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A Formal Framework for Viewpoint Consisteny �H. Bowman, M.W.A. Steen, E.A. Boiten and J. DerrikComputing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.(Phone: + 44 1227 764000, Fax 44 1227 762811Email: fH.Bowman,mwas,E.A.Boiten,J.Derrikg�uk.a.uk.)Abstrat. Multiple Viewpoint models of system development are beoming inreasingly important. Eah viewpointo�ers a di�erent perspetive on the target system and system development involves parallel re�nement of the multipleviews. Viewpoints related approahes have been onsidered in a number of di�erent guises by a spetrum of researhers.Our work partiularly fouses on the use of viewpoints in Open Distributed Proessing (ODP) whih is an ISO/ITUstandardisation framework. The requirements of viewpoints modelling in ODP are very broad and, hene, demanding.Multiple viewpoints, though, prompt the issue of onsisteny between viewpoints. This paper desribes a very generalinterpretation of onsisteny whih we argue is broad enough to meet the requirements of onsisteny in ODP. We presenta formal framework for this general interpretation; highlight basi properties of the interpretation and loate restritedlasses of onsisteny. Strategies for heking onsisteny are also investigated. Throughout we illustrate our theory usingthe formal desription tehnique LOTOS. Thus, the paper also haraterises the nature of and options for onsistenyheking in LOTOS.Keywords: Viewpoints, LOTOS, Development Models, Open Distributed Proessing, Proess Algebra, FDTs.1 IntrodutionSystem development has lassially been viewed in terms of the waterfall model of development [48℄ or somederivative of the model. A single thread of system development is presribed by the waterfall model, as depitedin �gure 1. Spei�ations are repeatedly re�ned from an abstrat expression of global requirements to a onreterealisation. In suh models the validation question to be resolved onerns whether the n+ 1st spei�ation is avalid re�nement of the nth spei�ation aording to a partiular re�nement relation. Suh re�nement relationsharaterise the manner in whih properties of an abstrat spei�ation are preserved in a re�ned spei�ation;for example, re�nements may preserve safety properties (i.e. statements that something bad annot happen) orliveness properties (i.e. statements that something good must happen).However, it is now widely reognized that the waterfall model has limitations as a paradigm for systemdevelopment. Perhaps the most signi�ant limitation of the model is that it presupposes that a full set ofrequirements for the target system an be identi�ed at the initial stage of system development. This is a restritiveand unrealisti assumption. In pratie, the required funtionality of a system is identi�ed in a far more uidand unstrutured manner, with requirements evolving inrementally during development as the target systembeomes more fully understood; see [52℄ for a disussion of uid identi�ation of requirements.In response to its pereived limitations, adaptations of the waterfall model have been made in a number ofdiretions, e.g. yli development [17℄, rapid prototyping [48℄, adding feedbak [48℄. The partiular adaptationthat we will onsider in this paper is the viewpoints model of system development. This approah involves dividingthe system horizontally relative to the vertial orientation of development. This division is aording to a groupof views or viewpoints, see �gure 2. Eah viewpoint o�ers a di�erent perspetive on the system being developed.Suh viewpoint modelling is loosely analogous to the use of three angled projetion in tehnial drawing, i.e. planview and two side elevations.Importantly, viewpoints support uid system development sine the viewpoint spei�ations an be iteratedbetween in any arbitrary manner. Thus, funtionality an be added to any of the viewpoints at any point duringdevelopment, often as the result of developments of other viewpoints. In partiular, a omplete set of requirementsis not enfored at the start of development.�This work was partially funded by British Teleom Researh Labs., Martlesham, Ipswih, U.K. and the Engineering and PhysialSienes Researh Counil under grant number GR/K13035. 1
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Figure 1: Waterfall ModelNotable proponents of viewpoints modelling inlude [46℄ [27℄ [48℄ [2℄ [26℄. In addition, a related use of view-points an be found in objet oriented design methodologies, suh as [8℄ [9℄. In fat, variants of viewpointsmodelling have been investigated for some time in a number of guises, e.g. aspets [39℄, partial spei�ation [2℄[7℄ [42℄ [38℄, views [37℄, multiple paradigm spei�ation [54℄, putting theories together in institutions [26℄ [28℄,diagrams [9℄ and viewpoints [27℄ [43℄ [8℄.These models typially prompt the entral issue of viewpoint onsisteny, i.e. how to hek that multiplespei�ations of the system do not onit with one another and are \in some sense" onsistent. Thus, the entralvalidation question posed by viewpoints is a horizontal relating of spei�ations in ontrast to the traditionalvertial relating of lassi waterfall models. In partiular, the inherent uidity of viewpoint spei�ation isreeted in validation senarios for viewpoint models. Spei�ally, arbitrary evolution/development of viewpointsis interleaved with snap shot onsisteny heks, i.e. one o� relatings of the viewpoint spei�ations at a partiularpoint in system development. This is in ontrast to lassi waterfall development for whih a rigid order ofdevelopment and validation is presribed.Our perspetive on onsisteny is tinged by the partiular appliation of viewpoints that our work has beentargeted at, viz. the viewpoints model de�ned in the ISO/ITU Open Distributed Proessing (ODP) standardis-ation framework [36℄. ODP de�nes a generi framework to support the open interworking of distributed systemsomponents. A entral tenet of ODP is the use of viewpoints in order to deompose the task of speifyingdistributed systems. ODP supports �ve viewpoints, Enterprise, Information, Computational, Engineering andTehnology. It is beyond the sope of this paper to give a full introdution to ODP viewpoints modelling, theinterested reader is referred to [14℄, however, in ontrast to many other viewpoint models, ODP viewpoints areprede�ned and in this sense stati, i.e. new viewpoints annot be added. Eah of the viewpoints has a spei�purpose and is targeted at a partiular lass of spei�ation.A number of di�erent interpretations an be imposed on the ODP viewpoints model. One suh interpretationthat we will dwell on here (and whih we personally advoate) is that ODP viewpoints de�ne a deompositionof the system development proess1. This is in ontrast to many other viewpoints approahes whih targeta single phase of system development. For example, the viewpoints model of Finkelstein and o-workers [27℄fouses on deomposition in the requirements apture phase of system development: viewpoints are used as adevie to deompose the omplete system spei�ation at a partiular point of system development. They arethus a natural progression from traditional modularization and deomposition paradigms suh as subroutines,modules, abstrat data types and objets. In ontrast, ODP viewpoints an be viewed as deomposing the entiredevelopment trajetory. In fat, there is a relationship between the �ve ODP viewpoints and the phases of systemdevelopment (we should emphasize though that the relationship is very loose and was not the main motivation1However, it should be emphasized that none of the theory whih we present in this paper is spei� to this interpretation andin fat, we believe our framework is general enough to embrae all interpretations of ODP viewpoints. [16℄ gives evidene for thisbelief by showing that all the urrently proposed interpretations of ODP onsisteny, eah of whih reets a di�erent viewpointsinterpretation, an be embraed by our framework. 2
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Figure 2: Viewpoints Modelbehind the ODP viewpoints model). The following list highlights this relationship:� The enterprise viewpoint o�ers a global requirements apture.� The information model de�nes an information spei�ation.� The omputational viewpoint o�ers an objet based interation model that supports abstrat system design.This is abstrat in the sense that it avoids implementation details suh as issues of physial distribution.� The engineering viewpoint is onerned with presribing implementation mehanisms for the target system.� The tehnology viewpoint highlights a possible realisation of the system in terms of existing reusable om-ponents.Cruially though, all \phases" of system development exist simultaneously and an be onurrently evolved. Thus,any view on the system development, from the most abstrat to the most onrete, an be re�ned at any pointand the omplete desription of the system omprises spei�ation from all viewpoints.Another aspet of ODP viewpoints is that it is generally aepted that di�erent viewpoints will be spei�edin di�erent languages. This is beause Formal Desription Tehniques (FDTs) are variously appliable to thespei�ation requirements of the di�erent viewpoints. For example, Z [47℄ has been proposed for the informationviewpoint and LOTOS [7℄ for the omputational viewpoint.Figure 3 [20℄ depits the relationships that are involved in ODP viewpoints modelling. Development yieldsa spei�ation that de�nes the system being desribed more losely. The term development embraes manymehanisms for evolving desriptions towards implementations, one of whih is re�nement. Beause all �veviewpoint spei�ations will eventually be realized by one system, there must be a way to ombine spei�ationsfrom di�erent viewpoints; this is known as uni�ation. For spei�ations in di�erent FDTs to be uni�ed, atranslationmehanism is needed to transform a spei�ation in one language to a spei�ation in another language.Consisteny is a relation between groups of spei�ations.In our work on onsisteny we distinguish between intra and inter language onsisteny. Intra languageonsisteny onsiders how multiple spei�ations in the same language an be shown to be onsistent, while interlanguage onsisteny onsiders relations between spei�ations in di�erent FDTs. The latter issue is a signi�antlymore demanding topi than the former.In order to inform the interpretation of onsisteny we hoose it is worth onsidering what we require of suha de�nition. We o�er the following list as a set of general requirements. The onsisteny de�nition we seek must,� be appliable intra language for many di�erent FDTs, e.g. must make sense between two Z spei�ationsand also between two LOTOS spei�ations; 3
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Figure 3: Relating Viewpoints� be appliable inter language between di�erent FDTs, e.g. relate a Z spei�ation to a LOTOS spei�ation.� support di�erent lasses of onsisteny hek. There are many di�erent forms of onsisteny and theappropriate hek to apply depends on the viewpoint spei�ations being onsidered and the relationshipbetween these viewpoints [15℄. For example, it would be inappropriate to hek two spei�ations whihexpress exatly orresponding funtionality with the same notion of onsisteny that is appliable to hekingonsisteny between spei�ations whih extend eah other's funtionality.� support global onsisteny. Muh of the work, to date, on onsisteny in ODP has only onsidered the aseof two viewpoints (what we will all binary onsisteny); for full generality we need any arbitrary numberof viewpoints greater than zero.� allow viewpoints to relate to the target system in di�erent ways. Thus, not only are there di�erent forms ofonsisteny hek, but within a onsisteny hek, spei�ations are related in di�erent ways. For example,the enterprise spei�ation is likely to express global requirements, while the omputational spei�ationde�nes an interation model. Thus, the relationship between the system being developed and the enterprisespei�ation is very di�erent from the relationship of the system to the omputational spei�ation.This �nal point prompts our work on, so alled, unbalaned onsisteny in whih eah viewpoint is potentiallyrelated to the system under development by a di�erent development relation. For example, the enterprise view-point may be related by a logial satisfation relation while the omputational viewpoint may be related by abehavioural onformane relation. Note also that unbalaned onsisteny is needed to support inter languageonsisteny. This aspet of our work represents a signi�ant departure from existing theoretial work on relatingpartial spei�ations, e.g. [2℄ [54℄, whih has generally restrited itself to what we all, balaned onsisteny.The ontribution of this paper is to de�ne a general interpretation of onsisteny that satis�es all the aboverequirements and to make an extensive investigation of the properties of this de�nition, thus, larifying theharateristis of arbitrarily general onsisteny heking. Partiular lasses of onsisteny heking whih exhibitmore manageable properties are then onsidered. In addition, the paper highlights general strategies for hekingonsisteny aording to the presribed de�nition. Partiular emphasis is plaed on the issue of obtaining globalonsisteny, of any arbitrary number of viewpoints, from a series of smaller onsisteny heks, e.g. binaryonsisteny heks. Throughout we illustrate the onsisteny heking problem using LOTOS and Z; although,partiular emphasis will be plaed on LOTOS. Thus, a further ontribution of this paper is to harateriseonsisteny heking in the LOTOS setting. As a reetion of this the LOTOS illustrations presented will berelatively extensive. 4



