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A Formal Framework for Viewpoint Consistency
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Abstract. Multiple Viewpoint models of system development are becoming increasingly important. Each viewpoint
offers a different perspective on the target system and system development involves parallel refinement of the multiple
views. Viewpoints related approaches have been considered in a number of different guises by a spectrum of researchers.
Our work particularly focuses on the use of viewpoints in Open Distributed Processing (ODP) which is an ISO/ITU
standardisation framework. The requirements of viewpoints modelling in ODP are very broad and, hence, demanding.
Multiple viewpoints, though, prompt the issue of consistency between viewpoints. This paper describes a very general
interpretation of consistency which we argue is broad enough to meet the requirements of consistency in ODP. We present
a formal framework for this general interpretation; highlight basic properties of the interpretation and locate restricted
classes of consistency. Strategies for checking consistency are also investigated. Throughout we illustrate our theory using
the formal description technique LOTOS. Thus, the paper also characterises the nature of and options for consistency
checking in LOTOS.

Keywords: Viewpoints, LOTOS, Development Models, Open Distributed Processing, Process Algebra, FDTs.

1 Introduction

System development has classically been viewed in terms of the waterfall model of development [48] or some
derivative of the model. A single thread of system development is prescribed by the waterfall model, as depicted
in figure 1. Specifications are repeatedly refined from an abstract expression of global requirements to a concrete
realisation. In such models the validation question to be resolved concerns whether the n + 1st specification is a
valid refinement of the nth specification according to a particular refinement relation. Such refinement relations
characterise the manner in which properties of an abstract specification are preserved in a refined specification;
for example, refinements may preserve safety properties (i.e. statements that something bad cannot happen) or
liveness properties (i.e. statements that something good must happen).

However, it is now widely recognized that the waterfall model has limitations as a paradigm for system
development. Perhaps the most significant limitation of the model is that it presupposes that a full set of
requirements for the target system can be identified at the initial stage of system development. This is a restrictive
and unrealistic assumption. In practice, the required functionality of a system is identified in a far more fluid
and unstructured manner, with requirements evolving incrementally during development as the target system
becomes more fully understood; see [52] for a discussion of fluid identification of requirements.

In response to its perceived limitations, adaptations of the waterfall model have been made in a number of
directions, e.g. cyclic development [17], rapid prototyping [48], adding feedback [48]. The particular adaptation
that we will consider in this paper is the viewpoints model of system development. This approach involves dividing
the system horizontally relative to the vertical orientation of development. This division is according to a group
of views or viewpoints, see figure 2. Each viewpoint offers a different perspective on the system being developed.
Such viewpoint modelling is loosely analogous to the use of three angled projection in technical drawing, i.e. plan
view and two side elevations.

Importantly, viewpoints support fluid system development since the viewpoint specifications can be iterated
between in any arbitrary manner. Thus, functionality can be added to any of the viewpoints at any point during
development, often as the result of developments of other viewpoints. In particular, a complete set of requirements
is not enforced at the start of development.

*This work was partially funded by British Telecom Research Labs., Martlesham, Ipswich, U.K. and the Engineering and Physical
Sciences Research Council under grant number GR/K13035.
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Figure 1: Waterfall Model

Notable proponents of viewpoints modelling include [46] [27] [48] [2] [26]. In addition, a related use of view-
points can be found in object oriented design methodologies, such as [8] [9]. In fact, variants of viewpoints
modelling have been investigated for some time in a number of guises, e.g. aspects [39], partial specification [2]
[7] [42] [38], views [37], multiple paradigm specification [54], putting theories together in institutions [26] [28],
diagrams [9] and viewpoints [27] [43] [8].

These models typically prompt the central issue of viewpoint consistency, i.e. how to check that multiple
specifications of the system do not conflict with one another and are “in some sense” consistent. Thus, the central
validation question posed by viewpoints is a horizontal relating of specifications in contrast to the traditional
vertical relating of classic waterfall models. In particular, the inherent fluidity of viewpoint specification is
reflected in validation scenarios for viewpoint models. Specifically, arbitrary evolution/development of viewpoints
is interleaved with snap shot consistency checks, i.e. one off relatings of the viewpoint specifications at a particular
point in system development. This is in contrast to classic waterfall development for which a rigid order of
development and validation is prescribed.

Our perspective on consistency is tinged by the particular application of viewpoints that our work has been
targeted at, viz. the viewpoints model defined in the ISO/ITU Open Distributed Processing (ODP) standardis-
ation framework [36]. ODP defines a generic framework to support the open interworking of distributed systems
components. A central tenet of ODP is the use of viewpoints in order to decompose the task of specifying
distributed systems. ODP supports five viewpoints, Enterprise, Information, Computational, Engineering and
Technology. Tt is beyond the scope of this paper to give a full introduction to ODP viewpoints modelling, the
interested reader is referred to [14], however, in contrast to many other viewpoint models, ODP viewpoints are
predefined and in this sense static, i.e. new viewpoints cannot be added. Each of the viewpoints has a specific
purpose and is targeted at a particular class of specification.

A number of different interpretations can be imposed on the ODP viewpoints model. One such interpretation
that we will dwell on here (and which we personally advocate) is that ODP viewpoints define a decomposition
of the system development process!. This is in contrast to many other viewpoints approaches which target
a single phase of system development. For example, the viewpoints model of Finkelstein and co-workers [27]
focuses on decomposition in the requirements capture phase of system development: viewpoints are used as a
device to decompose the complete system specification at a particular point of system development. They are
thus a natural progression from traditional modularization and decomposition paradigms such as subroutines,
modules, abstract data types and objects. In contrast, ODP viewpoints can be viewed as decomposing the entire
development trajectory. In fact, there is a relationship between the five ODP viewpoints and the phases of system
development (we should emphasize though that the relationship is very loose and was not the main motivation

However, it should be emphasized that none of the theory which we present in this paper is specific to this interpretation and
in fact, we believe our framework is general enough to embrace all interpretations of ODP viewpoints. [16] gives evidence for this
belief by showing that all the currently proposed interpretations of ODP consistency, each of which reflects a different viewpoints
interpretation, can be embraced by our framework.
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Figure 2: Viewpoints Model

behind the ODP viewpoints model). The following list highlights this relationship:
e The enterprise viewpoint offers a global requirements capture.
e The information model defines an information specification.

e The computational viewpoint offers an object based interaction model that supports abstract system design.
This is abstract in the sense that it avoids implementation details such as issues of physical distribution.

e The engineering viewpoint is concerned with prescribing implementation mechanisms for the target system.

e The technology viewpoint highlights a possible realisation of the system in terms of existing reusable com-
ponents.

Crucially though, all “phases” of system development exist simultaneously and can be concurrently evolved. Thus,
any view on the system development, from the most abstract to the most concrete, can be refined at any point
and the complete description of the system comprises specification from all viewpoints.

Another aspect of ODP viewpoints is that it is generally accepted that different viewpoints will be specified
in different languages. This is because Formal Description Techniques (FDTSs) are variously applicable to the
specification requirements of the different viewpoints. For example, Z [47] has been proposed for the information
viewpoint and LOTOS [7] for the computational viewpoint.

Figure 3 [20] depicts the relationships that are involved in ODP viewpoints modelling. Development yields
a specification that defines the system being described more closely. The term development embraces many
mechanisms for evolving descriptions towards implementations, one of which is refinement. Because all five
viewpoint specifications will eventually be realized by one system, there must be a way to combine specifications
from different viewpoints; this is known as wnification. For specifications in different FDTs to be unified, a
translation mechanism is needed to transform a specification in one language to a specification in another language.
Consistency is a relation between groups of specifications.

In our work on consistency we distinguish between intra and inter language consistency. Intra language
consistency considers how multiple specifications in the same language can be shown to be consistent, while inter
language consistency considers relations between specifications in different FDTs. The latter issue is a significantly
more demanding topic than the former.

In order to inform the interpretation of consistency we choose it is worth considering what we require of such
a definition. We offer the following list as a set of general requirements. The consistency definition we seek must,

e be applicable intra language for many different FDTs, e.g. must make sense between two Z specifications
and also between two LOTOS specifications;
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Figure 3: Relating Viewpoints

e be applicable inter language between different FDTs, e.g. relate a Z specification to a LOTOS specification.

e support different classes of consistency check. There are many different forms of consistency and the
appropriate check to apply depends on the viewpoint specifications being considered and the relationship
between these viewpoints [15]. For example, it would be inappropriate to check two specifications which
express exactly corresponding functionality with the same notion of consistency that is applicable to checking
consistency between specifications which extend each other’s functionality.

e support global consistency. Much of the work, to date, on consistency in ODP has only considered the case
of two viewpoints (what we will call binary consistency); for full generality we need any arbitrary number
of viewpoints greater than zero.

e allow viewpoints to relate to the target system in different ways. Thus, not only are there different forms of
consistency check, but within a consistency check, specifications are related in different ways. For example,
the enterprise specification is likely to express global requirements, while the computational specification
defines an interaction model. Thus, the relationship between the system being developed and the enterprise
specification is very different from the relationship of the system to the computational specification.

This final point prompts our work on, so called, unbalanced consistency in which each viewpoint is potentially
related to the system under development by a different development relation. For example, the enterprise view-
point may be related by a logical satisfaction relation while the computational viewpoint may be related by a
behavioural conformance relation. Note also that unbalanced consistency is needed to support inter language
consistency. This aspect of our work represents a significant departure from existing theoretical work on relating
partial specifications, e.g. [2] [54], which has generally restricted itself to what we call, balanced consistency.

The contribution of this paper is to define a general interpretation of consistency that satisfies all the above
requirements and to make an extensive investigation of the properties of this definition, thus, clarifying the
characteristics of arbitrarily general consistency checking. Particular classes of consistency checking which exhibit
more manageable properties are then considered. In addition, the paper highlights general strategies for checking
consistency according to the prescribed definition. Particular emphasis is placed on the issue of obtaining global
consistency, of any arbitrary number of viewpoints, from a series of smaller consistency checks, e.g. binary
consistency checks. Throughout we illustrate the consistency checking problem using LOTOS and Z; although,
particular emphasis will be placed on LOTOS. Thus, a further contribution of this paper is to characterise
consistency checking in the LOTOS setting. As a reflection of this the LOTOS illustrations presented will be
relatively extensive.



In addition, in order to clarify the relationship between our work and ODP we present a running ODP
example. This is the multiple viewpoint specification of a telecommunication service which has each of its
viewpoints described in LOTOS. We illustrate how the consistency of the viewpoint specification can be checked
using the techniques introduced in the paper.

The example is deliberately “broad” rather than “deep”, i.e. many partial specifications/ viewpoints are
included, each of which is rather straightforward. In this way we are able to illustrate the essence of multi
viewpoint, consistency checking within the bounds of this paper - a more complex example would have swamped
the rest of the paper. However a larger case study illustration of our techniques can be found in [5].

The next two sections of this paper provide preliminary background material. Section 2 defines a set of
notational conventions and section 3 presents background on LOTOS, its development relations and semantic
models. Then section 4 presents our interpretation of consistency, proves some properties of the definition and
identifies a number of classes of consistency, viz. binary consistency, complete consistency, balanced consistency
and inter language consistency. Section 5 highlights basic strategies for checking global consistency. In particular,
the pivotal concept of a least developed unification is presented. Section 6 investigates the existence of least
developments in the general case of unbalanced consistency and then section 7 considers the same issue in the
more restricted setting of balanced consistency. Section 8 reflects on the nature of consistency checking in LOTOS.
We then discuss related work in section 9 and present concluding remarks in section 10. An appendix containing
proofs of some of the results used in the paper is included at the end of the paper.

2 Preliminaries 1: General Notation

First we present the notation that we will work with. This reflects the search for a general interpretation of
consistency by defining very general notational conventions.

It is worth noting here that in selecting our basic notation an important decision is already made: should
a categorical or classic set theoretic framework be used. In contrast to some other important research in this
area, in particular the theory of institutions [28], we have employed a set theoretic model. Our preference for a
classic set theoretic approach is that it integrates more naturally with the ODP model and existing research on
the model. In particular, categorical methods are not used within the ODP community.

Descriptions and Relations Between Descriptions. We begin by assuming a set DES of formal descriptions,
which contains both formal specifications in languages such as LOTOS and Z and semantic descriptions in
notations such as labelled transition systems and ZF set theory.

We assume a set DEV of development relations; members of this set relate pairs of descriptions in DES.
DEYV embraces all possible ways of relating descriptions, e.g. refinement relations or semantic maps. For a
particular relation r € DEV, where r C DES x DES we define the left and right projections (which are
respectively the co-domain and domain of the relation) of r as: pi(r) = { ds | 3ds’ s.t. (ds,ds') € r } and
pr(r) = { ds | 3ds’ s.t. (ds',ds) € r}. DEV is subdivided into intraDEV , the set of intra language development
relations, and SEM , the set of semantic maps. Importantly, although members of intraDEV and of SEM have
very different functions, both can be viewed as relations between pairs of descriptions.

Members of intraDEV are classic development relations within a single formal technique, e.g. the LOTOS or
Z refinement relations. Members of SEM are semantic maps between descriptions in formal techniques. Typically
they map descriptions from one formal technique to a second formal technique.

Formal Description Techniques. Descriptions are written in formal techniques. The set of all such techniques
is denoted FT. Formal techniques are pairs; they are elements of P(DES) x P(DEV). Thus, every formal
technique is characterised by the set of possible descriptions in the notation and a set of associated development
relations. We require that the right projection of all elements of D EV contains a subset of DES. For a particular
formal technique ft we denote the set of all descriptions in ft as DESy; and the set of all development relations
as DEVy;. We will also use the notation intraDEVy; to denote the intra language development relations of ft
and SEMy; to denote the semantic maps of ft.

