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Abstract

An important issue in data mining is alability
with resped to the size of the dataset being
mined. In the paper we address this isuue by
presenting a paralel GA for rule discovery. This
algorithm exploits bath data paralédism, by
distributing the data being mined across all
available processors, and control parallelism, by
distributing the population of individuals across
all avail able processors.

1 INTRODUCTION

An important issue in data mining is how a knowledge
discovery algorithm scales up with resped to the size of
the database being mined [Provost & Kolluri 1999.
Intuitively, parallel processng can be regarded as a
natural solution to the problem of scalability in data
mining [Freitas & Lavington 1999. Since genetic
algorithms (GAs) tend to be dow, in comparison with
most rule induction methods, the design of paralel GAs
for datamining isan important reseach area[Flockhart &
Radcliffe 19993, [Giordana & Neri 1995], [Anglano et al.
1997, [Anglano et d. 1998], [Araujo et a. 1999.

This paper presents GA-PVMINER, a paralld GA for
rule discovery in data mining. In this paper we focus only
on the paraldization aspeds of GA-PVMINER. In
particular, we report only results concerning the speed up
of the parallel version of the dgorithm over its squential
version. Results concerning the qudity of discovered
rules are beyond the scope of this paper, and are described
in detail in [Araujo et a. 1999].

The data mining task addressed in this paper is
dependence modeling. This task can be regarded as a
generalization of the dassfication task [Noda et al. 1999.
In dependence modeling, similarly to classfication, the
aim is to dscover rules that predict the value of a goal
attribute, given the values of predictor attributes.
However, in clasdfication there is a single goal attribute
to be predicted, while in dependence modding there is
more than one god attribute. In our approach for
dependence moddling, the user spedfies a smdl set of
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potential goal attributes, which (s)he is interested in
predicting.

The rest of this paper is organized as follows. Sedion 2
presents an overview of parale GAs Sedion 3 presents
an overview of GA-PVMINER. Sedion 4 discusss how
GA-PVMINER exploits parallelism to reduce processng
time Sedion 5 reports ©me @mputationa results.
Finally, sedion 6 concludes the paper.

2 ANOVERVIEW OF PARALLEL
GENETIC ALGORITHMS

There ae two broad sources of paralldism in genetic
algorithms. One can exploit paral elism in the application
of genetic operators - such as sdedion, crossover,
mutation - and/or in the mwmputation of the fithess of the
population individuals (candidate rules). In the context of
mining very large databases, the latter tends to be far
more important. The reason is that the genetic operators
are usudly very smple and their applicaion is
computationally cheap. Hence the batlenedk of the
algorithm is the wmputation of the individuals fitness
whose processng time is proportional to the size of the
data being mined.

In a high levd of abstraction, there ae two basic
approaches to exploit parallelism in fitness computation
[Freitas & Lavington 198]. One approach consists of
explaoiting inter-individual (or inter-fithesscomputation)
paraleism. This approach isillustrated in Figure 1(a). In
this approach the set of individuals in the arrent
population is distributed across all the processors.
Different subsets of individuals have their fitness
computed in paralld by different processors. Hence this
isa ontrol-paral e approach, in the sense that the flow of
contral of thealgorithmis parallelized. On the other hand,
this approach is data-sequential, since the mmputation of
the fitness of a given individud is done by a single
processor handling the data being mined in sequential
mode. Note that the computation of the fithess of each
individual requires accessto the entire data being mined.
On a digributed-memory machine, in order to avoid high
data traffic across the inter-processor network, the entire



data being mined would have to be replicaed in each
processor node, which makes it difficult to scale this
approach to very large databases.
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Figure 1. Two approaches for exploiting parallelism in
the fitnesscomputation of a genetic algorithm.

Inter-individual paralédism, i.e. control parallelism, is
the kind of pardldism exploited by the majority of
parale genetic dgorithms. However, these algorithms are
typically designed for solving combinatoria optimization
problems, which are CPU-bound rather than 1/O-bound.
The situation is different in the context of data mining,
which is a data-intensive application. In this context, an
intuitively promising approach to exploit pardleism in
fitness computation consists of exploiting intra-individual
(or intra-fitnesscomputation) parallelism. This approach
is illustrated in Figure 1(b). In this approach the data
being mined is distributed across the processors, and the
computation of the fitness of each individual is done by
handling the data in parallel. Hence thisis a data-parall €
approach. On the other hand, this approach is control-
sequential, since fitness computation is done one
individual-at-a-time. The most important advantage of
this approach, in the mntext of data mining, is that,
intuitively, it is much more scalable with resped to the
size of the data being mined than the control-parallel
approach. To put it in simply terms, more data leads to a
larger degreeof data parall ism to be exploited.

Note that data and control paralelism address
different kinds of ‘large problems. Data parallelism
addresses the problem of very large databases. Contral
paraleism addresses the problem of very large seach
spaces. Hence it would be desirable to exploit bath kinds
of pardldismin agenetic dgorithm for data mining. This
isthe goal of the dgorithm described in the next sedion.

