University of

"1l Kent Academic Repository

Lauder, Anthony and Kent, Stuart (1999) EventPorts: Preventing Legacy
Componentware. In: Proceedings Third International Enterprise Distributed
Object Computing. IEEE, pp. 224-232. ISBN 0-7803-5784-1.

Downloaded from
https://kar.kent.ac.uk/21741/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/EDOC.1999.792066

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21741/
https://doi.org/10.1109/EDOC.1999.792066
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

EventPorts: Preventing L egacy Componentwar e®

Anthony Lauder and Stuart Kent
Computing Laboratory
University of Kent at Canterbury
Canterbury, Kent, CT2 7NF, UK
Anthony@L auder.u-net.com

S.J.H.Kent@ukc.ac.uk

Abstract - In our work with legacy information systems we have
found two prevalent anti-patterns — tight coupling and code
pollution — which, if not addressed in replacement systems,
could result in today’'s new systems simply becoming
tomorrow's new legacy system. Tight coupling results from
Explicit Invocation across collaborating components. Code
pollution results from implicit (rather than explicit) reflection
of time-ordered collaboration protocols. These anti-patterns
diminish component maintainability, flexibility, and
reusability. In response, we propose a synthesis of Implicit
Invocation (which reduces tight coupling) and Statecharts
(which reflect collaboration protocols directly). This paper
describes the development of EventPorts, which realize this
synthesis and thus encapsulate a novel and promising
component collaboration technology.

|. INTRODUCTION

Computerized information systems are developed to support
an organization’s business processes. As business processes
evolve, the information systems supporting them must evolve
accordingly. Unfortunately, information systems tend to
grow old “disgracefully”, so that it becomes increasingly
difficult to modify them to reflect on-going business process
change. Such systems are termed legacy systems. A legacy
system is an information system which resists the reflection
of on-going business process change [1].

We have been working with a mid-sized software
development organization that has a large share of the
market for particular types of commercial information
system. These information systems have been developed over
many years and are now percelved as legacy systems.
Supporting these legacy systems is a significant drain on the

resources of the organization; development staff is stretched
thinly over the current maintenance burden, with few
resources remaining for new development work.

Having looked into the legacy system issue on behalf
of this organization, we have observed that its legacy systems
tend to be characterized by a number of undesirable
properties forming anti-patterns. Two of the anti-patterns
that are particularly problematic are tight coupling between
software components, and code-pollution within those
software components. Our fear isthat if replacement systems
to legacy systems propagate those same anti-patterns then
eventually today’s replacement systems will simply become
tomorrow’s legacy systems. To respond to this problem, we
have derived an implementation technology, termed
EventPorts, which promises to alleviate the maintenance
burden inherent in tight coupling and code-pollution and
hence alleviate the resistance to the reflection of on-going
business process change inherent in legacy systems. It is
EventPorts, and the nature of the problems they resolve,
which form the focus of this paper.

Il. EXPLICIT INVOCATION

There is an increasing trend towards the development of
software systems constructed from software components [2].
A software component working in isolation usually has little
value. Consequently, component-based systems tend to
consist of networks of components that collaborate by
sending messages to one another. These messages tend to be
purposeful, in that they are intended to induce collaborative
action. In atypica collaboration, one component (the sender
of a message) explicitly identifies another component (the

® This work was partially funded under EPSRC grant GR/M02606, and by a generous contribution from Electronic Data

Processing PLC.

intended recipient of a message) thus forming an explicit
association between them. Since the sending component has
explicitly nominated the recipient component in which
action is to be induced, this form of collaboration is known
as Explicit Invocation. Fig. 1 depicts an example of explicit
invocation wherein an InvoiceGenerator component is
explicitly aware of and hard-codes the invocation of a
printlnvoice method on a InvoicePrinter component.

Component
InvoiceGenerator >~
(knows of InvoicePrinter)

Component
InvoicePrinter
(can receive printinvoice)

InvoicePrinter.
printinvoice

Fig. 1. Explicit Invocation

I1l. TiIGHT COUPLING

Explicit invocation is problematic in that it results in a tight
coupling between the sender and the recipient. A major
demerit of such tight coupling is that it makes components
sensitive to changes in one another. For example, if the
InvoicePrinter component in Fig. 1 were modified so that it
no longer supported receipt of printinvoice, then the
InvoiceGenerator component would need to be modified
accordingly. Furthermore, explicit invocation makes a
sender component sensitive to changes in the structure of the
component network in which it participates. For example, if
a new requirement was introduced by the business stating
that all printed invoices must be logged to an audit trail, then
the InvoiceGenerator would need to be modified to reflect
this policy change, perhaps as shown in Fig. 2, below. An
aternative is that the InvoicePrinter component could be
modified to log invoice prints, but this is not the choice we
have made here.

