
A semanti
s for fun
tions and behavioursAnthony Charles Daniels
Thesis submitted to The University of Nottingham for thedegree of Do
tor of PhilosophyDe
ember 1999

Abstra
tThe fun
tional animation language Fran allows animations to be pro-grammed in a novel way. Fran provides an abstra
t datatype of \behaviours"that represent time varying values su
h as the position of moving obje
ts,together with a simple set of operators for
onstru
ting behaviours. Moregenerally, this approa
h has potential for other kinds of real-time systemsthat
onsist of intera
tive
omponents that evolve over time.We introdu
e a small fun
tional language, CONTROL, whi
h has be-haviours and operators that are similar to those in Fran. Our language im-proves on Fran in
ertain key areas, in parti
ular, by eliminating start timesand distinguishing between re
ursive fun
tions and re
ursive behaviours. Ourmain
ontribution is to provide a
omplete formal semanti
s for CONTROL,whi
h Fran la
ks. This semanti
s provides a pre
ise des
ription of the lan-guage and
an be used as the basis for proving that programs are
orre
t.The semanti
s is de�ned under the assumption that real number
ompu-tations and operations on behaviours are exa
t. Behaviours are modelled asfun
tions of
ontinuous time, and this approa
h is
ombined with the stan-dard approa
h to the semanti
s of fun
tional languages. This
ombinationrequires some novel te
hniques, parti
ularly for handling re
ursively de�nedbehaviours.

Contents
A
knowledgements viiNotation viii1 Introdu
tion 11.1 Rea
tive systems . 21.2 Fran . 31.3 Approa
h . 41.4 Assumptions . 51.5 Contributions . 61.6 Advi
e to the reader . 72 Ba
kground 92.1 Esterel . 92.2 Lustre . 112.3 Imperative streams . 132.4 Real-time pro
ess
al
uli . 142.5 Continuous verses dis
rete time 152.6 Ar
ti
 . 162.7 Duration Cal
ulus . 192.8 Hybrid systems . 20ii

CONTENTS iii3 The Fran system 233.1 Examples . 243.2 Key
on
epts . 263.3 Time and Lifting . 293.4 Rea
tivity . 313.5 Integration for behaviours . 333.6 Re
ursive behaviours . 353.7 Semanti
s . 373.8 Summary of the literature . 414 A language for behaviours 434.1 Syntax . 434.2 Domains . 454.3 Domains for behaviours . 514.4 Semanti
 fun
tions . 535 Behaviour expressions 565.1 Lifting . 565.2 Rea
tivity . 615.3 Examples of rea
tivity . 665.4 Impli
it verses expli
it values 685.5 Nested until-then expressions 685.6 Integrals . 725.7 Avenue on event times . 745.8 Avenue on alternative semanti
s for rea
tivity 775.9 Avenue on integrability . 795.10 Avenue on axioms . 80

CONTENTS iv6 Behaviour de�nitions 826.1 Re
ursive behaviour de�nitions 836.2 Re
ursive rea
tive de�nitions 846.3 Least �xed points . 856.4 Non-rea
tive evaluation . 886.5 Transitions . 906.6 The no-
hange rule . 936.7 Transitions for rea
tive behaviours 966.8 Transitions for re
ursive rea
tive de�nitions 996.9 Transitions for integral behaviours 1006.10 Transitions for re
ursive integral de�nitions 1026.11 Avenue on delayed swit
hing 1047 Fun
tions and behaviours 1077.1 Fun
tions . 1087.2 Re
ursive fun
tions . 1117.3 Examples of re
ursive fun
tions 1167.4 Re
ursive behaviours revisited 1197.5 Combining re
ursive behaviours and re
ursive fun
tions 1207.6 Lo
al and global time . 1247.7 Multiple de�nitions . 1277.8 Avenue on Zeno . 1288 Complete formal semanti
s 1318.1 Syntax . 1318.2 Type system . 1338.3 Expli
it typing . 1348.4 Semanti
s of non-behaviour terms 139

CONTENTS v8.5 Substitution . 1428.6 Evaluation rules . 1458.7 Transition rules . 1488.8 Semanti
s of behaviour terms 1558.9 Semanti
s of all terms . 1569 Appli
ations of the semanti
s 1589.1 Interpreting programs . 1589.2 A re
ursive rea
tive de�nition 1629.3 A re
ursive integral . 1649.4 A re
ursive fun
tion . 1669.5 Chess Clo
ks . 1689.6 Water tank . 1719.7 Lift . 17210 Summary and future work 17510.1 Summary . 17510.2 Implementations of CONTROL 17710.3 Dis
rete models . 17910.4 Approximation and
onvergen
e 181A Constants in CONTROL 183B A dis
rete model of CONTROL in Haskell 184

List of Figures
3.1 Types of abstra
t behaviours in Fran 403.2 Semanti
s of abstra
t behaviours in Fran 405.1 Examples of applying the semanti
s of until-then 675.2 The semanti
 fun
tion [[℄℄ . 725.3 Di�erent semanti
s of until-then 788.1 Typing rules . 1358.2 A bottom up type
he
king algorithm 1388.3 Dire
t denotational semanti
s of non-behaviour terms 1418.4 Transition rules I : Behaviour expressions and no-
hange . . . 1508.5 Transition rules II : Rea
tive behaviours 1518.6 Transition rules III: Behaviour de�nitions and redu
e 1529.1 Interpreting programs, part I 1609.2 Interpreting programs, part II 1619.3 First transition for Example 9.2 1639.4 First transition for Example 9.3 1659.5 First transition for Example 9.4 167

vi

A
knowledgements
I would parti
ularly like to thank Conal Elliott for introdu
ing me to thisabsorbing topi
, guiding me through the early stages of my PhD., and per-suading the Mi
rosoft Corporation to fund this work. Next I would liketo thank Mark P. Jones for his
ons
ientious supervision and inspirationaltutoring at Nottingham. I thoroughly enjoyed the many hours of engagingdis
ussion we had on this topi
. Graham Hutton took over supervision duringthe writing up stage, and I greatly appre
iate his useful feedba
k and advi
ein general. Paul Blampied gave some detailed
omments on early
hapterswhi
h improved the presentation. Thanks also to all the other members ofthe Languages and Programming group for
reating su
h a stimulating envi-ronment, and parti
ularly to Colin, Ben, Claus and Paul for many interestingdis
ussions.Outside work my sanity has been revived by friends in Nottingham andelsewhere. Parti
ular thanks to Jenny for her
onstant en
ouragement andexpert assistan
e with grammati
al aspe
ts of my writing. For less soberassistan
e I thank Colin, Felix, Jason, Vi
ky, Rosey, Bob, Bill, Ben, Katie,Al, Chris and Alex. You made my time at Nottingham an unforgettableexperien
e.Most of all I would like to thank my parents for their support and en-
ouragement in everything I've ever done, and �nally my Gran for buyingRosey and me our �rst
omputer. vii

Notationx = y x and y are semanti
ally equalx � y x and y are synta
ti
ally identi
alR set of real numbersB set of boolean values, ftrue; falsegT set of times (non-negative real numbers, ft 2 R j t � 0g)A! B fun
tions from A to B (when A and B are sets)A * B partial fun
tions from A to Bt 7! X fun
tion mapping the bound variable t to the formula X� X1 C1X2
onditional fun
tion � X1 , if C1X2 , otherwiseD ! E !-
ontinuous fun
tions from D to E (when D and E aredomains)?D bottom element of the domain DX?
at domain formed by lifting the set X[[T ℄℄ domain
orresponding to type T[[E℄℄ semanti
 fun
tion interpreting term E
viii

LIST OF FIGURES ix; empty set, fgP(A) power set of A, fS j S � AgX n Y set di�eren
e, fx 2 X j x =2 Y gX ! Y proper superset, X � Y ^X 6= Y" S upperset of S, fs 2 R j 9s0 2 S : s0 � s:g[a; b℄
losed interval, fx 2 R j a � x � bg(a; b) open interval, fx 2 R j a < x < bg[uja : x℄ fun
tion identi
al to u ex
ept that a maps to xC[℄
ontextE=Æ substitution of all free variables in E by ÆE=[x : N ℄ substitution of x for N in E� ` E : � typing judgement that E has type � in
ontext �FV (E) set of free variables of the term Edom f domain of the fun
tion f! evaluation relation�! transition system" empty termF1n=0Xn least upper bound of fX0; X1; : : : g

Chapter 1Introdu
tion
Most programming languages are partly a way of express-ing things in terms of other things and partly a basi
 set ofgiven things. P. J. LandinIn 1966 Landin proposed a
ore language framework based on the �-
al
ulus whi
h he
alled ISWIM [Lan66℄. His hypothesis was that this frame-work
ould provide a basis for many realisti
 languages, ea
h one di�eringonly in the set of given things that are required for programming parti
-ular kinds of appli
ations. This is a natural approa
h to take be
ause it is
lear that some tasks are easier in
ertain languages than others, but also thatthere are similar
ore features in most languages; for example, most languagesprovide fa
ilities for de�ning fun
tions and values,
ontrolling the s
ope ofidenti�ers, expressing
onditionals and building data stru
tures. Landin wenton to suggest:A possible �rst step in the resear
h programme is 1700 do
-toral theses
alled \A
orresponden
e between x and Chur
h's �-notation." 1

CHAPTER 1. INTRODUCTION 2We follow Landin's approa
h by proposing a new
ore language
alledCONTROL (CONtinuous Time Rea
tive Obje
t Language) whi
h is in-tended as a basis for rea
tive systems languages. Rea
tive systems
ontroland monitor various entities in real-time, and CONTROL provides opera-tions for des
ribing time-varying quantities using behaviours. In
ommonwith ISWIM, CONTROL is based on the �-
al
ulus, but it uses types andnormal order evaluation so it is a
tually more
losely related to PCF [S
o93℄.Like Landin, we also want to give an unambiguous des
ription of ourlanguage. In the three de
ades sin
e Landin's paper, mu
h progress hasbeen made towards
onstru
ting theories of programming languages [Rey98℄.These theories allow us to rigorously de�ne the meaning of programs writtenin a parti
ular language; in other words, they allow us to
onstru
t a seman-ti
s for the language. The fun
tional part of CONTROL
an be dealt withusing these existing theories, but behaviours require some new te
hniques; inparti
ular, for des
ribing rea
tivity, integrals and for de�ning behaviours re-
ursively. The development of these te
hniques, and of a
omplete semanti
sfor CONTROL, are the primary subje
ts of this dissertation.1.1 Rea
tive systemsIn our
ontext, rea
tive systems en
ompass any real-time
ontrol systemthat must respond to external stimuli in non-trivial ways; for example, lifts,robots, air
raft, heating systems, power stations, satellites and intera
tiveanimations. Although these systems are physi
ally very dissimilar (parti
-ularly intera
tive animation) des
riptions of their abstra
t behaviour oftenbear a strong resemblan
e. What all these systems have in
ommon is thatthey must monitor values that vary with time and respond or rea
t to situa-tions that arise; we
all these situations events. Furthermore, events
annot

CHAPTER 1. INTRODUCTION 3in general be predi
ted prior to the system being run, and so the responsesmust be determined in real-time. This is in
ontrast to simpler real-timesystems, su
h as signal pro
essing, where the
omputation that will be per-formed is �xed and not determined by o

urren
es of events.One of the most diÆ
ult problems rea
tive systems pose is that
omputingresponses to events takes a �nite amount of time, and this results in a delay inthe response. Of
ourse, in any physi
al system there will always be a slightdelay due to the me
hani
al or ele
tri
al hardware, but this is generally a�xed period as opposed to the variable time taken to
ompute responses.Events
annot usually be predi
ted beforehand, and it may be possible formany events to o

ur in a short period of time. If the responses to theseevents
annot be
omputed qui
kly enough, then the system
ould fail.Rea
tive languages are designed to make it easier to program rea
tivesystems. We dis
uss various rea
tive languages in Chapter 2. One of themajor tasks in spe
ifying rea
tive systems is de�ning when response timesare a

eptable. For this purpose various
al
uli have been devised. Theyhelp system designers to reason about real-time properties of programs, andhave been used to verify that implementations of parti
ular systems meettheir spe
i�
ation. Despite these formalisms, it is usually very diÆ
ult toguarantee real-time properties of real systems, largely be
ause the languagesused are not amenable to analysis using real-time
al
uli.1.2 FranCONTROL is inspired by the animation language Fran whi
h takes a di�er-ent approa
h to that of most rea
tive languages. It adopts a
ontinuous no-tion of time so that, as far as the programmer is
on
erned, responses o

ur atexa
tly the time spe
i�ed and time-varying quantities (i.e., behaviours) vary

