 4.6 In the following we give the usual recursive clause for Append in normal
form and its abstraction.

%kconcrete clause habstract clause

Append (xs,ys,zs) <- Append (xs,ys,zs) <-
xs = [x|x1s] & Cons_dep(xs,x,xls) &
zs = [x|z1s] & Cons_dep(zs,x,zls) &
Append (x1s,ys,zls). Append(x1s,ys,zls).

We now define the operational semantics of concrete and abstract programs. We assume
a fixed language L and program P = (L, S), and a left-to-right computation rule. A
program state is a tuple (G,0) where G is a query and € a substitution. It is an initial
state if 0 is empty. We write C' €, S if C' is a renamed variant of a clause in S.

Definition 4.7 [reduces to] The relation > (“reduces to”) between states is defined
by the following rules:

(hy:...:h,0) 5 (hg:...:hy,00") if hy is ‘z =t and 200" = 66’ (1)
(hioer:hiy0) 5(G i ho s ... by, 00) ith+ G ex S and h00' = 160" (2)

48 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS

Moreover, ~» for j > 0 and ~>* are defined in the usual way. If for an initial query G,
(G, 0) 5 (p(a,...,z,) : H,0) 5 (H,0'),

we call p(z1,...,2,)0 a call pattern and p(z1,...,2,)0" an answer pattern for p. N

Note that it is common to require that 6’ is the most general unifier, but nevertheless,
our notion of “reduces” with arbitrary unifier has been considered by Lloyd [Llo87].

Theorem 4.5 Let H, H' be queries, 0 a substitution and j > 0. If (H,0) 57 (H',6),
then (R(H),0) "33 (R(H'),0), where 0% = {z/a(20) | z € dom(0)}.

PROOF. By Definition 4.7, (H,0) ~> 7 (H',0) if and only if (H,0) 7 (H',6), and
likewise for RX(P). Therefore it is enough to show that for all j >0

(H,0) 57 (H',0) implies (R(H),0%) "7 (R(H'),0%). (3)
The proof is by induction on j. The base case j = 0 holds since
(R(H),0%) =50 (R(H), 6%).

For the induction step, assume (3) holds for some j > 0. We show that for every query
H”

R(P)

(H,0) Si+1(H",0) implies (R(H),0%) ~5'7+1 (R(H"),6%).
If (H,0) 53+ (H",0) does not hold, the result is trivial. If (H,@) 53+ (H",), then

(H,0) Li o (H',0) S (H",6) for some query H', and
(R(H),0%) “Bd (R(H),0) by hypothesis.
It only remains to be shown that (R(H'),0%) "5 (R(H"),0%). We distinguish two

cases depending on whether Rule (1) or (2) of Definition 4.7 was used for the step
(H',0) 5 (H",0).

CASE 1: Rule (1) was used. H' = hy : ... : hy where hy is ‘c = t’, and t = y
or t = f(x1,...,2,). In the first case N(h;) = hy. Since z0 = yb, it follows that
R(P)

{z/a(z0),y/a(z0)} C 6% and therefore z0* = yf*. Thus (N(H'),0%) ~ (N(H"),0%)
by Rule (1). In the second case R(h1) = fgep(z,1,...,%y). Since 20 = f(z10,...,1,0),

{z/a(f(z10,...,2,0)),z1/c(210), ..., 25 /c(x,0)} C O%.

Hence, by Lemma 4.4, fyep(z,21,...,2,) 0% holds so that feep(z,21,...,2,) 0% € R(P)

R(P)

by Definition 4.6. Thus (R(H'),0%) ~ (R(H"),6%) by Rule (2).

CASE 2: Rule (2) was used. H' = hy : ... : hy where h + G €5 S and h = h16. By
Definition 4.6, R(h; < G) €y X(P). Furthermore X(h) has the form Q(z), and R(h;)
has the form Q(y). Since z6 = y# it follows that Q(z) 0% = Q(y) 0. 0

4.4. IMPLEMENTATION AND RESULTS 49

4.4 Implementation and Results

From now on we refer to the abstract domains defined in this chapter as typed domains.
We have implemented the mode analysis for object programs in Godel. This imple-
mentation naturally falls into two stages: in the first stage, the language declarations
are analysed in order to construct the typed domains, and the program clauses are ab-
stracted. In the second stage, the abstract program is evaluated using standard abstract
compilation techniques.

We have implemented the first stage in Godel, using the Godel meta-programming
facilities. The analysed program may consist of several (system or user-defined) modules,
but its abstraction will always be a one-module program. Since virtually all Godel
programs use Godel system modules!, these are treated specially in our implementation
in order to avoid analysing and abstracting them anew each time.

Godel meta-programming is slow, but this first stage scales well, as the time for
abstracting the clauses of a program is linear in their number. Analysing the type
declarations is not a problem in practice. We have analysed contrived programs with
extremely complex type declarations within a couple of seconds.

The second stage was implemented in Prolog, so that an existing analyser could
be used. Abstract programs produced by the first stage were transformed into Prolog.
All call and answer patterns, which may arise in a derivation of an abstract program
for a given query, are computed by the analyser. By Theorem 4.5, these patterns
correspond to patterns in the derivation of the concrete program. For example a call
p(Any, Int“*(Ter)) in a derivation of the abstract program indicates that there may be
a call p(x,7) in a derivation of the concrete program.

In Table 2, the precision of the typed domain for Table(Int) (Example 4.1) is com-
pared with a domain that can only distinguish between ground and non-ground terms.
The latter domain has been shown by Codish and Demoen [CD95] to be equivalent to
the well-known Pos domain [MS93]. The arguments of the predicate Insert represent:
a table ¢, a key k, a value v, and a table obtained from ¢ by inserting the node whose
key is k and whose value is v. Table 2 shows some initial call patterns and the answer
pattern that is inferred for each call pattern. For readability, we use some abbreviations
and omit the termination flag for types Integer, Balance and String.

Clearly, inserting a ground node into a ground table gives a ground table. This
could be inferred with the ground/non-ground domain (1) as well as the typed domains
(3). Now consider the insertion of a node with an uninstantiated value into a ground
table. With typed domains, it is inferred that the result is still a table but whose values
may be uninstantiated (4). This cannot be inferred with a ground/non-ground domain
(2). In fact, (2) only says that the answer pattern is no less instantiated than the call
pattern, which is trivial.

We used a modified form of the analyser of Heaton et al. [HHK97] running on a
Sun SPARC Ultra 170. The analysis times for Tables were: (1) 0.09 seconds, (2)
1.57 seconds, (3) 0.81 seconds, (4) 2.03 seconds. Apart from Tables, we also analysed
some small programs, namely Append, Reverse, Flatten (from the Nests module),

Tn Gédel, all built-ins except the equality predicate are provided via system modules.

50 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS

Table 2: Some call and answer patterns for Insert

Ground/non-ground domain:

Insert(ground, ground, ground, any) leads to answer pattern (1)
Insert(ground, ground, ground, ground).

Insert(ground, ground, any, any) leads to answer pattern (2)
Insert(ground, ground, any, any).

Typed domain:

,StrA, Int4, Any) leads to answer pattern (3)
,Str#, IntA, Tab”(Int*, Bal, Str, Ter)).

Insert(Tab(Int, Bal#, Str, Ter
Insert(Tab”(Int*, Bal, Str, Ter
Insert(Tab(Int*, Bal, Str, Ter
Insert(Tab”(Int*, Bal, Str, Ter

,Str, Any, Any) leads to answer pattern (4)
,Str#, Any, Tab”(Any, Bal”, Str#, Ter)).

~ ~— N e

TreeTolList, Quicksort, and Nqueens. For these, all analysis times were below 0.03
seconds and thus too small to be very meaningful. For most of these, the typed domains
resulted in more precise analyses, similarly as explained for Tables.

Our experience is that the domain operations, namely to compute the least upper
bound of two abstract terms, are indeed the bottleneck of the analysis. Therefore
it is crucial to avoid performing these computations unnecessarily. Also one might
compromise some of the precision of the analysis by considering widenings [CC92] for
the sake of efficiency. More work could be done on the embedding of the typed domains
in the analysis. In order to conduct more experiments, one would need a suite of bigger
typed logic programs. A formal comparison between analyses for typed logic programs
and untyped ones is of course difficult.

4.5 Discussion and Related Work

We have presented a general domain construction for mode analysis of typed logic
programs. For common examples (lists, binary trees), our formalism is simple and
yields abstract domains that are comparable to the domains designed by Codish and
Demoen [CD94]. In their formalism, however, an abstract domain for obtaining this
degree of precision for, say, the types in the Tables module, would have to be hand-
crafted. In contrast, our work describes this construction for arbitrary types.

The fundamental concepts of this work are recursive type and non-recursive sub-
term type, which are generalisations of ideas presented previously for lists [CD94]. The
resulting abstract domains are entirely in the spirit of previous work by Codish and oth-
ers [CD94, CL96] and we believe that they provide the highest degree of precision that
a generic domain construction should provide. Even if type declarations that require
the full generality of our formalism are rare, this work is an important contribution
because it helps to understand other, more ad-hoc and pragmatic domain constructions
as instances of a general theory. One could always simplify or prune down our abstract
domains for the sake of efficiency.

4.5. DISCUSSION AND RELATED WORK ol

In its full generality the formalism is, admittedly, rather complex. This is pri-
marily due to function declarations where the range type occurs again as a proper
sub“term” of an argument type, such as the declaration of N in the Nests module (Ex-
ample 3.2). If types were as widespread in logic programming as they are in functional
programming, such declarations would probably not seem very unusual. They are used
in the declarations for rose trees, that is, trees where the number of children of each
node is not fixed [Mee88]. One should also note that while the theory which allows
for a domain construction for, say, Nest (Int) is conceptually complex, the computa-
tional complexity of the actual domain operations for Nest (Int) is lower than for, say,
List(List(List (Int))). In short, the complexity of the abstract domains depends
on the inherent complexity of the type declarations, as illustrated by the type graphs
(Figure 6).

We have built on ideas presented previously for untyped languages [CL96]. Notably
the title of that work says that fype, not mode, dependencies are derived. Even in an
untyped language such as Prolog, one can define types as sets of terms given by some
kind of “declaration”, just as in a typed language [AL94]. In this case type analysis
(inferring that an argument is instantiated to a term of a certain type) is inseparable
from mode analysis. The analysis must account for “incorrectly” typed terms such as
[3]17]. As it cannot be assumed that, say, [3|y] will eventually be bound to a list, it is
abstracted as any, thus not capturing that it is at least partially instantiated. In typed
languages, this problem does not arise. It seems that Codish and Lagoon [CL96] provide
a straightforward domain construction for arbitrary types, but this is not the case. Tt
is not specified what kind of “declarations” are implied, but the examples and theory
suggest that all types are essentially lists and trees. The Tables and Nests examples
given in Section 3.2 are not captured.

Recursive modes [TL97] characterise that the left spine, right spine, or both, of a
term are instantiated. The authors admit that this may be considered an ad-hoc choice,
but on the other hand, they present good experimental results. They do not assume a
typed language and thus cannot exploit type declarations in order to provide a more
generic concept of recursive modes, as we have done by the concept of termination. Also,
the degree of instantiation that we would express by, say, List“(Table”*(Any, Ter), Ter),
cannot be characterised.

A complex system for type analysis of Prolog has been presented by Van Hentenryck
et al. [VCL95]. As far as we can see, this system is not in a formal sense stronger or
weaker than our mode analysis. The domain Pat(Type) used there is infinite, so that
widenings have to be introduced to ensure finiteness, and “the design of widening opera-
tors is experimental in nature” [VCL95]. In contrast, we exploit the type declarations to
construct domains that are inherently finite and whose size is dictated by the complexity
of the type declarations. Similarly, in a paper by Janssens and Bruynooghe [JB92], the
finiteness of abstract domains and terms is ensured by imposing an ad-hoc bound on
the number of symbols.

Barbuti and Giacobazzi have presented a polymorphic type inference for (untyped)
logic programs [BG92]. Tt is assumed that type declarations are given to define a
language of “well-typed” terms, similarly as in typed logic programming languages.
However, the types of the predicate symbols are not declared, but rather inferred. In

52 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS

particular, it might be inferred that some arguments of a predicate are not “well-typed”.
Such information can be useful for debugging programs.

Gallagher et al. have shown that the domain construction of any (static) pro-
gram analysis can be cast in terms of pre-interpretations [GBS95]. Traditionally, pre-
interpretations are used in predicate logic to assign a semantic value to a term, for
example the number ‘2’ to the term 1+1 or 2. However, they can also be used to
specify a program analysis, by choosing an appropriate domain on which these pre-
interpretations operate. The mode analysis we have presented here can without doubt
also be expressed in these terms, by choosing as domains the abstract domains we
propose here.

Mercury [SHC96] has a mode system based on instantiation states. These are asser-
tions of how instantiated a term is. An instantiation state is similar to an abstract term.
Indeed, given some type declarations, it is possible to define an instantiation state in
Mercury syntax which, while not being exactly the same, is comparable in precision to
an abstract term in our formalism. In Mercury, it is the user who has to specify a set
of instantiation states by declaring the mode, and this mode is checked and enforced by
the compiler. In contrast, we have described how the abstract terms and their values
can be inferred automatically.

The Mercury compiler also does some mode inference. It is hard to assess whether
or not the compiler can actually construct instantiation states without any help by
mode declarations because the relevant literature [Hen92, Som87] only refers to simple
examples and does not specify the mode inference precisely.

It has been noted by Henderson [Hen92] that instantiation states loosely correspond
to abstract interpretation, used for mode analysis in a language such as Godel, which
does not enforce modes. In this part of the thesis we developed this argument. Our
domain construction can be regarded as inferring automatically, from a set of type
declarations, what the interesting instantiation states are.

The mode system in Mercury is based on work by Somogyi [Som87], where the
Simple Range Condition and the Reflexive Condition that we impose are not explicitly
required. However, Somogyi does not define the type system precisely, instead referring
to Mycroft and O’Keefe [MO84], whose formal results have been shown to be incorrect,
namely in ignoring the transparency condition [Hil93, HT92]. It is therefore difficult to
assess whether that approach would work for programs which violate these conditions.
We know of no real Godel programs that violate either of the Simple Range or Reflexive
Conditions. We have found that violating the Reflexive Condition raises fundamental
questions about decidability in typed languages, which seem to be related to the concept
of polymorphic recursion [Kah96, KTU93]. It would be interesting to investigate these
questions further.

We believe that, since our abstract terms can characterise the instantiation of a
term with what might be called a “reasonable” degree of precision, they could provide
a good basis for two further applications: declaring modes and declaring conditions for
delaying.

Concerning the first application, note that the present Mercury implementation does
not support instantiation states in their full generality, and it is hard to imagine that this
would ever be needed. Thus one might consider a language where modes are declared

4.5. DISCUSSION AND RELATED WORK 93

using our abstract terms.

In Godel, the delay declarations which state that a predicate is delayed until an
argument (or a subterm of the argument) is ground or non-variable, cannot describe
the behaviour of the Godel system predicates precisely. We have observed that, typically,
the degree of instantiation for a Godel system predicate to run safely without delaying
could be specified by an abstract term in our typed domains. For example, the predicate
Append/3 will run safely if the first argument is a nil-terminated list.

Our approach may also be applicable to untyped languages, if we have information
at hand that is similar to type declarations. Such information might be obtained by
inferring declarations [Chr97] or from declarations as comments [SG95b]. Certainly our
analysis would then regain aspects of type rather than mode inference, which it had lost
by transferring the approach to typed languages.

Part 111

Non-Standard Derivations

54

Chapter 5

Correctness Properties of
Programs

In this chapter, the need for non-standard derivations is motivated. Then several cor-
rectness properties for programs concerning the modes and types are introduced. These
properties will be used throughout Part III.

5.1 Why Non-Standard Derivations?

The paradigm of logic programming is based on giving a computational interpretation
to a certain fragment of first order logic. Kowalski [Kow79] advocates the separation of
the logic and control aspects of a logic program and has coined the famous formula

Algorithm = Logic 4+ Control.

The programmer should be responsible for the logic part, and hence a logic program
should be a (first order logic) specification. The control should be taken care of by the
logic programming system.

In reality, logic programming is far from this ideal. Without the programmer being
aware of the control and writing programs accordingly, logic programs would usually be
hopelessly inefficient or even non-terminating.

One aspect of control in logic programs is the selection rule. This is a rule stating
which atom in a query is selected in each derivation step. The standard selection rule is
the LD selection rule: in each derivation step, the leftmost atom in a query is selected
for resolution. This selection rule is based on the assumption that programs are written
in such a way that the data flow within a query or clause body is from left to right.

Example 5.1 Consider the program in Figure 9 and the following derivation, where
the selected atom is underlined in each query:'

permute([1], As) ~
permute([],Z'), delete(1,As,Z') ~
delete(1,As,[]) ~ O.

In examples, we use ~ to denote derivation steps.

o6

5.1. WHY NON-STANDARD DERIVATIONS? o7

permute ([1,[1). delete(X,[X12]1,Z).

permute ([U[X],Y) :- delete(X, [UIY],[U|Z]) :-
permute (X,Z), delete(X,Y,Z).
delete(U,Y,Z).

Figure 9: The permute program

append ([1,Y,Y).
append ([X|Xs],Ys, [X|Zs]) :-
append (Xs,Ys,Zs).

Figure 10: The append program

In the second line, Z’ is an output argument of permute({[],Z'). The process of resolving
this atom instantiates Z' to [|, which is used by the atom delete(1,As,Z’) as input.
Hence the data flow is from left to right. q

Observe that the notion of data flow is based on the idea that some argument positions
serve as input positions and others as output positions. In the above example, the first
argument of permute is input and the second is output.

The LD selection rule ensures for this example that atoms are only selected when
they have a certain degree of instantiation. The following example shows that this is
crucial in order to ensure essential properties, in particular termination.

Example 5.2 Consider the usual append program given in Figure 10 and the following
derivation where the rightmost atom is always selected:

append([1],[], As), append(As,[|,Bs) ~
append([1], [], [X'|As']), append(As', [],Bs’) ~
append([1],[], [X’, X"|As"]), append(As”,[],Bs") ~ ...

The derivation is infinite although there are only finitely many answers to the query. For
this example, the natural data flow would be from left to right. In fact, all derivations
terminate if the LD selection rule is assumed. <

The LD selection rule is so established in logic programming that we have to justify
why we consider other selection rules. There are at least four purposes for which other
selection rules are useful: using predicates in multiple modes, parallel execution [AL95],
the test-and-generate paradigm [Nai92], and some programs using accumulators [EG99].
For motivation, we give an example of the first purpose.

Example 5.3 Consider again the permute program (Figure 9). In the following deriva-
tion, the rightmost atom is selected in each step. The data flow is from right to left.

58 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS

permute(As, [1]) ~
permute(X’,Z'), delete(U,[1],Z/) ~
permute (X', []) ~ O.

In this example, the second argument of permute is input and the first is output. <

To allow for permute to be used in both modes, we need a selection rule which is
more flexible than just stating that the leftmost or rightmost atom should be selected
in each step. Several logic programming languages provide delay declarations for this
purpose [HL94, SIC98, SHCI96]. Using delay declarations, the user can specify a degree
to which an atom must be instantiated in order to be selected.

Note that while delay declarations give the programmer some control, they do not
specify precisely which atom is selected in each step, since there could be more than
one atom which is sufficiently instantiated to be selected.

In the literature, the need for sufficient instantiation of the selected atom and hence
the purpose of delay declarations is usually explained as “ensuring termination” and
“preventing runtime errors related to built-in predicates” [AL95, Lit93, MT95, MK97,
Nai92]. Taking a more abstract viewpoint, one can characterise the minimal and most
important purpose of delay declarations as follows:

Delay declarations should ensure that in each derivation step, the input
arguments of the selected atom cannot become instantiated.

In other words, an atom in a query can only be selected when it is sufficiently instan-
tiated so that the most general unifier (MGU) with the clause head does not bind the
input arguments of the atom. We call derivations which meet this requirement input-
consuming.

Input-consuming derivations reflect the natural meaning of “input”. The concept
is useful because it abstracts from the technical details of particular delay constructs.
Wherever possible we formulate results in terms of input-consuming derivations rather
than in terms of delay declarations.

Note that for the query in Example 5.2, all derivations are input-consuming if the LD
selection rule is assumed. In this and the following chapter, we do not worry about how
input-consuming derivations can be achieved in existing implementations. In Chapter 7,
we show how input-consuming derivations can be achieved using delay declarations.

This chapter is organised as follows. The next section defines some notation and
terminology. Section 5.3 introduces a formalism consisting of a permutation for each
clause in a program, which indicates the direction of data flow in this clause. Section 5.4
introduces permutation nicely moded programs. Section 5.5 introduces permutation well
moded programs. Section 5.6 introduces permutation well typed programs. Section 5.7
defines a property called type consistency.

5.2. NOTATION AND TERMINOLOGY 99

5.2 Notation and Terminology

We use standard notations of logic programming [Apt97, L1o87]. Our special notations
related to modes and types follow Etalle et al. [EBC99] and Apt and Luitjes [AL95].
For the examples we use Prolog syntax. We recall some important notions.

The set of variables in a syntactic object o is denoted as vars(o). A syntactic object
is linear if every variable occurs in it at most once. A substitution is idempotent if
oo = 0. Throughout Part ITI, we only consider idempotent substitutions. The domain
of a substitution o is dom(o) = {z | zo # z}. The range of a substitution o is
ran(o) = {zo | x € dom(o)}.

We say that a term u occurs directly in a vector of terms t, or equivalently, u fills
a position in t, if u is one of the terms of t. (For example, a occurs directly in (a, b)

but not in (f(a),b).) A flat term is a variable or a term f(z1,...,z,), where n > 0 and
the z; are distinct variables.

For a predicate p/n, a mode is an atom p(mq,...,my,), where m; € {I, O} for
i € {1,...,n}. Positions with I are called input positions, and positions with O are

called output positions of p. To simplify the notation, an atom written as p(s,t)
means: s is the vector of terms filling the input positions, and t is the vector of terms
filling the output positions. An atom p(s,t) is input-linear if s is linear. A mode of
a program is a set of modes, one mode for each of its predicates.? A program can have
several modes, so whenever we refer to the input and output positions, this is always
with respect to one particular mode which is clear from the context.

A type is a set of terms closed under instantiation. A non-variable type is a
type that does not contain variables. The variable type is the type that contains
variables and hence, as it is instantiation closed, all terms. A ground type is a type
that contains only ground terms. A constant type is a ground type that contains
only (possibly infinitely many) constants. In the examples, we use the following types:
any is the variable type, all_ground the type containing all ground terms, /ist the non-
variable type of (nil-terminated) lists, int the constant type of integers, il the ground
type of integer lists, num the constant type of numbers, nl the ground type of number
lists, and finally, ¢ree is the non-variable type defined by the context-free grammar
{tree — leaf;tree — node(tree,any,tree)}. These types are also shown in Table 3.

We write ¢t : T for “t is in type T”. We use S, T to denote vectors of types, and
write = s : S = t : T if for all substitutions o, so : S implies to : T. It is assumed
that each argument position of each predicate p/n has a type associated with it. These
types are indicated by writing the atom p(Th,...,T,) where Ty, ..., T, are types. The
type of a program P is a set of such atoms, one for each predicate defined in P. An
atom (query) is correctly typed if each argument position is filled with a term of the
type of that position. A term ¢t is type-consistent [DM98] with respect to 7' if there
is a substitution € such that ¢0 : T. A term ¢ occurring in an atom in some position is
type-consistent if it is type-consistent with respect to the type of that position.

A query is a finite sequence of atoms. Atoms are denoted by a, b, h, queries by
B, F, H, Q, R. We write a € B if ¢ is an atom in B. Sometimes we say “atom”

*We discuss a more general notion of mode in Section 10.3.

60 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS

Table 3: Some common types

Name Description Property

any variable type variable

all_ground all ground terms ground

list (nil-terminated) lists non-variable

int integers ground

il integer lists ground

num numbers ground

nl number lists ground

tree {tree — leaf;tree — node(tree,any,tree)} non-variable
instead of “query consisting of an atom”. If ay,...,a, is a query, then a;,,...,qa;,,
where 1 <141 < ... < i, <n,is a subquery of ay,...,ay.

A derivation step for a program P is a pair (Q,0);(R,0c0), where Q =
Q1,p(s,t),Q2 and R = Q1, B,Q5 are queries; 6 is a substitution; p(v,u) < B a re-
named variant of a clause in P; and o the MGU? of p(s,t)0 and p(v,u). We call
p(s,t)0 (or p(s,t))* the selected atom and Rfo the resolvent of Qf and h <+ B. We
call Ro an LD-resolvent if (); is empty. A derivation step is input-consuming if
dom(o) Nwars(sf) = 0.

A derivation ¢ for a program P is a sequence (Qq,00); (Q1,61); ... where each pair
(Qi,0:);(Qir1,0;11) in & is a derivation step.> Alternatively, we also say that ¢ is a
derivation of P U {Qofy}. We sometimes denote a derivation as Qyfp; Q161;.... An
LD-derivation is a derivation where the selected atom is always the leftmost atom in a
query. An input-consuming derivation is a derivation consisting of input-consuming
derivation steps.

A selection rule R is a set of derivations closed under prefixes, that is, if £ € R,
then for any prefix ¢/ of ¢, we have ¢’ € R. If ¢ € R, we say that ¢ is an R-derivation.b

If (F,a,H); (F,B,H)0 is a step in a derivation, then each atom in Bf (or B)* is a
direct descendant of a, and for all b € F, H, we say bf (or b)* is a direct descendant
of b. We say b is a descendant of a if (b,a) is in the reflexive, transitive closure of
the relation is a direct descendant. The descendants of a set of atoms are defined in the
obvious way. Consider a derivation Qo;...;Q4;...;Qj; Qj415-... We call Q;;Qj41 an
a-step if a € Q; and the selected atom in Q;; Q;41 is a descendant of a.

3The MGU is not unique. It is however unique up to renaming [L1087], which is why we simply speak
of the MGU. We assume that whenever possible, an MGU is chosen which does not bind s.

“Whether or not the substitution has been applied is always clear from the context.

This definition follows Lloyd [L1087]. Apt requires that the sequence is mazimal [Apt97].

®This definition is more general than the definitions by Lloyd [L1087] and Apt [Apt97]. See also
Subsection 11.1.13.

5.3. MODES AND PERMUTATIONS 61

5.3 Modes and Permutations

Apt and Luitjes [AL95] consider four correctness properties for programs: nicely moded,
well moded, well typed, and simply moded. Nicely-modedness is used to show that the
occur-check can be safely omitted. Well-modedness and well-typedness are used to show
that derivations do not flounder. Finally, simply-modedness is a special case of nicely-
modedness and is used to show that a program is free from errors related to built-ins.
Other authors have also used these or similar correctness properties, for example to show
that programs are unification free [AE93], successful [BC99], and terminating [EBC99].
In Example 1.5, we have given a flavour of these correctness properties.

In this part of the thesis, we make extensive use of these correctness properties and
also define two new ones. In Section 7.5, we will give an overview summarising the
relationships between them.

In order to be useful for verification of programs assuming non-standard derivations,
these properties must be generalised. We now discuss the basis of this generalisation.

5.3.1 The Order of the Atoms in a Query

In a query (clause body) one can consider three different orderings among the atoms.

First, there is the teztual order. This does not need any explanation.

Secondly, there is the producer-consumer relation [KKS91] between atoms. A pair of
atoms (a, b) is in the producer-consumer relation if a has a variable in an output position
which b has in an input position. The correctness properties we define will ensure that
the transitive closure of this relation is anti-symmetric. We shall refer to any order <
such that (a,b) is in the producer-consumer relation only if a < b as producer-consumer
order. Note that we neglect the fact that this order is not necessarily unique, since any
producer-consumer order will do for our purposes.

Thirdly, there is the execution order, which depends on the selection rule.

In the case of LD-derivations, all of these orders are usually identical. The definitions
of the above correctness properties as they are used in most works [AE93, BC99, EBC99]
are based on this assumption. Otherwise, these orders may differ.

Example 5.4 Consider append(/, I, O) (Figure 10 on page 57) and the following der-
ivation, where we annotate the atoms with superscripts so that we can refer to them:

)21

append(As, [], Bs) -, append([1,1, As
append([1|As'],[1,Bs) "', append([], [],As)"* ~
(
(

As',[],B)12, append([], [], As")*? ~
append([], [J,Bs')"* ~ 0.

append

In each query, the producer-consumer order is the converse of the textual order. Con-
cerning the execution order, note that atom 2.1 is selected for resolution before atom
1.1, but then atom 1.1 is selected, even before atom 2.1 is resolved away completely,
that is, before all descendants of atom 2.1 are resolved. We say that the computations
for the two atoms interleave or coroutine. <

62 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS

To formalise the producer-consumer order, we associate, with each query and each clause
in a program, a permutation 7 of the (body) atoms, which gives the producer-consumer
order. That is, if (a;,a;) is in the producer-consumer relation, then m(7) < 7(j). This
permutation depends on the mode. For different modes, the permutations are different.

This formalism has been proposed previously by Boye [Boy96]. Hoarau and Mesnard
have developed a similar formalism for the purpose of reordering atoms in clause bodies
automatically to ensure termination [HM99].

5.3.2 Are those Permutations Really Necessary?

The previous subsection raises two questions:
1. Could the textual order not be identical to the producer-consumer order?

2. Could we not pretend that the textual order is identical to the producer-consumer
order, to simplify the notation?

Judging from the literature [AL95, Nai92] but also from personal communication we
believe that it is not widely recognised that these question must be distinguished.

To answer the first question, compare the derivations for permute in Examples 5.1
and 5.3. Here we have a single program which can be used in two distinct modes.
Depending on the mode, the producer-consumer order in each query (clause body) is
different, whereas the textual order is always the same. Therefore, it is impossible
that the textual order is always identical to the producer-consumer order. It has been
proposed to solve this problem by generating a specialised version of a program for each
mode, such that for each version, the textual order is always identical to the producer-
consumer order [SHC96]. However, doing so implies a strict loss of generality, in the
sense that we are not considering one single program running in several modes.

Although other authors [AL95, Nai92], in the context of delay declarations, have not
explicitly assumed multiple modes, they mainly give examples where delay declarations
are clearly used for that purpose (see page 133). Whether allowing multiple modes is a
good approach or whether it is better to generate multiple versions of each predicate is
an ongoing discussion [Hil98].

Even without assuming multiple modes, the textual order cannot always be identical
to the producer-consumer order. For example, programs that use the test-and-generate
paradigm rely on the atom which tests (“consumes”) occurring to the left of the atom
which generates (“produces”). We will see such a program in Figure 22 on page 106.

So the answer to the first question is: no, the textual order cannot always be identical
to the producer-consumer order.

The answer to the second question is less clearcut. It depends on what kind of
selection rule we consider.

Some authors have studied derivations where the textual order is irrelevant for the
selection of an atom and hence for the execution order [AL95, Liit93, MT95]. Therefore,
one may assume for the sake of notational convenience that in fact the textual order is
identical to the producer-consumer order. Although not explicitly stated, the definitions
of the above correctness properties as they are used by Apt and Luitjes [AL95] are based

5.3. MODES AND PERMUTATIONS 63

on this assumption. More precisely, any result stated there can be generalised trivially
to programs where the atoms in the clause bodies are permuted in an arbitrary way.

The same holds for many of the results presented in this thesis, and we will therefore
also sometimes adopt this simplifying assumption, in particular in Chapter 6. Also in
this chapter, we consider results for which the textual order of atoms is irrelevant.
Nevertheless, we maintain the permutations to make the results easily applicable in
other parts of the thesis.

Whenever we consider derivations where the textual order of atoms is irrelevant, we
do not have to treat multiple modes explicitly. We can pretend that there is a renamed
version of each predicate for each mode, such that in all clauses, the textual order is
identical to the producer-consumer order. This is not a loss of generality, but merely
a notational convenience. In the actual code, there is still only one version of each
predicate.