Component
InvoiceGenerator
(knows of InvoicePrinter)
(knows of InvoicePrintLogger /’LO/_
(o)

Component
InvoicePrinter
(can receive printinvoice)

InvoicePrinter.
printinvoice

© Component
u InvoicePrintLogger
(can receive loginvoice)

Fig. 2. Tight Coupling

Additional changes to requirements in response to
developing business processes would lead to further
alterations to the components in the network and the hard-
coded collaborations between them. In other words,
individual components are highly sensitive to evolution of

their network structure and the components with which they
collaborate directly. Conseguently inter-component
dependencies inherent in explicit invocation constitute a
major impediment to the maintainability, adaptability, and
reusability of software components and the systems
developed from them.

IV. IMPLICIT INVOCATION

Explicit invocation, then, leads to tight coupling between
components. To eliminate the maintenance burden inherent
in tight coupling, it would be ideal if collaborating
components were completely unaware of one another’s
identity. Such mutual unawareness is termed component de-
coupling. The reduction of inter-component dependencies
resulting from component de-coupling enhances component
maintainability, adaptability, and re-use.

To achieve component de-coupling we need to abandon
explicit invocation and migrate towards Implicit Invocation
[3], wherein recipient components register their message
interests with a broker, via which sending components
propagate messages to currently interested recipients. The
broker forms an intermediary between collaborating
components, hence resulting in component de-coupling.

Implicit invocation is necessarily a two-phase process. In the
first phase, Interest Registration (see Fig. 3), recipient
components register their message interests with a broker,
specifying both a message topic and an associated action to
be invoked upon receipt of that message.

Component

Broker Broker.interest(printinvoice)-#
(stores registered interests)

Component
InvoicePrinter
(can recevice printinvoice)

®,
\ Component
» InvoicePrintLogger

(can recevice printinvoice)

Fig. 3. Interest Registration

In the second phase or implicit invocation, termed
Propagation (see Fig. 4), sending components pass messages
to the broker. The broker then utilizes its knowledge of
registered message interests to determine those receiving
components whose currently registered interests coincide
with the message just received and hence need the received
message to be passed on to them (where that message will
inspire the invocation of the associated action).

Component
InvoiceGenerator
(knows of Brokter)
YQJ
. L
o ©
@ E
=
v
Component
Broker Component
(stores registered interests) a—component[0].printinvoice-» InvoicePrinter
(Forwards messages of .\ (can recevice printinvoice)
interest) o
0,
2,
D
R
%,

Component
InvoicePrintLogger
(can recevice printinvoice)

Fig. 4. Propagation

V. HISTORICALLY DETERMINED EVENT INTERESTS
Experience with implicit-invocation-based patterns and
products through various industrial projects, has taught the
authors that the resultant de-coupling of components leads to
considerable increases in flexibility, adaptability,
configurability, and reusability of the resultant components
and component networks. However, it is aso the authors
experience that implicit invocation mechanisms still fail to
resolve one major problem found in all of the legacy system
we have studied.

A software component exports an interface detailing the
methods which may be invoked on that component, or in the
case of implicit invocation the interface details the messages
in which the component is interested in receiving.
Frequently, however, the order in which those methods may
be legitimately invoked (or those messages received) is
completely unconstrained. This unconstrained invocation
ordering is often problematic. For example, it would be
inappropriate to allow the same expense claim to be paid
twice, or for ablock of memory to be deallocated if it had not
previously been allocated. Thus, there is an implicit
appropriate order of invocation underlying a component’s
methods or message interests. More specifically, the
messages that a component is interested in receiving at any
given moment is a function of the mutations to its abstract
state which have occurred in response to the messages that it
has already received. Thus, the invocation ordering (the
time-ordered protocol) of a component is historically
determined and hence mutable.

