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A Formal Framework for Viewpoint Consisten
y �H. Bowman, M.W.A. Steen, E.A. Boiten and J. Derri
kComputing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.(Phone: + 44 1227 764000, Fax 44 1227 762811Email: fH.Bowman,mwas,E.A.Boiten,J.Derri
kg�uk
.a
.uk.)Abstra
t. Multiple Viewpoint models of system development are be
oming in
reasingly important. Ea
h viewpointo�ers a di�erent perspe
tive on the target system and system development involves parallel re�nement of the multipleviews. Viewpoints related approa
hes have been 
onsidered in a number of di�erent guises by a spe
trum of resear
hers.Our work parti
ularly fo
uses on the use of viewpoints in Open Distributed Pro
essing (ODP) whi
h is an ISO/ITUstandardisation framework. The requirements of viewpoints modelling in ODP are very broad and, hen
e, demanding.Multiple viewpoints, though, prompt the issue of 
onsisten
y between viewpoints. This paper des
ribes a very generalinterpretation of 
onsisten
y whi
h we argue is broad enough to meet the requirements of 
onsisten
y in ODP. We presenta formal framework for this general interpretation; highlight basi
 properties of the interpretation and lo
ate restri
ted
lasses of 
onsisten
y. Strategies for 
he
king 
onsisten
y are also investigated. Throughout we illustrate our theory usingthe formal des
ription te
hnique LOTOS. Thus, the paper also 
hara
terises the nature of and options for 
onsisten
y
he
king in LOTOS.Keywords: Viewpoints, LOTOS, Development Models, Open Distributed Pro
essing, Pro
ess Algebra, FDTs.1 Introdu
tionSystem development has 
lassi
ally been viewed in terms of the waterfall model of development [48℄ or somederivative of the model. A single thread of system development is pres
ribed by the waterfall model, as depi
tedin �gure 1. Spe
i�
ations are repeatedly re�ned from an abstra
t expression of global requirements to a 
on
reterealisation. In su
h models the validation question to be resolved 
on
erns whether the n+ 1st spe
i�
ation is avalid re�nement of the nth spe
i�
ation a

ording to a parti
ular re�nement relation. Su
h re�nement relations
hara
terise the manner in whi
h properties of an abstra
t spe
i�
ation are preserved in a re�ned spe
i�
ation;for example, re�nements may preserve safety properties (i.e. statements that something bad 
annot happen) orliveness properties (i.e. statements that something good must happen).However, it is now widely re
ognized that the waterfall model has limitations as a paradigm for systemdevelopment. Perhaps the most signi�
ant limitation of the model is that it presupposes that a full set ofrequirements for the target system 
an be identi�ed at the initial stage of system development. This is a restri
tiveand unrealisti
 assumption. In pra
ti
e, the required fun
tionality of a system is identi�ed in a far more 
uidand unstru
tured manner, with requirements evolving in
rementally during development as the target systembe
omes more fully understood; see [52℄ for a dis
ussion of 
uid identi�
ation of requirements.In response to its per
eived limitations, adaptations of the waterfall model have been made in a number ofdire
tions, e.g. 
y
li
 development [17℄, rapid prototyping [48℄, adding feedba
k [48℄. The parti
ular adaptationthat we will 
onsider in this paper is the viewpoints model of system development. This approa
h involves dividingthe system horizontally relative to the verti
al orientation of development. This division is a

ording to a groupof views or viewpoints, see �gure 2. Ea
h viewpoint o�ers a di�erent perspe
tive on the system being developed.Su
h viewpoint modelling is loosely analogous to the use of three angled proje
tion in te
hni
al drawing, i.e. planview and two side elevations.Importantly, viewpoints support 
uid system development sin
e the viewpoint spe
i�
ations 
an be iteratedbetween in any arbitrary manner. Thus, fun
tionality 
an be added to any of the viewpoints at any point duringdevelopment, often as the result of developments of other viewpoints. In parti
ular, a 
omplete set of requirementsis not enfor
ed at the start of development.�This work was partially funded by British Tele
om Resear
h Labs., Martlesham, Ipswi
h, U.K. and the Engineering and Physi
alS
ien
es Resear
h Coun
il under grant number GR/K13035. 1
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Figure 1: Waterfall ModelNotable proponents of viewpoints modelling in
lude [46℄ [27℄ [48℄ [2℄ [26℄. In addition, a related use of view-points 
an be found in obje
t oriented design methodologies, su
h as [8℄ [9℄. In fa
t, variants of viewpointsmodelling have been investigated for some time in a number of guises, e.g. aspe
ts [39℄, partial spe
i�
ation [2℄[7℄ [42℄ [38℄, views [37℄, multiple paradigm spe
i�
ation [54℄, putting theories together in institutions [26℄ [28℄,diagrams [9℄ and viewpoints [27℄ [43℄ [8℄.These models typi
ally prompt the 
entral issue of viewpoint 
onsisten
y, i.e. how to 
he
k that multiplespe
i�
ations of the system do not 
on
i
t with one another and are \in some sense" 
onsistent. Thus, the 
entralvalidation question posed by viewpoints is a horizontal relating of spe
i�
ations in 
ontrast to the traditionalverti
al relating of 
lassi
 waterfall models. In parti
ular, the inherent 
uidity of viewpoint spe
i�
ation isre
e
ted in validation s
enarios for viewpoint models. Spe
i�
ally, arbitrary evolution/development of viewpointsis interleaved with snap shot 
onsisten
y 
he
ks, i.e. one o� relatings of the viewpoint spe
i�
ations at a parti
ularpoint in system development. This is in 
ontrast to 
lassi
 waterfall development for whi
h a rigid order ofdevelopment and validation is pres
ribed.Our perspe
tive on 
onsisten
y is tinged by the parti
ular appli
ation of viewpoints that our work has beentargeted at, viz. the viewpoints model de�ned in the ISO/ITU Open Distributed Pro
essing (ODP) standardis-ation framework [36℄. ODP de�nes a generi
 framework to support the open interworking of distributed systems
omponents. A 
entral tenet of ODP is the use of viewpoints in order to de
ompose the task of spe
ifyingdistributed systems. ODP supports �ve viewpoints, Enterprise, Information, Computational, Engineering andTe
hnology. It is beyond the s
ope of this paper to give a full introdu
tion to ODP viewpoints modelling, theinterested reader is referred to [14℄, however, in 
ontrast to many other viewpoint models, ODP viewpoints areprede�ned and in this sense stati
, i.e. new viewpoints 
annot be added. Ea
h of the viewpoints has a spe
i�
purpose and is targeted at a parti
ular 
lass of spe
i�
ation.A number of di�erent interpretations 
an be imposed on the ODP viewpoints model. One su
h interpretationthat we will dwell on here (and whi
h we personally advo
ate) is that ODP viewpoints de�ne a de
ompositionof the system development pro
ess1. This is in 
ontrast to many other viewpoints approa
hes whi
h targeta single phase of system development. For example, the viewpoints model of Finkelstein and 
o-workers [27℄fo
uses on de
omposition in the requirements 
apture phase of system development: viewpoints are used as adevi
e to de
ompose the 
omplete system spe
i�
ation at a parti
ular point of system development. They arethus a natural progression from traditional modularization and de
omposition paradigms su
h as subroutines,modules, abstra
t data types and obje
ts. In 
ontrast, ODP viewpoints 
an be viewed as de
omposing the entiredevelopment traje
tory. In fa
t, there is a relationship between the �ve ODP viewpoints and the phases of systemdevelopment (we should emphasize though that the relationship is very loose and was not the main motivation1However, it should be emphasized that none of the theory whi
h we present in this paper is spe
i�
 to this interpretation andin fa
t, we believe our framework is general enough to embra
e all interpretations of ODP viewpoints. [16℄ gives eviden
e for thisbelief by showing that all the 
urrently proposed interpretations of ODP 
onsisten
y, ea
h of whi
h re
e
ts a di�erent viewpointsinterpretation, 
an be embra
ed by our framework. 2
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Figure 2: Viewpoints Modelbehind the ODP viewpoints model). The following list highlights this relationship:� The enterprise viewpoint o�ers a global requirements 
apture.� The information model de�nes an information spe
i�
ation.� The 
omputational viewpoint o�ers an obje
t based intera
tion model that supports abstra
t system design.This is abstra
t in the sense that it avoids implementation details su
h as issues of physi
al distribution.� The engineering viewpoint is 
on
erned with pres
ribing implementation me
hanisms for the target system.� The te
hnology viewpoint highlights a possible realisation of the system in terms of existing reusable 
om-ponents.Cru
ially though, all \phases" of system development exist simultaneously and 
an be 
on
urrently evolved. Thus,any view on the system development, from the most abstra
t to the most 
on
rete, 
an be re�ned at any pointand the 
omplete des
ription of the system 
omprises spe
i�
ation from all viewpoints.Another aspe
t of ODP viewpoints is that it is generally a

epted that di�erent viewpoints will be spe
i�edin di�erent languages. This is be
ause Formal Des
ription Te
hniques (FDTs) are variously appli
able to thespe
i�
ation requirements of the di�erent viewpoints. For example, Z [47℄ has been proposed for the informationviewpoint and LOTOS [7℄ for the 
omputational viewpoint.Figure 3 [20℄ depi
ts the relationships that are involved in ODP viewpoints modelling. Development yieldsa spe
i�
ation that de�nes the system being des
ribed more 
losely. The term development embra
es manyme
hanisms for evolving des
riptions towards implementations, one of whi
h is re�nement. Be
ause all �veviewpoint spe
i�
ations will eventually be realized by one system, there must be a way to 
ombine spe
i�
ationsfrom di�erent viewpoints; this is known as uni�
ation. For spe
i�
ations in di�erent FDTs to be uni�ed, atranslationme
hanism is needed to transform a spe
i�
ation in one language to a spe
i�
ation in another language.Consisten
y is a relation between groups of spe
i�
ations.In our work on 
onsisten
y we distinguish between intra and inter language 
onsisten
y. Intra language
onsisten
y 
onsiders how multiple spe
i�
ations in the same language 
an be shown to be 
onsistent, while interlanguage 
onsisten
y 
onsiders relations between spe
i�
ations in di�erent FDTs. The latter issue is a signi�
antlymore demanding topi
 than the former.In order to inform the interpretation of 
onsisten
y we 
hoose it is worth 
onsidering what we require of su
ha de�nition. We o�er the following list as a set of general requirements. The 
onsisten
y de�nition we seek must,� be appli
able intra language for many di�erent FDTs, e.g. must make sense between two Z spe
i�
ationsand also between two LOTOS spe
i�
ations; 3
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Figure 3: Relating Viewpoints� be appli
able inter language between di�erent FDTs, e.g. relate a Z spe
i�
ation to a LOTOS spe
i�
ation.� support di�erent 
lasses of 
onsisten
y 
he
k. There are many di�erent forms of 
onsisten
y and theappropriate 
he
k to apply depends on the viewpoint spe
i�
ations being 
onsidered and the relationshipbetween these viewpoints [15℄. For example, it would be inappropriate to 
he
k two spe
i�
ations whi
hexpress exa
tly 
orresponding fun
tionality with the same notion of 
onsisten
y that is appli
able to 
he
king
onsisten
y between spe
i�
ations whi
h extend ea
h other's fun
tionality.� support global 
onsisten
y. Mu
h of the work, to date, on 
onsisten
y in ODP has only 
onsidered the 
aseof two viewpoints (what we will 
all binary 
onsisten
y); for full generality we need any arbitrary numberof viewpoints greater than zero.� allow viewpoints to relate to the target system in di�erent ways. Thus, not only are there di�erent forms of
onsisten
y 
he
k, but within a 
onsisten
y 
he
k, spe
i�
ations are related in di�erent ways. For example,the enterprise spe
i�
ation is likely to express global requirements, while the 
omputational spe
i�
ationde�nes an intera
tion model. Thus, the relationship between the system being developed and the enterprisespe
i�
ation is very di�erent from the relationship of the system to the 
omputational spe
i�
ation.This �nal point prompts our work on, so 
alled, unbalan
ed 
onsisten
y in whi
h ea
h viewpoint is potentiallyrelated to the system under development by a di�erent development relation. For example, the enterprise view-point may be related by a logi
al satisfa
tion relation while the 
omputational viewpoint may be related by abehavioural 
onforman
e relation. Note also that unbalan
ed 
onsisten
y is needed to support inter language
onsisten
y. This aspe
t of our work represents a signi�
ant departure from existing theoreti
al work on relatingpartial spe
i�
ations, e.g. [2℄ [54℄, whi
h has generally restri
ted itself to what we 
all, balan
ed 
onsisten
y.The 
ontribution of this paper is to de�ne a general interpretation of 
onsisten
y that satis�es all the aboverequirements and to make an extensive investigation of the properties of this de�nition, thus, 
larifying the
hara
teristi
s of arbitrarily general 
onsisten
y 
he
king. Parti
ular 
lasses of 
onsisten
y 
he
king whi
h exhibitmore manageable properties are then 
onsidered. In addition, the paper highlights general strategies for 
he
king
onsisten
y a

ording to the pres
ribed de�nition. Parti
ular emphasis is pla
ed on the issue of obtaining global
onsisten
y, of any arbitrary number of viewpoints, from a series of smaller 
onsisten
y 
he
ks, e.g. binary
onsisten
y 
he
ks. Throughout we illustrate the 
onsisten
y 
he
king problem using LOTOS and Z; although,parti
ular emphasis will be pla
ed on LOTOS. Thus, a further 
ontribution of this paper is to 
hara
terise
onsisten
y 
he
king in the LOTOS setting. As a re
e
tion of this the LOTOS illustrations presented will berelatively extensive. 4



In addition, in order to 
larify the relationship between our work and ODP we present a running ODPexample. This is the multiple viewpoint spe
i�
ation of a tele
ommuni
ation servi
e whi
h has ea
h of itsviewpoints des
ribed in LOTOS. We illustrate how the 
onsisten
y of the viewpoint spe
i�
ation 
an be 
he
kedusing the te
hniques introdu
ed in the paper.The example is deliberately \broad" rather than \deep", i.e. many partial spe
i�
ations/ viewpoints arein
luded, ea
h of whi
h is rather straightforward. In this way we are able to illustrate the essen
e of multiviewpoint 
onsisten
y 
he
king within the bounds of this paper - a more 
omplex example would have swampedthe rest of the paper. However a larger 
ase study illustration of our te
hniques 
an be found in [5℄.The next two se
tions of this paper provide preliminary ba
kground material. Se
tion 2 de�nes a set ofnotational 
onventions and se
tion 3 presents ba
kground on LOTOS, its development relations and semanti
models. Then se
tion 4 presents our interpretation of 
onsisten
y, proves some properties of the de�nition andidenti�es a number of 
lasses of 
onsisten
y, viz. binary 
onsisten
y, 
omplete 
onsisten
y, balan
ed 
onsisten
yand inter language 
onsisten
y. Se
tion 5 highlights basi
 strategies for 
he
king global 
onsisten
y. In parti
ular,the pivotal 
on
ept of a least developed uni�
ation is presented. Se
tion 6 investigates the existen
e of leastdevelopments in the general 
ase of unbalan
ed 
onsisten
y and then se
tion 7 
onsiders the same issue in themore restri
ted setting of balan
ed 
onsisten
y. Se
tion 8 re
e
ts on the nature of 
onsisten
y 
he
king in LOTOS.We then dis
uss related work in se
tion 9 and present 
on
luding remarks in se
tion 10. An appendix 
ontainingproofs of some of the results used in the paper is in
luded at the end of the paper.2 Preliminaries 1: General NotationFirst we present the notation that we will work with. This re
e
ts the sear
h for a general interpretation of
onsisten
y by de�ning very general notational 
onventions.It is worth noting here that in sele
ting our basi
 notation an important de
ision is already made: shoulda 
ategori
al or 
lassi
 set theoreti
 framework be used. In 
ontrast to some other important resear
h in thisarea, in parti
ular the theory of institutions [28℄, we have employed a set theoreti
 model. Our preferen
e for a
lassi
 set theoreti
 approa
h is that it integrates more naturally with the ODP model and existing resear
h onthe model. In parti
ular, 
ategori
al methods are not used within the ODP 
ommunity.Des
riptions and Relations Between Des
riptions. We begin by assuming a setDES of formal des
riptions,whi
h 
ontains both formal spe
i�
ations in languages su
h as LOTOS and Z and semanti
 des
riptions innotations su
h as labelled transition systems and ZF set theory.We assume a set DEV of development relations; members of this set relate pairs of des
riptions in DES.DEV embra
es all possible ways of relating des
riptions, e.g. re�nement relations or semanti
 maps. For aparti
ular relation r 2 DEV , where r � DES � DES we de�ne the left and right proje
tions (whi
h arerespe
tively the 
o-domain and domain of the relation) of r as: pl(r) = f ds j 9ds0 s:t: (ds; ds0) 2 r g andpr(r) = f ds j 9ds0 s:t: (ds0; ds) 2 rg. DEV is subdivided into intraDEV , the set of intra language developmentrelations, and SEM , the set of semanti
 maps. Importantly, although members of intraDEV and of SEM havevery di�erent fun
tions, both 
an be viewed as relations between pairs of des
riptions.Members of intraDEV are 
lassi
 development relations within a single formal te
hnique, e.g. the LOTOS orZ re�nement relations. Members of SEM are semanti
 maps between des
riptions in formal te
hniques. Typi
allythey map des
riptions from one formal te
hnique to a se
ond formal te
hnique.Formal Des
ription Te
hniques. Des
riptions are written in formal te
hniques. The set of all su
h te
hniquesis denoted FT . Formal te
hniques are pairs; they are elements of P(DES) � P(DEV ). Thus, every formalte
hnique is 
hara
terised by the set of possible des
riptions in the notation and a set of asso
iated developmentrelations. We require that the right proje
tion of all elements of DEV 
ontains a subset of DES. For a parti
ularformal te
hnique ft we denote the set of all des
riptions in ft as DESft and the set of all development relationsas DEVft. We will also use the notation intraDEVft to denote the intra language development relations of ftand SEMft to denote the semanti
 maps of ft.Development Relations. These are written dv and if X dv X 0 then, in some sense, X is a valid developmentof X 02. Our 
on
ept of a development relation generalises all notions of evolving a formal des
ription towards an2Some authors write development relations the other way around, i.e. X0 dv X means that X is a development of X0. However,our 
hoi
e of orientation 
orresponds to the dire
tion LOTOS relations are 
lassi
ally written5