Of course, when we consider input-consuming derivations, the selection rule must
“know” what mode is assumed in a particular execution of the program, since otherwise
it would not be defined what an input-consuming derivation is. This can be realised
with delay declarations, as we will see in Chapter 7.

In Chapter 8, we will study left-based derivations, for which the textual order is
relevant for the execution order. For left-based derivations, the textual order has to be
taken into account as it is. It is not correct to make a simplifying assumption about it.

5.3.3 Uniqueness of Derived Permutations

As explained in Subsection 5.3.1, we associate, with each query and each clause in
a program, a permutation of the (body) atoms, which gives the producer-consumer
order. We will later define correctness properties which are parametrised by these
permutations. However, some statements only depend on the permutations themselves
and not on the correctness property considered. To avoid repeating virtually identical
statements, we formulate these statements here in a general way.

In this subsection, we assume a program P where a permutation is associated with
each clause, and an initial query @) that also has a permutation associated with it. We
call @Q or a clause in P m-ordered if the permutation associated with it is 7. Later,
m-ordered will be replaced with w-nicely moded, m-well typed etc. The m is omitted
whenever 7 is the identity.

Let m be a permutation on {1,...,n}. For notational convenience we extend the
domain of 7 by defining 7 (i) = ¢ whenever 7 ¢ {1,...,n}. In examples, 7 is written as
(mw(1),...,m(n)). Also, we write 7(o1,...,0y,) for the sequence obtained by applying =
to the sequence o1,.. ., 0y, that is 0r-1(1), ..., 07-1(). For example, if Q = a1, a2, a3, a4
is a query and m = (4,3,1,2), then 7(Q) = a3, a4,a2,a1. Note that if n < 1, then a
permutation on {1,...,n} is necessarily the identity.

We now define the permutation associated with any query occurring in a derivation
of PU{Q@}. This is defined inductively. Given a m-ordered query and a p-ordered clause,
the permutation associated with the resolvent is derived from 7w and p in a natural way.

Definition 5.1 [derived permutation] Let Q" = aq,...,a, be a m-ordered query and
C = h < by,...,by be a p-ordered clause. Suppose for some k € {1,...,n}, h and

64 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS

I I
ap || a2 || a3 || a4 Vb b
I I

ped T
e - >

R i \
a3 || a4 || a2 || a1 Vb by ag || as |} by 1 by 1| a1
1 1 1 1

Figure 11: The derived permutation Der(x, p, k)

aj, are unifiable. Then we say that the resolvent of ' and C' with selected atom ay, is
o-ordered, where p is a permutation on {1,...,n +m — 1} defined by

7 (4) ifi <k, (i) < n(k)
(i) +m —1 ifi <k, m(i) > n(k)
o(i)=¢ wk)+pli—k+1)—1 ifk<i<k+m
(i —m+1) ifk+m<i<n+m, n(i—m+1) <n(k)
mi—m+1)4+m—1 ifk+m<i<n+m, n(i—m+1)>n(k).
We call p the derived permutation and write Der(m, p, k) = o. q

Figure 11 illustrates the derived permutation when n = 4, = = (4,3,1,2), m = 2,
p=(2,1), and k = 2. By Definition 5.1, we have Der(m,p,k) = (5,4,3,1,2), since

Der(m,p,k)(1) = w(1)+2—-1= 5 (2nd line)
Der(m,p,k)(2) = m(2)+p(2-24+1)—-1= 4 (3rd line)
Der(m,p,k)(3) = m(2)+p(3-2+1)—-1= 3 (3rd line)
Der(m,p,k)(4) = ©n(d—2+1) = 1 (4th line)
Der(m,p,k)(5) = n(b—2+1)= 2 (4th line)

Observe also that in the trivial case that m and p are the identity, Der(m,p, k) is also
the identity, for all &k € {1,...,n}.

Throughout Part III, we will frequently consider a derivation Q1;...;Q, such that
Q1 is mi-ordered and @, is m,-ordered, where “ordered” is replaced with “nicely moded”,
“well typed”, etc. Whenever we do this, we imply that 7, is uniquely determined. More
precisely, we imply that there are indices k1,...,k, and permutations my,..., 7, and
P1y-- -, Pn—1 such that for each i € {1,...,n— 1}

e (); is m;-ordered,

e the k;'" atom in Q; is selected in the step Q;; Qit1,
e the clause used in the step Q;; Qi1 is p;-ordered,
o i1 = Der(m, pi, ki)

This is important to stress because the uniqueness of the permutation m, will not
necessarily follow from the definitions of the correctness properties. However, as stated
in Subsection 5.3.1, it is no loss of generality to assume that the producer-consumer
order is unique.

5.4. PERMUTATION NICELY MODED PROGRAMS 65

At each step of a derivation, the relative order of atoms given by the derived per-
mutation is preserved. The following lemma formalises this.

Lemma 5.1 Let QQ;...; R be a derivation for P, where Q = aq,...,a, is m-ordered and
R =10y,...,by is p-ordered.

a. Let 4,5 € {1,...,n} such that m(i) < 7(j). Then for all k,] € {1,...,m} such
that by, is a descendant of a; and b; is a descendant of a;, we have p(k) < p(1).

b. Let k,l € {1,...,m} such that p(k) < p(l), and let i,5 € {1,...,n} such that by
is a descendant of a; and b; is a descendant of a; (note that ¢ and j exist and are
unique). Then 7 (i) < 7(j).

PrOOF. Inspection of the derived permutation in Definition 5.1 shows that the re-
sult holds for derivations of length 1. The general result follows by a straightforward
induction on the length. O

In the trivial case that all permutations are the identity, the above lemma merely states
that resolution preserves the textual order of atoms in a query.

5.4 Permutation Nicely Moded Programs

Apt and Luitjes define nicely moded queries [AL95]. In a nicely moded query, a variable
occurring in an input position does not occur later in an output position, and each
variable in an output position occurs only once. We generalise this to permutation
nicely moded.

Definition 5.2 [permutation nicely moded] Let @ = pi(si,t1),...,pn(Sn,t,) be a
query and 7 a permutation on {1,...,n}. Then @ is 7-nicely moded if t,...,t, is a
linear vector of terms and for all i € {1,...,n}

vars(s;) N U vars(t;) = 0.
(i) <m(j)<n

The query 7(Q) is a nicely moded query corresponding to Q.
The clause C' = p(tg,S,+1) < Q is m-nicely moded if @ is w-nicely moded and

vars(tg) N U vars(t;) = 0.
7=1

The clause p(tg,s,+1) < 7(Q) is a nicely moded clause corresponding to C.

A query (clause) is permutation nicely moded if it is w-nicely moded for some
m. A program P is permutation nicely moded if all of its clauses are. A nicely
moded program corresponding to P is a program obtained from P by replacing
each clause C in P with a nicely moded clause corresponding to C. <

66 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS

Note that in the clause head, the letter ¢ is used for input and s is used for output,
whereas in the body atoms it is vice versa. This convention is used throughout because
it allows for a succinct notation, in particular in Definitions 5.4, 5.5 and 7.4.

Note also that a one-atom query p(s,t) is (permutation) nicely moded if and only
if vars(s) Nwars(t) = 0 and t is linear.

For many results it is necessary to require that each clause head is input-linear.

Definition 5.3 [input-linear clause/program] A clause C' = p(t,s) < @ is input-
linear if t is input-linear. A program is input-linear if all of its clauses are input-linear
and it contains no uses of =(I, I). 4

Note that in the above definition, uses of the built-in equality predicate are taken
into account. Conceptually, the equality predicate is defined as “X = X.”. Therefore,
an input-linear program must not use the equality predicate in mode =(I,T), since
the clause “X = X.” is not input-linear for this mode. This is discussed further in
Section 10.2.

Example 5.5 Consider the permute program (Figure 9 on page 57). For the mode
{permute(I, 0), delete(l, O, I)}, this program is nicely moded and input-linear.

In mode {permute(O,I), delete(0O,I, 0)}, it is permutation nicely moded and
input-linear. The second clause for permute is (2, 1)-nicely moded, and the other clauses
are nicely moded.

In “test mode”, that is, {permute(/,), delete(l, I, O)}, it is permutation nicely
moded, but not input-linear, because the first clause for delete is not input-linear.
The second clause for permute is (2, 1)-nicely moded, and the other clauses are nicely
moded. <

The problem of finding a mode for a program so that it is nicely moded has been
considered by Chadha and Plaisted [CP91].
We quote the following persistence property for nicely-modedness.

Lemma 5.2 [AL95, Lemma 11] Let @ be a nicely moded query and C be a nicely
moded, input-linear clause where vars(Q) Nwvars(C) = (). Then every resolvent of @
and C' is nicely moded.

We generalise this result to permutation nicely-modedness.

Lemma 5.3 Let Q = ay,...,a, be a m-nicely moded query and C = h < by,...,b,, be
a p-nicely moded, input-linear clause where vars(Q) Nwvars(C) = 0. Suppose for some
k € {1,...,n}, h and aj are unifiable. Then the resolvent of @ and C' with selected
atom ay, is Der(w, p, k)-nicely moded.

PROOF. Let 6 be the MGU of h and aj. By Definition 5.2, az-1(1y,...,ar-1(y) 18
nicely moded and h < b,-1(1),...,b
Lemma 5.2,

»—1(m) 18 nicely moded and input-linear. Thus by

(0’71'—1(1)7 <o Or=1(x(k)—1)> bp—l(l)a s 7bp—1(m)7 Ar=1(r(k)+1)> - - - 7a7r—1(n)) 0

5.4. PERMUTATION NICELY MODED PROGRAMS 67

is nicely moded, and so (ai,...,ak 1,01, ,bm,Gpi1,---,a,)0 is Der(mw, p, k)-nicely
moded. O

The requirement that the clause must be input-linear can be dropped if the derivation
step is input-consuming. It is assumed that the selected atom is sufficiently instantiated,
so that a multiple occurrence of the same variable in the input arguments of the clause
head cannot cause any bindings to the query.

Lemma 5.4 Let Q = aq,...,a, be a m-nicely moded query and C = p(v,u) «
bi,...,by be a p-nicely moded clause where vars(Q) N vars(C) = (. Suppose for
some k € {1,...,n}, p(v,u) and a; = p(s, t) are unifiable with MGU 6, and dom(0) N
vars(s) = (. Then the resolvent of @ and C with selected atom ay, is Der(, p, k)-nicely
moded.

PROOF. Let C' =p(v',u) < by,...,by, be an input-linear clause such that

1. vars(v) Cvars(v') and vars(v') Nwvars(Q) = 0,

2. there exists a substitution o such that C'c = C and dom(o) = vars(v') \ vars(v).

Intuitively, v’ is obtained from v by renaming, for each variable occurring several times,
all but one occurrences apart using fresh variables.

Since dom(0) Nwars(s) = 0, it follows that § = 6102, where 0; is an MGU of v and s,
and vf; = s, and 6, is an MGU of uf; and t6;.

By (2) and since vf; = s, we have v'of; = s. Moreover by (1), (2) and since dom () C
vars(v), we have dom(o6,) C vars(v'), and hence 06; is an MGU of v’ and s.

By (2), uo = u and to = t. Therefore 6, is an MGU of uof; and tob;.

So we have that o, is an MGU of v/ and s, and Ay is an MGU of ucf; and to#;.
Therefore 06102 = o6 is an MGU of p(v/,u) and p(s,t) [Apt97, Lemma 2.24]. Hence
by Lemma 5.3 and since C’ is input-linear, (a,...,ax 1,01, ,bm,Qps1,---,0n)00 is
a Der(m, p, k)-nicely moded resolvent of C' and Q. However, by (1) and (2),

(al, e ,ak,l,bl, ‘e .,bm,ak+1,. . ,an)O = (al, e ,ak,l,bl, e ,bm,ak+1,. . ,an)09,
and so (a1,...,05—1,b1,..,bm,aky1,...,ay)0 is Der(m, p, k)-nicely moded. O

For a permutation nicely moded program and query, it is guaranteed that every input-
consuming derivation step only instantiates other atoms in the query that occur “later”
than the selected atom, according to the producer-consumer order.

Lemma 5.5 Make the same assumptions as in Lemma 5.4. Then for all i with 7(7) <
n(k), dom(0) Nwvars(a;) = 0.

PROOF. Let ax = p(s,t). Since the derivation step is input-consuming, dom(#) N
vars(Q) C vars(t). Thus since @ is m-nicely moded, dom(6) Nwvars(a;) = O for all i
with 7 (i) < w(k). O

68 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS

The above lemma will be used in Chapter 6, where the permutation 7 is always the
identity. For better readability, we restate the lemma for this case.

Lemma 5.6 Let Q = Q1,a,Q2 be a nicely moded query and C = h < B a nicely
moded clause where vars(Q) Nwvars(C) = 0. Let (Q,0);(Q1,B,Q2,) be an input-
consuming derivation step using C. Then dom(0) Nvars(Q1) = 0.

5.5 Permutation Well Moded Programs

Well-modedness has been introduced by Dembinski and Matuszyriski [DM85] and widely
used for verification since [AL95, AP94b, EBC99]. When we assume LD-derivations,
well-modedness ensures that the input arguments of an atom are ground when the atom
is selected. In the programming language Mercury it is even mandatory that programs
are well moded®, which is one of the reasons for its remarkable performance [SHC96].

Definition 5.4 [permutation well moded] Let Q = pi(s1,t1),...,Pn(Sn,ts) be a query

and 7 a permutation on {1,...,n}. Then Q is m-well moded if for all s € {1,...,n}
and L =1
vars(s;) C U vars(t;) (1)
L<m(j)<m(i)

The clause p(to,sp4+1) < @ is 7-well moded if (1) holds for all s € {1,...,n+ 1} and
L=0.

A permutation well moded query (clause, program) and a well moded query
(clause, program) corresponding to a query (clause, program) are defined in analogy
to Definition 5.2. q

Note that a one-atom query p(s, t) is (permutation) well moded if and only if s is ground.

Example 5.6 Consider the permute program (Figure 9 on page 57) It is well moded
for mode {permute(/, 0), delete(l,0,I)}, and permutation well moded for mode
{permute(O,), delete(O, 1, 0)}, with the same permutations as Example 5.5. N

We quote a persistence result for well-modedness which has been shown previously for
LD-resolvents [AP94b] and arbitrary resolvents [AL95].

Lemma 5.7 [AL95, Lemma 16] Let @ be a well moded query and C' be a well moded
clause where vars(Q) Nwvars(C) = (). Then every resolvent of @ and C' is well moded.

We generalise this result to permutation well-modedness.

Lemma 5.8 Let Q = ay,...,a, be a m-well moded query and C = h < by,...,b, be a
p-well moded clause where vars(Q) Nwvars(C) = 0. Suppose for some k € {1,...,n}, h
and ay, are unifiable. Then the resolvent of () and C with selected atom ay, is Der(m, p, k)-
well moded.

PrOOF. Analogous to Lemma 5.3, but using Lemma 5.7 instead of Lemma 5.2. O

8To be precise: can be made well moded by reordering of atoms.

5.6. PERMUTATION WELL TYPED PROGRAMS 69

5.6 Permutation Well Typed Programs

The disadvantage of (permutation) well-modedness is that it is not possible to rea-
son about programs that operate on non-ground data structures. For example, the
query append([A,B],[C],Zs) is not (permutation) well moded for mode append(I, I, O)
since the input is not ground. Therefore well-modedness has been generalised to well-
typedness [AL95, AP94b, BLRI2].

In a well typed query, the first atom is correctly typed in its input positions. Further-
more, given a well typed query Q,a,Q’ and assuming LD-derivations, if @Q is resolved
away, then a becomes correctly typed in its input positions. We generalise this to per-
mutation well typed. As with the modes, we assume that the types of all argument
positions are given. In the examples, they will be the obvious ones.

Definition 5.5 [permutation well typed] Let Q = p1(s1,t1),...,pn(Sn,ts) be a query,
where p;(S;, T;) is the type of p; for each ¢ € {1,...,n}. Let m be a permutation on
{1,...,n}. Then Q is m-well typed if for all i € {1,...,n} and L =1

|: (/\ tj : Tj) = S; Si- (2)
L<m(f)<m (i)

The clause p(to,sn11) < @, where p(Ty, S, 11) is the type of p, is m-well typed if (2)
holds for all s € {1,...,n+ 1} and L = 0.

A permutation well typed query (clause, program) and a well typed query
(clause, program) corresponding to a query (clause, program) are defined in analogy
to Definition 5.2. N

Note that a one-atom query p(s, t) is (permutation) well typed if and only if s is correctly
typed.

Example 5.7 Consider the permute program (Figure 9 on page 57) where the type is
{permute(list,list), delete(any,list,list)}. It is well typed for mode {permute(7, O),
delete(l, O,1I)}, and permutation well typed for {permute(O,I), delete(O,I, O)},
with the same permutations as Example 5.5. The same holds when we assume type
{permute(nl,nl), delete(num,nl,nl)}. N

As before, we quote a persistence property for well-typedness.

Lemma 5.9 [AL95, Lemma 23] Let @ be a well typed query and C be a well typed
clause where vars(Q) Nwvars(C) =). Then every resolvent of @ and C' is well typed.

We now generalise this result to permutation well-typedness.

Lemma 5.10 Let Q = aq,...,a, be a m-well typed query and C' = h < by,...,b,, be
a p-well typed clause where vars(Q) Nwvars(C) = (. Suppose for some k € {1,...,n}, h
and ay, are unifiable. Then the resolvent of @@ and C with selected atom ay, is Der(w, p, k)-
well typed.

PROOF. Analogous to Lemma 5.3, but using Lemma 5.9 instead of Lemma 5.2. O

70 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS

The following two statements are needed for the proof of Theorem 8.5. The first says
that for a m-well typed query Q, every prefix of 7(Q) is well typed. It follows immediately
from Definition 5.5.

Proposition 5.11 Let @ = ay,...,a, be a m-well typed query. For all i € {1,...,n},
the subquery of @ containing all a; such that w(j) < n (i) is permutation well typed.

The second statement says that if all atoms in 7(Q) before an atom a are resolved away,
then a becomes correctly typed in its input positions.

Lemma 5.12 Let P be a permutation well typed program and Q = ay,...,a, a m-well
typed query. For all j € {1,...,n}, if Q;...;(F,a;,H)f is a derivation of P U {Q} and
for all ¢ with (i) < 7(j), (¥, a;, H)6 contains no descendants of a;, then a; is correctly
typed in its input positions.

PROOF. Suppose (F,a;, H)O consists of m atoms and is p-well typed, and a; is
the I*" atom in F, aj, H. We show that p(l) = 1. Thus assume, for the purpose of
deriving a contradiction, that there is a k € {1,...,m} such that p(k) < p(l). Then by
Lemma 5.1 (b), the k' atom in (F,a;, H)# is either a descendant of a;, or a descendant
of some atom a; such that (i) < m(j). The first case is impossible since a; has not yet
been resolved in (F,a;, H)f and thus the only descendant of a; is a;0. The second case
is impossible by the assumption that for all i with 7 (i) < 7(j), (F,a;, H)# contains no
descendants of a;.

Thus there is no k € {1,...,m} such that p(k) < p(l), and so p(I) = 1. Therefore it
follows by Definition 5.5 that a0 is correctly typed in its input positions. O

It follows from the definitions that permutation well-typedness is a generalisation of
permutation well-modedness. In the following proposition, recall that all_ground is the
type containing all ground terms.

Proposition 5.13 Every permutation well moded program is permutation well typed,
assuming all argument positions are of type all_ground.

Every permutation well typed program, where all argument positions have a ground
type, is permutation well moded.

In Chapter 6, our formal results assume (permutation) well typed programs. These re-
sults are automatically applicable to all (permutation) well moded programs, since these
are (permutation) well typed, assuming all argument positions are of type all_ground.

5.7 Type-Consistent Programs

Permutation well-typedness is closely linked to the modes of a program: the type cor-
rectness of certain output positions implies type correctness of certain input positions.
This notion is quite different from the concept of well typed programs as it is used in
typed logic programming languages such as Mercury [SHC96] or Gédel [HL94], and also
in other contexts, as we have discussed in Section 2.2.

5.7. TYPE-CONSISTENT PROGRAMS 71

In typed logic programming languages, every argument position in a program has
a type. The type-checking of the program allows to guarantee at compile time that no
incorrectly typed term can ever occur in an argument position during a derivation for
the program. This has been turned into the following slogan [Mil78, MO84]:

Well-typed programs cannot go wrong.

This is clearly a desirable property, since the occurrence of an incorrectly typed term in
an argument position nearly always reveals a programming error [HL94, page 5]. The
property is also desirable for verification purposes, as we will see in the next chapter.
Unfortunately, our notion of permutation well typed programs does not allow for such
a guarantee.

Example 5.8 Consider append(/, I, O) (Figure 10 on page 57). The query
append([],], foo), append(foo,], Zs)

is well typed since trivially = foo : list = foo : list. That is, since the output of
the first atom is wrongly typed, we can say that correctly typed output of the first
implies correctly typed input for the second atom. We will consider this problem again
in Subsection 9.4.1. Boye has given a similar example and has argued that such queries
(or programs) are pathological [Boy96]. q

The question therefore is: given a permutation well typed program and a selection rule
R, do all R-derivations for a permutation well typed query consist of queries that can
be instantiated so that all arguments are correctly typed? We strongly suspect that this
question is undecidable. Nevertheless, we will define classes of programs for which this
question can be answered positively. We now give such programs a name.

Definition 5.6 [type-consistent] Let P be permutation well typed program and R a
selection rule.

A query is type-consistent if it is permutation well typed and has a correctly typed
instance. The program P is type-consistent with respect to R if for all all type-
consistent queries @, all R-derivations of P U {Q} consist of type-consistent queries.

q

In a slight abuse of terminology, we shall often say that a program is type-consistent
with respect to LD-derivations, input-consuming derivations etc.

Obviously every query has a ground instance. This implies that for permutation
well moded programs, we can immediately state the following proposition.

Proposition 5.14 Let P be a permutation well moded program, or equivalently (by
Proposition 5.13), a permutation well typed program, where the type of all positions is
all_ground. Then P is type-consistent with respect to any selection rule.

Chapter 6

Termination of Input-Consuming
Derivations

In this chapter, we identify a class of programs for which all input-consuming deriva-
tions terminate. To this end, we will make use of the correctness properties defined in
Chapter 5.

6.1 Termination and the Selection Rule

Termination of logic programs has been widely studied for LD-derivations [Apt97, AP90,
DD94, DVB92, DD93, DD98, EBC99, LS97]. All of these works are based on the
following idea: at the time when an atom a in a query is selected, it is possible to pin
down the size of a. The technical meaning of “pinning down the size” differs among
different methods (see Subsection 11.1.1). What is important here is that this size
cannot change via further instantiation. It is then shown that for the atoms introduced
in this derivation step, it is again possible to pin down their size when eventually they
are selected, and that these atoms are smaller than a.

This idea has also been applied to arbitrary derivations [Bez93]. Programs which
terminate for arbitrary derivations are called strongly terminating. Since no restriction
is imposed as to when an atom can be selected, it is required that for each query in
a derivation, the size of each of its atoms is always bounded. The class of strongly
terminating programs is very small: it contains hardly any “real” non-trivial programs.

For most programs, to ensure termination, it is necessary to require a certain degree
of instantiation of an atom before it can be selected. This can be achieved using delay
declarations [AL95, Liit93, MT95, MK97, Nai92, SHK99b, SHK98]. The problem is
that, depending on what kinds of delay declarations and selection rules are used, it may
not be possible to pin down the size of the selected atom, since this size may depend
on the resolution of other atoms in the query that are not yet resolved. Nevertheless,
the approaches by Marchiori and Teusink [MT95] and Martin and King [MK97], and
to a limited extent Liittringhaus-Kappel [Liit93] are based on the idea described above.
Others avoid any explicit mention of “size” and instead try to reduce the problem to
showing termination for LD-derivations [Nai92].

The approach taken in this chapter falls between the two extremes of making no

72

6.1. TERMINATION AND THE SELECTION RULE 73

assumptions about the selection rule on the one hand and making very specific assump-
tions on the other. We identify predicates for which all input-consuming derivations
are finite. Other works in this area have usually made specific assumptions about the
selection rule and the delay declarations, for example local selection rules [MT95], delay
declarations that test arguments for groundness or rigidness [Liit93, MK97], or the de-
fault left-to-right selection rule of most Prolog implementations [Nai92]. In contrast, we
show how previous results about LD-derivations can be generalised, the only assumption
about the selection rule being that derivations are input-consuming.

We exploit the fact that under certain conditions, it is enough to rely on a relative
decrease in the size of the selected atom, even though this size cannot be pinned down.

Example 6.1 Consider append(I, I, O) (Figure 10 on page 57) and the following input-
consuming derivation. Note that the derivation is the same as in Example 5.4 except
for the textual order of the atoms.

append([1],[],As), append(As,|[],Bs) ~

append([], [], As'), append([1[As’], [],Bs) ~

append([], [], As’), append(As',],Bs’) ~

append([], [], Bs') ~ 0.
When append([1|As'], [],Bs) is selected, it is not possible to pin down its size in any
meaningful way. In fact, nothing can be said about the length of the (input-consuming)
derivation associated with append([1|As’],[],Bs) without knowing about other atoms
that might instantiate As’. However, the derivation could be infinite only if the deriva-
tion associated with append([], [],As’) was infinite. Our method is based on such a
dependency between the atoms of a query. <

The class of programs for which all input-consuming derivations are finite is obviously
larger than the class of strongly terminating programs. Nevertheless, the class is still
quite limited. We now give an example of a program which is not in the class.

Example 6.2 For the permute program (Figure 9 on page 57) in mode {permute(O, I),
delete(O, I, 0)}, we have the following infinite input-consuming derivation:

permute(W, [1]) ~
permute(X’,Z’), delete(U,[1],Z') ~
permute(X’, [1]2"]), delete(U',[],Z") ~
(
(

permute(X”,z"), delete(U”,[1|Z"],Z"), delete(U,[],Z") ~
permute(X”, [1|2""]), delete(U”,Z",Z""), delete(U,[],Z") ~

N

To ensure termination even for programs like the one above, most authors have made
stronger assumptions about the selection rule, thereby neglecting the important class
for which assuming input-consuming derivations is sufficient. We will show in Chapter 8
that if we can identify predicates in this class, then this information can be embedded
into a more comprehensive method for showing termination. We have attempted to
formulate our results as generally as possible to make them widely applicable.

74 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONS

In this chapter, we consider derivations where the textual position of an atom within
a query is irrelevant for its selection. As we have explained on page 63, we can therefore
assume without loss of generality that the textual order of atoms within a query is iden-
tical to the producer-consumer order. That is, whenever we use one of the correctness
properties introduced in Chapter 5, we can assume that the permutation is the identity
and that each predicate has a fixed mode. This simplifies the notation.

This chapter is organised as follows. Section 6.2 explains why the order of clauses
in a program is irrelevant for the termination problem we consider. Section 6.3 shows
that for well typed and nicely moded programs, it is sufficient to prove termination
for one-atom queries. Section 6.4 then shows how one-atom queries can be proven to
terminate. In Section 6.5 we sketch how the method presented here could be applied.
Section 6.6 discusses the results and some related work.

6.2 Existential vs. Universal Termination

Apart from the selection of an atom in each derivation step, there is also another aspect
of control in logic programs: the choice of the clause used to resolve the atom. Different
choices result in different derivations, some of which could be infinite. In most logic
programming systems, the clauses are tried in order of textual occurrence. It is possible
for a system first to compute one finite derivation but then on backtracking compute
an infinite one, and hence not terminate. This situation is referred to as existential
termination [DD94], since (at least) one finite derivation is computed. Whether or not
a program existentially terminates for a query may depend on the textual order of
clauses in the program.

As discussed by De Schreye and Decorte [DD94], most approaches to the termination
problem are interested in universal termination, that is, finiteness of all derivations. This
is also true for this thesis, and therefore, for the termination problems we consider, the
clause order in a program is irrelevant. De Schreye and Decorte also remark that proving
existential termination is a very hard problem, but nevertheless, it has been addressed
by a few authors [Bau92, CT77, FGKP85, Mar96].

6.3 Controlled Coroutining

In this section we define atom-terminating predicates. A predicate p is atom-terminat-
ing if (under certain conditions) all input-consuming derivations of a query p(s,t) are
finite. Like Etalle et al. [EBC99], we then show that termination for one-atom queries
implies termination for arbitrary queries.

For LD-derivations, it is almost obvious that it is sufficient to show termination for
one-atom queries, and it only requires that programs and queries are well moded, but
not nicely moded [EBC99, Lemma 4.2]. Given an LD-derivation ¢ for a query ay, ..., ay,,
the sub-derivations for each a; do not interleave, and therefore ¢ can be regarded as a
derivation for a1 followed by a derivation for ao and so forth. The following example
illustrates that in the context of interleaving sub-derivations (coroutining), this is not
at all obvious.

6.3. CONTROLLED COROUTINING 75

Example 6.3 Consider append(/, I, O) (Figure 10 on page 57) and the query
append([], [], As), append([1|As], [], Bs), append(Bs, [], As).

This query is well moded but not nicely moded. Then we have the following infinite
input-consuming derivation:

append({[], [], As), append([1|As],[],Bs), append(Bs,[],As) ~
append(][], [], As), append(As,[],Bs’), append([1|Bs’],[],As) ~
append([], [], [1|As']), append([1]|As'],[],Bs’), append(Bs’,[],As’) ~ ...

This well-known termination problem of programs with coroutining has been identified
as circular modes [Nai92]. 4

To avoid the problem, we require programs and queries to be nicely moded. We do not
require programs to be well moded. However, we require them to be well typed and
type-consistent with respect to input-consuming derivations. By Proposition 5.14, well
moded programs are one class of programs meeting this requirement.

Recall that a one-atom query p(s,t) is well typed and nicely moded if and only if s
is correctly typed, vars(s) Nwvars(t) = () and t is linear.

Definition 6.1 [atom-terminating predicate/atom] Let P be a well typed and nicely
moded program which is type-consistent with respect to input-consuming derivations.
A predicate p in P is atom-terminating if for each well typed, type-consistent and
nicely moded query p(s,t), all input-consuming derivations of P U {p(s,t)} are finite.
An atom is atom-terminating if its predicate is atom-terminating. N

We need the following simple auxiliary lemma to prove Lemma 6.2.

Lemma 6.1 Let Q = pi(s1,t1),...,pn(Sn,tn) be a well typed, type-consistent and
nicely moded query. Then there exists a substitution o such that dom(o) =
vars(ty,...,tn—1), and py(sy, ty)o is well typed, type-consistent and nicely moded.

PRrROOF. Since (Q is type-consistent and types are closed under instantiation, there exists
a (minimal) substitution o such that dom(o) = vars(ty,...,tp—1) and (t1,...,t,_1)0
is ground and correctly typed. Note that vars(ran(c)) = (.

By Definition 5.5, p,(sn,ty)o is well typed. Since @ is nicely moded, it follows that
dom(o) Nwvars(t,) = 0 and hence py,(sy, t,)o is type-consistent. Moreover, vars(s;,) N
vars(ty,) = 0 and vars(ran(c)) = 0, and hence vars(s,o) Nvars(t,o) = (). Therefore
by Definition 5.2, py,(sy, t,)o is nicely moded. O

The following lemma says that an atom-terminating atom cannot proceed indefinitely
unless it is repeatedly fed by some other atom.

Lemma 6.2 Let P be a well typed and nicely moded program which is type-consistent
with respect to input-consuming derivations. Let F, b, H be a well typed, type-consistent
and nicely moded query where b is an atom-terminating atom. An input-consuming

76 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONS

derivation of PU{F,b, H} can have infinitely many b-steps only if it has infinitely many
a-steps, for some a € F.