VI. CoDEPOLLUTION

In atraditional implementation of implicit invocation, then,
a component registers all its message interests in advance.
Thus, it is perfectly possible for that component to receive
messages in an order that does not respect its implicit time-
ordered invocation protocol. This could lead to disasterous
consequences, and hence a component has to enforce its
protocol viathe protection of individual methods against out-
of-sequence invocation. Consequently, the body of each
individual method tends to be wrapped in protective guard
code whose purpose is to ensure that any out-of-sequence
invocation of that method is benign and hence can do no
harm.

This guard code is secondary to the main purpose of a given
method, and hence pollutes the method' s essential behavior.
This code pollution complicates the bodies of component
methods and hence reduces component maintainability and
adaptability. It also makes it difficult for a maintainer of the
component to understand the time-ordered protocols that a
component respects, since the time ordering of protocols is
implicit in the guard conditions scattered throughout that
component’s methods, rather than explicitly recorded in a
single place.

As an example of code pollution, imagine a component that
represents an application for a loan, as shown in Fig. 5. For
the sake of simplicity, only a minimal set of attributes and
methods are depicted.

\WaitingApproval == FALSE;
Decision == NONE;

if(WaitingApproval == FALSE && Decision == NONE { B
LoanAmount = AmountWanted;
WaitingApproval = TRUE;

} else {

ERROR!!!

}

«Component»
LoanApplication

-LoanAmount : Money
-WaitingApproval : Boole:
-Decision : NONE,APPROVED,REJECTED

+LoanApplication()0”
+ReceiveApplication(AmountWanted : Mon
+ApproveApplication
+RejectApplication(_

if(WaitingApproval == TRUE && Decision == NONE) { B
WaitingApproval = FALSE;
Decision = APPROVED;

} else {

ERRORI!!!

}

if(WaitingApproval == TRUE && Decision == NONE) { B
WaitingApproval = FALSE;
Decision = REJECTED;

} else {
ERRORI!!!

}

Fig. 5. Code Pollution

In Fig. 5, a LoanApplication at first represents, in effect, a
blank piece of paper. When an actual loan application is
received, the requested loan amount is recorded. The
requested loan may then be either approved or rejected.
Notice that each method is surrounded by conditional code
and contains a variety of flags being set to control and
indicate progress of the loan through an implicit ordering of

method invocations. The implicit protocol is that a
LoanApplication must be blank when an actual loan
application is received, and a loan can only be approved or
rejected if that loan has been received and has not aready
been approved or regjected. The individual methods in the
LoanApplication component, then, have become polluted
with code which is not specific to the fundamental behavior
of those methods, but which is essential in case methods are
invoked out of order.

As the LoanApplication component becomes more
sophisticated, with the addition of new data members and
methods, we can expect code pollution to become more and
more problematic. It is this increasing need to reflect
growing intra-component dependencies across methods and
attributes that leads to fragile components unable to reflect
further business process change due to the fear that “if we
touch it, it might break”. It is this fear that leads, in large
part, to systems being termed legacy systems. To quote one
of the (unfortunate) maintainers of a legacy system that we
have come across. “The code is in control.” It is our
assertion that the elimination of code pollution of this sort
can help to put the developer back in control, and not the
code.

VIl. STATECHARTS

In response to the code pollution problem, we propose a
direct realization of Statecharts [4] in a component’s
implementation. The Statechart notation encompasses the
expression of abstract state mutations in response to the
occurrence of events of interest. In other words, statecharts
capture time-ordered event interests and aso reflect the
history of events received so far in terms of a series of
mutually exclusive abstract states.

A statechart consists of a network of disunctive abstract
states. A statechart in execution is said to be in one (current)
abstract state at a given time. Each abstract state is
associated with a set of outward transitions. A transition is a
quadruple of the form {event, condition, action, nextstate}.
When a statechart receives an event, it takes whichever
transition (if any) in its current abstract state matches that
event so long as that transition’s condition is satisfied.
Taking a transition means invoking that transition’s action
and making that transition’s nextstate the new current
abstract state for the statechart. If no transition both matches
the received event and has a satisfied condition, then no
action occurs and the current state remains unchanged.

The important contribution of statecharts is that they make
historically determined event interests explicit (see Fig. 6).
Statecharts, then, capture time ordered protocols and thus
promise to eliminate the need for polluting component

methods with guard code in case of their out-of-sequence
invocation. Reflecting statecharts directly in a software
component, then, eliminates the necessity for code pollution,
since the statechart mechanism itself ensures that a method
cannot be invoked unless the protocol inherent in the
statechart is respected.