implementation and thus embra
es the many su
h notions that have been proposed. In parti
ular, DEV 
ontainsre�nement relations, equivalen
es and relations whi
h 
an broadly be 
lassed as implementation relations [42℄,su
h as the LOTOS 
onforman
e relation 
onf. These di�erent 
lasses of development are best distinguished bytheir basi
 properties. Re�nement is typi
ally re
exive and transitive (i.e. a preorder); equivalen
es are re
exive,symmetri
 and transitive; and implementation relations only need to be re
exive. The distin
tion betweenre�nement and implementation relations is parti
ularly signi�
ant; transitivity is a 
ru
ial property in enablingin
remental development of spe
i�
ations towards realizations and implementation relations are typi
ally la
kingin this respe
t.In general though, we do not require that development relations support any spe
i�
 properties. In parti
ular,we 
annot even assume re
exivity in the general 
ase. This is be
ause, in order to support inter language
onsisten
y 
he
king, we will allow development relations to relate des
riptions in di�erent notations, in these
ir
umstan
es re
exivity is not a sensible 
on
ept. We will return to this issue in se
tion 4.1.We introdu
e the 
on
ept of a terminal element for a development set.De�nition 1 Given a set of des
riptions S � DES and a development relation dv 2 DEV then X 2 S is aterminal element i� X dv X 0 for all X 0 2 S. The set of terminal elements is denoted t(S; dv). If su
h an elementdoes not exist then t(S; dv) = ;.So, a terminal element is a bottom element for the development ordering in a parti
ular set.We must also 
onsider what interpretation of equivalen
e (whi
h we denote �) we should adopt. The inter-pretation that we adopt is:-X �dv X 0 i� 8Y 2 DES; Y dv X () Y dv X 0whi
h states that two equivalent des
riptions have identi
al development sets, i.e. every des
ription that is adevelopment of one will be a development of the other. This demonstrates that during system developmentwe really 
an 
hoose any one of a set of equivalent spe
i�
ations without a�e
ting the possibilities of futuredevelopment.�dv 
an easily be shown to be an equivalen
e and, in addition, importantly, no properties are required of dvfor �dv to be an equivalen
e. In parti
ular, even if dv is not re
exive or transitive �dv will be an equivalen
e.Another standard interpretation of equivalen
e between spe
i�
ations is that they are developments of oneanother. With transitivity of dv this interpretation gives us that two spe
i�
ations in any 
y
le by the relation dvare equivalent. However, if dv is in fa
t a preorder we 
an obtain that �dv= dv \ dv�1. Thus, we will use thesetwo interpretations inter
hangeably if development is a preorder. We summarise these results in the followingproposition.Proposition 1(i) �dv is an equivalen
e.(ii) If dv is a preorder then �dv= dv \ dv�1.(iii) If dv is a preorder then dv is a partial order with identity �dv, i.e. elements are viewed to be equal if theyare related by �dv.ProofThe only part of this proposition that is not 
ompletely trivial is (ii), so we in
lude this proof. Firstly, assumeX �dv X 0, but sin
e by re
exivity, X dv X this gives us X dv X 0 and similarly, X 0 dv X . Se
ondly, assumeX dv \ dv�1 X 0 and take Y 2 DES, su
h that Y dv X , but using our assumption and transitivity of dv we getY dv X 0 and similarly, we 
an show that Y dv X 0 implies Y dv X . 2We will also use the following standard 
on
epts from set theory.De�nition 2 X 2 DESft is a lower bound of S � DESft for dv i� 8X 0 2 S; X dv X 0. The set of all lowerbounds of S with respe
t to dv is denoted, lb(S; dv); this set may be empty.A lower bound of S is a development of all elements of S. Noti
e that lower bounds and terminal elements aredi�erent 
on
epts; a terminal element must be in the identi�ed set of des
riptions while a lower bound has nosu
h 
onstraint. In standard fashion we 
an also de�ne the 
on
ept of a greatest lower bound.De�nition 3 For S � DESft X 2 glb(S; dv) is a lower bound su
h that all other lower bounds are a developmentof X; i.e. glb(S; dv) � lb(S; dv) ^ (8X 2 lb(S; dv) ^ 8X 0 2 glb(S; dv); X dv X 0). If a greatest lower bound doesnot exist then glb(S; dv) = ;.Noti
e that if dv is a preorder then t(S; dv) and glb(S; dv) are equivalen
e 
lasses under �dv.6



3 Preliminaries 2: Ba
kground on LOTOS and Introdu
tion of Run-ning ExampleLOTOS [33℄ is a pro
ess algebra based spe
i�
ation language used for the formal des
ription of distributed and
on
urrent systems (see [7℄ for a general introdu
tion). LOTOS was developed to formally des
ribe the servi
esand proto
ols of the Open Systems Inter
onne
tion Referen
e Model [32, 35, 34℄. Currently, LOTOS is also beingused for the spe
i�
ation of ODP systems and standards [36℄.The LOTOS language has two parts: a behavioural part and a data part. Most of our work will be with thebehavioural part; we will refer to basi
 LOTOS in the text of this paper when we mean only the behavioural partof the language. The behavioural part is a pro
ess algebrai
 language, related to CCS [45℄ and CSP [30℄, in whi
hsystems are des
ribed in terms of the temporal relationship between externally observable a
tions.We will a
tually use only a subset of LOTOS; the following abstra
t syntax de�nes this subset:P ::= stop j �;P j P1 [℄P2 j 
hoi
e a 2 A [℄ P j P1 j[G℄jP2 j hide G in P j Xwhere P , P 0, Q, Q0, P1 and P2 will be used to denote arbitrary LOTOS pro
esses, � 2 A
t [ fig, A � A
t orA �Gate, G �Gate and X is a pro
ess variable. A
t is the set of all observable a
tions and i is the distinguishedhidden or internal a
tion. We use � to range over A
t and � to range over A
t [ fig. Gate is the set of all gatenames, gates lo
ate a
tions, i.e. they indi
ate the intera
tion point at whi
h the a
tion o

urs.We have the null pro
ess stop (whi
h is synonymous with deadlo
k); a
tion pre�x in order to de�ne sequen
ing;binary and generalised 
hoi
e in order to de�ne alternatives, parallel 
omposition (whi
h is parameterised on thegates that must syn
hronise), the hiding operator and a pro
ess variable to invoke behaviour and, possibly, 
reatere
ursion. We assume that pro
ess de�nition has the form:X := PAlthough at some points we will asso
iate data parameters with su
h de�nitions, e.g. X(y : T1; z : T2) := Pde�nes a pro
ess named X with formal parameters y (of type T1) and z (of type T2). The generalised 
hoi
eoperator de�nes an arbitrary 
hoi
e of pro
esses, for example,
hoi
e a 2 fb; 
; dg [℄ a;P � b;P [℄ 
;P [℄ d;PAlso noti
e that we 
an 
reate non-deterministi
 
hoi
es. For example,i;P [℄ a;P 0o�ers a non-symmetri
 non-determinsiti
 
hoi
e between o�ering an a or evolving internally to behave as P .In addition our ODP example will use value passing a
tions. These are 
onstru
ted from a gate referen
e anda value attribute, e.g. the two a
tion instan
es,g!5 and g?x : Nat
an syn
hronise to 
reate an a
tion g 5, whereby the value 5 is observed at the gate g. As a by produ
t of thisobservation the value 5 is bound to the variable x.In the following LP � A
t is the alphabet of observable a
tions asso
iated with a 
ertain pro
ess P ; L�Pdenotes strings (or tra
es) over LP ; the 
onstant � 2 L�P denotes the empty string, and the variable � ranges overL�P .3.1 Two Semanti
 ModelsLabelled Transition Systems. Basi
 LOTOS has a well-de�ned operational semanti
s whi
h maps basi
LOTOS behaviour expressions onto Labelled Transition Systems (LTSs). Be
ause this mapping exists and we
an express any LTS in basi
 LOTOS, we 
an use pro
esses and their 
orresponding LTSs inter
hangeably. Inparti
ular, relations de�ned on transition systems are likewise appli
able to pro
esses.A labelled transition system is a tuple, hS;L; T; s0i. S is a set of states whi
h ranges over the possible pro
essbehaviours that the system 
an rea
h; L is a set of a
tion labels; T is a set of transitions of the form P ���!P 0;and s0 is a starting state. Noti
e that without loss of generality we often denote parti
ular LTSs as the diagramsthat they indu
e, e.g. those in �gure 6. 7



Notation MeaningP ���!P 0 denotes a transition, i.e.P 
an do � and 
onsequently behaves as P 0.�=) re
exive and transitive 
losure of i�!P ��==)P 0 9Q;Q0:P �=)Q ���!Q0 �=)P 0P �=) 9P 0:P �=)P 0P �=6) 6 9P 0:P �=)P 0Table 1: Derived transition denotationsRefusal Semanti
s. In table 1 the notion of transition is generalised to tra
es. Using this notation we 
ande�ne the following:Tr(P ) = f� 2 L�P j P �=)g, denotes the set of tra
es of a pro
ess P .P after � = fP 0 j P �=)P 0g, denotes the set of all states rea
hable from P by the tra
e �.Ref(P; �) = fX j 9P 0 2 (P after �); s.t. 8� 2 X : P 0 �=6) g, denotes the refusals of P after �.out(P; �) = f� j �� 2 Tr(P )g, denotes the set of possible observable a
tions after the tra
e �.In tra
e/refusal semanti
s the behaviour of a pro
ess P is 
hara
terised by its tra
e set and the refusals for alltra
es in that tra
e set. Stability and divergen
e properties 
an also be 
onsidered [41℄, however, the standardLOTOS development relations do not 
onsider these 
ategories, so, we will restri
t ourselves to just the tra
erefusal 
hara
terisation of LOTOS spe
i�
ations. The preferen
e for not in
luding divergen
e and stability inthe standard semanti
 model arises from the non-
atastrophi
 interpretation of divergen
e employed in LOTOS,whi
h 
ontrasts with the interpretation 
lassi
ally used with CSP failure semanti
s.3.2 LOTOS Development RelationsWe reiterate the standard de�nitions of the most prominent LOTOS development relations. We use the followingsimple basi
 LOTOS spe
i�
ations to illustrate these relations:R1 := a; b; stopR2 := a; stopR3 := i; 
; stopR4 := 
; stopR5 := R1 [℄R2R6 := R2 [℄R3R7 := R4 [℄R23.2.1 Tra
e preorderPerhaps the simplest meaningful notion of development for LOTOS is tra
e preorder. This de�nes re�nement asredu
ing the tra
es that 
an be engaged in. The relation is de�ned as follows:De�nition 4 (tra
e preorder)Given two pro
ess spe
i�
ations P and Q, then P is a tra
e re�nement of Q, denoted P �tr Q, i�:� Tr(P ) � Tr(Q), or equivalently� 8� 2 L�P :P �=) implies Q �=) .In terms of the example basi
 LOTOS spe
i�
ations just highlighted, it is straightforward to see that, for example,R2 �tr R1 �tr R5 and R2 �tr R6; but, :(R1 �tr R2).Intuitively, tra
e preorder ensures that safety properties are preserved through re�nement. Safety propertiesstate that \something bad should not happen", where something bad 
an be interpreted as a 
ertain tra
e. Thus,if an abstra
t spe
i�
ation does not perform a 
ertain degenerate tra
e then the 
on
rete spe
i�
ation (by tra
epreorder) 
annot perform the tra
e. Noti
e that all safety properties hold for the empty tra
e � or, in other words,stop is a tra
e re�nement of any spe
i�
ation. 8



3.2.2 Conforman
eThe problem with tra
e preorder is that it does not ensure that liveness (or deadlo
k) properties are preserved.A liveness property states that \something good must eventually happen". However, by tra
e preorder allspe
i�
ations 
an be re�ned to stop, i.e. to the pro
ess that does nothing. Thus, the \good things" that theabstra
t spe
i�
ation is able to perform 
an be re�ned out.However, we may wish to ensure that a development of a spe
i�
ation does not deadlo
k in a situation wherethe spe
i�
ation would not deadlo
k, in other words, every tra
e that the spe
i�
ation must do, the developmentmust do as well. This requirement is formalised by the 
onf relation [18℄ [19℄, whi
h has been adopted as theprimary interpretation of 
onforman
e for LOTOS.De�nition 5 (
onforman
e)Given two pro
ess spe
i�
ations P and Q, then P 
onforms to Q, denoted P 
onf Q, i�:� 8� 2 Tr(Q):Ref(P; �) � Ref(Q; �); or equivalently� 8� 2 Tr(Q) and 8A � LP [ LQ we haveif 9P 0 2 (P after �) su
h that 8� 2 A:P 0 �=6) ;then 9Q0 2 (Q after �) su
h that 8� 2 A:Q0 �=6)If we 
onsider our sample spe
i�
ations again, the reader 
an 
he
k that the following relationships hold:R1 
onf R2, but it is not that 
ase that R2 
onf R1. The latter of these is be
ause after the tra
e a, R2
an refuse b, but R1 
annot.We will also use the following two development relations whi
h are symmetri
 subsets of 
onf. These relationsare 
alled 
onf symmetri
, denoted 
s, and extended 
onf symmetri
, denoted x
s. Both relations are introdu
edfor te
hni
al reasons. In parti
ular, the introdu
tion of symmetri
 variants of 
onf arises be
ause this is the notionof 
ompatibility between spe
i�
ations (
alled behavioural 
ompatibility) used in the ar
hite
tural semanti
s of theODP referen
e model [36℄. For a fuller dis
ussion of the motivation behind these relations the interested readeris referred to [4, 50℄.De�nition 6 (
onf symmetri
)Given two pro
ess spe
i�
ations P and Q, then P 
s Q i� P 
onf Q ^ Q 
onf P .De�nition 7 (extended 
onf symmetri
)Given two pro
ess spe
i�
ations P and Q, then P x
s Q i� P 
s Q ^ Tr(P ) � Tr(Q).An alternative derivation of x
s is: P x
s Q i� P ext Q ^ Q 
onf P , see se
tion 3.2.4 for the de�nition of ext.To illustrate these two relations we 
an see that R6 
s R3, but :(R1 
s R2). In addition, R6 x
s R3, but:(R3 x
s R6).3.2.3 Redu
tionA re�nement relation that 
ombines both the preservation of safety and liveness properties is the redu
tionrelation, red, de�ned in [18℄. This relation is based upon the 
lassi
 CSP re�nement relation [30℄ and is alsoequivalent to \must testing" [29℄, in both 
ases, modulo the handling of divergen
e. red interpretes re�nementas the redu
tion of non-determinism in a spe
i�
ation. A typi
al development strategy using red would re�ne anon-deterministi
 abstra
t spe
i�
ation into a deterministi
 or more nearly deterministi
 
on
rete spe
i�
ation.De�nition 8 (redu
tion)Given two pro
ess spe
i�
ations P and Q, then P (deterministi
ally) redu
es Q, denoted P red Q, i�:1. P �tr Q, and2. P 
onf QBy way of illustration, we 
an see that R1 red R5, R2 red R5 and R3 red R6.9