In addition, in order to larify the relationship between our work and ODP we present a running ODPexample. This is the multiple viewpoint spei�ation of a teleommuniation servie whih has eah of itsviewpoints desribed in LOTOS. We illustrate how the onsisteny of the viewpoint spei�ation an be hekedusing the tehniques introdued in the paper.The example is deliberately \broad" rather than \deep", i.e. many partial spei�ations/ viewpoints areinluded, eah of whih is rather straightforward. In this way we are able to illustrate the essene of multiviewpoint onsisteny heking within the bounds of this paper - a more omplex example would have swampedthe rest of the paper. However a larger ase study illustration of our tehniques an be found in [5℄.The next two setions of this paper provide preliminary bakground material. Setion 2 de�nes a set ofnotational onventions and setion 3 presents bakground on LOTOS, its development relations and semantimodels. Then setion 4 presents our interpretation of onsisteny, proves some properties of the de�nition andidenti�es a number of lasses of onsisteny, viz. binary onsisteny, omplete onsisteny, balaned onsistenyand inter language onsisteny. Setion 5 highlights basi strategies for heking global onsisteny. In partiular,the pivotal onept of a least developed uni�ation is presented. Setion 6 investigates the existene of leastdevelopments in the general ase of unbalaned onsisteny and then setion 7 onsiders the same issue in themore restrited setting of balaned onsisteny. Setion 8 reets on the nature of onsisteny heking in LOTOS.We then disuss related work in setion 9 and present onluding remarks in setion 10. An appendix ontainingproofs of some of the results used in the paper is inluded at the end of the paper.2 Preliminaries 1: General NotationFirst we present the notation that we will work with. This reets the searh for a general interpretation ofonsisteny by de�ning very general notational onventions.It is worth noting here that in seleting our basi notation an important deision is already made: shoulda ategorial or lassi set theoreti framework be used. In ontrast to some other important researh in thisarea, in partiular the theory of institutions [28℄, we have employed a set theoreti model. Our preferene for alassi set theoreti approah is that it integrates more naturally with the ODP model and existing researh onthe model. In partiular, ategorial methods are not used within the ODP ommunity.Desriptions and Relations Between Desriptions. We begin by assuming a setDES of formal desriptions,whih ontains both formal spei�ations in languages suh as LOTOS and Z and semanti desriptions innotations suh as labelled transition systems and ZF set theory.We assume a set DEV of development relations; members of this set relate pairs of desriptions in DES.DEV embraes all possible ways of relating desriptions, e.g. re�nement relations or semanti maps. For apartiular relation r 2 DEV , where r � DES � DES we de�ne the left and right projetions (whih arerespetively the o-domain and domain of the relation) of r as: pl(r) = f ds j 9ds0 s:t: (ds; ds0) 2 r g andpr(r) = f ds j 9ds0 s:t: (ds0; ds) 2 rg. DEV is subdivided into intraDEV , the set of intra language developmentrelations, and SEM , the set of semanti maps. Importantly, although members of intraDEV and of SEM havevery di�erent funtions, both an be viewed as relations between pairs of desriptions.Members of intraDEV are lassi development relations within a single formal tehnique, e.g. the LOTOS orZ re�nement relations. Members of SEM are semanti maps between desriptions in formal tehniques. Typiallythey map desriptions from one formal tehnique to a seond formal tehnique.Formal Desription Tehniques. Desriptions are written in formal tehniques. The set of all suh tehniquesis denoted FT . Formal tehniques are pairs; they are elements of P(DES) � P(DEV ). Thus, every formaltehnique is haraterised by the set of possible desriptions in the notation and a set of assoiated developmentrelations. We require that the right projetion of all elements of DEV ontains a subset of DES. For a partiularformal tehnique ft we denote the set of all desriptions in ft as DESft and the set of all development relationsas DEVft. We will also use the notation intraDEVft to denote the intra language development relations of ftand SEMft to denote the semanti maps of ft.Development Relations. These are written dv and if X dv X 0 then, in some sense, X is a valid developmentof X 02. Our onept of a development relation generalises all notions of evolving a formal desription towards an2Some authors write development relations the other way around, i.e. X0 dv X means that X is a development of X0. However,our hoie of orientation orresponds to the diretion LOTOS relations are lassially written5



implementation and thus embraes the many suh notions that have been proposed. In partiular, DEV ontainsre�nement relations, equivalenes and relations whih an broadly be lassed as implementation relations [42℄,suh as the LOTOS onformane relation onf. These di�erent lasses of development are best distinguished bytheir basi properties. Re�nement is typially reexive and transitive (i.e. a preorder); equivalenes are reexive,symmetri and transitive; and implementation relations only need to be reexive. The distintion betweenre�nement and implementation relations is partiularly signi�ant; transitivity is a ruial property in enablinginremental development of spei�ations towards realizations and implementation relations are typially lakingin this respet.In general though, we do not require that development relations support any spei� properties. In partiular,we annot even assume reexivity in the general ase. This is beause, in order to support inter languageonsisteny heking, we will allow development relations to relate desriptions in di�erent notations, in theseirumstanes reexivity is not a sensible onept. We will return to this issue in setion 4.1.We introdue the onept of a terminal element for a development set.De�nition 1 Given a set of desriptions S � DES and a development relation dv 2 DEV then X 2 S is aterminal element i� X dv X 0 for all X 0 2 S. The set of terminal elements is denoted t(S; dv). If suh an elementdoes not exist then t(S; dv) = ;.So, a terminal element is a bottom element for the development ordering in a partiular set.We must also onsider what interpretation of equivalene (whih we denote �) we should adopt. The inter-pretation that we adopt is:-X �dv X 0 i� 8Y 2 DES; Y dv X () Y dv X 0whih states that two equivalent desriptions have idential development sets, i.e. every desription that is adevelopment of one will be a development of the other. This demonstrates that during system developmentwe really an hoose any one of a set of equivalent spei�ations without a�eting the possibilities of futuredevelopment.�dv an easily be shown to be an equivalene and, in addition, importantly, no properties are required of dvfor �dv to be an equivalene. In partiular, even if dv is not reexive or transitive �dv will be an equivalene.Another standard interpretation of equivalene between spei�ations is that they are developments of oneanother. With transitivity of dv this interpretation gives us that two spei�ations in any yle by the relation dvare equivalent. However, if dv is in fat a preorder we an obtain that �dv= dv \ dv�1. Thus, we will use thesetwo interpretations interhangeably if development is a preorder. We summarise these results in the followingproposition.Proposition 1(i) �dv is an equivalene.(ii) If dv is a preorder then �dv= dv \ dv�1.(iii) If dv is a preorder then dv is a partial order with identity �dv, i.e. elements are viewed to be equal if theyare related by �dv.ProofThe only part of this proposition that is not ompletely trivial is (ii), so we inlude this proof. Firstly, assumeX �dv X 0, but sine by reexivity, X dv X this gives us X dv X 0 and similarly, X 0 dv X . Seondly, assumeX dv \ dv�1 X 0 and take Y 2 DES, suh that Y dv X , but using our assumption and transitivity of dv we getY dv X 0 and similarly, we an show that Y dv X 0 implies Y dv X . 2We will also use the following standard onepts from set theory.De�nition 2 X 2 DESft is a lower bound of S � DESft for dv i� 8X 0 2 S; X dv X 0. The set of all lowerbounds of S with respet to dv is denoted, lb(S; dv); this set may be empty.A lower bound of S is a development of all elements of S. Notie that lower bounds and terminal elements aredi�erent onepts; a terminal element must be in the identi�ed set of desriptions while a lower bound has nosuh onstraint. In standard fashion we an also de�ne the onept of a greatest lower bound.De�nition 3 For S � DESft X 2 glb(S; dv) is a lower bound suh that all other lower bounds are a developmentof X; i.e. glb(S; dv) � lb(S; dv) ^ (8X 2 lb(S; dv) ^ 8X 0 2 glb(S; dv); X dv X 0). If a greatest lower bound doesnot exist then glb(S; dv) = ;.Notie that if dv is a preorder then t(S; dv) and glb(S; dv) are equivalene lasses under �dv.6



3 Preliminaries 2: Bakground on LOTOS and Introdution of Run-ning ExampleLOTOS [33℄ is a proess algebra based spei�ation language used for the formal desription of distributed andonurrent systems (see [7℄ for a general introdution). LOTOS was developed to formally desribe the serviesand protools of the Open Systems Interonnetion Referene Model [32, 35, 34℄. Currently, LOTOS is also beingused for the spei�ation of ODP systems and standards [36℄.The LOTOS language has two parts: a behavioural part and a data part. Most of our work will be with thebehavioural part; we will refer to basi LOTOS in the text of this paper when we mean only the behavioural partof the language. The behavioural part is a proess algebrai language, related to CCS [45℄ and CSP [30℄, in whihsystems are desribed in terms of the temporal relationship between externally observable ations.We will atually use only a subset of LOTOS; the following abstrat syntax de�nes this subset:P ::= stop j �;P j P1 [℄P2 j hoie a 2 A [℄ P j P1 j[G℄jP2 j hide G in P j Xwhere P , P 0, Q, Q0, P1 and P2 will be used to denote arbitrary LOTOS proesses, � 2 At [ fig, A � At orA �Gate, G �Gate and X is a proess variable. At is the set of all observable ations and i is the distinguishedhidden or internal ation. We use � to range over At and � to range over At [ fig. Gate is the set of all gatenames, gates loate ations, i.e. they indiate the interation point at whih the ation ours.We have the null proess stop (whih is synonymous with deadlok); ation pre�x in order to de�ne sequening;binary and generalised hoie in order to de�ne alternatives, parallel omposition (whih is parameterised on thegates that must synhronise), the hiding operator and a proess variable to invoke behaviour and, possibly, reatereursion. We assume that proess de�nition has the form:X := PAlthough at some points we will assoiate data parameters with suh de�nitions, e.g. X(y : T1; z : T2) := Pde�nes a proess named X with formal parameters y (of type T1) and z (of type T2). The generalised hoieoperator de�nes an arbitrary hoie of proesses, for example,hoie a 2 fb; ; dg [℄ a;P � b;P [℄ ;P [℄ d;PAlso notie that we an reate non-deterministi hoies. For example,i;P [℄ a;P 0o�ers a non-symmetri non-determinsiti hoie between o�ering an a or evolving internally to behave as P .In addition our ODP example will use value passing ations. These are onstruted from a gate referene anda value attribute, e.g. the two ation instanes,g!5 and g?x : Natan synhronise to reate an ation g 5, whereby the value 5 is observed at the gate g. As a by produt of thisobservation the value 5 is bound to the variable x.In the following LP � At is the alphabet of observable ations assoiated with a ertain proess P ; L�Pdenotes strings (or traes) over LP ; the onstant � 2 L�P denotes the empty string, and the variable � ranges overL�P .3.1 Two Semanti ModelsLabelled Transition Systems. Basi LOTOS has a well-de�ned operational semantis whih maps basiLOTOS behaviour expressions onto Labelled Transition Systems (LTSs). Beause this mapping exists and wean express any LTS in basi LOTOS, we an use proesses and their orresponding LTSs interhangeably. Inpartiular, relations de�ned on transition systems are likewise appliable to proesses.A labelled transition system is a tuple, hS;L; T; s0i. S is a set of states whih ranges over the possible proessbehaviours that the system an reah; L is a set of ation labels; T is a set of transitions of the form P ���!P 0;and s0 is a starting state. Notie that without loss of generality we often denote partiular LTSs as the diagramsthat they indue, e.g. those in �gure 6. 7



Notation MeaningP ���!P 0 denotes a transition, i.e.P an do � and onsequently behaves as P 0.�=) reexive and transitive losure of i�!P ��==)P 0 9Q;Q0:P �=)Q ���!Q0 �=)P 0P �=) 9P 0:P �=)P 0P �=6) 6 9P 0:P �=)P 0Table 1: Derived transition denotationsRefusal Semantis. In table 1 the notion of transition is generalised to traes. Using this notation we ande�ne the following:Tr(P ) = f� 2 L�P j P �=)g, denotes the set of traes of a proess P .P after � = fP 0 j P �=)P 0g, denotes the set of all states reahable from P by the trae �.Ref(P; �) = fX j 9P 0 2 (P after �); s.t. 8� 2 X : P 0 �=6) g, denotes the refusals of P after �.out(P; �) = f� j �� 2 Tr(P )g, denotes the set of possible observable ations after the trae �.In trae/refusal semantis the behaviour of a proess P is haraterised by its trae set and the refusals for alltraes in that trae set. Stability and divergene properties an also be onsidered [41℄, however, the standardLOTOS development relations do not onsider these ategories, so, we will restrit ourselves to just the traerefusal haraterisation of LOTOS spei�ations. The preferene for not inluding divergene and stability inthe standard semanti model arises from the non-atastrophi interpretation of divergene employed in LOTOS,whih ontrasts with the interpretation lassially used with CSP failure semantis.3.2 LOTOS Development RelationsWe reiterate the standard de�nitions of the most prominent LOTOS development relations. We use the followingsimple basi LOTOS spei�ations to illustrate these relations:R1 := a; b; stopR2 := a; stopR3 := i; ; stopR4 := ; stopR5 := R1 [℄R2R6 := R2 [℄R3R7 := R4 [℄R23.2.1 Trae preorderPerhaps the simplest meaningful notion of development for LOTOS is trae preorder. This de�nes re�nement asreduing the traes that an be engaged in. The relation is de�ned as follows:De�nition 4 (trae preorder)Given two proess spei�ations P and Q, then P is a trae re�nement of Q, denoted P �tr Q, i�:� Tr(P ) � Tr(Q), or equivalently� 8� 2 L�P :P �=) implies Q �=) .In terms of the example basi LOTOS spei�ations just highlighted, it is straightforward to see that, for example,R2 �tr R1 �tr R5 and R2 �tr R6; but, :(R1 �tr R2).Intuitively, trae preorder ensures that safety properties are preserved through re�nement. Safety propertiesstate that \something bad should not happen", where something bad an be interpreted as a ertain trae. Thus,if an abstrat spei�ation does not perform a ertain degenerate trae then the onrete spei�ation (by traepreorder) annot perform the trae. Notie that all safety properties hold for the empty trae � or, in other words,stop is a trae re�nement of any spei�ation. 8