CHAPTER 1. INTRODUCTION 4
ontinuously rather than being approximated by values at dis
rete points intime. Fran provides an abstra
t datatype for behaviours embedded in anexisting fun
tional language, Haskell.In
ontrast with Fran, most other rea
tive languages are based on dis
retetime. Fran does not make any guarantees about response times, however,be
ause the implementation of the language features uses dis
rete represen-tations, and
omputation speed is, of
ourse, �nite. But the shift of emphasisis important: if it
an be shown that the language features satisfy
ertainreal-time
onstraints for all programs, subje
t to some limiting
riteria, thenthe task of verifying the real-time properties of individual programs is greatlysimpli�ed. So the burden of proof is shifted from individual programs ontothe language, whi
h potentially saves mu
h repetition of e�ort.This was not the original motivation for Fran; it was intended to redu
ethe repetition of e�ort in programming
omputers to display modelled ani-mations. We dis
uss Fran in detail and expand on this point in Chapter 3.Our work uses
ontinuous time as Fran does, but for the bene�ts it brings toproving programs are
orre
t as well as for ease of programming.1.3 Approa
hIt is true that our ma
hines
an only provide an approximationto these [real valued℄ fun
tions but the dis
repan
ies are generallysmall and we usually start by ignoring them. It is only after wehave devised a program whi
h would be
orre
t if the fun
tionsused were the exa
t mathemati
al ones that we start investigatingthe errors
aused by the �nite nature of our
omputer.C. Stra
hey

CHAPTER 1. INTRODUCTION 5CONTROL has a type for real numbers along with various operationson this type. In addition, behaviours
an be real-valued and they
an beintegrated and used to des
ribe events. As Stra
hey observed[Str73℄, when
onsidering the semanti
s of su
h operations on real numbers we must �rst
onsider the out
ome if the fun
tions were the exa
t mathemati
al ones, andthen
onsider the errors due to approximation. This was before methodshad been devised for
omputing
ertain operations on exa
t representationsof real numbers [Vui90℄. However, Stra
hey's approa
h is still appli
able toCONTROL be
ause the operations available in the language are beyond thelimits of these methods, and therefore most implementations of CONTROLare likely to use approximation te
hniques for these operations.This work a

omplishes the �rst step suggested by Stra
hey|�nding thevalues assuming the operations are exa
t|and does not address the se
-ond step|investigating the errors in an implementation using approximationte
hniques. It is therefore an idealised theory whi
h provides a theoreti
al ba-sis for the study of real languages based on CONTROL. Without this theorywe would not know what it is that these real languages are approximating.1.4 AssumptionsOur aim is to
onstru
t a formal semanti
s for an idealised language basedon the the
ore operators in Fran. There is some
exibility here be
ause thea
tual language is not spe
i�ed
ompletely. It in
ludes the most importantfeatures in Fran, but we may alter the language design in response to semanti

onsiderations. In other words, we will des
ribe the design of a Fran-likelanguage, rather than a language that is a stri
t subset of Fran.There are a number of assumptions we make; �rstly, the validity of Stra-
hey's approa
h of starting with an idealised language and then
onsidering

CHAPTER 1. INTRODUCTION 6separately the errors due to approximation. From a programming perspe
-tive, we assume that
ontinuous time behaviours and de
larative program-ming are suÆ
ient, and also
onvenient, for
reating many rea
tive systems.That said, we feel that the example appli
ations in Chapter 9 demonstratethe power and elegan
e of CONTROL for simple rea
tive systems.1.5 ContributionsOur
ontributions are twofold: �rstly, we have designed a new languagewhi
h improves on previous languages; and se
ondly, we have
onstru
teda formal semanti
s for our language whi
h has not been a

omplished forsimilar languages. It is likely that our semanti
s
ould be adapted to a

ountfor features in related languages su
h as Fran.More spe
i�
ally, our
ontributions towards language design are: an im-pli
it notion of time that makes expli
it time values unne
essary; a newme
hanism for de�ning re
ursive behaviours; and the integration of thesefeatures into a purely fun
tional language. Our main
ontributions towardssemanti
s are: a formal de�nition of the
ore operators (Chapter 5), in parti
-ular, a more re�ned treatment of event o

urren
es; a semanti
s for re
ursivebehaviour de�nitions (Chapter 6); a
omplete semanti
s,
ombining fun
-tions and behaviours (Chapter 4, Chapter 7, Chapter 8); and some usefultheorems for proving properties of programs (Chapter 8). Finally, we alsogive some examples whi
h illustrate the expressiveness of the language andthe usefulness of the semanti
s (Chapter 9).

CHAPTER 1. INTRODUCTION 71.6 Advi
e to the readerThe remainder of this dissertation is organised as follows. Chapter 2 givessome ba
kground on various rea
tive languages and Chapter 3 des
ribes Franin detail. The subsequent
hapters des
ribe our
ontribution|a languagefor programming rea
tive systems with
ontinuous time behaviours and itsformal semanti
s. The qui
kest way to �nd the main te
hni
al results is toread Chapter 8 whi
h gives the
omplete formal semanti
s of CONTROL.Doing so would miss the motivation behind the language features and thesemanti
s, but it would reveal the
avour of this work. The examples inChapter 9 are also worthwhile for those not wanting to read the dissertationin full.For the most part,
hapters begin by following the main developmentof the theory with few deviations. Then, towards the end of ea
h
hapter,various interesting alternatives and additional parts of theory are exploredin se
tions titled `Avenue on x.' This makes it possible to
on
entrate onthe main dis
ussion uninterrupted, and then explore other possibilities sep-arately. In fa
t, one useful way to approa
h this dissertation is to �rst readit through ignoring the avenue se
tions, and then re-read it in full.Chapter summaryCONTROL is a fun
tional language with fa
ilities for des
ribing time-varyingquantities
alled behaviours, where time is
ontinuous. Our theory of themeaning of programs is idealised be
ause it assumes that all real number
omputation, in
luding integration and
omparison of behaviours, is exa
t.CONTROL evolved from a
ore subset of Fran, whi
h is a fun
tional languagefor animation. This dissertation develops a
omplete formal semanti
s for

CHAPTER 1. INTRODUCTION 8CONTROL and illustrates the appli
ation of this theory.

Chapter 2Ba
kground
This
hapter begins with a survey of some languages for programming rea
-tive systems. The aim here is to
on
entrate on the features in ea
h languageand to give an idea of the
hara
ter of programs. The languages we dis
ussat �rst are based on a dis
rete model of time, in
ontrast to our language.Then we dis
uss the relative merits of
ontinuous time
ompared to dis
retetime, and dis
uss a language based on
ontinuous time.Following this we review two
al
uli for spe
ifying real-time propertiesof programs. The �rst is the Duration Cal
ulus, whi
h we illustrate withthe standard gas burner example. The se
ond is an extension of CSP forspe
ifying hybrid systems. We des
ribe a water tank
ontroller using thisnotation, and in Chapter 9 we will return to this example and program it inCONTROL.2.1 EsterelEsterel is an imperative rea
tive language designed for programming
ontrolintensive rea
tive systems [Ber97℄. Here `rea
tive' means that the role ofthe system is to rea
t to external stimuli in a timely way; the pa
e of theintera
tion is determined by the environment. Esterel is deterministi
, whi
h9

CHAPTER 2. BACKGROUND 10means that the output of the system is uniquely determined by the inputs andtheir timing. Esterel is based on a syn
hronous model of
on
urren
y; thatis, one in whi
h
on
urrent pro
esses are able to perform
omputation andex
hange information in zero time. In pra
ti
e, however, it is not possible toimplement su
h a model exa
tly, so timing
onstraints are based on estimatesand are not guaranteed.As an example of
on
urren
y in Esterel,
onsider the following:await A || await B.This is a pro
ess whi
h terminates as soon as the input a
tions A and B haveboth o

urred. Pro
esses
an also be pre-empted, whi
h means interruptedby another pro
ess that has priority; for example, the pro
essloop P ea
h Ra
ts like the pro
ess P until the event R o

urs, at whi
h point P is startedafresh. Putting these two examples together, and adding an output a
tionemit 0, we obtain the following Esterel
ode fragment whi
h emits the output0 as soon as both the inputs A and B have been re
eived, and resets wheneverthe input R is re
eived;loop[await A jj await B℄;emit 0ea
h R:Be
ause Esterel performs a
tions and all
ommuni
ation instantaneously,events
an o

ur simultaneously and pre-emption is instant. In pra
ti
e, theusual way that implementations work is to deal with all a
tive pro
esses inea
h input-output
y
le. For example, in the program above we would �rstre
eive any input from A, B, and R, and then determine what a
tion to

CHAPTER 2. BACKGROUND 11take. Sin
e R is a pre-emption pro
ess it takes priority over A and B, so anyinput to R will restart the program. After all inputs have been re
eived, alloutputs are sent and a new input-output
y
le begins. Therefore the dis
retenotion of time is essential for a
hieving syn
hroni
ity.2.2 LustreLustre is a data
ow programming language designed for programming rea
-tive systems [HCRP91℄. It is well suited for data intensive rea
tive systems,su
h as signal pro
essing, in
ontrast to Esterel whi
h is aimed at
ontrolintensive systems. In
ommon with Esterel, it uses the syn
hronous modelof
ommuni
ation. Veri�
ation of timing properties is an important
on-
ern, and the designers of Lustre
laim that this is simpler than for someother languages be
ause of its similarity with temporal logi
s. This allowsthe language to be used for both writing programs and expressing programproperties, easing the task of veri�
ation. Later on we will see that it ispossible to apply this idea to CONTROL programs.Lustre models time-varying quantities by sequen
es of values,
alled
ows,and so it is based on a dis
rete notion of time. We will use integer indi
esto refer to the value of a
ow at a dis
rete point in time. Lustre
owsare quite similar to di�eren
e equations, whi
h are equations in terms ofsequen
es (Hubbard and West des
ribe di�eren
e equations as evolution indis
rete time,
ompared to di�erential equations whi
h des
ribe evolutionin
ontinuous time [HW91℄). One di�eren
e, however, is that the operationsprovided in Lustre are deliberately restri
ted so that
ows are straightforwardto
ompute.As a simple example, we will des
ribe how to represent the sequen
e ofFibona
i numbers by a
ow in Lustre. The Fibona
i sequen
e is usually

CHAPTER 2. BACKGROUND 12de�ned by the following equations:f0 = 1f1 = 1fn = fn�1 + fn�2:The third equation states that the n-th Fibona
i number is the sum of theprevious two numbers in the sequen
e. Therefore we need to know how torefer to earlier values in
ows, and how to add them.To refer to earlier values in a
ow the pre operation is used. It o�sets
ows so that, for example, Y = pre(X)de�nes Y to be the
ow that has values equal to the previous values of X,that is, Yt = Xt�1:The �rst value, Y0, of the stream Y is uninitialised, but it
an be set usingthe -> operator. Thus the
ow Z given byZ = 2.->pre(X)is identi
al to Y ex
ept that the �rst value is 2 rather than being uninitialised;that is, Z0 = 2.Operations are de�ned element-wise, so, for example, addition of
owssatis�es X + Y = fXt + Yt j t 2 Ng:Now, using pre, -> and +, we
an de�ne the
ow of Fibona
i numbers byF = 1.->1.->(pre(F) + pre(pre(F))):

CHAPTER 2. BACKGROUND 13Rea
tivity is expressed by forming boolean valued
ows. This bears a
lose resemblan
e to imperative streams whi
h we will des
ribe in the nextse
tion. Although Lustre is intended to be amenable to program veri�
ation,its dis
rete model of time makes this awkward for many appli
ations that aremost naturally spe
i�ed using
ontinuous time values.The language Signal [LGLL91℄ is similar to Lustre, and is also based on
ows.2.3 Imperative streamsStreams view input devi
es as sequen
es of values and produ
e
orrespondingstreams of output values [KM77℄. Imperative streams are a generalisationwhi
h allow side e�e
ts with ea
h value in the stream [S
h96b℄. They havebeen implemented as a monad
alled ST in Haskell; a value of type ST arepresents an imperative program whi
h produ
es values of type a at
ertaintimes during its exe
ution. Using a monad for imperative streams has theadvantage that arbitrary IO
ommands
an be performed as in the IO monad.The di�eren
e is that a value of type IO a represents an imperative programthat will produ
e a single value of type a at the end of its exe
ution, ratherthan a stream of values. Imperative streams
an be used to model
hange overtime and handle streams of input values, so they are suitable for programmingrea
tive systems. They have been used for the graphi
al user interfa
e toolkitPIDGETS [S
h96a, S
h98℄.Imperative streams yield values at
ertain times, so they are a dis
reterepresentation of time-varying values. Streams may need to wait for valuesfrom other streams before yielding a new value, so timing
onstraints areimpli
it and real-time response is not guaranteed.An until operator similar to until in Ar
ti
 and untilB in Fran is dis-

CHAPTER 2. BACKGROUND 14
ussed in [S
h96b℄; the stream until
 b d behaves like b until
 produ
esTrue and then it behaves like d. S
holz
ompares imperative streams withFran in his thesis [S
h98℄. The monadi
, dis
rete approa
h of imperativestreams results in a more imperative, state based style of programming
om-pared to Fran's purely de
larative style. Finally, Sage has established aneven
loser link by re-implementing Fran using imperative streams [Sag98℄.2.4 Real-time pro
ess
al
uliMany rea
tive languages make use of
on
urren
y where multiple pro
essesrun in parallel. Con
urren
y is useful for programming rea
tive systemsbe
ause they involve a number of entities that intera
t with ea
h other. Thesoftware must monitor and
ontrol these entities and so multiple intera
tingpro
esses provided for by
on
urren
y is very natural.There are two main forms of
on
urren
y: shared variable
on
urren
y,where
ertain variables are shared by multiple pro
esses [Hoa72℄; and
ommu-ni
ating sequential pro
esses (CSP), where pro
esses
ommuni
ate by passingmessages [Hoa85℄. The main di�eren
e is in the way pro
esses
ommuni
atewith ea
h other.Another distin
tion is between syn
hronous and asyn
hronous languages;in syn
hronous languages the input and output of a message o

ur simulta-neously, and pro
esses use what is known as handshake
ommuni
ation. Inasyn
hronous languages the sender does not need to wait until the re
eiveris ready, so there is no handshake.A
ommon alternative to passing messages between pro
esses is to usenamed
hannels so that a pro
ess
an request an input v from a
hannelh, written h?v, or output a value e along a
hannel h, written h!e. Thisapproa
h is
aptured algebrai
ally by the �-
al
ulus [Mil91℄.