PrOOF. In this proof, by an F-step we mean an a-step, for some a € F; likewise
we define an H-step. By Lemma 5.6, no H-step can instantiate any descendant of b.
Thus the H-steps can be disregarded, and without loss of generality, we assume that H
is empty. Suppose £ is an input-consuming derivation for P U {F,b} containing finitely
many F-steps. We can write

f: <F7b7 ®>7 ; <Q0700>;£

where <Q0,90>;£ contains no F-steps. Since by Lemma 5.6, no b-step can instantiate
any descendant of F', there exists an input-consuming derivation

52 = <F7b7 ®>77<Rap>77<Q0790>7£

such that (F,b, 0);...: (R, p) contains only F-steps and (R, p);...;(Qq,0);€ contains
only b-steps (that is, the F-steps are moved forward using the Switching Lemma [L1087,
Lemma 9.1]). Since R = R',b for some R/, there exists an input-consuming derivation

&= (b, p);-..; (Lo, 00); &3
obtained from (R, p);...;(Qo,6o); ¢ by removing the prefix R’ in each query.

By Lemmas 5.10 and 5.4, Rp is well typed and nicely moded, and since P is type-
consistent with respect to input-consuming derivations, Rp is type-consistent. Thus by
Lemma 6.1, there is a substitution o such that bpo is well typed, type-consistent and
nicely moded. Moreover dom (o) = V', where V is the set of variables in the output
positions of R'p.

By Lemma 5.6, no b-step in &2, and hence no derivation step in &3, can instantiate
a variable in V. Since dom(c) = V, it thus follows that we can construct an input-
consuming derivation

& = (b,po);...; (Io, 000); &30
by applying ¢ to each query in &3.

Since bpo is a well typed, type-consistent and nicely moded query and b is atom-termi-
nating, &, is finite. Therefore &3, &2, and finally ¢ are finite. O

The following theorem is a consequence and states that atom-terminating atoms on
their own cannot produce an infinite derivation.

Theorem 6.3 Let P be a well typed and nicely moded program which is type-consistent
with respect to input-consuming derivations, and Q) a well typed, type-consistent and
nicely moded query. An input-consuming derivation of P U {@} can be infinite only if
there are infinitely many steps where an atom is resolved that is not atom-terminating.

ProOOF. We first show:

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 77

(x) For any well typed, type-consistent and nicely moded query @', an input-consum-
ing derivation of PU{Q’} can be infinite only if it contains at least one step where
an atom is resolved that is not atom-terminating.

So let ¢ be an infinite input-consuming derivation of P U {Q'}. Then it follows by
Lemma 6.2 that ¢’ contains infinitely many a-steps, for some a € @' that is not atom-
terminating. Hence the first a-step in ¢’ is a step where an atom is resolved that is not
atom-terminating. This implies (x).

Now let ¢ be an infinite input-consuming derivation of PU{Q}. Assume, for the purpose
of deriving a contradiction, that & contains only finitely many steps where an atom is
resolved that is not atom-terminating. Let f be a suffix of £ containing no steps where
an atom is resolved that is not atom-terminating. By Lemmas 5.10 and 5.4, the first
query of f is well typed and nicely moded. Moreover, f is infinite, and so we have a
contradiction to (x). Thus it follows that ¢ contains infinitely many steps where an
atom is resolved that is not atom-terminating, which completes the proof. O

Theorem 6.3 provides us with the formal justification for restricting our attention to
one-atom queries.

6.4 Showing that a Predicate is Atom-Terminating

All approaches to termination mentioned earlier more or less explicitly rely on measuring
the size of the input in a query [Apt97, AP90, DD94, DVB92, DD93, DD98, EBC99,
LS97]. We agree with Etalle et al. [EBC99] that it is reasonable to make this dependency
explicit. This gives rise to the notion of moded level mapping, which is an instance of
level mapping introduced by Bezem [Bez93] and Cavedon [Cav89]. Since we use well
typed programs instead of well moded ones, we have to generalise the concept further.

In the following definition, Bp denotes the set of ground atoms using predicates
occurring in P.

Definition 6.2 [moded typed level mapping] Let P be a program. The function |.| is
a moded typed level mapping if

1. it is a level mapping, that is a function |.| : Bp — NN,
2. for any ground s, t and u, |p(s,t)| = |p(s,u)|.

3. if p(s,t) is correctly typed in its input positions, then |p(s,t)6:| = |p(s, t)82| for
all substitutions 6; such that p(s,t)6; is ground (i = 1,2).

For a € Bp, |al is the level of a. 4

Thus the level of an atom only depends on the terms in the input positions. Moreover,
the level of an atom is fixed once its input arguments are correctly typed; this is where
our concept differs from moded level mappings. As Proposition 5.13 shows, the concepts
coincide if the only type is all_ground, that is, if we only consider well moded programs.

The following concept, adopted from Apt [Apt97], is useful for proving termination
for a whole program incrementally, by proving it for one predicate at a time.

78 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONS

Definition 6.3 [depends on] Let p,q be predicates in a program P. We say that p
refers to ¢ if there is a clause in P with p in its head and ¢ in its body, and p depends
on ¢ (written p J q) if (p, q) is in the reflexive, transitive closure of refers to. We write
pdqifpdqgand gl p, and pxqifpdqandqdp. <

Abusing notation, we shall also use the above symbols for atoms, where p(s,t) 3 g(u,v)
stands for p J ¢, and likewise for 1 and ~. Furthermore, we denote the equivalence
class of a predicate p with respect to ~ as [p|x.

The following definition provides us with a criterion for proving that a predicate is
atom-terminating.

Definition 6.4 [ICD-acceptable] Let P be a program and |.| a moded typed level
mapping. A clause C' = h < B is acceptable for input-consuming derivations
(with respect to |.|) if for every substitution # such that C@ is ground, and for every a
in B such that a ~ h, we have |hf| > |af|. We abbreviate acceptable for input-consuming
derivations by ICD-acceptable.

A program (set of clauses) is ICD-acceptable with respect to |.| if each clause
is ICD-acceptable with respect to [.|. 4

Let us compare this concept to some similar concepts in the literature: recurrent [Bez93],
well-acceptable [EBC99] and acceptable [AP94a, DD98| programs.

Like Decorte and De Schreye [DD98] and Etalle et al. [EBC99] but unlike Apt and
Pedreschi [AP94a] and Bezem [Bez93], we require |hf| > |af| only for atoms a where
a =~ h. This is consistent with the idea that termination should be proven incrementally:
to show termination for a predicate p, it is assumed that all predicates ¢ with p T ¢
have already been shown to terminate. Therefore we can restrict our attention to the
predicates ¢ where ¢ = p.

Like Bezem but unlike Apt and Pedreschi, Decorte and De Schreye and Etalle et al.,
our definition does not involve models or computed answer substitutions. Traditionally,
the definition of acceptable programs is based on a model M of the program, and
for a clause h < ai,...,an, |hO] > l|a;f| is only required if M = (ai,...,a;_1)0.
The reason is that for LD-derivations, aq,...,a; 1 must be completely resolved before
a; is selected. By the correctness of LD-resolution [L1087] and well-modedness, the
accumulated answer substitution 6, just before a; is selected, is such that (a1,...,a;—1)0
is ground and M = (aq,...,a;—1)0.

Such considerations count for little when derivations are merely required to be input-
consuming. This is illustrated in Example 6.2. In the third line of the derivation,
permute(X’, [1|2"]) is selected, although there is no instance of delete(U’,[],Z") in the
model of the program. This problem has been described by saying that delete makes
a speculative output binding [Nai92]. Programs that do not make speculative output
bindings are considered in Subsection 8.3.2.

Theorem 6.4 Let P be a well typed and nicely moded program which is type-consistent
with respect to input-consuming derivations, and let p be a predicate in P. Suppose all
predicates ¢ with p 1 ¢ are atom-terminating, and all clauses defining predicates q € [p]~
are ICD-acceptable. Then p, and hence every predicate in [pl, is atom-terminating.

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 79

PROOF. Suppose the set of clauses defining the predicates ¢ € [p]x is ICD-acceptable
with respect to the moded typed level mapping |.|. For an atom a using a predicate
in [pln, we define ||a|| = sup({|ad]| | af is ground}), if the set {|a@| | af is ground} is
bounded. Otherwise ||a|| is undefined. Observe that

if ||a|| is defined for an atom a, then ||ad|| < ||a|| for all 6. (%)

To measure the size of a query, we use the multiset containing the level of each atom
whose predicate is in [p]n. The multiset is formalised as a function Size, which takes
as arguments a query and a natural number:

Size(Q)(n) = #{q(u,v) | ¢(u,v) € Q, ¢ = p and ||g(u,v)|| = n}.

Note that if a query contains several identical atoms, each occurrence must be counted.
We define Size(Q) < Size(R) if and only if there is a number [such that Size(Q)(l) <
Size(R)(l) and Size(Q)(l") = Size(R)(I") for all I’ > [. Intuitively, a decrease with
respect to < is obtained when an atom in a query is replaced with a finite number of
smaller atoms. By Konig’s Lemma [Fit96] or Dershowitz [Der87], all descending chains
with respect to < are finite.

Let Qo = p(s,t) be a well typed, type-consistent and nicely moded query. Then s is
correctly typed and thus ||Qy|| is defined. Let £ = Qo; Q1; Q2 . .. be an input-consuming
derivation of P U {Qo}.

Since all predicates ¢ with p 7 g are atom-terminating, it follows by Theorem 6.3 that
there cannot be an infinite suffix of £ without any steps where an atom ¢(u, v) such that
q = p is resolved. We show that for all 7 > 0, if the selected atom in Q;; Q;y1 is g(u, V)
and ¢ =~ p, then Size(Q;11) < Size(Q;), and otherwise Size(Q;11) < Size(Q;). This
implies that ¢ is finite, and, as the choice of the initial query Q¢ = p(s,t) was arbitrary,
p is atom-terminating.

Consider 7 > 0 and let C' = q(vg,ums1) < qi(ui,vi),...,¢m(um, vy) be the clause,
q(u,v) the selected atom and 0 the MGU used in Q;; Q1.

If p g, thenp T g; forall j € {1,...,m} and hence by (x) it follows that Size(Q;4+1) <
Size(Q;).

Now consider ¢ = p. Since C is ICD-acceptable, it follows that ||g(vo, umt1)0|] >
llgj(uj,v;)@|| for all j with ¢; ~ p. This together with (x) implies Size(Q;y1) <
Size(Q;). O

Example 6.4 We now give a few examples of atom-terminating predicates. For all
predicates, we assume that all argument positions have type all_ground. We denote the
term size of a term t, that is the number of function and constant symbols that occur
in t, as T'Size(t).

The program for append(/, I, O) (Figure 10 on page 57) is ICD-acceptable, where
|append(sy, s2,t)| = T'Size(s1). Thus append(I,I, O) is atom-terminating. The same
holds for append(O, O, I), defining |append(t1, ta2, s)| = T'Size(s).

80 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONS

nqueens(N,Sol) :- safe_aux([],_,_).
sequence(N,Seq), safe_aux([M|Ms] ,Dist,N) :-
permute(Sol,Seq), no_diag(N,M,Dist),
safe(Sol). Dist2 is Dist+1,

safe_aux(Ms,Dist2,N).

safe([1).

safe([N|Ns]) :- no_diag(N,M,Dist) :-
safe_aux(Ns,1,N), Dist =\= N-M,
safe(Ns). Dist =\= M-N.

Figure 12: Fragment of a program for n-queens

The clauses defining delete(0, I, O) (Figure 9 on page 57) are ICD-acceptable,
where |delete(ty, s,t2)| = T'Size(s). Thus delete(O, I, O) is atom-terminating. The
same holds for delete(I, O, 1), defining |delete(sy,t,s2)| = T'Size(ssa).

In a similar way, we can show that permute(7, O) is atom-terminating. However,
permute(0, I) is not atom-terminating, as seen in Example 6.2.

The book on the Godel language [HL94, page 81] shows a program that contains a
clause, which in Prolog would be written as

slowsort(X,Y) :-
permute(Y,X),
sorted(Y).

The mode is {slowsort(/, O),permute(O,I),sorted(])}, and there are delay decla-
rations to ensure that derivations are input-consuming. The predicate slowsort is
not atom-terminating. However it can easily be made atom-terminating by replacing
permute (Y,X) with permute(X,Y), so that permute is used in the mode in which it is
atom-terminating.’

Note that according to the Goédel specification, no guarantees are given about the
selection rule that go beyond ensuring that derivations for the above program are input-
consuming. Hence the program is not guaranteed to terminate even for a “well-behaved”
query such as slowsort([1,2],Y). Even though Hill and Lloyd do not claim that the
program terminates, one would still expect it to do so. In contrast, we can modify the
program as stated above, and guarantee that the modified program terminates.

Figure 12 shows a fragment from a program for the n-queens problem. The mode is
{nqueens(I, O), sequence(I, O), safe(I), permute(0,I), is(O0,I), safe_aux(I,I,I),
no.diag(I,I,I), =\=(I,I)}. Again using as level mapping the term size of one of the
arguments, one can see that the clauses defining {no_diag, safe_aux,safe} are ICD-
acceptable and thus these predicates are atom-terminating. Note that for efficiency
reasons, this program relies on input-consuming derivations where atoms using safe
are selected as early as possible. This will be discussed in Chapter 8.

!This example had to be adapted because the argument order in the definition of permute given in
the Godel book is the reverse of the order in Figure 9. It is the case though that slowsort, as given in
the Godel book, is not atom-terminating.

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 81

plus_one(X) :- minus_one (succ(X)) :-
minus_two(succ(X)). plus_one(X).
minus_one(0) .
minus_two(succ(X)) :-
minus_one (X) .
minus_two(0) .

Figure 13: An example requiring a complex level mapping

As a more complex example, consider the program in Figure 13, whose mode is
{plus_one(/), minus_two(/), minus_one(l)}. Defining

|[plus_one(s)| = 3xTSize(s)+4
Iminus_two(s)| = 3x*TSize(s)
|minus_one(s)] = 3xTSize(s)+ 2,
the clauses are ICD-acceptable and thus the predicates are atom-terminating. <

We see from these examples that whenever in some argument position of a clause head,
there is a compound term of some recursive data structure, such as [X|Xs], and all
recursive calls in the body of the clause have a strict subterm of that term, such as
Xs, in the same position — then the clause is ICD-acceptable using as level mapping
the term size of that argument position. Since this situation occurs very often, it
can be expected that an average program contains many atom-terminating predicates.
However, it is unlikely that in any real program, all predicates are atom-terminating.

The example in Figure 13 shows that more complex scenarios than the one described
above are possible, but we doubt that they would often occur in practice. Therefore
level mappings such as the one used for this program will rarely be needed.

Consider again Definition 6.4. Given a clause h < a1,...,a, and an atom a; = h,
we require |h@| > |a;0| for all grounding substitutions 6, rather than only for 6 such that
(a1,...,a;—1)0 is in a certain model of the program. This is of course a severe restriction.
For example, if we consider permute(O,) (Figure 9 on page 57), there cannot be a
moded typed level mapping such that |permute([U|X],Y)0| > |permute(X,Z)d| for all 6.
That however is not surprising since permute (O, I) is not atom-terminating.

With a similar argument, we can show that there cannot be a moded typed level
mapping such that the usual recursive clause for quicksort(7, O) (a modified version
of it is shown in Figure 14 on page 87) is ICD-acceptable, although we conjecture that
quicksort (7, O) is atom-terminating. This shows a limitation of the method presented
here. It might be possible to relax Definition 6.4 to allow more programs, but the fact
remains that many predicates are not atom-terminating.

Our method of showing that a predicate p is atom-terminating is based on assuming
that all predicates ¢ with p 7 ¢ have already been shown to be atom-terminating. Thus
if p can be shown to be atom-terminating using Theorem 6.4, then all predicates ¢ with
p O q are atom-terminating. This does not mean that if p 4s atom-terminating, then

82 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONS

all predicates ¢ with p 1 ¢ are atom-terminating. This is demonstrated in the following
example.

Example 6.5 Consider the following program with mode {p(/), q(I)} and type {p(int),
q(int)}.

p(0) :- q(0). q(0) .
q(1) :- q(1).

The predicate p is atom-terminating, but our method fails to show this, since q is not
atom-terminating. Of course this program is contrived, and we do not expect this
problem to occur in “real” programs. <

6.5 Applying the Method

The requirement of input-consuming derivations merely reflects the very meaning of in-
put: an atom must only consume its own input, not produce it. Thus if one accepts that
(appropriately chosen) modes are useful for verification and reflect the programmer’s
intentions, then one should also accept this requirement and regard any violation of it
as pathological.?

The requirement of input-consuming derivations is trivially met for LD-derivations
of a well moded query and program, since the leftmost atom in a well moded query
is ground in its input positions. It can also be ensured by using delay declarations as
in Godel [HL94] that require the input arguments of an atom to be ground before this
atom can be selected. In the next chapter we shall see how input-consuming derivations
can be ensured using block declarations.

As we have said in the introduction of this chapter, the class of programs for which
all input-consuming derivations terminate is quite limited. For the predicates that are
not atom-terminating, stronger assumptions about the selection rule are necessary. In
Chapter 8, we show one way of incorporating the method of this chapter into a more
comprehensive method for proving termination. We now briefly sketch two other ways.

First, we could build on a technique developed by Martin and King [MK97]. They
consider coroutining derivations, but impose a bound on the depth of each sub-derivation
by introducing auxiliary predicates with an additional argument that serves as depth
counter. Applying the results of this chapter, we only have to impose this depth bound
for the predicates that are not atom-terminating. For the atom-terminating predicates,
we can save the overheads involved in this technique.

Secondly, we could use delay declarations as they are provided for example in
Godel [HL94]. For the atom-terminating predicates, it is sufficient to ensure input-
consuming derivations, by checking for partial instantiation of the input positions using
a DELAY...UNTIL NONVAR... declaration. For the other predicates, it must be ensured
that the input positions are ground using a DELAY ... UNTIL GROUND... declaration. Note

2An exception, concerning programs we cannot verify using the methods of this thesis, is discussed
in Subsection 11.1.9.

6.6. DISCUSSION 83

that according to its specification, Gédel does not guarantee a (default) left-to-right se-
lection rule, and therefore delay declarations are crucial for termination. Note also that
a groundness test is usually more expensive than a test for partial instantiation. To the
best of our knowledge, there has never been a systematic treatment of the question of
when GROUND declarations are needed, and when NONVAR declarations are sufficient.

6.6 Discussion

We have identified the class of programs for which all input-consuming derivations are
finite. Predicates can be shown to be in that class using the notions of level mapping
and acceptable clause in a very similar way to methods for LD-derivations [DD94, DD98,
EBC99].

We have considered input-consuming derivations rather than, say, a particular kind
of delay construct. This abstract view should make it possible to incorporate the results
of this chapter into various more comprehensive methods for proving termination. One
advantage is that in this chapter, we do not impose the restriction that programs must
be input-linear. This restriction, as we will see in the next chapter, is necessary so that
block declarations can ensure input-consuming derivations. Hence if input-consuming
derivations can be ensured without imposing this restriction, say by using guards as in
(F)GHC [Ued86], then the results of this chapter could be applied to show termination.

Note also that the method presented in this chapter can be used to show termination
of parallel executions [CC94, Tic91]. In formalisations of parallel executions, one impor-
tant question is which atoms should be allowed to be selected in parallel. This question
has several aspects, one of which is termination. Concerning this aspect, we can state
that performing input-consuming derivation steps in parallel, rather than consecutively,
does not affect the termination behaviour of a program.

This chapter closely follows Etalle et al. [EBC99]. They have a statement analogous
to Theorem 6.4, but they also show a converse statement. It says that if for a predicate
p, all LD-derivations for a well moded query p(s,t) terminate, then there is a level
mapping such that the clauses defining p are well-acceptable. It would be interesting
to show a similar result for arbitrary input-consuming derivations, but presumably this
must be difficult, since our definition of acceptability is much more restrictive.

Unlike most other approaches to termination [AP94a, Bez93, DVB92, DD98, EBC99,
L.S97, MK97], we do not rely on the idea that the size of an atom can be pinned down
when the atom is selected. We show that under certain conditions, it is enough to rely
on a relative decrease in the size of the selected atom, even though this size cannot
be pinned down. More precisely, we exploit the fact that an atom in a query cannot
proceed indefinitely unless it is repeatedly fed by some other atom occurring earlier in
the query. This implies that every derivation for the query is finite.

Chapter 7

Ensuring Input-Consuming
Derivations

In this chapter, we show how block declarations can be used to ensure that derivations
are input-consuming. To this end, we must introduce further correctness properties in
the style of the properties introduced in Chapter 5.

7.1 The Simplicity of block Declarations

The block declarations declare that certain arguments of an atom must be non-variable
before that atom can be selected. Insufficiently instantiated atoms are delayed. As
demonstrated in SICStus Prolog [SIC98], block declarations can be efficiently imple-
mented: the test whether arguments are non-variable has a negligible impact on perfor-
mance. Therefore block declarations or similar constructs are widely used.

It is a distinctive feature of this work that we consider block declarations, as op-
posed to delay declarations which can check for the instantiation of a subterm of an
argument [HL94], or delay declarations that check for groundness.

One would expect that block declarations are sufficiently powerful to ensure that
derivations are input-consuming. Consider the clause head append ([X|Xs],Ys, [X|Zs])
(Figure 10 on page 57) and assume that the mode is append(7, I, O). If we want to
resolve an atom append(s,t,u) in a query, then we should check first whether s is non-
variable, because otherwise the derivation step would not be input-consuming. However,
we will see that the technical details are quite subtle.

As mentioned on page 58, we believe that the most important purpose of delay
declarations is to ensure input-consuming derivations. Most works about delay declara-
tions do not explicitly state what their purpose is [AL95, Liit93, MT95, MK97, Nai92].
Moreover, at least Liittringhaus-Kappel [Lit93] considers delay declarations that are
used for a purpose that goes far beyond ensuring that derivations are input-consuming.
Namely, they are used to ensure that an atom is only selected when it is bounded with
respect to some norm (this is done to ensure termination).

This chapter is organised as follows. The next section introduces some terminol-
ogy related to block declarations. Section 7.3 introduces permutation simply typed

84

7.2. TERMINOLOGY RELATED TO BLOCK DECLARATIONS 85

programs, which are a class of programs for which block declarations can ensure input-
consuming derivations. Section 7.4 introduces permutation robustly typed programs,
which are an extension of the previous class for which block declarations can still ensure
input-consuming derivations. Section 7.5 gives a summary and comparison of all the
correctness properties for programs introduced in this thesis.

7.2 Terminology Related to block Declarations

A block declaration [SIC98] for a predicate p/n is a (possibly empty) set of atoms each
of which has the form p(by,...,by,), where b; € {?,-} fori € {1,...,n}. A program
consists of a set of clauses and a set of block declarations, one for each predicate defined
by the clauses. If P is a program, then an atom p(ty,...,t,) is selectable in P if for
each atom p(b1,...,by) in the block declaration for p, there is some ¢ € {1,...,n} such
that ¢; is non-variable and b; = -.

A delay-respecting derivation for a program P is a derivation where the selected
atom is always selectable in P. We say that it flounders if it ends with a non-empty
query where no atom is selectable.

7.3 Permutation Simply Typed Programs

To ensure that derivations are input-consuming, one would expect that there should be
block declarations such that an atom can only be selected when its input arguments
are non-variable. The following example however shows that this is not sufficient.

Example 7.1 Consider the following version of delete(O, I, O).
:— block delete(?,-,-).

delete(X, [XI1Z],2).

delete(X, [UI[HITI], [UIZ]) :- delete(X,[HIT],Z).

Then we have the following delay-respecting but not input-consuming derivation

delete(A,[1|L],R) ~ delete(A, [H'|L'],R') ~» delete(A, [H"|L"],R") ~ ...

Note that although delete(A,[1|L],R) is not a well typed query, it may occur in a well
typed query, say delete(B,[2],L), delete(A,[1|L],R). This version of delete is part of
the most specific program [MNL90] corresponding to the program in Figure 9 on page 57,
proposed [Nai92] to prevent looping for permute (O, I'). However, it does not work. The
query permute(A, [1]) indeed terminates, but permute(A,[1,2]) still loops. N

Thus to ensure that derivations are input-consuming, we will require that each input
argument in each clause head is flat. This condition is violated by the clause head
delete (X, [UI[HITI]], [UIZ]), but it is met for the program in Figure 9 on page 57.

The next example shows however that requiring flat terms in clause heads is still
not enough.

86 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS

Example 7.2 Consider the following program in mode p(I, O).

:= block p(-,7).
p(g(¥),Y).

Then p(g(X),3) ~ O is a delay-respecting but not input-consuming derivation, since X
becomes instantiated to 3. <

The easiest solution is to require that the output positions in a query are always filled
with variables. In mode p(I, O), the query p(g(X),3) should not arise, since its output
is already instantiated. We will now present this solution, although it has certain
limitations. In Section 7.4, we will see how these limitations can partly be overcome.

We first define permutation simply-modedness, which is a generalisation of simply-
modedness [AE93, AL95], just as for the other correctness properties. In a permutation
simply moded query, the output positions are filled with variables.

Definition 7.1 [permutation simply moded] Let @ = pi(si,t1),...,Pn(Sn,tn) be a
query and 7 a permutation on {1,...,n}. Then @ is m-simply moded if it is 7-nicely
moded and tq,...,t, is a vector of variables. The clause p(tg,s,11) + Q is m-simply
moded if it is m-nicely moded and tq,...,t, is a vector of variables.

A permutation simply moded query (clause, program) and a simply moded
query (clause, program) corresponding to a query (clause, program) are defined in
analogy to Definition 5.2. q

We quote the following persistence property for simply-modedness.

Lemma 7.1 [AE93, Lemma 27] Let @ be a simply moded query and C' a simply moded
clause where vars(Q) Nwvars(C) = (. Then every LD-resolvent of @Q and C is simply
moded.

We combine permutation simply-modedness with permutation well-typedness, adding
an extra condition concerning the clause heads.

Definition 7.2 [permutation simply typed] A query is w-simply typed if it is
m-simply moded and w-well typed. A clause p(to,sn+1) < p1(S1,t1),-..,Pn(Sn, ty) is
m-simply typed if it is 7m-simply moded and w-well typed, and ty has a variable in each
position of variable type and a flat type-consistent term in each position of non-variable
type.

A permutation simply typed query (clause, program) and a simply typed query
(clause, program) corresponding to a query (clause, program) are defined in analogy
to Definition 5.2. q

Note that since the vector of output arguments of a permutation simply typed query is
a linear vector of variables, permutation simply typed queries are type-consistent.

Example 7.3 The permute program (Figure 9 on page 57), for any of the types in Ex-
ample 5.7, is simply typed for mode {permute(I, O), delete(I, O,I)}, and permutation
simply typed for mode {permute(O,I), delete(O, I, 0)}. N

7.3. PERMUTATION SIMPLY TYPED PROGRAMS 87

:= block quicksort(-,-). :- block part(?,-,7,7),
quicksort ([1,[]1). part(-,7,-,7),
quicksort ([X|Xs],¥s) :- part(-,7,7,-).

append (As2, [X|Bs2],Ys), part([1,_,00,01).

part (Xs,X,As,Bs), part ([X|Xs],C,[X|As],Bs):—

quicksort (As,As2), leq(X,C),

quicksort (Bs,Bs2). part(Xs,C,As,Bs).

part ([X|Xs],C,As, [XIBs]):-

:- block append(-,?7,-). grt (X,C),
append([1,Y,Y). part(Xs,C,As,Bs).
append ([X|Xs],Ys, [X|Zs]) :-

append (Xs,Ys,Zs) . := block leq(?,-), leq(-,7).

leq(A,B) :- A =< B.

:- block grt(?,-), grt(-,?7).
grt(A,B) :- A > B.

Figure 14: The quicksort program

Example 7.4 Figure 14 shows a version of quicksort. Assume the
type {quicksort(nl,nl), append(nl,nl,nl), leq(num,num), grt(num,num),
part(nl,num,nl,nl)}. The program is permutation simply typed for mode
{quicksort(I, O), append(Il,I,O), leq(l,I), grt(l,I), part(/,1,0,0)}. It is
not permutation simply typed for mode {quicksort (O, I), append(0O, O, 1), leq(I,I),
grt(I,I), part(O,I,1,1)}, because of the non-variable term [X|Bs2] in an output
position.

As an aside, note that this program uses auxiliary predicates leq and grt to realise
block declarations on the built-ins =< and >. Built-ins will be discussed in Sections 9.4
and 10.1. <q

Example 7.5 Figure 15 shows a program that converts binary trees into lists or vice
versa. The type of the program is {treeList(tree,list), append(list,list,list)}. It is
permutation simply typed for mode {treeList ([, O),append(/,I, O)}. However it is
not permutation simply typed for mode {treeList(O,I),append(0, O, 1)}, because of
the non-variable term [Label|RList] in an output position. <

The persistence properties stated in Lemmas 5.3 and 5.10 are independent of the se-
lection rule. We show a similar persistence property for permutation simply typed
programs. However this property only holds if the derivation step is input-consuming,
since otherwise output positions of the resolvent might become non-variable. In the
following lemma, it is not actually assumed that the derivation step is input-consuming.
It is only assumed that the input arguments of the selected atom are an instance of the
input arguments of the clause head. While this is trivially necessary for a derivation
step to be input-consuming, point (d) of the lemma states that it is also sufficient.

88 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS

:— block treeList(-,-). :- block append(-,7,-).
treelList(leaf,[]). append([]1,Y,Y).
treeList(node(L,Label,R),List) :- append ([X|Xs],Ys, [X]|Zs]) :-
append(LList, [Label|RList],List), append(Xs,Ys,Zs).
treelList(L,LList),
treelList(R,RList).

Figure 15: Converting trees to lists or vice versa

Lemma 7.2 Let Q = pi(s1,t1),...,pn(Sn,ty) be a m-simply typed query and C =
Pk (Vo, Umt1) < q1(u1,ve), ..o, g (U, Vi) a p-simply typed, input-linear clause where
vars(C) Nwars(Q) = 0. Suppose for some k € {1,...,n}, pr(sk, tr) and pg(vo, Wmi1)
are unifiable and sj is an instance of vo. Then there is an MGU 6 = 6105 of pi(sk, tx)
and pg(vg, Wy,11) such that

a. vob = s and dom(0y) C vars(vy),

b. tx02 = w1161 and dom(6s) C vars(ty),

c. dom(0) C vars(ty) Uvars(vy),

d. dom(0) Nwars(sg) = 0, that is, the derivation step is input-consuming,
e. dom(0) Nwars(ti, ..., 6k 1,Viyeeo s Vi bpaty .o ty) =0,

f. the resolvent of @ and C with selected atom py(sg, t) is Der(m, p, k)-simply typed.

PrROOF. Claim (a) follows from the assumption that sy is an instance of vy.

Since tj is a linear vector of variables, there is a substitution @, such that dom(fy) C
vars(ty) and tgfs = uy,41601, which shows (b).

Since @ is m-nicely moded, we have vars(ty) Nwvars(sy) = 0, and therefore vars(ty) N
vars(vofy) = (. Thus it follows by (b) that 6 = 6,05 is an MGU of pg(sg, tx) and
Pk(Vo, Wmy1). Claim (c) follows from (a) and (b). Claim (d) follows from (c) be-
cause vars(ty) Nwvars(sy) = 0. Claim (e) follows from (c) because of the linearity of

(tla"'atnavﬂa"'avm)‘

By Lemmas 5.3 and 5.10, the resolvent is Der(, p, k)-nicely moded and Der(w, p, k)-
well typed. By (e), the vector of the output arguments of the resolvent is a linear vector
of variables, and hence (f) follows. O

The following lemma states a persistence property similar to Lemma 7.2 (f) but for
LD-resolvents only. Note that in this case, it is not necessary to require an input-
linear clause. However, because of this weaker assumption, the lemma is not actually a
corollary of Lemma, 7.2.

Lemma 7.3 Every LD-resolvent of a simply typed query) and a simply typed clause
C, where vars(C) Nwars(Q) = 0, is simply typed.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 89

Proor. By Lemma 7.1, the resolvent is simply moded. By Lemma 5.10, the resolvent
is well typed. Therefore the resolvent is simply typed. O

The next lemma says that in an input-consuming derivation for a permutation simply
typed program and query, it can be assumed without loss of generality that the output
positions in each query are filled with variables that occur in the initial query or in some
clause body used in the derivation. This is used to prove Theorem 8.3.