LoanApplication ‘ o
. new LoanApplication
- LoanAmount : Money new | oanApplication

BlankSheet

ReceiveApplication(AmountWanted: Mone

[LoanAmount = AmountWanted]

ApplicationReceived J

ApproveApplicatio . L
RejectApplication
Approved Rejected
Fig. 6. Statechart

Looking at Fig. 6, we see that a LoanApplication now needs
only one attribute (the LoanAmount). All other attributes
from Fig. 5 have now been absorbed into the mutually-
exclusive (digoint) abstract states captured in the statechart
(BlankSheet, ApplicationReceived, Approved, Rejected).
When a new LoanApplication is created it immediately
transitions to the BlankSheet abstract state. From there, the
only acceptable next message is ReceiveApplication. Any
message other than ReceiveApplication will simply be
ignored (or may result in an error, if that is what we choose
an implementation to do). ReceiveApplication sets the single
LoanAmount attribute to the requested loan amount, and
then transitions to the ApplicationReceived abstract state.
From there, only two messages are of interest:
ApproveApplication (which transitions to Approved) and
RejectApplication (which transitions to Rejected). The
statechart, then, has captured explicitly the time-ordered
protocol of the LoanApplication component. This has two
significant advantages over the implementation presented in
Fig. 5. Firstly, the elimination of code pollution simplifies
the individual methods of the component and thus eases
component maintenance, and secondly the fact that the
protocol is explicitly recorded in a single place help humans
to comprehend and describe that protocol since it is no
longer scattered across diverse guard code.

I1X. EVENTPORTS

It isthe authors' thesis, then, that combining the de-coupling
inherent in the implicit invocation model, with explicit
respect for historically-determined event interests inherent in
Statecharts results in a component collaboration strategy
which enhances component maintainability, adaptability,
and re-usability. It is via such an implementation technol ogy,
we propose, that we can eliminate both tight coupling and
code pollution and, thus, help to prevent today’s new
information systems from becoming tomorrow’s legacy
systems.

To redlize this synthesis of implicit invocation and
statechart-based explicit protocol expression, the authors
have implemented a technology, which we have named
EventPorts. In the EventPorts model, a Component exports
an Interface and an Outerface. A component receives
messages from other components through its interface and
sends messages to other components through its outerface. A
component in execution begins its life with an empty
interface and an empty outerface. Interfaces and outerfaces
evolve dynamicaly through the run-time addition and
subtraction of EventPorts. There are two types of EventPort:
interfaces consist solely of InPorts, and outerfaces consist
solely of OutPorts (see Fig. 7). An InPort exports a single
method, in, via which it receives incoming messages from
other components. An OutPort exports a single method, out,
via which it sends outgoing messages to other components.
InPorts and OutPorts are first class objects in their own right
(as are Interfaces, Outerfaces, and Components), and hence
they can be created, destroyed, mutated, passed as
arguments, and so on, just like any other object. This run-
time flexibility leads to an extremely flexible collaboration
model.

Component

InPort 1 OutPort 1

InPort 2 8 O | ouwor2
g |5

Messages In o = Messages Out

-
= &
- ®

InPort m OutPort n

Fig. 7. Interfaces and Outerfaces

IX. INPORTS

When an InPort is created, it is associated with a Statechart
(see Fig. 8). Again Statecharts are first class objects, and
hence may be dynamically created, destroyed, mutated (e.g.,
adding or removing States and Transitions dynamically),
passed as arguments, and so on. The CurrentSate of a
Statechart determines (via its Transitions) which messages
the associated InPort is currently interested in receiving. If
an InPort receives a message that is not associated with one
of the Transitions of its Statechart’s CurrentState, then that
message is simply ignored. If, however, that message
matches the interests of a Transition, and any associated
Condition is satisfied, then the Transition is taken, any
associated Action (again, afirst class object) is invoked, and
the target State of that Transition becomes the new
CurrentState.

Component

InPortl :

unLocked

unlock [releaseLock] lock [setLock]

Locked

Interface

Messages In l

Fig. 8. InPort

Since a component may have many InPorts, and each InPort
is associated with a Statechart, each component may exhibit
multiple orthogonal statecharts (see Fig. 9), the sum of
which represents its total abstract state, and the set of current
states of which determines, at any given moment, the total
message interests of that component. Each InPort may,
therefore, be considered a port-hole via which one facet of a
component’ s total abstract state is exported.