3.2.2 ConformaneThe problem with trae preorder is that it does not ensure that liveness (or deadlok) properties are preserved.A liveness property states that \something good must eventually happen". However, by trae preorder allspei�ations an be re�ned to stop, i.e. to the proess that does nothing. Thus, the \good things" that theabstrat spei�ation is able to perform an be re�ned out.However, we may wish to ensure that a development of a spei�ation does not deadlok in a situation wherethe spei�ation would not deadlok, in other words, every trae that the spei�ation must do, the developmentmust do as well. This requirement is formalised by the onf relation [18℄ [19℄, whih has been adopted as theprimary interpretation of onformane for LOTOS.De�nition 5 (onformane)Given two proess spei�ations P and Q, then P onforms to Q, denoted P onf Q, i�:� 8� 2 Tr(Q):Ref(P; �) � Ref(Q; �); or equivalently� 8� 2 Tr(Q) and 8A � LP [ LQ we haveif 9P 0 2 (P after �) suh that 8� 2 A:P 0 �=6) ;then 9Q0 2 (Q after �) suh that 8� 2 A:Q0 �=6)If we onsider our sample spei�ations again, the reader an hek that the following relationships hold:R1 onf R2, but it is not that ase that R2 onf R1. The latter of these is beause after the trae a, R2an refuse b, but R1 annot.We will also use the following two development relations whih are symmetri subsets of onf. These relationsare alled onf symmetri, denoted s, and extended onf symmetri, denoted xs. Both relations are introduedfor tehnial reasons. In partiular, the introdution of symmetri variants of onf arises beause this is the notionof ompatibility between spei�ations (alled behavioural ompatibility) used in the arhitetural semantis of theODP referene model [36℄. For a fuller disussion of the motivation behind these relations the interested readeris referred to [4, 50℄.De�nition 6 (onf symmetri)Given two proess spei�ations P and Q, then P s Q i� P onf Q ^ Q onf P .De�nition 7 (extended onf symmetri)Given two proess spei�ations P and Q, then P xs Q i� P s Q ^ Tr(P ) � Tr(Q).An alternative derivation of xs is: P xs Q i� P ext Q ^ Q onf P , see setion 3.2.4 for the de�nition of ext.To illustrate these two relations we an see that R6 s R3, but :(R1 s R2). In addition, R6 xs R3, but:(R3 xs R6).3.2.3 RedutionA re�nement relation that ombines both the preservation of safety and liveness properties is the redutionrelation, red, de�ned in [18℄. This relation is based upon the lassi CSP re�nement relation [30℄ and is alsoequivalent to \must testing" [29℄, in both ases, modulo the handling of divergene. red interpretes re�nementas the redution of non-determinism in a spei�ation. A typial development strategy using red would re�ne anon-deterministi abstrat spei�ation into a deterministi or more nearly deterministi onrete spei�ation.De�nition 8 (redution)Given two proess spei�ations P and Q, then P (deterministially) redues Q, denoted P red Q, i�:1. P �tr Q, and2. P onf QBy way of illustration, we an see that R1 red R5, R2 red R5 and R3 red R6.9



3.2.4 ExtensionInherent in redution is that the onrete spei�ation annot \do more" than the abstrat spei�ation, i.e. traesannot be inreased. However, as Brinksma argues [18℄ in some irumstanes we would like to add funtionalitywhen re�ning. The extension relation allows for this possibility. Thus it enables new possible traes to be addedin a re�nement, while preserving the liveness properties of the spei�ation.De�nition 9 (extension)Given two proess spei�ations P and Q, then P extends Q, denoted P ext Q, i�:1. Tr(P ) � Tr(Q), and2. P onf QBy way of illustration R7 ext R4 and R7 ext R2, but :(R4 ext R7).3.2.5 Testing EquivaleneA standard interpretation of equivalene is given by the testing equivalene. Intuitively, spei�ations are testingequivalent if they annot be distinguished by testing.De�nition 10 (testing equivalene)Given two proess spei�ations P and Q, then P is testing equivalent to Q, denoted P te Q, i�:� P red Q and Q red P , or equivalently� P ext Q and Q ext P , or equivalently� P xs Q and Q xs P , or equivalently� Tr(P ) = Tr(Q) ^ 8� 2 Tr(P ):Ref(P; �) = Ref(Q; �).Notie that P te Q () P red\red�1 Q () P ext\ext�1 Q () P xs\xs�1 Q, so, testing equivaleneplays the role of identity, in the sense of �, for the preorders red, ext and xs.To illustrate this relation, it an be heked that R3 te R4.3.2.6 Bisimulation EquivalenesAn alternative interpretation of identity is given by the bisimulation equivalenes, strong and weak bisimulation[45℄. These o�er stronger interpretations of equivalene based upon the observable behaviour of spei�ations.The de�nition of weak bisimulation equivalene, �, of LOTOS proesses is given by the following two de�nitions:De�nition 11 (weak bisimulation relation)A binary relation R over LOTOS proesses is a weak bisimulation if P1 R P2 implies, 8� 2 L�P [ L�Q1. if 9P 01:P1 �=)P 01 then 9P 02:P2 �=)P 02 and P 01RP 02; and2. if 9P 02:P2 �=)P 02 then 9P 01:P1 �=)P 01 and P 01RP 02:De�nition 12 (weakly bisimilar)Two LOTOS proesses P1 and P2 are weakly bisimilar, denoted P1 � P2, if there exists a weak bisimulationrelation R suh that P1 R P2.Strong bisimulation, denoted �, is de�ned in a similar manner to weak bisimulation, exept i ations are mathedin addition to observable ations. Hene strong bisimulation is an even stronger notion of observational identitythan weak bisimulation.
10



3.2.7 Disussion: Properties of the Development RelationsApart from s and xs the properties of the development relations presented above have been well doumentedin the literature. Some of these properties are reviewed here, proofs of these results an be found in the appendix.Proposition 2(i) �tr, red and ext are preorders.(ii) te, �, and � are equivalenes.(iii) � � � � te � s(iv) onf is reexive, but neither symmetri nor transitive.(v) s is reexive and symmetri, but not transitive.(vi) xs is a preorder.Thus, �tr, red, ext and xs an be lassed together as re�nement relations; te, �, and � an be lassed togetheras equivalenes; while onf and s are weaker implementation relations.3.3 Running ExampleIn this subsetion we desribe a simple ODP system whih will be used as a running example throughout thepaper. The basi senario is the multiple viewpoint spei�ation of a teleommuniations servie. The serviehas the following general behaviour:The servie aepts requests (the ation request) to open up ommuniation hannels and then o�ersdi�erent possible varieties of hannel, e.g. just an audio onnetion (the ation transA) or a (full soundand image) video onnetion (the ation transV). Atually many di�erent types of onnetion ouldbe provided.The following will be assumed in the example:� A set ID of user identi�ers is assumed. These are used for aounting purposes. When a user of the systemrequests a ommuniation he/she spei�es their identi�er and the ost of the ommuniation is harged tothem. The set ID is onstruted as follows - ID=ID0[fdef g, where def indiates a \default" identi�er. Thus,in situations where personalised harging is not being used, e.g. within a partiular ommerial organization,a default identi�er an be provided.� The set of gates in this domain is denoted GG and it has the following subsets:{ F = f request ; transA ; transV g where transA transmits audio and transV transmits video;{ H = f transA ; transV ; transT1 ; :::; transTn g where T1; ::; Tn are alternative ommuniation types,perhaps data links or various qualities of video.� � is a funtion whih takes a set of gate names and returns the set of all possible ations that an begenerated from that set. It assoiates data with the gates in all relevant possible ways. For example, if thegates a and b an only have one data attribute of type boolean then,�(fa; bg) = f a!true ; a!false ; b!true ; b!false gNow we provide viewpoint spei�ations for the enterprise, omputational and engineering viewpoints.Enterprise. This viewpoint is itself omposed of a number of partial spei�ations, eah enfores a di�erententerprise onstraint on the target system. We have one permission and two obligations.� Permission: The enterprise permits the system to be onstruted using gates in the set F . This is beausethe organisation only permits ertain transmission media types to be used in their domain. We an enforethis onstraint by assoiating the redution relation with the following spei�ation:Perm := (hoie b2F [℄ i; b?x:ID; Perm) [℄ i; stop11



So, Perm allows any arbitrary non-deterministi behaviour on the ations request?x:ID, transA?x:ID, andtransV?x:ID. Thus, any spei�ation that does not use an observable ation other than one of these threewill be a redution of Perm.In fat, we ould interpret this spei�ation with the relation �tr and get the same e�et. Indeed, in orderto illustrate di�erent varieties of onsisteny hek we will at di�erent stages during the sequel interpretthis spei�ation with �tr, onf and red. Note that the relations �tr and onf de�ne red (i.e. �tr \onf).So, by onsidering these other two relations we impliitly onsider part of red itself.� Obligation 1: The system is obliged to allow, i.e. o�er, a (non-default) request immediately. This e�et isobtained by assoiating the extension relation with the spei�ation.Obl1 := request?x:ID0; stop� Obligation 2: The enterprise spei�ation also requires that every transA or transV must be preeded by arequest , IDs must math (between requests and transmissions) and a \new" request annot be performeduntil the last one has been mathed to a transmission. We enfore this onstraint by assoiating traepreorder with the following spei�ation3:Obl2 := (hoie a2 �(GG-F) [℄ a; Obl2)[℄ request?x:ID0; Trans(x)Trans(x:ID0) := (hoie a2 �(GG-F) [℄ a; Trans(x))[℄ transA!x; Obl2[℄ transV!x; Obl2This spei�ation will allow all traes that satisfy this onstraint4.Computational. Our senario is that a \generi" servie interfae is provided by the omputational viewpoint.This de�nes a spetrum of allowed omputational behaviour, whih will be speialized aording to the onstraintsimposed by the other viewpoints. In partiular, the enterprise onstraints will speialize the omputationalviewpoint aording to the needs of a partiular organisation. The omputational spei�ation is as follows:Comp := i; request?x:ID0; (hoie b2H [℄ i; b!x; Comp)[℄ (hoie b2H [℄ i; b!def; Comp)The spei�ation o�ers a number of possible behaviours - the �rst branh aepts requests (with identi�ers) andthen o�ers a non-deterministi hoie of transmission with any of the possibly available media types, with (asdisussed earlier), the identi�er inluded for aounting purposes. The seond branh o�ers a default behaviour.Thus, the servie ould be speialized to one where harging is not required and the servie an transmit withthe default value, def, assoiated.Engineering. The system is omposed of two omponents - a request handler (RH) and an IO handler (IOH)whih is itself omposed of a number of tranmission devies: here audio and video devies. These two top levelomponents of the engineering viewpoint, RH and IOH, ommuniate via a hannel. As the hannel is only usedfor internal ommuniation, it is hidden from the environment. The viewpoint is spei�ed as follows:Eng := hide hannel in RH j[hannel℄j IOHRH := request?x:ID0; hannel!x; RHIOH := hannel?x:ID0; (transA!x; IOH [℄ transV!x; IOH)The spei�ation o�ers an external hoie of transmitting on the audio or on the video hannel and the user anselet between them. Of ourse in reality, the engineering behaviour would be muh more omplex. However, we3In fat, we ould avoid the funtion � by using generalised hoie over data, e.g. hoie a2 �(D) [℄(a;B) is equivalent to hoieb2 D [℄ (hoie x:T [℄ b!x;B) where T is the type assoiated with the ation a. However we prefer to use the � funtion as it leads toa more onise presentation.4In fat, as is ommon with enterprise spei�ation, this onstraint ould more easily be expressed using a logial notation.However, sine we are restriting ourselves to LOTOS illustrations we have to give a slightly umbersome formulation.12