3.2.4 ExtensionInherent in redu
tion is that the 
on
rete spe
i�
ation 
annot \do more" than the abstra
t spe
i�
ation, i.e. tra
es
annot be in
reased. However, as Brinksma argues [18℄ in some 
ir
umstan
es we would like to add fun
tionalitywhen re�ning. The extension relation allows for this possibility. Thus it enables new possible tra
es to be addedin a re�nement, while preserving the liveness properties of the spe
i�
ation.De�nition 9 (extension)Given two pro
ess spe
i�
ations P and Q, then P extends Q, denoted P ext Q, i�:1. Tr(P ) � Tr(Q), and2. P 
onf QBy way of illustration R7 ext R4 and R7 ext R2, but :(R4 ext R7).3.2.5 Testing Equivalen
eA standard interpretation of equivalen
e is given by the testing equivalen
e. Intuitively, spe
i�
ations are testingequivalent if they 
annot be distinguished by testing.De�nition 10 (testing equivalen
e)Given two pro
ess spe
i�
ations P and Q, then P is testing equivalent to Q, denoted P te Q, i�:� P red Q and Q red P , or equivalently� P ext Q and Q ext P , or equivalently� P x
s Q and Q x
s P , or equivalently� Tr(P ) = Tr(Q) ^ 8� 2 Tr(P ):Ref(P; �) = Ref(Q; �).Noti
e that P te Q () P red\red�1 Q () P ext\ext�1 Q () P x
s\x
s�1 Q, so, testing equivalen
eplays the role of identity, in the sense of �, for the preorders red, ext and x
s.To illustrate this relation, it 
an be 
he
ked that R3 te R4.3.2.6 Bisimulation Equivalen
esAn alternative interpretation of identity is given by the bisimulation equivalen
es, strong and weak bisimulation[45℄. These o�er stronger interpretations of equivalen
e based upon the observable behaviour of spe
i�
ations.The de�nition of weak bisimulation equivalen
e, �, of LOTOS pro
esses is given by the following two de�nitions:De�nition 11 (weak bisimulation relation)A binary relation R over LOTOS pro
esses is a weak bisimulation if P1 R P2 implies, 8� 2 L�P [ L�Q1. if 9P 01:P1 �=)P 01 then 9P 02:P2 �=)P 02 and P 01RP 02; and2. if 9P 02:P2 �=)P 02 then 9P 01:P1 �=)P 01 and P 01RP 02:De�nition 12 (weakly bisimilar)Two LOTOS pro
esses P1 and P2 are weakly bisimilar, denoted P1 � P2, if there exists a weak bisimulationrelation R su
h that P1 R P2.Strong bisimulation, denoted �, is de�ned in a similar manner to weak bisimulation, ex
ept i a
tions are mat
hedin addition to observable a
tions. Hen
e strong bisimulation is an even stronger notion of observational identitythan weak bisimulation.
10



3.2.7 Dis
ussion: Properties of the Development RelationsApart from 
s and x
s the properties of the development relations presented above have been well do
umentedin the literature. Some of these properties are reviewed here, proofs of these results 
an be found in the appendix.Proposition 2(i) �tr, red and ext are preorders.(ii) te, �, and � are equivalen
es.(iii) � � � � te � 
s(iv) 
onf is re
exive, but neither symmetri
 nor transitive.(v) 
s is re
exive and symmetri
, but not transitive.(vi) x
s is a preorder.Thus, �tr, red, ext and x
s 
an be 
lassed together as re�nement relations; te, �, and � 
an be 
lassed togetheras equivalen
es; while 
onf and 
s are weaker implementation relations.3.3 Running ExampleIn this subse
tion we des
ribe a simple ODP system whi
h will be used as a running example throughout thepaper. The basi
 s
enario is the multiple viewpoint spe
i�
ation of a tele
ommuni
ations servi
e. The servi
ehas the following general behaviour:The servi
e a

epts requests (the a
tion request) to open up 
ommuni
ation 
hannels and then o�ersdi�erent possible varieties of 
hannel, e.g. just an audio 
onne
tion (the a
tion transA) or a (full soundand image) video 
onne
tion (the a
tion transV). A
tually many di�erent types of 
onne
tion 
ouldbe provided.The following will be assumed in the example:� A set ID of user identi�ers is assumed. These are used for a

ounting purposes. When a user of the systemrequests a 
ommuni
ation he/she spe
i�es their identi�er and the 
ost of the 
ommuni
ation is 
harged tothem. The set ID is 
onstru
ted as follows - ID=ID0[fdef g, where def indi
ates a \default" identi�er. Thus,in situations where personalised 
harging is not being used, e.g. within a parti
ular 
ommer
ial organization,a default identi�er 
an be provided.� The set of gates in this domain is denoted GG and it has the following subsets:{ F = f request ; transA ; transV g where transA transmits audio and transV transmits video;{ H = f transA ; transV ; transT1 ; :::; transTn g where T1; ::; Tn are alternative 
ommuni
ation types,perhaps data links or various qualities of video.� � is a fun
tion whi
h takes a set of gate names and returns the set of all possible a
tions that 
an begenerated from that set. It asso
iates data with the gates in all relevant possible ways. For example, if thegates a and b 
an only have one data attribute of type boolean then,�(fa; bg) = f a!true ; a!false ; b!true ; b!false gNow we provide viewpoint spe
i�
ations for the enterprise, 
omputational and engineering viewpoints.Enterprise. This viewpoint is itself 
omposed of a number of partial spe
i�
ations, ea
h enfor
es a di�erententerprise 
onstraint on the target system. We have one permission and two obligations.� Permission: The enterprise permits the system to be 
onstru
ted using gates in the set F . This is be
ausethe organisation only permits 
ertain transmission media types to be used in their domain. We 
an enfor
ethis 
onstraint by asso
iating the redu
tion relation with the following spe
i�
ation:Perm := (
hoi
e b2F [℄ i; b?x:ID; Perm) [℄ i; stop11



So, Perm allows any arbitrary non-deterministi
 behaviour on the a
tions request?x:ID, transA?x:ID, andtransV?x:ID. Thus, any spe
i�
ation that does not use an observable a
tion other than one of these threewill be a redu
tion of Perm.In fa
t, we 
ould interpret this spe
i�
ation with the relation �tr and get the same e�e
t. Indeed, in orderto illustrate di�erent varieties of 
onsisten
y 
he
k we will at di�erent stages during the sequel interpretthis spe
i�
ation with �tr, 
onf and red. Note that the relations �tr and 
onf de�ne red (i.e. �tr \
onf).So, by 
onsidering these other two relations we impli
itly 
onsider part of red itself.� Obligation 1: The system is obliged to allow, i.e. o�er, a (non-default) request immediately. This e�e
t isobtained by asso
iating the extension relation with the spe
i�
ation.Obl1 := request?x:ID0; stop� Obligation 2: The enterprise spe
i�
ation also requires that every transA or transV must be pre
eded by arequest , IDs must mat
h (between requests and transmissions) and a \new" request 
annot be performeduntil the last one has been mat
hed to a transmission. We enfor
e this 
onstraint by asso
iating tra
epreorder with the following spe
i�
ation3:Obl2 := (
hoi
e a2 �(GG-F) [℄ a; Obl2)[℄ request?x:ID0; Trans(x)Trans(x:ID0) := (
hoi
e a2 �(GG-F) [℄ a; Trans(x))[℄ transA!x; Obl2[℄ transV!x; Obl2This spe
i�
ation will allow all tra
es that satisfy this 
onstraint4.Computational. Our s
enario is that a \generi
" servi
e interfa
e is provided by the 
omputational viewpoint.This de�nes a spe
trum of allowed 
omputational behaviour, whi
h will be spe
ialized a

ording to the 
onstraintsimposed by the other viewpoints. In parti
ular, the enterprise 
onstraints will spe
ialize the 
omputationalviewpoint a

ording to the needs of a parti
ular organisation. The 
omputational spe
i�
ation is as follows:Comp := i; request?x:ID0; (
hoi
e b2H [℄ i; b!x; Comp)[℄ (
hoi
e b2H [℄ i; b!def; Comp)The spe
i�
ation o�ers a number of possible behaviours - the �rst bran
h a

epts requests (with identi�ers) andthen o�ers a non-deterministi
 
hoi
e of transmission with any of the possibly available media types, with (asdis
ussed earlier), the identi�er in
luded for a

ounting purposes. The se
ond bran
h o�ers a default behaviour.Thus, the servi
e 
ould be spe
ialized to one where 
harging is not required and the servi
e 
an transmit withthe default value, def, asso
iated.Engineering. The system is 
omposed of two 
omponents - a request handler (RH) and an IO handler (IOH)whi
h is itself 
omposed of a number of tranmission devi
es: here audio and video devi
es. These two top level
omponents of the engineering viewpoint, RH and IOH, 
ommuni
ate via a 
hannel. As the 
hannel is only usedfor internal 
ommuni
ation, it is hidden from the environment. The viewpoint is spe
i�ed as follows:Eng := hide 
hannel in RH j[
hannel℄j IOHRH := request?x:ID0; 
hannel!x; RHIOH := 
hannel?x:ID0; (transA!x; IOH [℄ transV!x; IOH)The spe
i�
ation o�ers an external 
hoi
e of transmitting on the audio or on the video 
hannel and the user 
ansele
t between them. Of 
ourse in reality, the engineering behaviour would be mu
h more 
omplex. However, we3In fa
t, we 
ould avoid the fun
tion � by using generalised 
hoi
e over data, e.g. 
hoi
e a2 �(D) [℄(a;B) is equivalent to 
hoi
eb2 D [℄ (
hoi
e x:T [℄ b!x;B) where T is the type asso
iated with the a
tion a. However we prefer to use the � fun
tion as it leads toa more 
on
ise presentation.4In fa
t, as is 
ommon with enterprise spe
i�
ation, this 
onstraint 
ould more easily be expressed using a logi
al notation.However, sin
e we are restri
ting ourselves to LOTOS illustrations we have to give a slightly 
umbersome formulation.12



abstra
t from this 
omplexity in the 
ontext of this illustrative example. The behaviour is interpreted with thetesting equivalen
e relation.During the remainder of this paper we will 
onsider (in
rementally) how these viewpoints 
an be 
he
ked for 
on-sisten
y. We will begin by 
onsidering di�erent pairwise 
onsisten
y relationships, i.e. between pairs of viewpoints,and then we will 
onsider the global 
onsisten
y of the example.4 A General Interpretation of Consisten
yWe are now in a position to introdu
e our general interpretation of 
onsisten
y and to 
larify the basi
 propertiesof the interpretation. This se
tion is divided into a number of subse
tions, the �rst introdu
es the de�nition andthen the following subse
tions 
onsider di�erent 
lasses of 
onsisten
y: binary 
onsisten
y, 
omplete 
onsisten
y,balan
ed 
onsisten
y and inter language 
onsisten
y. The se
tion 
on
ludes with a dis
ussion.4.1 Consisten
y De�nitionBroadly a 
onsisten
y 
he
k is a fun
tion from a group of des
riptions, X1; X2; :::; Xn to a boolean; true is returnedif all the des
riptions are 
onsistent and false otherwise. This 
he
k is parameterised upon a 
orresponding groupof development relations, dv1; dv2; :::; dvn, one per des
ription; it is denoted, C(dv1; X1)(dv2; X2):::(dvn; Xn), ashorthand for whi
h is 1::nC (dvi; Xi).Type Corre
tness. The validity of the 
he
k has two elements: type 
orre
tness and 
onsisten
y.De�nition 13 (Type Corre
tness)C(dv1; X1)(dv2; X2):::(dvn; Xn) is type 
orre
t i� (X1 2 pr(dv1) ^ X2 2 pr(dv2) ^ ::: ^ Xn 2 pr(dvn)) ^(pl(dv1) \ pl(dv2) \ ::: \ pl(dvn) 6= ;).Type 
orre
tness ensures, �rstly, that for every des
ription the 
orresponding development relation, i.e. dvi forXi, is 
orre
tly typed with regard to the des
ription. In addition, type 
orre
tness ensures that the target typesof the relations have some interse
tion. This 
he
k has the fun
tion of determining that the 
onsisten
y 
he
kbeing attempted is sensible. Type 
orre
tness will not be an issue for intra language 
onsisten
y, but will bene
essary when determining an appropriate inter language 
onsisten
y 
he
k to apply.Illustration 1 An inter language 
onsisten
y 
he
k between Z and LOTOS, whi
h relates Z by the standard Zre�nement relation, denoted v, [47℄ and LOTOS by redu
tion would typi
ally not be type 
orre
t be
ause the
o-domains of v and red have no interse
tion. However, if a 
ommon semanti
s for LOTOS and Z were de�ned,su
h as the extended transition system 
onsidered in [25℄, and adaptations of v and red were made to relate Zspe
i�
ations respe
tively LOTOS spe
i�
ations to the 
ommon semanti
s, then type 
orre
t 
onsisten
y 
he
ks
ould be de�ned.When writing C(dv1; X1)(dv2; X2):::(dvn; Xn), unless otherwise stated, we will assume the 
he
k has already beenshown to be type 
orre
t.Consisten
y. On
e type 
orre
tness has been determined we 
an investigate 
onsisten
y. Intuitively we viewn spe
i�
ations X1; X2; :::; Xn as 
onsistent if and only if there exists a physi
al implementation whi
h is arealization of all the spe
i�
ations, i.e. X1; X2 through to Xn 
an be implemented in a single system.This interpretation of 
onsisten
y has similarities to satisfa
tion in a logi
al setting. A 
onjun
tion of propo-sitions �1 ^ �2 ^ :::: ^ �n is satis�able if there exists a single model whi
h individually satis�es all thepropositions.Illustration 2 Figures 4(a) and 4(b) illustrates our intuition of 
onsisten
y, in both depi
tions des
riptions arerelated to their set of possible realisations by a relation implements (denoted imp). Thus, the Venn diagrams inthe implementation plane depi
t the set of possible realisations of ea
h des
ription. It should be 
lear that thethree des
riptions in �gure 4(a) are 
onsistent be
ause their set of possible implementations interse
t, i.e. theyhave at least one 
ommon implementation. In 
ontrast, the three des
riptions in �gure 4(b) are not 
onsistent,although, the pairs S4 and S5 and S5 and S6 are mutually 
onsistent.13
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Figure 5: A Consisten
y Che
kHowever, rather than talk expli
itly about implementation, as this interpretation does, we would like to workpurely in the formal setting and de�ne 
onsisten
y purely in terms of des
riptions and relations between des
rip-tions. Thus, we de�ne 
onsisten
y in terms of a 
ommon (formal) des
ription, X , and a list of developmentrelations, dv1; dv2; :::; dvn. De�nition 14 states that n des
riptions are 
onsistent if and only if there exists ades
ription that is a development of X1 a

ording to dv1, X2 a

ording to dv2, through to Xn a

ording to dvn.See �gure 5 for an illustration.De�nition 14 (Consisten
y)1::nC (dvi; Xi) holds, i� 9X 2 DES : X dv1 X1 ^ ::: ^ X dvn Xn.For n des
riptions to be 
onsistent this de�nition requires that X is a 
ommon development of Xi for all i between1 and n. Noti
e that we allow the des
riptions to be related to their 
ommon development in di�erent ways, i.e.if dvi 6= dvj . As dis
ussed in se
tion 1 this is needed in order to support unbalan
ed 
onsisten
y as required byODP viewpoints.In most 
ases X1; X2; :::; Xn in the above de�nition will all be spe
i�
ations, however, X will 
ommonly bea semanti
 representation. In parti
ular, if some of X1; X2; :::; Xn are in di�erent languages then X is verylikely to be in a 
ommon semanti
 notation. The properties that enable a semanti
 notation to be suitable forrepresenting 
ommon developments of spe
i�
ations in di�erent formal te
hniques will be dis
ussed in se
tion 4.5.If X1; X2; :::; Xn are in the same formal te
hnique then 1::nC (dvi; Xi) is 
alled an intra language 
onsisten
y 
he
kand if for some i and j between 1 and n, Xi and Xj are in di�erent formal te
hniques then 1::nC (dvi; Xi) is 
alledan inter language 
onsisten
y 
he
k.In previous presentations of 
onsisten
y we have often in
luded a 
he
k for implementability in our basi
de�nition. This 
he
k is 
alled internal validity and it ensures that the 
ommon development, X in de�nition 14,14