CHAPTER 2. BACKGROUND 15CSP does not provide fa
ilities for syn
hronising with a
lo
k. This isaddressed in a variation
alled Timed CSP whi
h allows expli
it referen
e totiming information [RR87, S
h90℄. However, it is often not ne
essary to use
on
urren
y expli
itly to des
ribe rea
tive systems; for example, languagessu
h as Fran use a de
larative style where values are de�ned in terms of ea
hother, and the pro
esses for
omputing these values are built into the lan-guage. It may be bene�
ial to use
on
urren
y for implementing de
larativerea
tive languages su
h as Fran, but it is not ne
essary to provide
on
ur-ren
y in the language.2.5 Continuous verses dis
rete timeThere is a fundamental
on
eptual di�eren
e between dis
rete and
ontinuousviews of time. The exa
t nature of spa
e and time has intrigued philosophersfor
enturies, and many metaphysi
al arguments have been put forward insupport of ea
h viewpoint. The out
ome of these arguments depends on theassumptions they are based on, so they do not provide a
on
lusive answer.More re
ently, advan
es in Physi
s have
hanged our perspe
tive, suggestingthat spa
e and time are non-linear and also that both may be dis
rete. Forour purposes all this is not very important. In most situations time appearsto
ow
ontinuously, and we do not per
eive an uneven progression from oneinstant to another. If spa
e and time are dis
rete then the granularity is so�ne that for all pra
ti
al purposes they appear to be
ontinuous. This is why
ontinuous time models have been so su

essful in s
ien
e and engineering.A good model is one that is workable and �ts observation well, and notne
essarily one that mirrors reality most a

urately.Continuous time models have the following bene�ts. They yield a value atany point in time, not just dis
rete points. They are easier to manipulate in

CHAPTER 2. BACKGROUND 16symboli
 form, and have many algebrai
 properties. Most importantly, they
an be integrated and di�erentiated. Cal
ulus is perhaps the most powerfultool ever developed for s
ientists and engineers.In pra
ti
e, however,
ontinuous time is less
ommon than dis
rete time.We have seen that Esterel, Lustre and Imperative streams use dis
rete timerepresentations for time-varying quantities. This is the most
ommon ap-proa
h be
ause digital
omputers are dis
rete ma
hines. It is possible to rep-resent
ontinuous time values using fun
tions of time, but operations su
h asintegration tend to be more diÆ
ult than for dis
rete time representationsfor whi
h approximation methods
an be used. It is possible to
ombine theapproa
hes, however, and use dis
rete approximation methods for operationssu
h as integration and interpolate between points to obtain
ontinuous timevalues. This allows us to retain the
ontinuous time approa
h, but we have tosa
ri�
e exa
t operations where ne
essary. This is how Fran is implemented.So, pra
ti
ally we usually need to
ompromise the
ontinuous time ap-proa
h by using dis
rete approximation methods for some operations. Al-though we have the extra
omplexity of analysing errors due to approxima-tion, many of the advantages of using
ontinuous time remain.2.6 Ar
ti
Ar
ti
 [Dan84℄ is intended for implementing real-time
ontrol systems of thekind we have
alled rea
tive systems; that is, systems that require
omplexde
ision making and must satisfy hard timing
onstraints. The �rst
riterionex
ludes signal pro
essing, for example, and the se
ond ex
ludes soft real-time systems su
h as operating systems, where the user may have to wait forthe ma
hine at times.Con
eptually Ar
ti
 is based on a
ontinuous notion of time, and inputs

CHAPTER 2. BACKGROUND 17and outputs are modelled as fun
tions of time. The implementation, on theother hand, uses dis
rete time and
omputes approximations to time-varyingvalues. Ar
ti
's
reator, Dannenberg,
laims that any Ar
ti
 implementationwill only approximate the ideal be
ause it is impossible to measure or repre-sent real input values or times with in�nite pre
ision. While measurementsin the real world are always approximations, it is not true that real numbersare impossible to represent exa
tly|for example [PEE97, Vui90℄|althoughit
an be very diÆ
ult to implement some operations on exa
t representationsof real numbers. In summary, Ar
ti
 adopts
ontinuous time
on
eptually|for understanding the language and for reasoning about programs|but doesnot make any guarantees about the implementation, and therefore programveri�
ation is
ompromised.The prin
ipal
onstru
t in Ar
ti
 is the prototype, whi
h is a spe
i�
ationof responses to events. Prototypes are instantiated to yield a
tual values(outputs) when they are triggered by events. Thus a single prototype maybe instantiated many times by di�erent events. Ea
h of the resulting obje
tshave their own state, whi
h in
ludes their start time.As an example of a prototype, the following des
ribes a doorbell thatdoes not ring between 0am and 8am:Push
auses [if (time mod 24 hours) > 8 hours then RingBell℄.Ea
h Push event
reates an instan
e of the prototype, whi
h in turn willinstantiate the RingBell output event if the time of the Push event satis�esthe
ondition. The time of the event is given by time in the prototype|it isan impli
it parameter whi
h gives the start time of instan
es of the prototype.Another impli
it parameter that is passed to instan
es of prototypes is astret
h fa
tor
alled dur. This allows a prototype to be speeded up or sloweddown by adjusting all timed outputs a

ording to the stret
h fa
tor. This

CHAPTER 2. BACKGROUND 18is signi�
ant to our work be
ause time-transformations su
h as speeding uptimed values
an be problemati
 with dis
rete time representations.In the following program the Ring3Times event triggers a bell that ringsthree times at one se
ond intervals:Ring3Times
auses [RingBell � 0RingBell � 1RingBell � 2℄:Here the operator � is used to spe
ify the time of output events relativeto the start time of the prototype instan
e. Thus, if the bell is pressed attime t then we expe
t the bell to ring at times t, t+1 and t+2. Now, we
an double the speed of this prototype using the � operator so that thebell rings at times t, t+0.5 and t+1. So time stret
hing a�e
ts the relativetimes but not the start time, whi
h means that the � operator multiplies thegiven time by the stret
h fa
tor, dur, to obtain the a
tual time. This ensurestime-transformations intera
t with
omposition of prototypes as we wouldexpe
t.Ar
ti
 in
ludes primitives for parallel and sequential
omposition of pro-totypes. Sequential
omposition uses a third impli
it parameter
alled stopwhi
h gives the end time of the prototype. There are fa
ilities for
onstru
t-ing fun
tions of time and for des
ribing events. In parti
ular, the untiloperator evaluates a boolean fun
tion of time and swit
hes from one proto-type to another at the �rst moment after the start time when the fun
tionyields true. This is ill de�ned, however, be
ause a boolean fun
tion su
h ast 7! t > 1 does not have a �rst moment when it is true. Later we will seehow our theory avoids this
aw in the de�nition of a similar operator in ourlanguage.

CHAPTER 2. BACKGROUND 192.7 Duration Cal
ulusThe Duration Cal
ulus is for reasoning about spe
i�
ations and designs ofreal-time systems. It is
losely related to interval temporal logi
s, whi
hallow assertions about timing to be spe
i�ed without expli
it referen
es toabsolute time [Koy90, MP92℄. However, it also has a simple way of des
ribingthe proportion of time a system spends in a given state, whi
h
an be usefulin some appli
ations. Real numbers are used to model time and booleanvalued fun
tions of time are used to model states and events. This gives a
ontinuous notion of time.The standard example is a gas burner, whi
h
an only leak unlit gas forone twentieth of the elapsed time without a dangerous build up o

urring.A dangerous buildup
annot o

ur in less than one minute. LetLeak(t) : T ime! Rbe a real valued fun
tion of time that is 1 when the gas burner is leaking and0 when it is not. The safety requirement over the interval [b; e℄ is given by,e� b � 60se
: =) Z eb Leak(t):dt � 120(e� b):So the total length of time when the burner is leaking is found by integratingLeak, and this should be no more than one twentieth of the total time.This spe
i�
ation
an be simpli�ed by eliminating expli
it referen
es totime. We assume that all integrals are over the interval [b; e℄, so that theelapsed time, l, is given by:l = Z 1 (= Z eb 1:dt = e� b):Now the safety requirement
an be expressed as:l � 60se
: =) Z Leak � 120 l:

CHAPTER 2. BACKGROUND 20The Duration Cal
ulus is de�ned axiomati
ally in terms of integrals su
h asthe one above and arbitrary states. It has been used su

essfully to spe
ifya variety of rea
tive systems and to prove designs are
orre
t.2.8 Hybrid systemsHybrid systems
ombine
ontinuous devi
es and dis
rete
ontrol programs,typi
ally in real-time systems where the physi
al environment is evolving overtime. The
ombination of
ontinuous and dis
rete values makes it
hallengingto spe
ify and implement provably
orre
t systems.We have already seen the Duration Cal
ulus for spe
ifying and reasoningabout dis
rete states in real-time systems. This has been extended to
ap-ture pie
ewise
ontinuous states so that it
an be used for spe
ifying hybridsystems [CRH93℄. The theory is intended to interfa
e with mathemati
alanalysis whi
h is required for analysing the
ontinuous parts of the system.He Jifeng has des
ribed hybrid systems using an extension of CSP with aspe
i�
ation oriented semanti
s [Jif94℄. We will brie
y
onsider an exampleof des
ribing a hybrid system using this method. This system
ontrols thewater level in a tank by swit
hing on a
ontrol valve. The level must be keptbetween 30 and 60 units, and starts at time 0 at 40 units. The valve is openwhi
h
auses the water level to rise at 0.2 units per se
ond. On
e the valve is
losed the level will drop at 0.1 units per se
ond until the valve is reopened.We have the following variables:WL is the hybrid system,h is the water level,C is the
ontroller,
 is the
hannel that links the
ontroller with the valve.

CHAPTER 2. BACKGROUND 21The system is spe
i�ed in He's notation by:WL def= (_h = 0:2)40 E (
?x �! W (x))W (o�) def= (_h = �0:1) E (
?x �!W (x))W (on) def= (_h = 0:2) E (
?x �!W (x))C def= (await h = 30 do (
!on �! (delay 1;C)))�(await h = 60 do (
!o� �! (delay 1;C)))The
ontroller C opens the valve when the water level drops to 30 unitsand
loses it when the water level rises to 60 units. Opening and
losingis a
hieved by passing the values `on' or `o�' along the
hannel
. Thede�nitions for W spe
ify the rate of level
hange, _h, when the valve is o�(
losed) and on (open), and the
hange that o

urs when an input is re
eivedon
hannel
 a

ording to W . The overall water level system, WL, gives therate of level
hange, _h, whi
h is 0.2 at �rst, with h = 40, and
hanges whenan input is re
eived on
.This notation is pre
ise and amenable to reasoning and proving programs
orre
t. However, in Chapter 9 we show how this system
an be implementedin CONTROL, and that our notation is pre
ise enough for both the spe
i�-
ation and the implementation. This has the advantage that the program is
orre
t by design.Chapter summaryThere are many languages designed for programming rea
tive systems usinga variety of te
hniques. We saw that most of these languages are based ona dis
rete notion of time. One ex
eption is Ar
ti
 whi
h adopts
ontinuoustime
on
eptually.

CHAPTER 2. BACKGROUND 22Spe
i�
ation
al
uli often assume that time is
ontinuous, be
ause it iseasier to work with, but it is then not easy to prove that an implementation is
orre
t with respe
t to its (
ontinuous time) spe
i�
ation unless it is writtenin a language that supports
ontinuous time.