abstrat from this omplexity in the ontext of this illustrative example. The behaviour is interpreted with thetesting equivalene relation.During the remainder of this paper we will onsider (inrementally) how these viewpoints an be heked for on-sisteny. We will begin by onsidering di�erent pairwise onsisteny relationships, i.e. between pairs of viewpoints,and then we will onsider the global onsisteny of the example.4 A General Interpretation of ConsistenyWe are now in a position to introdue our general interpretation of onsisteny and to larify the basi propertiesof the interpretation. This setion is divided into a number of subsetions, the �rst introdues the de�nition andthen the following subsetions onsider di�erent lasses of onsisteny: binary onsisteny, omplete onsisteny,balaned onsisteny and inter language onsisteny. The setion onludes with a disussion.4.1 Consisteny De�nitionBroadly a onsisteny hek is a funtion from a group of desriptions, X1; X2; :::; Xn to a boolean; true is returnedif all the desriptions are onsistent and false otherwise. This hek is parameterised upon a orresponding groupof development relations, dv1; dv2; :::; dvn, one per desription; it is denoted, C(dv1; X1)(dv2; X2):::(dvn; Xn), ashorthand for whih is 1::nC (dvi; Xi).Type Corretness. The validity of the hek has two elements: type orretness and onsisteny.De�nition 13 (Type Corretness)C(dv1; X1)(dv2; X2):::(dvn; Xn) is type orret i� (X1 2 pr(dv1) ^ X2 2 pr(dv2) ^ ::: ^ Xn 2 pr(dvn)) ^(pl(dv1) \ pl(dv2) \ ::: \ pl(dvn) 6= ;).Type orretness ensures, �rstly, that for every desription the orresponding development relation, i.e. dvi forXi, is orretly typed with regard to the desription. In addition, type orretness ensures that the target typesof the relations have some intersetion. This hek has the funtion of determining that the onsisteny hekbeing attempted is sensible. Type orretness will not be an issue for intra language onsisteny, but will beneessary when determining an appropriate inter language onsisteny hek to apply.Illustration 1 An inter language onsisteny hek between Z and LOTOS, whih relates Z by the standard Zre�nement relation, denoted v, [47℄ and LOTOS by redution would typially not be type orret beause theo-domains of v and red have no intersetion. However, if a ommon semantis for LOTOS and Z were de�ned,suh as the extended transition system onsidered in [25℄, and adaptations of v and red were made to relate Zspei�ations respetively LOTOS spei�ations to the ommon semantis, then type orret onsisteny heksould be de�ned.When writing C(dv1; X1)(dv2; X2):::(dvn; Xn), unless otherwise stated, we will assume the hek has already beenshown to be type orret.Consisteny. One type orretness has been determined we an investigate onsisteny. Intuitively we viewn spei�ations X1; X2; :::; Xn as onsistent if and only if there exists a physial implementation whih is arealization of all the spei�ations, i.e. X1; X2 through to Xn an be implemented in a single system.This interpretation of onsisteny has similarities to satisfation in a logial setting. A onjuntion of propo-sitions �1 ^ �2 ^ :::: ^ �n is satis�able if there exists a single model whih individually satis�es all thepropositions.Illustration 2 Figures 4(a) and 4(b) illustrates our intuition of onsisteny, in both depitions desriptions arerelated to their set of possible realisations by a relation implements (denoted imp). Thus, the Venn diagrams inthe implementation plane depit the set of possible realisations of eah desription. It should be lear that thethree desriptions in �gure 4(a) are onsistent beause their set of possible implementations interset, i.e. theyhave at least one ommon implementation. In ontrast, the three desriptions in �gure 4(b) are not onsistent,although, the pairs S4 and S5 and S5 and S6 are mutually onsistent.13
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Figure 5: A Consisteny ChekHowever, rather than talk expliitly about implementation, as this interpretation does, we would like to workpurely in the formal setting and de�ne onsisteny purely in terms of desriptions and relations between desrip-tions. Thus, we de�ne onsisteny in terms of a ommon (formal) desription, X , and a list of developmentrelations, dv1; dv2; :::; dvn. De�nition 14 states that n desriptions are onsistent if and only if there exists adesription that is a development of X1 aording to dv1, X2 aording to dv2, through to Xn aording to dvn.See �gure 5 for an illustration.De�nition 14 (Consisteny)1::nC (dvi; Xi) holds, i� 9X 2 DES : X dv1 X1 ^ ::: ^ X dvn Xn.For n desriptions to be onsistent this de�nition requires that X is a ommon development of Xi for all i between1 and n. Notie that we allow the desriptions to be related to their ommon development in di�erent ways, i.e.if dvi 6= dvj . As disussed in setion 1 this is needed in order to support unbalaned onsisteny as required byODP viewpoints.In most ases X1; X2; :::; Xn in the above de�nition will all be spei�ations, however, X will ommonly bea semanti representation. In partiular, if some of X1; X2; :::; Xn are in di�erent languages then X is verylikely to be in a ommon semanti notation. The properties that enable a semanti notation to be suitable forrepresenting ommon developments of spei�ations in di�erent formal tehniques will be disussed in setion 4.5.If X1; X2; :::; Xn are in the same formal tehnique then 1::nC (dvi; Xi) is alled an intra language onsisteny hekand if for some i and j between 1 and n, Xi and Xj are in di�erent formal tehniques then 1::nC (dvi; Xi) is alledan inter language onsisteny hek.In previous presentations of onsisteny we have often inluded a hek for implementability in our baside�nition. This hek is alled internal validity and it ensures that the ommon development, X in de�nition 14,14



is truly implementable, it is denoted 	(X). Suh a hek was justi�ed on the grounds that desriptions relateto physial implementations in di�erent ways for di�erent spei�ation languages. In partiular, for a languagesuh as Z valid spei�ations an be de�ned whih are not implementable. Consequently, in some spei�ationlanguages it may be possible for a group of desriptions to have a ommon development, but not to be onsistent,sine the ommon development is not itself implementable.However, in this paper we avoid expliitly referring to internal validity in our onsisteny de�nition. Thisis beause the hek an be inorporated with development. For example, if we wish to hek X1; :::; Xn foronsisteny (and internal validity) using development relations dv01; ::::; dv0n we an perform the onsisteny hek1::nC (dvi; Xi) where X dvi Y if and only if X dv0i Y and 	(X), and we have a hek that onforms to the formatof our simple onsisteny hek of de�nition 14. Aknowledging that development may be enhaned in this wayleads to a oneptually simpler and more uniform treatement of onsisteny and of the theory surrounding it.Uni�ation. The onept of a uni�ation, as highlighted in �gure 3, an now be easily formalized as the ommondevelopment of de�nition 14. The set of all suh ommon developments is de�ned in the obvious way:De�nition 15 (Uni�ation Set)U(dv1; X1)(dv2; X2):::(dvn; Xn) = fX 2 DES j X dv1 X1 ^ ::: ^ X dvn Xng.1::nU (dvi; Xi) is used as a shorthand for U(dv1; X1)(dv2; X2):::(dvn; Xn). Notie 1::nC (dvi; Xi) holds if and only if1::nU (dvi; Xi) 6= ;.The following result an be immediately observed.Proposition 3f(dv1; X1); :::; (dvn; Xn)g � f(dv01; X 01); :::; (dv0m; X 0m)g =) U(dv1; X1):::(dvn; Xn) � U(dv01; X 01):::(dv0m; X 0m)ProofTake X 2 1::nU (dvi; Xi) i.e. X dv1 X1 ^ ::: ^ X dvn Xn. For any X 0j s.t. 1 � j � m; X dv0j X 0j sine by ourhypothesis 9Xi (for 1 � i � n) suh that dvi = dv0j and Xi = X 0j . So, X 2 U(dv01; X 01):::(dv0m; X 0m), as required.2This proposition expresses the obvious result that a uni�ation of n spei�ations is a uni�ation of a subset ofthe n spei�ations. An immediate orollary of proposition 3 is:Corollary 11::nU (dvi; Xi) � U(dvi; Xi):::(dvj ; Xj) for 1 � i; j � n.The following setions onsider a number of di�erent lasses of onsisteny.4.2 Binary ConsistenyAn important speial lass of onsisteny is binary onsisteny, i.e. the onsisteny hek C(dv1; X1)(dv2; X2).Binary onsisteny is a binary relation and is often written, X1 Cdv1;dv2 X2.4.2.1 Basi PropertiesThe possibility of inter language onsisteny makes it diÆult to obtain general properties for this binary relation.Proposition 4Binary onsisteny is in general neither (i) reexive, (ii) symmetri or (iii) transitive.Proof(i) Reexivity is the ase C(dv;X)(dv0; X), whih is equivalent to C(dv \ dv0; X); this ould be false if either dvor dv0 are not reexive 5.5One reason for development not being reexive is if it inorporates an implementability/internal validity hek, as disussed inthe previous setion. In suh a irumstane an unimplementable spei�ation might not be viewed as a development/implementationof itself. 15



(ii) Assuming C(dv1; X1)(dv2; X2) is true, in the ase of inter language onsisteny C(dv1; X2)(dv2; X1) is likelynot even to be type orret. Thus, in its most general form, symmetry of onsisteny does not even yield a typeorret onsisteny hek.(iii) Assuming C(dv1; X1)(dv2; X2) and C(dv3; X2)(dv4; X3) hold then transitivity requires us to show that X1and X3 are onsistent, however, aording to what development relations will we hek onsisteny? The tran-sitivity variant that we would like is that C(dv1; X1)(dv4; X3) follows from the assumptions. However, nothingin our assumption guarantees that, pl(dv1) \ pl(dv4) 6= ;, thus, C(dv1; X1)(dv4; X3) may not be type orret.Furthermore, even if we assume type orretness of C(dv1; X1)(dv4; X3), onsisteny will not always hold, sineC(dv1; X1)(dv2; X2) and C(dv3; X2)(dv4; X3) are likely to have di�erent ommon developments that annot berelated (the seond example of illustration 2, depited in �gure 4(b), highlights suh a situation). 2However, if we restrit ourselves to reexive development (whih would make sense in languages where all spei-�ations are implementable) we an obtain reexivity of onsisteny.Proposition 5If dv1, dv2 2 DEVft are reexive on DESft, then 8X 2 DESft; C(dv1; X)(dv2; X) holds, i.e. onsisteny isreexive.ProofReexivity of dv1 and dv2 gives us reexivity of dv1 \ dv2 whih implies that X is the required ommon develop-ment. 2This proposition implies that onsisteny is reexive for a language suh as basi LOTOS in whih developmentis at least reexive.4.2.2 Embraing DevelopmentOne motivation for onsidering unbalaned onsisteny is to enable us to address situations in whih a viewpoint is\oneptually" a diret development of a seond viewpoint. Suh relations between viewpoints are not stritly inaordane with viewpoints modelling, but for many partiular viewpoint models suh a oneptual relationshipbetween viewpoints may arise. For example, some researhers like to think of spei� pairs of ODP viewpointsas developments of one another, e.g. the engineering viewpoint may be seen as a re�nement of the omputationalviewpoint. Thus, we would like to embrae the standard development relations into our interpretation of onsis-teny, i.e. to instantiate onsisteny in suh a way that the relation indued between viewpoints is equivalent todevelopment. For LOTOS this means giving instantiations of onsisteny that model the LOTOS developmentrelations, onf, red, ext, et.The following general results haraterise the relationship between preorder re�nement and onsisteny.Proposition 6If dv is a preorder then 8X1; X2 2 DESft,(i) X1 dv X2 () X1 Cdv�1;dv X2.(ii) X1 dv X2 () X1 C(dv\dv�1);dv X2.Proof((i) =)) X1 dv X2 by assumption, but also X1 dv�1 X1 by reexivity of dv, so, X1 is a ommon development.((i) (=) Assume 9X s:t: X1 dv X ^X dv X2 then by transitivity of dv, X1 dv X2.((ii) =)) X1 dv X2 by assumption, also X1 dv \ dv�1 X1 by reexivity.((ii) (=) X1 C(dv\dv�1);dv X2 =) X1 Cdv�1;dv X2 and X1 Cdv�1;dv X2 =) X1 dv X2 (by (i) (=). 2Corollary 2For dv a preorder, dv = Cdv�1;dv = C�dv;dv.LOTOS Illustration 1 We have the following spei� instantiations of orollary 2 for LOTOS preorders:-Proposition 7(i) �tr= C��1tr ;�tr = C��tr ;�tr ; (ii) red = Cred�1;red = Cte;red; (iii) ext = Cext�1;ext = Cte;ext; and(iv) xs = Cxs�1;xs = Cte;xs. 16



Sine onf and s are not transitive we have to work a bit harder to relate these notions of development. Firstly,we note the following negative result:-Proposition 8onf 6� Conf�1;onfProofLet P1 := b; stop[℄i; a; stop, P2 := b; ; stop[℄i; a; stop and P := i; a; stop then, P is the required ommon develop-ment to give P1 Conf�1;onf P2, but :(P1 onf P2). 2However, the following stronger result enables us to embrae onf.Proposition 9onf = Cte;onf.Proof(onf � Cte;onf)Assume P1 onf P2, but in addition from reexivity of te, P1 te P1 and, thus, P1 is the required ommondevelopment.(Cte;onf � onf)Take P suh that P te P1 and P onf P2. If we expand these out we get:Tr(P ) = Tr(P1) ^ 8� 2 Tr(P ); Ref(P; �) = Ref(P1; �) ^8� 2 Tr(P2); Ref(P; �) � Ref(P2; �)Equality of the traes of P1 and P implies that there are no traes of P2 that P1 ould do, but P ould not do,thus, 8� 2 Tr(P2); Ref(P; �) = Ref(P1; �) and thus, 8� 2 Tr(P2); Ref(P1; �) � Ref(P2; �). So, P1 onf P2as required. 2In addition, a proof of the following result an be found in [4℄.Proposition 10s= Cxs;xs.So, we have shown how equivalent instantiations of onsisteny an be given for all the following LOTOS relations:�tr, red, ext, xs, onf and s. This only leaves the equivalene relations; setion 4.4 will show that these anbe easily embraed.ODP Illustration 1 In addition, we an illustrate these LOTOS instantiations of our theory in the ontext ofour running ODP example.Trae Preorder. The following holds, Eng �tr PermThus, by proposition 7(i) we know that, EngC��tr ;�tr Permwhih has the form of the binary onsisteny hek we are interested in between Eng and Perm.Conformane. In addition, Eng onf PermThus, by proposition 9 we know that, Eng Cte;onf PermRedution. Now, if we put the last two ases together, we get,Eng redPermwhih extends the previous properties and by proposition 7(ii),EngCte;red Perm17



whih is exatly what we are interested in.Extension. Also, we have that, Eng extObl1whih by proposition 7(iii) gives us, EngCte;extObl1whih is another one of our onstituent binary onsisteny heks.4.3 Complete ConsistenyFor a set of desriptions a partiular onsisteny hek may always hold, i.e. any subset of desriptions will beonsistent. This property is alled omplete onsisteny and is de�ned as:De�nition 16 Complete ConsistenyA set of desriptions, ds, is ompletely onsistent aording to dv1; :::; dvn i� 8X1; :::; Xn 2 ds; 1::nC (dvi; Xi).Note that this de�nition assumes that the onsisteny hek is type orret for any n desriptions in the set. Inthe inter language setting, this will frequently fail to hold. Thus, omplete onsisteny is a partiularly usefulonept in the intra language setting. In partiular, if an FDT is known to be ompletely onsistent there is noneed to undertake onsisteny heking.The following result is straightforward, it gives us a suÆient ondition for omplete onsisteny (rememberthe notation t(ds; dv) denotes the set of terminal elements of ds aording to dv).Proposition 11t(ds; n\dvi) 6= ; =) 1::nC (dvi; Xi) for all X1; :::; Xn 2 ds.ProofClearly, X n\dvi X 0 =) X dvi X 0, so the result follows immediately. 2LOTOS Illustration 2 The following ases highlight omplete onsisteny lasses for basi LOTOS.(i) Consider C(onf ; X)(ext; X 0) for any X;X 0 2 DESbasiLOTOS . Then the proes !, whih o�ers a determin-isti hoie of all possible ations at every point, de�ned as,! := hoie a 2 LX [ LX0 [℄ a; !satis�es Tr(!)=(LX [ LX0)� and 8� 2 Tr(!)�; Ref(!; �) = f;g, i.e. it performs all possible traes and refusesnothing. Thus,! ext X for all X 2 DESbasiLOTOSand sine ext \ onf = ext, proposition 11 is satis�ed. So, LOTOS is ompletely onsistent aording to onfand ext.This omplete onsisteny property of onf and ext implies that in our ODP running example,PermConf;ext Obl1holds automatially, with no further analysis required.(ii) However, C(red; X)(�tr; X 0) for any X;X 0 2 DESbasiLOTOS does not hold. In partiular, red has noterminal element, i.e. t(red; DESbasiLOTOS) = ;. For suh a terminal element to exist it must be a trae subsetof any basi LOTOS desription, whih suggests it should be the basi LOTOS behaviour stop, but stop refuseseverything. Furthermore, the desriptions X := a; stop and X 0 := b; stop serve as a ounterexample that showsthat basi LOTOS is not ompletely onsistent for C(red; X)(�tr; X 0). This is beause X has no redutions otherthan itself (up to equivalene) while X 0 is only trae re�ned by itself and stop (up to equivalene).Thus, for example, it is not the ase that we an automatially dedue that in our ODP running example,CompCred;�tr PermIn fat, this does hold, but in order to demonstrate that it does hold we will have to work harder.These are atually slightly degenerate examples of omplete onsisteny, beause in both ases one of the develop-ment relations implies the other, i.e. ext � onf and red � �tr. However, due to the ommon origins of theLOTOS re�nement relations (i.e. trae/refusal semantis) suh situations often arise for LOTOS.18