is truly implementable, it is denoted 	(X). Su
h a 
he
k was justi�ed on the grounds that des
riptions relateto physi
al implementations in di�erent ways for di�erent spe
i�
ation languages. In parti
ular, for a languagesu
h as Z valid spe
i�
ations 
an be de�ned whi
h are not implementable. Consequently, in some spe
i�
ationlanguages it may be possible for a group of des
riptions to have a 
ommon development, but not to be 
onsistent,sin
e the 
ommon development is not itself implementable.However, in this paper we avoid expli
itly referring to internal validity in our 
onsisten
y de�nition. Thisis be
ause the 
he
k 
an be in
orporated with development. For example, if we wish to 
he
k X1; :::; Xn for
onsisten
y (and internal validity) using development relations dv01; ::::; dv0n we 
an perform the 
onsisten
y 
he
k1::nC (dvi; Xi) where X dvi Y if and only if X dv0i Y and 	(X), and we have a 
he
k that 
onforms to the formatof our simple 
onsisten
y 
he
k of de�nition 14. A
knowledging that development may be enhan
ed in this wayleads to a 
on
eptually simpler and more uniform treatement of 
onsisten
y and of the theory surrounding it.Uni�
ation. The 
on
ept of a uni�
ation, as highlighted in �gure 3, 
an now be easily formalized as the 
ommondevelopment of de�nition 14. The set of all su
h 
ommon developments is de�ned in the obvious way:De�nition 15 (Uni�
ation Set)U(dv1; X1)(dv2; X2):::(dvn; Xn) = fX 2 DES j X dv1 X1 ^ ::: ^ X dvn Xng.1::nU (dvi; Xi) is used as a shorthand for U(dv1; X1)(dv2; X2):::(dvn; Xn). Noti
e 1::nC (dvi; Xi) holds if and only if1::nU (dvi; Xi) 6= ;.The following result 
an be immediately observed.Proposition 3f(dv1; X1); :::; (dvn; Xn)g � f(dv01; X 01); :::; (dv0m; X 0m)g =) U(dv1; X1):::(dvn; Xn) � U(dv01; X 01):::(dv0m; X 0m)ProofTake X 2 1::nU (dvi; Xi) i.e. X dv1 X1 ^ ::: ^ X dvn Xn. For any X 0j s.t. 1 � j � m; X dv0j X 0j sin
e by ourhypothesis 9Xi (for 1 � i � n) su
h that dvi = dv0j and Xi = X 0j . So, X 2 U(dv01; X 01):::(dv0m; X 0m), as required.2This proposition expresses the obvious result that a uni�
ation of n spe
i�
ations is a uni�
ation of a subset ofthe n spe
i�
ations. An immediate 
orollary of proposition 3 is:Corollary 11::nU (dvi; Xi) � U(dvi; Xi):::(dvj ; Xj) for 1 � i; j � n.The following se
tions 
onsider a number of di�erent 
lasses of 
onsisten
y.4.2 Binary Consisten
yAn important spe
ial 
lass of 
onsisten
y is binary 
onsisten
y, i.e. the 
onsisten
y 
he
k C(dv1; X1)(dv2; X2).Binary 
onsisten
y is a binary relation and is often written, X1 Cdv1;dv2 X2.4.2.1 Basi
 PropertiesThe possibility of inter language 
onsisten
y makes it diÆ
ult to obtain general properties for this binary relation.Proposition 4Binary 
onsisten
y is in general neither (i) re
exive, (ii) symmetri
 or (iii) transitive.Proof(i) Re
exivity is the 
ase C(dv;X)(dv0; X), whi
h is equivalent to C(dv \ dv0; X); this 
ould be false if either dvor dv0 are not re
exive 5.5One reason for development not being re
exive is if it in
orporates an implementability/internal validity 
he
k, as dis
ussed inthe previous se
tion. In su
h a 
ir
umstan
e an unimplementable spe
i�
ation might not be viewed as a development/implementationof itself. 15



(ii) Assuming C(dv1; X1)(dv2; X2) is true, in the 
ase of inter language 
onsisten
y C(dv1; X2)(dv2; X1) is likelynot even to be type 
orre
t. Thus, in its most general form, symmetry of 
onsisten
y does not even yield a type
orre
t 
onsisten
y 
he
k.(iii) Assuming C(dv1; X1)(dv2; X2) and C(dv3; X2)(dv4; X3) hold then transitivity requires us to show that X1and X3 are 
onsistent, however, a

ording to what development relations will we 
he
k 
onsisten
y? The tran-sitivity variant that we would like is that C(dv1; X1)(dv4; X3) follows from the assumptions. However, nothingin our assumption guarantees that, pl(dv1) \ pl(dv4) 6= ;, thus, C(dv1; X1)(dv4; X3) may not be type 
orre
t.Furthermore, even if we assume type 
orre
tness of C(dv1; X1)(dv4; X3), 
onsisten
y will not always hold, sin
eC(dv1; X1)(dv2; X2) and C(dv3; X2)(dv4; X3) are likely to have di�erent 
ommon developments that 
annot berelated (the se
ond example of illustration 2, depi
ted in �gure 4(b), highlights su
h a situation). 2However, if we restri
t ourselves to re
exive development (whi
h would make sense in languages where all spe
i-�
ations are implementable) we 
an obtain re
exivity of 
onsisten
y.Proposition 5If dv1, dv2 2 DEVft are re
exive on DESft, then 8X 2 DESft; C(dv1; X)(dv2; X) holds, i.e. 
onsisten
y isre
exive.ProofRe
exivity of dv1 and dv2 gives us re
exivity of dv1 \ dv2 whi
h implies that X is the required 
ommon develop-ment. 2This proposition implies that 
onsisten
y is re
exive for a language su
h as basi
 LOTOS in whi
h developmentis at least re
exive.4.2.2 Embra
ing DevelopmentOne motivation for 
onsidering unbalan
ed 
onsisten
y is to enable us to address situations in whi
h a viewpoint is\
on
eptually" a dire
t development of a se
ond viewpoint. Su
h relations between viewpoints are not stri
tly ina

ordan
e with viewpoints modelling, but for many parti
ular viewpoint models su
h a 
on
eptual relationshipbetween viewpoints may arise. For example, some resear
hers like to think of spe
i�
 pairs of ODP viewpointsas developments of one another, e.g. the engineering viewpoint may be seen as a re�nement of the 
omputationalviewpoint. Thus, we would like to embra
e the standard development relations into our interpretation of 
onsis-ten
y, i.e. to instantiate 
onsisten
y in su
h a way that the relation indu
ed between viewpoints is equivalent todevelopment. For LOTOS this means giving instantiations of 
onsisten
y that model the LOTOS developmentrelations, 
onf, red, ext, et
.The following general results 
hara
terise the relationship between preorder re�nement and 
onsisten
y.Proposition 6If dv is a preorder then 8X1; X2 2 DESft,(i) X1 dv X2 () X1 Cdv�1;dv X2.(ii) X1 dv X2 () X1 C(dv\dv�1);dv X2.Proof((i) =)) X1 dv X2 by assumption, but also X1 dv�1 X1 by re
exivity of dv, so, X1 is a 
ommon development.((i) (=) Assume 9X s:t: X1 dv X ^X dv X2 then by transitivity of dv, X1 dv X2.((ii) =)) X1 dv X2 by assumption, also X1 dv \ dv�1 X1 by re
exivity.((ii) (=) X1 C(dv\dv�1);dv X2 =) X1 Cdv�1;dv X2 and X1 Cdv�1;dv X2 =) X1 dv X2 (by (i) (=). 2Corollary 2For dv a preorder, dv = Cdv�1;dv = C�dv;dv.LOTOS Illustration 1 We have the following spe
i�
 instantiations of 
orollary 2 for LOTOS preorders:-Proposition 7(i) �tr= C��1tr ;�tr = C��tr ;�tr ; (ii) red = Cred�1;red = Cte;red; (iii) ext = Cext�1;ext = Cte;ext; and(iv) x
s = Cx
s�1;x
s = Cte;x
s. 16



Sin
e 
onf and 
s are not transitive we have to work a bit harder to relate these notions of development. Firstly,we note the following negative result:-Proposition 8
onf 6� C
onf�1;
onfProofLet P1 := b; stop[℄i; a; stop, P2 := b; 
; stop[℄i; a; stop and P := i; a; stop then, P is the required 
ommon develop-ment to give P1 C
onf�1;
onf P2, but :(P1 
onf P2). 2However, the following stronger result enables us to embra
e 
onf.Proposition 9
onf = Cte;
onf.Proof(
onf � Cte;
onf)Assume P1 
onf P2, but in addition from re
exivity of te, P1 te P1 and, thus, P1 is the required 
ommondevelopment.(Cte;
onf � 
onf)Take P su
h that P te P1 and P 
onf P2. If we expand these out we get:Tr(P ) = Tr(P1) ^ 8� 2 Tr(P ); Ref(P; �) = Ref(P1; �) ^8� 2 Tr(P2); Ref(P; �) � Ref(P2; �)Equality of the tra
es of P1 and P implies that there are no tra
es of P2 that P1 
ould do, but P 
ould not do,thus, 8� 2 Tr(P2); Ref(P; �) = Ref(P1; �) and thus, 8� 2 Tr(P2); Ref(P1; �) � Ref(P2; �). So, P1 
onf P2as required. 2In addition, a proof of the following result 
an be found in [4℄.Proposition 10
s= Cx
s;x
s.So, we have shown how equivalent instantiations of 
onsisten
y 
an be given for all the following LOTOS relations:�tr, red, ext, x
s, 
onf and 
s. This only leaves the equivalen
e relations; se
tion 4.4 will show that these 
anbe easily embra
ed.ODP Illustration 1 In addition, we 
an illustrate these LOTOS instantiations of our theory in the 
ontext ofour running ODP example.Tra
e Preorder. The following holds, Eng �tr PermThus, by proposition 7(i) we know that, EngC��tr ;�tr Permwhi
h has the form of the binary 
onsisten
y 
he
k we are interested in between Eng and Perm.Conforman
e. In addition, Eng 
onf PermThus, by proposition 9 we know that, Eng Cte;
onf PermRedu
tion. Now, if we put the last two 
ases together, we get,Eng redPermwhi
h extends the previous properties and by proposition 7(ii),EngCte;red Perm17



whi
h is exa
tly what we are interested in.Extension. Also, we have that, Eng extObl1whi
h by proposition 7(iii) gives us, EngCte;extObl1whi
h is another one of our 
onstituent binary 
onsisten
y 
he
ks.4.3 Complete Consisten
yFor a set of des
riptions a parti
ular 
onsisten
y 
he
k may always hold, i.e. any subset of des
riptions will be
onsistent. This property is 
alled 
omplete 
onsisten
y and is de�ned as:De�nition 16 Complete Consisten
yA set of des
riptions, ds, is 
ompletely 
onsistent a

ording to dv1; :::; dvn i� 8X1; :::; Xn 2 ds; 1::nC (dvi; Xi).Note that this de�nition assumes that the 
onsisten
y 
he
k is type 
orre
t for any n des
riptions in the set. Inthe inter language setting, this will frequently fail to hold. Thus, 
omplete 
onsisten
y is a parti
ularly useful
on
ept in the intra language setting. In parti
ular, if an FDT is known to be 
ompletely 
onsistent there is noneed to undertake 
onsisten
y 
he
king.The following result is straightforward, it gives us a suÆ
ient 
ondition for 
omplete 
onsisten
y (rememberthe notation t(ds; dv) denotes the set of terminal elements of ds a

ording to dv).Proposition 11t(ds; n\dvi) 6= ; =) 1::nC (dvi; Xi) for all X1; :::; Xn 2 ds.ProofClearly, X n\dvi X 0 =) X dvi X 0, so the result follows immediately. 2LOTOS Illustration 2 The following 
ases highlight 
omplete 
onsisten
y 
lasses for basi
 LOTOS.(i) Consider C(
onf ; X)(ext; X 0) for any X;X 0 2 DESbasi
LOTOS . Then the pro
es !, whi
h o�ers a determin-isti
 
hoi
e of all possible a
tions at every point, de�ned as,! := 
hoi
e a 2 LX [ LX0 [℄ a; !satis�es Tr(!)=(LX [ LX0)� and 8� 2 Tr(!)�; Ref(!; �) = f;g, i.e. it performs all possible tra
es and refusesnothing. Thus,! ext X for all X 2 DESbasi
LOTOSand sin
e ext \ 
onf = ext, proposition 11 is satis�ed. So, LOTOS is 
ompletely 
onsistent a

ording to 
onfand ext.This 
omplete 
onsisten
y property of 
onf and ext implies that in our ODP running example,PermC
onf;ext Obl1holds automati
ally, with no further analysis required.(ii) However, C(red; X)(�tr; X 0) for any X;X 0 2 DESbasi
LOTOS does not hold. In parti
ular, red has noterminal element, i.e. t(red; DESbasi
LOTOS) = ;. For su
h a terminal element to exist it must be a tra
e subsetof any basi
 LOTOS des
ription, whi
h suggests it should be the basi
 LOTOS behaviour stop, but stop refuseseverything. Furthermore, the des
riptions X := a; stop and X 0 := b; stop serve as a 
ounterexample that showsthat basi
 LOTOS is not 
ompletely 
onsistent for C(red; X)(�tr; X 0). This is be
ause X has no redu
tions otherthan itself (up to equivalen
e) while X 0 is only tra
e re�ned by itself and stop (up to equivalen
e).Thus, for example, it is not the 
ase that we 
an automati
ally dedu
e that in our ODP running example,CompCred;�tr PermIn fa
t, this does hold, but in order to demonstrate that it does hold we will have to work harder.These are a
tually slightly degenerate examples of 
omplete 
onsisten
y, be
ause in both 
ases one of the develop-ment relations implies the other, i.e. ext � 
onf and red � �tr. However, due to the 
ommon origins of theLOTOS re�nement relations (i.e. tra
e/refusal semanti
s) su
h situations often arise for LOTOS.18



4.4 Balan
ed Consisten
yBalan
ed 
onsisten
y re
e
ts the situation in whi
h the spe
i�
ations being 
he
ked are related to their 
ommonmodel by the same development relation; balan
ed 
onsisten
y is written: CdvX1X2:::Xn or 1::nCdv Xi. The spe
ial
ase of binary balan
ed 
onsisten
y, CdvX1X2, is often written as X1 Cdv X2. An example of a binary balan
ed
onsisten
y 
he
k is PermCred Comp from our running ODP example. We 
an 
hara
terise 
onsisten
y in thisrestri
ted setting; the proof is trivial:-Proposition 12CdvX1:::Xn () lb(fX1; :::; Xng; dv) 6= ;.Thus, in the balan
ed setting 
onsisten
y 
he
king degenerates to sear
hing for lower bounds. Also, it should be
lear that for balan
ed 
onsisten
y lower bounds 
orrespond to uni�
ations, i.e. UdvX1:::Xn = lb(fX1; :::; Xng; dv).In parti
ular, the fa
t that the ordering of des
riptions in balan
ed 
onsisten
y is unimportant (whi
h will be ournext proposition) is re
e
ted by the des
riptions being interpreted as a set in lb.4.4.1 Basi
 PropertiesThe following results are immediate:-Proposition 13(i) CdvX1X2:::Xn = CdvY where Y is any possible permutation of X1:::Xn.(ii) As a 
onsequen
e of (i) Cdv is symmetri
This proposition states that the ordering of X1; :::; Xn in the argument list of C is not important in balan
ed
onsisten
y. The following results, whi
h relate the 
hara
teristi
s of the development relation used to the indu
edbalan
ed 
onsisten
y, are also easily obtained:-Proposition 14(i) If dv is re
exive, then X1 dv X2 =) X1 Cdv X2.(ii) If dv is symmetri
 and transitive then X1 Cdv X2 =) X1 dv X2.Proof(i) Assume X1 dv X2; from re
exivity of dv we get X1 is the required 
ommon development.(ii) Assume 9X s.t. X dv X1 ^ X dv X2; then from symmetry X1 dv X and from transitivity X1 dv X2 asrequired. 2Corollary 3If dv is an equivalen
e relation, then for all des
riptions in ft, dv = Cdv.LOTOS Illustration 3 Corollary 3 
an be used immediately to obtain the following results for basi
 LOTOS:-Proposition 15(i) Cte =te; (ii) C� =�; and (iii) C� =�.This result 
ompletes our relating of basi
 LOTOS development relations to 
onsisten
y and along with propositions7, 9 and 10, shows that all the main basi
 LOTOS development relations 
an be embra
ed by our interpretationof 
onsisten
y.In addition, this relationship between equivalen
e and 
onsisten
y 
an be used to give us:Proposition 16C� � C� � Cte � Cx
s.ProofC� � C� � Cte 
ome dire
tly from propositions 15 and 2. In addition, from proposition 2 we 
an determine thatCte � 
s and sin
e proposition 10 gives us 
s= Cx
s we are done. 219