Lemma 7.4 Let P be a permutation simply typed, input-linear program, and Qg a
permutation simply typed query. Let 6y = 0 and & = (Qy, 6p); (Q1,61); ... be an input-
consuming derivation of P U {Qp}. Then for all i > 0, if = is a variable occurring in an
output position in ();, then z6; = .

PrOOF. The proof is by induction on the position 7 in the derivation. The base case
i = 0 is trivial since y = (). Now suppose the result holds for some 7 and ;1 exists.
By Lemma 7.2 (f), Q;60; is permutation simply typed. Thus the result follows for 7 + 1
by Lemma 7.2 (e) and the inductive hypothesis. O

For permutation simply typed programs, block declarations can be used to ensure input-
consuming derivations. However, before we show this, we first introduce a generalisation
of permutation simply typed programs.

7.4 Permutation Robustly Typed Programs

Examples 7.4 and 7.5 suggest that Definition 7.2 is sometimes too restrictive. Both
programs have an atom using append in a clause body where the second argument of
that atom is non-variable. This means that these programs are not permutation simply
typed when append is used in mode append(O, O, I).

It has been acknowledged previously by Apt and Etalle [AE93] that it is difficult to
reason about queries where non-variable terms in output positions are allowed, but on
the other hand, there are natural programs where this occurs. These authors assume
that output positions in a query are always filled with variables, but consider allowing
for non-variable terms as a direction for future work.

We define permutation robustly-typedness, which is a carefully crafted extension of
permutation simply-typedness, allowing for non-variable but flat terms in certain output
positions. The definition is more complicated than the definitions of previous correctness
properties. The difficulty in designing such a concept is in ensuring that a persistence
property analogous to Lemmas 5.3, 5.8, 5.10 and 7.2 holds. In particular, the definition
is such that permutation robustly typed queries are type-consistent, which is important
so that we can apply the results of Chapter 6.

In the sequel, we associate a label free or bound with each argument position of
each predicate. The intuition behind these labels is as follows: an atom should be
selectable only when it is non-variable in its bound input positions. Moreover, a query
may contain a non-variable term in an output position only if the position is bound.

Definition 7.3 [free-bound-labelling] Let P be a permutation well typed program. A
free-bound-labelling is a function assigning a label free or bound to each argument
position of each predicate p, such that

90 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS

e all positions of variable type are free,

e if there is a clause in P defining p whose head has a non-variable term in an input
position, then this input position is bound.

We denote the projection of a vector of arguments r onto its free positions as rf, and
b

onto its bound positions as r®°. <
We assume that a free-bound-labelling is associated with each program, without making
this explicit. As with assigning the mode and the type to a predicate, we do not propose
a method of deciding which positions should be free or bound. In all our examples
however, the choice is simple:

e an input position of p is bound if and only if there is some clause defining p whose
head has a non-variable term in that position,

e an output position of p is bound if and only if there is some clause body containing
an atom using p, which has a non-variable term in that position.

Note in particular that the conditions of the above definition can only be met if each
clause head has a variable in each input position of variable type. By Definition 7.2,
this requirement is clearly met by permutation simply typed programs.

Definition 7.4 [permutation robustly typed] Let @ = pi(s1,t1),...,0n(Sn,tn) be a
query and 7 a permutation on {1,...,n}. Then @ is m-robustly typed if it is 7-nicely
moded and 7-well typed, t‘;, . ,t; is a vector of variables, and tll’, ... ,tg is a vector of
flat type-consistent terms.

The clause p(tg,spt1) < @ is m-robustly typed if it is m-nicely moded and 7-well
typed, and

1. t‘a, . ,t; is a vector of variables, and tB, . ,tz is a vector of flat type-consistent
terms,

2. if a position in sg 11 of type 7 is filled with a variable z, then z also fills a position
of type 7 in tB, R

A permutation robustly typed query (clause, program) and a robustly typed
query (clause, program) corresponding to a query (clause, program) are defined in
analogy to Definition 5.2. N

Permutation robustly typed programs are an extension of permutation simply typed
programs. Consequently, Definition 7.2 coincides with Definition 7.4 in the case that
all output positions are free, and all input positions of variable type are free. Note that
a permutation simply typed program is also permutation robustly typed with respect
to a free-bound-labelling where the input positions are labelled as explained just after
Definition 7.3.

Example 7.6 Recall that we assume for all examples that an input position of a pred-
icate p is bound if and only if there is some clause defining p whose head has a non-
variable term in that position.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 91

Consider again Example 7.3. The permute program (Figure 9 on page 57) is per-
mutation simply typed in both modes and hence permutation robustly typed, assuming
that all output positions are free.

Consider the quicksort program (Figure 14 on page 87) with the type given in
Example 7.4. This program is permutation robustly typed in mode {quicksort(O,I),
append(0, O, 1), leq(I,I), grt(I,I), part(0O,I,1,I)}, assuming the second position
of append is the only bound output position. Note in particular that Condition 2
of Definition 7.4 is met for the recursive clause of append: the variable Ys fills an
output position of the head and also an output position of the body. The program is
also permutation robustly typed in mode {quicksort(I, O), append(I, I, O), leq(I,I),
grt(I,1I), part(I,I, O, O)}, assuming that all output positions are free.

Similarly, the treeList program (Figure 15 on page 88) is permutation robustly
typed in mode {treeList(O,I), append(O, O,I)} assuming the second position of
append is the only bound output position. It is also permutation robustly typed in
mode {treeList(/, 0), append(I,I, O)} assuming that all output positions are free.

q

In Lemma 7.2, we showed a persistence property of permutation simply-typedness.
There we did not actually assume that the derivation step is input-consuming, but only
that the input arguments of the selected atom are an instance of the input arguments of
the clause head. The following example shows that for permutation robustly-typedness,
this is not sufficient.

Example 7.7 Consider append(/, I, O) (Figure 10 on page 57) and assume that all
positions are bound. Then the query

append([], I, Bs), append([], Bs, [C|Cs])

is (permutation) robustly typed. Suppose we want to resolve the second atom using the
first clause for append. The vector ([],Bs) is an instance of ([],Y), and yet the MGU
of append([], Bs, [C|Cs]) and append([], Y, Y) binds Bs to [C|Cs], and hence the derivation
step would not be input-consuming. <

We now state a simple proposition which is illustrated in Figure 16. If we read p(s,t)
as a selected atom and p(v,u) as a clause head, the proposition states a necessary
condition for a derivation step to be input-consuming.

Proposition 7.5 Let p(s,t) and p(v,u) be two atoms that are unifiable with MGU 6,
and suppose that dom(6) Nwvars(s) = (). If in some position, u is filled with a variable
z and t is filled with a non-variable term, and z also has a direct occurrence in v in
position 7, then s is non-variable in position .

The following lemma, shows a persistence property of permutation robustly-typedness.

Lemma 7.6 Let Q = pi(s1,t1),...,0n(Sn,ty) be a m-robustly typed query, let k €
{1,...,n}, and C = pi(vo,um41) < qi(u1,v1),...,qm(Wm, Vi) a p-robustly typed,
input-linear clause where vars(Q) N vars(C) = (. Suppose that pg(sg,tr) and
Pk (Vo, U t1) are unifiable and

92 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS

Figure 16: Illustrating Proposition 7.5

Q: pl(slatl) pk(ska tk) pn(snatn)

Stage(l Stage(2 (f+) Stage)3 (b—)

C:| pe(vo, Umy1) | = | a(u,vi) || gm(Wm, Vi)

Figure 17: Data flow in the unification

1. s is an instance of vy, and

2. if a variable z fills positions ¢ in v8 and j in u?n_H, and position j in t,'z is non-
variable, then position ¢ in s,'g is also non-variable.

Then there is an MGU @ of py (s, tx) and pg(vo, Um1) such that

a. dom(0) Nwars(s,) = 0, that is, the derivation step is input-consuming,

b. the resolvent of () and C with selected atom pg(sk,ty) is Der(w, p, k)-robustly
typed.

PrOOF. We show how € is computed, where we consider three stages. In the first, s;
and vg are unified. In the second, the output positions are unified where the bindings
go from C to (. In the third, the output positions are unified where the bindings go
from @ to C. Figure 17 illustrates which variables are bound in each stage. The first
three parts of the proof correspond to the three stages of the unification.

PART 1: (unifying s and vg). Since by assumption 1, s is an instance of vy, there is a
(minimal) substitution 6; such that vof; = s. We show that the following statements
hold:

Sla dom(6,) Nwars(s,) = 0.
S1b dom(61) Nwars(vi,..., vy, t1,...,t,) = 0.

Slc Let = be a variable occurring directly in a position of type 7 in uf;1 1101, such
that t? is non-variable in this position. Then z ¢ vars(si). Moreover, z can only
oceur in vi,..., vy, t1,...,t, in a bound position of type 7, and the occurrence
must be direct.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 93

S1d wvars(umy,101) Nvars(ty) = 0.

Sla holds by the construction of 6.

S1b holds since by Definition 7.4 and the assumption that C is input-linear, we have
that vo,..., vy, t1,...,t, is linear.

Let x be a variable occurring directly in a position of type 7 in u,l?n 4101, such that t,t;
is non-variable in this position. Let y be the variable in the same position in ugl L1
Suppose that y € wvars(vg). Then by Definition 7.4, y occurs directly in v8, say in
position 4, and by assumption 2, s,t; is non-variable in position 4. Thus y#; is not a
variable, which is a contradiction. Therefore y ¢ vars(vp). Hence y & dom(6,) and
thus z = y and = ¢ vars(sg). Furthermore it follows by Definition 7.4 that = can only
occur in vi,..., vy, t1,...,t, in a bound position of type 7, and the occurrence must
be direct. Thus Slc holds.

Since @ is permutation nicely moded, vars(sy)Nvars(t;) = () and hence vars(ran(6y))N
vars(ty) = 0. Thus S1d holds.

PART 2: (unifying t; and u,,+160; in each position where either the argument in tj is
a variable, or the arguments in t; and u,,,16; are both non-variable). Note that this
includes all positions in t}f€ and uf 4101, but may also include positions in t? and up, 1101
Since, by Slb, t;01 = t, Part 2 covers precisely the output positions where the binding
“goes from u,, 1601 to tx01” (see Figure 17). We denote by t}f:“ the projection of t; onto
the positions where the argument in ty, is a variable, or the arguments in t; and u,,416;
are both non-variable, and by tz_ the projection onto all other positions, and likewise
for up,416;.

By S1d, vars(u%ﬂ_l@l) N vars(tfj) = (). Thus there is a minimal substitution 6" such
that t/76' = ul¥, 0;. Let 6 = 6,6'. Then by S1b and S1d, t}"6, = u’," ;6,. We show
the following statements:

S2a dom(62) Nwars(sy) = 0.

S2b dom(02) Nwars(vy,..., v, t1,... ,tk_l,t,l;*,tkﬂ, ooy ty) =0,

S2c Let x be a variable occurring directly in a position of type 7 in uf;;+192.1 Then
x & vars(sy), and = can only occur in vq,..., vy, ty,... ,tk_l,t,t;*,tkﬂ, ..., by in
a bound position of type 7, and the occurrence must be direct.

S2d wars(wm.102) Nwars(td™) = 0.
Since vars(sg) Nvars(ty) = 0, we have dom(6') Nwvars(sg) = 0. This and Sla imply

S2a.

S2b holds because S1b holds and (vi,..., vy, t1,...,t,) is linear.

!By definition of the superscript notation b— we have that tz_ is non-variable in this position.

94 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS

By S1d, dom(0") Nwars(uf, ,01) = 0. This together with Slc implies S2c. Furthermore,
because of the linearity of t;, S2d follows.

PART 3: (unifying t}~ and u,t;;_leg). By S1d, dom(6") N vars(u,tf,;_lel) = (), and thus
uf;;+102 = u,*;;ﬂol. Therefore, by the definition of the superscript b— in Part 2, u$7;+192
is a vector of variables. By S2d, vars(ug;HGQ) Nwvars(td™) = 0, so that there is a
minimal substitution 6” such that uE,Z_HOQH” = tz_. Let 63 = 650"”. Then, by S2b, we
have ugl_+16'3 = tz_6‘3. We show the following statements:

S3a dom(63) Nwars(sy) = 0.

S3b (vi,. .y Vi, b1y oo tg—1, tgyt,. .., ty)03 is linear and has flat type-consistent
terms in all bound positions and variables in all free positions.

By S2¢, dom(0") Nwvars(sy) = 0. This and S2a imply S3a.

Suppose z is a variable in ugl_+192 occurring in a position ¢ of type 7, and z also occurs in
(Viyeo oy Vi try ooyt 1, teaq, ..., ty). By S2¢, the latter occurrence of z is in a bound
position of type 7, and the only occurrence of x in (vq,..., Vi, by, ..o tp_1, tepr, ..., tp).
Let I be the set of positions where x occurs in u?{HGQ, and let T be the set of terms
occurring in tz_ in positions in I. Then T is a set of variable-disjoint, flat terms.
Therefore their most general common instance z6” is a flat term and x6” is type-
consistent with respect to 7. Moreover, since (vi,...,Vpy,t1,...,t5_1, tz_, trity---,tn)
is linear, vars(z0")Nvars(vy, ..., Vi, b1, ..o tg_1,tg11,-- ., tn) = 0 and hence it follows
that (vi,..., Vi, t1,. ., tg_1, k11, .., t,)0" is linear and type-consistent. This and S2b
imply S3b.

PART 4: Defining 6 = 03 it follows that pk(Sk,tk)9 = pk(Vo, um+1)9. By S3a, si0 = s,
which shows (a). By S3b and Lemmas 5.3 and 5.10, the resolvent of @ and C is
Der(m, p, k)-robustly typed, which shows (b). O

From Lemma 7.6, we can conclude that permutation robustly typed programs are type-
consistent with respect to input-consuming derivations. Of course, this holds in partic-
ular for permutation simply typed programs.

Lemma 7.7 Every permutation robustly typed program is type-consistent with respect
to input-consuming derivations.

PRrROOF. Let P be a permutation robustly typed program and) a permutation robustly
typed query. Trivially, assumption 1 in Lemma, 7.6 is necessary for a derivation step to
be input-consuming. By Proposition 7.5, assumption 2 in Lemma 7.6 is also necessary
for a derivation step to be input-consuming. Hence by Lemma 7.6 (b), any input-
consuming derivation of PU{Q} contains only permutation robustly typed queries. By
Definition 7.4, every permutation robustly typed query is type-consistent, and hence P
is type-consistent with respect to input-consuming derivations. O

We define input selectability. We will see that in a program with input selectability, an
atom is selectable only if it meets assumptions 1 and 2 in Lemma 7.6.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 95

:- block permute(-,-). :- block delete(?,-,-).

permute ([1,[1). delete (X, [XI1Z],Z).

permute ([UIX],Y) :- delete(X, [UIY], [UIZ]) :-
permute (X,Z), delete(X,Y,Z).
delete(U,Y,Z).

Figure 18: The permute program with block declarations

Definition 7.5 [input selectability] Let P be a permutation robustly typed program.
P has input selectability if for every permutation robustly typed query (), an atom
in @ is selectable in P if and only if it is non-variable in all bound input positions. <«

Input selectability is similar to the condition that “the delay declarations imply match-
ing” [AL95].

For a program to have input selectability, the block declarations must be such that
an atom whose free output positions are all variable is selectable if and only if all bound
input positions are non-variable.

Example 7.8 Figure 18 shows the permute program of Figure 9 on page 57, with
block declarations added. Here we only consider delete. Let us first assume mode
delete(l, O, 1), with a free-bound-labelling delete(free, free, bound) as explained on
page 90. Then the block declarations ensure input selectability. Now assume mode
delete(O, I, O) with a free-bound-labelling delete(free, bound, free). For this mode,
the block declarations also ensure input selectability. Hence the block declarations
ensure input selectability with respect to two different modes. N

The following proposition states that input selectability ensures that every selectable
atom meets assumptions 1 and 2 in Lemma 7.6.

Proposition 7.8 Let P be a permutation robustly typed, input-linear program with
input selectability, @ = pi(s1,t1),...,Pn(Sn,tn) be a m-robustly typed query, k €
{1,...,n}, and C = pg(vo,um+1) < B a clause in P. Suppose that pg(sg,ty) is
selectable and pg(sk, tx) and pg(vo, uns1) are unifiable. Then assumptions 1 and 2 in
Lemma 7.6 are fulfilled.

PROOF. Since p(sg, ti) is selectable in P, it follows that s; is non-variable in all bound
positions. By Definition 7.4, vq is a linear vector having flat terms in all bound positions,
and variables in all other positions. Thus assumption 1 is fulfilled. Assumption 2 is
fulfilled since s; is non-variable in all bound positions. O

The following theorem is a consequence of Proposition 7.8 and Lemma 7.6.
Theorem 7.9 Let P be a permutation robustly typed, input-linear program with input

selectability, and @) a permutation robustly typed query. Then every delay-respecting
derivation of P U {Q} is input-consuming.

96 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS

Note that the converse is not true. There could be input-consuming derivation steps
which are not delay-respecting.

The following example illustrates why it is an advantage that the selected atom only
has to be non-variable in the bound input positions.

Example 7.9 Consider the block declaration for append in Figure 15 (page 88). Given
that the usual modes for append are append(7, I, O) and append(O, O, I), one might
expect a general theory to say that an atom using append should be selectable if either
the first two arguments or the third argument are non-variable. This would correspond
to the block declaration

:- block append(-,?7,-), append(?,-,-).

However, the simpler block declaration is justified since by Definition 7.3, we may
assume that for the mode append(7, I, O), the second position is free. The simpler
block declaration is the one usually given [HL94, Liit93, MT95], but to the best of our
knowledge, its adequacy has never been explained on such an abstract level. <

The next example illustrates why in Definition 7.5, input selectability is defined with
respect to atoms in permutation robustly typed queries.

Example 7.10 Consider append(0Q, O, I') where the second position is the only bound
output position, as in quicksort(O,I) (Figure 14 on page 87) or treeList(O,I)
(Figure 15 on page 88). The program for append has input selectability. @ =
append (A, [BIBs], [1]) is a permutation robustly typed query, and its atom is se-
lectable. The atom append([1, [1,C) is also selectable, although its input position is
variable. This does not contradict Definition 7.5, since the first position is free, and thus
this atom cannot occur in a permutation robustly typed query with respect to mode
append(O, O, I). N

Looking at Definition 7.4, one is tempted to think that it is best to associate the label
bound with all output positions, because that would make the definition less restric-
tive. However, we require a program to have input selectability in each of its modes.
Since input selectability is defined with respect to atoms in permutation robustly typed
queries, and permutation robustly typed queries are defined with respect to given free
and bound positions, it turns out that the choice of free and bound positions constrains
the possible set of modes. This is illustrated in the following example.

Example 7.11 Consider append(0, O, I), where both output positions are bound, and
the block declaration is as in Figure 15 (page 88). Note that this block declaration is
intended to allow for the current mode append(O, O, I'), but also alternatively for mode
append(/, I, O). Now consider the query

append(Cs,Ds, [1, 2, 3]), append([A/As], [B[Bs], Cs)

This query is robustly typed with respect to the current mode append(0Q, O,T). The
second atom is selectable although it is variable in its only bound input position. There-
fore the program does not have input selectability. This could be rectified by replacing
the block declaration with

7.5. SUMMARY OF THE CORRECTNESS PROPERTIES 97

m-simply typed
Def. 7.2 (page 86)
termination,
error-freedom,
unification-freedom

ZERN

m-simply moded
Def. 7.1 (page 86)

m-robustly typed
Def. 7.4 (page 90)

termination

m-well moded
Def. 5.4 (page 68)

ANz NI

m-well typed
Def. 5.5 (page 69)

non-floundering

m-nicely moded
Def. 5.2 (page 65)
occur-check freedom

Figure 19: The correctness properties

:= block append(?,7,-).

but then the program could not be used in mode append(I, I, O) anymore. However,
we have not encountered a case where a “natural” mode of a program was ruled out
because of this problem. <

7.5 Summary of the Correctness Properties

We now give an overview of the correctness properties for programs and queries that are
used in this thesis. Figure 19 shows all the properties. An arrow stands for implication.
In each box, we quote the definition of the property and state the main purpose for
which it is used, apart from the obvious purpose of defining other properties.

The arrows 1-4 correspond to implications by definition. As stated in Proposi-
tion 5.13, permutation well-modedness is permutation well-typedness for the special
case that the only type is the type all_ground. Moreover, permutation simply-typedness
is permutation robustly-typedness for the special case that all output positions, and ex-
actly the input positions of variable type, are free.

Chapter 8

Termination and block
Declarations

In this chapter, we consider termination of logic programs with block declarations.
In Section 6.5, we said that often, assuming input-consuming derivations is not suf-
ficient to ensure termination. We now make an additional assumption, namely that
derivations are left-based. These are derivations where (allowing for some exceptions
explained in the next section) the leftmost selectable atom is selected in each step. This
is intended to model derivations in the common implementations of Prolog with block
declarations [SIC98]. Since “leftmost” obviously refers to the textual order of atoms in
a query, we cannot make the simplifying assumption in this chapter that the textual or-
der is always identical to the producer-consumer order, as discussed in Subsection 5.3.2.
That is, whenever we use one of the correctness properties such as permutation nicely-
modedness, we cannot assume that the permutations are always the identity.

8.1 Two Approaches to the Termination Problem

Our first approach to the termination problem is focused on speculative output bind-
ings [Nai92], that is, output bindings made before it is known that a solution exists.
This is a well-known source of non-termination associated with delay declarations. We
present two complementing methods for dealing with this problem and thus proving (or
ensuring) termination. Which method must be applied depends on the program and
on the mode being considered. The first method exploits the fact that a program does
not use any speculative bindings, by ensuring that no atom ever delays for all left-based
derivations. The second method exploits the fact that a program does not make any
speculative bindings. This approach builds on previous heuristics [Nai85, Nai92] and
relies on conditions which are easy to check. However, it is quite limited.

The second approach to the termination problem builds on Chapter 6 but assumes
that derivations are not only input-consuming, but also left-based. The question is:
what shall we do about predicates that are not atom-terminating? A good intuitive
explanation for the problem these predicates pose is that they may loop when called with
insufficient input. For example, consider the permute program as shown in Figure 20.
For permute(O,) the query permute (A, [11B]) has insufficient input and may loop.

98

8.2. LEFT-BASED DERIVATIONS 99

:- block permute(-,-). :— block delete(?,-,-).
permute ([1,[1). delete (X, [XI1Z],Z).
permute ([UIX],Y) :- delete(X, [UIY], [UIZ]) :-
delete(U,Y,Z), delete(X,Y,Z).
permute (X,Z) .

Figure 20: Placing recursive calls last for permute

However, the query permute (A, [1,2]) has sufficient input and terminates. The idea
for proving termination is that, for such predicates, calls with insufficient input must
never arise. This can be ensured by appropriate ordering of atoms in the clause bodies,
as demonstrated in Figure 20 (in contrast to Figure 18 on page 95). This may actually
work in several modes, provided not too many predicates have this undesirable property.

Both approaches implicitly rely on termination of LD-derivations, in that they trans-
late the termination problem for a program with delay declarations to the same problem
for a corresponding program executed left-to-right. It is assumed that, for the corre-
sponding program, termination can be shown using some existing technique [Apt97,
AP90, DD94, DVB92, DD93, DD98, EBC99, L.S96, L.S97]. For the example programs
we give, except for the program in Figure 13 on page 81, Lindenstrauss has confirmed
to us that the TermiLog system [LSS97] can automatically prove termination for the
corresponding programs assuming LD-derivations.

This chapter is organised as follows. The next section defines left-based deriva-
tions. Section 8.3 presents the first approach. Section 8.4 presents the second approach.
Section 8.5 discusses the results of this chapter and compares the two approaches.

8.2 Left-Based Derivations

We now attempt to formalise derivations in most existing Prolog implementations. Some
authors have considered a selection rule stating that in each derivation step, the leftmost
selectable atom is selected. Boye claims that several modern Prolog implementations
and even Godel [HL94] use this selection rule [Boy96, page 123]. Apt and Luitjes [AL95]
have interpreted Naish’s [Nai86, Nai92] notion of a “default left-to-right” selection rule
in this way. Naish has not specified precisely what a default left-to-right selection rule
is, but he is aware of the fact that the selection rule of most Prolog implementations
does not state that the leftmost selectable atom is always selected.

As an aside, Apt and Luitjes also claim that Liittringhaus-Kappel [Liit93] has con-
sidered this selection rule, but this is definitely not the case, since Liittringhaus-Kappel
considers arbitrary delay-respecting derivations.

Prolog implementations do not usually guarantee the order in which two simultane-
ously woken atoms are selected. In the following, we define waiting atoms, which are
the atoms that were previously delayed, together with all their descendants. We specify
that waiting atoms are always preferred over other atoms, but we do not specify the
relative selection order of two waiting atoms.

!Personal communication.

100 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS

Definition 8.1 [waiting atom, left-based derivation] Let P be a program and let
Qo;---;Q; ... be a delay-respecting derivation, where (; = Ry, Ro, and Ry contains
no atom that is selectable in P. Then every descendant of every atom in R; is waiting.
A delay-respecting derivation Qg; Q1 ... is left-based if in each);, an atom which is
not waiting is selected only if there is no selectable atom to the left of it in @);. <

Example 8.1 Consider the following program:

:— block a(-). :— block b(-)
a(1). b(X) :- b2(X).
c(1). b2(1). d.

The following is a left-based derivation. Waiting atoms are overlined. The selected
atom in each step is underlined, as in previous examples.

a(X),b(X), c(X),d ~» a(1),b(1),d ~ a(1),b2(1),d ~ a(1),d ~» d ~ 0.

Note that b(1) and b2(1) are waiting and selectable, and therefore they can be selected
although there is the selectable atom a(1) to the left. In contrast, d is never waiting
and can only be selected in the last step. The following is another left-based derivation.
Here, the leftmost selectable atom is selected in each step.

a(X),b(X), c(X),d ~ a(1),b(1),d ~ b(1),d ~ b2(1),d ~ d ~ O.

We do not believe that it would be useful or practical to try to specify the selection
rule of existing Prolog implementations more precisely. Our experiments suggest that
it depends on the order in which variables are bound when two terms are unified, which
is clearly an artefact of the implementation. We are confident however that derivations
in most Prolog implementations are left-based. To the best of our knowledge, this
has not been formalised previously, although Naish has considered such derivations
informally [Nai86, Nai92].
We can state the following simple lemma, about left-based derivations.

Lemma 8.1 Let P be a program and £ a left-based derivation such that in each query
in £, the leftmost atom is selectable in P. Then ¢ is an LD-derivation.

PrOOF. Let &€ = Qq;Q1;-... We show by induction that for all 1 > 0, Q); contains no
waiting atom, and the leftmost atom in @); is selected in the step Q;; Qi+1.

In Qp, no atom is waiting, and hence the leftmost atom is selected. Now suppose that
for some 7 > 0, Q; contains no waiting atom. Then, since the leftmost atom of @Q; is
selectable, it is selected. Moreover, no atom in @; 1 is waiting. O

8.3 Termination and Speculative Bindings

In this section, we present two complementing methods for showing termination. These
are explained in the following example.

8.3. TERMINATION AND SPECULATIVE BINDINGS 101

Example 8.2 Consider the permute program (Figure 18 on page 95). The derivation
in Example 6.2 loops because delete produces a speculative output binding [Nai92]: The
output variable Z’ is bound before it is known that this binding will never have to be
undone. Assuming left-based derivations, termination in both modes can be ensured by
swapping the two body atoms of the recursive clause for permute. The modified program
is shown in Figure 20 on page 99. This technique has been described as placing recursive
calls last [Nai92]. To explain why the program terminates, we have to apply a different
reasoning for the different modes.

In mode permute(O, I), the atom that produces the speculative output occurs tez-
tually before the atom that consumes it. This means that the consumer waits until
the producer has completed, that is, undone the speculative binding. The program
does not use speculative bindings. In mode permute(I, O), delete is used in mode
delete(l, O, 1), and in this mode it does not make speculative bindings.

Observe that in mode permute(O,), termination for this example depends on
derivations being left-based, and therefore any method which abstracts from the textual
order must fail. <

The methods presented in this section can be used to prove termination for permute
(Figure 20 on page 99), treeList (Figure 15 on page 88), plus_one (Figure 13 on
page 81), and delete as defined in Example 7.1. However, they do not work for
quicksort (Figure 14 on page 87) and nqueens (which will be shown in Figure 22
on page 106).

8.3.1 Termination by not Using Speculative Bindings

In LD-derivations, speculative bindings are never used [Nai92]. By Lemma 8.1, a left-
based derivation is an LD-derivation, provided the leftmost atom in each query in the
derivation is always selectable. Moreover, by Definition 5.5, the leftmost atom in a well
typed query is always non-variable in its input positions of non-variable type. This
implies the following theorem.

Theorem 8.2 Let Q be a well typed query and P a well typed program such that
an atom is selectable in P whenever its input positions of non-variable type are non-
variable. Then every left-based derivation of P U {Q} is an LD-derivation.

We now give two examples of programs where by Theorem 8.2, we can use any method
for LD-derivations [DD94] to show termination for any well typed query.

Example 8.3 Consider permute(O, I) (Figure 20 on page 99) with either of the types
given in Example 5.7. This program is well typed. <

Example 8.4 Consider the delete program in Example 7.1. Assuming either of the
types given in Example 5.7, this program is well typed. Moreover, this is a program for
which Section 8.4 is not applicable, because the program is not permutation robustly
typed. <

102 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS

8.3.2 Termination by not Making Speculative Bindings

Some programs and queries have the property that there cannot be any failing deriva-
tions [PR99]. Bossi and Cocco [BC99] have defined a class of such programs called
noF'D, assuming LD-derivations. We define non-speculative programs, which is a simi-
lar concept. The definition is based on permutation simply typed programs.

Definition 8.2 [non-speculative] A program P is non-speculative if it is permutation
simply typed, input-linear, and every simply typed atom using a predicate in P is
unifiable with some clause head in P. <

Note that unlike noFD programs, non-speculative programs must be input-linear. Thus
in particular, they must not use the equality predicate in mode =(I,I), that is, they
must not use equality tests.

Example 8.5 We give some examples of non-speculative programs. Both versions of
the permute program (Figure 18 on page 95 and Figure 20 on page 99), assuming
either of the types given in Example 5.7, are non-speculative in mode {permute(I, O),
delete(l, O,1I)}. Every simply typed atom is unifiable with at least one clause head.

Both versions are not non-speculative in mode {permute(O,), delete(O,I, O)},
because delete (A, [1,B) is a simply typed atom which is not unifiable with any clause
head.

The program treeList (Figure 15 on page 88) is non-speculative in the mode
{treeList(Il, O), append(l, I, O)}. It is not non-speculative in mode {treeList(O,I),
append(O, O, I)} because it is not permutation simply typed (see Example 7.5).

Now consider the plus_one program (Figure 13 on page 81) and suppose all argu-
ments have type {0, succ(0), succ(succ(0)),...}. Then the program is non-speculative.
We will see later that this gives us an alternative way of proving termination for this
program. q

A delay-respecting derivation for a non-speculative program P with input selectability
and a permutation simply typed query cannot fail.2 However it could still be infinite.
The following theorem says that this can only happen if the simply typed program
corresponding to P has an infinite LD-derivation for this query.

Theorem 8.3 Let P be a non-speculative program with input selectability and P’ a
simply typed program corresponding to P. Let () be a permutation simply typed query
and Q' a simply typed query corresponding to (). If there is an infinite delay-respecting
derivation of P U {Q}, then there is an infinite LD-derivation of P" U {Q'}.

ProOF. For simplicity assume that @ and each clause body in P do not contain two
identical atoms. Let Q¢ = Q, 6y =) and

£ =(Qo,00); (Q1,61);---

%It can also not flounder, as we will see in Section 9.3.