The separation of a component’s total abstract state and state
transitions into a set of orthogonal facets and associated
statecharts leads to a clean separation of concerns and thus
enhances component maintainability. In the legacy systems
we have examined, the failure to observe such a separation of
concerns into orthogonal facets has resulted in an
unnecessary intertwining of fundamentally independent
features. A major emphasis during the design of a
replacement system, then, should be placed upon achieving
such separation.

Component

InPort 1

”‘1
m4 m2 s2
S

[
InPort 2

(ool)
ma m2

Messages In

Interface

InPort m

1
Lmz

Fig. 9. Orthogonal Statecharts

X. OuTPoORTS

OutPorts are somewhat simpler than InPorts. A component
outputs messages via its OutPorts. The component code is
completely unaware of where those messages are delivered.
In fact, an OutPort simply passes messages on to whichever
InPorts are currently attached to it (see Fig. 10).

InPort 1
(In Component D)

(Registered with OutPort 1)

Message Out

OutPort 1
(In Component C)
(Knows registered InPorts)

Message Out

InPort 2
(In Component E)
(Registered with OutPort 1)

Fig. 10. OutPort

InPorts can be attached to and detached from OutPorts
dynamically. Each InPort can be attached to any number of
OutPorts simultaneously, and any number of InPorts can be

attached to a given OutPort. An OutPort acts, in effect, as
both a registry for message interests and a broker that
receives and forwards messages according to those registered
interests. The attachment and detachment of InPorts to and
from OutPorts underlies the elimination of explicit
invocation in favor of implicit invocation in the EventPorts
model. The historically-determined message interests
inherent in the Statechart associated with a receiving InPort
ensure that only appropriate events are received (i.e., time-
ordered protocols are respected) and appropriate actions
invoked as a conseguence.

X1. AN EXAMPLE

To demonstrate the use of EventPorts, we present in this
section a utilization of EventPorts to realize the loan
application component described above. Referring back to
the Statechart in Fig. 6 may help the reader to understand
the following C++ code.

Our component requires only one InPort, which we will term
aLoanlnPort. That LoanlnPort maintains the loan amount
reguested in aloan application.

typedef int Money;
class LoaninPort : public Interface::InPort {
public:
Money loanAmount;
LoanInPort(Statechart * givenStatechart =0) :
Interface::InPort(givenStatechart) {}
virtual ~LoanInPort(){}

b

The Statechart in Fig. 6 covers four possible (abstract) states:
State blankSheet, applicationReceived, approved, rejected;

Theinitial state in which our LoanlnPort’ s Statechart should
reside is the blankSheet state:

Statechart loanApplicationStatechart(&blankSheet);
LoanInPort loanApplicationinPort(&loanApplicationStatechart);

Our (banking) component exports only a single LoanlnPort,
which we will label “LOANS’ for future reference:

Component bankingComponent;
bankingComponent.interface().add("LOANS",
loanApplicationinPort);

Our Statechart requires only a single action; when an
application is received, the requested loan amount passed as
an incoming message needs to be recorded in the
loanAmount attribute of the Statechart’ s LoanInPort:

class SetLoanAmount : public Action {
public:

void in(const Interface::InPort * giveninPort, Event * givenEvent)
{

((LoanInPort*)giveninPort)->loanAmount =
*(int *)givenEvent->message()->message();

}

3

SetLoanAmount setLoanAmount;

When our Statechart is in the blankSheet state, it is
interested in receiving a message under the topic “RECEIVE
APPLICATION". Upon receipt of this message the
setl oanAmount action is invoked, before transitioning to the
applicationReceived state:

Topic receiptTopic("RECEIVE APPLICATION");
Interest receiptinterest(&receiptTopic);
Transition toApplicationReceived(
&receiptinterest, &applicationReceived, &setLoanAmount);
blankSheet.add(&toApplicationReceived);

When our Statechart is in the applicationReceived state, it is

interested in recelving messages under the topics
“APPROVE APPLICATION” and “REJECT
APPLICATION”. Upon receipt of “APPROVE

APPLICATION” the Statechart transitions to the approved
state. Upon receipt of “REJECT APPLICATION” the
Statechart transitions to the rejected state.