Chapter 3The Fran system
Fran (Fun
tional Rea
tive ANimation) is a fun
tional language for
reatingintera
tive animations. CONTROL is based on a
ore fragment of Fran withthe intention of studying the semanti
s of the
ore operators in a simplerfun
tional language. In retrospe
t, it is apparent that our work has widersigni�
an
e to rea
tive languages, and this is what we have emphasised inthe previous
hapters. Be
ause of its in
uen
e on our work, we will des
ribeFran, and the existing work on its semanti
s, in detail in this
hapter. Themain purposes are:� To introdu
e Fran's operators on behaviours, whi
h inspired similaroperators in CONTROL.� To enable us to identify where CONTROL di�ers from Fran.� To des
ribe previous work on the semanti
s of Fran, and its limitations.Fran is the latest prototype language in a resear
h programme investi-gating high-level languages for
reating ri
hly intera
tive animations. Theideas that Fran is based on grew out of earlier work by Elliott and others onmodelled animation [ESYAE94, Ell96℄. Fran is implemented in Haskell, butmost of the ideas behind the design are independent of the implementation23

CHAPTER 3. THE FRAN SYSTEM 24language. Therefore it is helpful to distinguish between the key
on
epts be-hind the approa
h and spe
i�
 details of the Haskell based implementation;we are mostly interested in the former, but our example programs will usethe Haskell implementation of Fran.3.1 ExamplesIn this se
tion we shall des
ribe a simple Fran animation to illustrate someof the operators in the language and to give an impression of Fran so thatthe dis
ussion of the key
on
epts whi
h follows is more
on
rete.Our �rst example is an animation of the Moon orbiting the Earth in a
ir
ular path. We require a time-varying value (a behaviour) whi
h gives theposition of the Moon at all times. Then we
an translate an image of theMoon a

ording to this behaviour, and overlay it on a stationary image ofthe Earth. By default, images that are not translated, su
h as the Earthin this example, are positioned at the origin whi
h is at the
entre of thedisplay. The Fran program for this animation is as follows:orbit = ve
tor2XY (
os time) (sin time)earthMoon = move orbit moon `over` earth (3.1)The de�nition of orbit gives the position ve
tor of the Moon. It is
on-stru
ted by ve
tor2XY whi
h takes the horizontal and verti
al
o-ordinatesand yields the
orresponding ve
tor. Noti
e that the arguments are be-haviours; the horizontal
oordinate (
os time) is a behaviour that yieldsthe
osine of the
urrent time at all times; similarly for the verti
al
oordi-nate sin time.The overall animation, earthMoon, is exa
tly as it reads; move an imageof the Moon a

ording to orbit and overlay it on an image of the Earth.

CHAPTER 3. THE FRAN SYSTEM 25(Suitable de�nitions, su
h as imported bitmaps, are required for the earthand moon images.) The animation is viewed by enteringdisplay earthMoonand will run forever.Let us extend earthMoon to obtain an animation of the Moon and Earthorbiting the Sun. The �rst step is to de�ne a smaller version of the Earthand Moon animation;smallEarthMoon = stret
h 0.2 earthMoonThis
an be put in orbit around the Sun, as follows:sunEarthMoon = move orbit smallEarthMoon `over` sunBut in this animation the Earth and the Moon have the same orbital period,whereas we would like the Moon to orbit the Earth every month, or twelvetimes a year. We
an do this by speeding up smallEarthMoon by a fa
tor oftwelve using the faster operator as follows:sunEarthMoon = move orbit (faster 12 smallEarthMoon)`over` sunThe above example shows that behaviours
an be freely
omposed. Thiswould not be the
ase for a naive implementation of the above animationsin a pro
edural language in whi
h one frame of the animation is produ
edwith ea
h iteration of a loop. More spe
i�
ally,
ompositionality of the kindillustrated above is only possible if the following hold:� Behaviours use
ontinuous time. Dis
rete time representations will not
ompose straightforwardly when operations like faster are used.

CHAPTER 3. THE FRAN SYSTEM 26� Behaviour expressions are pure and persistent. If they are not, sidee�e
ts may interfere when behaviours are
omposed or reused.� Behaviours are impli
itly fun
tions of time. If they depend on an ex-pli
it time variable then en
apsulation is lost.� Behaviours are stru
tured values; for example, ve
tors.3.2 Key
on
eptsThe example program sunEarthMoon illustrates that animation
omponentsare
ompositional, and we identi�ed some prerequisites for
ompositionality.In this se
tion we will des
ribe how the key
on
epts of Fran's approa
h lendthemselves to
ompositional program
onstru
tion, and other bene�ts theybring to developing animations.Modelling. Writing programs that des
ribe animations is often a diÆ-
ult and time
onsuming task. Fran makes it easier by allowing authors to
on
entrate on
ontent rather than on programming, or more pre
isely, onwhat the animation is rather than on how to display it on the s
reen. So Frantakes a de
larative approa
h in whi
h programs are models of animations.The implementation uses a presentation engine whi
h
omputes how to dis-play these models as animations. The presentation engine
an be optimisedby experts and then used by everyone, thus eliminating mu
h dupli
ation ofe�ort.The modelling approa
h is a
ompromise, however, be
ause low-level
on-trol is lost and so animations that are not easy to des
ribe within the mod-elling framework
an be less eÆ
ient, and sometimes not possible. The
hoi
eof modelling framework is therefore
ru
ial|it should be suÆ
iently expres-sive for most purposes but this must be balan
ed with the requirement to

CHAPTER 3. THE FRAN SYSTEM 27present models eÆ
iently.Continuous time. Animations are often represented as a sequen
e offrames whi
h
ontain the image to display at dis
rete points in time. This isunnatural, however, be
ause in the real world we usually regard motion as
ontinuous; that is, obje
ts move through a
ontinuum of points in spa
e in a
ontinuous interval of time. Hen
e, it is more diÆ
ult to program animationsin a language that uses dis
rete time representations, su
h as frames, thanit is to model them mathemati
ally. Fran adopts
ontinuous time so that alltime-varying values are
on
eptually fun
tions of time. This has the followingadvantages:� It is easier and more natural to des
ribe time-varying values.� Behaviours
an always be
omposed, whereas with dis
rete time rep-resentations only behaviours that have the same points in time
an be
omposed.� Arbitrary time-transformations
an be applied to any time-varyingvalue, and this does not break
ompositionality.� Motion
an be des
ribed by rates of
hange using the di�erential
al-
ulus.� It is possible, within
ertain limits, to run animations at approximatelythe same speed, regardless of the hardware, be
ause frames
an be
omputed at any point in time. The animation is unlikely to be assmooth on a slower ma
hine, but after say �ve se
onds the animationwill be at (approximately) the same point as it would be on the fasterma
hine.

CHAPTER 3. THE FRAN SYSTEM 28Behaviours. In Fran behaviours are used to des
ribe all time-varyingaspe
ts of animations. They are
on
eptually fun
tions of time whi
h maptimes to values of various types, depending on what is being des
ribed. Forexample, behaviours may yield
olours, numbers, positions, shapes, imagesor sound. Behaviours are en
apsulated|they
annot be evaluated at spe
i�
times (sampled) by the animator. Only the presentation engine
an do this,so that it
an
ompute frames of the animation [Ell99b℄. This en
apsulationis important be
ause for
ertain behaviours to be eÆ
ient they must only besampled monotoni
ally|that is, at non-de
reasing times. The presentationengine must guarantee to do this in order to obtain a reasonable level ofeÆ
ien
y. (In fa
t, there is a slight
aw in the design in this respe
t, be
auseFran provides time-transformations whi
h allow behaviours to be speededup, slowed down, delayed or in fa
t arbitrarily time warped. Consequentlybehaviours may not be monotoni
ally sampled by the presentation engine.Pragmati
ally we need not regard this as a
aw; rather, we
an expe
t theanimator to be aware of this limitation and use time-transformations
au-tiously.)Rea
tivity. Modelling in Fran is based on des
ribing behaviours andhow they rea
t to events. This latter aspe
t is
alled rea
tivity. It allows usto des
ribe intera
tion between the
omponents of an animation; for example,
ollisions, timed events and user input.A rea
tive behaviour is one that
hanges
ourse when some
riterion,
alled the event
ondition, is satis�ed; for example, a ball's velo
ity behaviourthat
hanges when the ball hits a wall. In this
ase, the event
ondition isthat the surfa
e of the ball is in
onta
t with the wall. This
ondition isexpressed using a boolean behaviour. Fran also has built in primitives foruser input events su
h as mouse
li
ks.

CHAPTER 3. THE FRAN SYSTEM 29Usually, what to do next depends on pre
isely whi
h event o

urred. Franneatly
aptures this by pa
kaging a new behaviour with the event
ondition,and then this new behaviour may be used when the event o

urs. It isa
tually pairs
omprising a
ondition and a new behaviour that Fran
alls anevent. Various event
ombinators are provided to manipulate these values.This results in a powerful and
onvenient notation for expressing rea
tivity.Embedded language. Fran uses the embedded language approa
h; itis a library written in Haskell and animations are Haskell programs thatimport this library. This saves a lot of work designing and implementinga
omplete language, but also restri
ts the syntax and implementation tofeatures available in the host language. As we have seen, Haskell syntaxis superlative for Fran, but as an implementation language it is not veryeÆ
ient. In summary, the
onvenien
e of the embedded language approa
hmakes it ideal for prototyping and for proof of
on
ept, but to
reate aneÆ
ient, industrial strength version would require an implementation in amore
onventional language. Unfortunately, it is unlikely that the embeddedlanguage approa
h would work well for su
h implementations, be
ause mostother languages do not o�er the synta
ti

onvenien
e and expressive powerof Haskell.3.3 Time and LiftingThe behaviour time was used in Example 3.1 in the term
os time. Wewill explain how this term gives the behaviour that yields the
osine of the
urrent time. Firstly, time is the behaviour that at all times yields the time,so it is the identity fun
tion on times. One way to spe
ify the semanti
s ofbehaviours is to de�ne a semanti
 fun
tion (at) whi
h maps terms of typeBehaviour � (i.e., behaviours that yield values of type �) to fun
tions from

CHAPTER 3. THE FRAN SYSTEM 30times to values of type � (we will denote the set of values of type � by [[�℄℄),at[[℄℄ : Behaviour � ! (T ! [[�℄℄):Thus the semanti
 equation for time is,at[[time℄℄ = t 7! t:That is, time represents the identity fun
tion on times.Example 3.1 in Se
tion 3.1 used the fun
tion
os that operates on be-haviours. In Fran there is a uniform way of
onstru
ting su
h fun
tions fromnon-behaviour fun
tions
alled lifting. So, for example, the standard
osinefun
tion,
os :: RealVal -> RealVal
an be lifted to the behaviour level fun
tion,
osB, as follows:
osB :: Behaviour RealVal -> Behaviour RealVal
osB = lift1
osThe
osB fun
tion takes a real valued behaviour as its argument, and appliesthe
osine fun
tion to the value of this behaviour at all times. Thus, thesemanti
 equation for
osB isat[[
osB a℄℄ = t 7!
os(at[[a℄℄t):This idea applies to all fun
tions, so in general we may lift a fun
tionf :: � -> �so that it operates on behaviourslift1 f :: Behaviour � -> Behaviour �

CHAPTER 3. THE FRAN SYSTEM 31with the semanti
s that it applies the fun
tion f to the value of the behaviourargument a at all times,at[[lift1 f a℄℄ = t 7! f(at[[a℄℄t):Furthermore, lifting applies to
onstants and fun
tions of any arity. Thesemanti
 equations for all the operators in Fran from Elliott and Hudak'ssemanti
s for Fran [EH97℄ are given in Se
tion 3.7.Lifting is also an important feature of CONTROL, and it is des
ribed inthis
ontext in Se
tion 5.1.In Example 3.1 we used the name
os for the behaviour level
osinefun
tion instead of
osB. This is possible in Fran be
ause Haskell's type
lass me
hanism is used to overload the names of many standard fun
tionsso that the behaviour level versions are used if the argument is a behaviour;that is, the overloading is resolved by the (inferred) argument type. Evennumeri
 and other
onstants are overloaded this way.3.4 Rea
tivityAnimations
an be viewed as rea
tive systems where
omponents of an an-imation, in
luding the user, intera
t with ea
h other. To a

ommodate re-a
tivity, Fran provides an operator
alled untilB whi
h
an be used to
on-stru
t a behaviour that
hanges
ourse when a given event o

urs. (Fran pro-vides other operators for rea
tivity, but they are de�ned in terms of untilBwhi
h is the primitive operator.) Events have two parts; �rstly, a
onditionwhi
h spe
i�es when the event o

urs, and se
ondly, a value asso
iated withthe event. The value part is usually the behaviour that will be used after theevent has o

urred. So, it is the
ombination of a
ondition and a value thatFran
alls an event.