ODP Illustration 2 However, as might be expe
ted, equivalen
e based balan
ed 
onsisten
y yields a 
he
k thatis generally overly restri
tive. For example, 
onsidering again our ODP viewpoints illustration, Eng is alreadyrelated by the equivalen
e te, the reason for this being that the engineering viewpoint spe
i�es the implementationme
hanisms of the system and is thus, observationally indistinguishable from the implementation itself. However,if we were to impose the same development relation on other viewpoints we would prevent any implementationfreedom in the viewpoint spe
i�
ation pro
ess. For example, the 
onsisten
y 
he
k, CompCte Eng 
ertainly doesnot hold, be
ause Comp 
ontains a lot of non-determinism (and hen
e implementation freedom) whi
h is notre
e
ted in Eng.4.4.2 Complete Balan
ed Consisten
yWe would like to 
hara
terise 
omplete 
onsisten
y in the balan
ed setting. The following is very straightforward:Proposition 17Given ds � DESft ^ dv 2 DEVft; lb(ds; dv) 6= ; () 8X1; :::; Xn 2 ds; 1::nCdv Xi holds.i.e. if all subsets of ds have a lower bound then all spe
i�
ations are 
onsistent by dv.As suggested by proposition 11 a suÆ
ient 
ondition for 
omplete 
onsisten
y is that a terminal element exists.Sin
e for balan
ed 
onsisten
y we only have one development relation this terminal element is a bottom elementfor the one development ordering.Proposition 18t(ds; dv) 6= ; =) 8X1; ::; Xn 2 ds; Cdv(X1; :::; Xn) holds.LOTOS Illustration 4 The following result is a simple instantiation of our general theory for the LOTOSdevelopment relations.Proposition 198P1; P2 2 DESbasi
LOTOS , (i) P1 C�tr P2; (ii) P1 Cext P2; and (iii) P1 C
onf P2.ProofWe have that, up to equivalen
e:(i) t(DESbasi
LOTOS ;�tr) = fstopg;(ii) t(DESbasi
LOTOS ; ext) = f!g (! was introdu
ed in LOTOS illustration 2); and(iii) t(DESbasi
LOTOS ; 
onf) = f!g. 2Corollary 4C�tr = Cext = C
onf = truewhere true is the universal relation over DESbasi
LOTOS .Thus, these instantiations of 
onsisten
y are very weak and are unable to distinguish any spe
i�
ations. In otherwords, when �tr, ext or 
onf is the 
hosen development relation, there is no need for a 
onsisten
y 
he
k.We illustrate the se
ond 
ase, (ii), of proposition 19 with some examples in �gure 6. The following propertieshold:-P 2 Uext(P1; P2), Q 2 Uext(Q1; Q2), Q0 62 Uext(Q1; Q2), R 2 Uext(R1; R2) and R0 62 Uext(R1; R2)Noti
e that (b) shows that Uext must not introdu
e new non-determinism, e.g. Q is a uni�
ation, but Q0 is notas it may refuse either d or e after performing a and Q1 
annot refuse d after a and Q2 
annot refuse e after a.Additionally, (
) shows that uni�
ation may limit non-determinism. Spe
i�
ally, R is a uni�
ation, but R0 is notas it 
an refuse everything after the empty tra
e, while R2 must o�er either a or 
.However, other instantiations of 
onsisten
y are distinguishing:Proposition 20Cred � true. 20
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bFigure 6: Uni�
ation by extension examplesProofWe simply need to exhibit a pair of spe
i�
ations that are not 
onsistent. P1 := a; stop and P2 := b; stop whi
hwere dis
ussed in LOTOS illustration 2 are suÆ
ient. 2Thus, Cred is stri
tly stronger than C�tr , Cext and C
onf. Consider the examples in �gure 7. The followingproperties hold:- Ured(P1; P2) = ;, Q 2 Ured(Q1; Q2) and R2 2 Ured(R1; R2).ODP Illustration 3 We 
an also illustrate these 
lasses of balan
ed binary 
onsisten
y in terms of our runningODP viewpoints example. If, for example, we 
onsider the two viewpoint spe
i�
ations Comp and Eng and relatethem using �rst C
onf and then C�tr (whi
h are \parts" of the full binary 
onsisten
y 
he
k that we are interestedin between these viewpoints, whi
h is Cred;te6) then by proposition 19 (i) and (iii) we have automati
ally that,Comp C
onf Eng and Comp C�tr EngHowever, the use here of the term \parts" is somewhat loaded be
ause as proposition 20 suggests even though forarbitrary P1 and P2 we automati
ally have that,P1 C
onf P2 and P1 C�tr P2it does not follow that P1 Cred P2 even though the relations underlying red are 
onf and �tr. The problem isthat the non-empty uni�
ation sets U
onf(P1; P2) and U�tr (P1; P2) that enable P1 C
onf P2 respe
tively P1 C�tr P2to hold, may not interse
t, i.e. P1 and P2 may have 
ommon implementations by 
onf and �tr respe
tively, butthese implementations may not 
oin
ide.In fa
t, this very situation does arise with our ODP viewpoints example. As just stated Comp C
onf Engand Comp C�tr Eng hold automati
ally, however, Comp Cred Eng a
tually fails to hold7, whi
h we 
an justify asfollows:6Remember, red=
onf\ �tr and te=red\ red�1.7Furthermore, 
he
king Eng a

ording to red is enough to ensure te sin
e be
ause Eng is 
ompletely deterministi
 any redu
tionof Eng will also be testing equivalent to Eng. Consequently our analysis here will show us exa
tly the relationship we are interestedin for Eng. 21
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aFigure 7: Uni�
ation by redu
tion, examples� Eng 
an perform the tra
e request id request id0, say, i.e. it 
an perform two requests before performinga transmission. This possibility arises from the 
on
urreny in Eng whereby the request handler and IOhandler evolve 
on
urrently and the request handler 
an re
eive a se
ond request before the �rst request hasbeen servi
ed by the IO handler. In fa
t, sin
e Eng is 
ompletely deterministi
 the situation is somewhatstronger as Eng 
annot refuse the se
ond request. Thus, all redu
tions of Eng must be able to perform thetra
e request id request id0.� Comp 
annot perform the tra
e request id request id0. This is be
ause ea
h request is followed by a trans-mission before the next request is o�ered. Furthermore, sin
e red does not allow new tra
es to be added thetra
e request id request id0 
annot be performed by any redu
tion of Comp.� Thus, any redu
tion of Eng must be able to perform request id request id0, however no redu
tion of Comp
an perform this tra
e!4.4.3 Bringing Together the LOTOS Balan
ed Consisten
y RelationsBe
ause balan
ed 
onsisten
y is relatively well behaved (
ompared to the other 
lasses of 
onsisten
y) we 
angive a 
omplete 
hara
terisation of binary balan
ed 
onsisten
y for basi
 LOTOS. This subse
tion performs thistask by 
hara
terising the remaining basi
 LOTOS binary balan
ed 
onsisten
y relation C
s and summarisingthe 
omplete set of basi
 LOTOS balan
ed 
onsisten
y relations.If we 
an show that C
s is stronger than Cred then we will have an upper bound on the strength of C
s. Weneed a lemma �rst.Lemma 1P1 C
s P2 =) 8P 2 U
sP1P2; 8� 2 Tr(P ) \ Tr(P1) \ Tr(P2); Ref(P; �) = Ref(P1; �) = Ref(P2; �).ProofAssume � 2 Tr(P ) \ Tr(P1)\ Tr(P2) then (as a dire
t 
onsequen
e of the de�nition of 
s) from P 
s P1 we 
anget Ref(P; �) = Ref(P1; �) and from P 
s P2 we get Ref(P; �) = Ref(P2; �) and the result follows dire
tly. 2Proposition 21Cred 6� C
sProofWe show that P1 and P2 exist su
h that P1 Cred P2, but :(P1 C
s P2). Consider P1 := a; b; stop[℄a; stop andP2 := a; b; stop. Now P1 Cred P2, be
ause P2 
an a
t as the required 
ommon redu
tion.22



We argue by 
ontradi
tion that :(P1 C
s P2). So, assume P is su
h that P 
s P1 and P 
s P2. Firstly, Pmust be able to perform the tra
e a, be
ause if a 62 Tr(P ) then fag � Ref(P; �), but sin
e fag 6� Ref(P2; �) thisimplies that Ref(P; �) 6� Ref(P2; �) and :(P 
onf P2).So, we assume a 2 Tr(P ), hen
e a 2 Tr(P ) \ Tr(P1) \ Tr(P2) and we 
an apply lemma 1 whi
h implies thatRef(P; a) = Ref(P1; a) = Ref(P2; a). But this 
annot be the 
ase as fbg � Ref(P1; a) and fbg 6� Ref(P2; a) soRef(P1; a) 6= Ref(P2; a); whi
h gives us the required 
ontradi
tion and implies that su
h a P does not exist. 2So, C
s is not weaker than Cred. Using the following small result we will be able to further 
larify the relationshipbetween C
s and Cred.Lemma 2P is deterministi
 (in the usual sense) =) (8� 2 Tr(P ); a 2 out(P; �) () :9X 2 Ref(P; �) : a 2 X).ProofStandard from theory of LOTOS. 2This result states that for a deterministi
 pro
ess an a
tion 
annot be both o�ered and refused. Thus, a fullydeterministi
 pro
ess is 
hara
terised by its tra
es only.Proposition 22C
s � Cred.ProofAssume P1 C
s P2, i.e. 9P s:t: P 
s P1 ^ P 
s P2. Now 
onstru
t P 0 as the fully deterministi
 pro
ess
hara
terised by:Tr(P 0) = Tr(P ) \ Tr(P1) \ Tr(P2)Noting from this 
onstru
tion that Tr(P 0) � Tr(P1); T r(P2) and from lemma 1 that 8� 2 Tr(P 0); Ref(P; �) =Ref(P1; �) = Ref(P2; �). In order to show that P 0 is the required 
ommon redu
tion of P1 and P2 we needto show that 8� 2 Tr(P 0); Ref(P 0; �) � Ref(P1; �); Ref(P2; �). This is enough be
ause any �0 2 Tr(P1) [Tr(P2) s:t: �0 62 Tr(P 0) will give Ref(P 0; �0) = ;, whi
h trivially gives us the required refusals relationship.We argue by 
ontradi
tion that 8� 2 Tr(P 0); Ref(P 0; �) � Ref(P1; �); Ref(P2; �). So, assume 9� 2Tr(P 0) s:t: Ref(P 0; �) � (Ref(P1; �) = Ref(P2; �) = Ref(P; �)). Thus, 9fag 6� (Ref(P1; �) = Ref(P2; �) =Ref(P; �)), su
h that fag 2 Ref(P 0; �). From here we 
an use lemma 2 to get a 62 out(P 0; �), but it mustalso be the 
ase that a 2 out(P1; �); out(P2; �); out(P; �) and thus we have a 
ontradi
tion as the tra
e �:a is inTr(P ) \ Tr(P1) \ Tr(P2). So, it must be the 
ase that Ref(P 0; �) � Ref(P1; �); Ref(P2; �) and P 0 red P1 andP 0 red P2 as required. 2Corollary 5C
s � Cred.ProofFrom propositions 21 and 22.Thus, C
s is stri
tly stronger than Cred. In addition, we 
an show that C
s is stri
tly weaker than Cx
s, asfollows:Proposition 23Cx
s � C
s.ProofFirstly, proposition 10 gives us 
s= Cx
s. Then we 
an argue as follows to give us 
s� C
s:-Firstly, P1 
s P2 =) P1 C
s P2, follows immediately from the re
exivity of 
s, i.e. either of P1 or P2 
oulda
t as the required 
ommon 
s-development.In addition, we 
an provide a 
ounterexample to show that, C
s 6� 
s. Consider, P1 := i; a; stop[℄b; 
; stop,P2 := i; a; stop[℄b; stop and P := i; a; stop. Now, P 
s P1 and P 
s P2, but :(P1 
s P2). This is be
ause:(P2 
onf P1) as P2 refuses 
 after the tra
e b, but P1 
annot refuse 
 after the same tra
e. 2The relationship between the di�erent interpretations of 
onsisten
y are shown in �gure 8. These instantiationspresent us with a number of possible interpretations of 
onsisten
y in LOTOS. This situation re
e
ts our view23
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Figure 8: LOTOS Binary Consisten
y Relationsthat 
onsisten
y 
he
king must be performed sele
tively, as was dis
ussed in some depth in [15℄. In parti
ular, itis inappropriate to view 
onsisten
y 
he
king as a single me
hanism whi
h 
an be applied to any pair of spe
i�-
ations. For example, it would be inappropriate to 
he
k two spe
i�
ations whi
h express exa
tly 
orrespondingfun
tionality with Cext.4.4.4 Bringing Together the ODP ExampleWe 
an now bring together the 
onsisten
y 
he
king relationships that we have highlighted 
on
erning our ODPviewpoints example. We have the following pair-wise 
onsisten
y relationships between viewpoints:-� PermCred;extObl1 holds. For example, Obl1 is a uni�
ation.� PermCred;�tr Obl2 holds. For example, Obl2 is a uni�
ation.� PermCred Comp holds. For example, with F 0 = F � f request g, the pro
ess,C := i; request?x:ID0; (
hoi
e b2F0 [℄ i; b!x; C)[℄ (
hoi
e b2F0 [℄ i; b!def; C)is a redu
tion of Perm and of Comp. Thus, the Perm viewpoint has spe
ialized the behaviour of Comp toonly o�er audio and video transmission.� PermCred;te Eng holds. For example, Eng is a uni�
ation.� Obl1Cext;�tr Obl2 holds. For example, Obl1 is a uni�
ation.� Obl1Cext;red Comp holds. For example, the pro
ess,D := i; request?x:ID0; (
hoi
e b2H [℄ i; b!x; D)is an extension of Obl1 and a redu
tion of Comp. Thus, the obligation has spe
ialised the 
omputationalviewpoint by preventing it from transmitting with the default identi�er immediately.24



� Obl1Cext;te Eng holds. For example, Eng is a uni�
ation.� Obl2C�tr;red Comp holds. For example, the pro
ess,E := i; request?x:ID0; (
hoi
e b2F0 [℄ i; b!x; E)is a tra
e re�nement of Obl2 and a redu
tion of Comp. Thus, Obl2 spe
ialises Comp, by preventing it fromtransmitting with the default identi�er and to ensure it only transmits on video and audio links.� Obl2C�tr;teEng does not hold for similar reasons to those that we dis
ussed in se
tion 4.4.2 for whyCompCredEng does not hold, i.e. Eng 
annot refuse a se
ond request after performing an initial request,while no tra
e re�nement of Obl2 
an perform 
onse
utive requests.� CompCred;te Eng does not hold for the reason identi�ed in se
tion 4.4.2 and just highlighted again.As previously dis
ussed, the basi
 problem with the engineering spe
i�
ation is that it allows a se
ond requestto be made before the previous request has been mat
hed to a transmission. The in
onsisten
y this yields withregard to Obl2 and Comp 
an be resolved by adding another syn
hronisation between the two 
omponents of theengineering spe
i�
ation (the same 
hannel 
an be used for both):NewEng := hide 
hannel in RH j[
hannel℄j IOHRH := request?x:ID0; 
hannel!x; 
hannel!x; RHIOH := 
hannel?x:ID0; (transA!x; 
hannel!x; IOH [℄ transV!x; 
hannel!x; IOH)with su
h a syn
hronisation in pla
e the request handler will refuse the se
ond request until the previous requesthas been mat
hed to a transmission. This new engineering spe
i�
ation is 
onsistent with all the other viewpoints,i.e. PermCred;teNewEng, Obl1Cext;teNewEng, Obl2C�tr;teNewEng, and CompCred;teNewEng,all hold, with in ea
h 
ase NewEng itself being an example uni�
ation.The reader should noti
e that what has happened here is a ni
e example of what, in the introdu
tion to thispaper, we 
alled 
uid system development , i.e. the viewpoints spe
i�
ations have evolved independently and thena 
onsisten
y 
he
k has revealed an in
onsisten
y between the viewpoints whi
h has prompted adaptation of aparti
ular viewpoint, here the engineering viewpoint.However, there is still one important remaining issue with this example - are the viewpoints \globally" 
onsis-tent? Noti
e that we have only 
he
ked pairwise between viewpoints, but does su
h pairwise 
onsisten
y ensureglobal 
onsisten
y? This is one of the issues that we will 
onsider in se
tion 5.4.5 Inter Language Consisten
yThe basi
 de�nition of 
onsisten
y that we presented in se
tion 4.1 enables des
riptions in di�erent formal te
h-niques to be related and thus supports inter language 
onsisten
y. In this 
ir
umstan
e the uni�
ation soughtwould be a des
ription in a 
ommon notation, e.g. a semanti
 notation that 
an represent the formal te
hniquesof both the original des
riptions. An inter language 
onsisten
y 
he
k (assuming type 
orre
tness) betweendes
riptions in n formal te
hniques, ft1; :::; ftn, will typi
ally have the following form:C(dv1 Æ [[ ℄℄1; X1)::::(dvn Æ [[ ℄℄n; Xn) where,Xi 2 DESfti ; pr([[ ℄℄i) � DESfti ; pl([[ ℄℄i) � DESft ; and dvi 2 intraDEVft.Thus, ft is the 
ommon notation, i.e. a uni�
ation of X1; ::; Xn would be in ft. Ea
h des
ription is related tothe 
ommon model by a semanti
 map, [[ ℄℄i, whi
h, in e�e
t, translates into the 
ommon notation (this is therealisation of the ODP notion of translation, see �gure 3) and then an intra language development relation, dvi,is applied in the 
ommon notation.Illustration 3 [25℄ de�nes a translation of LOTOS into Z, whi
h we will denote 8:8We adopt the un
onventional fun
tion typing notation, f : S0  S, in order that fun
tional relations re
e
t the order we haveadopted for development relations, the order of whi
h has been 
hosen to re
e
t the standard orientation of LOTOS relations25