4.4 Balaned ConsistenyBalaned onsisteny reets the situation in whih the spei�ations being heked are related to their ommonmodel by the same development relation; balaned onsisteny is written: CdvX1X2:::Xn or 1::nCdv Xi. The speialase of binary balaned onsisteny, CdvX1X2, is often written as X1 Cdv X2. An example of a binary balanedonsisteny hek is PermCred Comp from our running ODP example. We an haraterise onsisteny in thisrestrited setting; the proof is trivial:-Proposition 12CdvX1:::Xn () lb(fX1; :::; Xng; dv) 6= ;.Thus, in the balaned setting onsisteny heking degenerates to searhing for lower bounds. Also, it should belear that for balaned onsisteny lower bounds orrespond to uni�ations, i.e. UdvX1:::Xn = lb(fX1; :::; Xng; dv).In partiular, the fat that the ordering of desriptions in balaned onsisteny is unimportant (whih will be ournext proposition) is reeted by the desriptions being interpreted as a set in lb.4.4.1 Basi PropertiesThe following results are immediate:-Proposition 13(i) CdvX1X2:::Xn = CdvY where Y is any possible permutation of X1:::Xn.(ii) As a onsequene of (i) Cdv is symmetriThis proposition states that the ordering of X1; :::; Xn in the argument list of C is not important in balanedonsisteny. The following results, whih relate the harateristis of the development relation used to the induedbalaned onsisteny, are also easily obtained:-Proposition 14(i) If dv is reexive, then X1 dv X2 =) X1 Cdv X2.(ii) If dv is symmetri and transitive then X1 Cdv X2 =) X1 dv X2.Proof(i) Assume X1 dv X2; from reexivity of dv we get X1 is the required ommon development.(ii) Assume 9X s.t. X dv X1 ^ X dv X2; then from symmetry X1 dv X and from transitivity X1 dv X2 asrequired. 2Corollary 3If dv is an equivalene relation, then for all desriptions in ft, dv = Cdv.LOTOS Illustration 3 Corollary 3 an be used immediately to obtain the following results for basi LOTOS:-Proposition 15(i) Cte =te; (ii) C� =�; and (iii) C� =�.This result ompletes our relating of basi LOTOS development relations to onsisteny and along with propositions7, 9 and 10, shows that all the main basi LOTOS development relations an be embraed by our interpretationof onsisteny.In addition, this relationship between equivalene and onsisteny an be used to give us:Proposition 16C� � C� � Cte � Cxs.ProofC� � C� � Cte ome diretly from propositions 15 and 2. In addition, from proposition 2 we an determine thatCte � s and sine proposition 10 gives us s= Cxs we are done. 219



ODP Illustration 2 However, as might be expeted, equivalene based balaned onsisteny yields a hek thatis generally overly restritive. For example, onsidering again our ODP viewpoints illustration, Eng is alreadyrelated by the equivalene te, the reason for this being that the engineering viewpoint spei�es the implementationmehanisms of the system and is thus, observationally indistinguishable from the implementation itself. However,if we were to impose the same development relation on other viewpoints we would prevent any implementationfreedom in the viewpoint spei�ation proess. For example, the onsisteny hek, CompCte Eng ertainly doesnot hold, beause Comp ontains a lot of non-determinism (and hene implementation freedom) whih is notreeted in Eng.4.4.2 Complete Balaned ConsistenyWe would like to haraterise omplete onsisteny in the balaned setting. The following is very straightforward:Proposition 17Given ds � DESft ^ dv 2 DEVft; lb(ds; dv) 6= ; () 8X1; :::; Xn 2 ds; 1::nCdv Xi holds.i.e. if all subsets of ds have a lower bound then all spei�ations are onsistent by dv.As suggested by proposition 11 a suÆient ondition for omplete onsisteny is that a terminal element exists.Sine for balaned onsisteny we only have one development relation this terminal element is a bottom elementfor the one development ordering.Proposition 18t(ds; dv) 6= ; =) 8X1; ::; Xn 2 ds; Cdv(X1; :::; Xn) holds.LOTOS Illustration 4 The following result is a simple instantiation of our general theory for the LOTOSdevelopment relations.Proposition 198P1; P2 2 DESbasiLOTOS , (i) P1 C�tr P2; (ii) P1 Cext P2; and (iii) P1 Conf P2.ProofWe have that, up to equivalene:(i) t(DESbasiLOTOS ;�tr) = fstopg;(ii) t(DESbasiLOTOS ; ext) = f!g (! was introdued in LOTOS illustration 2); and(iii) t(DESbasiLOTOS ; onf) = f!g. 2Corollary 4C�tr = Cext = Conf = truewhere true is the universal relation over DESbasiLOTOS .Thus, these instantiations of onsisteny are very weak and are unable to distinguish any spei�ations. In otherwords, when �tr, ext or onf is the hosen development relation, there is no need for a onsisteny hek.We illustrate the seond ase, (ii), of proposition 19 with some examples in �gure 6. The following propertieshold:-P 2 Uext(P1; P2), Q 2 Uext(Q1; Q2), Q0 62 Uext(Q1; Q2), R 2 Uext(R1; R2) and R0 62 Uext(R1; R2)Notie that (b) shows that Uext must not introdue new non-determinism, e.g. Q is a uni�ation, but Q0 is notas it may refuse either d or e after performing a and Q1 annot refuse d after a and Q2 annot refuse e after a.Additionally, () shows that uni�ation may limit non-determinism. Spei�ally, R is a uni�ation, but R0 is notas it an refuse everything after the empty trae, while R2 must o�er either a or .However, other instantiations of onsisteny are distinguishing:Proposition 20Cred � true. 20
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We argue by ontradition that :(P1 Cs P2). So, assume P is suh that P s P1 and P s P2. Firstly, Pmust be able to perform the trae a, beause if a 62 Tr(P ) then fag � Ref(P; �), but sine fag 6� Ref(P2; �) thisimplies that Ref(P; �) 6� Ref(P2; �) and :(P onf P2).So, we assume a 2 Tr(P ), hene a 2 Tr(P ) \ Tr(P1) \ Tr(P2) and we an apply lemma 1 whih implies thatRef(P; a) = Ref(P1; a) = Ref(P2; a). But this annot be the ase as fbg � Ref(P1; a) and fbg 6� Ref(P2; a) soRef(P1; a) 6= Ref(P2; a); whih gives us the required ontradition and implies that suh a P does not exist. 2So, Cs is not weaker than Cred. Using the following small result we will be able to further larify the relationshipbetween Cs and Cred.Lemma 2P is deterministi (in the usual sense) =) (8� 2 Tr(P ); a 2 out(P; �) () :9X 2 Ref(P; �) : a 2 X).ProofStandard from theory of LOTOS. 2This result states that for a deterministi proess an ation annot be both o�ered and refused. Thus, a fullydeterministi proess is haraterised by its traes only.Proposition 22Cs � Cred.ProofAssume P1 Cs P2, i.e. 9P s:t: P s P1 ^ P s P2. Now onstrut P 0 as the fully deterministi proessharaterised by:Tr(P 0) = Tr(P ) \ Tr(P1) \ Tr(P2)Noting from this onstrution that Tr(P 0) � Tr(P1); T r(P2) and from lemma 1 that 8� 2 Tr(P 0); Ref(P; �) =Ref(P1; �) = Ref(P2; �). In order to show that P 0 is the required ommon redution of P1 and P2 we needto show that 8� 2 Tr(P 0); Ref(P 0; �) � Ref(P1; �); Ref(P2; �). This is enough beause any �0 2 Tr(P1) [Tr(P2) s:t: �0 62 Tr(P 0) will give Ref(P 0; �0) = ;, whih trivially gives us the required refusals relationship.We argue by ontradition that 8� 2 Tr(P 0); Ref(P 0; �) � Ref(P1; �); Ref(P2; �). So, assume 9� 2Tr(P 0) s:t: Ref(P 0; �) � (Ref(P1; �) = Ref(P2; �) = Ref(P; �)). Thus, 9fag 6� (Ref(P1; �) = Ref(P2; �) =Ref(P; �)), suh that fag 2 Ref(P 0; �). From here we an use lemma 2 to get a 62 out(P 0; �), but it mustalso be the ase that a 2 out(P1; �); out(P2; �); out(P; �) and thus we have a ontradition as the trae �:a is inTr(P ) \ Tr(P1) \ Tr(P2). So, it must be the ase that Ref(P 0; �) � Ref(P1; �); Ref(P2; �) and P 0 red P1 andP 0 red P2 as required. 2Corollary 5Cs � Cred.ProofFrom propositions 21 and 22.Thus, Cs is stritly stronger than Cred. In addition, we an show that Cs is stritly weaker than Cxs, asfollows:Proposition 23Cxs � Cs.ProofFirstly, proposition 10 gives us s= Cxs. Then we an argue as follows to give us s� Cs:-Firstly, P1 s P2 =) P1 Cs P2, follows immediately from the reexivity of s, i.e. either of P1 or P2 ouldat as the required ommon s-development.In addition, we an provide a ounterexample to show that, Cs 6� s. Consider, P1 := i; a; stop[℄b; ; stop,P2 := i; a; stop[℄b; stop and P := i; a; stop. Now, P s P1 and P s P2, but :(P1 s P2). This is beause:(P2 onf P1) as P2 refuses  after the trae b, but P1 annot refuse  after the same trae. 2The relationship between the di�erent interpretations of onsisteny are shown in �gure 8. These instantiationspresent us with a number of possible interpretations of onsisteny in LOTOS. This situation reets our view23
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Figure 8: LOTOS Binary Consisteny Relationsthat onsisteny heking must be performed seletively, as was disussed in some depth in [15℄. In partiular, itis inappropriate to view onsisteny heking as a single mehanism whih an be applied to any pair of spei�-ations. For example, it would be inappropriate to hek two spei�ations whih express exatly orrespondingfuntionality with Cext.4.4.4 Bringing Together the ODP ExampleWe an now bring together the onsisteny heking relationships that we have highlighted onerning our ODPviewpoints example. We have the following pair-wise onsisteny relationships between viewpoints:-� PermCred;extObl1 holds. For example, Obl1 is a uni�ation.� PermCred;�tr Obl2 holds. For example, Obl2 is a uni�ation.� PermCred Comp holds. For example, with F 0 = F � f request g, the proess,C := i; request?x:ID0; (hoie b2F0 [℄ i; b!x; C)[℄ (hoie b2F0 [℄ i; b!def; C)is a redution of Perm and of Comp. Thus, the Perm viewpoint has speialized the behaviour of Comp toonly o�er audio and video transmission.� PermCred;te Eng holds. For example, Eng is a uni�ation.� Obl1Cext;�tr Obl2 holds. For example, Obl1 is a uni�ation.� Obl1Cext;red Comp holds. For example, the proess,D := i; request?x:ID0; (hoie b2H [℄ i; b!x; D)is an extension of Obl1 and a redution of Comp. Thus, the obligation has speialised the omputationalviewpoint by preventing it from transmitting with the default identi�er immediately.24