CHAPTER 3. THE FRAN SYSTEM 32Events often require a user argument. For example, lbp u is the eventthat o

urs when the left mouse button is pressed, and the user argument uis ne
essary to distinguish the next button press from previous ones. Userarguments also supply start times for integrals and for predi
ate events(the time to start testing for the event o

urren
e) and are used by theimplementation for passing sampling rates.We
an
hange the value part of an event using the -=> operator; forexample, the
ondition part of lbp u is the event that o

urs when the leftmouse button is pressed, and the value part is the mouse release event. We
an asso
iate a di�erent value with button presses as follows:lbp u -=> redThis is the event that o

urs when the left button is pressed, but yields thevalue red instead of the mouse release event.Events are used in programs via the untilB operator. This takes a be-haviour and an event:untilB : Behaviour � -> Event (Behaviour �) -> Behaviour �:At �rst the given behaviour is used, but when the event
ondition �rst be-
omes true the behaviour swit
hes to a new one obtained from the valuepart of the event. So, to obtain a behaviour that
hanges
olour from blueto red when the left button is pressed, we pass the behaviour blue as the�rst argument to untilB, and then pass the event that o

urs when the leftmouse button is pressed and yields red as the se
ond argument:blue `untilB` (lbp u -=> red):Events
an be
onstru
ted from boolean behaviours using predi
ate; forexample, predi
ate (time >=* 5) u

CHAPTER 3. THE FRAN SYSTEM 33is the event that o

urs when the boolean behaviour (time >=* 5) �rstbe
omes true; that is, when the time is greater than or equal to 5. Theoperator >=* is the behaviour level greater than or equal to operator. Notethe user argument u here. In this
ase it is used to give the time from whenthe
ondition should be tested, be
ause in general predi
ate events should notbe tested for all times sin
e the animation began. Although it seems that userarguments are ne
essary in the Haskell-based implementation of Fran, they
ompli
ate rea
tive programs signi�
antly. In CONTROL they have beeneliminated giving a
leaner semanti
s and allowing a simpler programmingstyle.Events
an be
omposed using operators su
h as .|. whi
h
hooses theearlier of two events, and yields the value asso
iated with this event. Forexample, the eventlbp u .|. predi
ate (time >=* 5) uo

urs when either the left mouse button is pressed or the time rea
hes 5,whi
hever happens �rst. Unlike the logi
al OR operator, this behaviourlevel OR is asymmetri
; if both events o

ur simultaneously then the newbehaviour obtained is the �rst (left) argument. There are a number of otherevent operators, the details of whi
h
an be found in [EH97℄.3.5 Integration for behavioursFran provides an operator
alled integral whi
h, given a real valued be-haviour a, yields the behaviour that gives the integral of a at all times. Auser argument must also be supplied, whi
h for integrals is used to determinethe starting point of the interval to integrate over. For example, the integral

CHAPTER 3. THE FRAN SYSTEM 34of the behaviour time is given byintegral time ufor some user argument u. Assuming the user has a start time of zero, we
an�nd the behaviour that is equivalent to this one by
al
ulating the symboli
integral. The behaviour time
orresponds to the identity fun
tion on times,t 7! t, and the symboli
 integral of this fun
tion is 0:5 � t2. Therefore thefollowing behaviour is equivalent to the one above:0.5*time*time:There are a number of subtleties
on
erning integral. Elliott and Hudakgive the following de�nition in their semanti
s:at[[integral b t0℄℄t = Z tt0 at[[b℄℄x:dxNote that in the original version of Fran user arguments were simply starttimes, so here t0 is a time. In later versions the start time is extra
ted fromthe user argument. This semanti
s for integral fails to address a numberof issues. Firstly, not all behaviours
an be integrated so the expression onthe right hand side is not always well-de�ned. Se
ondly, it does not de�nethe semanti
s of re
ursive de�nitions using integral, whi
h
an have manysolutions. (For example, the programb = integral (b^ (4/5)) 0
orresponds to the integral equationy(t) = Z t0 y(s)4=5:ds:This has many solutions, for example, y(t) = 0 or y(t) = (1=5)5t5.) Thirdly,Elliott and Hudak's semanti
s does not explain how rea
tive behaviours
anbe integrated. We will return to these issues when we dis
uss integration inCONTROL.

CHAPTER 3. THE FRAN SYSTEM 353.6 Re
ursive behavioursOne of the most interesting features in Fran is that behaviours
an be de�nedre
ursively by writing a re
ursive Haskell de�nition. This
an be useful, and issometimes ne
essary, when writing intera
tive animations. Upon re
e
tion,this is as we would expe
t; if two obje
ts intera
t with ea
h other then theirde�nitions must be in terms of ea
h other. We will now give some examples.The following program gives the position of a ball falling from height 1to the ground at height 0. When it hits the ground it remains at rest:h = 1 - integral 1 u `untilB` predi
ate (h <=* 0) u -=> 0Here the
ondition when the ball hits the ground, h <=* 0, is in terms of theheight, h, and so the de�nition is re
ursive.We will now write a program whi
h des
ribes the path of body in orbitaround a �xed body a

ording to Newton's law of gravitational attra
tion.It
ould repla
e orbit in Example 3.1 to give a more realisti
 impression ofthe Moon's orbit around the Earth. Re
all that Newton's inverse square lawof gravitational attra
tion isF = Gm1m2r2 G is the universal gravitational
onstantm1; m2 are the masses of the bodiesr is the distan
e between the bodiesThis gives the magnitude of the for
e on the Moon, and the dire
tion of thefor
e is always towards the Earth. This dire
ted for
e is proportional to thea

eleration of the Moon, so it
an be integrated twi
e to give the positionof the Moon. These formulas
an be
oded dire
tly in Fran as follows:orbit' u = swheres = s0 + integral v u

CHAPTER 3. THE FRAN SYSTEM 36v = v0 + integral a ua = (-k/(r ^ 2)) *^ unit_sr = magnitude sunit_s = (1 / mag_s) *^ s(suitable values for the
onstant k, the initial position s0, and the initialvelo
ity v0, are also required). Noti
e that the de�nitions of the position, s,the velo
ity, v, and the a

eleration, a, are mutually re
ursive. We
annotavoid re
ursion if we want to use Newton's law of gravitation in this waybe
ause the position depends on the a

eleration, but the gravitational for
e,and hen
e the a

eleration, depends on the relative positions of the bodies.As a �nal example, here is an animation of a ball following the mouse asif it were being dragged on a spring through a thi
k liquid,followMouse u = move p ballwherep = integral v uv = integral a ua = (mouseMotion u - p) - (0.5 *^ v)Again, the position, velo
ity and a

eleration are mutually re
ursive. Thistime it is be
ause the for
e the spring exerts, and hen
e the a

eleration ofthe ball, depends on the position of the ball relative to the mouse. It is notpossible to solve the equations and write the position as an expli
it formula,as it is, in
identally, for the previous example, be
ause the mouse position isan input behaviour and is therefore not known beforehand. Therefore it isnot possible to write this program in Fran without using re
ursion.

CHAPTER 3. THE FRAN SYSTEM 373.7 Semanti
sElliott and Hudak give a denotational semanti
s to the operators on be-haviours and events, treating them as a pair of mutually re
ursive polymor-phi
 datatypes [EH97℄. This is not the same as giving a
omplete semanti
sto Fran, however, be
ause Fran programs are written in Haskell and so they
an be
onsiderably more
ompli
ated than expressions using only the be-haviour and event operators. In parti
ular, behaviours may be de�ned byre
ursive de�nitions, and this is not a

ounted for by their semanti
s.It may seem as if the semanti
s of Haskell is suÆ
ient to determine thesemanti
s of Fran be
ause it is a Haskell library. However, su
h a seman-ti
s would be at the wrong level of abstra
tion|it would
apture all theimplementation details of behaviours but not their abstra
t nature. Thepresentation engine uses dis
rete sampling to
ompute values of behavioursat points in time, and
omputes integrals and event o

urren
es using nu-meri
al approximation te
hniques. Consequently a semanti
s based on theimplementation would not give an exa
t semanti
s of behaviours.So Elliott and Hudak's approa
h, giving a semanti
s to the operators onbehaviours and events,
ombined with an understanding of Haskell's seman-ti
s, seems like a good �rst approximation to the semanti
s of Fran. However,the intera
tion of these abstra
t behaviours and events with Haskell, in par-ti
ular with re
ursive de�nitions,
annot be explained by this approa
h. Thisis why our work takes a simpler language and provides a
omplete semanti
sfor it.If we ignore re
ursion, then Elliott and Hudak's semanti
s
aptures theabstra
t properties of behaviours and events. It does not
apture the se-manti
s of the implementation, however, be
ause approximation te
hniquesare used to
ompute integrals and event times. As we said in the Introdu
-

CHAPTER 3. THE FRAN SYSTEM 38tion, we should �rst try to give the values as if they were exa
t, and then
onsider the errors due to approximation. This se
ond stage is ne
essaryto be able to verify the
orre
tness of implementations or to reason reliablyabout programs. For these purposes a more advan
ed theory that a

ountsfor approximation is required. Our work does not deal with approximationeither, but we take an idealised view of CONTROL whi
h means that thelanguage is de�ned to yield exa
t values of behaviours and event times. Inother words, this assumption is made expli
it rather than being ignored. Us-ing this approa
h we are able to give a
omplete semanti
s for a fun
tionallanguage with behaviours, in
luding a full treatment of re
ursion.Elliott and Hudak's semanti
 fun
tion for behaviours assumes an abstra
tdomain of polymorphi
 behaviours, Behaviour�. These abstra
t behavioursare interpreted as fun
tions from times to values by the semanti
 fun
tion`at' whi
h we used previously:at : Behaviour� ! T ime! �:The intention is that these abstra
t behaviours
orrespond to the behavioursthat
an be
onstru
ted in the Haskell based implementation. As we saidabove, this
orresponden
e is not exa
t be
ause the implementation
omputesapproximations to the abstra
t behaviours des
ribed by this semanti
s.Events belong to the abstra
t domain Event� and are interpreted asT ime� � pairs by the semanti
 fun
tion o

:o

 : Event� ! T ime� �:Re
all that an event o

urs at some time and yields a value whi
h, for rea
tivebehaviours, is the behaviour that will be used after the event has o

urred.There are two problems that must be addressed here:� An event might never o

ur and so it does not have an event time.

CHAPTER 3. THE FRAN SYSTEM 39� It is not possible to see into the future to �nd when an event o

urs, so area
tive behaviour
annot be spe
i�ed in terms of the event time. Morepre
isely, at time t a rea
tive behaviour only needs to know whetherthe event has o

urred, and does not require the a
tual time of theo

urren
e. This is vital for external events, su
h as mouse
li
ks,whi
h
annot be predi
ted ahead of time.The �rst problem is solved by Elliott and Hudak by adding an in�nite time,1, to the set of real numbers to represent the time of an event that nevero

urs. The se
ond problem is solved by de�ning an ordering on times su
hthat a time t is less than an event time te if either te is known and is greaterthan t, or else it is known to be at least as great as t.The typing
onstraints for operators on abstra
t behaviours are givenin Figure 3.1. These
orrespond pre
isely to the types of the operators inHaskell. The semanti
 equations for these operators are shown in Figure 3.2.They are straightforward interpretations of the operators we have alreadyseen in the pre
eding se
tions, although there are some subtleties with untilBwhi
h we will dis
uss later on when we
ompare its semanti
s to until-thenin CONTROL.For us the most important operation on events is predi
ate whi
h allowsan event to be spe
i�ed by a boolean behaviour. This is the only kind ofevent that is available in CONTROL be
ause it does not provide for externalinputs su
h as mouse
li
ks. The semanti
s of predi
ate is given bypredi
ate : BehaviourBool ! T ime! Event()o

[[predi
ate b t0℄℄ = (infft > t0 j at[[b℄℄tg; ())So the time of a predi
ate event in Fran is the in�mum of the set of timesgreater than t0 when b is true. This is di�erent from our treatment of event

CHAPTER 3. THE FRAN SYSTEM 40
time : BehaviourT imeliftn : (�1 ! : : : �n ! �)!Behaviour�1 ! : : :! Behaviour�n ! Behaviour�timeTransform : Behaviour� ! BehaviourT ime ! Behaviour�integral : V e
torSpa
e �) Behaviour� ! T ime! Behaviour�untilB : Behaviour� ! EventBehaviour� ! Behaviour�Figure 3.1: Types of abstra
t behaviours in Fran
at[[time℄℄t = tat[[liftn f b1 : : : bn℄℄t = f (at[[b1℄℄t) : : : (at[[bn℄℄t)at[[timeTransform b tb℄℄ = at[[b℄℄ Æ at[[tb℄℄at[[integral b t0℄℄t = R tt0 at[[b℄℄x:dxat[[b untilB e℄℄t = if t � te then at[[b℄℄t else at[[b0℄℄twhere (te; b0) = o