Development Relations. These are written dv and if X dv X' then, in some sense, X is a valid development
of X'2. Our concept of a development relation generalises all notions of evolving a formal description towards an

2Some authors write development relations the other way around, i.e. X’ dv X means that X is a development of X’. However,
our choice of orientation corresponds to the direction LOTOS relations are classically written



implementation and thus embraces the many such notions that have been proposed. In particular, DEV contains
refinement relations, equivalences and relations which can broadly be classed as implementation relations [42],
such as the LOTOS conformance relation conf. These different classes of development are best distinguished by
their basic properties. Refinement is typically reflexive and transitive (i.e. a preorder); equivalences are reflexive,
symmetric and transitive; and implementation relations only need to be reflexive. The distinction between
refinement and implementation relations is particularly significant; transitivity is a crucial property in enabling
incremental development of specifications towards realizations and implementation relations are typically lacking
in this respect.

In general though, we do not require that development relations support any specific properties. In particular,
we cannot even assume reflexivity in the general case. This is because, in order to support inter language
consistency checking, we will allow development relations to relate descriptions in different notations, in these
circumstances reflexivity is not a sensible concept. We will return to this issue in section 4.1.

We introduce the concept of a terminal element for a development set.

Definition 1 Given a set of descriptions S C DES and a development relation dv € DEV then X € S is a
terminal element iff X dv X' for all X' € S. The set of terminal elements is denoted t(S,dv). If such an element
does not exist then t(S,dv) = 0.

So, a terminal element is a bottom element for the development ordering in a particular set.
We must also consider what interpretation of equivalence (which we denote <) we should adopt. The inter-
pretation that we adopt is:-

X <4 X' iff VWeEDES, YVdvX < Ydv X

which states that two equivalent descriptions have identical development sets, i.e. every description that is a
development of one will be a development of the other. This demonstrates that during system development
we really can choose any one of a set of equivalent specifications without affecting the possibilities of future
development.

=g, can easily be shown to be an equivalence and, in addition, importantly, no properties are required of dv
for x4, to be an equivalence. In particular, even if dv is not reflexive or transitive <4, will be an equivalence.

Another standard interpretation of equivalence between specifications is that they are developments of one
another. With transitivity of dv this interpretation gives us that two specifications in any cycle by the relation dv
are equivalent. However, if dv is in fact a preorder we can obtain that <g4,= dvNdv~"'. Thus, we will use these
two interpretations interchangeably if development is a preorder. We summarise these results in the following
proposition.

Proposition 1

(i) <qv is an equivalence.

(ii) If dv is a preorder then <g,= dv N dv~!.

(iii) If dv is a preorder then dv is a partial order with identity <g,, i.e. elements are viewed to be equal if they
are related by <4, .

Proof

The only part of this proposition that is not completely trivial is (ii), so we include this proof. Firstly, assume
X =<4y X', but since by reflexivity, X dv X this gives us X dv X' and similarly, X’ dv X. Secondly, assume
X dvndv' X' and take Y € DES, such that Y dv X, but using our assumption and transitivity of dv we get
Y dv X' and similarly, we can show that ¥ dv X' implies Y dv X. a

We will also use the following standard concepts from set theory.

Definition 2 X € DESy, is a lower bound of S C DESy, for dv iff VX' € S, X dv X'. The set of all lower
bounds of S with respect to dv is denoted, 1b(S,dv); this set may be empty.

A lower bound of S is a development of all elements of S. Notice that lower bounds and terminal elements are
different concepts; a terminal element must be in the identified set of descriptions while a lower bound has no
such constraint. In standard fashion we can also define the concept of a greatest lower bound.

Definition 3 For S C DES;, X € glb(S, dv) is a lower bound such that all other lower bounds are a development
of X; i.e. glb(S,dv) CIb(S,dv) A (VX €1b(S,dv) A VX' € glb(S,dv), X dv X'). If a greatest lower bound does
not exist then glb(S, dv) = 0.

Notice that if dv is a preorder then #(S,dv) and glb(S, dv) are equivalence classes under <.



3 Preliminaries 2: Background on LOTOS and Introduction of Run-
ning Example

LOTOS [33] is a process algebra based specification language used for the formal description of distributed and
concurrent systems (see [7] for a general introduction). LOTOS was developed to formally describe the services
and protocols of the Open Systems Interconnection Reference Model [32, 35, 34]. Currently, LOTOS is also being
used for the specification of ODP systems and standards [36].

The LOTOS language has two parts: a behavioural part and a data part. Most of our work will be with the
behavioural part; we will refer to basic LOTOS in the text of this paper when we mean only the behavioural part
of the language. The behavioural part is a process algebraic language, related to CCS [45] and CSP [30], in which
systems are described in terms of the temporal relationship between externally observable actions.

We will actually use only a subset of LOTOS; the following abstract syntax defines this subset:

P = stop| u;P| P[] Py | choicea€ A[] P| P, |[G]| P, | hide G in P | X

where P, P', Q, Q', P, and P> will be used to denote arbitrary LOTOS processes, u € Act U {i}, A C Act or
A CGate, G CGate and X is a process variable. Act is the set of all observable actions and i is the distinguished
hidden or internal action. We use a to range over Act and p to range over Act U {i}. Gate is the set of all gate
names, gates locate actions, i.e. they indicate the interaction point at which the action occurs.

We have the null process stop (which is synonymous with deadlock); action prefix in order to define sequencing;
binary and generalised choice in order to define alternatives, parallel composition (which is parameterised on the
gates that must synchronise), the hiding operator and a process variable to invoke behaviour and, possibly, create
recursion. We assume that process definition has the form:

X: =P

Although at some points we will associate data parameters with such definitions, e.g. X(y : T1,2z : Ty) := P
defines a process named X with formal parameters y (of type T7) and z (of type T»). The generalised choice
operator defines an arbitrary choice of processes, for example,

choice a € {b,c,d} [|a; P = b;P [ ¢; P[] d; P
Also notice that we can create non-deterministic choices. For example,
;P[] a; P’

offers a non-symmetric non-determinsitic choice between offering an a or evolving internally to behave as P.
In addition our ODP example will use value passing actions. These are constructed from a gate reference and
a value attribute, e.g. the two action instances,

g5 and g7z : Nat

can synchronise to create an action g_5, whereby the value 5 is observed at the gate g. As a by product of this
observation the value 5 is bound to the variable z.

In the following Lp C Act is the alphabet of observable actions associated with a certain process P; L}
denotes strings (or traces) over Lp; the constant € € £} denotes the empty string, and the variable o ranges over
L.

3.1 Two Semantic Models

Labelled Transition Systems. Basic LOTOS has a well-defined operational semantics which maps basic
LOTOS behaviour expressions onto Labelled Transition Systems (LTSs). Because this mapping exists and we
can express any LTS in basic LOTOS, we can use processes and their corresponding LTSs interchangeably. In
particular, relations defined on transition systems are likewise applicable to processes.

A labelled transition system is a tuple, (S, L, T, so). S is a set of states which ranges over the possible process
behaviours that the system can reach; £ is a set of action labels; T is a set of transitions of the form P -£s P';
and sg is a starting state. Notice that without loss of generality we often denote particular LTSs as the diagrams
that they induce, e.g. those in figure 6.



Notation  Meaning
P -£3 P'  denotes a transition, i.e.

P can do u and consequently behaves as P'.
= reflexive and transitive closure of —is
PEL P 3Q.Q'.P=Q-%Q =rP

P= 3P P=P
P=A  pP.PL P

Table 1: Derived transition denotations

Refusal Semantics. In table 1 the notion of transition is generalised to traces. Using this notation we can
define the following:

Tr(P) = {0 € L% | P==1}, denotes the set of traces of a process P.
P after o = {P' | P == P'}, denotes the set of all states reachable from P by the trace o.

«
Ref(P,o) = {X | AP' € (P after o), s.t. Va € X : P' =&}, denotes the refusals of P after o.
out(P,0) = {a | ca € Tr(P)}, denotes the set of possible observable actions after the trace o.

In trace/refusal semantics the behaviour of a process P is characterised by its trace set and the refusals for all
traces in that trace set. Stability and divergence properties can also be considered [41], however, the standard
LOTOS development relations do not consider these categories, so, we will restrict ourselves to just the trace
refusal characterisation of LOTOS specifications. The preference for not including divergence and stability in
the standard semantic model arises from the non-catastrophic interpretation of divergence employed in LOTOS,
which contrasts with the interpretation classically used with CSP failure semantics.

3.2 LOTOS Development Relations

We reiterate the standard definitions of the most prominent LOTOS development relations. We use the following
simple basic LOTOS specifications to illustrate these relations:

R, := a;b;stop
Rs> = a;stop

R3 := i;c;stop
Ry = c;stop

R5 = R1 [] R2
R6 = R2 [] R3
R7 = R4 [] Rz

3.2.1 Trace preorder

Perhaps the simplest meaningful notion of development for LOTOS is trace preorder. This defines refinement as
reducing the traces that can be engaged in. The relation is defined as follows:

Definition 4 (trace preorder)
Given two process specifications P and Q, then P is a trace refinement of @), denoted P <y Q, iff:

e Tr(P) CTr(Q), or equivalently
o Vo € L.P==> implies Q== .

In terms of the example basic LOTOS specifications just highlighted, it is straightforward to see that, for example,
Ry <4 Ry <4 Rs and Ry <4 Rg; but, ~(R; <4 R»).

Intuitively, trace preorder ensures that safety properties are preserved through refinement. Safety properties
state that “something bad should not happen”, where something bad can be interpreted as a certain trace. Thus,
if an abstract specification does not perform a certain degenerate trace then the concrete specification (by trace
preorder) cannot perform the trace. Notice that all safety properties hold for the empty trace € or, in other words,
stop is a trace refinement of any specification.



3.2.2 Conformance

The problem with trace preorder is that it does not ensure that liveness (or deadlock) properties are preserved.
A liveness property states that “something good must eventually happen”. However, by trace preorder all
specifications can be refined to stop, i.e. to the process that does nothing. Thus, the “good things” that the
abstract specification is able to perform can be refined out.

However, we may wish to ensure that a development of a specification does not deadlock in a situation where
the specification would not deadlock, in other words, every trace that the specification must do, the development
must do as well. This requirement is formalised by the conf relation [18] [19], which has been adopted as the
primary interpretation of conformance for LOTOS.

Definition 5 (conformance)
Given two process specifications P and Q, then P conforms to Q, denoted P conf Q, iff:

e Vo € Tr(Q).Ref(P,0) C Ref(Q,0),or equivalently

e Yo e Tr(Q) and VA C Lp U Ly we have
if AP’ € (P after o) such that Vo € A.P’ qaéh
then 3Q" € (Q after o) such that Va € A.Q' =5~

If we consider our sample specifications again, the reader can check that the following relationships hold:
Ry conf R,, but it is not that case that Ry conf R;. The latter of these is because after the trace a, R-
can refuse b, but Ry cannot.

We will also use the following two development relations which are symmetric subsets of conf. These relations
are called conf symmetric, denoted cs, and extended conf symmetric, denoted xcs. Both relations are introduced
for technical reasons. In particular, the introduction of symmetric variants of conf arises because this is the notion
of compatibility between specifications (called behavioural compatibility) used in the architectural semantics of the
ODP reference model [36]. For a fuller discussion of the motivation behind these relations the interested reader
is referred to [4, 50].

Definition 6 (conf symmetric)
Given two process specifications P and Q, then P ¢s Q iff P conf Q@ A @ conf P.

Definition 7 (extended conf symmetric)
Given two process specifications P and Q, then P xcs Q iff P es Q@ A Tr(P) D Tr(Q).

An alternative derivation of xcs is: P xes Q iff P ext Q A @ conf P, see section 3.2.4 for the definition of ext.
To illustrate these two relations we can see that Rg cs R3, but =(R; cs Rz). In addition, Rg xcs Rz, but
—(R3 xcs Rg).

3.2.3 Reduction

A refinement relation that combines both the preservation of safety and liveness properties is the reduction
relation, red, defined in [18]. This relation is based upon the classic CSP refinement relation [30] and is also
equivalent to “must testing” [29], in both cases, modulo the handling of divergence. red interpretes refinement
as the reduction of non-determinism in a specification. A typical development strategy using red would refine a
non-deterministic abstract specification into a deterministic or more nearly deterministic concrete specification.

Definition 8 (reduction)
Given two process specifications P and @, then P (deterministically) reduces @), denoted P red Q, iff:

1. P <4 Q, and
2. P conf @

By way of illustration, we can see that R; red Rs5, R> red R; and R3 red Rg.



3.2.4 Extension

Inherent in reduction is that the concrete specification cannot “do more” than the abstract specification, i.e. traces
cannot be increased. However, as Brinksma argues [18] in some circumstances we would like to add functionality
when refining. The extension relation allows for this possibility. Thus it enables new possible traces to be added
in a refinement, while preserving the liveness properties of the specification.

Definition 9 (extension)
Given two process specifications P and Q, then P extends Q), denoted P ext @, iff:

1. Tr(P) D Tr(Q), and
2. P conf Q)

By way of illustration R; ext R4 and Ry ext Rs, but —(R4 ext Ry).

3.2.5 Testing Equivalence

A standard interpretation of equivalence is given by the testing equivalence. Intuitively, specifications are testing
equivalent if they cannot be distinguished by testing.

Definition 10 (testing equivalence)
Given two process specifications P and ), then P is testing equivalent to Q, denoted P te Q, iff:

e Pred Q and @ red P, or equivalently
e P ext Q and Q ext P, or equivalently
e P xcs QQ and @ xcs P, or equivalently
e Tr(P)=Tr(Q) N Yo € Tr(P).Ref(P,0) = Ref(Q,0).