8.3. TERMINATION AND SPECULATIVE BINDINGS 103

be a delay-respecting derivation of P U {Q}. The idea is to construct an LD-derivation
¢ of P U{Q'} such that whenever £ uses a clause C, then ¢ uses the corresponding
clause C’ in P'. Tt will then turn out that if ¢’ is finite, £ must also be finite.

We call an atom a resolved in ¢ at ¢ if a occurs in @); but not in ;1. We call a
resolved in ¢ if for some i, a is resolved in £ at i. Let Qf = Q' and 6 = 0. We
construct an LD-derivation

fl = <Q67 9(,)>a (Q,17011>a R
of P'U{Q'} showing that for each i > 0 the following hold:

S1(i) If g(u,v) is an atom in @; that is not resolved in &, then vars(v#;) Ndom(6;) =0
for all 7 > 0.

S2(i) Let = be a variable such that, for some j > 0, z0; = f(...). Then z#] is either a
variable or 20, = f(...).

We first show S1(0) and S2(0). Let ¢(u,v) be an atom in Qf that is not resolved in £.
Since 6 = 0, it follows that vfj = v. Furthermore, by Lemmas 7.3 and 7.4 and since
q(u,v) is not resolved in £, we have vf; = v for all j. Thus S1(0) holds. S2(0) holds
because 6 = ().

Now assume that for some i, (Q%, 0%) is defined, Q! is not empty, and S1(7) and S2() hold.

1771
Let p(s,t) be the leftmost atom of Q}. We define a derivation step (Q}, 0;); (Qi,1,0i,1)
with p(s,t) as the selected atom, and show that S1(7 + 1) and S2(i + 1) hold.
CASE 1: p(s,t) is resolved in & at [for some [. Consider the simply typed clause
C' = h + B’ corresponding to the uniquely renamed clause (using the same renaming)
used in £ to resolve p(s,t). Since p(s,t) is resolved in & at [, and ¢ is delay-respecting
and P has input selectability, it follows that p(s,t)#; is non-variable in all bound input
positions. Thus each bound input position of p(s,t) must be filled by a non-variable
term or a variable x such that z6;, = f(...) for some f. Moreover, p(s, t)§; must have
non-variable terms in all bound input positions since Q:6; is well typed. Thus it follows
by S2(7) that in each bound input position, p(s,t)6: has the same top-level functor as
p(s,t)d;, and since h has flat terms in the bound input positions, there is an MGU ¢!
of p(s,t)0; and h. We use C' for the step (Q;, 0;); (Qi,1,0i,1)-
We must show S1(i + 1) and S2(i + 1). Consider an atom ¢(u,v) in Q) other than
p(s,t). By Lemma 7.2 (e), vars(v6;) N dom(¢;) = 0. Thus for the atoms in @, that
occur already in @}, S1 is maintained. Now consider an atom ¢(u, v) in B’ which is not
resolved in £. By Lemma 7.4, v#;_ | = v. Since g(u, v) is not resolved in ¢, for all j > 1
we have that ¢(u,v) occurs in @; and thus by Lemma 7.4, vf; = v. Thus S1(i + 1)
follows. S2(7 + 1) holds because of S2(i) and since p(s,t) is resolved using the same
clause head as in €.

CASE 2: p(s,t) is not resolved in £. Since P’ is non-speculative, there is a (uniquely
renamed) clause C' = h < B’ in P’ such that h and p(s, t)8} have an MGU ¢,. We use
C' for the step (Q},0;); (Qi1,0i11)-

[ER

104 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS

We must show S1(i+1) and S2(i+1). Consider an atom ¢(u,v) in @} other than p(s, t).
By Lemma, 7.2 (e), vars(v#;) N dom(¢;) = 0. Thus for the atoms in Q] ; that occur
already in @}, S1 is maintained. Now consider an atom ¢(u,v) in B’. Clearly ¢(u,v) is
not resolved in &, since it does not even occur in €. Since vars(C') Nvars(Q;0;) = 0 for
all j and since by Lemma 7.4, we have v ; = v, S1(i + 1) follows.

By S1(i), we have vars(tf;) N dom(#;) = 0 for all j. By Lemma 7.2 (c), we have
dom(¢;) C wars(tl]) U vars(C’). Thus we have dom(¢}) N dom(#;) = (for all j.
Moreover, S2(7) holds, and so S2(i + 1) follows.

Since this construction can only terminate when the query is empty, either @/, is empty
for some n, or ¢ is infinite.

Thus we show that if ¢’ is finite, then every atom resolved in ¢ is also resolved in ¢'. So
let &' be finite of length n. Assume for the sake of deriving a contradiction that j is the
smallest number such that the atom a selected in (Q;, 0;); (Qj+1,0;+1) is never selected
in¢’. Then j # 0 since Qp and Qf are permutations of each other and all atoms in Qf are
eventually selected in ¢’. Thus there must be a k < j such that a does not occur in Qg
but does occur in Q1. Consider the atom b selected in (Qg, 0k); (Qr11,0k+1). Then by
the assumption that j was minimal, b must be the selected atom in (Q;,6;); (Qi 1, 6;,1)
for some 7 < n. Hence a must occur in Q] 11, since the clause used to resolve b in & is
a simply typed clause corresponding to the clause used to resolve b in ¢. Thus ¢ must

occur in @), contradicting that & terminates with the empty query.

Thus if ¢ is finite, then £ is also finite, or equivalently, if ¢ is infinite, then £ is also
infinite. O

As stated on page 99, for permute(I, O) (Figure 20 on page 99), treeList(/, O) (Fig-
ure 15 on page 88) and plus_one(I) (Figure 13 on page 81), the corresponding simply
typed programs terminate for simply typed queries, assuming LD derivations. By The-
orem 8.3 it follows that the former programs terminate for permutation simply typed
queries, assuming delay-respecting derivations.?

All of these examples can also be shown to terminate using Chapter 6. We now give

a program for which this is not the case.

Example 8.6 Consider the program in Figure 21, where the mode is {is_list([),
equal_list(/, O)} and the type is {is_list(list), equal_list(list,list)}. The pro-
gram is permutation simply typed (the second clause is (2, 1)-simply typed) and non-
speculative, and all LD-derivations for the corresponding simply typed program ter-
minate. Hence it follows that all delay-respecting derivations of a permutation simply
typed query and this program terminate. While we conjecture that is_1list is also
atom-terminating, the method of Chapter 6 cannot show this (compare this to the
discussion about quicksort(l, O) on page 81).

This example is clearly a contrived one, which is partly because it has been designed
to be as simple as possible. We are not aware of a more natural example, but this
example suggests that the method presented in this subsection might be useful whenever
the method of Chapter 6 fails to prove that a predicate is atom-terminating. <

%In the case of plus_one, we would have to add block declarations to ensure input selectability.

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 105

:= block is_list(-). := block equal_list(-,7).

is_list([1). equal_list([],[]1).

is_list([XIXs]):- equal_list([XIXs],[XIYs]):-
is_list(Ys), equal_list(Xs,Ys).

equal_list (Xs,Ys).
Figure 21: The is_list program

Note that any program that uses tests cannot be non-speculative. In the quicksort
program (Figure 14 on page 87), the atoms 1leq(X,C) and grt(X,C) are tests. These
tests are ezhaustive, that is, at least one of them succeeds [BC99]. We are confident
that the result of this subsection could be generalised to allow for such tests. We have
not attempted this generalisation because on the whole, the method presented in the
next section seems more useful. Pedreschi and Ruggieri however consider a more general
notion of “non-failure”, which allows for programs such as quicksort [PR99].

8.4 Termination and Atom-Terminating Predicates

We now present an alternative method for showing termination which overcomes some
of the limitations of the methods presented in the previous section. In particular, the
method can be used for quicksort (Figure 14 on page 87) and nqueens (Figure 22)
as well as permute (Figure 20 on page 99) and treeList (Figure 15 on page 88). We
expect the method presented here to be more useful, although, as Examples 8.4 and 8.6
show, it does not subsume the methods of the previous section.

In this section, two techniques are combined. On the one hand, we use Chapter 6
to show that certain predicates are atom-terminating. On the other hand, we reduce
the problem of proving termination for a program with block declarations to the same
problem for a corresponding program without block declarations, as in the previous
section. It is assumed that termination for the corresponding program has been shown
using some existing method for LD-derivations [DD94].

Let us now illustrate the limitations of the previous section. For permute(O,I)
(Figure 20 on page 99), termination could be ensured by applying the heuristic of
placing recursive calls last [Nai92]. The following example however shows that even this
version of permute(O,) can cause a loop depending on how it is called within some
other program.

Example 8.7 Figure 22 shows a program for the n-queens problem. Here block dec-
larations are used to implement the test-and-generate paradigm. We have already seen
a fragment of this program in Figure 12 on page 80, however with a different order of
atoms in the first clause.

Assuming mode {nqueens(I, O), sequence(I, O), safe(I), permute(O,I), <(I,I),
is(0,I), safe_aux(I,I,I), nodiag(l,I,I), =\=(I,I)} and type {nqueens(int,il),
sequence(int, il), safe(il), permute(il,il), <(int, int), is(int,int),

106 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS

:= block nqueens(-,7). :— block safe_aux(-,7,?), safe_aux(?,-,7),
nqueens(N,Sol) :- safe_aux(?,?,-).
sequence(N,Seq), safe_aux([],_,_).
safe(Sol), safe_aux([M|Ms] ,Dist,N) :-
permute (Sol,Seq) . no_diag(N,M,Dist),
Dist2 is Dist+1,
:- block sequence(-,7). safe_aux(Ms,Dist2,N).
sequence (0,[1).
sequence (N, [N|Seq]) :- :- block no_diag(-,7,?7), no_diag(?,-,7),
0 <N, no_diag(?,7,-).
N1 is N-1, no_diag(N,M,Dist) :-
sequence (N1,Seq) . Dist =\= N-M,

Dist =\= M-N.
:— block safe(-).

safe([1). :- block permute(-,-).
safe([N|Ns]) :- permute ([1,[]1).
safe_aux(Ns,1,N), permute ([U|X],Y) :-
safe(Ns). delete(U,Y,Z),
permute (X,Z) .

:— block delete(?,-,-).

delete(X,[X1Z],2).

delete(X,[U|Y],[UIZ]) :-
delete(X,Y,Z).

Figure 22: A program for n-queens

safe_aux(il,int,int), no_diag(int,int,int), =\=(int,int)}, the first clause is (1,3, 2)-
robustly typed. Moreover, the query nqueens(4,So0l) terminates.

If however in the first clause, the atom order is changed by moving sequence (N, Seq)
to the end, then nqueens(4,S0l) loops. This is because resolving sequence (4,Seq)
with the second clause for sequence makes a binding (which is not speculative) which
triggers the call permute (Sol, [4]T]). This call results in a loop since permute(O, I) is
not atom-terminating. Note that [4]|T], although non-variable, is insufficiently instan-
tiated for permute (Sol,[4]T]) to be correctly typed in its input position: permute is
called with insufficient input.

Note that in this example, unlike in the quicksort program (Figure 14 on page 87),
there are no block declarations for the built-ins <, is and =/=. In Section 10.1, we will
see why it is not necessary to have block declarations here. <

To ensure termination, atoms in a clause body that loop when called with insufficient
input should be placed so that all atoms which produce the input for these atoms
occur textually earlier. Note that this explains in particular why in the second clause
for permute in the above example, the recursive call to permute must be placed last.
In Chapter 6, we have seen that atom-terminating predicates do not loop for input-
consuming derivations, which means in particular, they do not loop when called with

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 107

insufficient input.

This section assumes permutation robustly typed programs. By Theorem 7.9, delay-
respecting derivations for permutation robustly typed, input-linear programs with input
selectability are input-consuming.

A query is called well fed if each atom is atom-terminating or occurs in such a
position that all atoms which “feed” the atom occur earlier.

Definition 8.3 [well fed] Let P be a permutation robustly typed program. For a
m-robustly typed query pi(si,t1),...,pn(Sn,tn), an atom p;(s;,t;) is well fed if all
predicates ¢ with p; J ¢ are atom-terminating, or 7(j) < m(¢) implies j < ¢ for all j. A
m-robustly typed query (clause) is well fed if all of its (body) atoms are well fed. P is
well fed if all of its clauses are well fed. <

Of course, since it is undecidable whether a predicate is atom-terminating, we must
assume it to be not atom-terminating if it has not been shown to be atom-terminat-
ing. In Example 6.5, we have seen the situation that a predicate p is atom-terminating
but some predicate ¢ with p 7 ¢ is not atom-terminating. To simplify the proof of
Theorem 8.5, we want to exclude this pathological situation. This is reflected in the
above definition by the requirement “all predicates ¢ with p; 3 ¢ are atom-terminating”,
rather than just “p; is atom-terminating”.

Example 8.8 The programs mentioned in Example 7.6 are well fed in the given modes.
The nqueens program (Figure 22 on page 106) is well fed in the mode given in Exam-
ple 8.7. The program is not well fed in mode {nqueens(0O, I'), sequence(O, I), safe([),
permute(/, 0), <(I,I),is(0,I), safe_aux(Il,I,I),nodiag(l,I,I),=\=(1,I)}, because
it is not permutation nicely moded in this mode: in the second clause for sequence, N1
occurs twice in an output position. <

The property of being well fed is persistent under resolution.

Lemma 8.4 Every resolvent of a well fed query () and an input-linear well fed clause
C, where vars(Q)Nwvars(C) = 0 and the derivation step is input-consuming, is well fed.

PROOF. By Lemma 7.6 (b), the resolvent is permutation robustly typed. The condition
on the permutation in Definition 8.3 can be checked by inspecting Definition 5.1. O

The following theorem reduces the problem of showing termination of left-based deriva-
tions for a well fed program to showing termination of LD-derivations for a corresponding
robustly typed program.

Theorem 8.5 Let P be an input-linear, well fed program with input selectability, and
Q a well fed query. Let P" and Q' be a robustly typed program and query corresponding
to P and @, respectively. If every LD-derivation of P’ U {Q'} is finite, then every left-
based derivation of P U {Q} is finite.

PROOF. In this proof, call an atom p(s, t) critical if it is not the case that all predicates
g with p J ¢ are atom-terminating. Let Qp = Q, 6y = 0 and

£ =(Qo,00);...;(R1,01);(Q1,01);...:(Ra,02); (Q2,02) ...

108 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS

be a left-based derivation, where Ry, R, ... are the queries in & where a critical atom
is selected.

PART 1: We show for each 1 > 0: If R; exists, then in each query in (Qo,0); . .. ; (R;, 03),
the critical atoms are not waiting, and for each [<4, the leftmost critical atom in R; is
selected in the step (Ry, 07);(Qq,0;). The proof is by induction on i.

CASE 1: Base case. The case ¢ = 0 is trivial since Ry does not exist.

CASE 2: Inductive step. Suppose the statement holds for some i > 0.
CAsE 2a: If R;11 does not exist, the statement follows trivially for ¢ + 1.

CASE 2b: Now suppose that R;.q exists. Let Q; = aq,...,a, and suppose Q;0; is
m-robustly typed, and k is the smallest number such that a; is critical.

Let (F,ar) be the subquery of (); containing all a; with 7(j) < 7(k). By Lemma 8.4,
Qi9; is well fed, and thus j < k for all a; in (F,a;). By Proposition 5.11

(F, a)0; is permutation well typed. (1)

Consider an arbitrary (Q,é} in (Qj,0;);...;(Riy1,0i+1) and assume that no critical
atom in the query preceding (Q,é) in ¢ is waiting. Note that since Q contains ag, it
follows that) contains at least one descendant of (F,ay). By (1) and Lemma 5.10, Q
contains, in particular, at least one descendant a of (F,ay) such that af is selectable,
and moreover, either a = aj, or a occurs to the left of aj in Q. Therefore no critical
atom in (Q,) is waiting.

Suppose that R; 10,11 contains a descendant a of (F,ay) such that ao;iq is selectable,
and a # a. Then, since by the previous paragraph, a; is not waiting in R; 1, it follows
that aj cannot be selected in (Rji1,0i4+1); (Qi+1,0i+1), which contradicts the definition
of R;;+1. Thus it follows that

R;1 contains no descendant of F, (2)

and so axo;y is selectable. Moreover, no critical atom in R; 0;41 is waiting, and so
the selected atom in (R;11,0i11); (Qit1,0i11) 18 a.

PART 2: For all ¢ > 0 such that R; exists, let C; be the uniquely renamed clause used
in the step (R;,0;); (Qi,0;), and let C} be a robustly typed clause corresponding to C;
(using the same renaming). Let Qf = Q' and 6, = 0. We construct an LD-derivation

5, = <Q6706>7 s ;< 1170,1>; <Q,17011>7 S <R12705>; <Q,27012> R

where R}, R}, ... are the queries in ¢ where a critical atom is selected, such that for
all i > 1, C7 is the clause used in (R}, 0}); (Q},0;). Since £’ is finite by assumption, this

implies that ¢ is finite. We show the following statements for all 4 > 0 such that @
exists:

S1(i) The critical atoms of @); and Q) are identical and occur in the same order.

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 109

S2(i) 6; = 0.p; for some substitution p;.

S3(7) Let Q; = aq,...,a, and assume that Q;0; is w-robustly typed, and let a; be a
critical atom (k € {1,...,n}). By S1() we can write Q} = (F',aj, I') for some F’
and I'. For every a in F’, for every a; (j € {1,...,n}) that is a descendant of a
in £, we have 7(j) < m(k).

The proof is by induction on 4.

CASE 1: Base case. S1(0) follows from Definition 8.3. S2(0) holds since 6y = 65 = 0.
For S3(0), note that Q) = m(Qo) and hence F’ contains exactly the atoms a; with
m(j) < w(k).

CASE 2: We now assume that S1(7)-S3(z) hold for some i > 0 and that ;1 exists, and
construct

(an%); el (R;-i—la U;+1); (Q;-i—la £+1)
so that S1(7 + 1)-S3(7 + 1) hold.

As in Part 1, let Q; = a1,...,ay, suppose that Q;0; is w-robustly typed, let & be the
smallest number such that ay, is critical, and (F, ax) be the subquery of @Q; containing all
aj with 7(j) < n(k). By S1(¢), Q; = (F',ay,I") for some F' and I', where F’ contains
only atom-terminating atoms. By S3(i), for every a in F’, for every a; (j € {1,...,n})
that is a descendant of a in &, we have 7(j) < 7(k), and therefore a; is in F'. Thus it
follows by (2) in Part 1 that

R4 contains no descendants of F”. (3)

Let R} | = a;,I'. By (3) and since by S2(i),] is more general than 6;, it is possible
to construct an LD-derivation (Q;,6;);...; (R}, 0},), such that if C' is the uniquely
renamed clause used to resolve an atom in &, then a robustly typed clause C’ correspond-
ing to C' (using the same renaming) is used in (Q},0.);...;(R., 1,00,). Furthermore

o}, is more general than ;. Hence C},; can be used in (R} |, 07 1);(Qi 1,0;,1)-

Since in the clause body of C;j_;, the critical atoms occur in the same order as in Cj11,
S1(i+1) holds. Since oj, is more general than oy 1, it follows that 0] | is more general
than 6;41, so S2(¢ + 1) holds. For the critical atoms in ;11 which occur in the clause
body of C}_, S3(i+1) follows from Definition 8.3. For the critical atoms in @Q;4; which
occur already in R;;1, S3(i + 1) follows from S3(7).

By Definition 7.4, Q is permutation well typed, type-consistent and permutation nicely
moded. By Lemma 7.7, P is type-consistent with respect to input-consuming deriva-
tions. By Theorem 7.9, £ is input-consuming. Hence by Theorem 6.3, ¢ could be infinite
only if there are infinitely many steps where a critical atom is resolved.* Since ¢’ is fi-
nite, £ cannot have infinitely many steps where a critical atom is resolved, and thus &
is finite. O

*Recall that as discussed on page 63, Theorem 6.3 generalises to permutation well typed and permu-
tation nicely moded programs and queries.

110 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS

Example 8.9 Consider the quicksort program (Figure 14 on page 87) with the type
given in Example 7.4. As stated in Example 8.8, this program is well fed in mode
{quicksort(I, O), append(/, I, O), leq(I,I), grt(I,I), part(I,I, 0, 0)}. In particu-
lar, the append atom in the body of the recursive clause for quicksort is well fed since
it is atom-terminating (see Example 6.4). All other body atoms in the program are well
fed because of their textual position.

As stated on page 99, the robustly typed program corresponding to this program
terminates for all robustly typed queries, assuming LD-derivations. By Theorem 8.5
it follows that the quicksort program of Figure 14 terminates for all well fed queries,
assuming left-based derivations.

Now consider the mode {quicksort(O,I), append(O, O, 1), leq(I,I), grt(I,I),
part(O,I,I,1)}. The quicksort program is also well fed with respect to this mode.
The two recursive calls in the second clause for quicksort are well fed because of
their textual position. All other atoms are well fed because they are atom-terminating.
For part, this can be shown using Theorem 6.4, where the level mapping of an atom
part(l,c, s,b) is defined as the sum of the list lengths of s and b. As for the first mode,
we can conclude that the program terminates for all well fed queries, assuming left-based
derivations. <

Example 8.10 Consider the nqueens program (Figure 22 on page 106). We have seen
in Example 6.4 that no_diag, safe_aux and safe are atom-terminating.

The clause defining nqueens is (1, 3, 2)-robustly typed. The second atom is well fed
since it is atom-terminating. The first atom is well fed since for 7 = (1, 3,2), 7 (j) < (1)
implies 7 < 1 for all j. The third atom is well fed since 7(j) < 7(3) implies j < 3 for
all 5.

As stated on page 99, the robustly typed program corresponding to this program
terminates for all robustly typed queries, assuming LD-derivations. By Theorem 8.5
it follows that the nqueens program of Figure 22 terminates for all well fed queries,
assuming left-based derivations.

According to the producer-consumer order, safe(Sol) occurs textually too early.
However, this is the idea of the test-and-generate paradigm: the test safe(Sol) comes
before the generator permute(Sol,Seq). This way, safe(Sol) is always selected as
early as possible and therefore “non-solutions” to the n-queens problem are detected
early.

Our method can only show termination for the mode given in Example 8.7, but
not for the mode nqueens(0, I), although the program actually terminates for that
mode (provided the block declarations are modified to allow for both modes). The
reason that our method fails is not some insignificant detail of our definitions that could
easily be rectified. One can definitely say that the modes in this program “go wrong”:
every call to sequence(O, I) triggers calls to sequence(l, O). The consequence is that
nqueens(0, I) runs in exponential time although it could run in quadratic time.

To the best of our knowledge, no method previously proposed can prove termination
for this program, which is a classical example of a program using coroutining. <

Similarly, we can show termination for permute (Figure 20 on page 99) and treelList
(Figure 15 on page 88). We are assuming here that all built-ins have input selectability.

8.5. DISCUSSION 111

Built-ins will be discussed in Section 9.4. In Section 10.1, we will see why in some cases,
it is not necessary to have block declarations for the built-ins.

8.5 Discussion

In this chapter, we have presented two approaches to proving termination for programs
with block declarations.

The first approach is focused on speculative output bindings, which have long been
recognised as a source of non-termination in programs with delay declarations [Nai92].
The approach consists of two complementing methods based on not using and not
making speculative bindings, respectively. For permute (Figure 20 on page 99) and
treeList (Figure 15 on page 88), it turns out that in one mode, the first method
applies, and in the other mode, the second method applies. This approach is simple
to understand and to apply, and it represents the first work on termination we have
published [SHK99b].

The second approach builds on Chapter 6. We require programs to be permutation
robustly typed, a property which ensures that derivations are input-consuming. In the
next step, we identify predicates that are atom-terminating. Atom-terminating atoms
can be placed in clause bodies anywhere. The other atoms must be placed sufficiently
late, so that their input is sufficiently instantiated when they are called. Provided that
the corresponding robustly typed program terminates for all LD-derivations, this then
implies that the original program terminates for all left-based derivations.

On the whole, the second approach is more useful. It can be used to show termi-
nation for quicksort (Figure 14 on page 87) and nqueens (Figure 22 on page 106),
where the first approach fails. In the original paper where this approach was first
presented [SHK98], it was not yet based on the results of Chapter 6 in their present
general form. In this thesis, the approach follows the idea that one should abstract
from the details of particular delay constructs wherever possible, and instead consider
input-consuming derivations.

On the other hand, as Examples 8.4 and 8.6 show, the second approach does not
formally subsume the first. Example 8.6 suggests in particular that the method of
Subsection 8.3.2 might be useful whenever the method of Chapter 6 fails to prove that
a predicate is atom-terminating, although it actually is. Of course, it would ultimately
be desirable to have a more powerful method for proving that a predicate is atom-
terminating, but we consider this to be a difficult problem.

Chapter 9

Further Aspects of Verification

So far, we have studied termination of non-standard derivations. Following work by Apt
and others [AE93, AL95], we now investigate four other aspects of verification: programs
should only require matching instead of the full unification procedure wherever possible;
the omission of the occur-check should be safe; programs should not flounder; and there
should be no type or instantiation errors with the use of built-ins.

Our results on unification freedom, occur-check freedom and flounder freedom are
generalisations of previous work [AE93, AL95]. Our work on built-ins is aimed mainly
at arithmetic built-ins. We exploit the fact that for numbers, being non-variable implies
being ground, and show how to prevent instantiation and type errors.

This chapter is organised as follows. Section 9.1 shows when programs are unifica-
tion free. Section 9.2 shows when the occur-check can safely be omitted. Section 9.3
shows when programs do not flounder. Section 9.4 is about errors related to built-ins.
Section 9.5 concludes.

9.1 Unification Free Programs

A program is unification free if unification can be replaced by matching. Knowing that
a program has this property can improve the efficiency of the compiled code. Apt and
Etalle [AE93] show unification freedom for LD-derivations. They assume simply moded
and well typed programs and rely on the selected atom always being correctly typed in
its input positions.

112

9.1. UNIFICATION FREE PROGRAMS 113

When we generalise these results to arbitrary input-consuming derivations, we must
take into account that the selected atom may not be sufficiently instantiated to be
correctly typed in its input positions. Nevertheless, we will now see that permutation
simply typed programs are unification free. We first recall some definitions [AE93].

Definition 9.1 [match, left-right disjoint] Given two vectors of terms s = s1,..., 8,
and t = t1,...,t, we use {s = t} as abbreviation for the set of equations {s; =
ti,...,8p = tp}. Consider a set of equations F = {s = t}. A substitution 0 such that
dom(0) C vars(s) and s@ = t, or dom(f) C vars(t) and t0 = s, is a match for E.
Furthermore, E is left-right disjoint if vars(s) Nwvars(t) = 0. 4

The following is a special case of iterated matching [AE93].

Definition 9.2 [double matching] Let E be a left-right disjoint set of equations. E is
solvable by double matching if the following holds: if E is unifiable, then there are
sets of equations F; and E5 and substitutions #; and 6, such that

o F = E1 U EQ,
e F50; is left-right disjoint, and
e 0 is a match for F; and 65 is a match for E»0;.

N

We now define programs that are unification free for input-consuming derivations, as
opposed to LD-derivations as assumed by Apt and Etalle [AE93].

Definition 9.3 [unification free for input-consuming derivations] Let ¢ be a derivation.
Let p(s)! be a selected atom in ¢ and p(t) the head of the clause used to resolve p(s).
Then the set of equations s = t is successfully considered in £.

Let P be a program and) a query. Suppose that all sets of equations success-
fully considered in all input-consuming derivations of P U {Q} are solvable by double
matching. Then PU{Q} is unification free for input-consuming derivations. «

Note that unlike Apt and Etalle, we say that a set of equations is successfully consid-
ered, rather than just considered. This is because an atom can only be resolved if the
unification with the clause head is successful. In our notion of derivation, there is no
such thing as “trying” to unify an atom with a clause head unsuccessfully.

In the sequel, since we only consider input-consuming derivations, we will simply
say “unification free” instead of “unification free for input-consuming derivations”.

Apt and Etalle [AE93] exploit the fact that many programs have generic expressions
in their input positions. A generic expression for a type T is a term ¢ such that if s is
a term of type T and s is unifiable with ¢, then s is an instance of ¢. In a permutation
simply typed program, the input positions of each clause head are filled with generic
expressions, since they are filled with variables in positions of variable type and flat
type-consistent terms in positions of non-variable type.

!Note that s is a vector of terms. We do not care about input or output positions at this point.

114 CHAPTER 9. FURTHER ASPECTS OF VERIFICATION

Theorem 9.1 Let P be a permutation simply typed, input-linear program and @ a
permutation simply typed query. Then P U {Q} is unification free.

PRrROOF. Consider a derivation step R; R’ in an input-consuming derivation of PU{Q},
where p(s, t) is the selected atom, p(v,u) is the head of the clause used in this step and
6 is the MGU. By Lemma 7.2 (f), R is permutation simply typed. Let Fy = {s = v}
and Fy = {t = u} so that E; U E, is the set of equations successfully considered at this
step. By Lemma 7.2 (a, b), 0 = 6,62 where 0; is a match for E;, dom(0,) C vars(v),
vars(ran(01)) C vars(s) and 0y is a match for {t = ub,}. Since dom(0;) C vars(v)
and vars(v) Nwvars(t) = 0, we have Ey6; = {t = ub;}. Therefore 6, is a match for
E50,. Since R is permutation simply typed, vars(s) Nwvars(t) =) so that Fy0; is left-
right disjoint. Therefore E; U Es is solvable by double matching and hence P U {Q} is
unification free. O

Most programs we have seen are permutation simply typed and input-linear, and hence
unification free. However, quicksort(O, I) (Figure 14 on page 87) and treeList(O,T)
(Figure 15 on page 88) are not permutation simply typed. The following example
illustrates why the reasoning of the above theorem does not work for those programs,
even though they may well be unification free. This difficulty has been acknowledged
previously by Apt and Etalle [AE93].

Example 9.1 Consider the following two derivations for treeList(O, I) (Figure 15 on
page 88). Here the first clause for append is used:

treeList(A,[1]) ~
append(LList, [Label|RList],[1]), treeList(L,LList), treeList(R,RList)~
treelList(L,[]), treeList(R,[])

and here the second clause is used:

treeList(A,[1]) ~
append(LList, [Label|RList],[1]), treeList(L,LList), treeList(R,RList)~
append(Xs, [Label|RList],[]), treeList(L,[1|Xs]), treeList(R,RList).

In both derivations, the last step is solvable by double matching. In the first case, the
partitioning of the set of equations is

E, ={[1] =Y}, E;={[Label|RList] =Y, LList =[]}.
In the second case, it is
E, = {[1] = [X|Zs], [Label|RList] = Ys}, E; = {LList = [X|Xs]}.

Note that the second argument position of append is in a different set of the partition
depending on the clause which is used. It is not possible to fix a partitioning into the
input and output positions, which is the idea underlying Theorem 9.1. <

9.2. OCCUR-CHECK FREEDOM 115

9.2 Occur-Check Freedom

A derivation is occur-check free if for every set of equations considered in this derivation,
the occur-check can safely be omitted. We must first define what it means for a set
of equations to be considered. This builds on Definition 9.3. The concept has been
previously defined by Apt and Luitjes [AL95]. However, their definition is imprecise in
that it depends on a concept of a derivation which may end with a failed attempt to
unify a selected atom with a clause, without actually defining this concept formally.

Definition 9.4 [considered] Let P be a program and ¢ a derivation. A set of equations
s = t is considered in £ if it is either successfully considered in £, or there is an atom
p(s) in the last query of £ and a clause in P whose head is p(t). q

In the above definition, no assumptions are made about the degree of instantiation of
the “selected atom” p(s). This is because our result on occur-check freedom holds for
arbitrary derivations. It would of course be possible to take into account that £ is say,
delay-respecting or left-based, and impose a restriction such as “p(s) must be selectable”.
It would however not be meaningful to take into account that & is input-consuming. We
illustrate this with an example.

