
Araujo, Dieferson L.A., Lopes, Heitor S. and Freitas, Alex A. (2000) Rule
Discovery with a Parallel Genetic Algorithm. In: Proc 2000 Genetic and
Evolutionary Computation Conf Workshop Program. . pp. 89-92. , Las Vegas,
USA

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/22000/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/22000/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Rule Discovery with a Parallel Genetic Algorithm

Dieferson L.A. Araujo

CEFET-PR
 CPGEI.

Av. 7 de Setembro, 3165.
Curitiba - PR.

80230-901. Brazil
dief@cpgei.cefetpr.br

Heitor S. Lopes

CEFET-PR
 CPGEI.

Av. 7 de Setembro, 3165.
Curitiba - PR.

80230-901. Brazil
hslopes@cpgei.cefetpr.br

 Alex A. Freitas

PUC-PR
PPGIA-CCET.

R. Imaculada Conceicao, 1155
Curitiba – PR. 80.215-901. Brazil

alex@ppgia.pucpr.br
http://www.ppgia.pucpr.br/~alex

Abstract
An important issue in data mining is scalabil ity
with respect to the size of the dataset being
mined. In the paper we address this issue by
presenting a parallel GA for rule discovery. This
algorithm exploits both data parallelism, by
distributing the data being mined across all
available processors, and control paralleli sm, by
distributing the population of individuals across
all available processors.

1 INTRODUCTION

An important issue in data mining is how a knowledge
discovery algorithm scales up with respect to the size of
the database being mined [Provost & Kolluri 1999].
Intuitively, parallel processing can be regarded as a
natural solution to the problem of scalabilit y in data
mining [Freitas & Lavington 1998]. Since genetic
algorithms (GAs) tend to be slow, in comparison with
most rule induction methods, the design of parallel GAs
for data mining is an important research area [Flockhart &
Radcli ffe 1995], [Giordana & Neri 1995], [Anglano et al.
1997], [Anglano et al. 1998], [Araujo et al. 1999].

This paper presents GA-PVMINER, a parallel GA for
rule discovery in data mining. In this paper we focus only
on the parallelization aspects of GA-PVMINER. In
particular, we report only results concerning the speed up
of the parallel version of the algorithm over its sequential
version. Results concerning the quality of discovered
rules are beyond the scope of this paper, and are described
in detail in [Araujo et al. 1999].

The data mining task addressed in this paper is
dependence modeling. This task can be regarded as a
generalization of the classification task [Noda et al. 1999].
In dependence modeling, similarly to classification, the
aim is to discover rules that predict the value of a goal
attribute, given the values of predictor attributes.
However, in classification there is a single goal attribute
to be predicted, while in dependence modeling there is
more than one goal attribute. In our approach for
dependence modeling, the user specifies a small set of

potential goal attributes, which (s)he is interested in
predicting.

The rest of this paper is organized as follows. Section 2
presents an overview of parallel GAs. Section 3 presents
an overview of GA-PVMINER. Section 4 discusses how
GA-PVMINER exploits paralleli sm to reduce processing
time. Section 5 reports some computational results.
Finally, section 6 concludes the paper.

2 AN OVERVIEW OF PARALLEL
GENETIC ALGORITHMS

There are two broad sources of paralleli sm in genetic
algorithms. One can exploit paralleli sm in the application
of genetic operators - such as selection, crossover,
mutation - and/or in the computation of the fitness of the
population individuals (candidate rules). In the context of
mining very large databases, the latter tends to be far
more important. The reason is that the genetic operators
are usually very simple and their application is
computationally cheap. Hence, the bottleneck of the
algorithm is the computation of the individuals’ f itness,
whose processing time is proportional to the size of the
data being mined.

In a high level of abstraction, there are two basic
approaches to exploit parallelism in fitness computation
[Freitas & Lavington 1998]. One approach consists of
exploiting inter-individual (or inter-fitness-computation)
parallelism. This approach is illustrated in Figure 1(a). In
this approach the set of individuals in the current
population is distributed across all the processors.
Different subsets of individuals have their fitness
computed in parallel by different processors. Hence, this
is a control-parallel approach, in the sense that the flow of
control of the algorithm is parallelized. On the other hand,
this approach is data-sequential, since the computation of
the fitness of a given individual is done by a single
processor handling the data being mined in sequential
mode. Note that the computation of the fitness of each
individual requires access to the entire data being mined.
On a distributed-memory machine, in order to avoid high
data traff ic across the inter-processor network, the entire

data being mined would have to be repli cated in each
processor node, which makes it diff icult to scale this
approach to very large databases.

 subpopulation fitness

 of individuals computation

 processor 1
 .