Notice that P te Q <= P rednred ! Q < P extnNext ! Q <= P xcsNxcs ' Q, so, testing equivalence
plays the role of identity, in the sense of <, for the preorders red, ext and xcs.
To illustrate this relation, it can be checked that R3 te Ry.

3.2.6 Bisimulation Equivalences

An alternative interpretation of identity is given by the bisimulation equivalences, strong and weak bisimulation
[45]. These offer stronger interpretations of equivalence based upon the observable behaviour of specifications.
The definition of weak bisimulation equivalence, a2, of LOTOS processes is given by the following two definitions:

Definition 11 (weak bisimulation relation)

A binary relation R over LOTOS processes is a weak bisimulation if P R P> implies, Vo € Lp U L,
1. if AP].P, == P| then AP4.P» == P4 and P{RP); and
2. if 3Py.Py == Py then 3P].P; = P| and P|RP;.

Definition 12 (weakly bisimilar)

Two LOTOS processes Py and P> are weakly bisimilar, denoted P, ~ P», if there exists a weak bisimulation
relation R such that P, R Ps.

Strong bisimulation, denoted ~, is defined in a similar manner to weak bisimulation, except i actions are matched

in addition to observable actions. Hence strong bisimulation is an even stronger notion of observational identity
than weak bisimulation.
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3.2.7 Discussion: Properties of the Development Relations

Apart from cs and xcs the properties of the development relations presented above have been well documented
in the literature. Some of these properties are reviewed here, proofs of these results can be found in the appendix.

Proposition 2

(i) <tr, red and ext are preorders.

(ii) te, ~, and =~ are equivalences.

(i) ~ C =~ C te C cs

(iv) conf is reflexive, but neither symmetric nor transitive.
(v) cs is reflexive and symmetric, but not transitive.

(vi) xcs is a preorder.

Thus, <., red, ext and xcs can be classed together as refinement relations; te, ~, and & can be classed together
as equivalences; while conf and cs are weaker implementation relations.

3.3 Running Example

In this subsection we describe a simple ODP system which will be used as a running example throughout the
paper. The basic scenario is the multiple viewpoint specification of a telecommunications service. The service
has the following general behaviour:

The service accepts requests (the action request) to open up communication channels and then offers
different possible varieties of channel, e.g. just an audio connection (the action transA) or a (full sound
and image) video connection (the action transV). Actually many different types of connection could
be provided.

The following will be assumed in the example:

e A set ID of user identifiers is assumed. These are used for accounting purposes. When a user of the system
requests a communication he/she specifies their identifier and the cost of the communication is charged to
them. The set ID is constructed as follows - ID=ID'U{def }, where def indicates a “default” identifier. Thus,
in situations where personalised charging is not being used, e.g. within a particular commercial organization,
a default identifier can be provided.

e The set of gates in this domain is denoted GG and it has the following subsets:

— F = {request, transA, transV } where transA transmits audio and ¢ransV transmits video;

— H = {transA, transV , transT) , ..., transT, } where T}, .., T, are alternative communication types,
perhaps data links or various qualities of video.

e 7 is a function which takes a set of gate names and returns the set of all possible actions that can be
generated from that set. It associates data with the gates in all relevant possible ways. For example, if the
gates a and b can only have one data attribute of type boolean then,

w({a,b}) = { altrue, alfalse, bltrue, blfalse}

Now we provide viewpoint specifications for the enterprise, computational and engineering viewpoints.

Enterprise. This viewpoint is itself composed of a number of partial specifications, each enforces a different
enterprise constraint on the target system. We have one permission and two obligations.

e Permission: The enterprise permits the system to be constructed using gates in the set F. This is because
the organisation only permits certain transmission media types to be used in their domain. We can enforce
this constraint by associating the reduction relation with the following specification:

Perm := (choice beF [] i; b%z:ID; Perm) [] i; stop

11



So, Perm allows any arbitrary non-deterministic behaviour on the actions request?x:ID, transA ?z:ID, and
transV?z:ID. Thus, any specification that does not use an observable action other than one of these three
will be a reduction of Perm.

In fact, we could interpret this specification with the relation <;. and get the same effect. Indeed, in order
to illustrate different varieties of consistency check we will at different stages during the sequel interpret
this specification with <;,., conf and red. Note that the relations <y, and conf define red (i.e. <z Nconf).
So, by considering these other two relations we implicitly consider part of red itself.

e Obligation 1: The system is obliged to allow, i.e. offer, a (non-default) request immediately. This effect is
obtained by associating the extension relation with the specification.

Obl1 := request?z:ID'; stop

e Obligation 2: The enterprise specification also requires that every transA or transV must be preceded by a
request, IDs must match (between requests and transmissions) and a “new” request cannot be performed
until the last one has been matched to a transmission. We enforce this constraint by associating trace
preorder with the following specification®:

Obl2 := (choice ac 7(GG-F) [| a; ObI2)
[] request?z:ID'; Trans(x)

Trans(z:ID') := (choice a€ w(GG-F) [] a; Trans(z))
[] transAlx; Obl2
[] transVixz; Obl2

This specification will allow all traces that satisfy this constraint?.

Computational. Our scenario is that a “generic” service interface is provided by the computational viewpoint.
This defines a spectrum of allowed computational behaviour, which will be specialized according to the constraints
imposed by the other viewpoints. In particular, the enterprise constraints will specialize the computational
viewpoint according to the needs of a particular organisation. The computational specification is as follows:

Comp := 1i; request?z:ID'; (choice beH [] i; blx; Comp)
[] (choice beH [] i; bldef; Comp)

The specification offers a number of possible behaviours - the first branch accepts requests (with identifiers) and
then offers a non-deterministic choice of transmission with any of the possibly available media types, with (as
discussed earlier), the identifier included for accounting purposes. The second branch offers a default behaviour.
Thus, the service could be specialized to one where charging is not required and the service can transmit with
the default value, def, associated.

Engineering. The system is composed of two components - a request handler (RH) and an IO handler (IOH)
which is itself composed of a number of tranmission devices: here audio and video devices. These two top level
components of the engineering viewpoint, RH and IOH, communicate via a channel. As the channel is only used
for internal communication, it is hidden from the environment. The viewpoint is specified as follows:

Eng := hide channel in RH |[channel]| IOH
RH := request?z:ID'; channellr; RH
IOH := channel?z:ID'; (transAlz; IOH [] transV!y; IOH)

The specification offers an external choice of transmitting on the audio or on the video channel and the user can
select between them. Of course in reality, the engineering behaviour would be much more complex. However, we

31In fact, we could avoid the function 7 by using generalised choice over data, e.g. choice a€ w(D) [/(a;B) is equivalent to choice
be D[] (choice z:T []blz;B) where T is the type associated with the action a. However we prefer to use the m function as it leads to
a more concise presentation.

4In fact, as is common with enterprise specification, this constraint could more easily be expressed using a logical notation.
However, since we are restricting ourselves to LOTOS illustrations we have to give a slightly cumbersome formulation.
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abstract from this complexity in the context of this illustrative example. The behaviour is interpreted with the
testing equivalence relation.

During the remainder of this paper we will consider (incrementally) how these viewpoints can be checked for con-
sistency. We will begin by considering different pairwise consistency relationships, i.e. between pairs of viewpoints,
and then we will consider the global consistency of the example.

4 A General Interpretation of Consistency

We are now in a position to introduce our general interpretation of consistency and to clarify the basic properties
of the interpretation. This section is divided into a number of subsections, the first introduces the definition and
then the following subsections consider different classes of consistency: binary consistency, complete consistency,
balanced consistency and inter language consistency. The section concludes with a discussion.

4.1 Consistency Definition

Broadly a consistency check is a function from a group of descriptions, X1, X, ..., X;, to a boolean; true is returned
if all the descriptions are consistent, and false otherwise. This check is parameterised upon a corresponding group
of development relations, dv;,dvs,...,dv,, one per description; it is denoted, C(dvy, X1)(dv2, X2)...(dv,, Xy), a

l..n
shorthand for which is ¢ (dvi, X;).
Type Correctness. The validity of the check has two elements: type correctness and consistency.

Definition 13 (Type Correctness)
C(dvy, X1)(dvs, Xs)...(dvn, Xp) is type correct iff (X1 € pp(dvi) A Xo € pp(dva) A .. A Xy, € pr(dvp)) A
(pu(dvr) Npy(dve) N .. N py(dvy) # 0).

Type correctness ensures, firstly, that for every description the corresponding development relation, i.e. dv; for
X, is correctly typed with regard to the description. In addition, type correctness ensures that the target types
of the relations have some intersection. This check has the function of determining that the consistency check
being attempted is sensible. Type correctness will not be an issue for intra language consistency, but will be
necessary when determining an appropriate inter language consistency check to apply.

Ilustration 1 An inter language consistency check between Z and LOTOS, which relates Z by the standard Z
refinement relation, denoted T, [47] and LOTOS by reduction would typically not be type correct because the
co-domains of C and red have no intersection. However, if a common semantics for LOTOS and Z were defined,
such as the extended transition system considered in [25], and adaptations of C and red were made to relate 7

specifications respectively LOTOS specifications to the common semantics, then type correct consistency checks
could be defined.

When writing C(dv1, X1 )(dve, X2)...(dv,, X,,), unless otherwise stated, we will assume the check has already been
shown to be type correct.

Consistency. Once type correctness has been determined we can investigate consistency. Intuitively we view
n specifications X7, X», ..., X,, as consistent if and only if there exists a physical implementation which is a
realization of all the specifications, i.e. X1, X5 through to X, can be implemented in a single system.

This interpretation of consistency has similarities to satisfaction in a logical setting. A conjunction of propo-
sitions ¢1 A ¢2 A ... A ¢y, is satisfiable if there exists a single model which individually satisfies all the
propositions.

Iustration 2 Figures 4(a) and 4(b) illustrates our intuition of consistency, in both depictions descriptions are
related to their set of possible realisations by a relation implements (denoted imp). Thus, the Venn diagrams in
the implementation plane depict the set of possible realisations of each description. It should be clear that the
three descriptions in figure 4(a) are consistent because their set of possible implementations intersect, i.e. they
have at least one common implementation. In contrast, the three descriptions in figure 4(b) are not consistent,
although, the pairs S} and S5 and S5 and S6 are mutually consistent.
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Figure 5: A Consistency Check

However, rather than talk explicitly about implementation, as this interpretation does, we would like to work
purely in the formal setting and define consistency purely in terms of descriptions and relations between descrip-
tions. Thus, we define consistency in terms of a common (formal) description, X, and a list of development
relations, dvy,dvs, ...,dv,. Definition 14 states that n descriptions are consistent if and only if there exists a
description that is a development of X; according to dvy, Xs according to dvs, through to X,, according to dv,,.
See figure 5 for an illustration.

Definition 14 (Consistency)
‘& (dvi, Xi) holds, iff AX € DES . X dvy X1 Ao A X dvp X
For n descriptions to be consistent this definition requires that X is a common development of X; for all 7 between
1 and n. Notice that we allow the descriptions to be related to their common development in different ways, i.e.
if dv; # dv;. As discussed in section 1 this is needed in order to support unbalanced consistency as required by
ODP viewpoints.

In most cases X1, Xo, ..., X;, in the above definition will all be specifications, however, X will commonly be
a semantic representation. In particular, if some of X, X,..., X, are in different languages then X is very
likely to be in a common semantic notation. The properties that enable a semantic notation to be suitable for
representing common developments of specifications in different formal techniques will be discussed in section 4.5.

1..n
If Xy, Xs, ..., X, are in the same formal technique then C (dv;, X;) is called an intra language consistency check

and if for some i and j between 1 and n, X; and X; are in different formal techniques then IC’n(dvi, X;) is called
an inter language consistency check.

In previous presentations of consistency we have often included a check for implementability in our basic
definition. This check is called internal validity and it ensures that the common development, X in definition 14,

14



is truly implementable, it is denoted ¥(X). Such a check was justified on the grounds that descriptions relate
to physical implementations in different ways for different specification languages. In particular, for a language
such as Z valid specifications can be defined which are not implementable. Consequently, in some specification
languages it may be possible for a group of descriptions to have a common development, but not to be consistent,
since the common development is not itself implementable.

However, in this paper we avoid explicitly referring to internal validity in our consistency definition. This
is because the check can be incorporated with development. For example, if we wish to check X,..., X,, for
consistency (and internal validity) using development relations dvi, ...., dv), we can perform the consistency check

1.n

C (dvi, X;) where X dv; YV if and only if X dv} Y and ¥(X), and we have a check that conforms to the format
of our simple consistency check of definition 14. Acknowledging that development may be enhanced in this way
leads to a conceptually simpler and more uniform treatement of consistency and of the theory surrounding it.

Unification. The concept of a unification, as highlighted in figure 3, can now be easily formalized as the common
development of definition 14. The set of all such common developments is defined in the obvious way:

Definition 15 (Unification Set)
Z/{(dvl,Xl)(dvg,Xg)...(dvn,Xn) = {X € DES | X d’Ul X1 NN X dUn Xn}
ldn(dvi,Xi) is used as a shorthand for U(dvy, X;1)(dvs, X>2)...(dv,, X,,). Notice lén(dvi,Xi) holds if and only if

1..n

U (dvi,Xi) ;é 0
The following result can be immediately observed.