Example 9.2 Consider the program

p(A’B) .
p(A,8).

where the mode is p(I,), and consider the query p(X, £(X)). Suppose we require that
derivations are input-consuming. Then we can perform a derivation step using the first
clause. We cannot perform a derivation step using the second clause, because p(X, £(X))
and p(A,A) are not unifiable. Tt is therefore meaningless to reason about whether this
derivation step would have been input-consuming. The notion of input-consuming is
only meaningful for actual derivation steps, not for attempted ones. <

Definition 9.5 [occur-check free] A derivation is occur-check free [AL95, AP94b]
if no execution of the Martelli-Montanari unification algorithm [MMS82] for a set of
equations considered in this derivation ends with a set of equations including an equation
x = t, where zx is not ¢, but z occurs in t. <q

We quote the following theorem.

Theorem 9.2 [AL95, Theorem 13| Let P be a nicely moded, input-linear program
and @ a nicely moded query. Then all derivations of P U {Q} are occur-check free.

The next theorem is a trivial consequence of this and Lemma 5.3.

Theorem 9.3 [occur check] Let P be a permutation nicely moded, input-linear pro-
gram and @ a permutation nicely moded query. Then all derivations of P U {Q} are
occur-check free.

Most programs considered in this thesis are permutation nicely moded and input-linear,
and hence occur-check free.

116 CHAPTER 9. FURTHER ASPECTS OF VERIFICATION

9.3 Floundering

Freedom from floundering is an important aspect of verification mainly because of its
relationship to termination. As Apt and Luitjes [AL95] put it

[...] the “stronger” the delay declarations are the bigger the chance that a
deadlock arises, but the smaller the chance that divergence [non-termination]
can result. So deadlock freedom and termination seem to form two bound-
aries within which lie the “correct” delay declarations.

In other words, one can always trivially ensure termination by having delay declarations
such that no atom is ever selectable. That way, every derivation immediately flounders
and hence terminates. Likewise, one can trivially ensure non-floundering by declaring
that every atom is always selectable.”? That way, no derivation can ever flounder but
possibly at the cost of non-termination.

Therefore, for every approach to the termination problem of programs with delay
declarations, one must ask critically: Does the method “buy” termination with flounder-
ing? For the automatically generated delay declarations of Liittringhaus-Kappel [Liit93],

“yes”. This is discussed in Subsection 11.1.5.

the answer could sometimes be

Compared to termination however, non-floundering is an easy problem. Under the
reasonable assumption that programs and queries are permutation well typed, it can
be shown that no derivation flounders. The assumption is reasonable because most
programs are permutation well typed.?> On the other hand, it is usually unreasonable
to expect non-floundering for a query that is not instantiated enough to be permuta-
tion well typed. We have argued in Subsection 1.2.2 that ensuring input-consuming
derivations is paramount. Usually, floundering is the only way to ensure this for insuf-
ficiently instantiated queries. As an example, consider the query append([1|Xs],], Zs)
(see Figure 10 on page 57).

The following theorem generalises [AL95, Theorem 26] to permutation well typed
programs. Note that permutation robustly typed programs with input selectability
(Definition 7.5) fulfill the condition that an atom is selectable if it is non-variable in all
input positions of non-variable type.

Theorem 9.4 Let P be a permutation well typed program and) be a permutation
well typed query. Assume that an atom is selectable if it is non-variable in all input
positions of non-variable type. Then no delay-respecting derivation of PU{Q@} flounders.

PROOF. Let Qp = Q@ and £ = Qo; Q1;... be a delay-respecting derivation of P U {Q}.
Consider an arbitrary ¢); = a4, ...,a, where n > 1. By Lemma 5.10, Q; is m-well typed
for some 7. By Definition 5.5, the atom a,-1(1 is correctly typed in its input positions,
and thus non-variable in its input positions of non-variable type. Therefore a,-1(1) is
selectable. Thus every non-empty query in ¢ contains a selectable atom, and so £ does
not flounder. O

2Technically, this is achieved simply by having no delay declarations at all.
*Etalle and others [AE93, EBC99] even claim that most programs are well typed and simply moded.

9.4. ERRORS RELATED TO BUILT-INS 117

The above theorem can be used to show freedom from floundering for all programs with
block declarations we have introduced.

9.4 FErrors Related to Built-ins

Built-in predicates (built-ins) can be a source of execution errors. Some built-ins produce
an error if certain arguments have a wrong type or are insufficiently instantiated. For
example, X is foo results in a type error and X is V results in an instantiation
error.

Not surprisingly, delay declarations are useful to prevent instantiation errors, since
they test for sufficient instantiation. The relationship between delay declarations and
type errors will be explained in the next subsection.

One problem with built-ins is that their implementation may not be written in
Prolog, or whatever logic programming language we consider. Thus we assume that
each built-in is conceptually defined by possibly infinitely many (fact) clauses. The
ISO standard for Prolog [ISO95] does not define the built-in predicates as conceptual
clauses, but it is nevertheless so precise that it should generally be possible to verify
whether such a definition is correct.

To prove that a program is free from errors related to built-ins, we require it to meet
certain correctness properties (see Section 7.5). These properties have to be satisfied by
the conceptual clauses for the built-ins as well as by the user-defined clauses.

For example, there could be facts “0 is 0+0.”, “1 is 0+1.”, and so forth. A
particularly interesting example is “X = X.” which is the definition of the built-in =.
This is why in an input-linear program, the mode =(I, I) is forbidden, since the clause
is not input-linear for that mode.

In this section, we first explain why type errors are related to delay declarations.
We then present two approaches to ensuring freedom from instantiation and type errors
for programs with delay declarations. For different programs and built-ins, different
approaches may be applicable.

9.4.1 The Connection between Delay Declarations and Type Errors

At first sight, it seems that delay declarations, or more generally, non-standard selection
rules, do not affect the problem of type errors, be it positively or negatively. Delay
declarations cannot enforce arguments to be correctly typed. Also, one would not expect
that a non-standard selection rule could be the cause of wrongly typed arguments.

This is probably true in practice, but in theory, there is the problem of type con-
sistency, which is particularly relevant for non-standard derivations (see Section 5.7).
Consider the program consisting of the fact clause “two(2).” and the built-in is, with
type {two(int), is(int,int)} and mode {two(Q),is(0O,I)}. Suppose an atom using is
is selectable only when its input is non-variable. The query

X is foo, two(foo)

is (2, 1)-well typed since trivially |= foo : int = foo : int. It results in a type error.

118 CHAPTER 9. FURTHER ASPECTS OF VERIFICATION

For LD-derivations this problem does not arise. The well typed query corresponding
to the above query is two(foo), X is foo. Since the type of two is int and the program
is well typed, the atom two(foo) can never be resolved, and therefore the derivation
fails without ever reaching X is foo.

9.4.2 Exploiting Constant Types

The approach described in this subsection aims at preventing instantiation and type er-
rors for built-ins, for example arithmetic built-ins, that require arguments to be ground.
It has been proposed by Apt and Luitjes [AL95] to equip these predicates with de-
lay declarations so that they are only executed when the input is ground. This has
the advantage that one can reason about arbitrary arithmetic expressions, as in, say,
quicksort ([1+1,3-8],M). The disadvantage is that block declarations cannot be used.
In contrast, we assume that the type of arithmetic built-ins is the constant type num.
Then we show that block declarations are sufficient. The following lemma is similar to
and based on [AL95, Lemma 27].

Lemma 9.5 Let Q = pi(s1,t1),...,0n(Sn, tn) be a m-well typed query, where p;(S;, T;)
is the type of p; for each i € {1,...,n}. Suppose, for some k € {1,...,n}, that s; has
a non-variable term s occurring directly in a position of constant type S, and there is a
substitution # such that t;0 : T; for all j with 7(j) < m(k). Then s : S (and thus s is
ground).

ProOOF. By Definition 5.5, s : S, and thus sf : S and so s is a constant. Since s
is already non-variable, it follows that s is a constant and thus s@ = s. Therefore s : S.
O

By Definition 7.2, for every permutation simply typed query @, there is a 6 such that Q8
is correctly typed in its output positions. Thus by Lemma 9.5, if the arithmetic built-ins
have type num in all input positions, then it is enough to have block declarations such
that these built-ins are only selected when the input positions are non-variable.

Note that in the following theorem, we do not mention instantiation or type errors,
as we have not defined formally what an error “is”. From a formal point of view, all
that matters is that an atom selected when its input arguments are correctly typed does

not produce an error.

Theorem 9.6 Let P be a permutation simply typed, input-linear program with input
selectability and @ be a permutation simply typed query. Then in any delay-respecting
derivation & of P U {Q}, an atom will be selected only when it is correctly typed in its
input positions of constant type.

PROOF. By Lemma 7.2 (f) and Theorem 7.9, £ consists of permutation simply typed
queries. The result thus follows from Lemma 9.5. O

Example 9.3 Consider quicksort(/, Q) (Figure 14 on page 87) with the type given
in Example 7.4. No delay-respecting derivation for a permutation simply typed query
and this program can result in an instantiation or type error related to the arithmetic
built-ins. <

9.4. ERRORS RELATED TO BUILT-INS 119

:- block length(-,-). :— block len_aux(?,-,?7), len_aux(-,7,-).
length(L,N) :- len_aux([],N,N).
len_aux(L,0,N). len_aux([_|Xs],M,N) :-
less(M,N),
:- block less(?,-), less(-,7). M2 is M + 1,
less(A,B) :- len_aux(Xs,M2,N).
A < B.

Figure 23: The length program

9.4.3 Atomic Positions

Sometimes, when the above method does not work because a program is not permutation
simply typed, it is still possible to show absence of instantiation errors for arithmetic
built-ins. We observe that these built-ins have argument positions of type num or int
which are constant types. Thus, the idea is to declare certain argument positions in a
predicate, including the above argument positions of the built-ins, to be atomic. This
means that they can only be ground or free but not partially instantiated. Then there
need to be block declarations such that an atom is only selected when the arguments
in these positions are non-variable, and hence ground. Just as with types and modes,
we assume that the positions which are atomic are already known.

Definition 9.6 [respects atomic positions] A query (clause) respects atomic posi-
tions if each term in an atomic position is ground or a variable which only occurs in
atomic positions. A program respects atomic positions if each of its clauses does. <

A program need not be permutation nicely moded or permutation well typed in order
to respect atomic positions.

Example 9.4 The program in Figure 23 computes the length of a list. In this example,
we are regarding the atom M2 is M+ 1 as an atom with three arguments M2, M, and 1.
The program then respects atomic positions, assuming that all argument positions are
atomic, except the first argument position of length and len_aux, respectively. The
block declaration on the built-in < is realised with an auxiliary predicate less. N

The property of respecting atomic positions is persistent under resolution.

Lemma 9.7 Let C be a clause and @) a query which respect atomic positions, where
vars(C) Nwvars(Q) = (). Then a resolvent of C' and @ also respects atomic positions.

PrOOF. Let QQ = a1,...,a, be the query and C' = h < by,..., b, be the clause. Let
ay be the selected atom and assume it is unifiable with & using MGU 6. We must show
that

QI = (0,1,... ,ak,l,bl,... ,bm,ak+1,... ,an)O

respects atomic positions.

120 CHAPTER 9. FURTHER ASPECTS OF VERIFICATION

Let z be a variable which fills an atomic position in a; or h. Since Q and C respect
atomic positions, z6 is either a variable which only occurs in atomic positions in @', or
a ground term.

Consider a term s filling an atomic position in ai,...,0;—1,@i+1,...,0y OF by,... by
If s is a ground term, then sf is also a ground term. Suppose that s is a variable. If
s & dom(6), then s is also a variable. If s € dom(f) then s must fill an atomic position
in a; or h. By the previous paragraph, sf is either a variable which only occurs in
atomic positions in @', or a ground term. O

By the following theorem, instantiation errors can be prevented by having block dec-
larations such that an atom using a built-in is only called when it is non-variable in its
atomic positions. The theorem is a consequence of the above lemma.

Theorem 9.8 Let P be a program and @) be a query which respect atomic positions.
Let p be a predicate such that an atom using p is selectable in P only if it is non-variable
in its atomic positions. Then in any delay-respecting derivation of P U {@}, an atom
using p is selected only when it is ground in its atomic positions.

Using Theorem 9.8 we can show freedom from instantiation errors for programs where
the arithmetic arguments are variable-disjoint from any other arguments, such as the
program in Figure 23. Note that fype errors cannot be ruled out using the theorem.

Note also that for this example, we can only rule out instantiation errors caused by
<, since the auxiliary predicate less realises a block declaration for <. We cannot rule
out instantiation errors caused by is. In Section 10.1, it will be justified that there is
no block declaration for is.

9.5 Discussion

In this chapter, we have presented verification methods concerning four aspects of veri-
fication: freedom from unification, occur-check, floundering, and errors related to built-
ins. These methods build on and improve previous work in this area [AE93, AL95].

We have shown that permutation simply typed programs are unification free for
arbitrary input-consuming derivations. This result is more general than the corre-
sponding one by Apt and Etalle [AE93] since they only consider (input-consuming)
LD-derivations. However, we require that all clause heads are input-linear and have flat
terms in their input positions.

Our results on occur-check freedom and non-floundering are straightforward vari-
ations of previous results [AL95]. They are based on the observation that when we
consider derivations where the textual order of atoms in a query is irrelevant for the
selection of an atom, any result for nicely moded or well typed programs trivially gen-
eralises to permutation nicely moded or permutation well typed programs. Note that
our result on occur-check freedom holds for all derivations.

We have shown that for (arithmetic) built-ins, block declarations are often suffi-
cient to ensure freedom from instantiation and type errors. This improves previous
results [AL95] in that those assume delay declarations that test for groundness. In the
next chapter, we will show that sometimes, no delay declarations are needed at all.

Chapter 10

Weakening Some Conditions

In this chapter, we consider ways of weakening some conditions imposed on the programs
for verification purposes. We have postponed these considerations so far to avoid making
the main arguments of Part IIT unnecessarily complicated.

In Section 10.1, we give conditions so that certain block declarations can be omitted
without affecting the runtime behaviour. In Section 10.2, we study ways of weakening
the requirement that clause heads must be input-linear. Section 10.3 shows that we can
easily generalise the notion of mode of a program. Section 10.4 is a discussion.

10.1 Simplifying the block Declarations

Even for programs containing block declarations, it is rare that aoll predicates have
block declarations. In particular, block declarations for built-ins are awkward because
they can only be realised (at least in SICStus [SIC98]) by introducing an auxiliary pred-
icate (see Figure 14 on page 87). This makes previous methods for verification [AL95]
but also the methods we introduced in Chapter 9 somewhat impractical. The nqueens
program (Figure 22 on page 106), which is a standard example of a program using block
declarations, does not have any block declarations for the built-ins.

Even for user-defined predicates, it is desirable to omit the block declarations if
possible, since runtime testing for instantiation has an overhead, albeit small.

In this section, we show how, using information about the initial query, it can be
ensured that some of the instantiation tests always succeed so that they actually become
redundant. This justifies the omission of block declarations.

An additional benefit is that in some cases, we can even ensure that arguments are
ground, rather than just non-variable. We will see in Section 10.2 that this is useful in
order to weaken the restriction that every clause head must be input-linear.

10.1.1 Permutation Simply Typed Programs Using Constant Types

In the program in Figure 22 on page 106, there are no block declarations and hence
no auxiliary predicates for <, is and =\=. This is justified because the input for those
predicates is always provided by the clause heads. For example, it is not necessary to
have a block declaration for < because when an atom using sequence is called, the first
argument of this atom is already ground.

121

122 CHAPTER 10. WEAKENING SOME CONDITIONS

We show here how this intuition can be formalised for permutation simply typed
programs. In the following definition, we consider a set B containing the predicates for
which we want to omit the block declarations.

Definition 10.1 [B-ground] Let P be a permutation simply typed program and B a
set of predicates whose input positions are all of constant type.

A query is B-ground if it is permutation simply typed and each atom using a
predicate in B has ground terms in its input positions.

An argument position k of a predicate p in P is a B-position if there is a clause
p(to,spt1) < p1(s1,t1),...,0n(Sn,tn) in P such that for some 7 where p; € B, some
variable in s; also occurs in position k in p(tg,Sp+1)-

The program P is B-ground if every B-position of every predicate in P is an input
position of constant type, and an atom p(s,t), where p & B, is selectable only if it is
non-variable in the B-positions of p. <

As the following example shows, the requirement on selectability in the above definition
is not automatically met by programs with input selectability.

Example 10.1 The nqueens program (Figure 22 on page 106) is B-ground, where
B = {<, is, =\=}. The first position of sequence, the second position of safe_aux, and
all positions of no_diag are B-positions.

Does input selectability guarantee for this example that an atom p(s, t), where p & B,
is selectable only if it is non-variable in the B-positions of p? According to Definition 7.3,
the second position of safe_aux and all positions of no_diag might be free positions.
Therefore the answer is no. However, the block declarations given in Figure 22 do
guarantee this requirement. <

The following theorem says that for B-ground programs, the input of all atoms using
predicates in B is always ground.

Theorem 10.1 Let P be a B-ground, input-linear program and) a B-ground query,
and £ an input-consuming, delay-respecting derivation of P U {Q}. Then each query in
¢ is B-ground.

PrOOF. The proof is by induction on the length of £. Let Qg = Q and € = Qp; Q1; - - ..
The base case holds by the assumption that @)y is B-ground.

Now consider some); where j > 0 and Qj41 exists. By Lemmas 7.2 (f) and 7.7, Q;
and Q41 are permutation simply typed and type-consistent. The induction hypothesis
is that (); is B-ground.

Let p(u,v) be the selected atom, C = p(to,sp11) < p1(S1,t1),--.,Pn(Sn,tn) be the
clause and ¢ the MGU used in the step Q;; Qj+1. Consider an arbitrary ¢ € {1,...,n}
such that p; € B.

If p & B, then by the condition on selectability in Definition 10.1, p(u, v) is non-variable
in the B-positions of p, and hence, since the B-positions are of constant type, p(u,v) is
ground in the B-positions of p. If p € B, then p(u,v) is ground in all input positions by
the induction hypothesis, and hence p(u,v) is a fortiori ground in all B-positions of p.

10.1. SIMPLIFYING THE BLOCK DECLARATIONS 123

Thus it follows that s;0 is ground. Since the choice of ¢ was arbitrary and because of
the induction hypothesis, it follows that Q; is B-ground. O

In Section 7.4, we have seen that input-consuming derivations can be ensured with
block declarations so that programs have input selectability (Theorem 7.9). Now by
the above theorem, we can drop the requirement of input selectability for the predicates
in B. Regardless of selectability, atoms using predicates in B are only selected when their
input is ground, simply because their input is ground at all times during the execution.
Theorems 7.9 and 9.6 are applicable for programs where only the predicates not in B
meet the requirement of input selectability. On the other hand, for those predicates,
the requirements on the block declarations may actually go beyond input selectability.

Example 10.2 In the nqueens program (Figure 22 on page 106), there are no block
declarations, and hence no auxiliaries, for the occurrences of is, < and =\=, but there are
block declarations on safe_aux and no_diag that ensure the condition on selectability
in Definition 10.1. Theorems 7.9 and 9.6 are applicable for the nqueens program. <

10.1.2 Programs that Respect Atomic Positions

The idea used in the previous subsection can also be applied to programs which are not
permutation simply typed but which respect atomic positions. However there are some
small technical differences. The example we use for illustration here is the program in
Figure 23 on page 119.

Note that in the following definition, we associate a mode (or possibly several alter-
native modes) with a program, although Definition 9.6 is independent of modes.

Definition 10.2 [B-ground*] Let P be a program which respects atomic positions and
B a set of predicates whose input positions are all atomic.

A query is B-ground* if it respects atomic positions and each atom using a predicate
in B has ground terms in its input positions.

An argument position k of a predicate p in P is a B-position* if there is a clause
p(to,snt+1) < pi(si,t1),...,0n(Sn,tn) in P such that for some 7 where p; € B, some
variable in s; also occurs in position k in p(tg,Sp+1)-

The program P is B-ground* if every B-position* of every predicate in P is an
atomic input position, and an atom p(s,t), where p & B, is selectable only if it is
non-variable in the B-positions® of p. N

Example 10.3 Consider the program in Figure 23 on page 119 with atomic positions
defined as in Example 9.4. This program is {is}-ground*, and the second position of
len_aux is an {is}-position*. 4

The following theorem is analogous to Theorem 10.1.

Theorem 10.2 Let P and @ be a B-ground* program and query, and ¢ be a delay-
respecting derivation of P U {Q}. Then each query in £ is B-ground*.

PrOOF. The proof is by induction on the length of £. Let Qg = @ and & = Qp; Q1; - - ..
The base case holds by the assumption that Qg is B-ground*.

124 CHAPTER 10. WEAKENING SOME CONDITIONS

Now consider some (); where 7 > 0 and ()j4 exists. By Lemma 9.7, Q; and Q11
respect atomic positions. The induction hypothesis is that (); is B-ground*.

Let p(u,v) be the selected atom, C = p(to,sp1+1) < p1(S1,t1),--.,Pn(Sn,tn) be the
clause and € the MGU used in the step Q;; Qj+1. Consider an arbitrary ¢ € {1,...,n}
such that p; € B.

If p & B, then by the condition on selectability in Definition 10.2, p(u, v) is non-variable
in the B-positions* of p, and hence, since @); respects atomic positions, p(u, v) is ground
in the B-positions™ of p. If p € B, then p(u,v) is ground in all input positions by the
induction hypothesis, and hence p(u,v) is a fortiori ground in all B-positions of p.

Thus it follows that s;0 is ground. Since the choice of ¢ was arbitrary and because of
the induction hypothesis, it follows that Q;; is B-ground™. O

By Theorem 10.2, it is justified that there is no block declaration for is in the program
in Figure 23 on page 119. More precisely, any delay-respecting derivation for this
program and an {is}-ground* query is also a derivation for the same program except
that is is only selectable when its input is non-variable. Therefore by Theorem 9.8,
there are no instantiation errors.

10.1.3 Exploiting the Fact that Derivations Are Left-Based

We now show that if derivations are left-based, the block declarations can be omitted
in even more cases.

Definition 10.3 [well placed] Let P be a permutation well typed program and @ =
p1(s1,t1), ..., Pn(Sn, tn) a m-well typed query. An atom p;(s;,t;) is well placed in @
if for all j € {1,...,n}, n(j) < w(:) implies j < i. For the clause C' = p(ty,s,+1) < @,
an atom is well placed in C if it is well placed in Q. <

Not surprisingly, well placed atoms stay well placed throughout a derivation. This
proposition can be verified by inspecting Definition 5.1.

Proposition 10.3 Let C and @ be a permutation well typed clause and query and let
Q' be a resolvent of C and Q). Then each well placed atom in @, other than the selected
atom, is also well placed in Q’. Moreover, if the selected atom is well placed in @, then
each well placed atom in C' is also well placed in Q.

The following theorem says that in a left-based derivation, a well placed atom is not
selected before it is correctly typed in its input positions, since the atoms that “feed”
it will always be preferred. Therefore, if it can be ensured that atoms using a predicate
p are always well placed, then it is not necessary to check the input positions of atoms
using p with block declarations.

Theorem 10.4 Let P be a permutation well typed program where an atom is selectable
in P if all input positions of non-variable type are non-variable, and let) be a permu-
tation well typed query. Let p be a predicate and W = {q | ¢ 3 p}, and suppose in

10.1. SIMPLIFYING THE BLOCK DECLARATIONS 125

Q@ and all clauses of P, all atoms using predicates in W are well placed. Then in any
left-based derivation of PU{Q}, all atoms using predicates in W are selected only when
they are correctly typed in their input positions.

PROOF. Let ¢ be a left-based derivation of P U {Q}. We show that atoms using
predicates in W which are eventually selected never become waiting (see Definition 8.1)
in £&.' In particular, we look at one arbitrary but fixed atom using a predicate in W
which is eventually selected in £. We show that if it is not waiting at some query in
¢, then it will never become waiting. When it is eventually selected, then any direct
descendants of this atom that use a predicate in WW are not waiting either. Since in the
initial query, no atoms are waiting, it follows by an obvious inductive argument that
atoms using predicates in VW which are eventually selected never become waiting in &.

Let Q" =aq,...,a, be a m-well typed query in ¢ where for some 7 € {1,...,n}, a; is an
atom using a predicate in W which is eventually selected in €. Assume that a; is not
waiting. By Proposition 10.3, a; is well placed in @'. Since a; is eventually selected, we
can write £ as

£E=Q;...;Q"...;(F,a;,H)0; (F,B,H)o ...

Consider an arbitrary query (F,a;, H)0 in Q';...;(F,a;, H,)0 (that is, a query in ¢
before a; is selected).

If (F, a;, H)0 contains any descendents of atoms a; such that m(j) < m(4), then since a;
is well placed in @', it follows that these descendants occur in F. Since (ﬁ’, ai, H)é is
permutation well typed, it follows by Lemma 5.1 (a) that there is at least one selectable
atom in F0, and therefore a; does not become waiting in the derivation step following
(F,a;, H)6.

If however, (F,a;, H)f contains no descendant of an atom a; such that «(j) < (i),
then by Lemma 5.12, q;0 is correctly typed in its input positions and hence selectable.
Therefore a; does not become waiting in the derivation step following (F, a;, H)6.

Since a; is never waiting, it follows by the definition of left-based derivations that a;
can only be selected if there is no selectable atom to the left of a;. That is, F'@ contains
no selectable atom. Therefore, since a; is well-placed in @', it follows that (F,a;, H)0
contains no descendant of an atom a; such that 7(j) < 7 (i), and thus by Lemma 5.12,
a;0 is correctly typed in its input positions.

Moreover, since a; is not waiting when it is selected, it follows that the direct descendants
of a; that use a predicate in W are not waiting either. O

Note that permutation robustly typed programs with input selectability (Definition 7.5)
fulfill the condition that an atom is selectable if it is non-variable in all input positions
of non-variable type.

In a similar way as in Subsection 10.1.1, the above theorem justifies dropping the
requirement of input selectability for the predicates in W. Theorem 7.9 is applicable for
programs where only the predicates not in W meet the requirement of input selectability.

!They also never become waiting if they are never selected, but we are not interested in such atoms.

126 CHAPTER 10. WEAKENING SOME CONDITIONS

Example 10.4 In the nqueens program (Figure 22 on page 106 and Figure 20 on
page 99), the block declaration for permute can be omitted. Note however that this
requires that any call to nqueens is well placed in the query where it occurs. More-
over, the version of permute without block declarations can only be used in mode
permute (O, I). N

10.2 Weakening Input-Linearity of Clause Heads

For most of our results, it is assumed that programs are input-linear. Building on the
previous section, we now discuss ways of weakening this rather severe restriction.

The requirement that clause heads are input-linear is needed to show the persistence
of permutation nicely-modedness (Lemma 5.3). This is analogous to the same state-
ment restricted to nicely-modedness (Lemma 5.2, [AL95, Lemma 11]). However, the
clause head does not have to be input-linear when the statement is further restricted to
LD-resolvents [AP94b, Lemma 5.3]. The following example by Apt (personal commu-
nication) demonstrates this difference.

Example 10.5 Consider the program

eq(A,h).
q(a).
r(1).

where the mode is {q(/),r(0),eq(I,I)}. The query

q(X), r(Y), eq(X,Y)

is nicely moded. The query q(X), r(X) is a resolvent of the above query, and it is not
nicely moded. Since eq/2 is equivalent to the built-in =/2, the example illustrates why
input-linear programs must not contain uses of =(I, I). q

Requiring input-linear clause heads is undoubtedly a severe restriction. It means that
it is not possible to test two input arguments for equality. However, this also indicates
why in the above example, resolving eq(X,Y) is harmful: eq is intended to be a test,
clearly indicated by its mode eq(1, I), but in the given derivation step, it is actually not
a test, since it binds variables.

By Lemma 5.4, the requirement of input-linear heads can be dropped if derivation
steps are input-consuming. This means that an atom using =(1, I') must be only selected
when both arguments are ground.

The mode =(I,I) could be realised with an equality test, say eq_test(s,t), whose
operational semantics is as follows: if s and ¢ are identical, it succeeds; if s and ¢ are not
unifiable, it fails; otherwise, the test is delayed until s or ¢+ become further instantiated.
Such a test is used in the guards of clauses in concurrent (constraint) logic languages
such as (F)GHC [Ued86], but in ordinary logic programming languages, it is usually not
provided.

Alternatively, the mode =(I,I) can be realised with a delay declaration such that
an atom s=t is selected only when s and ¢ are ground. In SICStus, this can be done

10.2. WEAKENING INPUT-LINEARITY OF CLAUSE HEADS 127

using the built-in when [SIC98]. However we do not follow this line because we focus on
block declarations, and because it would commit a particular occurrence of s=t to be a
test in all modes in which the program is used.

Nevertheless, even using block declarations, there are situations when clause heads
that are not input-linear can be allowed. Effectively, we have to show that each deriva-
tion step using a non input-linear clause could be replaced with a derivation step using
an input-linear clause.

We first need to define formally what it means for an atom to have a subterm “in a

certain place”, and what a non-linear place is.

Definition 10.4 [to have in a place] Let a = p(t1,...,t,) be an atom. Then for each
i €{1,...,n}, a has t; in place p’. Moreover, if a has a term f(sy,...,s,) in place ¢,
then for each i € {1,...,m}, a has s; in place (.f*. A place (is an input place of a
if ¢ = p*.¢’ and 7 is an input position of p. <

Example 10.6 The atom p(£(g(X)),h(Y)) has X in place p'.f!.g! and Y in place p?.h'.
The atom p(£(g(Z)),h(7)) has 7 in the same place where p(£f(g(X)),h(Y)) has Y. N

Definition 10.5 [non-linear place] Let p(v,u) < B be clause. A place (is a non-
linear place of p(v,u) if it is an input place and p(v,u) has a variable in ¢ which
occurs more than once in v. q

Example 10.7 Let p(£(g(X)),h(X)) < ... be a clause where the mode is p(I, I). Then
p'.fl.g' and p2.h' are non-linear places of p(£f(g(X)),h(X)). Moreover, p(£(g(Z)),h(7))
has the terms Z and 7 in the non-linear places of p(f(g(X)),h(X)). 4

The following lemma states that if a selected atom is ground in all non-linear places
of the clause head, and the selected atom is unifiable with the clause head, then this
clause can be replaced by a certain input-linear clause without affecting the resolvent.
Note the similarity between the following lemma and Lemma 5.4.

Lemma 10.5 Let Q = ay,...,a, be a query and C' = p(v,u) < by,...,by a clause
where vars(Q) Nwvars(C) = 0. Suppose that for some k£ € {1,...,n}, p(v,u) and
ar = p(s,t) are unifiable with MGU 6, and p(s, t) is ground in all non-linear places of

p(v,u).

128 CHAPTER 10. WEAKENING SOME CONDITIONS

Let C" = p(v',u) < by,..., b, be an input-linear clause such that
1. vars(v) Cvars(v') and vars(v') Nwvars(Q) = 0,
2. there exists a substitution o such that C'c = C and dom (o) = vars(v') \ vars(v).

Then (ay,...,a5_1,b1,..,bm,ak11,-..,a,)0 is also a resolvent of @ and C'.

ProoF. Consider an arbitrary variable z that occurs more than once in v, and let
X C dom(o) be the set of variables 2’ such that z'c = z. Since p(s,t) is ground in
all places where p(v,u) has z, it follows that s has the same ground term, say ¢, in
all places where v has z. Therefore it follows that any unifier of p(v’,u) and p(s,t)
binds each variable in X to ¢. This means that 06 is an MGU of p(v',u) and p(s, t).
Moreover, by assumptions 1 and 2,

(ala s 7ak—17b17 . '7bm,ak+17 s 7an)0 = (ala s 7ak—17b17 s 7bm7ak+17 s 7an)097
and so (a1,...,ak—1,b1,...,bm,ak11,...,a,)0 is not only a resolvent of C' and @, but
also a resolvent of C’ and Q. O

Lemma 10.5 should not be interpreted as suggesting a program transformation, namely
to replace clauses with corresponding input-linear clauses. Such a transformation might
make a clause head unifiable with a potential selected atom where it was not unifiable
before, which would affect the semantics of the program. It is only in the case that
p(s,t) and p(v,u) are already unifiable that we can, conceptually, replace C' with C".