[[e℄℄Figure 3.2: Semanti
s of abstra
t behaviours in Fran

CHAPTER 3. THE FRAN SYSTEM 41times of predi
ate events, and the di�eren
es will be explored in detail lateron. The value asso
iated with a predi
ate event is the unit value, ().There are other operators on events in Fran, most importantly, for spe
ify-ing external events and for handling the values asso
iated with events. Theseare useful when programming with Fran, but are not relevant to CONTROLbe
ause it does not have external events (all events are like Fran's predi
ateevents) and there are no values asso
iated with events. The semanti
s ofthese operators is given in [EH97℄.3.8 Summary of the literatureWe will now give a brief summary of the literature on Fran. Many of the ideasbehind Fran were developed in previous work, parti
ularly TBAG [SEYAE94,ESYAE94℄, MediaFlow [ESAE95℄ and A
tive VRML [Ell96℄ (Fran is a
on-
rete realisation of the ideas in [Ell96℄). The seminal paper by Elliott andHudak is [EH97℄. This gives the key ideas, a semanti
s for the operators, andsome details of the implementation. The language is des
ribed emphasisingthe embedded language approa
h in [Ell97, Ell99a℄.There are many tutorials, appli
ations and examples. Elliott has writtena tutorial [Ell98a℄, and two extended appli
ations whi
h des
ribe two-handedimage navigation [Ell98e℄ and a �fteen puzzle [Ell98
℄. The method of pro-gramming with events in Fran is des
ribed in [Ell98b℄. Thompson uses Franto program a lift simulation [Tho98℄. In Chapter 9 we give a lift simulation inCONTROL whi
h is mu
h simpler, and thus illustrates the improved seman-ti
s of CONTROL
ompared to Fran. Daniels's tutorial paper
onstru
ts ananimation of
rew rowing [Dan97a℄.Aspe
ts of the Haskell based implementation are dis
ussed in [Ell98d,Ell99b℄. Fran has also been extended for robots; see [Lin98, PHE99℄. Finally,

CHAPTER 3. THE FRAN SYSTEM 42some very preliminary work on a semanti
s for Fran is presented in [Lin97℄.Chapter summaryFran is the primary inspiration for CONTROL. It is intended for program-ming animations, but with suitable extensions it
ould also be used for imple-menting many other kinds of rea
tive systems. There are four key
on
eptsthat distinguish it from many other rea
tive languages: modelling,
ontinu-ous time, behaviours and rea
tivity. The implementation uses the embeddedlanguage approa
h with Haskell as the host language.Fran provides behaviours for representing time-varying quantities andevents for expressing rea
tivity. In addition, re
ursive behaviours
an be writ-ten using standard Haskell de�nitions. This o�ers an elegant and powerfulprogramming te
hnique. However, the semanti
s of Fran, and in parti
ular ofre
ursively de�ned behaviours, is not well developed. Elliott and Hudak havegiven a semanti
s to the operators on behaviours and events, but this doesnot a

ount for re
ursively de�ned behaviours, nor for the approximationmethods used in the implementation.

Chapter 4A language for behaviours
In this
hapter we introdu
e a new language
alled CONTROL. The develop-ment of this language and of its formal semanti
s are the prin
ipal subje
tsof the remainder of this dissertation.As we said in the introdu
tion, CONTROL is a fun
tional language sup-plemented with operators for des
ribing behaviours. These operators areinspired by similar operators in Fran. Where they di�er from Fran is �rstlydue to some simpli�
ations we have made and se
ondly due to improvementswe have dis
overed while investigating the semanti
s.We begin by introdu
ing the syntax of CONTROL followed by the do-mains that values of ea
h type belong to. This provides a starting point forthe more detailed dis
ussions of the semanti
s that follow.4.1 SyntaxThe fun
tional
ore of CONTROL is a subset of PCF [S
o93℄ that in
ludessimply typed �-terms, a re
ursion operator and built in numbers. Like PCF,it uses normal order evaluation. The syntax of this fun
tional
ore is asfollows:

43

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 44K 2 Constants; x 2 VariablesTypes � ::= Real j Bool j � -> �Terms E ::= K j x j �x:�.E j E E j �x:�.ENumbers in CONTROL are real numbers rather than integers. The set of
onstants in
ludes arithmeti
al operators (+, -, * et
.) and logi
al operators(not, or, and et
.). Noti
e that there are no expli
it operations for pairs, andno if-then-else
onstru
t; these features are a

ounted for by
onstants.Both � and � bind a variable within a term; � is for �-abstra
tions and �is for re
ursive de�nitions. These are explained in detail in Chapter 7. Thetype of the variable must be supplied for both these binding
onstru
ts. So,for example, �x : �:Emeans that the variable x has type � and is bound by � within E (andsimilarly for �).The type system for this fragment is very straightforward|it is as forthe simply typed �-
al
ulus with the standard rule for �. The typing rulesare given in Chapter 8 as part of the
omplete formal des
ription of thelanguage. Note that only well typed terms are meaningful. Also, there areno type annotations other than those for bound variables. We will sometimesstate the type of a term|for instan
e, E : � asserts that the term E has type�|but this is meta-notation and not valid syntax.The remaining operators in CONTROL are for
onstru
ting behaviours,whi
h are values of type Beh � for some type �. The behaviour operatorsextend the grammar as follows:

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 45Types � ::= Beh �Terms E ::= lift0 E j E $* E j integral E jE until E then E j �x:�.EHere � binds a variable x within a term E, and, as for � and �, a typefor x must be supplied. We will dis
uss the purpose and semanti
s of thesebehaviour operators later on. In this
hapter we
onsider the domains val-ues belong to, so it suÆ
es at this stage to know that behaviours representfun
tions from times to values.4.2 DomainsOur aim is to de�ne the mathemati
al meaning of all CONTROL programs;that is, to de�ne for every valid term a value that denotes its meaning. This is
alled a denotational semanti
s and is usually de�ned
ompositionally, whi
hmeans that the value of a term is
onstru
ted from the values of its immediatesubterms. This is a very e
onomi
al method be
ause all that is required is ageneral formula for ea
h synta
ti

onstru
t (i.e., for ea
h produ
tion of theabstra
t grammar) and then the meaning of every term in the language
anbe obtained.Firstly we must state what domains these values belong to. This is a vitalstep be
ause it is sometimes un
ertain whether the domains we assume by oursemanti
 equations a
tually exist. For example, it was not known for aroundthree de
ades whether a domain existed for the untyped �-
al
ulus. (This isdiÆ
ult be
ause fun
tions and arguments belong to the same domain, and inset theory fun
tion spa
es are always stri
tly larger than the domains theymap between. CONTROL uses the simple type system and
onsequently

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 46avoids this problem.) Furthermore, des
ribing the domains reveals a lotabout a language. As Christopher Stra
hey advised: \I think it would bewell worth the e�ort of any language designer to start with a
onsiderationof the domain stru
ture" [Str73℄.For a typed language like CONTROL we require a domain
orrespondingto ea
h type. Types are either ground types|Real or Bool|or else
om-posite types|fun
tions or behaviours. We will begin with domains for theground types.Terms of type Bool represent truth values|either true or false. Thesetwo values form the set of boolean values,B = ftrue; falseg:However, in most programming languages, in
luding CONTROL, we
anwrite terms that are type
orre
t but do not terminate|they get stu
k inan in�nite loop. We need a value to denote su
h terms; for the domain
orresponding to Bool we will use the symbol ?B . Other domains also usethe symbol ? with di�erent subs
ripts to denote non-terminating terms, andsu
h a value is
alled bottom. We indi
ate domains by en
losing types insemanti
 bra
es [[℄℄, so for the type Bool we have[[Bool℄℄ = B [f?B g:For
onvenien
e we will denote any domain formed by adding a bottom ele-ment ?A to a set A by A?; hen
e,B? = B [f?B g:Similarly, terms of type Real represent either real numbers or non-termination:[[Real℄℄ = R [f?Rg = R? :

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 47Many languages use a
oating point representation for real numbers, andthen operations on them yield approximate results. In
ontrast, CONTROLis an idealised language where all operations on real numbers are exa
t andthere is no over
ow.We now turn our attention to fun
tions. They require a more
omplexdomain stru
ture than ground types, but the theory we make use of is wellestablished. Our exposition here explains why we need to use this theory,gives all the ne
essary de�nitions and provides some intuition for the moti-vation of the theory, but a detailed analysis is beyond our s
ope. This
an befound in any standard text
overing denotational semanti
s [Rey98, Sto77℄,or the original papers by S
ott and Stra
hey [S
o70b, S
o70a, S
o76, SS71℄.A fun
tion in a programming language is really an algorithm that will beperformed ea
h time the fun
tion is applied to an argument. For ea
h possibleargument the algorithm will either produ
e a value or else loop inde�nitely;either way the result will be an element in the domain
orresponding to theresult type of the fun
tion. Thus, it appears that a suitable domain forfun
tion types is a
tual fun
tions between domains, that is,[[� -> �0℄℄ = [[�℄℄! [[�0℄℄:This equation de�nes the domain for fun
tions of type �->�0 to be all settheoreti
 fun
tions from [[�℄℄ to [[�0℄℄. Many of these fun
tions are un
om-putable, however, and so the fun
tions that we
an represent in CONTROL
onstitute a small subset of this domain. This is not a problem be
ause ingeneral we require a domain [[�℄℄ to
ontain a value for every valid term oftype �, but it does not have to be the smallest su
h domain. However, we
an bene�t from removing some unwanted values from fun
tion domains be-
ause doing so makes it easier to de�ne the meaning of re
ursive de�nitions.In the simply typed �-
al
ulus, this is the only reason for adopting a more

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 48
ompli
ated model than the basi
 set theoreti
 one. We will now des
ribehow we restri
t fun
tion domains, and in Chapter 7 we will show how theserestri
ted domains allow us to assign meanings to re
ursive de�nitions.The restri
tion of fun
tion domains is based on a notion of how de�nedfun
tions are. A fun
tion g is at least as de�ned as a fun
tion f if it is atleast as de�ned for all arguments. This is
alled the pointwise ordering onfun
tion spa
es. For example,
onsider fun
tions in the domain B? ! B? .We will write t, f and ? as shorthands for true, false and ?B , and writefun
tions, [t : x j f : y j ? : z℄;as ordered tuples, (x; y; z):The fun
tion (?;?;?) is the least de�ned of all the 33 fun
tions in B? ! B? .Both (t;?;?) and (?; f;?) are more de�ned than this least element, andin turn (t; f;?) is more de�ned than both these fun
tions (it is the identityfun
tion on B?). Note that (t;?;?) is neither more nor less de�ned than(?; f;?); they are in
omparable. Therefore this ordering on fun
tions is apartial order. Partial orders
an be drawn using Hasse diagrams, so for theabove example we have, (t; f;?)������ HHHHHj(t;?;?) (?; f;?)HHHHHj ������(?;?;?)

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 49This ordering on B? ! B? requires the following simple ordering on B? :?B is less than true and false, but true and false are in
omparable, thatis, x vB? y () x = ?B _ x = y:The Hasse diagram for this istrue falseHHHHHj ������?BThe partial order for the domain R? is de�ned similarly.Given these orderings on ground types we
an de�ne an ordering for anydomain D ! D0 assuming that we have an ordering on D0. This is thepointwise order mentioned above:f vD!D0 g () 8x 2 D : fx vD0 gx:We obtain an ordering on all fun
tion types by indu
tion. Be
ause thisapproa
h is so
ommon in programming language semanti
s it is usual to usethe term domain to refer to both the set of values for a given type and thepartial order on that set. This is sensible be
ause we are about to restri
tthe domains for fun
tion types using the partial order.For fun
tions over in�nite sets, su
h as fun
tions on integers, the partialorder vZ?!Z? gives in�nite sequen
es of in
reasingly de�ned fun
tions,
alled!-
hains. For example,
onsider the following
hain of in
reasingly de�ned

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 50fun
tions that approximate the identity fun
tion on integers:idZ?j...j[n 7! ?j2 : 2j1 : 1j0 : 0℄j[n 7! ?j1 : 1j0 : 0℄j[n 7! ?j0 : 0℄j[n 7! ?℄The importan
e of !-
hains is that we require all our domains to be !-
hain
omplete (or !-
omplete), whi
h means that all !-
hains must have a leastupper bound. An upper bound of a set is an element in the domain that isgreater than all the elements in the set, and a least upper bound is the leastsu
h element. If it exists, we denote the least upper bound of a set X byFX. Thus, for a domain D,D is !-
omplete () 8 !-
hains (xi) 2 D :GD(xi) 2 D exists:Both B? and R? are !-
omplete be
ause the only
hains are trivial ones su
has f?B ; true; true; : : :g. Fun
tion spa
es are not !-
omplete in general, sothey need restri
ting.The
ondition we use to restri
t fun
tion spa
es is !-
ontinuity (some-times
alled S
ott-
ontinuity). This is suÆ
ient to ensure that the domainsfor fun
tion spa
es are !-
omplete. In fa
t it is a stronger
ondition thanis ne
essary, but this does not matter be
ause all
omputable fun
tions are!-
ontinuous, and so pla
ing this
ondition does not eliminate any usefulvalues from fun
tion domains. !-
ontinuity requires that fun
tions preserveleast upper bounds; that is,f is !-
ontinuous () 8 !-
hains (xi) :GD0f(xi) = f(GD(xi))

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 51To re-iterate, assuming that D and D0 are !-
omplete, we
an show thatthe subset of all fun
tions D ! D0
omprising !-
ontinuous fun
tions is!-
omplete. Therefore if all fun
tion spa
es are limited to !-
ontinuousfun
tions then all domains are !-
omplete by indu
tion. Su
h domains are
alled
omplete partial orders (CPOs), or pointed CPOs when they havea least element. Our domains are pointed CPOs be
ause they are all !-
omplete, and the least elements of the domains B? , R? and [[�->�0℄℄ are ?B ,?R and x 7! ?[[�0℄℄ respe
tively. Finally, we will use the same notation for!-
ontinuous fun
tions as for fun
tions on sets; that is,[[� -> �℄℄ = [[�℄℄! [[�0℄℄Here the arrow on the right hand side denotes !-
ontinuous fun
tions be
ause[[�℄℄ and [[�0℄℄ are domains. In fa
t, this notation is
onsistent with the usualnotation using ! for arbitrary fun
tions between sets so long as we assumea dis
rete order (i.e., x v y () x = y) on sets be
ause with a dis
reteorder there are no non-trivial in�nite
hains and hen
e all fun
tions are !-
ontinuous.The properties that all domains are pointed CPOs and that all fun
tionsare !-
ontinuous are suÆ
ient to apply the least �xed point theorem in orderto obtain values for all re
ursive de�nitions. We will take this approa
h inChapter 7 when we dis
uss re
ursive fun
tions.4.3 Domains for behavioursIn this se
tion we dis
uss the domains for behaviour types. We
an writefun
tions that a

ept and yield behaviours, so to be
onsistent with ourinterpretation of fun
tion domains we must use pointed CPOs for behaviourdomains.