Topic approvalTopic("APPROVE APPLICATION");
Interest approvallnterest(&approvalTopic);

Transition toApproved(&approvalinterest, &approved);
applicationReceived.add(&toApproved);

Topic rejectionTopic("REJECT APPLICATION");
Interest rejectioninterest(&rejectionTopic);
Transition toRejected(&rejectioninterest, &rejected);
applicationReceived.add(&toRejected);

All of the code so far has been concerned with setting up the
structure of the Statechart associated with our LoaninPort
withinour banking component. We now turn our attention to
utilization of this component. In reality, we would probably
create another component (a customer component) with an
associated OutPort to which the InPort of the banking
component is attached. Here, however, we demonstrate that
OutPorts can be used without their containment within a
component (as can OutPorts for that matter).

We create an OutPort to which the banking component’s
LoaninPort is attached as a listener to out-flowing messages.
Remember, the Statechart associated with the LoanlnPort

will determine whether or not to react to those out-flowing
messages:

Outerface::OutPort customerOutPort;
customerOutPort.addListener(
bankingComponent.interface()["LOANS"]);

Through this OutPort, then, we push receipt and approval
events, which are passed on to the attached LoanlnPort.
Since these events respect the protocol captures in our
LoaninPort, they cause it to transition to the
applicationReceived state and then on to the approved state:

customerOutPort.out(&receiptEvent);
customerOutPort.out(&approvalEvent);

Next, we broadcast a rejection event through the OutPort.
Since the only attached InPort (the LoanlnPort) is not
interested in this event when in its current approved state,
the event isignored:

customerOutPort.out(&rejectionEvent);

If, however, we mutate the approved state of the LoanlnPort
to accommodate a new transition to the rejected state on
receipt of a rejection event, then the occurrence of the
rejection event will cause precisely that transition:

approved.add(&toRejected);
customerOutPort.out(&rejectionEvent);

XII. RELATED WORK

To recap, EventPorts are built upon the idea of combining
implicit invocation (to eliminate tight coupling) with
statecharts (to prevent code pollution). We have not seen this
combination elsewhere, and hence we consider this a
particular contribution of the EventPorts model. All other
utilizations of implicit invocation with which we are familiar
are based on guard code (i.e. code pollution) a
register/deregister discipline within the application code.
Furthermore, we propose that EventPorts - irrespective of
their combination with statecharts - encapsulate the most
flexible choices in the implicit invocation design space when
compared to other realizations of which we are aware. We
can segregate the realizations of implicit invocation known
to us into three partitions: design patterns [5-7], commercial
products [8-10], and standards [11,12]. Below we compare
and contrast EventPorts against published aternatives from
the perspective of four dimensions of the implicit invocation
design space.

A. Independent Brokering

In the Observer [5] and Event Notification [6] design
patterns, the generator of an event also assumes the role of
event-interest registry and event broker. This complicates
implementation considerably. Consequently, in the Reactor
[7] design pattern, and most commercial products and
standards there is the notion of intermediate broker between
the event generator and the event recipient. EventPorts
adhere to this concept of independent broker in terms of
OutPorts, which may be attached both to event-generating
components and to the InPorts of other components. In
addition, however, it is possible for OutPorts to be event-
generating components in their own right, and thus the user
of EventPorts is free to choose between the tightly integrated
or independent brokering mechanisms.

B. Broker Scoping

Most design patterns do not say whether or not there may be
more than one broker present. Where there is only one
broker (as in commercial products such as [10]) there is no
possibility of providing event scoping. That is, a multiple
broker scheme allows the visibility of generated events to be
limited to the scope of only those components registered with
that broker. The CORBA Event Service [11] supports an
event scoping mechanism in its event channel mechanism,
and EventPorts follow this lead in terms of OutPort/InPort
interconnection.

C. Event Types

Several design patterns permit only one event type per event
generator [5,11]. The Reactor design pattern [7] is
considerably closer in spirit to EventPorts, wherein event
brokers are not tied to any specific event type. Most
commercial products and standards also eliminate the static
binding of brokers to the events they may broker.

D. Event Matching

All the design patterns, most of the commercial products
examined, and the CORBA Event Service {OMG 1997 ID:
26} are based on the assumption of an absolute match
between generated events and event interests. In practice, we
have found that often an application knows only its event
interests in the most general terms. One solution to thisis to
introduce a sophisticated Trading Service (e.g. [13] and
[14]) which matches services provided against service
interests where both are expressed in some constraint
specification language. We consider this a rich yet
heavyweight approach, and have found the lighter strategy of
polymorphic event matching found in EventPorts, the Java
Event model, and the CORBA Messaging Service [12] to be
far simpler and more than adequate, at least for the
applications we have deat with. Polymorphic event

matching, in its EventPorts realization, is based upon both
event hierarchies and overloaded equality operators.
Actually, we have even found that event hierarchies are
rarely necessary in practice, and have tended towards
utilizing the simplest of the event matching schemes
supported by EventPorts, wherein event names are
expressible as simple strings with event interests expressed
as wildcarded strings against which event names are "pattern
matched" (a similar approach is adopted in [10]).