Proposition 3
{(dv1, X1), ..., (dvn, X))} D {(dvi, X}), ..., (dvl,, X] )} = U(dvi, X4)...(dv,, X,) CU(dvy, XT)...(dv),, X))

Proof

1..n
Take X € U (dvi, X;) ie. X dvy X1 A..A X dv, X, For any X} s.t. 1 < j <m, X dvj X] since by our
hypothesis 3X; (for 1 < i < n) such that dv; = dv} and X; = X}. So, X € U(dvy, X7)...(dvy,, X7, ), as required.
O
This proposition expresses the obvious result that a unification of n specifications is a unification of a subset of
the n specifications. An immediate corollary of proposition 3 is:

Corollary 1

1..n

U (dvi, X;) C U(d’l)i,Xi)...(d’Uj,Xj) fOT 1<4,7<n.

The following sections consider a number of different classes of consistency.

4.2 Binary Consistency

An important special class of consistency is binary consistency, i.e. the consistency check C(dvy, X1)(dvs, X5)-
Binary consistency is a binary relation and is often written, X1 Cgy, dv, X2.

4.2.1 Basic Properties

The possibility of inter language consistency makes it difficult to obtain general properties for this binary relation.

Proposition 4
Binary consistency is in general neither (i) reflexive, (ii) symmetric or (iii) transitive.

Proof
(i) Reflexivity is the case C'(dv, X)(dv', X), which is equivalent to C'(dv N dv’, X); this could be false if either dv

or dv' are not reflexive °.

50ne reason for development not being reflexive is if it incorporates an implementability/internal validity check, as discussed in
the previous section. In such a circumstance an unimplementable specification might not be viewed as a development/implementation
of itself.
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(ii) Assuming C(dvi, X1)(dvs, X>) is true, in the case of inter language consistency C(dvq, Xs)(dvs, X1) is likely
not even to be type correct. Thus, in its most general form, symmetry of consistency does not even yield a type
correct, consistency check.

(iii) Assuming C(dvy, X1)(dvs, X2) and C(dvs, X2)(dvg, X3) hold then transitivity requires us to show that X
and X3 are consistent, however, according to what development relations will we check consistency? The tran-
sitivity variant that we would like is that C(dvi, X1 )(dvs, X3) follows from the assumptions. However, nothing
in our assumption guarantees that, p;(dvi) N p(dvs) # 0, thus, C(dvi, X1)(dvs, X3) may not be type correct.
Furthermore, even if we assume type correctness of C'(dvy, X1)(dvs, X3), consistency will not always hold, since
C(dvy, X1)(dve, X5) and C(dvs, X2)(dvs, X3) are likely to have different common developments that cannot be
related (the second example of illustration 2, depicted in figure 4(b), highlights such a situation). ad

However, if we restrict ourselves to reflexive development (which would make sense in languages where all speci-
fications are implementable) we can obtain reflexivity of consistency.

Proposition 5
If dvi, dvs € DEVy, are reflexive on DESy, then VX € DESy,, C(dvi,X)(dvs, X) holds, i.e. consistency is
reflexive.

Proof
Reflexivity of dv; and dvy gives us reflexivity of dv; N dvy which implies that X is the required common develop-
ment. O

This proposition implies that consistency is reflexive for a language such as basic LOTOS in which development
is at least reflexive.

4.2.2 Embracing Development

One motivation for considering unbalanced consistency is to enable us to address situations in which a viewpoint is
“conceptually” a direct development of a second viewpoint. Such relations between viewpoints are not strictly in
accordance with viewpoints modelling, but for many particular viewpoint models such a conceptual relationship
between viewpoints may arise. For example, some researchers like to think of specific pairs of ODP viewpoints
as developments of one another, e.g. the engineering viewpoint may be seen as a refinement of the computational
viewpoint. Thus, we would like to embrace the standard development relations into our interpretation of consis-
tency, i.e. to instantiate consistency in such a way that the relation induced between viewpoints is equivalent to
development. For LOTOS this means giving instantiations of consistency that model the LOTOS development
relations, conf, red, ext, etc.
The following general results characterise the relationship between preorder refinement and consistency.

Proposition 6
If dv is a preorder then VX1, Xo € DESy,

(l) X1 dv X2 <~ X1 Odv_l,dv X2-
(i) X1 dv Xo <= X1 Clapndv-1),dv X2-

Proof

i) =) X dv X5 by assumption, but also X; dv=! X; by reflexivity of dv, so, X; is a common development.
i) <=) Assume IX s.t. X; dv X A X dv X, then by transitivity of dv, X dv Xs.

ii) =) X7 dv X, by assumption, also X; dvNdv~! X; by reflexivity.

11) <:) X1 O(dvﬁdv_l),dv X = X4 Cdv—l,dv X5 and X, Odv—l,dv Xo = X; dv Xy (by (1) <:) O

Corollary 2
For dv a preorder, dv = Cyy-1 4, = Cx, dv-
LOTOS Illustration 1 We have the following specific instantiations of corollary 2 for LOTOS preorders:-

Proposition 7
(Z) StT: C<;17<t, = ngt,ﬂftr ; (”) red = Oredfl,red = Otemed; (Z”) ext = CVextfl,ext = Cte7ext; and
(ZU) XCs = Cxcs_l,xcs = Ote,xcs-
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Since conf and cs are not transitive we have to work a bit harder to relate these notions of development. Firstly,
we note the following negative result:-

Proposition 8
conf 2 C

conf—!,conf

Proof
Let Py := b; stopl]i; a; stop, Py := b; c; stop[]i; a; stop and P := i;a; stop then, P is the required common develop-
ment to give Pi Ceong1 cont P2, but =(Py conf P). |

However, the following stronger result enables us to embrace conf.

Proposition 9
conf = Cie conf-

Proof

(COIlf g Cte7conf)
Assume Py conf Py, but in addition from reflexivity of te, P, te Py and, thus, Py is the required common
development.

(Cte,conf g conf)

Take P such that P te P, and P conf P,. If we expand these out we get:

Tr(P) =Tr(P1) AN Yo € Tr(P), Ref(P,0) = Ref(P,0) A

VYo € Tr(P,), Ref(P,0) C Ref(Ps,0)

Equality of the traces of Py and P implies that there are no traces of P» that Py could do, but P could not do,
thus, Vo € Tr(P,), Ref(P,o) = Ref(P1,0) and thus, Vo € Tr(P,), Ref(Pi,0) C Ref(Ps,0). So, P, conf P,
as required. O

In addition, a proof of the following result can be found in [4].

Proposition 10
CS= Cxcs,xcs-

So, we have shown how equivalent instantiations of consistency can be given for all the following LOTOS relations:
<ir, red, ext, xcs, conf and cs. This only leaves the equivalence relations; section 4.4 will show that these can
be easily embraced.

ODP Illustration 1 In addition, we can illustrate these LOTOS instantiations of our theory in the context of
our running ODP example.

Trace Preorder. The following holds,
Eng < Perm

Thus, by proposition 7(i) we know that,
EngC«_, <, Perm

which has the form of the binary consistency check we are interested in between Eng and Perm.

Conformance. In addition,
Engconf Perm

Thus, by proposition 9 we know that,
Eng Cte,contr Perm

Reduction. Now, if we put the last two cases together, we get,
Engred Perm
which extends the previous properties and by proposition 7(ii),

Eng Cie rea Perm
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which is exactly what we are interested in.

Extension. Also, we have that,
Engext Obll
which by proposition 7(iii) gives us,
Eng Cte,ext Obl].

which is another one of our constituent binary consistency checks.

4.3 Complete Consistency

For a set of descriptions a particular consistency check may always hold, i.e. any subset of descriptions will be
consistent. This property is called complete consistency and is defined as:

Definition 16 Complete Consistency
l..n

A set of descriptions, ds, is completely consistent according to dvy, ..., dv, iff VX1,.., X, € ds, C (dvi,X;).

Note that this definition assumes that the consistency check is type correct for any n descriptions in the set. In
the inter language setting, this will frequently fail to hold. Thus, complete consistency is a particularly useful
concept in the intra language setting. In particular, if an FDT is known to be completely consistent there is no
need to undertake consistency checking.

The following result is straightforward, it gives us a sufficient condition for complete consistency (remember
the notation t(ds, dv) denotes the set of terminal elements of ds according to dv).

Proposition 11
t(ds,ﬁdvi) £0) = lén(dvi,Xi) for all Xq,..., X, € ds.

Proof
Clearly, X Adv; X' = X dv; X', so the result follows immediately. O

LOTOS Illustration 2 The following cases highlight complete consistency classes for basic LOTOS.
(i) Consider C(conf, X)(ext, X') for any X, X' € DESpusicLoros. Then the proces w, which offers a determin-

istic choice of all possible actions at every point, defined as,

w := choicea € Lx ULx [ a; w
satisfies Tr(w)=(Lx U Lx)* and Yo € Tr(w)*, Ref(w,o) = {0}, i.e. it performs all possible traces and refuses
nothing. Thus,

w ext X for all X € DESyusicoTOS

and since ext N conf = ext, proposition 11 is satisfied. So, LOTOS is completely consistent according to conf
and ext.
This complete consistency property of conf and ext implies that in our ODP running example,

Perm Ceonf,ext ObI1
holds automatically, with no further analysis required.

(i) However, C(red, X)(<sr, X') for any X, X' € DESpusicoros does not hold. In particular, red has no
terminal element, i.e. t(red, DESy.sicoTos) = 0. For such a terminal element to exist it must be a trace subset
of any basic LOTOS description, which suggests it should be the basic LOTOS behaviour stop, but stop refuses
everything. Furthermore, the descriptions X := a;stop and X' := b; stop serve as a counterexample that shows
that basic LOTOS is not completely consistent for C(red, X)(<¢r, X'). This is because X has no reductions other
than itself (up to equivalence) while X' is only trace refined by itself and stop (up to equivalence).

Thus, for example, it is not the case that we can automatically deduce that in our ODP running example,

Comp Creq,<,, Perm
In fact, this does hold, but in order to demonstrate that it does hold we will have to work harder.

These are actually slightly degenerate examples of complete consistency, because in both cases one of the develop-
ment relations implies the other, i.e. ext C conf and red C <;.. However, due to the common origins of the
LOTOS refinement relations (i.e. trace/refusal semantics) such situations often arise for LOTOS.
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4.4 Balanced Consistency

Balanced consistency reflects the situation in which the specifications being checked are related to their common

model by the same development relation; balanced consistency is written: Cg, X1 X5...X, or é‘dz X;. The special
case of binary balanced consistency, Cy, X1 X5, is often written as X; Cy, Xa. An example of a binary balanced
consistency check is Perm Creq Comp from our running ODP example. We can characterise consistency in this
restricted setting; the proof is trivial:-

Proposition 12
CipX1.. X <= Ib({ X1, ..., X, },dv) £ 0.

Thus, in the balanced setting consistency checking degenerates to searching for lower bounds. Also, it should be
clear that for balanced consistency lower bounds correspond to unifications, i.e. Uy, X;...X,, = Ib({ X1, ..., X5, }, dv).
In particular, the fact that the ordering of descriptions in balanced consistency is unimportant (which will be our
next proposition) is reflected by the descriptions being interpreted as a set in [b.

4.4.1 Basic Properties

The following results are immediate:-

Proposition 13
(i) CguX1X2.. X, = Cg, Y where Y is any possible permutation of X1...X,.
(i1) As a consequence of (i) Cqy is symmetric

This proposition states that the ordering of X, ..., X,, in the argument list of C' is not important in balanced
consistency. The following results, which relate the characteristics of the development relation used to the induced
balanced consistency, are also easily obtained:-

Proposition 14
(i) If dv is reflexive, then X; dv Xo = X1 Cyp Xo.
(i) If dv is symmetric and transitive then X; Cy, Xo = X1 dv Xo.

Proof

(i) Assume X7 dv X»; from reflexivity of dv we get X is the required common development.

(ii) Assume 3X s.t. X dv X; A X dv Xs; then from symmetry X; dv X and from transitivity X; dv X, as
required. O

Corollary 3
If dv is an equivalence relation, then for all descriptions in ft, dv = Cy,.

LOTOS Illustration 3 Corollary & can be used immediately to obtain the following results for basic LOTOS:-

Proposition 15
(i) Cie =te; (ii) Co =~; and (iii) Cx ==.

This result completes our relating of basic LOTOS development relations to consistency and along with propositions
7, 9 and 10, shows that all the main basic LOTOS development relations can be embraced by our interpretation
of consistency.

In addition, this relationship between equivalence and consistency can be used to give us:

Proposition 16
C. C Oy C Cie C Cxes-

Proof
C. C Cy C Cie come directly from propositions 15 and 2. In addition, from proposition 2 we can determine that
Cte C cs and since proposition 10 gives us cs= Cxcs we are done. O
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ODP Illustration 2 However, as might be expected, equivalence based balanced consistency yields a check that
is generally overly restrictive. For example, considering again our ODP viewpoints illustration, Eng is already
related by the equivalence te, the reason for this being that the engineering viewpoint specifies the implementation
mechanisms of the system and is thus, observationally indistinguishable from the implementation itself. However,
if we were to impose the same development relation on other viewpoints we would prevent any implementation
freedom in the viewpoint specification process. For example, the consistency check, Comp Cie Eng certainly does
not hold, because Comp contains a lot of non-determinism (and hence implementation freedom) which is not
reflected in Eng.

4.4.2 Complete Balanced Consistency

We would like to characterise complete consistency in the balanced setting. The following is very straightforward:

Proposition 17
l..n
Given ds C DESy A dv € DEVyy, Ib(ds,dv) #0 < VXq,..., X, €ds, Caq, X; holds.

i.e. if all subsets of ds have a lower bound then all specifications are consistent by dv.

As suggested by proposition 11 a sufficient condition for complete consistency is that a terminal element exists.
Since for balanced consistency we only have one development relation this terminal element is a bottom element
for the one development ordering.