 .

 subpopulation fitness
 of individuals computation

 processor p

(a) Exploiting inter-individual, control parallelism

 fitness computation

 data subset processor 1

 .

 a single .
 individual .

 data subset processor p

(b) Exploiting intra-individual, data paralleli sm

Figure 1: Two approaches for exploiting paralleli sm in
the fitness computation of a genetic algorithm.

Inter-individual parallelism, i.e. control paralleli sm, is
the kind of parallelism exploited by the majority of
parallel genetic algorithms. However, these algorithms are
typically designed for solving combinatorial optimization
problems, which are CPU-bound rather than I/O-bound.
The situation is different in the context of data mining,
which is a data-intensive application. In this context, an
intuiti vely promising approach to exploit paralleli sm in
fitness computation consists of exploiting intra-individual
(or intra-fitness-computation) paralleli sm. This approach
is ill ustrated in Figure 1(b). In this approach the data
being mined is distributed across the processors, and the
computation of the fitness of each individual is done by
handling the data in parallel. Hence, this is a data-parallel
approach. On the other hand, this approach is control-
sequential, since fitness computation is done one-
individual-at-a-time. The most important advantage of
this approach, in the context of data mining, is that,
intuiti vely, it is much more scalable with respect to the
size of the data being mined than the control-parallel
approach. To put it in simply terms, more data leads to a
larger degree of data parallelism to be exploited.

Note that data and control paralleli sm address
different kinds of `largè problems. Data parallelism
addresses the problem of very large databases. Control
parallelism addresses the problem of very large search
spaces. Hence, it would be desirable to exploit both kinds
of paralleli sm in a genetic algorithm for data mining. This
is the goal of the algorithm described in the next section.

3 AN OVERVIEW OF GA-PVMINER
In this section we briefly describe the main aspects of
GA-PVMINER. In this algorithm each individual
represents a single prediction rule of the form `IF C
THEN P` where C and P represent respectively the
condition and the prediction of the rule. The condition C
is a conjunction of terms. A term is a triple of the form
<Attribute = Value>. The current version of GA-
PVMINER assumes that all attributes are categorical – i.e.
continuous attributes would have to be discretized in a
preprocessing step. The C part of the rule is encoded as a
variable-length conjunction of terms. The length (number
of terms) of this part ranges from 1 to m, where m is the
number of predictor attributes. The length of this part is
controlled by two genetic operators: term removal and, to
a lesser extent, crossover. The detail s of these operators
are beyond the scope of this paper. The interested reader
is referred to [Araujo et al. 1999]. The prediction P is a
triple of the form <Goal_Attribute = Value>, where
Goal_Attribute is one of the goal attributes specified by
the user. Notice that different rules can have different goal
attributes in their P part, since GA-PVMINER addresses
the task of dependence modeling, as explained in the
Introduction.

The population is divided into n subpopulations, each of
them with N individuals. For each subpopulation, all the
individuals represent rules with the same goal attribute
and the same goal attribute value in the P part of the rule.
Hence, this part of the individual is fixed and does not
undergo the action of genetic operators. The number of
subpopulations n is a user-specified parameter, and it
should be greater than or equal to the number of goal
attributes specified by the user. If this constraint is not
respected some goal attribute(s) will not occur in any
discovered rule.

Our motivation for dividing the population into several
subpopulations is twofold. Firstly, an individual can mate
only with another individual of the same population. This
is a simple solution to the problem of avoiding the
exchange of genetic material between individuals (rules)
that are being evolved to predict different goal attributes.
Secondly, this kind of population partitioning greatly
facilit ates the exploitation of paralleli sm, as wil l be seen
in the next section.

We mention in passing that the GA described in this paper
was designed for discovering knowledge that is not only
accurate and comprehensible, but also interesting (novel,
surprising). To achieve this goal the fitness function is

partiall y based on a modified version of the J-measure of
rule interestingness – again, see [Araujo et al. 1999].

4 EXPLOITING PARALLELISM IN GA-
PVMINER

As mentioned above, in GA-PVMINER the global
population of individuals (rules) is divided into n
subpopulations. Each subpopulation is assigned to a
distinct logical processor node. Let p be the number of
(physical) processor nodes available in the parallel
machine or the network of workstations/PCs. We first
discuss the case where n = p. The cases where n < p or n
> p wil l be discussed later.