X111, SUMMARY AND FURTHER WORK

To recap upon the main themes of this paper: Tight coupling
and code pollution lead to significant maintenance
headaches and result in petrification of legacy systems so
that they resist the reflection of on-going business process
change. EventPorts combine Implicit Invocation with a
direct realization of Statecharts and thus promise to alleviate
this burden. Consequently, EventPorts promise to help
prevent new adaptive component-based systems from
becoming tomorrow's legacy systems.

Since EventPorts are a new technology, our experience with
them isrelatively minimal. Early results, however, have been
encouraging; EventPorts, then, appear to offer a general,
flexible, lightweight and promising component collaboration
strategy. Theoretically, the ideas seem sound, yet only a solid
history of practical application will prove their real worth.
Towards this end, the authors are working with an industrial
collaborator to migrate a number of legacy systems towards
an EventPorts model, and the results of this work will be
published in due course.

At a purely technical level, a number of new features are
planned for EventPorts, including support for multi-
threading, event transactions, and integration with CORBA
[15]. Of wider scope, the author recognizes that developing
according to this model requires some divergence from
established object-oriented methodologies and notations.
Consequently, the authors are currently collaborating with a
number of other researchers to determine philosophical
perspectives, methodological enhancements, and modeling
notation features appropriate for EventPorts-based systems.

ACKNOWLEDGMENTS

Thanks to John Corner, Bob Doncaster, and lan Oliver for
comments on early drafts of this paper. The authors also
wish to thank the anonymous reviewers whose comments led
to additional insights and to improvements in the paper's
presentation.

One reviewer felt that the use of the term port in out naming
scheme (EventPorts, InPorts, and OutPorts) was a poor
choice, since that term has implications of low-level

networking. Consequently it was suggested that we select a

naming scheme with a more application-level ring to it. The
term faces has been suggested, but we find this term too

general to convey the spirit of EventPorts. We are, therefore, [14]
interested in receiving suitable naming suggestions from
interested readers.

[15]

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]
[9]

[10]

[11]

[12]

REFERENCES

M.L. Brodie and M. Stonebraker. Migrating Legacy
Systems: Gateways, Interfaces, and the
Incremental Approach, Morgan Kaufman,
1995.

C. Szyperski. Component Software - Beyond Object-
Oriented Programming, Addison-Wesley,
1998.

M. Shaw and G. Garlan. Software Architecture:
Per spectives on an Emerging Discipline,
Prentice Hall, 1996.

D. Harel and M. Politi. Modeling Reaction Systems
with Statecharts, McGraw-Hill, 1998.

E. Gamma, R. Helm, R. Johnson, and Vlissides.J.
Observer. In: Design Patterns: Elements of
Reusable Object-Oriented Software, eds. E.
Gamma, R. Helm, R. Johnson, and
Vlissides.J. Addison-Wesley, 1995.

D. Riehle, The Event Notification Pattern -
Integrating Implicit Invocation with Object-
Orientation Theory and Practice of Object
Systems, vol. 2, 1996.

D. Schmidt. Reactor: An Object Behavioral Pattern
for Concurrent Event Multiplexing and
Event Handler Dispatching. In: Pattern
Languages of Program Design, eds. J.O.
Coplien and D. Schmidt. Addison-Wedley,
1995.

SoftWired AG. iBus, www.softwired-inc.com, 1999.
Talarian. SmartSockets, www.talarian.com, 1999.

Tibco. Rendezvous Information Bus, www.tibco.com,
1999.

OMG. Corba Event Service, www.omg.org, 1997.

OMG. Corba Messaging Service, www.omg.org,
1998.

[13] OMG. Corba Trading Object Service,

www.omg.org, 1997.

ITU/ISO. ODP Trading Function - Part 1:
Soecification, 1TU/ISO, 1997.

M. Henning and S. Vinoski. Advanced CORBA
Programming with C++, Addison-Wesley,
1999.