Proposition 18
t(ds,dv) # 0 = VXq,.., Xp €ds, Cqp(X1,..., X)) holds.

LOTOS Illustration 4 The following result is a simple instantiation of our general theory for the LOTOS
development relations.

Proposition 19
VPy, P, € DESpusicroros, (i) Py C<,. Py; (i) Py Coxt Po; and  (iii) Py Ceont Ps.

Proof

We have that, up to equivalence:

(i) t(DESpasicLoTos, <ir) = {stop};

(ii) t(DESpusicroTos, ext) = {w} (w was introduced in LOTOS illustration 2); and

(iii) t(DESpusicoros,conf) = {w}. O

Corollary 4
Cgtr = ext — Oconf = true
where true is the universal relation over DESyusicLOTOS -

Thus, these instantiations of consistency are very weak and are unable to distinguish any specifications. In other
words, when <., ext or conf is the chosen development relation, there is no need for a consistency check.

We illustrate the second case, (ii), of proposition 19 with some examples in figure 6. The following properties
hold:-

P € Z/[ext(ljla-P2)’ Q € Z/[ext(QlaQ2)} QI g Z/[ext(QlaQ2)’ R € Z/[ext(-Rla-RZ) and RI gz/{ext(RlaR2)

Notice that (b) shows that Uext must not introduce new non-determinism, e.g. Q is a unification, but Q' is not
as it may refuse either d or e after performing a and Q1 cannot refuse d after a and Q> cannot refuse e after a.
Additionally, (c¢) shows that unification may limit non-determinism. Specifically, R is a unification, but R' is not
as it can refuse everything after the empty trace, while Ry must offer either a or c.

However, other instantiations of consistency are distinguishing:

Proposition 20
Crea C true.

20



Figure 6: Unification by extension examples

Proof
We simply need to exhibit a pair of specifications that are not consistent. Py := a;stop and Py := b; stop which
were discussed in LOTOS illustration 2 are sufficient. a

Thus, Crea s strictly stronger than C<,,, Cext and Ceont. Consider the exzamples in figure 7. The following
properties hold:-

z/[1'ed(1317-P2) - @, Q € z/{red(c217 Q2) and R2 € Z/{red(Rla R2)

ODP Illustration 3 We can also illustrate these classes of balanced binary consistency in terms of our running
ODP viewpoints example. If, for example, we consider the two viewpoint specifications Comp and Eng and relate
them using first Coons and then C<,, (which are “parts” of the full binary consistency check that we are interested
in between these viewpoints, which is Crea te®) then by proposition 19 (i) and (iii) we have automatically that,

Comp Ceont Eng and Comp C<,, Eng

However, the use here of the term “parts” is somewhat loaded because as proposition 20 suggests even though for
arbitrary Py and P> we automatically have that,

P1 Cconfp2 and P1 CS” P2

it does not follow that Py Creq P> even though the relations underlying red are conf and <;.. The problem is
that the non-empty unification sets Ucone(P1, P2) and U<,, (P1, P>) that enable Py Ccons P> respectively Py C<,, P»
to hold, may not intersect, i.e. Py and P> may have common implementations by conf and <y, respectively, but
these implementations may not coincide.

In fact, this very situation does arise with our ODP viewpoints example. As just stated Comp Ceont Eng
and Comp C<,, Eng hold automatically, however, Comp Crea Eng actually fails to hold", which we can justify as
follows:

6Remember, red=confn <¢r and te=redn red—1.

"Furthermore, checking Eng according to red is enough to ensure te since because Eng is completely deterministic any reduction
of Eng will also be testing equivalent to Eng. Consequently our analysis here will show us exactly the relationship we are interested
in for Eng.
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Figure 7: Unification by reduction, examples

e Eng can perform the trace request_id request_id , say, i.e. it can perform two requests before performing
a transmission. This possibility arises from the concurreny in Eng whereby the request handler and IO
handler evolve concurrently and the request handler can receive a second request before the first request has
been serviced by the IO handler. In fact, since Eng is completely deterministic the situation is somewhat
stronger as Eng cannot refuse the second request. Thus, all reductions of Eng must be able to perform the
trace request_id request_id' .

e Comp cannot perform the trace request_id request_id . This is because each request is followed by a trans-
mission before the next request is offered. Furthermore, since red does not allow new traces to be added the
trace request_id request_id cannot be performed by any reduction of Comp.

e Thus, any reduction of Eng must be able to perform request_id request_id', however no reduction of Comp
can perform this trace!

4.4.3 Bringing Together the LOTOS Balanced Consistency Relations

Because balanced consistency is relatively well behaved (compared to the other classes of consistency) we can
give a complete characterisation of binary balanced consistency for basic LOTOS. This subsection performs this
task by characterising the remaining basic LOTOS binary balanced consistency relation C¢s and summarising
the complete set of basic LOTOS balanced consistency relations.

If we can show that Ccg is stronger than Creq then we will have an upper bound on the strength of Ces. We
need a lemma first.

Lemma 1

Pl Ocs P2 == VP GZ/{CSP1P2, Vo € TT'(P) ﬂT’I“(Pl) ﬁT’I“(P2), Ref(P,a) = Ref(Pl,a) :Ref(Pg,U).

Proof
Assume o € Tr(P)NTr(Py)NTr(Py) then (as a direct consequence of the definition of ¢s) from P ¢s P; we can
get Ref(P,0) = Ref(Py,0) and from P cs P> we get Ref(P,0) = Ref(P»,0) and the result follows directly. O

Proposition 21
Cred z C’1':5

Proof
We show that P; and P, exist such that P; Crea P2, but =(P; Ces P»). Consider P := a;b; stop[|a; stop and
P, := a; b; stop. Now P, Creq P>, because P, can act as the required common reduction.
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We argue by contradiction that —(P; Ces P2). So, assume P is such that P e¢s P; and P cs P». Firstly, P
must be able to perform the trace a, because if a & Tr(P) then {a} C Ref(P,¢), but since {a} € Ref(Ps,¢) this
implies that Ref(P,e) Z Ref(Ps,€) and —(P conf P»).

So, we assume a € T'r(P), hence a € Tr(P)NTr(Py) NTr(P.) and we can apply lemma 1 which implies that
Ref(P,a) = Ref(P1,a) = Ref(P5,a). But this cannot be the case as {b} C Ref(P1,a) and {b} € Ref(P>,a) so
Ref(Pi,a) # Ref(Ps,a); which gives us the required contradiction and implies that such a P does not exist. O

So, C¢s is not weaker than Cyeq. Using the following small result we will be able to further clarify the relationship
between Ces and Cred-

Lemma 2
P is deterministic (in the usual sense) = (Vo € Tr(P), a € out(P,0) <= —-3X € Ref(P,0) . a € X).

Proof
Standard from theory of LOTOS. m|

This result states that for a deterministic process an action cannot be both offered and refused. Thus, a fully
deterministic process is characterised by its traces only.

Proposition 22
Ocs g Cred-

Proof

Assume P, Ces P, i.e. dP sit. P cs P N P c¢s P,. Now construct P’ as the fully deterministic process
characterised by:

Tr(P") =Tr(P)NTr(P)NTr(Ps)

Noting from this construction that Tr(P') C Tr(P;),Tr(P:) and from lemma 1 that Vo € Tr(P'), Ref(P, o) =
Ref(P1,0) = Ref(P2,0). In order to show that P’ is the required common reduction of P; and P, we need
to show that Vo € Tr(P'), Ref(P',0) C Ref(Pi,0), Ref(Ps,0). This is enough because any o' € Tr(P;) U
Tr(P2) s.it. o' € Tr(P') will give Ref(P’',0') =, which trivially gives us the required refusals relationship.

We argue by contradiction that Yo € Tr(P'), Ref(P',0) C Ref(Pi,0),Ref(Py,0). So, assume Jo €
Tr(P') s.t. Ref(P',0) D (Ref(Pi,0) = Ref(Ps,0) = Ref(P,0)). Thus, 3{a} € (Ref(Pi,0) = Ref(Ps,0) =
Ref(P,o)), such that {a} € Ref(P',0). From here we can use lemma 2 to get a & out(P',o), but it must
also be the case that a € out(Py,0),out(Ps, o), out(P, o) and thus we have a contradiction as the trace o.a is in
Tr(P)NTr(P)NTr(P). So, it must be the case that Ref(P',0) C Ref(Py,0), Ref(Ps,0) and P’ red P; and
P’ red P» as required. a

Corollary 5
Ccs C C’I'ed-

Proof
From propositions 21 and 22.

Thus, Ces is strictly stronger than Cyreqa. In addition, we can show that Ceg is strictly weaker than Cxcs, as
follows:

Proposition 23
CXCS C OCS'

Proof
Firstly, proposition 10 gives us cs= Cxcs- Then we can argue as follows to give us e¢sC Ces:-

Firstly, P, ¢cs P, = P; C.s P>, follows immediately from the reflexivity of cs, i.e. either of P; or P> could
act as the required common cs-development.

In addition, we can provide a counterexample to show that, Ccs € cs. Consider, Py := i;a; stop[]b; c; stop,
Py := i;a;stop[]b; stop and P := i;a;stop. Now, P c¢s P, and P cs P, but =(P; c¢s P2). This is because
(P, conf P;) as P refuses ¢ after the trace b, but P; cannot refuse ¢ after the same trace. O

The relationship between the different interpretations of consistency are shown in figure 8. These instantiations
present us with a number of possible interpretations of consistency in LOTOS. This situation reflects our view
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= true

C<y “Cext = Coont

Figure 8: LOTOS Binary Consistency Relations

that consistency checking must be performed selectively, as was discussed in some depth in [15]. In particular, it
is inappropriate to view consistency checking as a single mechanism which can be applied to any pair of specifi-
cations. For example, it would be inappropriate to check two specifications which express exactly corresponding
functionality with Cext-

4.4.4 Bringing Together the ODP Example

We can now bring together the consistency checking relationships that we have highlighted concerning our ODP
viewpoints example. We have the following pair-wise consistency relationships between viewpoints:-

o Perm Cred,ext Obl1 holds. For example, Obl! is a unification.
o Perm Creq,<,, Obl2 holds. For example, Obl2 is a unification.

e Perm Creq Comp holds. For example, with F' = F — { request }, the process,

C := i; request?z:ID'; (choice beF' [] i; blx; C)
[] (choice beF' [] i; bldef; C)

is a reduction of Perm and of Comp. Thus, the Perm viewpoint has specialized the behaviour of Comp to
only offer audio and video transmission.

o Perm Cred te Eng holds. For example, Eng is a unification.
o Obl1 Cext,<,, ObI2 holds. For example, Obl1 is a unification.
® Obl1 Cext rea Comp holds. For example, the process,
D := i; request?x:ID'; (choice beH [] i; blx; D)

is an extension of Obl1 and a reduction of Comp. Thus, the obligation has specialised the computational
viewpoint, by preventing it from transmitting with the default identifier immediately.
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e Obl1 Cext te g holds. For example, Eng is a unification.
e Obl2C<,, rea Comp holds. For example, the process,
E := i request?z:ID'; (choice beF' [] i; blx; E)

is a trace refinement of Obl2 and a reduction of Comp. Thus, Obl2 specialises Comp, by preventing it from
transmitting with the default identifier and to ensure it only transmits on video and audio links.

e Obl2C<,, te Eng does not hold for similar reasons to those that we discussed in section 4.4.2 for why
Comp Creq Eng does not hold, i.e. Eng cannot refuse a second request after performing an initial request,
while no trace refinement of Obl2 can perform consecutive requests.

o Comp Crea,te Eng does not hold for the reason identified in section 4.4.2 and just highlighted again.

As previously discussed, the basic problem with the engineering specification is that it allows a second request
to be made before the previous request has been matched to a transmission. The inconsistency this yields with
regard to Obl2 and Comp can be resolved by adding another synchronisation between the two components of the
engineering specification (the same channel can be used for both):

NewEng := hide channel in RH |[channel]| IOH
RH := request?z:ID'; channellr; channellr; RH
IOH := channel?z:ID'; (transAlz; channellz; IOH [] transV!z; channellz; IOH)

with such a synchronisation in place the request handler will refuse the second request until the previous request
has been matched to a transmission. This new engineering specification is consistent with all the other viewpoints,
i.e.

Perm Cred,te NewEng, Obll Cext te NewEng, Obl2C<,, te NewEng, and Comp Cred te NewEng,

all hold, with in each case NewEng itself being an example unification.

The reader should notice that what has happened here is a nice example of what, in the introduction to this
paper, we called fluid system development, i.e. the viewpoints specifications have evolved independently and then
a consistency check has revealed an inconsistency between the viewpoints which has prompted adaptation of a
particular viewpoint, here the engineering viewpoint.

However, there is still one important remaining issue with this example - are the viewpoints “globally” consis-
tent? Notice that we have only checked pairwise between viewpoints, but does such pairwise consistency ensure
global consistency? This is one of the issues that we will consider in section 5.

4.5 Inter Language Consistency

The basic definition of consistency that we presented in section 4.1 enables descriptions in different formal tech-
niques to be related and thus supports inter language consistency. In this circumstance the unification sought
would be a description in a common notation, e.g. a semantic notation that can represent the formal techniques
of both the original descriptions. An inter language consistency check (assuming type correctness) between
descriptions in n formal techniques, fti, ..., ft,, will typically have the following form:

C(dvy o [];,X1)....(dvp o [],,, X»n) where,
X; € DESye, ;5 pe([1;) SDESy:, 5 pi([];) CDESy ;5 and  dv; € intraDEVy;.

Thus, ft is the common notation, i.e. a unification of X1, .., X,, would be in ft. Each description is related to
the common model by a semantic map, [];, which, in effect, translates into the common notation (this is the
realisation of the ODP notion of translation, see figure 3) and then an intra language development relation, dv;,
is applied in the common notation.