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 52Behaviours represent fun
tions from times to values, whi
h suggests thefollowing domain equation:[[Beh �℄℄ = T ! [[�℄℄:Here! means all fun
tions from the set of times, T = ft 2 R j t � 0g, to theunderlying set of the domain [[�℄℄. The least de�ned member of this domainis the one that maps all times to ?. We de�ne the information order onbehaviours to be a
at order, as for Bool and Real,a vBeh � b () a = t 7! ?[[�℄℄ _ a = bAt �rst sight this ordering appears too simplisti
; we are used to pointwiseorderings on domains for fun
tion spa
es. But behaviours are spe
ial rep-resentations of fun
tions|abstra
t values like real numbers|and all that isrequired is that they satisfy
ertain operations. Although behaviours repre-sent fun
tions from times to values it is not possible to evaluate behaviours atparti
ular times in CONTROL|this would break their abstra
t representa-tion. Furthermore, we have a di�erent interpretation of re
ursive behavioursto re
ursive fun
tions, so we do not need to apply the least �xed point theo-rem for re
ursive behaviour de�nitions and therefore they do not have to be!-
ontinuous fun
tions. For these reasons, this simple domain is suÆ
ientfor our semanti
s.Another
on
ern is that if some behaviours are not !-
ontinuous fun
-tions then they are not
omputable, be
ause all
omputable fun
tions are!-
ontinuous. This is irrelevant be
ause we are taking an idealised view ofbehaviours, assuming that we
an
ompute various operations over them.Finally, noti
e that the domain with the given order vBeh � is !-
omplete,whi
h is essential if we are going to write re
ursive fun
tions over behaviours.

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 534.4 Semanti
 fun
tionsWe have established the domains that values denoting the meaning of CON-TROL terms belong to. The next step is to de�ne the meaning of every termby providing mappings from terms to values. These mappings are
alledsemanti
 fun
tions and are usually de�ned
ompositionally; in other words,the value of a term is
onstru
ted from the value of its immediate synta
-ti
 subterms. This way, provided that we have a formula for ea
h synta
ti

onstru
t, we
an obtain the meaning of any term in the grammar.Semanti
 fun
tions must yield values in the appropriate domain, so aterm of type � must be mapped to a value in the domain [[�℄℄. Also, formulasgiven by semanti
 fun
tions must be type
orre
t. This is straightforwardin CONTROL be
ause the simple type system
onstru
ts the type of a termfrom the types of its subterms, and so long as ea
h semanti
 equation is type
orre
t a well typed value will result for any well typed term. Furthermore,there is at most one valid typing for any term in CONTROL, so we may omittype information from our semanti
 equations without ambiguity.We will write [[℄℄ for all semanti
 fun
tions. Semanti
 bra
es are usefulbe
ause they separate the obje
t-language from the meta-language, and weprefer to avoid
lutter and not name our semanti
 fun
tions. We will de�nea family of fun
tions, one for ea
h type, and overload [[℄℄ by using it for allthese fun
tions.Constants of type Bool and Real
orrespond to values in the obviousway: [[true℄℄ = true;(and similarly for false), [[0℄℄ = 0;

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 54(and similarly for all real numbers). The boolean
onstants
ould be usedin a
on
rete syntax for CONTROL, but the syntax of real numbers is morediÆ
ult to de�ne. However, we are using abstra
t syntax and so the a
tualrepresentation is unimportant. Therefore we
an use the usual de
imal no-tation for real number terms, so numbers in the obje
t-language and in themeta-language have the same representation.In addition to
onstants there are many built in fun
tions on Real andBool types. These fun
tions represent the usual mathemati
al fun
tionsextended to yield ? when applied to ?, or when they are unde�ned. Forexample, the built in fun
tion sin satis�es the following de�nition:[[sin E℄℄ = � ?R [[E℄℄ = ?Rsin[[E℄℄(the fun
tion sin on the right hand side is the usual mathemati
al one whosedomain is the real numbers). Some fun
tions are not de�ned for every valuein their domain, and they yield bottom at these values. For example, divisionis unde�ned when the se
ond argument is zero, thus,[[A / B℄℄ = 8<: ?R [[A℄℄ = ?R _ [[B℄℄ = ?R?R [[B℄℄ = 0[[A℄℄=[[B℄℄All built in fun
tions extend the usual ones in this way. To avoid
lutter-ing the notation, we will use the usual names for these extended fun
tions.Thus, when we write sin or = we are referring to the fun
tion de�ned by theright hand side of the above equations. Using this
onvention, here are theequations for logi
al-and and addition:[[and℄℄ = ^ 2 B? ! B? ! B?[[+℄℄ = + 2 R? ! R? ! R?Fun
tions su
h as these whi
h always yield ? when any argument is ? are
alled stri
t fun
tions.

CHAPTER 4. A LANGUAGE FOR BEHAVIOURS 55There is one ex
eption, the fun
tion if-then-else, whi
h is not stri
t inall its arguments. It is de�ned as follows:[[if C then D else E℄℄ = 8<: ? [[C℄℄ = ?B[[D℄℄ [[C℄℄ = true[[E℄℄ [[C℄℄ = falseThis fun
tion is stri
t in C, but not inD or E. This is the
ase in virtually allprogramming languages be
ause if C is true then it does not matter whetherE terminates, and similarly if C is false then it does not matter whether Dterminates.The semanti
 fun
tions for other
onstru
ts in the language are far more
ompli
ated than for
onstants. Chapters 5 to 7 introdu
e these fun
tions fordi�erent parts of the language. We will �nish this se
tion with one spe
ialbehaviour
onstru
t, time, whi
h is the behaviour that yields, for every time,the
urrent time: [[time℄℄ = t 7! t 2 T ! R? :Chapter summaryThe syntax of CONTROL
an separated into the non-behaviour fragment,whi
h is very
lose to PCF, and the behaviour operators, whi
h extend thisfragment. CONTROL uses a minor extension to the simple type system.A denotational semanti
s requires a domain
orresponding to ea
h type.For ground types and fun
tion types these are standard CPOs. The domainfor behaviours has a
at ordering be
ause behaviours are an abstra
t typeand therefore do not need a more
omplex stru
ture.

Chapter 5Behaviour expressions
Behaviour expressions represent fun
tions from times to values. We havealready seen one example, the behaviour time, whi
h is the identity fun
-tion on times. CONTROL has a uniform way of lifting values to behaviours,inspired by Fran, and this makes it possible to apply all existing fun
tionsto behaviours. Other fun
tions of time are
onstru
ted using the primitiveoperators for rea
tivity and integration. This
hapter introdu
es these op-erators and develops a semanti
s for them. Subsequent
hapters will thenexplore other aspe
ts of the language. Our exposition follows an in
remen-tal development of the language and its semanti
s in unison, whi
h helps tomotivate the eventual de�nitions. The �nal des
ription of the syntax andsemanti
s of the language appears in Chapter 8: Complete formal semanti
s.5.1 LiftingIn our
ontext, lifting means turning values into behaviours. For the
aseof
onstants,
 : �, this involves making the behaviour that yields
 at alltimes|that is, a representation of the
onstant fun
tion t 7! [[
℄℄. For the
ase of fun
tions, f : �->�, lifting involves making the fun
tion on behavioursthat applies f to behaviours at all times. In other words, lifting a fun
tion56

CHAPTER 5. BEHAVIOUR EXPRESSIONS 57is similar to mapping a fun
tion over a list of values, ex
ept that the `list' is
ontinuous instead of dis
rete be
ause there is a value for every time.The operator that lifts
onstants is lift0. It
an be used to lift realnumbers, for example,[[lift0 2℄℄ = t 7! 2 2 T ! R? :Real-valued behaviours
an be illustrated using graphs where points on thegraph represent the value of the behaviour at ea
h time (with time on thehorizontal axis). The above example gives the graph whi
h is a horizontalline through 2;
-

6Value
Time0 1 2 3123

Note that the set-theoreti
 fun
tion t 7! 2 is an element of the domainT ! R? as required.Values of any type
an be lifted with lift0|it is a polymorphi
 operator.The semanti
s of lift0 is: lift0 : 8�:� ! Beh �[[lift0 x℄℄ = t 7! [[x℄℄: (5.1)CONTROL does not have polymorphi
 data types, however. In other words,the type system does not permit values that have polymorphi
 types, whi
h

CHAPTER 5. BEHAVIOUR EXPRESSIONS 58would require a more sophisti
ated type system. Polymorphi
 operators thatare built in, su
h as lift0, are not diÆ
ult to in
orporate be
ause they aredealt with expli
itly by the type rule for the operator.Later on when we give the full typing rules we will see that the type systemrestri
ts arguments to lift0 to non-behaviour types. Lifting behaviours isnot very useful. Consider lift0 b for some behaviour b. The meaning of abehaviour is determined by the values it yields for all times, but in this
asethe values are behaviours and so they also yield values at all times. However,the value
ould have been de�ned as the value of the overall behaviour dire
tlyrather than indire
tly via another behaviour. In short, behaviours providetemporal abstra
tion, and behaviours of behaviours do not add any usefulexpressiveness.Returning to Equation 5.1 we have that x must be a non-behaviour term.This means that the semanti
 fun
tion [[℄℄ on the right hand side of Equa-tion 5.1 maps non-behaviour terms to values. At this stage the only non-behaviour terms we
an
onstru
t are
onstants, so this semanti
 fun
tionis the trivial mapping given in the previous
hapter (i.e., the one that mapsrepresentations of
onstants and built-in fun
tions to their mathemati
al
ounterparts). Later on we will introdu
e fa
ilities for writing new fun
-tions in CONTROL, and then we will need to extend this semanti
 fun
tiona

ordingly.Given a fun
tion, we may want to apply it to a behaviour by mappingit over the behaviour at all times. For example, say we want to
onstru
tthe behaviour whose graph is a sine wave; one way to do this is to apply thefun
tion sin to the behaviour time at all times. This is exa
tly what the

CHAPTER 5. BEHAVIOUR EXPRESSIONS 59operator lift1 enables us to do:[[lift1 sin time℄℄ = t 7! sin([[time℄℄t)= t 7! sin((t 7! t)t)= t 7! sin(t):In general, lift1
an be used to map a fun
tion f1 : �->� over a behaviourx : Beh � to yield a new behaviour lift1 f1 x : Beh �. This new behaviourgives, at any time t, [[f1℄℄ applied to the value of the behaviour x at time t;that is, lift1 : (� -> �) -> Beh � -> Beh �[[lift1 f1 x℄℄ = t 7! [[f1℄℄([[x℄℄t) (5.2)= [[f1℄℄ Æ [[x℄℄:We should
he
k that this equation is type
orre
t. Re
all that a value oftype Beh � belongs to the domain T ! [[�℄℄, and so[[x℄℄t 2 [[�℄℄:This is a valid argument for [[f1℄℄ be
ause[[f1℄℄ 2 [[�℄℄! [[�℄℄and the thus the values on both sides of Equation 5.2 belong to the domainT ! [[�℄℄.Fun
tions of any arity
an be lifted in a similar way to unary fun
tions.For fun
tions with two arguments, f2 : �1->�2->�, we require a primitiveoperator lift2, with the following semanti
s:lift2 : (�1 -> �2 -> �) -> Beh �1 -> Beh �2 -> Beh �[[lift2 f2 x1 x2℄℄ = t 7! [[f2℄℄([[x1℄℄t)([[x2℄℄t):