[[ ℄℄Z<L : DESZ  DESLOTOSA typi
al 
onsisten
y 
he
k that we 
an perform with this semanti
 map is:C(v Æ [[ ℄℄Z<L; P )(v; S) for v2 intraDEVZ , P 2 DESLOTOS and S 2 DESZNoti
e in this inter language 
onsisten
y 
he
k the formal notation Z is used as the 
ommon notation.The translation [[ ℄℄Z<L probably seems an unlikely 
onstru
tion to some readers. So, we will say more about thismap and its theoreti
al justi�
ation. The theoreti
al foundations for [[ ℄℄Z<L are two semanti
s, [[ ℄℄L 2 SEMLOTOSand [[ ℄℄Z 2 SEMZ , whi
h are typed as follows:[[ ℄℄L : DESETS  DESLOTOS and [[ ℄℄Z : DESETS  DESZwhere ETS is an extended transition system semanti
 notation; the extension ensures that the transition systemgenerated is �nite state [53℄. The semanti
 map [[ ℄℄L is relatively standard, apart from the extension me
hanism,for details see [53℄ [25℄. However, the mapping [[ ℄℄Z is more unusual. The basi
s of the mapping are as follows(details 
an be found in [25℄):� Z operations be
ome a
tions in the transition system.� The order in whi
h a
tions are o�ered is determined by analysing how Z operations be
ome enabled a

ordingto pre and post
onditions of operation s
hemas.� Z data state is handled symboli
ally in the ETS, in parti
ular, transitions have asso
iated symboli
 datae�e
ts.� The initial state s
hema of Z spe
i�
ations is mapped to the initial state of the ETS.[[ ℄℄L and [[ ℄℄Z are taken as given semanti
s in de�ning [[ ℄℄Z<L. The 
orre
tness of the translation is guaranteedbe
ause [[ ℄℄Z<L satis�es:8P 2 DESLOTOS : [[P ℄℄L �ETS [[ [[P ℄℄Z<L ℄℄Zwhere �ETS is weak bisimulation on Extended Transition Systems. Thus, translating any LOTOS pro
ess intoZ (using [[ ℄℄Z<L) and then taking the ETS semanti
s (using [[ ℄℄Z) is observationally equivalent to taking the ETSsemanti
s (using [[ ℄℄L) of the LOTOS pro
ess. This is a strong justi�
ation for [[ ℄℄Z<L as it ensures that (a

ordingto the given semanti
s) translation preserves a strong notion of behavioural equivalen
e.Our interpretation of 
onsisten
y prompts the question: what 
onstitutes a reasonable 
ross language developmentrelation. Spe
i�
ally, we would a
tually like to know that the 
ross language development relation re
e
ts, insome reasonable sense, a development relation from the sour
e language. Although it is not 
orre
tly typed,
on
eptually, a spe
i�er would like to make 
onsisten
y 
he
ks su
h as:C(red; P )(v; S)i.e. the spe
i�er wants to know that an implementation 
an be found whi
h is a redu
tion of P and a Z re�nementof S. We would like to repla
e this 
he
k with a type 
orre
t 
he
k su
h asC(dv Æ [[ ℄℄; P )(v; S)where dv, in some sense, 
orresponds to red.Thus, we would like to relate the development relations of a parti
ular language to the 
ross language devel-opment relations that we use. In order to do this we introdu
e the notion of development relations in di�erentnotations 
orrelating under 
ertain 
onditions.De�nition 17 (Correlation between relations) Given formal te
hniques ft; ft0 2 FT , dv 2 DEVft and asemanti
 map [[ ℄℄ : ft0  ft (i.e. [[ ℄℄ translates from ft to ft0) then dv0 
orrelates to dv, written dv0  dv i�8X1; X2 2 DESft; X1 dv X2 () [[X1℄℄ dv0 [[X2℄℄. 26



The left to right impli
ation, 8X1; X2 2 DESft; X1 dv X2 =) [[X1℄℄ dv0 [[X2℄℄, ensures that any developmentin ft has a 
orresponding development in ft0. The right to left impli
ation, 8X1; X2 2 DESft; X1 dv X2 (=[[X1℄℄ dv0 [[X2℄℄, ensures that ft0 does not add new developments. Thus, it prevents uni�
ations being found inft0 whi
h do not 
orrespond to developments in ft.In fa
t, a body of work now exists on relating behavioural, e.g. LOTOS and state based, e.g. Z, developmentrelations and this work has been summarised and extended in [12℄. In parti
ular, behavioural relations whi
h
orrelate to state based relations (when state based spe
i�
ations are interpreted behaviourally a

ording tomappings like, [[ ℄℄Z) 
an be lo
ated. For example, [12℄ show that the most 
ommon interpretation of Z re�nement(downward simulation - to give it its pre
ise name) 
orrelates to ready simulation testing over the indu
ed labelledtransition system. These results give an important link between the state based and behavioural worlds whi
hmake feasible inter-language 
onsisten
y 
he
king.In addition, a substantial 
ase study in 
onsisten
y 
he
king has been presented in [5℄. This 
ase study
on
erns the signalling system no. 7 proto
ol [51℄. The proto
ol is des
ribed from multiple viewpoints and thenthe viewpoints are 
he
ked for 
onsisten
y. Importantly, sin
e both LOTOS and Z are used in these viewpointspe
i�
ations, inter lanuage 
onsisten
y 
he
ks are employed in the style of those just dis
ussed.A similar translation from LOTOS to Obje
t-Z has also been de�ned [21, 22℄. This is a dire
t translationwhi
h is also stru
ture preserving in that LOTOS synta
ti
 operators are mapped dire
tly to equivalent Obje
t-Zsynta
ti
 operators. The 
ommon semanti
 model that veri�es this translation is the standard (labelled transition)semanti
s of Obje
t-Z into whi
h the semanti
s of LOTOS is embedded.4.6 Summary and Dis
ussionThis se
tion has highlighted a general interpretation of 
onsisten
y, identi�ed the basi
 properties of the de�-nition and lo
ated a number of spe
i�
 
lasses of 
onsisten
y. Our interpretation of 
onsisten
y, C, meets therequirements for a de�nition of 
onsisten
y that we highlighted earlier, in the following ways:� Di�erent development relations 
an be instantiated whi
h are appropriate both to di�erent FDTs and toassessing di�erent forms of 
onsisten
y.� Both intra and inter language 
onsisten
y are in
orporated.� Consisten
y 
he
king between an arbitrary number of des
riptions 
an be supported and 
he
ked a

ordingto a list of development relations. Binary 
onsisten
y is just a spe
ial 
ase of this global 
onsisten
y.� Both balan
ed and unbalan
ed 
onsisten
y are in
orporated.In its fully general form it is very diÆ
ult to 
hara
terise properties of our interpretation of 
onsisten
y, it istoo general. However, by restri
ting to parti
ular 
lasses of 
onsisten
y, 
hara
terisations 
an be investigated.We have lo
ated the following 
lasses: binary 
onsisten
y, 
omplete 
onsisten
y, balan
ed 
onsisten
y and interlanguage 
onsisten
y.Throughout we have illustrated our general notion of 
onsisten
y using LOTOS. In parti
ular, se
tion 4.4.3
ontained a 
omplete 
hara
terisation of binary balan
ed 
onsisten
y for basi
 LOTOS.It should also be pointed out that elsewhere we have assessed the generality of our de�nition of 
onsisten
yby showing that other interpretations of 
onsisten
y 
an be embra
ed by our de�nition. In parti
ular, [16℄ hasshown that the three previously proposed alternatives for ODP 
onsisten
y 
an be embra
ed by our interpretation.These three alternatives are 
onsisten
y in terms of lo
ating a 
ommon 
onformant implementation, 
onsisten
ya

ording to behavioural 
ompatibility and 
onsisten
y as freedom from logi
al 
ontradi
tion. Thus, there isstrong eviden
e that the interpretation of 
onsisten
y des
ribed here is general enough to fully support 
onsisten
y
he
king of ODP viewpoints.5 Basi
 Strategies for Consisten
y Che
kingSo far in this paper we have viewed a group of des
riptions X1; X2; :::; Xn as 
onsistent if their set of possibleuni�
ations 1::nU (dvi; Xi) is non-empty. However uni�
ation sets 
an be very large and even in�nite. Thus, if asystem development traje
tory is to be provided for viewpoint models it is important that the 
hoi
e of possibleuni�
ations is redu
ed. In fa
t, we would like to sele
t just one des
ription from the set of uni�
ations. This27
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y Counterexamplewould enable an in
remental 
onsisten
y 
he
king strategy in whi
h a group of viewpoints are uni�ed and thenthis uni�
ation is further 
omposed with another group of viewpoints.The advantages of su
h in
remental 
onsisten
y 
he
king strategies are that they do not for
e the involve-ment of all viewpoints in every 
onsisten
y 
he
k. In parti
ular, it may be possible to in
rementally 
orre
tin
onsisten
ies. In addition, su
h an approa
h will aid maintaining stru
ture when unifying. One of the mainproblems with uni�
ation algorithms is that the generated uni�
ation is almost 
ertain to be devoid of high levelspe
i�
ation stru
ture [49℄ (e.g. the LOTOS parallel 
omposition operator, j[ ℄j, would be expanded out). Thisis a big problem if the uni�
ation is to be further developed. It is very unlikely that a single uni�
ation of alarge group of viewpoints will be able to re
on
ile the stru
ture of all the views, however, an in
remental fo
us ofrestru
turing may be possible.We must then 
onsider how to obtain global 
onsisten
y from a series of non-global (probably binary) 
onsis-ten
y 
he
ks and uni�
ations. This topi
 is what we 
onsider now. Transitivity and re
exivity of development willbe assumed in this work. These are restri
tive assumptions that e�e
tively rule out inter language 
onsisten
y
he
king, but are required in order to develop a body of theory. In parti
ular, sin
e the work is investigatingin
remental 
onsisten
y 
he
king it seems reasonable to assume transitivity of development.This se
tion 
onsiders basi
 strategies for 
onsisten
y 
he
king. General formats for binary 
onsisten
y 
he
k-ing are 
onsidered in se
tion 5.1 and the 
entral issue of least developed uni�
ation is dis
ussed in 5.2. Thesebasi
 strategies will be used in later se
tions when we 
onsider the properties required in order to realise a binary
onsisten
y 
he
king strategy.5.1 Binary Consisten
y Che
king StrategiesWe would like to obtain global 
onsisten
y through a series of binary 
onsisten
y 
he
ks. Firstly, we must observethat we 
annot assert 
onsisten
y between three or more des
riptions by performing a series of pairwise 
onsisten
y
he
ks, where pairwise 
onsisten
y means binary 
onsisten
y holds between all possible pairings of des
riptions.As an illustration 
onsider the three spe
i�
ations, S1, S2 and S3 shown in �gure 9. These are balan
ed pairwise
onsistent by redu
tion, sin
e, T1 2 Ured(S1; S2); T2 2 Ured(S2; S3) and T3 2 Ured(S1; S3); but, they are notglobally 
onsistent, i.e. :Cred(S1; S2; S3).The problem is that pairwise 
onsisten
y only requires the existen
e of a 
ommon development for ea
h of the
onstituent binary 
he
ks. Thus, many binary 
onsisten
y results may exist ea
h of whi
h fo
uses on a di�erent
ommon development. This is not suÆ
ient to indu
e \global" 
onsisten
y whi
h requires the existen
e of a single
ommon development.We 
an illustrate this issue with our ODP example. In fa
t, the viewpoint spe
i�
ations we have given, Perm,Obl1 , Obl2 , Comp and NewEng are both exhaustively pairwise 
onsistent and globally 
onsistent. The latter 
anbe seen from the fa
t that NewEng is a uni�
ation of all the viewpoints. However, we 
ould imagine a slightlydi�erent example where the problem would arise.Imagine, for example, that in addition to the transmission media to be found in set H, whi
h were,H = f transA ; transV ; transT1 ; :::; transTn g28



there was a further media type, say, transXwhi
h is not used in Comp and we have the two permissions:PermA := (
hoi
e b2 f request, transA, transX g [℄ i; b?x:ID; PermA) [℄ i; stopand PermB := (
hoi
e b2 f request, transV, transX g [℄ i; b?x:ID; PermB) [℄ i; stopthen, PermACred PermB, sin
e,P1 := (
hoi
e b2 f request, transX g [℄ i; b?x:ID; P1) [℄ i; stopis a uni�
ation. Also, PermACred Comp holds be
ause,P2 := i; request?x:ID0; transA!x; P2[℄ i; transA!def; P2is a uni�
ation. Finally, PermB Cred Comp holds be
ause,P3 := i; request?x:ID0; transV!x; P3[℄ i; transV!def; P3is a uni�
ation. However, Cred(PermA;PermB;Comp) does not hold, be
ause the interse
tion of the sets oftransmission types that they 
an perform is empty.However, a 
ombination of binary 
onsisten
y 
he
ks and binary uni�
ation of the form shown in �gure 10should intuitively allow us to dedu
e global 
onsisten
y, i.e. X1 and X2 are 
he
ked for 
onsisten
y, then auni�
ation of X1 and X2 is obtained, whi
h is 
he
ked for 
onsisten
y against X3, then a uni�
ation of X3 andthe previous uni�
ation is performed. This pro
ess is 
ontinued through the n viewpoint des
riptions. Thus, thebase 
ase is a binary 
onsisten
y 
he
k and then repeated uni�
ation and binary 
onsisten
y 
he
ks are performedagainst the next des
ription. Of 
ourse, this is just one possible sequen
e of binary 
onsisten
y 
he
ks. We wouldlike to obtain full asso
iativity results whi
h support any appropriate in
remental 
onsisten
y 
he
king strategy.A more pre
ise depi
tion of su
h an in
remental 
onsisten
y 
he
king strategy is presented in �gure 11 whi
hhighlights the n = 4 
ase. The binary uni�
ation fun
tion is denoted:U : (DEV �DES)� (DEV �DES)! DESi.e. two pairs (ea
h 
omprising a development relation and a des
ription) are taken and a des
ription is returned.So, ea
h step in the algorithm 
onsiders a uni�
ation using the binary uni�
ation fun
tion U . The ith stepis satis�ed if a uni�
ation Yi is generated by U whi
h 
an be used to satisfy the i + 1st step. Importantlysu
h an approa
h generalises 
orresponding balan
ed 
onsisten
y 
he
king strategies by taking the interse
tion ofdevelopment relations; this ensures that the �nal uni�
ation (using transitivity of development) is a development(by appropriate development relations) of all the original des
riptions.However, we must be 
areful over the 
hoi
e of uni�
ation. Spe
i�
ally, an arbitrary des
ription from theuni�
ation set will not always be satisfa
tory. We highlight su
h a situation in the following illustration.Illustration 4 Consider the three basi
 LOTOS spe
i�
ations,P1 := a; b; stop[℄a; 
; stop, P2 := a; b; stop[℄a; 
; stop[℄a; d; stop and P3 := a; 
; stopFurther 
onsider the 
onsisten
y 
he
k CredP1P2P3. The three spe
i�
ations are 
onsistent by redu
tion sin
eP3 is a redu
tion of all three spe
i�
ations. However, if we attempt a binary 
onsisten
y 
he
king algorithm andstarted with P1 and P2 we may 
hoose as the uni�
ation of these two the pro
ess P := a; b; stop, and CredPP3does not hold.We 
an also demonstrate the problem in the 
ontext of our ODP viewpoints illustration. For example, thepro
ess stop is in the uni�
ation set of Perm and Obl2. However, stop 
annot be related to any of the otherviewpoints by red (=red\ �tr, i.e. the interse
tion of Perm and Obl2's development relations). Thus, if stop istaken as the uni�
ation of Perm and Obl2 then the in
remental global 
onsisten
y 
he
k will be 
ompromised.29
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.....Figure 10: Binary Consisten
y AlgorithmIn response to this observation we seek the uni�
ation that has been developed the least, i.e. the one that ismost abstra
t and is, in terms of development, 
losest to the original des
riptions. In the above example this willgive the required result: P1 itself is the least redu
ed uni�
ation, up to testing equivalen
e, of P1 and P2. Theissue is that we 
ould 
hoose a uni�
ation of two des
riptions that is too developed to be re
on
iled with a thirddes
ription, while a less developed uni�
ation that 
ould be re
on
iled, exists. We will 
onsider the issue of leastdeveloped uni�
ations next.5.2 Least Developed Uni�
ationsIn traditional single threaded (waterfall) models of system development the issue of least development does notarise. This is be
ause, assuming development is a preorder, ea
h des
ription is a least development of itself.Unfortunately, the situation is not so straightforward when we generalise to viewpoints and must re
on
ile thedevelopment traje
tory of more than one des
ription.First our interpretation of least developed uni�
ation 9. We assume dvi; 1 � i � n, are preorders.De�nition 18 (Least Developed Uni�
ation)X 2 1::nU (dvi; Xi) is a least developed uni�
ation i� 8X 0 2 1::nU (dvi; Xi) : X 0 n\dvi X,where n\dvi is a shorthand for dv1 \ ::: \ dvn.This de�nition ensures that all uni�
ations are a development of X . Noti
e the interpretation of development,that X and X 0 are related by dv1 \ ::: \ dvn, i.e. the set of uni�
ations is ordered by the interse
tion of thedevelopment relations used in uni�
ation. This is a natural interpretation sin
e all des
riptions in the uni�
ationset are developments of the least developed uni�
ation by all relevant development relations. Also noti
e thatthe least developed uni�
ation is unique (By a 
lari�
ation of what we mean by uniqueness, here we are talkingabout uniqueness up to equivalen
e, where equivalen
e is interpreted as �(dv1\:::\dvn) for dv1; :::; dvn the relevantdevelopment relations.).Unfortunately, for inter language 
onsisten
y, the least developed of the set of uni�
ations is a problemati