Ilustration 3 [25] defines a translation of LOTOS into Z, which we will denote 8:

8We adopt the unconventional function typing notation, f : S’ < S, in order that functional relations reflect the order we have
adopted for development relations, the order of which has been chosen to reflect the standard orientation of LOTOS relations
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[lz<r : DESz + DESroros
A typical consistency check that we can perform with this semantic map is:
C(Eo[lycr,P)E,S) for C€intraDEVy, P € DESroros and S € DESz

Notice in this inter language consistency check the formal notation Z is used as the common notation.

The translation [, probably seems an unlikely construction to some readers. So, we will say more about this
map and its theoretical justification. The theoretical foundations for [ ], are two semantics, [];, € SEMroros
and [[], € SEMz, which are typed as follows:

[[]]L : DESETS — DESLOTOS and [[]]Z : DESETS «— DESZ

where ETS is an extended transition system semantic notation; the extension ensures that the transition system
generated is finite state [53]. The semantic map []|; is relatively standard, apart from the extension mechanism,
for details see [53] [25]. However, the mapping [],; is more unusual. The basics of the mapping are as follows
(details can be found in [25]):

e 7 operations become actions in the transition system.

e The order in which actions are offered is determined by analysing how Z operations become enabled according
to pre and postconditions of operation schemas.

e 7 data state is handled symbolically in the ETS, in particular, transitions have associated symbolic data
effects.

e The initial state schema of Z specifications is mapped to the initial state of the ETS.

[1, and [], are taken as given semantics in defining [],_,. The correctness of the translation is guaranteed
because [[] ;. satisfies:

VP € DESrotos - [Pl =ers [[Plz<r]2

where ~prg is weak bisimulation on Extended Transition Systems. Thus, translating any LOTOS process into
7 (using [ ;1) and then taking the ETS semantics (using [] ) is observationally equivalent to taking the ETS
semantics (using [, ) of the LOTOS process. This is a strong justification for [], ., as it ensures that (according
to the given semantics) translation preserves a strong notion of behavioural equivalence.

Our interpretation of consistency prompts the question: what constitutes a reasonable cross language development
relation. Specifically, we would actually like to know that the cross language development relation reflects, in
some reasonable sense, a development relation from the source language. Although it is not correctly typed,
conceptually, a specifier would like to make consistency checks such as:

C(red, P)(C,S)

i.e. the specifier wants to know that an implementation can be found which is a reduction of P and a Z refinement
of S. We would like to replace this check with a type correct check such as

Cldvo ], P)(E,S)

where dv, in some sense, corresponds to red.

Thus, we would like to relate the development relations of a particular language to the cross language devel-
opment relations that we use. In order to do this we introduce the notion of development relations in different
notations correlating under certain conditions.

Definition 17 (Correlation between relations) Given formal techniques ft, ft' € FT, dv € DEV}; and a
semantic map [ : ft' < ft (i.e. [] translates from ft to ft') then dv' correlates to dv, written dv' < dv iff
le,XQ € DESft,Xl dv Xy <— [[Xl]] dv’ [[XQ]]
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The left to right implication, VXi,Xs € DESy;, X1 dv Xo = [Xi]] dv' [X:]), ensures that any development
in ft has a corresponding development in f#'. The right to left implication, VX1,Xs € DES;, X1 dv Xy <
[X1] dv" [X2]], ensures that ft' does not add new developments. Thus, it prevents unifications being found in
ft' which do not correspond to developments in ft.

In fact, a body of work now exists on relating behavioural, e.g. LOTOS and state based, e.g. Z, development
relations and this work has been summarised and extended in [12]. In particular, behavioural relations which
correlate to state based relations (when state based specifications are interpreted behaviourally according to
mappings like, [[];) can be located. For example, [12] show that the most common interpretation of Z refinement
(downward simulation - to give it its precise name) correlates to ready simulation testing over the induced labelled
transition system. These results give an important link between the state based and behavioural worlds which
make feasible inter-language consistency checking.

In addition, a substantial case study in consistency checking has been presented in [5]. This case study
concerns the signalling system no. 7 protocol [51]. The protocol is described from multiple viewpoints and then
the viewpoints are checked for consistency. Importantly, since both LOTOS and Z are used in these viewpoint
specifications, inter lanuage consistency checks are employed in the style of those just discussed.

A similar translation from LOTOS to Object-Z has also been defined [21, 22]. This is a direct translation
which is also structure preserving in that LOTOS syntactic operators are mapped directly to equivalent Object-Z
syntactic operators. The common semantic model that verifies this translation is the standard (labelled transition)
semantics of Object-Z into which the semantics of LOTOS is embedded.

4.6 Summary and Discussion

This section has highlighted a general interpretation of consistency, identified the basic properties of the defi-
nition and located a number of specific classes of consistency. Our interpretation of consistency, C', meets the
requirements for a definition of consistency that we highlighted earlier, in the following ways:

e Different development relations can be instantiated which are appropriate both to different FDTs and to
assessing different forms of consistency.

e Both intra and inter language consistency are incorporated.

e Consistency checking between an arbitrary number of descriptions can be supported and checked according
to a list of development relations. Binary consistency is just a special case of this global consistency.

e Both balanced and unbalanced consistency are incorporated.

In its fully general form it is very difficult to characterise properties of our interpretation of consistency, it is
too general. However, by restricting to particular classes of consistency, characterisations can be investigated.
We have located the following classes: binary consistency, complete consistency, balanced consistency and inter
language consistency.

Throughout we have illustrated our general notion of consistency using LOTOS. In particular, section 4.4.3
contained a complete characterisation of binary balanced consistency for basic LOTOS.

It should also be pointed out that elsewhere we have assessed the generality of our definition of consistency
by showing that other interpretations of consistency can be embraced by our definition. In particular, [16] has
shown that the three previously proposed alternatives for ODP consistency can be embraced by our interpretation.
These three alternatives are consistency in terms of locating a common conformant implementation, consistency
according to behavioural compatibility and consistency as freedom from logical contradiction. Thus, there is
strong evidence that the interpretation of consistency described here is general enough to fully support consistency
checking of ODP viewpoints.

5 Basic Strategies for Consistency Checking

So far in this paper we have viewed a group of descriptions X, X, ..., X, as consistent if their set of possible

l..n
unifications i/ (dv;, X;) is non-empty. However unification sets can be very large and even infinite. Thus, if a
system development trajectory is to be provided for viewpoint models it is important that the choice of possible
unifications is reduced. In fact, we would like to select just one description from the set of unifications. This
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Figure 9: Pairwise Consistency Counterexample

would enable an incremental consistency checking strategy in which a group of viewpoints are unified and then
this unification is further composed with another group of viewpoints.

The advantages of such incremental consistency checking strategies are that they do not force the involve-
ment of all viewpoints in every consistency check. In particular, it may be possible to incrementally correct
inconsistencies. In addition, such an approach will aid maintaining structure when unifying. One of the main
problems with unification algorithms is that the generated unification is almost certain to be devoid of high level
specification structure [49] (e.g. the LOTOS parallel composition operator, |[ ]|, would be expanded out). This
is a big problem if the unification is to be further developed. It is very unlikely that a single unification of a
large group of viewpoints will be able to reconcile the structure of all the views, however, an incremental focus of
restructuring may be possible.

We must then consider how to obtain global consistency from a series of non-global (probably binary) consis-
tency checks and unifications. This topic is what we consider now. Transitivity and reflexivity of development will
be assumed in this work. These are restrictive assumptions that effectively rule out inter language consistency
checking, but are required in order to develop a body of theory. In particular, since the work is investigating
incremental consistency checking it seems reasonable to assume transitivity of development.

This section considers basic strategies for consistency checking. General formats for binary consistency check-
ing are considered in section 5.1 and the central issue of least developed unification is discussed in 5.2. These
basic strategies will be used in later sections when we consider the properties required in order to realise a binary
consistency checking strategy.

5.1 Binary Consistency Checking Strategies

We would like to obtain global consistency through a series of binary consistency checks. Firstly, we must observe
that we cannot assert consistency between three or more descriptions by performing a series of pairwise consistency
checks, where pairwise consistency means binary consistency holds between all possible pairings of descriptions.
As an illustration consider the three specifications, Sy, Se and S3 shown in figure 9. These are balanced pairwise
consistent by reduction, since, Ty € Ured(S1,S52), To € Ureda(S2,S3) and T3 € Urea(S1,S3); but, they are not
globally consistent, i.e. =Cyed(S1, 52, S3)-

The problem is that pairwise consistency only requires the existence of a common development for each of the
constituent binary checks. Thus, many binary consistency results may exist each of which focuses on a different
common development. This is not sufficient to induce “global” consistency which requires the existence of a single
common development.

We can illustrate this issue with our ODP example. In fact, the viewpoint specifications we have given, Perm,
Obl1, Obl2, Comp and NewEng are both exhaustively pairwise consistent and globally consistent. The latter can
be seen from the fact that NewEng is a unification of all the viewpoints. However, we could imagine a slightly
different example where the problem would arise.

Imagine, for example, that in addition to the transmission media to be found in set H, which were,

H = {transA, transV , transTy , ..., transT,, }

28



there was a further media type, say,
trans X

which is not used in Comp and we have the two permissions:

PermA := (choice be { request, transA, transX} [] i; b%z:ID; PermA) [] i; stop
and

PermB := (choice be { request, transV, transX} [] i; b2x:ID; PermB) [] i; stop
then, PermA Creq PermB, since,

P1 := (choice be { request, transX} [] i; b%z:ID; P1) [] i; stop
is a unification. Also, PermA Clreq Comp holds because,

P2 := i; request?z:ID'; transAlz; P2
[] i; transAldef; P2

is a unification. Finally, PermB Cyeq Comp holds because,

P8 := i; request?r:ID'; transV!x; P3
[] i; transV!def; P3

is a unification. However, Cyrea (PermA, PermB, Comp) does not hold, because the intersection of the sets of
transmission types that they can perform is empty.

However, a combination of binary consistency checks and binary unification of the form shown in figure 10
should intuitively allow us to deduce global consistency, i.e. X; and X» are checked for consistency, then a
unification of X; and X5 is obtained, which is checked for consistency against X3, then a unification of X3 and
the previous unification is performed. This process is continued through the n viewpoint descriptions. Thus, the
base case is a binary consistency check and then repeated unification and binary consistency checks are performed
against the next description. Of course, this is just one possible sequence of binary consistency checks. We would
like to obtain full associativity results which support any appropriate incremental consistency checking strategy.

A more precise depiction of such an incremental consistency checking strategy is presented in figure 11 which
highlights the n = 4 case. The binary unification function is denoted:

U : (DEV x DES) x (DEV x DES) — DES

i.e. two pairs (each comprising a development relation and a description) are taken and a description is returned.

So, each step in the algorithm considers a unification using the binary unification function U. The ith step
is satisfied if a unification Y; is generated by U which can be used to satisfy the i + 1st step. Importantly
such an approach generalises corresponding balanced consistency checking strategies by taking the intersection of
development relations; this ensures that the final unification (using transitivity of development) is a development
(by appropriate development relations) of all the original descriptions.

However, we must be careful over the choice of unification. Specifically, an arbitrary description from the
unification set will not always be satisfactory. We highlight such a situation in the following illustration.

Ilustration 4 Consider the three basic LOTOS specifications,
Py := a; b; stop[a; c; stop, Py := a; b; stopl|a; c; stop[]a; d; stop and Ps := a; c; stop

Further consider the consistency check CreaP1 PoPs. The three specifications are consistent by reduction since
Ps is a reduction of all three specifications. However, if we attempt a binary consistency checking algorithm and
started with P, and P> we may choose as the unification of these two the process P := a;b; stop, and CreqPPs
does not hold.

We can also demonstrate the problem in the context of our ODP viewpoints illustration. For example, the
process stop is in the unification set of Perm and Obl2. However, stop cannot be related to any of the other
viewpoints by red (=redN <., i.e. the intersection of Perm and Obl2’s development relations). Thus, if stop is
taken as the unification of Perm and ObI2 then the incremental global consistency check will be compromised.
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Figure 10: Binary Consistency Algorithm

In response to this observation we seek the unification that has been developed the least, i.e. the one that is
most abstract and is, in terms of development, closest to the original descriptions. In the above example this will
give the required result: P; itself is the least reduced unification, up to testing equivalence, of P; and P,. The
issue is that we could choose a unification of two descriptions that is too developed to be reconciled with a third
description, while a less developed unification that could be reconciled, exists. We will consider the issue of least
developed unifications next.

5.2 Least Developed Unifications

In traditional single threaded (waterfall) models of system development the issue of least development does not
arise. This is because, assuming development is a preorder, each description is a least development of itself.
Unfortunately, the situation is not so straightforward when we generalise to viewpoints and must reconcile the
development trajectory of more than one description.

First our interpretation of least developed unification ®. We assume dv;, 1 < i < n, are preorders.

Definition 18 (Least Developed Unification)

X e lz;'ln(dvi,Xi) is a least developed umﬁcatwn iff VX' e L[ Ndvi, X)) . X! Ado; X,
where ﬂdvi is a shorthand for dv, N ... N dv,.

This definition ensures that all unifications are a development of X. Notice the interpretation of development,
that X and X' are related by dvy N ... N dv,, i.e. the set of unifications is ordered by the intersection of the
development relations used in unification. This is a natural interpretation since all descriptions in the unification
set are developments of the least developed unification by all relevant development relations. Also notice that
the least developed unification is unique (By a clarification of what we mean by uniqueness, here we are talking
about uniqueness up to equivalence, where equivalence is interpreted as <(q4y,n...ndv,) for dvi, ..., dv, the relevant
development relations.).