Lemma 10.5 is applicable whenever we can guarantee that the selected atom is always
ground in the non-linear places of the clause head. We now outline two ways in which
this can be ensured.

First, one can exploit the fact that atoms are well placed. Consider a permutation
well typed program where an atom is selectable in P if all input positions of non-variable
type are non-variable. We can weaken Definition 5.3 by allowing for clause heads p(t,s)
where a variable z occurs in several input positions, provided that

e all occurrences of z in t are in positions of ground type, and

e in each clause of the program and in any initial query for the program, each atom
using a predicate ¢ O p is well placed.

By Theorem 10.4, it is then ensured that multiple occurrences of a variable in the
input of a clause head implement an equality test between input arguments. Therefore,
Lemmas 5.3, 7.2 and 7.6 hold assuming this weaker definition of “input-linear”.

Example 10.8 Consider the append program (Figure 10 on page 57) in “test mode”,
that is append(/, I, I'). This program is permutation nicely moded but not input-linear.
Nevertheless, the program can be used in this mode provided that all arguments are of
ground type and calls to append are always well placed. <

Secondly, one can exploit the fact that the arguments being tested for equality are of
constant type. This time we have to weaken Definition 5.3 by allowing for clause heads
p(t,s) where a variable z occurs in several input positions, provided that

10.3. GENERALISING MODES 129

e all occurrences of z in t are direct and in positions of constant type, and
e an atom using p is selectable only if these positions are non-variable.

By Theorem 9.6, it is then ensured that when an atom p(u, v) is selected, u has constants
in each position where t has x.

Example 10.9 The length program in Figure 23 on page 119 can be used in mode
{length(0,I), len_aux(0, I, I)} in spite of that fact that len_aux([], N, N) is not input-
linear, using either of the two explanations above. The first explanation relies on all
atoms using predicates ¢ O len_aux being well placed. This is somewhat unsatisfactory
since imposing such a restriction impedes modularity. Therefore, the second explanation
is preferable. N

10.3 Generalising Modes

In Section 5.2, we have defined a mode of a program as a set containing one mode for
each of its predicates. This means that we have allowed for a program to be used in
different modes at different executions, but within each execution, the mode of each
predicate was fixed. For example, the query

append([1,2],[3,4],Zs), append(As, Bs, Zs),

where the first atom has mode append(/,/,0) and the second atom has mode
append (0, O, I), uses the same predicate in different modes and hence would not be,
say, permutation nicely moded. This is a disadvantage as one can easily imagine that
a program might use append(7, I, O) is one place and append(O, O, I) in another. We
have defined modes in this way to avoid unnecessary confusion.

It is easy to see however that the definition of a mode of a program could be gener-
alised. Define a mode M of a program as a set of modes containing at least one mode for
each of its predicates. Define that a clause C' = p(t,s) < B is, say, permutation nicely
moded with respect to a mode p(mq,...,m,) € M if it is permutation nicely moded,
assuming that the mode p(my,...,m,) is assigned to the clause head and some mode
in M is assigned to each body atom in C'. Define that a program is permutation nicely
moded if for each predicate p and each mode p(mq,...,my,) € M, all clauses defining p
are permutation nicely moded with respect to p(mq,...,my).

10.4 Discussion

In this chapter, we presented some methods that can be used to improve the results of
the earlier chapters in two ways: omitting the block declarations for some predicates,
and allowing for multiple occurrences of variables in the input of clause heads.
Omitting the block declarations is particularly useful for (arithmetic) built-ins.
It aims at the way arithmetic built-ins are used in practice: it is awkward having
to introduce auxiliary predicates to implement delay declarations for built-ins. The

130 CHAPTER 10. WEAKENING SOME CONDITIONS

nqueens program is a standard example of a program which contains block declarations,
but not for the built-ins. We give a formal justification for this.

The requirement that clauses must be input-linear is quite common [AL95, AE93,
ER98|. However it is a rather severe restriction, in that it usually rules out predicates
running in “test mode” (see Example 10.8). We have shown how this restriction can
sometimes be weakened.

Finally, we have outlined a generalisation of modes allowing for predicates to be
used in different modes in different places in a program, even within a single execution.

Chapter 11

Related Work and Conclusion

In Chapter 2, we gave an overview of the literature using modes and types. In this
chapter, we look, more specifically, at the literature related to Part III of this thesis.
We then conclude the thesis by highlighting the main contributions and novel ideas,
and mentioning some open problems.

11.1 Related Work

This section has several subsections, each of which is devoted to a paper or a group of
closely related papers. Subsection 11.1.1 is an exception. It discusses the significance of
“pinning down the size” of an atom throughout the termination literature. We discuss
the papers more or less in chronological order.

In Subsection 6.1, we observed that a distinguishing aspect between works on termi-
nation is the assumptions they make about the selection rule. This includes assumptions
about delay declarations, as one usually thinks of the selection rule as being parametrised
by the delay declarations, if there are any. Figure 24 illustrates a variety of assumptions
about the selection rule that have been made in the literature. We will refer to this
figure as we discuss the different approaches.

11.1.1 The Significance of “Pinning Down the Size” of an Atom

As explained in Section 6.1, most approaches to termination rely on the idea that the
size of an atom can be pinned down when the atom is selected. Depending on this size,
it is then possible to give an upper bound for the number of descendants of this atom.

Technically, “pinning down the size” usually means that the atom is bounded with
respect to some level mapping [AP94a, Bez93, EBC99, L.S97, MK97]. However, there
are exceptions [DVB92, DD98]. In those works, termination can be shown for the query,
say, append([X],[], Zs) using as level mapping the term size of the first argument, even
though the term size of [X] is not bounded. However, the method only works for LD-
derivations and relies on the fact that any future instantiation of X cannot affect the
descendants of append([X], [],Zs). Therefore it is effectively possible to pin down the
size of append([X], [], Zs).

On the whole, there seems to be a strong reluctance to give up this idea, although

131

132 CHAPTER 11. RELATED WORK AND CONCLUSION

Arbitrary derivations general
Local selection rules Rigidness checks Depth bounds
Input-consuming derivations
LD-derivations specific

Figure 24: Assumptions about the selection rule

it is recognised that it must fail on some standard examples of programs using corou-
tining [Nai92]. This is illustrated in Example 6.1. Therefore, some authors attempt to
simplify the actual problem by proposing program transformations or introducing addi-
tional assumptions about the selection rule [Bez93, MT95, MK97]. It seems that these
modifications mainly serve the purpose of making it easier to reason about termination,
and not of making programs terminate that would not terminate otherwise. We will
discuss this point further below when we look at the various approaches.

11.1.2 Guarded Horn Clauses

The definition of input-consuming derivations has a certain resemblance with derivations
in the language of (Flat) Guarded Horn Clauses [Ued86, Ued88]. In (F)GHC, a clause
has the form h < G| B, where G is called a guard. There is no backtracking, that is,
the choice of a clause to resolve an atom cannot be undone later if the derivation fails.
It is therefore crucial that the “correct” clause is used in each step. To this end, an
atom a can be resolved using a clause h < G| B only when « is an instance of h and
G0 is entailed, where 6 is an MGU of a and h. The atom a can become instantiated
only later via explicit unifications (using the built-in equality predicate) occurring in
the body B.

Thus whether or not an atom q is selectable in (F)GHC depends not only on «a itself
but, at least in theory, on the clause used to resolve a. This is similar to the concept of
input-consuming derivations, where whether or not a derivation step is input-consuming
may depend on the clause used to resolve an atom.

When we consider Moded FGHC [CU96, UM93, UM94], this resemblance becomes
even clearer. Intuitively, arguments of the selected atom that affect the choice of the
clause are input arguments, whereas arguments that become instantiated by the body
B are output arguments. In Moded FGHC, a number of correctness conditions are
imposed that formalise, among other things, this intuition.

11.1. RELATED WORK 133

11.1.3 Coroutining and Terminating Logic Programs

Naish studies the problem of termination of programs with coroutining [Nai92]. He
considers the when declarations of NU-Prolog [TZ86], which are essentially the same as
block declarations. These declarations effectively ensure input-consuming derivations,
although Naish does not use this concept. The default left-to-right selection rule of
Prolog is assumed. This work gives good intuitive explanations why programs loop
and heuristics to ensure termination. However, the work is not formal. It is not even
formalised what the default left-to-right selection rule is.

Predicates are assumed to have a single mode. As mentioned on page 62, Naish
suggests that alternative modes should be achieved by multiple versions of a predicate.
This approach is quite common and is also taken in Mercury [SHC96], where these
versions are generated by the compiler. While it is possible to take that approach,
some authors give the impression that assuming single modes does not imply any loss
of generality [AE93, AL95, EBC99]. However, generating multiple versions implies code
duplication and hence a loss of generality (see Subsection 5.3.2).

Naish uses examples where under the assumption of single modes, there is no rea-
son for using delay declarations in the first place. For example, if we only consider
permute(O, I), then the program in Figure 20 (page 99) does not loop for the plain rea-
son that no atom ever delays, and thus the program is executed using LD-derivations.
In this case, the elaborate interpretation that one should “place recursive calls last” is
misleading. On the other hand, if we only consider permute(/, O), then the version of
Figure 20 would hardly be used, on the grounds that it is much less efficient than the
version of Figure 18 (page 95). In short, Naish’s discussion on delay declarations lacks
motivation when only one mode is assumed.

11.1.4 Strong Termination

Bezem [Bez93] has identified the class of strongly terminating programs, which are
programs that universally terminate under any selection rule (see Figure 24 on the
facing page). While it is shown that every total recursive function can be computed by
a strongly terminating program, this does not change the fact that few existing programs
are strongly terminating. Transformations are proposed for three example programs to
make them strongly terminating, but no general procedure for transforming programs
is given.

11.1.5 Generating Delay Declarations Automatically

Liittringhaus-Kappel [Liit93] proposes a method for generating control (delay dec-
larations) automatically, and has applied it successfully to many programs. However,
rather than pursuing a formalisation of some intuitive understanding of why programs
loop, and imposing appropriate restrictions on programs, he attempts a high degree of
generality. This has certain disadvantages.

First, the method only finds acceptable delay declarations, ensuring that the most
general selectable atoms have finite SLD-trees. What is required however are safe delay

134 CHAPTER 11. RELATED WORK AND CONCLUSION

declarations, ensuring that instances of most general selectable atoms have finite SLD-
trees. A safe program is a program for which every acceptable delay declaration is safe.
Littringhaus-Kappel states that all programs he has considered are safe, but gives no
hint as to how this might be shown in general. This is a missing link.

Secondly, the delay declarations for some programs such as quicksort require an
argument to be a nil-terminated list before an atom can be selected. Such a list is some-
times called rigid [MK97, MKS97], since its length cannot change via further instanti-
ation (see Figure 24 on page 132). As Liittringhaus-Kappel points out, “in NU-Prolog
[or SICStus] it is not possible to express such conditions”! [TZ86]. Note that such uses
of delay declarations go far beyond ensuring that derivations are input-consuming. In
fact, they ensure that the size of the selected atom can be pinned down.

In a way, the need for such strong delay declarations arises because Liittringhaus-
Kappel assumes arbitrary delay-respecting derivations, rather than left-based deriva-
tions. Obviously, his method cannot show termination when termination depends on
derivations being left-based.

Thirdly, loundering cannot be ruled out systematically, but only avoided on a heuris-
tic basis. Thus in principle, the method sometimes enforces termination by floundering.
This lies in the nature of the weak assumptions made, and thus is sometimes unavoid-
able, but there is no notion that would allow to reason about whether for a particular
program, it was avoidable or not. In contrast, the notions of permutation well-typedness
and input-consuming derivations allow to reason about whether floundering is avoidable
or not (see Section 9.3).

11.1.6 Verification Using Modes and Types

Apt, Etalle, Luitjes and Pellegrini are among the authors who use correctness prop-
erties related to modes and types to verify logic programs [AE93, AL95, AP94b]. These
correctness properties have been adopted and extended in this thesis (see Section 7.5).

Apt and Luitjes [AL95] present some methods for verification of logic programs with
delay declarations. They consider four aspects of verification: occur-check freedom, non-
floundering, freedom from errors related to built-ins, and termination.

The results on occur-check freedom are a generalisation of work by Apt and Pel-
legrini [AP94b] from LD-derivations to arbitrary derivations. Occur-check freedom is
shown based on nicely-modedness. As discussed in Section 10.2, showing the persistence
of nicely-modedness, and hence occur-check freedom, for arbitrary derivations requires
that clause heads are input-linear.

For arithmetic built-ins, Apt and Luitjes require delay declarations such that an
atom is delayed until the arguments are ground. Such declarations are usually imple-
mented less efficiently than block declarations.

Little attention is devoted to termination. Apt and Luitjes propose a method for
showing termination which is limited to deterministic programs, that is programs where
for each selected atom, there is at most one clause head unifiable with it. Moreover,

!This statement should probably be weakened. It is possible to express such conditions, but only by
introducing auxiliary predicates [MK97].

11.1. RELATED WORK 135

Apt and Luitjes give conditions for the termination of append, but these are ad-hoc and
do not address the general problem.

The results on unification freedom of Section 9.1 are based on work by Apt and
Etalle [AE93]. These authors assume well typed programs and LD-derivations.

11.1.7 Termination of LD-Derivations

The methods for proving termination presented in Chapter 8 implicitly rely on previous
work on termination for LD-derivations [Apt97, AP90, DVB92, DD93, DD98, EBC99].
De Schreye and Decorte give a survey of the termination literature [DD94]. The
TermiLog system is a tool for proving termination automatically [L.S96, LS97, LSS97].

11.1.8 Termination for Local Selection Rules

For proving termination, Marchiori and Teusink [MT95] rely on norms and the cov-
ering relation between subqueries of a query. This is loosely related to well-typedness.
However, their results are not comparable to ours because they assume a local selection
rule, that is a rule which always selects an atom which was introduced in the most
recent step. No existing language using a local selection rule is mentioned. Assuming
local selection rules, it can be ensured that the size of the selected atom can always be
pinned down.

The authors state that programs that do not use speculative bindings deserve fur-
ther investigation, and that they expect any method for proving termination with full
coroutining either to be very complex, or very restrictive in its applications.

11.1.9 Directional Types

Boye [Boy96] defines generally well typed programs, of which the permutation well typed
programs considered here are a special case. The generalisation lies in considering not
just a producer-consumer relation between atoms in a query, but rather between the
individual argument positions. This allows to reason about certain programs which
operate on open data structures.

The standard example is a program which takes as input a binary tree whose labels
are numbers, and returns a tree with the same structure but where all labels are replaced
by the maximum label of the original tree. Although this is conceptually a two-pass
problem, the program does only one pass over the original tree. This works by first
constructing the output tree such that all labels are aliased to the same variable. Only
after the original tree has been passed completely, and thus the maximum label is known,
will this variable be instantiated.

The maximum label of the original tree is a passed as an input argument to the main
predicate of this program, and nevertheless, by the very nature of the algorithm, it can-
not be instantiated at the time when an atom using this predicate is selected. Therefore
programs using this technique cannot work assuming input-consuming derivations. At
present, we can only state that such programs are an exception to the principle that
derivations must be input-consuming. It would certainly be desirable to generalise the
principle so that such programs would also be included.

136 CHAPTER 11. RELATED WORK AND CONCLUSION

11.1.10 Termination by Imposing Depth Bounds

Martin and King [MK97] ensure termination by imposing a depth bound on the SLD-
tree (see Figure 24 on page 132). This is realised by a program transformation introduc-
ing additional argument positions for each predicate which are counters for the depth
of the computation. As with other approaches, the size of the selected atom can always
be pinned down: it is simply the value of the depth bound. The difficulty is of course
to find an appropriate depth bound that does not compromise completeness.

11.1.11 Beyond Success and Failure

Etalle and van Raamsdonk [ER98] study generalisations of the notions of successful
and failing derivations, which are traditionally regarded as the cornerstones of control
in logic programming. They define non-destructive programs. This concept is similar
to input-consuming derivations, although they take a different viewpoint: they define
a program property rather than a property of the selection rule. A non-destructive
program is a program for which all delay-respecting derivations are input-consuming.
In Chapter 7, we have seen several (syntactically defined) classes of non-destructive
programs.

11.1.12 Termination of Well-Moded Programs

Chapter 6 closely follows Etalle et al. [EBC99], who study well-terminating programs,
that is programs for which all LD-derivations for all well moded queries terminate.
Proving that a program has this property is based on moded level mappings and well-
acceptable clauses. These concepts are similar to moded typed level mapping (Defi-
nition 6.2) and ICD-acceptable clause (Definition 6.4). For simply moded programs,
the paper even gives a characterisation of well-termination. That is, it shows that if a
program is well-terminating, then its clauses are well-acceptable. This is not a contra-
diction to the undecidability of termination, as the existence of a level mapping with
respect to which a program is well-acceptable is undecidable.

11.1.13 J-Universal Termination

Bezem [Bez93] has defined strong termination, which is universal termination for all se-
lection rules. Ruggieri [Rug99] has defined a complementary concept called 3-universal
termination. A program P and query () J-universally terminate if there exists a selec-
tion rule S such that all S-derivations of P U {Q} are finite. This concept is important
with regards to the separation of the logic and control aspects of a program as advo-
cated by Kowalski [Kow79]. If a program J-universally terminates, then it is, at least in
principle, possible to associate control with the program so that it actually terminates.
If the program does not J-universally terminate, then it does not terminate for any
selection rule.

In this context, fair selection rules play a special role. A selection rule is fair if each
atom in a query is eventually selected. Ruggieri shows that a program J-universally
terminates if and only if it terminates for all fair selection rules [Rug99, Theorem 2.4.3].
Thus from the point of view of proving termination, assuming fair selection rules is the

11.2. CONCLUSION 137

strongest assumption one can make about the selection rule. If a program does not
terminate for a fair selection rule, it does not terminate for any selection rule.

Note that Ruggieri follows Apt [Apt97] in defining a selection rule as a function that
takes a derivation and returns an atom in the last query (the selected atom). However,
this definition is too restrictive for our purposes. For example, it is not possible to define
a selection rule that exactly corresponds to input-consuming derivations. A selection
rule as defined by Apt cannot be used to model the situation that no atom can be
selected, or that more than one atom can be selected (so that it is left open which atom
is actually selected). Moreover, it cannot be used to model that whether or not an atom
can be selected may depend on the clause used to resolve this atom. This latter aspect
cannot even be modelled using sets of selection rules as defined by Apt. Lloyd [L1087]
has a definition of selection rule which is even more restrictive than that of Apt, in that
whether or not an atom is selectable may only depend on the present query, and not on
the whole derivation.

11.1.14 Assertion-Based Debugging of (Constraint) Logic Programs

Puebla et al. have developed an assertion-based debugging system for constraint logic
programs [PBH99]. This has aspects of program analysis as well as verification. Unlike
the verification methods we have presented here, no restrictions (such as well-typedness)
are imposed on the program. The system incorporates various techniques involving
abstract interpretation and runtime checking. One could imagine that the verification
techniques of this thesis could also be incorporated into this system.

11.2 Conclusion

The main contribution of Part III is to provide a method for showing termination
of programs with block declarations assuming left-based derivations. That is, we are
proposing a solution to the termination problem for programs with delay declarations as
the problem was originally stated, albeit informally, by Naish [Nai92]. This problem is
a “realistic” one, since the assumptions of block declarations and left-based derivations
reflect the most commonly used implementations.

To the best of our knowledge, this is the first formal and comprehensive approach to
this problem. Other authors have either been informal [Nai92], or made other (usually
stronger) assumptions and hence studied another problem [MT95, MK97], or dealt with
the problem under very restricted circumstances [AL95].

We now highlight some original, distinctive ideas and concepts of Part ITI. We then
mention some open problems. Finally we recall the main results.

11.2.1 Some Distinctive Novel Ideas

Formalising Selection Rules

It is commonly assumed that selected atoms in a derivation should be instantiated to
a certain degree in order to ensure termination and other desirable properties [AL95].

138 CHAPTER 11. RELATED WORK AND CONCLUSION

In Chapter 5, we presented the concept of input-consuming derivation, providing a
characterisation of “a certain degree” which is both abstract and intuitive.

Without assuming input-consuming derivations, even predicates for which termina-
tion should be trivial do not terminate (see page 9). On the other hand, we have shown
that for many predicates, this assumption about the selection rule, together with some
correctness conditions satisfied by the program, is sufficient to ensure termination.

However, there are also many predicates for which this assumption is not sufficient.
One way to strengthen the assumptions about the selection rule is to assume the default
left-to-right selection rule of Prolog. Owing to subtleties involving simultaneously woken
atoms, neither software manuals nor theoretical works have attempted to formalise this
rule precisely. The notion of left-based derivation introduced in this thesis (based on
previously published work [SHK98]) is a formalisation of default left-to-right selection
rules. It is relatively simple and unrestrictive, so that we can claim with reasonable
confidence that derivations in existing Prolog systems are left-based.

Termination without Pinning down the Selected Atom

Most methods for proving termination of logic programs are based on the following idea:
when an atom a in a query is selected, it is possible to pin down the size of a, and the
new atoms introduced in this derivation step are smaller than a. These methods are
bound to fail on most programs using coroutining, such as the coroutining derivation
of append in Example 6.1 [Bez93, Liit93, MT95, MK97]. In contrast, we show that
under certain conditions, it is sufficient to rely on a relative decrease in the size of the
selected atom, even though this size cannot be pinned down. This is the key to proving
termination for programs with coroutining.

Three Orderings on Atoms

In this thesis, three different orderings between the atoms of a query (or clause body) are
elaborated: the textual order, the producer-consumer order and the execution order. It
is shown that for LD-derivations, all of these orders are identical. Moreover, for selection
rules where the textual position is irrelevant for the selection of an atom, the textual
order and the producer-consumer order can be assumed to be identical, as a matter
of simplification. For selection rules where the textual position of atoms matters, the
producer-consumer order can be made explicit using a permutation of the atoms.

(Permutation) Robustly Typed Programs

Many verification methods for logic programs, including some in this thesis, rely on the
assumption that programs are simply moded, so that a query always has variables in
the output positions [AE93, EBC99]. In Section 7.4, we define (permutation) robustly-
typedness, a correctness property allowing for non-variable terms in certain output
positions. This property is persistent under resolution and type-consistent with respect
to input-consuming derivations.

We have used this property for showing termination, but it may well have other
uses, for example to show unification freedom for a larger class of programs [AE93].

11.2. CONCLUSION 139

Multiple Modes

Throughout Part III, it is assumed that predicates may be used in multiple modes,
although this assumption is not always made explicit. We have argued that in the con-
text of programs using non-standard derivations, one should at least allow for multiple
modes, although only few predicates can reasonably be used in multiple modes. In pre-
vious literature, there is sometimes a lack of motivation: for the examples given, there is
no reason for using delay declarations in the first place, if not to enable multiple modes.

block Declarations

We have argued that among the various kinds of delay declarations, block declarations,
which can only test for partial instantiation of arguments of an atom, play a special
role. They can be more efficiently implemented than more complex constructs such
as delay declarations testing for groundness. Moreover, they are well suited to realise
input-consuming derivations while allowing for coroutining.

11.2.2 Open Problems

We now discuss some open problems and possible extensions of this work.

Weakening the Correctness Properties

The verification methods introduced in this thesis are based on a number of correct-
ness properties that the verified programs must have (see Section 7.5). FEtalle and
Gabbrielli [EG99] have identified programs using layered modes, which are a small but
interesting class of programs for which none of the above correctness properties holds,
since it is not possible to establish a producer-consumer relation (see Subsection 5.3.1)
between the atoms of each query. Therefore, Etalle and Gabbrielli refine the concept
of producer-consumer relation by considering the individual argument positions rather
than entire atoms, similarly to Boye [Boy96]. It would be interesting to extend some
results of this thesis to such programs.

Termination for Input-Consuming Derivations

As stated previously (page 81), we cannot show that all input-consuming derivations
of quicksort(I, O) are finite, although we conjecture that they are. Ideally, one would
like to find a characterisation of the programs for which all input-consuming derivations
are finite (see Section 6.6 and Subsection 11.1.12).

A Uniform Verification Method for Built-ins

For showing that a program is free from errors related to built-ins (Section 9.4), we have
introduced two methods. Whether one of these methods or even both are applicable
depends on the program. It would be desirable to find one uniform approach which
would work for a larger class of programs.

140 CHAPTER 11. RELATED WORK AND CONCLUSION

Weakening the block Declarations

We have discussed that block declarations can be omitted or simplified when sufficient
instantiation can be guaranteed at compile time. This issue is related to another prob-
lem, namely the rather severe restriction that clause heads must be input-linear. It
would be interesting to study this relationship further and come up with results that
are more general than the ones in Chapter 10.

11.2.3 Summary of Part III

In Part IIT of this thesis, we have presented verification methods for logic programs
using non-standard derivations, that is programs not using the LD selection rule.

In Chapter 5, we motivated the usefulness of non-standard derivations. We then
introduced a number of correctness properties concerning the modes of a program.
Many verification methods can be based on these properties.

In Chapter 6, we introduced input-consuming derivations as a minimal assumption
needed to prove termination. We used level mappings to provide a method for proving
that a program (fragment) terminates for all input-consuming derivations.

In Chapter 7, we showed how block declarations can be used to ensure that deriva-
tions are input-consuming. Examples were used to illustrate that this is a non-trivial
problem. We introduced the class of permutation robustly typed programs, which is care-
fully crafted so that block declarations can in fact ensure input-consuming derivations,
without being too restrictive.

In Chapter 8, we presented a comprehensive method for showing termination for
programs with block declarations. It is based on the insight that for some atoms, the
textual position in a query is irrelevant, whereas other atoms must be placed sufficiently
late in a query to ensure that they are always called with sufficient input. This assumes
left-based derivations.

In Chapter 9, we presented verification methods concerning some further aspects of
verification. These were freedom from unification, occur-check, floundering, and errors
related to built-ins.

In Chapter 10, we considered ways of omitting the block declarations for some
predicates, and allowing for multiple occurrences of variables in the input of clause
heads.

Bibliography

[AE93]

[AL94]

[AL95)

[AMOYA4]

K. R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceedings of the Conference
on Mathematical Foundations of Computer Science, LNCS, pages 1-19, Berlin,
1993. Springer-Verlag.

A. Aiken and T. K. Lakshman. Directional type checking of logic programs.
In B. Le Charlier, editor, Proceedings of the 1st Static Analysis Symposium,
LNCS, pages 43-60. Springer-Verlag, 1994.

K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations.
In V. S. Alagar and M. Nivat, editors, Proceedings of AMAST 95, LNCS,
Berlin, 1995. Springer-Verlag. Invited Lecture.

K. R. Apt and E. Marchiori. Reasoning about Prolog programs: From modes
through types to assertions. Formal Aspects of Computing, 6(6A):743-765,
1994.

[AMSH94] T. Armstrong, K. Marriott, P. Schachte, and H.Sgndergaard. Boolean func-

tions for dependency analysis: Algebraic properties and efficient representa-
tion. In B. Le Charlier, editor, Proceedings of the 1st Static Analysis Sympo-
sium, LNCS, pages 266-280. Springer-Verlag, 1994.

[AMSH98] T. Armstrong, K. Marriott, P. Schachte, and H.Sgndergaard. Two classes

[AP90]

[AP94a)

[AP94b)]

[Apt97]
[Bau92]

of Boolean functions for dependency analysis. Science of Computer Program-
ming, 31(1):3-45, 1998.

K. R. Apt and D. Pedreschi. Studies in pure Prolog: Termination. In J. W.
Lloyd, editor, Proceedings of the Symposium in Computational Logic, LNCS,
pages 150-176. Springer-Verlag, 1990.

K. R. Apt and D. Pedreschi. Modular termination proofs for logic and pure
Prolog programs. In G. Levi, editor, Advances in Logic Programming Theory,
pages 183-229. Oxford University Press, 1994.

K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs. ACM
Transactions on Programming Languages and Systems, 16(3):687-726, 1994.

K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
M. Baudinet. Proving termination properties of Prolog programs: A semantic

approach. Journal of Logic Programming, 14:1-29, 1992.

141

[BC99] A. Bossi and N. Cocco. Successes in logic programs. In P. Flener, editor,
Proceedings of the 8th International Workshop on Logic Program Synthesis
and Transformation, LNCS, pages 219-239. Springer-Verlag, 1999.

[BCHK97] F. Benoy, M. Codish, A. Heaton, and A. M. King. Widening
Pos for Efficient and Scalable Groundness Analysis. Technical Re-
port 515, University of Kent at Canterbury, 1997. Available at
http://www.cs.ukc.ac.uk/pubs/1997/515/index . .html.

[BDBT96] M. Bruynooghe, B. Demoen, D. Boulanger, M. Denecker, and A. Mulkers. A
freeness and sharing analysis of logic programs based on a pre-interpretation.
In R. Cousot and D. A. Schmidt, editors, Proceedings of the 3rd Static Analysis
Symposium, LNCS, pages 128-142. Springer-Verlag, 1996.

[Bez93] M. Bezem. Strong termination of logic programs. Journal of Logic Program-
ming, 15(1 & 2):79-97, 1993.

[BG92] R. Barbuti and R. Giacobazzi. A bottom-up polymorphic type inference in
logic programming. Science of Computer Programming, 19:281-313, 1992.

[BLR92] F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of directionality
for proving termination of logic programs. In K. R. Apt, editor, Proceedings of
the 9th Joint International Conference and Symposium on Logic Programminyg,
pages 321-335. MIT Press, 1992.

[BM95] J. Boye and J. Maluszyriski. Two aspects of directional types. In L. Sterling,
editor, Proceedings of the 12th International Conference on Logic Program-
ming, pages 747-761. MIT Press, 1995.

[Boy96] J. Boye. Directional Types in Logic Programming. PhD thesis, Link6pings
Universitet, 1996.

av . Cavedon. Continuity, consistency and completeness properties for logic pro-

Cav89] L. Caved Continui i d 1 ies for logi
grams. In G. Levi and M. Martelli, editors, Proceedings of the 6th International
Conference on Logic Programming, pages 571-584. MIT Press, 1989.

[CBGH97] M. Codish, M. Bruynooghe, M. Garcia de la Banda, and M. Hermenegildo.
Exploiting goal independence in the analysis of logic programs. Journal of
Logic Programming, 32(3):247-261, 1997.

[CCT7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Principles of Programming Languages, pages 238-252. ACM Press, 1977.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe
and M. Wirsing, editors, Proceedings of the 4th Symposium on Programming
Language Implementations and Logic Programming, LNCS, pages 269-295.
Springer-Verlag, 1992.

142

[CCY94] J. Chassin de Kergommeaux and P. Codognet. Parallel logic programming
systems. ACM Computing Surveys, 26(3):295-336, 1994.

[CD94] M. Codish and B. Demoen. Deriving polymorphic type dependencies for logic
programs using multiple incarnations of Prop. In B. Le Charlier, editor, Pro-
ceedings of the 1st Static Analysis Symposium, LNCS, pages 281-296. Springer-
Verlag, 1994.

[CD95] M. Codish and B. Demoen. Analyzing logic programs using “PROP”-ositional
logic programs and a Magic Wand. Journal of Logic Programming, 25(3):249—
274, 1995.

[CDY94] M. Codish, D. Dams, and E. Yardeni. Bottom-up abstract interpretation of
logic programs. Theoretical Computer Science, 124(1):93-125, 1994.

[CGBHY94] M. Codish, M. Garcia de la Banda, M. Bruynooghe, and M. Hermenegildo.
Goal dependent versus goal independent analysis of logic programs. In F. Pfen-
ning, editor, Proceedings of the 5th International Conference on Logic Pro-
gramming and Automated Reasoning, LNCS, pages 305-319. Springer-Verlag,
1994.

[Chr97] H. Christiansen. Deriving declarations from programs. Technical report,
Roskilde University, P.O.Box 260, DK-4000 Roskilde, 1997.