� Obl1Cext;te Eng holds. For example, Eng is a uni�ation.� Obl2C�tr;red Comp holds. For example, the proess,E := i; request?x:ID0; (hoie b2F0 [℄ i; b!x; E)is a trae re�nement of Obl2 and a redution of Comp. Thus, Obl2 speialises Comp, by preventing it fromtransmitting with the default identi�er and to ensure it only transmits on video and audio links.� Obl2C�tr;teEng does not hold for similar reasons to those that we disussed in setion 4.4.2 for whyCompCredEng does not hold, i.e. Eng annot refuse a seond request after performing an initial request,while no trae re�nement of Obl2 an perform onseutive requests.� CompCred;te Eng does not hold for the reason identi�ed in setion 4.4.2 and just highlighted again.As previously disussed, the basi problem with the engineering spei�ation is that it allows a seond requestto be made before the previous request has been mathed to a transmission. The inonsisteny this yields withregard to Obl2 and Comp an be resolved by adding another synhronisation between the two omponents of theengineering spei�ation (the same hannel an be used for both):NewEng := hide hannel in RH j[hannel℄j IOHRH := request?x:ID0; hannel!x; hannel!x; RHIOH := hannel?x:ID0; (transA!x; hannel!x; IOH [℄ transV!x; hannel!x; IOH)with suh a synhronisation in plae the request handler will refuse the seond request until the previous requesthas been mathed to a transmission. This new engineering spei�ation is onsistent with all the other viewpoints,i.e. PermCred;teNewEng, Obl1Cext;teNewEng, Obl2C�tr;teNewEng, and CompCred;teNewEng,all hold, with in eah ase NewEng itself being an example uni�ation.The reader should notie that what has happened here is a nie example of what, in the introdution to thispaper, we alled uid system development , i.e. the viewpoints spei�ations have evolved independently and thena onsisteny hek has revealed an inonsisteny between the viewpoints whih has prompted adaptation of apartiular viewpoint, here the engineering viewpoint.However, there is still one important remaining issue with this example - are the viewpoints \globally" onsis-tent? Notie that we have only heked pairwise between viewpoints, but does suh pairwise onsisteny ensureglobal onsisteny? This is one of the issues that we will onsider in setion 5.4.5 Inter Language ConsistenyThe basi de�nition of onsisteny that we presented in setion 4.1 enables desriptions in di�erent formal teh-niques to be related and thus supports inter language onsisteny. In this irumstane the uni�ation soughtwould be a desription in a ommon notation, e.g. a semanti notation that an represent the formal tehniquesof both the original desriptions. An inter language onsisteny hek (assuming type orretness) betweendesriptions in n formal tehniques, ft1; :::; ftn, will typially have the following form:C(dv1 Æ [[ ℄℄1; X1)::::(dvn Æ [[ ℄℄n; Xn) where,Xi 2 DESfti ; pr([[ ℄℄i) � DESfti ; pl([[ ℄℄i) � DESft ; and dvi 2 intraDEVft.Thus, ft is the ommon notation, i.e. a uni�ation of X1; ::; Xn would be in ft. Eah desription is related tothe ommon model by a semanti map, [[ ℄℄i, whih, in e�et, translates into the ommon notation (this is therealisation of the ODP notion of translation, see �gure 3) and then an intra language development relation, dvi,is applied in the ommon notation.Illustration 3 [25℄ de�nes a translation of LOTOS into Z, whih we will denote 8:8We adopt the unonventional funtion typing notation, f : S0  S, in order that funtional relations reet the order we haveadopted for development relations, the order of whih has been hosen to reet the standard orientation of LOTOS relations25



[[ ℄℄Z<L : DESZ  DESLOTOSA typial onsisteny hek that we an perform with this semanti map is:C(v Æ [[ ℄℄Z<L; P )(v; S) for v2 intraDEVZ , P 2 DESLOTOS and S 2 DESZNotie in this inter language onsisteny hek the formal notation Z is used as the ommon notation.The translation [[ ℄℄Z<L probably seems an unlikely onstrution to some readers. So, we will say more about thismap and its theoretial justi�ation. The theoretial foundations for [[ ℄℄Z<L are two semantis, [[ ℄℄L 2 SEMLOTOSand [[ ℄℄Z 2 SEMZ , whih are typed as follows:[[ ℄℄L : DESETS  DESLOTOS and [[ ℄℄Z : DESETS  DESZwhere ETS is an extended transition system semanti notation; the extension ensures that the transition systemgenerated is �nite state [53℄. The semanti map [[ ℄℄L is relatively standard, apart from the extension mehanism,for details see [53℄ [25℄. However, the mapping [[ ℄℄Z is more unusual. The basis of the mapping are as follows(details an be found in [25℄):� Z operations beome ations in the transition system.� The order in whih ations are o�ered is determined by analysing how Z operations beome enabled aordingto pre and postonditions of operation shemas.� Z data state is handled symbolially in the ETS, in partiular, transitions have assoiated symboli datae�ets.� The initial state shema of Z spei�ations is mapped to the initial state of the ETS.[[ ℄℄L and [[ ℄℄Z are taken as given semantis in de�ning [[ ℄℄Z<L. The orretness of the translation is guaranteedbeause [[ ℄℄Z<L satis�es:8P 2 DESLOTOS : [[P ℄℄L �ETS [[ [[P ℄℄Z<L ℄℄Zwhere �ETS is weak bisimulation on Extended Transition Systems. Thus, translating any LOTOS proess intoZ (using [[ ℄℄Z<L) and then taking the ETS semantis (using [[ ℄℄Z) is observationally equivalent to taking the ETSsemantis (using [[ ℄℄L) of the LOTOS proess. This is a strong justi�ation for [[ ℄℄Z<L as it ensures that (aordingto the given semantis) translation preserves a strong notion of behavioural equivalene.Our interpretation of onsisteny prompts the question: what onstitutes a reasonable ross language developmentrelation. Spei�ally, we would atually like to know that the ross language development relation reets, insome reasonable sense, a development relation from the soure language. Although it is not orretly typed,oneptually, a spei�er would like to make onsisteny heks suh as:C(red; P )(v; S)i.e. the spei�er wants to know that an implementation an be found whih is a redution of P and a Z re�nementof S. We would like to replae this hek with a type orret hek suh asC(dv Æ [[ ℄℄; P )(v; S)where dv, in some sense, orresponds to red.Thus, we would like to relate the development relations of a partiular language to the ross language devel-opment relations that we use. In order to do this we introdue the notion of development relations in di�erentnotations orrelating under ertain onditions.De�nition 17 (Correlation between relations) Given formal tehniques ft; ft0 2 FT , dv 2 DEVft and asemanti map [[ ℄℄ : ft0  ft (i.e. [[ ℄℄ translates from ft to ft0) then dv0 orrelates to dv, written dv0  dv i�8X1; X2 2 DESft; X1 dv X2 () [[X1℄℄ dv0 [[X2℄℄. 26



The left to right impliation, 8X1; X2 2 DESft; X1 dv X2 =) [[X1℄℄ dv0 [[X2℄℄, ensures that any developmentin ft has a orresponding development in ft0. The right to left impliation, 8X1; X2 2 DESft; X1 dv X2 (=[[X1℄℄ dv0 [[X2℄℄, ensures that ft0 does not add new developments. Thus, it prevents uni�ations being found inft0 whih do not orrespond to developments in ft.In fat, a body of work now exists on relating behavioural, e.g. LOTOS and state based, e.g. Z, developmentrelations and this work has been summarised and extended in [12℄. In partiular, behavioural relations whihorrelate to state based relations (when state based spei�ations are interpreted behaviourally aording tomappings like, [[ ℄℄Z) an be loated. For example, [12℄ show that the most ommon interpretation of Z re�nement(downward simulation - to give it its preise name) orrelates to ready simulation testing over the indued labelledtransition system. These results give an important link between the state based and behavioural worlds whihmake feasible inter-language onsisteny heking.In addition, a substantial ase study in onsisteny heking has been presented in [5℄. This ase studyonerns the signalling system no. 7 protool [51℄. The protool is desribed from multiple viewpoints and thenthe viewpoints are heked for onsisteny. Importantly, sine both LOTOS and Z are used in these viewpointspei�ations, inter lanuage onsisteny heks are employed in the style of those just disussed.A similar translation from LOTOS to Objet-Z has also been de�ned [21, 22℄. This is a diret translationwhih is also struture preserving in that LOTOS syntati operators are mapped diretly to equivalent Objet-Zsyntati operators. The ommon semanti model that veri�es this translation is the standard (labelled transition)semantis of Objet-Z into whih the semantis of LOTOS is embedded.4.6 Summary and DisussionThis setion has highlighted a general interpretation of onsisteny, identi�ed the basi properties of the de�-nition and loated a number of spei� lasses of onsisteny. Our interpretation of onsisteny, C, meets therequirements for a de�nition of onsisteny that we highlighted earlier, in the following ways:� Di�erent development relations an be instantiated whih are appropriate both to di�erent FDTs and toassessing di�erent forms of onsisteny.� Both intra and inter language onsisteny are inorporated.� Consisteny heking between an arbitrary number of desriptions an be supported and heked aordingto a list of development relations. Binary onsisteny is just a speial ase of this global onsisteny.� Both balaned and unbalaned onsisteny are inorporated.In its fully general form it is very diÆult to haraterise properties of our interpretation of onsisteny, it istoo general. However, by restriting to partiular lasses of onsisteny, haraterisations an be investigated.We have loated the following lasses: binary onsisteny, omplete onsisteny, balaned onsisteny and interlanguage onsisteny.Throughout we have illustrated our general notion of onsisteny using LOTOS. In partiular, setion 4.4.3ontained a omplete haraterisation of binary balaned onsisteny for basi LOTOS.It should also be pointed out that elsewhere we have assessed the generality of our de�nition of onsistenyby showing that other interpretations of onsisteny an be embraed by our de�nition. In partiular, [16℄ hasshown that the three previously proposed alternatives for ODP onsisteny an be embraed by our interpretation.These three alternatives are onsisteny in terms of loating a ommon onformant implementation, onsistenyaording to behavioural ompatibility and onsisteny as freedom from logial ontradition. Thus, there isstrong evidene that the interpretation of onsisteny desribed here is general enough to fully support onsistenyheking of ODP viewpoints.5 Basi Strategies for Consisteny ChekingSo far in this paper we have viewed a group of desriptions X1; X2; :::; Xn as onsistent if their set of possibleuni�ations 1::nU (dvi; Xi) is non-empty. However uni�ation sets an be very large and even in�nite. Thus, if asystem development trajetory is to be provided for viewpoint models it is important that the hoie of possibleuni�ations is redued. In fat, we would like to selet just one desription from the set of uni�ations. This27
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there was a further media type, say, transXwhih is not used in Comp and we have the two permissions:PermA := (hoie b2 f request, transA, transX g [℄ i; b?x:ID; PermA) [℄ i; stopand PermB := (hoie b2 f request, transV, transX g [℄ i; b?x:ID; PermB) [℄ i; stopthen, PermACred PermB, sine,P1 := (hoie b2 f request, transX g [℄ i; b?x:ID; P1) [℄ i; stopis a uni�ation. Also, PermACred Comp holds beause,P2 := i; request?x:ID0; transA!x; P2[℄ i; transA!def; P2is a uni�ation. Finally, PermB Cred Comp holds beause,P3 := i; request?x:ID0; transV!x; P3[℄ i; transV!def; P3is a uni�ation. However, Cred(PermA;PermB;Comp) does not hold, beause the intersetion of the sets oftransmission types that they an perform is empty.However, a ombination of binary onsisteny heks and binary uni�ation of the form shown in �gure 10should intuitively allow us to dedue global onsisteny, i.e. X1 and X2 are heked for onsisteny, then auni�ation of X1 and X2 is obtained, whih is heked for onsisteny against X3, then a uni�ation of X3 andthe previous uni�ation is performed. This proess is ontinued through the n viewpoint desriptions. Thus, thebase ase is a binary onsisteny hek and then repeated uni�ation and binary onsisteny heks are performedagainst the next desription. Of ourse, this is just one possible sequene of binary onsisteny heks. We wouldlike to obtain full assoiativity results whih support any appropriate inremental onsisteny heking strategy.A more preise depition of suh an inremental onsisteny heking strategy is presented in �gure 11 whihhighlights the n = 4 ase. The binary uni�ation funtion is denoted:U : (DEV �DES)� (DEV �DES)! DESi.e. two pairs (eah omprising a development relation and a desription) are taken and a desription is returned.So, eah step in the algorithm onsiders a uni�ation using the binary uni�ation funtion U . The ith stepis satis�ed if a uni�ation Yi is generated by U whih an be used to satisfy the i + 1st step. Importantlysuh an approah generalises orresponding balaned onsisteny heking strategies by taking the intersetion ofdevelopment relations; this ensures that the �nal uni�ation (using transitivity of development) is a development(by appropriate development relations) of all the original desriptions.However, we must be areful over the hoie of uni�ation. Spei�ally, an arbitrary desription from theuni�ation set will not always be satisfatory. We highlight suh a situation in the following illustration.Illustration 4 Consider the three basi LOTOS spei�ations,P1 := a; b; stop[℄a; ; stop, P2 := a; b; stop[℄a; ; stop[℄a; d; stop and P3 := a; ; stopFurther onsider the onsisteny hek CredP1P2P3. The three spei�ations are onsistent by redution sineP3 is a redution of all three spei�ations. However, if we attempt a binary onsisteny heking algorithm andstarted with P1 and P2 we may hoose as the uni�ation of these two the proess P := a; b; stop, and CredPP3does not hold.We an also demonstrate the problem in the ontext of our ODP viewpoints illustration. For example, theproess stop is in the uni�ation set of Perm and Obl2. However, stop annot be related to any of the otherviewpoints by red (=red\ �tr, i.e. the intersetion of Perm and Obl2's development relations). Thus, if stop istaken as the uni�ation of Perm and Obl2 then the inremental global onsisteny hek will be ompromised.29
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We will also use the following simple result.Proposition 24Y = lu(dv;X)(dv0; X 0) ^ Y 0 = lu(dv;X)(dv0; X 0)(dv00; X 00) =) Y 0 dv \ dv0 Y .ProofClearly, Y 0 2 U(dv;X)(dv0; X 0)(dv00; X 00), but we an use orollary 1 to get Y 0 2 U(dv;X)(dv0; X 0) and by thede�nition of lu we have Y 0 dv \ dv0 Y , as required. 2We are now in a position to relate binary onsisteny strategies to global onsisteny. In order to expressthe assoiativity result we require we onsider a funtion � whih is derived from lu. The funtion returnsa pair, with �rst element the intersetion of the development relations onsidered and seond element the leastdeveloped uni�ation. Notie a bottom element is returned as least developed uni�ation if either a least developeduni�ation does not exist or one of the desriptions given as an argument is unde�ned.De�nition 19�(dv;X)(dv0; X 0) = (dv \ dv0; Y )whereif X =? _ X 0 =? _ lu(dv;X)(dv0; X 0) =? then Y =?otherwise Y = lu(dv;X)(dv0; X 0).We will prove assoiativity of � by relating the two possible binary braketings of � to lu(dv;X)(dv0; X 0)(dv00; X 00).Proposition 25r(�(dv;X)(�(dv0 ; X 0)(dv00; X 00))) �dv\dv0\dv00 lu(dv;X)(dv0; X 0)(dv00; X 00) and,r(�(�(dv;X)(dv0 ; X 0))(dv00; X 00)) �dv\dv0\dv00 lu(dv;X)(dv0; X 0)(dv00; X 00)where, r is the right projetion funtion, whih yields the seond element of a pair.ProofSee [10℄. 2Now if we de�ne equality pairwise as,(dv;X) = (dv0; X 0) i� dv = dv0 ^ X �dv\dv0 X 0the following result is straightforward.Corollary 6�(dv;X)(�(dv0; X 0)(dv00; X 00)) = �(�(dv;X)(dv0; X 0))(dv00; X 00)ProofFollows immediately from previous two results, propositions 25 and 25. 2This is a full assoiativity result whih gives us that any braketing of �(dv1; X1); :::; (dvn; Xn) is equal. Sine �is just an alternative oding of lu that failitates larity of expression, we have full assoiativity of lu and that aonsisteny strategy using lu an be omposed of any order of binary onsisteny heks. So, if least developeduni�ations exist, we an obtain global onsisteny from any appropriate series of binary onsisteny heks. Thisis an important result that arises from a well behaved lass of uni�ation.The next question to ask is what onditions an we impose on development in order to obtain the existeneof a least developed uni�ation? The following property will ertainly do.Property 1 An FDT, ft, satis�es property 1 i�,8X1; :::; Xn 2 DESft ^ 8dv1; :::; dvn 2 DEVft; (1::nU (dvi; Xi) 6= ; =) lu(1::nU (dvi; Xi); n\dvi) 6=?).This property ensures that any possible ombination of desriptions and development relations in ft will generatea uni�ation set with a greatest element. 32
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Figure 12: Uni�ation Set for Unbalaned ConsistenyLOTOS Illustration 5 We will onsider whether least developed uni�ations exist for binary ombinations ofthe three main LOTOS preorders, i.e. C(ext; P1)(red; P2), C(ext; P1)(�tr; P2) and C(�tr; P1)(red; P2)Consisteny by ext and red. The following ounterexample demonstrates that a least developed uni�ation forthis onsisteny hek does not exist:P := stop and Q := i; a; stop[℄i; b; stopThe uni�ation set, U(ext; P )(red; Q) is shown in �gure 12 (identity arrows have not been inluded). All four ofthe uni�ations, a; stop, b; stop, a; stop[℄b; stop and Q, are minimally developed uni�ations10 but none of them isless developed aording to ext\red than all the other three. Thus, P and Q have no least developed uni�ation.Before we explain why a least developed uni�ation an not always be found, we �rst note that for all P1 andP2 U(ext; P1)(red; P2) will be empty (i.e P1 and P2 will not be onsistent) unless the following ondition holds.(�) Tr(P1) � Tr(P2)If the traes of P1 are not a subset of the traes of P2 then extension of P1 and redution of P2 an not bereoniled.Thus, assuming (�) the uni�ation that we require must at least satisfy:Tr(Uer(ext; P1)(red; P2)) � Tr(P1) ^ Tr(Uer(ext; P1)(red; P2)) � Tr(P2)where we have denoted the required binary uni�ation funtion as Uer. However, this leaves too muh exibilityin the hoie of uni�ation. We ould hoose the traes of the seleted uni�ation to be equal to the traes of P1or the traes of P2 or to be somewhere between the two. Any of these options would enable uni�ation, but nonewould realise a least developed uni�ation.Consisteny by ext and trae preorder. A least developed uni�ation does not in general exist here either.An argument similar to that just made an be given.Consisteny by trae preorder and red. Consider the uni�ation funtion Utr(�tr; P )(red; Q) haraterisedby the following trae refusal properties,Tr(Utr(�tr; P )(red; Q)) = Tr(P ) \ Tr(Q) ^8� 2 Tr(P ) \ Tr(Q); Ref(Utr(�tr; P )(red; Q); �) = Ref(Q; �)10A minimally developed uni�ation, X, satis�es the following property: :(9X0 2 1::nU (dvi; Xi) : X n\dvi X0). The existeneof minimally developed uni�ations does not imply the existene of least developed uni�ations. However, the other diretion ofimpliation does hold. Thus, least developed uni�ation is a stritly stronger onept than minimally developed uni�ation.33