3 ANOVERVIEW OF GA-PVMINER

In this sdion we briefly describe the main aspeds of
GA-PVMINER. In this agorithm each individud
represents a single prediction rule of the form “IF C
THEN P where C and P represent respedively the
condition and the prediction of the rule. The @ndition C
is a onjunction of terms. A term is a triple of the form
<Attribute = Vdue>. The aurrent verson of GA-
PVMINER assumes that all attributes are cdegorical —i.e.
continuous attributes would have to be discretized in a
preprocessng step. The C part of the ruleis encoded as a
variable-length conjunction of terms. The length (number
of terms) of this part ranges from 1 to m, where mis the
number of predictor attributes. The length of this part is
controlled by two genetic operators. term removal and, to
a leser extent, crosover. The details of these operators
are beyond the scope of this paper. The interested reader
is referred to [Araujo et al. 1999. The prediction P is a
triple of the form <Goa Attribute = Vdue>, where
Goal_Attribute is one of the goal attributes gedfied by
the user. Noticethat different rules can have different goal
attributes in their P part, since GA-PVMINER addresses
the task of dependence modeling, as explained in the
Introduction.

The population is divided into n subpopulations, each of
them with N individuas. For each subpopulation, al the
individuals represent rules with the same goal attribute
and the same goal attribute valuein the P part of therule.
Hence this part of the individud is fixed and does not
undergo the action of genetic operators. The number of
subpopulations n is a user-spedfied parameter, and it
should be greater than or equal to the number of goal
attributes gedfied by the user. If this constraint is not
respeded some goal attribute(s) will not occur in any
discovered rule.

Our motivation for dividing the population into severa
subpopulations is twofold. Firstly, an individual can mate
only with another individua of the same population. This
is a smple solution to the problem of avoiding the
exchange of genetic material between individuals (rules)
that are being evolved to predict different goal attributes.
Secondly, this kind o population partitioning greatly
facilit ates the exploitation of parallelism, as will be seen
in the next sedion.

We mention in passng that the GA described in this paper
was designed for discovering knowledge that is not only
acaurate and comprehensible, but also interesting (novel,
surprising). To achieve this goal the fitness function is



partialy based on a modified version of the Jmeasure of
rule interestingness— again, see[Araujo et al. 1999.

4 EXPLOITING PARALLELISM IN GA-
PVMINER

As mentioned above, in GA-PVMINER the global
population of individuals (rules) is divided into n
subpopulations. Each subpopulation is assgned to a
digtinct logical processor node. Let p be the number of
(physical) processor nodes available in the pardle
machine or the network of workstationgPCs. We first
discussthe ase wheren = p. The casesswheren<p a n
> p will be discussd later.

In the case where n = p, each subpopulation is all ocated to
adistinct processor node and all processor nodes are used.
All the subpopulations evolve in parald. In addition the
data being mined is also pertitioned across the available
processors. This approach has two related advantages.
Firgly, it dlows the eplaitation of data paraldism, as
explained below. Secondly, it avoids the problem of
replicating the data being mined across all processors,
which would reduce scalahility for large databases. Each
generation of the genetic dgorithm consiss of two
phases, namely fitness evaluation and applicaion of
genetic operators. Both these phases exploit parallelism,
asfoll ows.

The fitness evaluation phase eploits bah data
pardleism and control paraleism by having the
individuals passng through all the processors in a kind of
round-robin scheme. In this <heme the physical
interconnedion of processor nodes is mapped into a
logical ring o processor nodes, so that each processor
node has aright neighbour and aleft neighbaur.
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Figure 2: Exploring paraleismin GA-PVMINER

At first each processor nodes computes a partial measure
of fitness for al the individuals (rules) in its local
subpopulation, by accessng only its local dataset. Then
each processor transfer its entire local subpopulation of
individuals, as well as the value of their partialy-
computed fitnessfunction, to itsright neighbour. As oon
as a processor node recadves a subpopulation of

individuals from its left neighbour, it performs the
following tasks:. (a) it computes the partial fithessmeasure
of the incoming individuals on its local data set; (b) it
combines this partia fitness measure with the previous
one of the incoming individuals to produce a new fitness
measure; (c) it forwards the incoming individuals, as well
as their updated partial fitness measure, to its right
neighbour. This processis repeated wntil al individuals
have passd through all the processors and returned to
their origina processors, with their final fithess value
duly computed. This sheme is illustrated in Figure 2.
Note that what is being passed through the processors are
only individuals and their partial fitness value, not the
data being mined. This minimizes interprocessor
communication overhead.

The phase of applicaion of genetic operators exploits
contral parallelism. In this phase each processor applies
genetic operators to the indviduds of its local
subpopulation. This is done in parale for al the
subpopulations, and the application of genetic operatorsin
each subpopulation is completely independent of the
application of genetic operators in the other
subpopulations. Hence, this phase requires no
interprocessor communicétion.