on
ept. Spe
i�
ally, des
riptions in the uni�
ation set, 1::nU (dvi; Xi), are likely to be in a di�erent notation fromX1; :::; Xn; thus it is unlikely that the uni�
ations 
an be related in a type 
orre
t manner using dv1 \ :: \ dvn.9We should point out that the terminology that we use here is slightly di�erent to that whi
h we have used in earlier work. Forexample, in [16℄ least uni�
ation has a more general meaning than it does here. We now believe that the de�nition given here leadsto a more intuitive exposition of the 
on
epts. 30
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AAAAAAU AAAAAAUFigure 11: A Global Consisten
y Che
king AlgorithmThus, this de�nition and the remaining theory is only appli
able to intra language 
onsisten
y. Ongoing work isaddressing generalisation of least developed uni�
ation to the inter language setting.It should also be emphasized that there is nothing in the nature of development to ensure that a least developeduni�
ation exists and absen
e of a least developed uni�
ation is a big problem; elsewhere we have 
onsidered howto obtain global 
onsisten
y from binary 
onsisten
y 
he
king in this situation [10℄. This work has shown thatas long as all in�nite 
hains in the uni�
ation set are bounded in
remental 
onsisten
y 
he
king 
an be obtained.However, this is only obtained by 
onsidering a set of 
andidate uni�
ations at ea
h stage in the 
onsisten
y
he
king algorithm. For all pra
ti
al purposes 
he
king against, an admittedly �nite, but possibly very large setof 
andidate uni�
ations, is not feasible. As a re
e
tion of this fa
t, we will not 
onsider this 
lass of 
onsisten
yfurther here; we refer the interested reader to the theoreti
al results to be found in [10℄.The next se
tion seeks to 
larify under what 
ir
umstan
es a least developed uni�
ation will exist in thegeneral 
ase of unbalan
ed 
onsisten
y. Then se
tion 7 will 
onsider the same issue in the more restri
tedsetting of balan
ed 
onsisten
y. In both se
tions, parti
ular LOTOS 
onsisten
y 
he
ks are 
onsidered by way ofillustration.6 Least Developed Uni�
ation and Unbalan
ed Consisten
yA least developed uni�
ation is a greatest element in the uni�
ation set ([10℄ 
onsiders this perspe
tive in somedepth). It is well known that greatest elements of partially ordered sets are unique up to equivalen
e. Thus, we
an determine least developed uni�
ations using the following fun
tion:Notation 1If it exists we denote the least developed uni�
ation as lu(1::nU (dvi; Xi); n\dvi). This fun
tion returns ? if there isno least developed uni�
ation.It is worth pointing out again that we are 
onsidering uniqueness up to equivalen
e. Thus, lu(S; dv) is the 
hoi
efun
tion from the relevant equivalen
e 
lass, su
h a fun
tion existing by the axiom of 
hoi
e. In order to simplifynotation we will often write the least developed uni�
ation as 1::nlu (dvi; Xi) or lu(dv1; X1):::(dvn; Xn).31



We will also use the following simple result.Proposition 24Y = lu(dv;X)(dv0; X 0) ^ Y 0 = lu(dv;X)(dv0; X 0)(dv00; X 00) =) Y 0 dv \ dv0 Y .ProofClearly, Y 0 2 U(dv;X)(dv0; X 0)(dv00; X 00), but we 
an use 
orollary 1 to get Y 0 2 U(dv;X)(dv0; X 0) and by thede�nition of lu we have Y 0 dv \ dv0 Y , as required. 2We are now in a position to relate binary 
onsisten
y strategies to global 
onsisten
y. In order to expressthe asso
iativity result we require we 
onsider a fun
tion � whi
h is derived from lu. The fun
tion returnsa pair, with �rst element the interse
tion of the development relations 
onsidered and se
ond element the leastdeveloped uni�
ation. Noti
e a bottom element is returned as least developed uni�
ation if either a least developeduni�
ation does not exist or one of the des
riptions given as an argument is unde�ned.De�nition 19�(dv;X)(dv0; X 0) = (dv \ dv0; Y )whereif X =? _ X 0 =? _ lu(dv;X)(dv0; X 0) =? then Y =?otherwise Y = lu(dv;X)(dv0; X 0).We will prove asso
iativity of � by relating the two possible binary bra
ketings of � to lu(dv;X)(dv0; X 0)(dv00; X 00).Proposition 25r(�(dv;X)(�(dv0 ; X 0)(dv00; X 00))) �dv\dv0\dv00 lu(dv;X)(dv0; X 0)(dv00; X 00) and,r(�(�(dv;X)(dv0 ; X 0))(dv00; X 00)) �dv\dv0\dv00 lu(dv;X)(dv0; X 0)(dv00; X 00)where, r is the right proje
tion fun
tion, whi
h yields the se
ond element of a pair.ProofSee [10℄. 2Now if we de�ne equality pairwise as,(dv;X) = (dv0; X 0) i� dv = dv0 ^ X �dv\dv0 X 0the following result is straightforward.Corollary 6�(dv;X)(�(dv0; X 0)(dv00; X 00)) = �(�(dv;X)(dv0; X 0))(dv00; X 00)ProofFollows immediately from previous two results, propositions 25 and 25. 2This is a full asso
iativity result whi
h gives us that any bra
keting of �(dv1; X1); :::; (dvn; Xn) is equal. Sin
e �is just an alternative 
oding of lu that fa
ilitates 
larity of expression, we have full asso
iativity of lu and that a
onsisten
y strategy using lu 
an be 
omposed of any order of binary 
onsisten
y 
he
ks. So, if least developeduni�
ations exist, we 
an obtain global 
onsisten
y from any appropriate series of binary 
onsisten
y 
he
ks. Thisis an important result that arises from a well behaved 
lass of uni�
ation.The next question to ask is what 
onditions 
an we impose on development in order to obtain the existen
eof a least developed uni�
ation? The following property will 
ertainly do.Property 1 An FDT, ft, satis�es property 1 i�,8X1; :::; Xn 2 DESft ^ 8dv1; :::; dvn 2 DEVft; (1::nU (dvi; Xi) 6= ; =) lu(1::nU (dvi; Xi); n\dvi) 6=?).This property ensures that any possible 
ombination of des
riptions and development relations in ft will generatea uni�
ation set with a greatest element. 32
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Figure 12: Uni�
ation Set for Unbalan
ed Consisten
yLOTOS Illustration 5 We will 
onsider whether least developed uni�
ations exist for binary 
ombinations ofthe three main LOTOS preorders, i.e. C(ext; P1)(red; P2), C(ext; P1)(�tr; P2) and C(�tr; P1)(red; P2)Consisten
y by ext and red. The following 
ounterexample demonstrates that a least developed uni�
ation forthis 
onsisten
y 
he
k does not exist:P := stop and Q := i; a; stop[℄i; b; stopThe uni�
ation set, U(ext; P )(red; Q) is shown in �gure 12 (identity arrows have not been in
luded). All four ofthe uni�
ations, a; stop, b; stop, a; stop[℄b; stop and Q, are minimally developed uni�
ations10 but none of them isless developed a

ording to ext\red than all the other three. Thus, P and Q have no least developed uni�
ation.Before we explain why a least developed uni�
ation 
an not always be found, we �rst note that for all P1 andP2 U(ext; P1)(red; P2) will be empty (i.e P1 and P2 will not be 
onsistent) unless the following 
ondition holds.(�) Tr(P1) � Tr(P2)If the tra
es of P1 are not a subset of the tra
es of P2 then extension of P1 and redu
tion of P2 
an not bere
on
iled.Thus, assuming (�) the uni�
ation that we require must at least satisfy:Tr(Uer(ext; P1)(red; P2)) � Tr(P1) ^ Tr(Uer(ext; P1)(red; P2)) � Tr(P2)where we have denoted the required binary uni�
ation fun
tion as Uer. However, this leaves too mu
h 
exibilityin the 
hoi
e of uni�
ation. We 
ould 
hoose the tra
es of the sele
ted uni�
ation to be equal to the tra
es of P1or the tra
es of P2 or to be somewhere between the two. Any of these options would enable uni�
ation, but nonewould realise a least developed uni�
ation.Consisten
y by ext and tra
e preorder. A least developed uni�
ation does not in general exist here either.An argument similar to that just made 
an be given.Consisten
y by tra
e preorder and red. Consider the uni�
ation fun
tion Utr(�tr; P )(red; Q) 
hara
terisedby the following tra
e refusal properties,Tr(Utr(�tr; P )(red; Q)) = Tr(P ) \ Tr(Q) ^8� 2 Tr(P ) \ Tr(Q); Ref(Utr(�tr; P )(red; Q); �) = Ref(Q; �)10A minimally developed uni�
ation, X, satis�es the following property: :(9X0 2 1::nU (dvi; Xi) : X n\dvi X0). The existen
eof minimally developed uni�
ations does not imply the existen
e of least developed uni�
ations. However, the other dire
tion ofimpli
ation does hold. Thus, least developed uni�
ation is a stri
tly stronger 
on
ept than minimally developed uni�
ation.33



whi
h, if it exists, 
an be used to derive a LOTOS pro
ess that is unique up to equivalen
e and is a least developeduni�
ation, proof of this fa
t is presented in the appendix, proposition 27. The issue of existen
e is a
tually
ru
ial. Spe
i�
ally, the above properties may not always 
hara
terise a \well formed" LOTOS pro
ess. Forexample, uni�
ation of the LOTOS pro
esses P1 := a; stop and P2 := b; stop will require that,Tr(Utr(�tr; P1)(red; P2)) = f�g ^Ref(Utr(�tr; P1)(red; P2); �) = f;; fagg (assuming L = fa; bg)whi
h implies that after the empty tra
e no a
tions are o�ered (as � is the only tra
e) and b is not refused. Clearly,b not being o�ered implies it should be refused and no LOTOS pro
ess 
an realise these properties. [41℄ lo
ates aset of 
onditions that 
hara
terise when a tra
e/refusal pair is well formed, in the sense that it 
an be realised asa LOTOS pro
ess. Utr(�tr; P1)(red; P2) will fail 
ondition (f) on page 72 of [41℄. It is beyond the s
ope of thispaper to present these 
onditions here.Importantly though, it 
an be shown that:8P;Q 2 DESLOTOS ; Utr(�tr; P )(red; Q) is well formed if and only if C(�tr; P )(red; Q)Thus, an approa
h to 
onsisten
y 
he
king LOTOS spe
i�
ations is to unify spe
i�
ations and then 
onsiderwhether the uni�
ation is well formed. This is an alternative to the approa
h in [49℄ where 
onditions are high-lighted whi
h 
an be 
he
ked to show that spe
i�
ations are 
onsistent and a uni�
ation is only derived on
e it isknown that one exists.7 Strategies for Che
king Balan
ed Consisten
yThe majority of work on 
onsisten
y to be found in the literature has addressed restri
ted 
lasses of 
onsisten
y;to date, balan
ed 
onsisten
y has almost ex
lusively been fo
used on. So, what in this restri
ted setting, enablesus to obtain global 
onsisten
y from binary 
onsisten
y? We would like to lo
ate a spe
ialization of the existen
eof least developed uni�
ations. As might be expe
ted, the greatest lower bound gives us this spe
ialization. Theproperty that we require for balan
ed 
onsisten
y 
he
king to be performed in
rementally is:Property 28fX1; :::; Xng � DESft ^ 8dv 2 DEVft; lb(fX1; :::; Xng; dv) 6= ; =) glb(fX1; :::; Xng; dv) 6= ;.This property ensures that if a lower bound exists then a greatest lower bound 
an be found, i.e. the uni�
ation ofX1; :::; Xn is non-empty implies a least developed uni�
ation exists. It is 
lear from the theory of least developeduni�
ations we have presented and from set theory that taking greatest lower bounds is asso
iative, i.e.glb(fglb(fX1; X2g; dv); X3g; dv) �dv glb(fX1; glb(fX2; X3g; dv)g; dv)and 
an thus be used to derive global 
onsisten
y from binary 
onsisten
y. In order to simplify notation here wehave assumed that glb returns an arbitrary element from the equivalen
e 
lass of its results. With these 
on
eptswe 
an identify what is the most well behaved 
lass of development.De�nition 20 (DESft; dv) is 
o
omplete i� 8S � DESft; glb(S; dv) 6= ;.Co
ompleteness is a dual 
on
ept to that of a 
omplete partial order (see for example [44℄) whi
h 
onsidersthe existen
e of least upper bounds as opposed to greatest lower bounds. If development is 
o
omplete for aparti
ular FDT a

ording to a development relation, then all spe
i�
ations are balan
ed 
onsistent and we 
anadopt any relevant in
remental uni�
ation strategy. All des
riptions are 
onsistent sin
e a lower bound exists forall 
olle
tions of des
riptions and in
remental uni�
ation is well behaved sin
e least developed uni�
ations alwaysexist.LOTOS Illustration 6 We will 
onsider in turn the 
onsisten
y 
he
ks: Cred, Cext and C�tr . The workpresented here is 
losely related to that 
onsidered in [41℄.Balan
ed Consisten
y by red. Consider the binary uni�
ation strategy UredPQ 
hara
terised by the followingtra
e/refusal properties: 34



Tr(UredPQ) = Tr(P ) \ Tr(Q) ^ 8� 2 Tr(UredPQ); Ref(UredPQ; �) = Ref(P; �) \ Ref(Q; �)In the appendix (proposition 28) we prove that Ured gives the greatest lower bound. If it exists, Ured is unique upto testing equivalen
e. In addition, in a similar way to Utr, Ured does not always 
hara
terise a \well formed"LOTOS pro
ess. This re
e
ts the fa
t that Cred is not 
ompletely 
onsistent. For example, 
onsider P := a; stopand Q := b; stop, whi
h we have already argued (in proposition 20) are not 
onsistent by redu
tion. We obtainthat Ured is 
hara
terised by,Tr(UredPQ) = f�g ^ Ref(UredPQ; �) = f;g (assuming that L = fa; bg)i.e. UredPQ is a pro
ess that performs no tra
es and refuses nothing. On
e again we obtain that,8P;Q 2 DESbasi
LOTOS ; CredPQ holds if and only if UredPQ is well formed.So, this binary uni�
ation fun
tion enables us to do in
remental 
onsisten
y 
he
king for balan
ed 
onsisten
ya

ording to redu
tion. But, Cred is not 
o
omplete as balan
ed 
onsisten
y a

ording to redu
tion is not 
ompletely
onsistent.Balan
ed Consisten
y by ext. Consider the binary uni�
ation strategy, UextPQ, 
hara
terised by the followingtra
e/refusal properties:Tr(UextPQ) = Tr(P ) [ Tr(Q) ^8� 2 Tr(UextPQ);� 2 Tr(P ) \ Tr(Q) =) Ref(UextPQ; �) = Ref(P; �) \ Ref(Q; �) ^� 2 Tr(P )� Tr(Q) =) Ref(UextPQ; �) = Ref(P; �) ^� 2 Tr(Q)� Tr(P ) =) Ref(UextPQ; �) = Ref(Q; �)Proposition 29 in the appendix veri�es that this uni�
ation fun
tion gives the greatest lower bound. On
e againthis 
onstru
tion 
hara
terises a LOTOS pro
ess that is unique up to testing equivalen
e. In addition, UextPQ
an be shown to be well founded for all P;Q 2 DESbasi
LOTOS . Thus, Uext gives a valid greatest lower bound forall pairs of spe
i�
ations and thus balan
ed 
onsisten
y by extension is 
o
omplete.Balan
ed Consisten
y by Tra
e Preorder. The binary uni�
ation strategy,U�trPQ : Tr(P ) \ Tr(Q)is unique up to ��tr and 
an easily be seen to generate the greatest lower bound of any two basi
 LOTOS pro
essesP and Q. Thus, sin
e C�tr is 
ompletely 
onsistent, we know that balan
ed 
onsisten
y a