In the case where n = p, each subpopulation is allocated to
a distinct processor node and all processor nodes are used.
All the subpopulations evolve in parallel. In addition the
data being mined is also partitioned across the available
processors. This approach has two related advantages.
Firstly, it allows the exploitation of data paralleli sm, as
explained below. Secondly, it avoids the problem of
replicating the data being mined across all processors,
which would reduce scalabilit y for large databases. Each
generation of the genetic algorithm consists of two
phases, namely fitness evaluation and application of
genetic operators. Both these phases exploit paralleli sm,
as follows.

The fitness evaluation phase exploits both data
parallelism and control paralleli sm by having the
individuals passing through all the processors in a kind of
round-robin scheme. In this scheme the physical
interconnection of processor nodes is mapped into a
logical ring of processor nodes, so that each processor
node has a right neighbour and a left neighbour.

Figure 2: Exploring parallelism in GA-PVMINER

At first each processor nodes computes a partial measure
of fitness for all the individuals (rules) in its local
subpopulation, by accessing only its local dataset. Then
each processor transfer its entire local subpopulation of
individuals, as well as the value of their partially-
computed fitness function, to its right neighbour. As soon
as a processor node receives a subpopulation of

individuals from its left neighbour, it performs the
following tasks: (a) it computes the partial fitness measure
of the incoming individuals on its local data set; (b) it
combines this partial fitness measure with the previous
one of the incoming individuals to produce a new fitness
measure; (c) it forwards the incoming individuals, as well
as their updated partial fitness measure, to its right
neighbour. This process is repeated until all individuals
have passed through all the processors and returned to
their original processors, with their final fitness value
duly computed. This scheme is illustrated in Figure 2.
Note that what is being passed through the processors are
only individuals and their partial fitness value, not the
data being mined. This minimizes interprocessor
communication overhead.

The phase of application of genetic operators exploits
control paralleli sm. In this phase each processor applies
genetic operators to the individuals of its local
subpopulation. This is done in parallel for all the
subpopulations, and the application of genetic operators in
each subpopulation is completely independent of the
application of genetic operators in the other
subpopulations. Hence, this phase requires no
interprocessor communication.

The above discussion assumed that n = p. Two other cases
are possible, namely n < p and n > p. In both cases the
basic idea of the above arguments stil l holds, although of
course some opportunity to exploit paralleli sm wil l be
wasted. The differences are as follows. Firstly, suppose
that n < p. In this case each subpopulation wil l be
allocated to a distinct processor node, but some processor
nodes will be idle, so that the degree of paralleli sm
associated with the parallel machine wil l be
underexploited. Secondly, suppose that n > p. In this case
the n subpopulations wil l be allocated to the p processors
in a round-robin scheme, in order to ensure that the
subpopulations wil l be as evenly distributed as possible
across the available processors, achieving a good
workload balance. In this case a physical processor node
will be in charge of evolving more than one
subpopulation, so that the degree of paralleli sm associated
with the data mining task will be underexploited.

GA-PVMINER uses PVM (Parallel Virtual Machine), a
software environment that allows a cluster of
heterogeneous computers to be viewed as a single parallel
machine [Geist et al. 1994].

5 COMPUTATIONAL RESULTS
This section reports the results of experiments using two
datasets obtained from the UCI repository of datasets at
http://www.ics.uci.edu/AI/Machine-Learning.html. The
datasets in question are Nursery and Adult. In the absence
of a specific benchmark dataset for the dependence
modeling task, these datasets were chosen partially
because they seem to contain more than one potential goal
attribute and partiall y due to their relatively large size, in
comparison with other datasets of the UCI repository.

Processors

Partitions

Data set

Sub

populations

whole
population

Flow of
individuals
passing
through the
processorspop1 pop2 pop n

The Nursery dataset contains 12960 instances (records)
and 9 attributes. In our experiments we have specified 3
goal attributes for this dataset, namely Recommendation,
Social and Finance. The Adult dataset contains 48844
instances and 15 attributes. We have specified two goal
attributes for this data set, namely Workclass and Class
(indicating whether or not salary is greater than 50k).

In all the experiments the genetic algorithm had 200
individuals in each subpopulation, and it was run for 100
generations.

The experiments were performed on a parallel virtual
machine (PVM) consisting of four 350-MHz Pentium II
computers, each with 32 MB of main memory and 6 GB
of disk, with operating system Linux RedHat 5.2 and
PVM 3.3.11. The interconnection network was Ethernet
with 10 Mbps. In our system one of the four processors
runs the master program, which controls the slave
programs (each running a subpopulation). The processor
running the master program also runs one slave program.