whih, if it exists, an be used to derive a LOTOS proess that is unique up to equivalene and is a least developeduni�ation, proof of this fat is presented in the appendix, proposition 27. The issue of existene is atuallyruial. Spei�ally, the above properties may not always haraterise a \well formed" LOTOS proess. Forexample, uni�ation of the LOTOS proesses P1 := a; stop and P2 := b; stop will require that,Tr(Utr(�tr; P1)(red; P2)) = f�g ^Ref(Utr(�tr; P1)(red; P2); �) = f;; fagg (assuming L = fa; bg)whih implies that after the empty trae no ations are o�ered (as � is the only trae) and b is not refused. Clearly,b not being o�ered implies it should be refused and no LOTOS proess an realise these properties. [41℄ loates aset of onditions that haraterise when a trae/refusal pair is well formed, in the sense that it an be realised asa LOTOS proess. Utr(�tr; P1)(red; P2) will fail ondition (f) on page 72 of [41℄. It is beyond the sope of thispaper to present these onditions here.Importantly though, it an be shown that:8P;Q 2 DESLOTOS ; Utr(�tr; P )(red; Q) is well formed if and only if C(�tr; P )(red; Q)Thus, an approah to onsisteny heking LOTOS spei�ations is to unify spei�ations and then onsiderwhether the uni�ation is well formed. This is an alternative to the approah in [49℄ where onditions are high-lighted whih an be heked to show that spei�ations are onsistent and a uni�ation is only derived one it isknown that one exists.7 Strategies for Cheking Balaned ConsistenyThe majority of work on onsisteny to be found in the literature has addressed restrited lasses of onsisteny;to date, balaned onsisteny has almost exlusively been foused on. So, what in this restrited setting, enablesus to obtain global onsisteny from binary onsisteny? We would like to loate a speialization of the existeneof least developed uni�ations. As might be expeted, the greatest lower bound gives us this speialization. Theproperty that we require for balaned onsisteny heking to be performed inrementally is:Property 28fX1; :::; Xng � DESft ^ 8dv 2 DEVft; lb(fX1; :::; Xng; dv) 6= ; =) glb(fX1; :::; Xng; dv) 6= ;.This property ensures that if a lower bound exists then a greatest lower bound an be found, i.e. the uni�ation ofX1; :::; Xn is non-empty implies a least developed uni�ation exists. It is lear from the theory of least developeduni�ations we have presented and from set theory that taking greatest lower bounds is assoiative, i.e.glb(fglb(fX1; X2g; dv); X3g; dv) �dv glb(fX1; glb(fX2; X3g; dv)g; dv)and an thus be used to derive global onsisteny from binary onsisteny. In order to simplify notation here wehave assumed that glb returns an arbitrary element from the equivalene lass of its results. With these oneptswe an identify what is the most well behaved lass of development.De�nition 20 (DESft; dv) is oomplete i� 8S � DESft; glb(S; dv) 6= ;.Coompleteness is a dual onept to that of a omplete partial order (see for example [44℄) whih onsidersthe existene of least upper bounds as opposed to greatest lower bounds. If development is oomplete for apartiular FDT aording to a development relation, then all spei�ations are balaned onsistent and we anadopt any relevant inremental uni�ation strategy. All desriptions are onsistent sine a lower bound exists forall olletions of desriptions and inremental uni�ation is well behaved sine least developed uni�ations alwaysexist.LOTOS Illustration 6 We will onsider in turn the onsisteny heks: Cred, Cext and C�tr . The workpresented here is losely related to that onsidered in [41℄.Balaned Consisteny by red. Consider the binary uni�ation strategy UredPQ haraterised by the followingtrae/refusal properties: 34



Tr(UredPQ) = Tr(P ) \ Tr(Q) ^ 8� 2 Tr(UredPQ); Ref(UredPQ; �) = Ref(P; �) \ Ref(Q; �)In the appendix (proposition 28) we prove that Ured gives the greatest lower bound. If it exists, Ured is unique upto testing equivalene. In addition, in a similar way to Utr, Ured does not always haraterise a \well formed"LOTOS proess. This reets the fat that Cred is not ompletely onsistent. For example, onsider P := a; stopand Q := b; stop, whih we have already argued (in proposition 20) are not onsistent by redution. We obtainthat Ured is haraterised by,Tr(UredPQ) = f�g ^ Ref(UredPQ; �) = f;g (assuming that L = fa; bg)i.e. UredPQ is a proess that performs no traes and refuses nothing. One again we obtain that,8P;Q 2 DESbasiLOTOS ; CredPQ holds if and only if UredPQ is well formed.So, this binary uni�ation funtion enables us to do inremental onsisteny heking for balaned onsistenyaording to redution. But, Cred is not oomplete as balaned onsisteny aording to redution is not ompletelyonsistent.Balaned Consisteny by ext. Consider the binary uni�ation strategy, UextPQ, haraterised by the followingtrae/refusal properties:Tr(UextPQ) = Tr(P ) [ Tr(Q) ^8� 2 Tr(UextPQ);� 2 Tr(P ) \ Tr(Q) =) Ref(UextPQ; �) = Ref(P; �) \ Ref(Q; �) ^� 2 Tr(P )� Tr(Q) =) Ref(UextPQ; �) = Ref(P; �) ^� 2 Tr(Q)� Tr(P ) =) Ref(UextPQ; �) = Ref(Q; �)Proposition 29 in the appendix veri�es that this uni�ation funtion gives the greatest lower bound. One againthis onstrution haraterises a LOTOS proess that is unique up to testing equivalene. In addition, UextPQan be shown to be well founded for all P;Q 2 DESbasiLOTOS . Thus, Uext gives a valid greatest lower bound forall pairs of spei�ations and thus balaned onsisteny by extension is oomplete.Balaned Consisteny by Trae Preorder. The binary uni�ation strategy,U�trPQ : Tr(P ) \ Tr(Q)is unique up to ��tr and an easily be seen to generate the greatest lower bound of any two basi LOTOS proessesP and Q. Thus, sine C�tr is ompletely onsistent, we know that balaned onsisteny aording to trae preorderis oomplete.8 Reetion on Consisteny in LOTOSOne of our reasons for using LOTOS to illustrate onsisteny heking is that it o�ers a spetrum of developmentrelations. This in partiular enables us to illustrate unbalaned onsisteny within a single language. Theseillustrations give a perspetive on the bounds of onsisteny heking for LOTOS.In summary, all the balaned onsisteny instantiations turn out to be relatively well behaved. In partiular,least developed uni�ations exist for all the following heks, C�tr , Cred and Cext. In ontrast, the unbalanedonsisteny situations are not as well behaved: C�tr;red yields a least developed uni�ation, but Cext;red andC�tr ;ext do not. This is not suprising as the relations, ext and red and ext and �tr, are so very di�erent.This leaves us with a diÆulty, how an we obtain global onsisteny from binary onsisteny when we wishto extend the funtionality of only one of the original spei�ations. A possible approah to this is to adapt theoriginal spei�ations using unde�ned behaviour and to do away with extension. This is an approah that hasbeen used elsewhere [11℄ [40℄ in order to enable funtionality extension in proess algebra re�nement methods.To illustrate this approah, onsider the following simple spei�ation:P := a;B [℄ b;B0 35