ording to tra
e preorderis 
o
omplete.8 Re
e
tion on Consisten
y in LOTOSOne of our reasons for using LOTOS to illustrate 
onsisten
y 
he
king is that it o�ers a spe
trum of developmentrelations. This in parti
ular enables us to illustrate unbalan
ed 
onsisten
y within a single language. Theseillustrations give a perspe
tive on the bounds of 
onsisten
y 
he
king for LOTOS.In summary, all the balan
ed 
onsisten
y instantiations turn out to be relatively well behaved. In parti
ular,least developed uni�
ations exist for all the following 
he
ks, C�tr , Cred and Cext. In 
ontrast, the unbalan
ed
onsisten
y situations are not as well behaved: C�tr;red yields a least developed uni�
ation, but Cext;red andC�tr ;ext do not. This is not suprising as the relations, ext and red and ext and �tr, are so very di�erent.This leaves us with a diÆ
ulty, how 
an we obtain global 
onsisten
y from binary 
onsisten
y when we wishto extend the fun
tionality of only one of the original spe
i�
ations. A possible approa
h to this is to adapt theoriginal spe
i�
ations using unde�ned behaviour and to do away with extension. This is an approa
h that hasbeen used elsewhere [11℄ [40℄ in order to enable fun
tionality extension in pro
ess algebra re�nement methods.To illustrate this approa
h, 
onsider the following simple spe
i�
ation:P := a;B [℄ b;B0 35



as it stands P will initially refuse any a
tion other than a or b. In addition, any spe
i�
ation, Q say, that addsan alternative initial behaviour, e.g.,Q := P [℄ 
;B00would fail to be a redu
tion of P , sin
e Q would add tra
es to those of P . However, perhaps when we spe
ify P ,we do a
tually want to allow su
h addition of fun
tionality. We 
an obtain this e�e
t and sti
k with redu
tionby adding unde�ned behaviour to P . Consider the following behaviours:� := 
hoi
e x 2 A
t n fa; bg [℄ x; 
where,
 := (
hoi
e y 2 A
t [℄ i; y; 
) [℄ i; stopNow 
 is a 
ompletely unde�ned and unpredi
table behaviour; at any state it may non-deterministi
ally de
ideto do anything. In addition, 
 is at the top of the redu
tion preorder: anything is a redu
tion of it.Now if we adapt P to P 0, as follows:P 0 := i;P [℄ �then a behaviour su
h as Q would indeed be a redu
tion of P 0.We 
an highlight a similar situation in the 
ontext of our ODP viewpoints example. In that example, Obl1,whi
h was de�ned,Obl1 := request?x:ID0; stopis related a

ording to extension. However, we 
an get the same e�e
t as this if (assuming A
t = �(GG)) we usethe spe
i�
ation, NewObl1 := i; request?x:ID0; 
[℄ (
hoi
e d2 �(GG-frequestg) [℄ d; 
and relate it a

ording to redu
tion.The issue is that attempting to apply an a
tion at a state in whi
h it is not o�ered results in deadlo
k inLOTOS (and this prevents adding that a
tion during re�nement by redu
tion), however, we have made its resultunde�ned (whi
h 
an be re�ned by redu
tion). Su
h a use of unde�ned 
orresponds to the interpretation employedin pre and post
ondition based re�nement, su
h as in Z [47℄. In su
h approa
hes applying an operation outsideits pre
ondition 
on
eptually 
orresponds to attempting to perform an a
tion at a state in whi
h it is not o�ered.In pre and post-
ondition approa
hes su
h as Z applying an operation outside its pre
ondition yields unde�nedrather than refusal. This is why re�nement in Z enables fun
tionality to be extended. However, as we haveillustrated su
h an e�e
t 
an be obtained in LOTOS by adding unde�nedness expli
itly.[11, 12℄ 
onsiders me
hanisms to add unde�ned behaviour to abstra
t spe
i�
ations in a systemati
 man-ner. However, in the 
ontext of this paper this addition of unde�ned behaviour is interesting sin
e it enablesfun
tionality extension to be obtained without using extension. Consequently, we 
an restri
t ourselves to the
ombinations of preorder re�nement: C�tr;red and Cred whi
h are more well behaved sin
e they yield leastdeveloped uni�
ations.9 Related WorkA relatively substantial body of work on viewpoints related approa
hes to system development now exists. Themajority of this work has 
onsidered partial spe
i�
ation in a parti
ular spe
i�
ation notation. Issues su
h asuni�
ation and 
onsisten
y 
he
king arise in all these areas of investigation. Typi
al work on this topi
 is thatby Wallis et al [2℄, [1℄, [3℄; Ja
kson et al [37℄; Boiten [6℄ and Derri
k et al [23℄, [24℄, [13℄ for Z; and Ledu
 [41℄;Khendek et al [38℄, I
hikawa et al [31℄ and Steen et al [49℄ for LOTOS. From amongst this body of languagespe
i�
 work Ledu
's PhD work [41℄ has most in
uen
ed us. In fa
t, the tra
e/refusals theory presented here hasgrown out of Ledu
's work.An important body of resear
h that is not language spe
i�
 is the theory of institutions [28℄ and appli
ation ofthe theory to parti
ular spe
i�
ation domains, in parti
ular, by [26℄ to 
on
urrent systems. However, it is valuableto relate the set theoreti
 
onstru
tions in this paper to 
ategori
al ones found in the theory of institutions:36



� The ODP notion of 
orresponden
es between viewpoints plays a similar role to morphisms within a diagramin institutions, i.e. they identify how terms relate in di�erent spe
i�
ations.� The 
o
one of a diagram is analogous to our notion of a uni�
ation.� The 
olimit of a diagram is analogous to our notion of a least developed uni�
ation.� The 
ategori
al and our notion of 
o
ompleteness 
orrespond.Where the approa
hes di�er is that 
omposition in the institutions setting, e.g. in [26℄, typi
ally 
onsider 
ompos-ing 
omponents at a single level of system development, it is assumed that underlying models must be 
o
omplete,hen
e in
onsisten
y is ruled out in the 
onstraints imposed on the basi
 theory. The theory of institutions gener-alises logi
al frameworks and hen
e uses satisfa
tion, j=, as its 
ore 
orre
tness relation, however, our frameworkis parameterised on the 
hoi
e of development relation, whi
h 
ould be one of many relations. Our approa
h isprompted by the parti
ular requirements of viewpoints in ODP, as indi
ated earlier in this paper.There has now also been some work on spe
i�
 me
hanisms for 
he
king 
onsisten
y a
ross languages; typi
alexamples are the work of Zave et al [54℄ and Derri
k et al [25℄. The former of these 
onsiders a logi
al intermediarybetween languages and all notations are mapped to this intermediary. The latter approa
h has already beendis
ussed.10 Con
luding RemarksThis paper has presented a general interpretation of 
onsisten
y for multiple viewpoint models of system devel-opment and investigated possible 
onsisten
y 
he
king strategies. The main original 
ontribution of the paper isthe generality of the theory investigated. We have motivated the need for a general interpretation of 
onsisten
ywith referen
e to the requirements of viewpoints modelling in Open Distributed Pro
essing. Our interpretation of
onsisten
y embra
es intra and inter language 
onsisten
y, balan
ed and unbalan
ed 
onsisten
y and both binaryand global 
onsisten
y.We have identi�ed the properties of ea
h of the 
lasses of 
onsisten
y; that we have 
onsidered and we have
lassi�ed how global 
onsisten
y 
an be derived from a series of binary 
onsisten
y 
he
ks. This topi
 has beeninvestigated in the past, but only in the 
ontext of a restri
ted 
lass of 
onsisten
y and this is the �rst paperto investigate 
onsisten
y 
he
king strategies for as general an interpretation of 
onsisten
y as ours. The maindi�eren
e between our theory and earlier work is that we handle unbalan
ed 
onsisten
y.The requirement that a least developed uni�
ation always exists was highlighted. If su
h a least developeduni�
ation does not always exist then in
remental 
onsisten
y 
he
king is realisti
ally impossible, although, wehave 
onsidered the theoreti
al 
onsequen
es of su
h a uni�
ation not existing elsewhere. We 
onsidered theexisten
e of least developed uni�
ations in both the general 
ase and for balan
ed 
onsisten
y. In the lattersetting, the 
on
ept of a uni�
ation redu
es to a lower bound and least developed uni�
ation to greatest lowerbound.Throughput we have illustrated the di�erent varieties of 
onsisten
y using LOTOS. These illustrations 
har-a
terise the forms of 
onsisten
y 
he
k that 
an arise with basi
 LOTOS. In parti
ular, we have given a 
omplete
lassi�
ation of the LOTOS balan
ed 
onsisten
y relations, see �gure 8, and we have highlighted whi
h 
ombi-nations of LOTOS re�nement relations yield a least developed uni�
ation. For unbalan
ed 
onsisten
y it wasshown that C(ext; P1)(red; P2) and C(ext; P1)(�tr; P2) do not yield a least developed uni�
ation, while a leastdeveloped uni�
ation for C(�tr; P1)(red; P2) 
an always be found. For balan
ed 
onsisten
y Cred, Cext and C�trall have greatest lower bounds and thus least developed uni�
ations, but only Cext and C�tr are 
o
omplete.A
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tober 1993.AppendixResults for Se
tion 3.2.7Proposition 26(i) �tr, red and ext are preorders.(ii) te, �, and � are equivalen
es.(iii) ���� te � 
s(iv) 
onf is re
exive, but neither symmetri
 nor transitive.(v) 
s is (a) re
exive and (b) symmetri
, but (
) not transitive.(vi) x
s is a preorder, it is (a) re
exive, (b) not symmetri
 and (
) transitive.Proof(i), (ii) and (iv) are all standard results from the theory of LOTOS and pro
ess algebra in general, see for instan
e[41℄, [30℄ and [45℄. However, (iii), (v) and (vi) require some justi�
ation.Proof of (iii). ���� te are standard pro
ess algebra results. te � 
s requires some justi�
ation. Firstly, it isstraightforward to see that te � 
s. In addition, we 
an provide the two pro
esses P := a; stop[℄i; b; stop and40



Q := i; b; stop as 
ounterexamples to justify that 
s 6� te, sin
e P 
s Q, but :(P te Q) as the tra
e sets of thetwo pro
esses are not equal.Proof of (v). This holds for the following reasons:-(v.a) This is a 
onsequen
e of 
onf being re
exive.(v.b) This is immediate from the de�nition of 
s.(v.
) The following 
ounterexample justi�es this. Let P := b; stop[℄i; a; stop; Q := i; a; stop andR := b; 
; stop[℄i; a; stop; then P 
s Q, Q 
s R, but :(P 
s R). This is be
ause :(P 
onf R) as Prefuses 
 after the tra
e b, but R 
annot refuse 
 after the same tra
e.Proof of (vi). This holds for the following reasons:-(vi.a) Take P 2 DESLOTOS , then P ext P and P 
onf P (by re
exivity of extension and 
onforman
e)so P x
s P as required.(vi.b) Consider the pro
esses P := b; stop[℄i; a; stop and Q := a; stop. Now P x
s Q sin
e P 
s Q andTr(P ) � Tr(Q), but, :(Q x
s P ) be
ause :(Tr(Q) � Tr(P )).(vi.
) Assume P x
s Q and Q x
s R, we need P x
s R. Now P x
s Q and Q x
s R imply P ext Q andQ ext R whi
h implies P ext R (by transitivity of ext). So, all that remains is to show that R 
onfP . But, sin
e Tr(R) � Tr(P ) and 8� 2 Tr(R); Ref(P; �) = Ref(Q; �) ^ Ref(Q; �) = Ref(R; �)11. We 
an derive that, 8� 2 Tr(R); Ref(P; �) = Ref(R; �). In addition, 8� 2 Tr(P ) � Tr(R),Ref(R; �) = ; whi
h trivially implies Ref(P; �) � Ref(R; �), as required. 2Results for Se
tion 6Proposition 278P;Q 2 DESbasi
LOTOS ; s:t: C(�tr; P )(red; Q) holds, Utr(�tr; P )(red; Q) is the least developed uni�
ation.ProofFirst we show that Utr(�tr; P )(red; Q) is a uni�
ation and then we show that it is the greatest su
h uni�
ation.Uni�
ation. Utr(�tr; P )(red; Q) �tr P follows immediately, sin
e Tr(Utr(�tr; P )(red; Q)) = Tr(P )\Tr(Q) �Tr(P ). In addition, Utr(�tr; P )(red; Q) red Q sin
e,Tr(Utr(�tr; P )(red; Q)) = Tr(P ) \ Tr(Q) � Tr(Q) ^8� 2 Tr(Q);(� 2 Tr(P ) =) Ref(Utr(�tr; P )(red; Q); �) = Ref(Q; �)) ^(� 62 Tr(P ) =) Ref(Utr(�tr; P )(red; Q); �) = ; � Ref(Q; �))Greatest Uni�
ation. Take R 2 U(�tr; P )(red; Q), we need to show that R (�tr \red) Utr(�tr; P )(red; Q).However, (�tr \red)=red, so all we a
tually need to show is that R red Utr(�tr; P )(red; Q). Sin
e R is auni�
ation it must satisfy:Tr(R) � Tr(P ); T r(Q) ^ 8� 2 Tr(Q); Ref(R; �) � Ref(Q; �)So, we 
an immediately obtain:(i) Tr(R) � Tr(P ) \ Tr(Q) = Tr(Utr(�tr; P )(red; Q)) ^(ii) � 2 Tr(Utr(�tr; P )(red; Q)) =) � 2 Tr(Q), so, 8� 2 Tr(Utr(�tr; P )(red; Q)); Ref(R; �) � Ref(Q; �) =Ref(Utr(�tr; P )(red; Q); �).whi
h gives R red Utr(�tr; P )(red; Q) as required. 211Noti
e, P x
s Q =) 8� 2 Tr(P ); Ref(Q;�) � Ref(P; �) ^ 8� 2 Tr(Q); Ref(P; �) � Ref(Q; �), but also Tr(Q) � Tr(P ).So, 8� 2 Tr(Q); Ref(Q; �) = Ref(P; �).
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Results for Se
tion 7Proposition 288P;Q 2 DESbasi
LOTOS ; s:t: CredPQ holds, UredPQ is the greatest lower bound of P and Q.ProofIn the usual way we prove this in two halves: �rst we show that Ured is a lower bound and then we show that itis the greatest lower bound.Lower Bound. We need to show that UredPQ red P;Q. This follows sin
e, Tr(P ) \ Tr(Q) � Tr(P ); T r(Q)whi
h is the required tra
e subsetting property and 8� 2 (Tr(P )[Tr(Q))�(Tr(P )\Tr(Q)); Ref(UredPQ; �) =; � Ref(Q; �); Ref(P; �) and 8� 2 Tr(P )\Tr(Q); Ref(UredPQ; �) = Ref(P; �)\Ref(Q; �) � Ref(Q; �); Ref(P; �),whi
h is the required refusals property.Greatest Lower Bound. Assume R su
h that R red P and R red Q, we need to show that R red UredPQ.First we 
onsider the tra
es. From R red P and R red Q we obtain that Tr(R) � Tr(P ); T r(Q) whi
h impliesTr(R) � Tr(P ) \ Tr(Q) = Tr(UredPQ), whi
h is the required tra
e subsetting property. Now we 
onsiderrefusals. Firstly, note that 8� 2 Tr(R); Ref(R; �) � Ref(P; �) and Ref(R; �) � Ref(Q; �), whi
h implies thatRef(R; �) � Ref(P; �)\Ref(Q; �) = Ref(UredPQ; �). In addition, 8� 2 (Tr(UredPQ)�Tr(R)); Ref(R; �) =; � Ref(UredPQ; �). This gives us the required refusals property and we are done. 2Proposition 298P;Q 2 DESbasi
LOTOS , UextPQ is the greatest lower bound of P and Q.ProofOn
e again we prove this in two parts.Lower Bound. We need to show that UextPQ ext P;Q. The tra
e property is easily obtained sin
eTr(UextPQ) = Tr(P ) [ Tr(Q) � Tr(P ); T r(Q). In addition, refusals are 
orre
tly related be
ause 8� 2Tr(P ); (� 2 Tr(Q) =) Ref(UextPQ; �) = Ref(P; �)\Ref(Q; �) � Ref(P; �)) ^ (� 62 Tr(Q) =) Ref(UextPQ; �) =Ref(P; �)), and we 
an argue similarly about the refusals of Q. Thus, UextPQ ext P; Q, as required.Greatest Lower Bound. Assume R ext P; Q, we need to show that R ext UextPQ. On
e again the tra
eproperty that we require is straightforward: Tr(R) � Tr(P ) [ Tr(Q) = Tr(UextPQ). The refusals propertyrequires a little more work. We obtain that 8� 2 Tr(UextPQ); (� 2 Tr(P )\Tr(Q) =) Ref(R; �) � Ref(P; �)\Ref(Q; �) = Ref(UextPQ; �)) ^ (� 2 Tr(P )�Tr(Q) =) Ref(R; �) � Ref(P; �) = Ref(UextPQ; �)) ^ (� 2Tr(Q)�Tr(P ) =) Ref(R; �) � Ref(Q; �) = Ref(UextPQ; �)) whi
h is suÆ
ient to show that R ext UextPQ,as required. 2
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