Unfortunately, for inter language consistency, the least developed of the set of unifications is a problematic

1..n
concept. Specifically, descriptions in the unification set, 1/ (dv;, X;), are likely to be in a different notation from
X1, ..., Xp; thus it is unlikely that the unifications can be related in a type correct manner using dv; N .. N dvy,.

9We should point out that the terminology that we use here is slightly different to that which we have used in earlier work. For
example, in [16] least unification has a more general meaning than it does here. We now believe that the definition given here leads
to a more intuitive exposition of the concepts.
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Figure 11: A Global Consistency Checking Algorithm

Thus, this definition and the remaining theory is only applicable to intra language consistency. Ongoing work is
addressing generalisation of least developed unification to the inter language setting.

It should also be emphasized that there is nothing in the nature of development to ensure that a least developed
unification exists and absence of a least developed unification is a big problem; elsewhere we have considered how
to obtain global consistency from binary consistency checking in this situation [10]. This work has shown that
as long as all infinite chains in the unification set are bounded incremental consistency checking can be obtained.
However, this is only obtained by considering a set of candidate unifications at each stage in the consistency
checking algorithm. For all practical purposes checking against, an admittedly finite, but possibly very large set
of candidate unifications, is not feasible. As a reflection of this fact, we will not consider this class of consistency
further here; we refer the interested reader to the theoretical results to be found in [10].

The next section seeks to clarify under what circumstances a least developed unification will exist in the
general case of unbalanced consistency. Then section 7 will consider the same issue in the more restricted
setting of balanced consistency. In both sections, particular LOTOS consistency checks are considered by way of
illustration.

6 Least Developed Unification and Unbalanced Consistency

A least developed unification is a greatest element in the unification set ([10] considers this perspective in some
depth). It is well known that greatest elements of partially ordered sets are unique up to equivalence. Thus, we
can determine least developed unifications using the following function:

Notation 1

1.n n
If it exists we denote the least developed unification as lu( U (dvi, X;),Ndv;). This function returns L if there is
no least developed unification.

It is worth pointing out again that we are considering uniqueness up to equivalence. Thus, {u(S,dv) is the choice
function from the relevant equivalence class, such a function existing by the axiom of choice. In order to simplify

1..n
notation we will often write the least developed unification as lu (dv;, X;) or lu(dvy, X1)...(dv,, X,).
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We will also use the following simple result.

Proposition 24
Y =lu(dv, X)(dv', X") A Y' = lu(dv, X)(dv', X")(dv", X") = Y'dvndv' Y.

Proof
Clearly, Y’ € U(dv, X)(dv', X")(dv", X""), but we can use corollary 1 to get Y' € U(dv, X)(dv',X") and by the
definition of lu we have Y’/ dvNdv' Y, as required. |

We are now in a position to relate binary consistency strategies to global consistency. In order to express
the associativity result we require we consider a function § which is derived from lu. The function returns
a pair, with first element the intersection of the development relations considered and second element the least
developed unification. Notice a bottom element is returned as least developed unification if either a least developed
unification does not exist or one of the descriptions given as an argument is undefined.

Definition 19
B(dv, X)(dv', X") = (dv N dv',Y)
where
fX =L VX =L Viu(dv, X)(dv,X"Y=1 thenY =1
otherwise Y = lu(dv, X)(dv', X').

We will prove associativity of 8 by relating the two possible binary bracketings of 8 to lu(dv, X)(dv', X")(dv", X").

Proposition 25

r(B(dv, X)(B(dv', X')(dv", X"))) Zdumdter Tu(dv, X)(do', X') (dv", X") and,
r(B(B(dv, X)(dv', X"))(dv", X")) <gundvnde lu(dv, X)(dv', X")(dv", X"")

where, r is the right projection function, which yields the second element of a pair.

Proof
See [10]. O

Now if we define equality pairwise as,
(dv, X) = (dv', X") iff dv =dv" N X <gpnge X'
the following result is straightforward.

Corollary 6
Bldv, X)(B(dv", X")(dv", X")) = B(B(dv, X)(dv', X"))(dv", X")

Proof
Follows immediately from previous two results, propositions 25 and 25. O

This is a full associativity result which gives us that any bracketing of 8(dvy, X1), ..., (dv,, X,,) is equal. Since 3
is just an alternative coding of [u that facilitates clarity of expression, we have full associativity of lu and that a
consistency strategy using lu can be composed of any order of binary consistency checks. So, if least developed
unifications exist, we can obtain global consistency from any appropriate series of binary consistency checks. This
is an important result that arises from a well behaved class of unification.

The next question to ask is what conditions can we impose on development in order to obtain the existence
of a least developed unification? The following property will certainly do.

Property 1 An FDT, ft, satisfies property 1 iff,
1..n

VXy,..,X, € DESft A Vduvy,...,dv, € DEVft, (Z,[ (dvi, X;) 75 ) = lu(ll:ln(dvi,Xi),ﬁd’Ui) ;éJ_)

This property ensures that any possible combination of descriptions and development relations in ft will generate
a unification set with a greatest element.
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Figure 12: Unification Set for Unbalanced Consistency

LOTOS Illustration 5 We will consider whether least developed unifications exist for binary combinations of
the three main LOTOS preorders, i.e. C(ext, P)(red, Py), C(ext, P)(<tr, P2) and C (<, P1)(red, Py)

Consistency by ext and red. The following counterexample demonstrates that a least developed unification for
this consistency check does not exist:

P :=stop and Q :=1i;a;stopl]i; b; stop

The unification set, U(ext, P)(red, Q) is shown in figure 12 (identity arrows have not been included). All four of
the unifications, a; stop, b; stop, a; stop[]b; stop and Q, are minimally developed unifications'® but none of them is
less developed according to extNred than all the other three. Thus, P and @) have no least developed unification.
Before we explain why a least developed unification can not always be found, we first note that for all P, and
P, U(ext, Py)(red, Py) will be empty (i.e Py and Py will not be consistent) unless the following condition holds.

(%) Tr(P) CTr(P,)

If the traces of Py are not a subset of the traces of P> then extension of Pi and reduction of P> can not be
reconciled.
Thus, assuming (%) the unification that we require must at least satisfy:

Tr(U..(ext, P)(red, P,)) D Tr(P) A Tr(Ue.(ext,P)(red, P)) C Tr(Py)

where we have denoted the required binary unification function as U.,.. However, this leaves too much flexibility
in the choice of unification. We could choose the traces of the selected unification to be equal to the traces of Py
or the traces of Py or to be somewhere between the two. Any of these options would enable unification, but none
would realise a least developed unification.

Consistency by ext and trace preorder. A least developed unification does not in general exist here either.
An argument similar to that just made can be given.

Consistency by trace preorder and red. Consider the unification function Uy, (<4, P)(red, Q) characterised
by the following trace refusal properties,

Tr(Upy(Ztry P)(red, Q) = Tr(P)NTr(Q) A
Vo € Tr(P)NTr(Q), Ref(Ut(<ir, P)(red,Q),0) = Ref(Q,0)

l..n n
10A minimally developed unification, X, satisfies the following property: —(3X' € { (dvi,X;) . X Ndv; X'). The existence
of minimally developed unifications does not imply the existence of least developed unifications. However, the other direction of
implication does hold. Thus, least developed unification is a strictly stronger concept than minimally developed unification.
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which, if it exists, can be used to derive a LOTOS process that is unique up to equivalence and is a least developed
unification, proof of this fact is presented in the appendiz, proposition 27. The issue of existence is actually
crucial. Specifically, the above properties may not always characterise a “well formed” LOTOS process. For
example, unification of the LOTOS processes Py := a; stop and Py := b; stop will require that,

Tr(Us(Str, Pr)(red, 2)) = {e} A
Ref (U (L4, Pr)(red, Py),€) = {0,{a}} (assuming £ = {a,b})

which implies that after the empty trace no actions are offered (as € is the only trace) and b is not refused. Clearly,
b not being offered implies it should be refused and no LOTOS process can realise these properties. [41] locates a
set of conditions that characterise when a trace/refusal pair is well formed, in the sense that it can be realised as
a LOTOS process. Up-(<tr, Pr)(red, Py) will fail condition (f) on page 72 of [41]. It is beyond the scope of this
paper to present these conditions here.

Importantly though, it can be shown that:

VP,Q € DESLoros, Utr(<tr, P)(red, Q) is well formed if and only if C (<4, P)(red, Q)

Thus, an approach to consistency checking LOTOS specifications is to unify specifications and then consider
whether the unification is well formed. This is an alternative to the approach in [49] where conditions are high-
lighted which can be checked to show that specifications are consistent and a unification is only derived once it is
known that one ezists.

7 Strategies for Checking Balanced Consistency

The majority of work on consistency to be found in the literature has addressed restricted classes of consistency;
to date, balanced consistency has almost exclusively been focused on. So, what in this restricted setting, enables
us to obtain global consistency from binary consistency? We would like to locate a specialization of the existence
of least developed unifications. As might be expected, the greatest lower bound gives us this specialization. The
property that we require for balanced consistency checking to be performed incrementally is:

Property 2
V{X1,...,Xn} CDESf; A VYdv € DEVy, Ib({Xq1,..., Xp},dv) #0 = glb({X1,..., X, },dv) # 0.

This property ensures that if a lower bound exists then a greatest lower bound can be found, i.e. the unification of
X4, ..., X, is non-empty implies a least developed unification exists. It is clear from the theory of least developed
unifications we have presented and from set theory that taking greatest lower bounds is associative, i.e.

glb({glb({ X1, X2}, dv), X3}, dv) gy glb({ X1, glb({ X2, X3}, dv)}, dv)

and can thus be used to derive global consistency from binary consistency. In order to simplify notation here we
have assumed that glb returns an arbitrary element from the equivalence class of its results. With these concepts
we can identify what is the most well behaved class of development.

Definition 20 (DESy;,dv) is cocomplete iff VS C DESy;, glb(S,dv) # 0.

Cocompleteness is a dual concept to that of a complete partial order (see for example [44]) which considers
the existence of least upper bounds as opposed to greatest lower bounds. If development is cocomplete for a
particular FDT according to a development relation, then all specifications are balanced consistent and we can
adopt any relevant incremental unification strategy. All descriptions are consistent since a lower bound exists for
all collections of descriptions and incremental unification is well behaved since least developed unifications always
exist,.

LOTOS lustration 6 We will consider in turn the consistency checks: Crea, Cext and C<,.. The work
presented here is closely related to that considered in [{1].

Balanced Consistency by red. Consider the binary unification strateqy Urea PQ characterised by the following
trace/refusal properties:
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Tr(UreaPQ) = Tr(P)NTr(Q) A Vo € Tr(UreaPQ), Ref(UreaPQ,0) = Ref(P,0) N Ref(Q,0)

In the appendiz (proposition 28) we prove that Urea gives the greatest lower bound. If it exists, Urea is unique up
to testing equivalence. In addition, in a similar way to U, Ured does not always characterise a “well formed”
LOTOS process. This reflects the fact that Crea is not completely consistent. For example, consider P := a; stop
and Q := b; stop, which we have already argued (in proposition 20) are not consistent by reduction. We obtain
that Uyeq @S characterised by,

Tr(UpeaPQ) ={e} A Ref(UpeaPQ,¢)={0} (assuming that L = {a,b})
i.e. Upea PQ is a process that performs no traces and refuses nothing. Once again we obtain that,
VP,Q € DESyusic.oros, CreaPQ holds if and only if Upeq PQ is well formed.

So, this binary unification function enables us to do incremental consistency checking for balanced consistency
according to reduction. But, Crea is not cocomplete as balanced consistency according to reduction is not completely
consistent.

Balanced Consistency by ext. Consider the binary unification strategy, Uext PQ, characterised by the following
trace/refusal properties:

Tr(UextPQ) =Tr(P)UTr(Q) A

Vo € Tr(Uext PQ),
o € Tr(P)NTr(Q) = Ref(UextPQ,0) = Ref(P,0) N Ref(Q,0) A
o € Tr(P) —Tr(Q) = Ref(UextPQ,0) = Ref(P,o) A
o €Tr(Q) — Tr(P) = Ref(UextPQ,0) = Ref(Q, o)

Proposition 29 in the appendiz verifies that this unification function gives the greatest lower bound. Once again
this construction characterises a LOTOS process that is unique up to testing equivalence. In addition, Uext PQ
can be shown to be well founded for all P,QQ € DESp.sicoros. Thus, Uext gives a valid greatest lower bound for
all pairs of specifications and thus balanced consistency by extension is cocomplete.

Balanced Consistency by Trace Preorder. The binary unification strategy,
U<,.PQ : Tr(P)NTr(Q)

is unique up to X<, and can easily be seen to generate the greatest lower bound of any two basic LOTOS processes
P and Q. Thus, since C<,, is completely consistent, we know that balanced consistency according to trace preorder
is cocomplete.

8 Reflection on Consistency in LOTOS

One of our reasons for using LOTOS to illustrate consistency checking is that it offers a spectrum of development
relations. This in particular enables us to illustrate unbalanced consistency within a single language. These
illustrations give a perspective on the bounds of consistency checking for LOTOS.

In summary, all the balanced consistency instantiations turn out to be relatively well behaved. In particular,
least developed unifications exist for all the following checks, C«,,, Cred and Cex¢. In contrast, the unbalanced
consistency situations are not as well behaved: Cx,, rea yields a least developed unification, but Cext,rea and
C<,, ext do not. This is not suprising as the relations, ext and red and ext and <, are so very different.