as it stands P will initially refuse any ation other than a or b. In addition, any spei�ation, Q say, that addsan alternative initial behaviour, e.g.,Q := P [℄ ;B00would fail to be a redution of P , sine Q would add traes to those of P . However, perhaps when we speify P ,we do atually want to allow suh addition of funtionality. We an obtain this e�et and stik with redutionby adding unde�ned behaviour to P . Consider the following behaviours:� := hoie x 2 At n fa; bg [℄ x; 
where,
 := (hoie y 2 At [℄ i; y; 
) [℄ i; stopNow 
 is a ompletely unde�ned and unpreditable behaviour; at any state it may non-deterministially deideto do anything. In addition, 
 is at the top of the redution preorder: anything is a redution of it.Now if we adapt P to P 0, as follows:P 0 := i;P [℄ �then a behaviour suh as Q would indeed be a redution of P 0.We an highlight a similar situation in the ontext of our ODP viewpoints example. In that example, Obl1,whih was de�ned,Obl1 := request?x:ID0; stopis related aording to extension. However, we an get the same e�et as this if (assuming At = �(GG)) we usethe spei�ation, NewObl1 := i; request?x:ID0; 
[℄ (hoie d2 �(GG-frequestg) [℄ d; 
and relate it aording to redution.The issue is that attempting to apply an ation at a state in whih it is not o�ered results in deadlok inLOTOS (and this prevents adding that ation during re�nement by redution), however, we have made its resultunde�ned (whih an be re�ned by redution). Suh a use of unde�ned orresponds to the interpretation employedin pre and postondition based re�nement, suh as in Z [47℄. In suh approahes applying an operation outsideits preondition oneptually orresponds to attempting to perform an ation at a state in whih it is not o�ered.In pre and post-ondition approahes suh as Z applying an operation outside its preondition yields unde�nedrather than refusal. This is why re�nement in Z enables funtionality to be extended. However, as we haveillustrated suh an e�et an be obtained in LOTOS by adding unde�nedness expliitly.[11, 12℄ onsiders mehanisms to add unde�ned behaviour to abstrat spei�ations in a systemati man-ner. However, in the ontext of this paper this addition of unde�ned behaviour is interesting sine it enablesfuntionality extension to be obtained without using extension. Consequently, we an restrit ourselves to theombinations of preorder re�nement: C�tr;red and Cred whih are more well behaved sine they yield leastdeveloped uni�ations.9 Related WorkA relatively substantial body of work on viewpoints related approahes to system development now exists. Themajority of this work has onsidered partial spei�ation in a partiular spei�ation notation. Issues suh asuni�ation and onsisteny heking arise in all these areas of investigation. Typial work on this topi is thatby Wallis et al [2℄, [1℄, [3℄; Jakson et al [37℄; Boiten [6℄ and Derrik et al [23℄, [24℄, [13℄ for Z; and Ledu [41℄;Khendek et al [38℄, Ihikawa et al [31℄ and Steen et al [49℄ for LOTOS. From amongst this body of languagespei� work Ledu's PhD work [41℄ has most inuened us. In fat, the trae/refusals theory presented here hasgrown out of Ledu's work.An important body of researh that is not language spei� is the theory of institutions [28℄ and appliation ofthe theory to partiular spei�ation domains, in partiular, by [26℄ to onurrent systems. However, it is valuableto relate the set theoreti onstrutions in this paper to ategorial ones found in the theory of institutions:36



� The ODP notion of orrespondenes between viewpoints plays a similar role to morphisms within a diagramin institutions, i.e. they identify how terms relate in di�erent spei�ations.� The oone of a diagram is analogous to our notion of a uni�ation.� The olimit of a diagram is analogous to our notion of a least developed uni�ation.� The ategorial and our notion of oompleteness orrespond.Where the approahes di�er is that omposition in the institutions setting, e.g. in [26℄, typially onsider ompos-ing omponents at a single level of system development, it is assumed that underlying models must be oomplete,hene inonsisteny is ruled out in the onstraints imposed on the basi theory. The theory of institutions gener-alises logial frameworks and hene uses satisfation, j=, as its ore orretness relation, however, our frameworkis parameterised on the hoie of development relation, whih ould be one of many relations. Our approah isprompted by the partiular requirements of viewpoints in ODP, as indiated earlier in this paper.There has now also been some work on spei� mehanisms for heking onsisteny aross languages; typialexamples are the work of Zave et al [54℄ and Derrik et al [25℄. The former of these onsiders a logial intermediarybetween languages and all notations are mapped to this intermediary. The latter approah has already beendisussed.10 Conluding RemarksThis paper has presented a general interpretation of onsisteny for multiple viewpoint models of system devel-opment and investigated possible onsisteny heking strategies. The main original ontribution of the paper isthe generality of the theory investigated. We have motivated the need for a general interpretation of onsistenywith referene to the requirements of viewpoints modelling in Open Distributed Proessing. Our interpretation ofonsisteny embraes intra and inter language onsisteny, balaned and unbalaned onsisteny and both binaryand global onsisteny.We have identi�ed the properties of eah of the lasses of onsisteny; that we have onsidered and we havelassi�ed how global onsisteny an be derived from a series of binary onsisteny heks. This topi has beeninvestigated in the past, but only in the ontext of a restrited lass of onsisteny and this is the �rst paperto investigate onsisteny heking strategies for as general an interpretation of onsisteny as ours. The maindi�erene between our theory and earlier work is that we handle unbalaned onsisteny.The requirement that a least developed uni�ation always exists was highlighted. If suh a least developeduni�ation does not always exist then inremental onsisteny heking is realistially impossible, although, wehave onsidered the theoretial onsequenes of suh a uni�ation not existing elsewhere. We onsidered theexistene of least developed uni�ations in both the general ase and for balaned onsisteny. In the lattersetting, the onept of a uni�ation redues to a lower bound and least developed uni�ation to greatest lowerbound.Throughput we have illustrated the di�erent varieties of onsisteny using LOTOS. These illustrations har-aterise the forms of onsisteny hek that an arise with basi LOTOS. In partiular, we have given a ompletelassi�ation of the LOTOS balaned onsisteny relations, see �gure 8, and we have highlighted whih ombi-nations of LOTOS re�nement relations yield a least developed uni�ation. For unbalaned onsisteny it wasshown that C(ext; P1)(red; P2) and C(ext; P1)(�tr; P2) do not yield a least developed uni�ation, while a leastdeveloped uni�ation for C(�tr; P1)(red; P2) an always be found. For balaned onsisteny Cred, Cext and C�trall have greatest lower bounds and thus least developed uni�ations, but only Cext and C�tr are oomplete.Aknowledgements. We would like to thank the reviewers of this paper for a number of useful omments.Referenes[1℄ M. Ainsworth, A. H. Cruikshank, L. J. Groves, and P. J. L. Wallis. Formal spei�ation via viewpoints. InJ Hosking, editor, Pro. 13th New Zealand Computer Conferene, pages 218{237, Aukland, New Zealand,18th{20th August 1993. New Zealand Computer Soiety.37
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Q := i; b; stop as ounterexamples to justify that s 6� te, sine P s Q, but :(P te Q) as the trae sets of thetwo proesses are not equal.Proof of (v). This holds for the following reasons:-(v.a) This is a onsequene of onf being reexive.(v.b) This is immediate from the de�nition of s.(v.) The following ounterexample justi�es this. Let P := b; stop[℄i; a; stop; Q := i; a; stop andR := b; ; stop[℄i; a; stop; then P s Q, Q s R, but :(P s R). This is beause :(P onf R) as Prefuses  after the trae b, but R annot refuse  after the same trae.Proof of (vi). This holds for the following reasons:-(vi.a) Take P 2 DESLOTOS , then P ext P and P onf P (by reexivity of extension and onformane)so P xs P as required.(vi.b) Consider the proesses P := b; stop[℄i; a; stop and Q := a; stop. Now P xs Q sine P s Q andTr(P ) � Tr(Q), but, :(Q xs P ) beause :(Tr(Q) � Tr(P )).(vi.) Assume P xs Q and Q xs R, we need P xs R. Now P xs Q and Q xs R imply P ext Q andQ ext R whih implies P ext R (by transitivity of ext). So, all that remains is to show that R onfP . But, sine Tr(R) � Tr(P ) and 8� 2 Tr(R); Ref(P; �) = Ref(Q; �) ^ Ref(Q; �) = Ref(R; �)11. We an derive that, 8� 2 Tr(R); Ref(P; �) = Ref(R; �). In addition, 8� 2 Tr(P ) � Tr(R),Ref(R; �) = ; whih trivially implies Ref(P; �) � Ref(R; �), as required. 2Results for Setion 6Proposition 278P;Q 2 DESbasiLOTOS ; s:t: C(�tr; P )(red; Q) holds, Utr(�tr; P )(red; Q) is the least developed uni�ation.ProofFirst we show that Utr(�tr; P )(red; Q) is a uni�ation and then we show that it is the greatest suh uni�ation.Uni�ation. Utr(�tr; P )(red; Q) �tr P follows immediately, sine Tr(Utr(�tr; P )(red; Q)) = Tr(P )\Tr(Q) �Tr(P ). In addition, Utr(�tr; P )(red; Q) red Q sine,Tr(Utr(�tr; P )(red; Q)) = Tr(P ) \ Tr(Q) � Tr(Q) ^8� 2 Tr(Q);(� 2 Tr(P ) =) Ref(Utr(�tr; P )(red; Q); �) = Ref(Q; �)) ^(� 62 Tr(P ) =) Ref(Utr(�tr; P )(red; Q); �) = ; � Ref(Q; �))Greatest Uni�ation. Take R 2 U(�tr; P )(red; Q), we need to show that R (�tr \red) Utr(�tr; P )(red; Q).However, (�tr \red)=red, so all we atually need to show is that R red Utr(�tr; P )(red; Q). Sine R is auni�ation it must satisfy:Tr(R) � Tr(P ); T r(Q) ^ 8� 2 Tr(Q); Ref(R; �) � Ref(Q; �)So, we an immediately obtain:(i) Tr(R) � Tr(P ) \ Tr(Q) = Tr(Utr(�tr; P )(red; Q)) ^(ii) � 2 Tr(Utr(�tr; P )(red; Q)) =) � 2 Tr(Q), so, 8� 2 Tr(Utr(�tr; P )(red; Q)); Ref(R; �) � Ref(Q; �) =Ref(Utr(�tr; P )(red; Q); �).whih gives R red Utr(�tr; P )(red; Q) as required. 211Notie, P xs Q =) 8� 2 Tr(P ); Ref(Q;�) � Ref(P; �) ^ 8� 2 Tr(Q); Ref(P; �) � Ref(Q; �), but also Tr(Q) � Tr(P ).So, 8� 2 Tr(Q); Ref(Q; �) = Ref(P; �).
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Results for Setion 7Proposition 288P;Q 2 DESbasiLOTOS ; s:t: CredPQ holds, UredPQ is the greatest lower bound of P and Q.ProofIn the usual way we prove this in two halves: �rst we show that Ured is a lower bound and then we show that itis the greatest lower bound.Lower Bound. We need to show that UredPQ red P;Q. This follows sine, Tr(P ) \ Tr(Q) � Tr(P ); T r(Q)whih is the required trae subsetting property and 8� 2 (Tr(P )[Tr(Q))�(Tr(P )\Tr(Q)); Ref(UredPQ; �) =; � Ref(Q; �); Ref(P; �) and 8� 2 Tr(P )\Tr(Q); Ref(UredPQ; �) = Ref(P; �)\Ref(Q; �) � Ref(Q; �); Ref(P; �),whih is the required refusals property.Greatest Lower Bound. Assume R suh that R red P and R red Q, we need to show that R red UredPQ.First we onsider the traes. From R red P and R red Q we obtain that Tr(R) � Tr(P ); T r(Q) whih impliesTr(R) � Tr(P ) \ Tr(Q) = Tr(UredPQ), whih is the required trae subsetting property. Now we onsiderrefusals. Firstly, note that 8� 2 Tr(R); Ref(R; �) � Ref(P; �) and Ref(R; �) � Ref(Q; �), whih implies thatRef(R; �) � Ref(P; �)\Ref(Q; �) = Ref(UredPQ; �). In addition, 8� 2 (Tr(UredPQ)�Tr(R)); Ref(R; �) =; � Ref(UredPQ; �). This gives us the required refusals property and we are done. 2Proposition 298P;Q 2 DESbasiLOTOS , UextPQ is the greatest lower bound of P and Q.ProofOne again we prove this in two parts.Lower Bound. We need to show that UextPQ ext P;Q. The trae property is easily obtained sineTr(UextPQ) = Tr(P ) [ Tr(Q) � Tr(P ); T r(Q). In addition, refusals are orretly related beause 8� 2Tr(P ); (� 2 Tr(Q) =) Ref(UextPQ; �) = Ref(P; �)\Ref(Q; �) � Ref(P; �)) ^ (� 62 Tr(Q) =) Ref(UextPQ; �) =Ref(P; �)), and we an argue similarly about the refusals of Q. Thus, UextPQ ext P; Q, as required.Greatest Lower Bound. Assume R ext P; Q, we need to show that R ext UextPQ. One again the traeproperty that we require is straightforward: Tr(R) � Tr(P ) [ Tr(Q) = Tr(UextPQ). The refusals propertyrequires a little more work. We obtain that 8� 2 Tr(UextPQ); (� 2 Tr(P )\Tr(Q) =) Ref(R; �) � Ref(P; �)\Ref(Q; �) = Ref(UextPQ; �)) ^ (� 2 Tr(P )�Tr(Q) =) Ref(R; �) � Ref(P; �) = Ref(UextPQ; �)) ^ (� 2Tr(Q)�Tr(P ) =) Ref(R; �) � Ref(Q; �) = Ref(UextPQ; �)) whih is suÆient to show that R ext UextPQ,as required. 2
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