The above discusgon asaumed that n = p. Two aher cases
are posshle, namely n < p and n > p. In bath cases the
basic idea of the above aguments gill holds, athough of
course some opportunity to exploit paralelism will be
wasted. The differences are as follows. Firstly, suppose
that n < p. In this case each subpopulation will be
all ocated to a distinct processor node, but some processor
nodes will be idle so that the degree of paraleism
asciated with the paralld machine will be
uncerexploited. Secondly, suppose that n > p. In this case
the n subpopulations wil | be al ocated to the p processors
in a round-robin scheme, in order to ensure that the
subpopulations will be as evenly distributed as possble
across the available processors, achieving a good
workload balance In this case a physical processor node
will be in charge of evolving more than one
subpopulation, so that the degreeof paral €lism associated
with the data mining task will be underexpl cited.

GA-PVMINER uses PVYM (Pardld Virtuad Machine), a
software environment that alows a cluster of
heter ogeneous computers to be viewed as a single paral e
machine [Geist et a. 1994].

5 COMPUTATIONAL RESULTS

This sedion reports the results of experiments using two
datasets obtained from the UCI repository of datasets at
http://www.ics.uci.edwWAl/Machine-Leaning.html.  The
datasetsin question are Nursery and Adult. In the absence
of a spedfic benchmark dataset for the dependence
modeling task, these datasets were dosen partially
because they seem to contain more than one potential goal
attribute and partialy due to their relatively large size, in
comparison with other datasets of the UCI repository.



The Nursery dataset contains 12960 instances (records)
and 9 attributes. In our experiments we have spedfied 3
goal attributes for this dataset, namely Recommendation,
Social and Finance The Adult dataset contains 48844
instances and 15 attributes. We have spedfied two goal
attributes for this data set, namely Workclass and Class
(indicating whether or not salary is greater than 50K).

In al the experiments the genetic algorithm had 200
individuals in each subpopulation, and it was run for 100
generations.

The eperiments were performed on a paralle virtual
machine (PVM) consisting o four 350-MHz Pentium I
computers, each with 32 MB of main memory and 6 GB
of disk, with operating system Linux RedHat 5.2 and
PVM 3.3.11. The interconnedion network was Ethernet
with 10 Mbps. In our system one of the four processors
runs the master program, which controls the dave
programs (each running a subpopulation). The processor
running the master program aso runs one dave program.

The experiments have measured the Speed up (Sp) of the
pardle version of the algorithm over its sequentia
counterpart, defined as. Sp = TJT, where Ts is the
sequential processng time (on a single processor) and T,
isthe parallel processng time (on p processors). Tables 1
and 2 show the Sp results for the Nursery and Adult
datasets, respedively. In bath these tables the paralle
processng time shown in the fourth column is the sum of
the processng time itself and the initidization time —
required to ddtribute data and individuas across the
processors.

Table 1: Speed upresults for the Nursery data set

Number of | Number | Sequentid Parallel Spedal
Processors | of sub- processng | processng up
populaions time time
1 1 134 sec. - -
3 3 402sec. 252sec. 1.595
4 4 536sec. 320sec. 1.675
Table 2: Speed upresults for the Adult data set
Number of | Number | Sequentid Parallel Spedal
Processors | of sub- processng | processng up
populaions time time
1 1 102 sec. - -
3 3 31%sec. | 1364sec. | 2.313

As down in Tables 1 and 2 the pardle version of GA-
PVMINER achieved a reasonable speed up over the
sequential version. As expeded, the speed up was greaer
in the @se of the Adult dataset. The reason is that this
dataset is larger than the Nursery dataset, so there is more
opportunity for the eploration of data paraléeism in the
former. Of course, real-world databases can be much
larger than the two public domain datasets used in our
experiments. Therefore, we @n exped that our system
will achieve even higher speel ups in large red-world
databases, which should be investigated in further
reseach.

6 CONCLUSIONSAND FUTURE
RESEARCH

We have described a hybrid parallelization strategy for a
GA that discovers prediction rules in the dependence
modeling task. The proposed strategy exploits bath data
paraleism, by distributing the data being mined across
all avalable processors, and control parallelism, by
digtributing the population of individuals across all
available processors. The results show that a good speed
up can be achieved provided that the data being mined has
a relatively large size. This is due to the fact that the
degreeof data parallelism is proportional to the size of the
data being mined. As mentioned above, future work
should include amore extensive set of experiments with
larger, red-world databases, to further validate the
empiricd resultsreported in this paper.

We amphasize that, due to space limitations, in this paper
we have focused on the parald-processng aspeds of
GA-PVMINER and on scdability isaues. As mentioned
above, a more detailed description of the algorithm as
wdl as an andysis of the quality of discovered rules can
be found in [Araujo et al. 1999.
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