The experiments have measured the Speed up (Sp) of the
parallel version of the algorithm over its sequential
counterpart, defined as: Sp = Ts/Tp, where Ts is the
sequential processing time (on a single processor) and Tp

is the parallel processing time (on p processors). Tables 1
and 2 show the Sp results for the Nursery and Adult
datasets, respectively. In both these tables the parallel
processing time shown in the fourth column is the sum of
the processing time itself and the initialization time –
required to distribute data and individuals across the
processors.

Table 1: Speed up results for the Nursery data set
Number of
Processors

Number
of sub-

populations

Sequential
processing

time

Parallel
processing

time

Speed
up

1 1 134 sec. - -
3 3 402 sec. 252 sec. 1.595
4 4 536 sec. 320 sec. 1.675

Table 2: Speed up results for the Adult data set
Number of
Processors

Number
of sub-

populations

Sequential
processing

time

Parallel
processing

time

Speed
up

1 1 1052 sec. - -
3 3 3156 sec. 1364 sec. 2.313

As shown in Tables 1 and 2, the parallel version of GA-
PVMINER achieved a reasonable speed up over the
sequential version. As expected, the speed up was greater
in the case of the Adult dataset. The reason is that this
dataset is larger than the Nursery dataset, so there is more
opportunity for the exploration of data paralleli sm in the
former. Of course, real-world databases can be much
larger than the two public domain datasets used in our
experiments. Therefore, we can expect that our system
will achieve even higher speed ups in large real-world
databases, which should be investigated in further
research.

6 CONCLUSIONS AND FUTURE
RESEARCH

We have described a hybrid parallelization strategy for a
GA that discovers prediction rules in the dependence
modeling task. The proposed strategy exploits both data
parallelism, by distributing the data being mined across
all available processors, and control paralleli sm, by
distributing the population of individuals across all
available processors. The results show that a good speed
up can be achieved provided that the data being mined has
a relatively large size. This is due to the fact that the
degree of data paralleli sm is proportional to the size of the
data being mined. As mentioned above, future work
should include a more extensive set of experiments with
larger, real-world databases, to further validate the
empirical results reported in this paper.

We emphasize that, due to space limitations, in this paper
we have focused on the parallel-processing aspects of
GA-PVMINER and on scalability issues. As mentioned
above, a more detailed description of the algorithm as
well as an analysis of the quality of discovered rules can
be found in [Araujo et al. 1999].

REFERENCES
Anglano, C; Giordana, A.; Lo Bello, G. and Saitta, L.

(1997) A network genetic algorithm for concept
learning. Proc. 7th Int. Conf. Genetic Algorithms, 434-
441. Morgan Kaufmann.

Anglano, C; Giordana, A.; Lo Bello, G. and Saitta, L.
(1998) An experimental evaluation of coevolutive
concept learning. Machine Learning: Proc. Fifteenth
Int. Conf., 19-27. Morgan Kaufmann.

Araujo, D.L.A.; Lopes, H.S. and Freitas, A.A. (1999) A
parallel genetic algorithm for rule discovery in large
databases. Proc. 1999 IEEE Systems, Man and
Cybernetics Conf., v. II I, 940-945. Tokyo, Japan.

Flockhart, I.W. and Radcli ffe, N.J. (1995) GA-MINER:
parallel data mining with hierarchical genetic
algorithms – final report. EPCC-AIKMS-GA-MINER-
Report 1.0. University of Edinburgh, UK.

Freitas, A.A. and Lavington, S.H. (1998) Mining Very
Large Databases with Parallel Processing. Kluwer.

Geist, A.; Benguelin, A.; Dongarra, J.; Jiang, W.;
Manchek, R. and Sunderam, V. (1994) PVM –
Parallel Virtual Machine – A user’s guide and tutorial
for networked parallel computing. MIT Press.

Giordana, A. and Neri, F. (1995) Search-intensive
concept induction. Evolutionary Computation 3(4):
375-416.

Noda, E.; Freitas, A.A. and Lopes, HS. (1999)
Discovering interesting prediction rules with a genetic
algorithm. Proc. CEC-99, 1322-1329. Washington
D.C., USA.

Provost, F. and Kolluri, V. (1999) A survey of methods
for scaling up inductive algorithms. Data Mining and
Knowledge Discovery 3(2), 131-169.