[CL96] M. Codish and V. Lagoon. Type dependencies for logic programs using ACI-
unification. In Proceedings of the Israeli Symposium on Theory of Computing
and Systems, pages 136-145. IEEE Press, 1996. To appear in Theoretical
Computer Science.

[Cod97] M. Codish. Efficient goal directed bottom-up evaluation of logic programs. In
L. Naish, editor, Proceedings of the 1/th Joint International Conference and
Symposium on Logic Programming. MIT Press, 1997. Presented as poster.

[CP91] R. Chadha and D.A. Plaisted. Correctness of unification without occur check
in Prolog. Technical report, University of North Carolina, 1991.

[CT77] K. L. Clark and S.-A. Tarnlund. A first order theory of data and programs. In
B. Gilchrist, editor, Information Processing, Proceedings of the IFIP Congress
77, Toronto, pages 939-944, 1977.

[CU96] K. Cho and K. Ueda. Diagnosing non-well-moded concurrent logic programs.
In M. Maher, editor, Proceedings of the 13th Joint International Conference
and Symposium on Logic Programming, pages 215-229. MIT Press, 1996.

[DD93] S. Decorte and D. De Schreye. Automatic inference of norms: A missing link
in automatic termination analysis. In Proceedings of the 10th International
Logic Programming Symposium, pages 420-436. MIT Press, 1993.

[DD94] D. De Schreye and S. Decorte. Termination of logic programs: The never-
ending story. Journal of Logic Programming, 19/20:199-260, 1994.

143

[DDYS]

[Der87]

[DMS5]

[DMOYS]

[DVB92]

[DWS6]

[EBC99]

[EG99]

[Emds81]

[ER9S]

S. Decorte and D. De Schreye. Termination analysis: Some practical properties
of the norm and level mapping space. In J. Jaffar, editor, Proceedings of the
15th Joint International Conference and Symposium on Logic Programming,

pages 235-249. MIT Press, 1998.

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3(1 & 2):69-115, 1987. Corrigendum 4(3), 409-410.

P. Dembinski and J. Matuszyniski. AND-parallelism with intelligent backtrack-
ing for annotated logic programs. In Proceedings of the 2nd International Logic
Programming Symposium, pages 29-38. MIT Press, 1985.

P. Deransart and J. Matuszynski. Towards soft typing for CLP. In Francois
Fages, editor, JICSLP’98 Post-Conference Workshop on Types for Con-
straint Logic Programming. Ecole Normale Supérieure, 1998. Available at
http://discipl.inria.fr/TCLP98/.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. A framework for
analysing the termination of definite logic programs with respect to call pat-
terns. In Proceedings of FGCS, pages 481-488. ICOT Tokyo, 1992.

S. K. Debray and D. S. Warren. Detection and optimization of functional com-
putations in Prolog. In E. Shapiro, editor, Proceedings of the 3rd International
Conference on Logic Programming, LNCS, pages 490-504. Springer-Verlag,
1986.

S. Etalle, A. Bossi, and N. Cocco. Termination of well-moded programs.
Journal of Logic Programming, 38(2):243-257, 1999.

S. Etalle and M. Gabbrielli. Layered modes. Journal of Logic Programming,
39:225-244, 1999.

M. van Emden. AVL tree insertion: A benchmark program biased towards
Prolog. Logic Programming Newsletter 2, 1981.

S. Etalle and F. van Raamsdonk. Beyond success and failure. In J. Jaffar,
editor, Proceedings of the 15th Joint International Conference and Symposium
on Logic Programming, pages 190-204. MIT Press, 1998.

[FGKP85] N. Franchez, O. Grumberg, S. Katz, and A. Pnueli. Proving termination

[Fit96]

[GBS95]

of Prolog programs. In R. Parikh, editor, Logics of Programs, pages 89-105.
Springer-Verlag, 1985.

M. Fitting. First-order Logic and Automated Theorem Proving. Springer-
Verlag, 1996.

J. Gallagher, D. Boulanger, and H. Saglam. Practical model-based static
analysis for definite logic programs. In J. W. Lloyd, editor, Proceedings of the
12th International Logic Programming Symposium, pages 351-365. MIT Press,
1995.

144

[GGS99] T. Gabrié, K. Glynn, and H. S¢ndergaard. Strictness analysis as finite-

[GLO6]

[GW94]

domain constraint solving. In P. Flener, editor, Proceedings of the 8th In-
ternational Workshop on Logic-based Program Synthesis and Transformation,

LNCS, pages 255-270. Springer-Verlag, 1999.

J. P. Gallagher and L. Lafave. Regular approximation of computation paths
in logic and functional languages. In O. Danvy, R. Gliick, and P. Thiemann,
editors, Proceedings of the Dagstuhl Seminar on Partial Evaluation, LNCS,
pages 115-136. Springer-Verlag, 1996.

J. P. Gallagher and A. de Waal. Fast and precise regular approximations of
logic programs. In P. Van Hentenryck, editor, Proceedings of the 11th Inter-
national Conference on Logic Programming, pages 599-613. MIT Press, 1994.

[HACKO00] A. Heaton, M. Abo-Zaed, M. Codish, and A. M. King. A simple polynomial

[Hen92]

[Hen93]

groundness analysis for logic programs. Submitted to the Journal of Logic
Programming, 2000.

F. Henderson. Strong modes can change the world! Honours report, Depart-
ment of Computer Science, University of Melbourne, Australia, 1992.

F. Henglein. Type inference with polymorphic recursion. ACM Transactions
on Programming Languages and Systems, 15(2):253-289, 1993.

[HHK97] A. J. Heaton, P. M. Hill, and A. M. King. Analysing logic programs with

[Hi193]

[Hi198]

[HKO7]

[HL94]

[HMY9]

[HT92]

delay for downward-closed properties. In N.E. Fuchs, editor, Proceedings of the
7th International Workshop on Logic Program Synthesis and Transformation,
LNCS. Springer-Verlag, 1997.

P. M. Hill. The completion of typed logic programs and SLDNF-resolution.
In A. Voronkov, editor, Proceedings of the Fourth International Conference
on Logic Programming and Automated Reasoning, LNCS, pages 182-193.
Springer-Verlag, 1993.

P. M. Hill, editor. ALP Newsletter, http://www-1lp.doc.ic.ac.uk/alp/,
February 1998. Pages 17,18.

P. M. Hill and A. M. King. Determinacy and determinacy analysis. Journal
of Programming Languages, 5(1):135-171, 1997.

P. M. Hill and J. W. Lloyd. The Godel Programming Language. MIT Press,
1994.

S. Hoarau and F. Mesnard. Inferring and compiling termination for constraint
logic programs. In P. Flener, editor, Proceedings of the 8th International Work-
shop on Logic-based Program Synthesis and Transformation, LNCS, pages 240—
254. Springer-Verlag, 1999.

P. M. Hill and R. W. Topor. Types in Logic Programming, chapter 1, pages
1-61. MIT Press, 1992.

145

[HWD92] M. Hermenegildo, R. Warren, and S. K. Debray. Global flow analysis as a

[1SO95]

[TB92]

[Kah96]

[KKS91]

[KowT79]

[KSH99]

[KTU93]

[L1087]
[LS96]

[LS97]

[1.SS97]

[Liit93]

practical compilation tool. Journal of Logic Programming, 13(1-4):349-366,
1992.

International Organization for Standardization. The ISO Prolog Standard,
1995. http://www.logic-programming.org/prolog_std.html.

G. Janssens and M. Bruynooghe. Deriving descriptions of possible values
of program variables by means of abstract interpretation. Journal of Logic
Programming, 13(2 & 3):205-258, 1992. First author name erroneously spelt
“Janssen”.

S. Kahrs. Limits of ML-definability. In H. Kuchen and S. D. Swierstra, editors,
Proceedings of the 8th Symposium on Programming Language Implementations
and Logic Programming, LNCS, pages 17-31. Springer-Verlag, 1996.

M. R. K. Krishna Rao, D. Kapur, and R. K. Shyamasundar. A transforma-
tional methodology for proving termination of logic programs. In Proceed-
ings of the 5th Conference for Computer Science Logic, LNCS, pages 213-226.
Springer-Verlag, 1991.

R. A. Kowalski. Algorithm = Logic 4+ Control. Communications of the ACM,
22(7):424-436, 1979.

A. M. King, J.-G. Smaus, and P. M. Hill. Quotienting share for dependency
analysis. In D. Swierstra, editor, Proceedings of the FEuropean Symposium on
Programming, 1999.

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence
of polymorphic recursion. ACM Transactions on Programming Languages and
Systems, 15(2):290-311, 1993. Title wrongly given in table of contents: Type
recursion in the presence of polymorphic recursion.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

N. Lindenstrauss and Y. Sagiv. Checking termination of queries to logic pro-
grams. Technical report, Hebrew University of Jerusalem, 1996. Available at
http://www.cs.huji.ac.il/~naomil.

N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic pro-
grams. In L. Naish, editor, Proceedings of the 1th Joint International Confer-
ence and Symposium on Logic Programming, pages 63—-77. MIT Press, 1997.

N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. Termil.og: A system for check-
ing termination of queries to logic programs. In O. Grumberg, editor, Proceed-
ings of Computer Aided Verification, LNCS, pages 444-447. Springer-Verlag,
1997.

S. Littringhaus-Kappel. Control generation for logic programs. In D. S.
Warren, editor, Proceedings of the 10th International Conference on Logic
Programming, pages 478-495. MIT Press, 1993.

146

[Mar96] M. Marchiori. Proving existential termination of normal logic programs. In
M. Wirsing and M. Nivat, editors, Proceedings of AMAST 96, LNCS, pages
375-390. Springer-Verlag, 1996.

[Mee88] L. Meertens. First steps towards the theory of rose trees. CWI, Amsterdam;
IFTIP Working Group 2.1 working paper 592 ROM-25, 1988.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17(3):348-375, 1978.

[MK97] J.C. Martin and A. M. King. Generating efficient, terminating logic programs.
In M. Bidoit and M. Dauchet, editors, Proceedings of TAPSOFT’97, LNCS,
pages 273-284. Springer-Verlag, 1997.

[MKS97] J. C. Martin, A. M. King, and P. Soper. Typed norms for typed logic programs.
In J. P. Gallagher, editor, Proceedings of the 6th International Workshop on
Logic Program Synthesis and Transformation, LNCS, pages 224-238. Springer-
Verlag, 1997.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems, 4:258-282, 1982.

[MNL90] K. Marriott, L. Naish, and J. L. Lassez. Most specific logic programs. Annals
of mathematics and artificial intelligence, 1(2), 1990. Also in proceedings of the
5th Joint International Conference and Symposium on Logic Programming.

[MO84] A. Mycroft and R. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23:295-307, 1984.

[MS93] K. Marriott and H. Sgndergaard. Precise and efficient groundness analysis
for logic programs. ACM Letters on Programming Languages and Systems,
2(1-4):181-196, 1993.

[MT95] E. Marchiori and F. Teusink. Proving termination of logic programs with delay
declarations. In J. W. Lloyd, editor, Proceedings of the 12th International Logic
Programming Symposium, pages 447-461. MIT Press, 1995.

[Nai85] L. Naish. Automatic control of logic programs. Journal of Logic Programming,
2(3):167-183, 1985.

[Nai86] L. Naish. Negation and Control in Prolog. Number 238 in LNCS. Springer-
Verlag, 1986.

[Nai92] L. Naish. Coroutining and the construction of terminating logic programs.
Technical Report 92/5, University of Melbourne, 1992.

[Nai96] L. Naish. A declarative view of modes. In M. Maher, editor, Proceedings of the
13th Joint International Conference and Symposium on Logic Programming,
pages 185-199. MIT Press, 1996.

147

[PBHYY]

[PR99]

[RNP92]

[Rug99]

[SG95a]

[SGI5b]

[SHCY96]

[SHK98]

G. Puebla, F. Bueno, and M. Hermenegildo. A framework for assertion-
based debugging in constraint logic programming. In A. Bossi, editor, Pre-
Proceedings of the 9th International Workshop on Logic-based Program Synthe-
sis and Transformation, pages 31-38. Universita Ca Foscari di Venezia, 1999.
Extended abstract.

D. Pedreschi and S. Ruggieri. On logic programs that do not fail. In S. Etalle
and J.-G. Smaus, editors, Proceedings of the Workshop on Verification, organ-
ised within ICLP’99, volume 30 of Electronic Notes in Theoretical Computer
Science. Elsevier, 1999.

Y. Rouzaud and L. Nguyen-Phoung. Integrating modes and subtypes into
a Prolog type checker. In K. R. Apt, editor, Proceedings of the 9th Joint
International Conference and Symposium on Logic Programming, pages 85—
97. MIT Press, 1992.

S. Ruggieri. Verification and Validation of Logic Programs. PhD thesis, Di-
partimento di Informatica, Universita di Pisa, 1999.

H. Saglam and J. P. Gallagher. Approximating constraint logic programs using
polymorphic types and regular descriptions. Technical Report CSTR-95-017,
University of Bristol, 1995. Presented as a poster at the 7th Symposium on
Programming Language Implementations and Logic Programming.

K. Stroetmann and T. Glafl. A semantics for types in Prolog: The type
system of PAN version 2.0. Technical report, Siemens AG, ZFE T SE 1, 81730
Miinchen, Germany, 1995.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury, an efficient purely declarative logic programming language. Journal of
Logic Programming, 29(1-3), 1996.

J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logic programs with
block declarations running in several modes. In C. Palamidessi, editor, Pro-
ceedings of the 10th Symposium on Programming Language Implementations
and Logic Programming, LNCS. Springer-Verlag, 1998.

[SHK99a] J.-G. Smaus, P. M. Hill, and A. M. King. Mode analysis domains for typed

logic programs. In A. Bossi, editor, Pre-Proceedings of the 9th International
Workshop on Logic-based Program Synthesis and Transformation, pages 163—
170. Universitda Ca Foscari di Venezia, 1999. Extended abstract.

[SHK99b] J.-G. Smaus, P. M. Hill, and A. M. King. Preventing instantiation errors

[SICOS]

and loops for logic programs with multiple modes using block declarations.
In P. Flener, editor, Proceedings of the 8th International Workshop on Logic-
based Program Synthesis and Transformation, LNCS, pages 289-307. Springer-
Verlag, 1999.

Intelligent Systems Laboratory, Swedish Institute of Computer Science, PO
Box 1263, S-164 29 Kista, Sweden. SICStus Prolog User’s Manual, 1998.
http://www.sics.se/isl/sicstus/sicstus_toc.html.

148

[Sma99]

[Som87]

[SS86]

[Str67]

[Tho99]

[Tic91]

[TL97]

[TZ86]

[Ued86]

[Ued88]

[UM93]

[UM94]

[VCLYS]

J.-G. Smaus. Proving termination of input-consuming logic programs. In
D. De Schreye, editor, Proceedings of the 16th International Conference on
Logic Programming. MIT Press, 1999.

Z. Somogyi. A system of precise modes for logic programs. In J.-L. Lassez,

editor, Proceedings of the 4th International Conference on Logic Programming,
pages 769-787. MIT Press, 1987.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

C. Strachey. Fundamental concepts in programming languages. Notes for the
International Summer School in Computer Programming, Copenhagen, 1967.

S. Thompson. Haskell: The Craft of Functional Programming. Addison-
Wesley, 1999. Second Edition.

E. Tick. Parallel Logic Programming. MIT Press, 1991.

J. Tan and I. Lin. Recursive modes for precise analysis of logic programs. In
J. Matuszynski, editor, Proceedings of the 14th International Logic Program-
ming Symposium, pages 277-290. MIT Press, 1997.

J. Thom and J. Zobel. NU-Prolog Reference Manual, version 1.0. Department
of Computer Science, University of Melbourne, Australia, 1986. Technical
Report 86/10.

K. Ueda. Guarded Horn clauses. In E. Wada, editor, Proceedings of the jth
Japanese Conference on Logic Programming, LNCS, pages 168-179. Springer-
Verlag, 1986.

K. Ueda. Guarded Horn Clauses, a parallel logic programming language with
the concept of a guard. In M. Nivat and K. Fuchi, editors, Programming of
Future Generation Computers, pages 441-456. North Holland, Amsterdam,
1988.

K. Ueda and M. Morita. Message-oriented parallel implementation of Moded
Flat GHC. New Generation Computing, 11(3):323-341, 1993.

K. Ueda and M. Morita. Moded Flat GHC and its message-oriented imple-
mentation technique. New Generation Computing, 13(1):3-43, 1994.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of Prolog
using type graphs. Journal of Logic Programming, 22(3):179-209, 1995.

149

Index

-, 85

<, 41

B, 122, 123
Bp, 77

0O, 14, 56
D, 40

Der, 64
E£%, 34
1,59

0, 59

R, 60

Xy, 28

Yy, 28

¥, 28
T(%:,U), 28
U, 28

Z, 34
[..]...], 27
N, 47

a, 42

=, 78

l.|, 77

€, 59

=(I,1), 126
fdepa 46

(_,-), 60

(L,S), 29

~», 14, 56

L, 41
Fs:S=t:T,59
«, 30
w(01,...,0p), 63
p(s,t), 59

=<, 28

ran, 59

>, 30

—, 21

150

r°, 90
rf, 90
0,78
3,78
[pl~, 78
<*, 29
<, 29
sup, 79
t:T, 59
vars, 59
7,85

abstract compilation, 4, 27, 46, 49
abstract dependency, 46
abstract domain, 40

well-defined, 31
abstract extractor, 44
abstract interpretation, 15, 20, 26
abstract term, 4, 16, 29
abstract termination function, 44
abstract unification, 4, 44
abstraction

of a constant, 42

of a program, 47

of a term, 42

of a truth value, 42
acceptable clause, 83
acceptable delay declaration, 133

acceptable for input-consuming deriva-

tions, 78

acceptable program, 78
accumulator, 7, 57
ad-hoc polymorphism, 19
ad-hoc type, 6, 18
Algorithm = Logic + Control, 56
all_ground, 59
alphabet, 28
analysis

for groundness, 15

annotation of type, 33

answer, 57

answer pattern, 14, 48, 49

Any, 40

any, 59

any, 4

Append, 27, 49
abstraction of, 47

append, 3, 57, 61, 73, 75, 79, 96
block declaration, 96
in test mode, 128

approximation
safe, 42
Apt, 59, 60, 78, 89, 112, 113, 116, 126,
134, 136, 137

arbitrary type, 18
argument position
additional, 135
input, 57
output, b7
arithmetic built-in, 118
arithmetic expression, 118
atom, 29, 59
atom-terminating, 75
bounded, 72, 84, 131
critical, 107
leftmost, 98
most general, 133
most recently introduced, 135
selectable, 85
selected, 58, 60
waiting, 100
woken, 99
atom-terminating, 75
atomic position, 119
auxiliary predicate, 87, 119
AVL-tree, 28

B-ground, 122
B-ground*, 123
B-position, 122
B-position*, 123

Bp, 77

backtracking, 26, 74, 132
balancing, 28

base, 28

151

Bezem, 77, 78, 133, 136
binding
speculative, 98, 101
binding order, 100
block declaration, 9, 84, 85
for built-in, 87, 119
overhead, 121
Boolean flag, 41
Bot, 40
bound, 51
depth of computation, 135
bounded atom, 72, 84, 131
built-in, 18, 58, 117
arithmetic, 118
implementation, 117
requiring groundness, 118
built-in predicate, see built-in
built-in type, 18

call
safe, 22
unsafe, 22
call pattern, 14, 48, 49
initial, 49
circular mode, 75
clause, 29
acceptable, 83
conceptual, 117
fact, 117
input-linear, 66
clause head
input-linear, 126
clause order, 74
Codish, 4-7, 16, 18, 19, 27, 49-51
conceptual clause, 117
concrete semantics, 4
concurrent language, 126
Cons, 6, 27
Consgep, 46
cons_dep, 4
considered, 115
successfully, 113
constant, 28
constant type, 59, 118
constraint language, 126
constructor

term, 28

type, 28
consumer, 14, 62, 101
control, 56, 58, 133
coroutining, 11, 61, 74
correctly typed, 59
corresponding

nicely moded ..., 65

robustly typed ..., 90

simply moded ..., 86

simply typed ..., 86

well moded ..., 68

well typed ..., 69
covering relation, 135
critical atom, 107

D, 40
Der, 64
data
actual, 26
description of, 26
data flow, 56
data structure
open, 135
recursive, 81
De Schreye, 72, 74, 78, 105, 131, 135
deadlock, see floundering
declaration
as comment, 53
delay, 72
infer, 53
declarative view, 14
declared type, 18
declaring modes, 52
Decorte, 72, 74, 78, 105, 131, 135
decrease
relative, 73, 83, 138
degree of instantiation, 3
delay, 84
delay condition, 52
delay declaration, 58, 72
acceptable, 133
overhead, 121
purpose, 58, 84
safe, 133
delay-respecting derivation, 85

152

infinite, 102
DELAY...UNTIL GROUND..., 82
DELAY...UNTIL NONVAR..., 82
delete, 56, 66, 73, 80, 85, 95
Demoen, 4-7, 18, 49, 50
dependency

abstract, 46
depends on, 78
depth, 33

of computation, 135
depth bound, 51
derivation, 60

arbitrary, 72

delay-respecting, 85

failing, 102, 136

floundering, 85

infinite, 57, 73

input-consuming, 8, 58, 60, 137

LD, 60, 72

left-based, 63, 100, 138

successful, 136
derivation step, 60

actual, 115

attempted, 115
derived permutation, 63
descendant, 60

direct, 60
descriptive mode, 15
descriptive type, 20
determinacy, 26
deterministic program, 134
direct descendant, 60
direct occurrence, 59
directional type, 21
disjoint

left-right, 113
divergence, 116
dom, 59
domain

abstract, 40

ground /non-ground, 49

hand-crafted, 50

of a substitution, 29, 59

typed, 49
double matching, 11, 113

J-universal termination, 136
E7%, 34
equation, 29, 35, 44, 46, 113, 115
error
instantiation, 117
type, 117
typographical, 26

Etalle, 8, 59, 74, 77, 78, 83, 89, 112114,

116, 120, 134, 136, 139

execution

parallel, 7, 57, 83
execution order, 61, 138
execution point, 3
exhaustive tests, 105
existential termination, 74
expression

arithmetic, 118

generic, 113

meaningful, 26
extractor, 34

abstract, 44

f dep» 46
fail, 102
failing derivation, 136
fair selection rule, 136

Family, 7

feed, 75

FGHC, 83, 126, 132
Moded, 132

fill a position, 59

first order logic, 56

fixed mode, 74

flat term, 59

Flatten, 49

flattening lists, 27

floundering, 11, 85, 102, 116, 134
freedom from, 116
vs. termination, 116

forward mode, 21

free term, 42

free-bound-labelling, 89

full unification, 112

function, 28

functional language, 30

generalised mode, 129

153

generate, 62

generate control, 133

generic expression, 113

GHC, 83, 132

glb, 41

goal, 15

goal-dependent, 15

goal-independent, 15

Godel, 26, 27, 70
meta-programming, 49
system modules, 49

granularity, 16

greatest lower bound, 41

ground, 26

ground, 4

ground type, 59

ground /non-ground domain, 49

groundness, 42

groundness analysis, 15

guard, 83, 126, 132

Guarded Horn Clauses, 132

Haskell, 30
Hill, 80

1,59
ICD-acceptable, 78
idempotent substitution, 59
iff, 4
iff_and, 4
incorrect type, 51
index set, 31
infinite derivation, 57, 73
initial node, 30
input, 14, 59
from clause head, 121
insufficient, 98, 106
input position, 57
input selectability, 95, 95, 122
of built-ins, 110
input-consuming, 8, 58, 60, 137
input-linear, 126
atom, 59
clause, 66
program, 66
instantiation
degree of, 26

sufficient, 58 Lloyd, 60, 80, 137

instantiation error, 117 local selection rule, 73, 135
instantiation state, 17, 52 logic, 56

insufficient input, 106 lub, 41

Int, 27 lub, 4

Integer, 6, 27 Liittringhaus-Kappel, 72, 99, 116, 133
IntegerList, 6 Luitjes, 59, 99, 115, 116, 118, 134
interleave, 61, 74

Marchiori, 72, 135

il, 59 . .
int. 59 Martelli-Montanari, 115
is ’117 Martin, 72, 82, 135
ISO standard, 117 matcﬁz 113
iterated matching, 113 matching, 11
double, 113

key, 28 iterated, 113
King, 72, 82, 135 Mercury, 26, 52, 68, 70
Kowalski, 56, 136 meta-programming, 49

MGU, 58, 60
Lagoon, 6, 7, 51 ML, 30

language mode, 14, 26, 59

concurrent, 126 as verification tool, 15

constraint, 126 circular, 75

moded, 16 ' declare, 52
polymorphic ..., 29 descriptive, 15
‘typed, 20 finding a, 66
lattice, 41 fixed, 74
LD-derivation, 60, 72, 136
forward, 21

infinite, 102 generalised, 129
LD-resolvent, 60 i
) in Mercury, 52

least upper b(.)un('i, 41 multiple, 7, 57, 62
left-based derivation, 63, 100, 138

left-right disjoint, 113
leftmost atom, 98

of a program, 59
prescriptive, 16
recursive, 51

length, 119 single, 74
level mapping, 83 wrong, 110
moded, 136 ’

mode analysis, 15

moded typed, 77 mode declaration, 16

linear, 59 Moded FGHC, 132

. mnput, 59 moded language, 16
L:lSt’ 6 moded level mapping, 136
list, 27

moded typed level mapping, 77
flattening, 27 b PPing

monomorphic type, 19
nil-terminated, 27 p ype,

most general unifier, see MGU

o'p(.en, 274 most specific program, 85
- rigid, 13 multiple modes, 7, 57, 62
list, 59
Lists, 27 Naish, 21, 72, 99, 100, 131-133, 137

154

Nests, 27

nicely moded, 16, 61, 65
Nil, 6, 27

nil-terminated, 26, 27

noFD, 102

non-destructive program, 136
non-ground, 26

non-ground type, 18
non-linear place, 127
non-recursive subterm type, 6, 50
non-speculative, 102
non-variable term, 10, 84
non-variable type, 59
normal form, 3, 29

Nqueens, 50

nqueens, 80, 105

NU-Prolog, 133, 134

num, 59, 118

nl, 59

0, 59
occur-check, 11
occur-check free, 115
occurrence
direct, 59
one-atom query, 74
Open, 40
open, 27
open data structure, 135
open term, 34
operational semantics, 27
order
execution, 61, 138
of binding, 100
of clauses, 74
on abstract terms, 41
producer-consumer, 61, 74, 138
textual, 61, 74, 138
ordered, 63
output, 14, 57, 59
overloading, 19

parallel execution, 7, 57, 83
parameter, 28

parametric polymorphism, 19
pattern, 48, 49

Pat(Type), 51

155

Pellegrini, 134
permutation, 62, 63
derived, 63
identity, 74
permutation nicely moded, 65
permutation robustly typed, 90
permutation simply moded, 86
permutation simply typed, 86
permutation well moded, 68
permutation well typed, 69
permute, 56, 57, 66, 73, 80
persistence
permutation nicely moded, 66, 67
permutation robustly typed, 91
permutation simply typed, 88
permutation well moded, 68
permutation well typed, 69
well fed, 107
Person, 7
pin down the size, 72, 83, 131, 138
place, 127
placing recursive calls last, 101, 105, 133
p(s,t), 59
polymorphic type, 28
polymorphic recursion, 52
polymorphic type relationship, 33
polymorphism, 19
ad-hoc, 19
Pos, 49
position
atomic, 119
fill a, 59
input, 57, 59
output, 57, 59
predicate, 28
atom-terminating, 75
auxiliary, 87, 119
built-in, 18, see built-in
user-defined, 121
prescriptive mode, 16
procedural view, 14
producer, 9, 14, 62, 101
producer-consumer order, 61, 74, 138
producer-consumer relation, 61
program, 85
deterministic, 134

in normal form, 29
input-linear, 66
most specific, 85
non-destructive, 136
polymorphic ..., 29
projection, 44

query, 29, 59
one-atom, 74

Quicksort, 50

quicksort, 87

R-derivation, 60
van Raamsdonk, 8, 136
ran, 59
range
of a substitution, 59
type, 28
recurrent program, 78
recursion
polymorphic, 52
recursive data structure, 81
recursive mode, 51
recursive type, 6, 50
reduces to, 47
Reflexive Condition, 29, 52
regular approximation, 18
regular type, 18
relation
producer-consumer, 61
relative decrease, 73, 83, 138
resolvent, 60
respects atomic positions, 119
Reverse, 49
rigidness, 73, 134
robustly typed, 90
rose tree, 51
Ruggieri, 136

safe approximation, 42
safe call, 22
safe delay declaration, 133
SCC, 30
selectable atom, 85
selected atom, 58, 60
selection rule, 60

default, 73

156

fair, 136
LD, 56
left-based, 98
leftmost selectable, 99
local, 73, 135
Prolog, 73
standard, 56
semantics
concrete, 4
operational, 27
set of equations, 113, 115
considered, 115
partition, 114
successfully considered, 113
SICStus, 18, 84, 121
Simple Range Condition, 29, 52
simple type, 29
simply moded, 61, 86
simply typed, 86
single mode, 74
size
of a query, 79
of a term, 79
pin down, 72, 83, 131, 138
SLD-tree, 135
finite, 133
solvable by double matching, 113
Somogyi, 52
speculative binding, 98, 101
make, 101, 102
use, 101
step, 60
derivation, 60
strong termination, 72, 133

strongly connected component, see SCC

subquery, 60
substitution
idempotent, 59
term, 29
type, 29
subterm, 33
immediate, 35
recursive, 33
sub“term”, 29, 51
proper, 28
subterm type, 6

succ, 102 of term, 33

success set, 21 rose, b1
successful, 15, 61 tree, 59
successful derivation, 136 TreeTolList, 49
successfully considered, 113 type, 21, 28, 59
sufficient instantiation, 58 ad-hoc, 6, 18
sup, 79 annotation, 33
superscript, 33 arbitrary, 18, 50
built-in, 18
TSize, 79 constant, 59
table declared, 18
ground, 49 descriptive, 20
Tables, 28, 49 directional, 21
Ter, 40 ground, 59
term, 28, 29 incorrect, 51
abstract, 4, 16, 29 monomorphic, 19
compound, 81 non-ground, 18
depth of, 33 non-recursive subterm, 6, 30, 50
flat, 59 non-variable, 59
free, 42 of a program, 59
non-variable, 10, 84 recursive, 6, 30, 50
open, 34 regular, 18
terminated, 34 simple, 29
tree of, 33 subterm, 6, 29
type-consistent, 90 variable, 59
term size, 79 type analysis, 20
TermilLog, 99, 135 type constructor, 19
terminated term, 34 type declaration
termination contrived, 49
J-universal, 136 type error, 18, 21, 117
existential, 74 type graph, 18, 30, 33
of term, 26, 34 type variable, 28
strong, 72, 133 type-consistent, 59, 71, 90, 109, 117
universal, 74, 133 wrt. input-consuming derivations, 71
vs. floundering, 116 wrt. LD-derivations, 71
termination function, 34 typed domain, 49
abstract, 44 typed language, 20, 70
test, 62, 105
test mode, 66, 128 U, 28
test-and-generate, 7, 10, 57, 62, 110 Ueda, 8, 83, 132
Teusink, 72, 135 undecidability, 15
textual order, 61, 74, 138 unification, 115
Thompson, 30 abstract, 4, 44
transparency condition, 28, 52 full, 112
tree specialisation, 26
AVL, 28 unification free, 11, 15, 61, 112, 113

157

J-universal termination, 136
universal termination, 74
unsafe call, 22

user-defined predicate, 121

value, 28

van Raamsdonk, 8, 136
variable type, 59

vars, 59

waiting atom, 100
well fed, 107

well moded, 16, 61, 68
well placed, 124

well typed, 61, 69
well-acceptable program, 78
when, 127

when declarations, 133
widening, 50, 51
woken atom, 99
wrong mode, 110

Z, 34

158