This leaves us with a difficulty, how can we obtain global consistency from binary consistency when we wish
to extend the functionality of only one of the original specifications. A possible approach to this is to adapt the
original specifications using undefined behaviour and to do away with extension. This is an approach that has
been used elsewhere [11] [40] in order to enable functionality extension in process algebra refinement methods.

To illustrate this approach, consider the following simple specification:

P := a;B[|b; B’
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as it stands P will initially refuse any action other than a or b. In addition, any specification, ) say, that adds
an alternative initial behaviour, e.g.,

Q = Plle; B

would fail to be a reduction of P, since () would add traces to those of P. However, perhaps when we specify P,
we do actually want to allow such addition of functionality. We can obtain this effect and stick with reduction
by adding undefined behaviour to P. Consider the following behaviours:

® := choice x € Act\ {a,b} [] ;0
where,
0 := (choice y € Act [] i;y; Q) [] 4; stop

Now (2 is a completely undefined and unpredictable behaviour; at any state it may non-deterministically decide
to do anything. In addition, Q is at the top of the reduction preorder: anything is a reduction of it.
Now if we adapt P to P’, as follows:

P =4P[®

then a behaviour such as @ would indeed be a reduction of P’.
We can highlight a similar situation in the context of our ODP viewpoints example. In that example, Obl1,
which was defined,

Obl1 := request?z:ID'; stop

is related according to extension. However, we can get the same effect as this if (assuming Act = 7(GG)) we use
the specification,

NewObll := i; request?z:ID'; Q
[] (choice de w(GG-{request}) [] d;

and relate it according to reduction.

The issue is that attempting to apply an action at a state in which it is not offered results in deadlock in
LOTOS (and this prevents adding that action during refinement by reduction), however, we have made its result
undefined (which can be refined by reduction). Such a use of undefined corresponds to the interpretation employed
in pre and postcondition based refinement, such as in Z [47]. In such approaches applying an operation outside
its precondition conceptually corresponds to attempting to perform an action at a state in which it is not offered.
In pre and post-condition approaches such as 7 applying an operation outside its precondition yields undefined
rather than refusal. This is why refinement in Z enables functionality to be extended. However, as we have
illustrated such an effect can be obtained in LOTOS by adding undefinedness explicitly.

[11, 12] considers mechanisms to add undefined behaviour to abstract specifications in a systematic man-
ner. However, in the context of this paper this addition of undefined behaviour is interesting since it enables
functionality extension to be obtained without using extension. Consequently, we can restrict ourselves to the
combinations of preorder refinement: C<, reda and Crea which are more well behaved since they yield least
developed unifications.

9 Related Work

A relatively substantial body of work on viewpoints related approaches to system development now exists. The
majority of this work has considered partial specification in a particular specification notation. Issues such as
unification and consistency checking arise in all these areas of investigation. Typical work on this topic is that
by Wallis et al [2], [1], [3]; Jackson et al [37]; Boiten [6] and Derrick et al [23], [24], [13] for Z; and Leduc [41];
Khendek et al [38], Ichikawa et al [31] and Steen et al [49] for LOTOS. From amongst this body of language
specific work Leduc’s PhD work [41] has most influenced us. In fact, the trace/refusals theory presented here has
grown out of Leduc’s work.

An important body of research that is not language specific is the theory of institutions [28] and application of
the theory to particular specification domains, in particular, by [26] to concurrent systems. However, it is valuable
to relate the set theoretic constructions in this paper to categorical ones found in the theory of institutions:
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The ODP notion of correspondences between viewpoints plays a similar role to morphisms within a diagram
in institutions, i.e. they identify how terms relate in different specifications.

The cocone of a diagram is analogous to our notion of a unification.

The colimit of a diagram is analogous to our notion of a least developed unification.

The categorical and our notion of cocompleteness correspond.

Where the approaches differ is that composition in the institutions setting, e.g. in [26], typically consider compos-
ing components at a single level of system development, it is assumed that underlying models must be cocomplete,
hence inconsistency is ruled out in the constraints imposed on the basic theory. The theory of institutions gener-
alises logical frameworks and hence uses satisfaction, |=, as its core correctness relation, however, our framework
is parameterised on the choice of development relation, which could be one of many relations. Our approach is
prompted by the particular requirements of viewpoints in ODP, as indicated earlier in this paper.

There has now also been some work on specific mechanisms for checking consistency across languages; typical
examples are the work of Zave et al [54] and Derrick et al [25]. The former of these considers a logical intermediary
between languages and all notations are mapped to this intermediary. The latter approach has already been
discussed.

10 Concluding Remarks

This paper has presented a general interpretation of consistency for multiple viewpoint models of system devel-
opment and investigated possible consistency checking strategies. The main original contribution of the paper is
the generality of the theory investigated. We have motivated the need for a general interpretation of consistency
with reference to the requirements of viewpoints modelling in Open Distributed Processing. Our interpretation of
consistency embraces intra and inter language consistency, balanced and unbalanced consistency and both binary
and global consistency.

We have identified the properties of each of the classes of consistency; that we have considered and we have
classified how global consistency can be derived from a series of binary consistency checks. This topic has been
investigated in the past, but only in the context of a restricted class of consistency and this is the first paper
to investigate consistency checking strategies for as general an interpretation of consistency as ours. The main
difference between our theory and earlier work is that we handle unbalanced consistency.

The requirement that a least developed unification always exists was highlighted. If such a least developed
unification does not always exist then incremental consistency checking is realistically impossible, although, we
have considered the theoretical consequences of such a unification not existing elsewhere. We considered the
existence of least developed unifications in both the general case and for balanced consistency. In the latter
setting, the concept of a unification reduces to a lower bound and least developed unification to greatest lower
bound.

Throughput we have illustrated the different varieties of consistency using LOTOS. These illustrations char-
acterise the forms of consistency check that can arise with basic LOTOS. In particular, we have given a complete
classification of the LOTOS balanced consistency relations, see figure 8, and we have highlighted which combi-
nations of LOTOS refinement relations yield a least developed unification. For unbalanced consistency it was
shown that C(ext, P;)(red, P») and C(ext, P;)(<¢, P») do not yield a least developed unification, while a least
developed unification for C (<., P;)(red, P») can always be found. For balanced consistency Crea, Cext and C<,,
all have greatest lower bounds and thus least developed unifications, but only Cext and C<,, are cocomplete.
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Appendix

Results for Section 3.2.7

Proposition 26

(i) <4, red and ext are preorders.

(i) te, ~, and = are equivalences.

(#i) ~C~C te C cs

(iv) conf is reflexive, but neither symmetric nor transitive.

(v) cs is (a) reflexive and (b) symmetric, but (¢) not transitive.

(vi) xcs is a preorder, it is (a) reflexive, (b) not symmetric and (c) transitive.

Proof
(1), (ii) and (iv) are all standard results from the theory of LOTOS and process algebra in general, see for instance
[41], [30] and [45]. However, (iii), (v) and (vi) require some justification.

Proof of (iii). ~C~C te are standard process algebra results. te C cs requires some justification. Firstly, it is
straightforward to see that te C c¢s. In addition, we can provide the two processes P := a; stopl]i; b; stop and
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Q := i;b; stop as counterexamples to justify that cs € te, since P cs @, but —(P te @) as the trace sets of the
two processes are not equal.

Proof of (v). This holds for the following reasons:-

(v.a) This is a consequence of conf being reflexive.

(v.b) This is immediate from the definition of cs.

(v.c) The following counterexample justifies this. Let P := b; stop[]i; a; stop; @ := i;a;stop and
R := b; ¢; stopl]i; a; stop; then P ¢cs @, @Q cs R, but =(P ¢s R). This is because =(P conf R) as P
refuses ¢ after the trace b, but R cannot refuse ¢ after the same trace.

Proof of (vi). This holds for the following reasons:-

(vi.a) Take P € DESr0oT05, then P ext P and P conf P (by reflexivity of extension and conformance)
so P xcs P as required.

(vi.b) Consider the processes P := b; stop||i; a; stop and @ := a; stop. Now P xcs @) since P ¢s () and
Tr(P) D Tr(Q), but, =(Q xcs P) because =(Tr(Q) D Tr(P)).

(vi.c) Assume P xcs @ and @ xcs R, we need P xcs R. Now P xcs Q and @ xcs R imply P ext ) and
@ ext R which implies P ext R (by transitivity of ext). So, all that remains is to show that R conf
P. But, since Tr(R) C Tr(P) and Vo € Tr(R), Ref(P,o) = Ref(Q,0) N Ref(Q,0) = Ref(R,o)
1 We can derive that, Vo € Tr(R), Ref(P,0) = Ref(R,o). In addition, Yo € Tr(P) — Tr(R),
Ref(R,c) = () which trivially implies Ref(P,o) D Ref(R, o), as required.

Results for Section 6

Proposition 27
VP,Q € DESy.sicroros, s-t. C(<yr, P)(red, Q) holds, Uy (<4, P)(red, Q) is the least developed unification.

Proof
First we show that U;.(<4p, P)(red, Q) is a unification and then we show that it is the greatest such unification.

Unification. Uy, (<4, P)(red, Q) <y P follows immediately, since Tr(Us, (<4, P)(red, Q)) = Tr(P)NTr(Q) C
Tr(P). In addition, Uy (<4, P)(red, Q) red @ since,
Tr(Upr(Ser, P)(red, Q) = Tr(P)NTr(Q) € Tr(Q) A
Vo € Tr(Q),
(0 €Tr(P) = Ref(Up(<tr, P)(red,Q),0) = Ref(Q,0)) A
(0 €Tr(P) = Ref(Uir(<tr, P)(red,Q),0) =0 C Ref(Q,0))
Greatest Unification. Take R € U(<y,, P)(red, @), we need to show that R (<¢ Nred) Upr(<yr, P)(red, Q).
However, (<4 Nred)=red, so all we actually need to show is that R red U (<, P)(red, Q). Since R is a
unification it must satisfy:
Tr(R) CTr(P),Tr(Q) A Vo €Tr(Q), Ref(R,0) C Ref(Q,0)
So, we can immediately obtain:
(i) Tr(R) CTr(P)NTr(Q) = Tr({Us(<tr, P)(red,Q)) A
(ii) 0 € Tr(Usy(<tr, P)(red,Q)) = 0 € Tr(Q), so, Vo € Tr(Uy(<ir, P)(red, Q)), Ref(R,0) C Ref(Q,0) =
Ref (U (Ser, P)(red, Q), o).
which gives R red Uy (<yr, P)(red, Q) as required. O

HUNotice, P xcs Q = Vo € Tr(P), Ref(Q,0) C Ref(P,0) A Yo € Tr(Q), Ref(P,a) C Ref(Q,0), but also Tr(Q) C Tr(P).
So, Vo € Tr(Q), Ref(Q,0) = Ref(P,0).
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Results for Section 7

Proposition 28
VP,Q € DESyusicLoros, S.t. CreaPQ holds, Ureq PQ is the greatest lower bound of P and Q.

Proof
In the usual way we prove this in two halves: first we show that Uyeq is a lower bound and then we show that it
is the greatest lower bound.

Lower Bound. We need to show that Uyea PQ) red P,Q. This follows since, Tr(P) N Tr(Q) C Tr(P),Tr(Q)
which is the required trace subsetting property and Vo € (Tr(P)UTr(Q)) — (Tr(P)NTr(Q)), Ref(UreaPQ,0) =

0 C Ref(Q,0),Ref(P,c) and Vo € Tr(P)NT7(Q), Ref(UreaPQ,0) = Ref(P,0c)NRef(Q,0) C Ref(Q,0), Ref(P, o),
which is the required refusals property.

Greatest Lower Bound. Assume R such that R red P and R red @, we need to show that R red U,eq PQ.
First we consider the traces. From R red P and R red () we obtain that Tr(R) C Tr(P),Tr(Q) which implies
Tr(R) C Tr(P)NTr(Q) = Tr(UreaPQ), which is the required trace subsetting property. Now we consider
refusals. Firstly, note that Vo € Tr(R), Ref(R,0) C Ref(P,o0) and Ref(R,0) C Ref(Q,o), which implies that
Ref(R,0) C Ref(P,0) NRef(Q,0) = Ref(Upea PQ, o). In addition, Vo € (Tr(Urea PQ) — Tr(R)), Ref(R,0) =
0 C Ref(UreaPQ, o). This gives us the required refusals property and we are done. a

Proposition 29
VP,Q € DESyusicLoros, Uext PQ is the greatest lower bound of P and Q.

Proof
Once again we prove this in two parts.

Lower Bound. We need to show that Ut PQ ext P,Q. The trace property is easily obtained since
Tr(UextPQ) = Tr(P)UTr(Q) D Tr(P),Tr(Q). In addition, refusals are correctly related because Vo €
Tr(P), (0 € Tr(Q) = Ref(UextPQ,0) = Ref(P,0)NRef(Q,0) C Ref(P,0)) A (0 € Tr(Q) = Ref(UextPQ,0) =
Ref(P,0)), and we can argue similarly about the refusals of ). Thus, Uext PQ) ext P, @, as required.

Greatest Lower Bound. Assume R ext P, (), we need to show that R ext Uext PQ. Once again the trace
property that we require is straightforward: Tr(R) D Tr(P) UTr(Q) = Tr(UextPQ). The refusals property
requires a little more work. We obtain that Vo € Tr(Uext PQ), (00 € Tr(P)NTr(Q) = Ref(R,0) C Ref(P,o)N
Ref(Q,0) = Ref(Uext PQ,0)) A (60 € Tr(P)—Tr(Q) = Ref(R,0) C Ref(P,0) = Ref(Uext PQ,0)) A (0 €
Tr(Q)—Tr(P) = Ref(R,0) C Ref(Q,0) = Ref(Uext PQ, o)) which is sufficient to show that R ext Uext PQ,
as required. O
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