CHAPTER 5. BEHAVIOUR EXPRESSIONS 60So, for example, we obtain pointwise addition of real-valued behaviours byapplying lift2 to + : Real->Real->Real, as follows:[[lift2 + x y℄℄ = t 7! ([[x℄℄t) + ([[y℄℄t):The (+) on the right hand side is the one des
ribed towards the end ofSe
tion 4.2.In general, a fun
tion of arity n,fn : �1 -> : : : -> �n -> �;
an be lifted to obtain the behaviour level version,lifthni fn : Beh �1 -> : : : -> Beh �n -> Beh �;using the lifting operator lifthni, with the following semanti
s:[[lifthni fn x1 : : : xn℄℄ = t 7! [[fn℄℄([[x1℄℄t) : : : ([[xn℄℄t):There is a simpli�
ation whi
h allows all these lifting operators to beexpressed in terms of lift0 and a \lifted appli
ation" operator, $*. Toshow how this works, we will express lift1 in terms of lift0 and $*.Firstly, re
all the de�nition of lift1,[[lift1 f1 x℄℄ = t 7! [[f1℄℄([[x℄℄t) (5.3)Now, be
ause lift0 is polymorphi
, we
an apply it to f1 : �->� to obtainthe
onstant valued behaviour that yields [[f1℄℄ at all times,[[lift0 f1℄℄ = t 7! [[f1℄℄:From this it follows that [[lift0 f1℄℄t = [[f1℄℄: (5.4)

CHAPTER 5. BEHAVIOUR EXPRESSIONS 61Next we de�ne, as a primitive, a lifted fun
tion appli
ation operator, $*[[fb $* x℄℄ = t 7! ([[fb℄℄t)([[x℄℄t) (5.5)This takes on the left, a behaviour that yields fun
tions, and on the right,a behaviour that yields arguments (of the appropriate type) and applies thefun
tions to the arguments at ea
h time. To de�ne lift1 in terms of lift0and $* we reason as follows:[[lift1 f1 x℄℄= hby (5.3)it 7! [[f1℄℄([[x℄℄t)= hby (5.4)it 7! ([[lift0 f1℄℄t)([[x℄℄t)= hby (5.5), with fb = lift0 f1i[[lift0 f1 $* x℄℄:So lift1
an be de�ned in terms of lift0 and $*, and in general,lifthni fn x1 : : : xn = lifthn� 1i fn x1 : : : xn�1 $* xnso any lifting operator
an be de�ned in terms of lift0 and $*. This is usefulin pra
ti
e be
ause it redu
es the number of primitives in our language whi
hin turn redu
es the number of semanti
 equations.5.2 Rea
tivityIn CONTROL behaviours may rea
t or
hange
ourse in response to events;following Fran, we
all this rea
tivity. In our
ontext, event
onditions arede�ned using boolean behaviours, and there is no fa
ility for external events.

CHAPTER 5. BEHAVIOUR EXPRESSIONS 62A pra
ti
al language based on CONTROL may provide fa
ilities for inter-fa
ing with hardware, in a similar way to Fran's treatment of mouse andkeyboard events. Unlike Fran, the event
ondition, given by a boolean be-haviour, des
ribes the event
ompletely, and there is no value (the `after'behaviour) pa
kaged up with the
ondition.A rea
tive behaviour is de�ned in terms of three behaviours: the �rstbehaviour is used initially; the se
ond is a boolean valued behaviour, spe
-ifying the event
ondition; the third is a new behaviour that is swit
hed toas soon as the
ondition be
omes true. For example, we
ould use a rea
tivebehaviour to des
ribe the output of a thermostati
ally
ontrolled heater; itemits heat until the temperature rea
hes the desired level, at whi
h point itswit
hes to lift0 0, that is, o�. Without a primitive operation for rea
tiv-ity we would not be able to express this behaviour be
ause there is no wayof evaluating behaviours at parti
ular times within the language, and so we
ould not determine when the temperature rea
hes the desired level.The event
ondition for this example requires a lifted greater than orequal to fun
tion. The fun
tion>= : Real -> Real -> Boolhas two arguments, so it
an be lifted using lift2 to obtain>=* � lift2 (>=) : Beh Real -> Beh Real -> Beh Bool:Then the event
ondition that the behaviour temp : Beh Real has rea
hedthe level t1 : Real is given bytemp >=* lift0 t1:Here we have used >=* as an in�x operator for readability.

CHAPTER 5. BEHAVIOUR EXPRESSIONS 63In general a rea
tive behaviour has three parts, whi
h are as follows:B is the before behaviour: use this behaviour initiallyC is the
ondition behaviour: test this boolean behaviour to deter-mine when it be
omes trueD is the after behaviour: when C be
omes true, swit
h to thisbehaviour, and use it from now on.A syntax with a natural reading for this is,B until C then D: (5.6)The behaviours B and D must have the same type for the overall expressionto make sense.Here are a
ouple of examples to
larify the intended semanti
s. Thefollowing behaviour yields the value 1 until the time is 1 and then swit
hesto 2: (lift0 1) until (time >=* lift0 1) then (lift0 2):It yields the value 2 for all times at or after 1. To emphasise that rea
tive be-haviours swit
h permanently when the
ondition be
omes true, the followingbehaviour is semanti
ally identi
al to the previous one:(lift0 1) until (time ==* lift0 1) then (lift0 2):(==* is the lifted equality fun
tion.) The
ondition is only true for an instantwhen the time is 1, and is false for all times after 1, but the behaviour
ontinues to yield 2 for all times after 1 be
ause on
e it has rea
ted it swit
hesto the after-behaviour permanently.One alternative semanti
s is: yield B when C is false and D when C istrue; that is, swit
h between B and D every time the value of C
hanges(this is equivalent to lift3 if for a
onditional fun
tion if whi
h takesthree arguments). Pra
ti
ally this is not as useful as the operator des
ribed

CHAPTER 5. BEHAVIOUR EXPRESSIONS 64above be
ause in most systems the o

urren
e of an event marks a
hange inthe state of the system, and su
h
hanges are permanent|the event
annot\uno

ur" regardless of the value of the
ondition that des
ribed the event.In other words, on
e an event has o

urred the system responds in someway and then
ontinues in a new state. Another important fa
tor in favourof permanent swit
hing is that it allows us to delete the behaviour B afterthe event has o

urred, rather than keep it running in just
ase we need toswit
h ba
k to it later. In fun
tional programming terminology, the garbage
olle
tor
an re
laim B after the event has o

urred.We will now formalise the semanti
s of until-then. To simplify thedis
ussion we will assume for now that [[C℄℄ does not map any times to bottom.Then it is a predi
ate, and therefore we
an de�ne the set of times when itis true, T = ft 2 T j [[C℄℄tg:A general until-then expression of the form (5.6) should use B for any timet that is stri
tly before all the times in T , and otherwise it should use D. Inother words, if t is not in the upperset of T , then use B, and otherwise useD. Note that T does not ne
essarily have a minimum element, so rea
tivebehaviours do not always have an event time when they should swit
h fromB to D. This point is quite subtle and is dis
ussed in depth in Se
tion 5.7.The de�nition of uppersets is as follows:Definition The upperset of S � R is given by" S = fs 2 R j 9s0 2 S : s0 � s:g 2A preliminary semanti
s for until-then, whi
h ignores the possibility that

CHAPTER 5. BEHAVIOUR EXPRESSIONS 65[[C℄℄ may yield ?B for some times, is as follows:[[B until C then D℄℄ = t 7! � [[B℄℄t t =2 " T[[D℄℄twhere T = ft 2 T j [[C℄℄tg:In general the situation is more
ompli
ated be
ause for any time t, thevalue of [[C℄℄t may be true, false, or ?B . This means that [[C℄℄ is not simplya predi
ate as we assumed it is in the set
omprehension for T above.In order to determine whether to use B or D it is not ne
essary to knowthe value of [[C℄℄ at all times|if it is only unde�ned (i.e., yields ?B) at timesafter the rea
tive behaviour has swit
hed then it makes no di�eren
e. Morepre
isely, if the
ondition starts as false, be
omes true later and subsequentlybe
omes unde�ned, then we know exa
tly when to swit
h from B to D, de-spite the unde�ned points. This is not true if the
ondition is unde�ned beforeit is true, be
ause then we do not know when we should swit
h. Therefore,in su
h
ases the rea
tive behaviour is unde�ned from the time when the
ondition be
omes unde�ned (it is B before this time).In short, on
e the
ondition has yielded bottom it is no longer valid fordetermining when the event o

urs, and on
e it has yielded true the evento

urren
e is known and subsequent values of the
ondition are irrelevant.Thus, given a time t we must
onsider three
ases: if the
ondition has onlyever been false, then use B; if the
ondition has, before or at time t, beentrue, and there are no bottoms before this true, then use D; otherwise theremust be a bottom before a true and so the result is bottom. This suggeststhe following formal de�nition:[[B until C then D℄℄ = t 7! 8<: [[B℄℄t t =2 " T [" Bad[[D℄℄t t 2 " T ^ " T ! " Bad? (5.7)

CHAPTER 5. BEHAVIOUR EXPRESSIONS 66where T = ft 2 T j [[C℄℄t = truegBad = ft 2 T j [[C℄℄t = ?B g:5.3 Examples of rea
tivityFigure 5.1 shows the values of four until-then expressions using the seman-ti
s given in Equation 5.7. Noti
e that we have used numbers, booleans,and the fun
tions >= and
os, as if they were the lifted versions. We
allthis impli
it lifting, and it is justi�ed be
ause it is always
lear from
ontextwhether a
onstant refers to the usual value or the behaviour version. Forexample, if 1 is the �rst argument of an until-then expression, then it mustmean lift0 1 be
ause until-then takes a behaviour as its �rst argument.Impli
it lifting is not part of the language, but we use it in this dissertationto avoid an ex
essive proliferation of the lifting operators. In pra
ti
e it
anbe implemented using overloading (Fran makes use of Haskell's overloadingfa
ilities to do this).The �rst example is a straightforward appli
ation of the semanti
s so far.It is obtained by using the de�nitions for until-then, lift0, lift2 andtime. The se
ond example shows that if the
ondition is always false thenthe until-then expression is equivalent to B. In other words, it proves theaxiom B until false then D = BWe dis
uss other axioms involving behaviour expressions in Se
tion 5.10. Thethird example is similar to the se
ond ex
ept that the
ondition is always true,and so the until-then expression is equivalent to D. The fourth example isagain a straightforward appli
ation of the de�nitions.

CHAPTER 5. BEHAVIOUR EXPRESSIONS 67
[[1 until (time >= 1) then 2℄℄= t 7! � 1 t =2 " ft 2 T j t � 1g2= t 7! � 1 t < 12[[B until false then D℄℄= t 7! � [[B℄℄t t =2 " ft 2 T j falseg(= ;)[[D℄℄t= t 7! [[B℄℄t= [[B℄℄[[B until true then D℄℄= t 7! � [[B℄℄t t =2 " ft 2 T j trueg(= T)[[D℄℄t= t 7! [[D℄℄t= [[D℄℄[[B until (time >=
os time) then D℄℄= t 7! � [[B℄℄t t =2 " ft 2 T j t �
os(t)g[[D℄℄tFigure 5.1: Examples of applying the semanti
s of until-then

CHAPTER 5. BEHAVIOUR EXPRESSIONS 685.4 Impli
it verses expli
it valuesNoti
e that we have not simpli�ed the �nal example in Figure 5.1 as we havedone for the other examples. To do so would require solving t =
os(t) forthe smallest t 2 T; that is, suppose t1 is su
h a solution, then the
onditionsimpli�es to t =2 " ft 2 T j t � t1g) = t < t1:However, we
annot express this solution expli
itly, that is, as a formula,be
ause no formula exists. This does not mean that a solution does notexist|we
an prove that it does|but it means that the only way we
anexpress this value is as the solution to an equation.This illustrates a pe
uliarity of our semanti
s: the semanti
s goes as far asproviding impli
it formulas (i.e., equations) for the mathemati
al denotationsof programs, but sometimes some mathemati
al analysis is ne
essary in orderto obtain expli
it values. Furthermore, in
ases su
h as the example above,it is not possible to express the value expli
itly.5.5 Nested until-then expressionsSo far we have introdu
ed the following four operators for
onstru
ting be-haviour expressions: time, lift0, $*, until-then.The semanti
s of these operators has been de�ned
ompositionally, that is,in terms of the semanti
s of their arguments. Of
ourse, the behaviours inan until-then expression
ould themselves be until-then expressions, andthis raises some new questions regarding the semanti
s of rea
tive behaviours.We will explore these in this se
tion.

CHAPTER 5. BEHAVIOUR EXPRESSIONS 69We are
on
erned with the interpretation of rea
tive behaviours of theform B until C then Dwhere any/all of B, C, and D are themselves rea
tive behaviours. Let us
onsider the
ase when D is rea
tive to begin with. As an example,
onsiderthe nested expression,1 until (time >= 1.5) then(2 until (time >= 2.5) then 3)| {z }DThis behaviour should start as the
onstant behaviour t 7! 1, and then swit
hto D at time 1:5. Then it should be the
onstant behaviour t 7! 2 until time2:5 when it should swit
h to 3; the graph of this behaviour is
-

6Value
Time0 1 2 3123 br br

Fortunately, this is exa
tly the interpretation that our semanti
s gives, as
an be veri�ed by routine
al
ulation.Now
onsider a slight variation on the previous example whi
h is the sameex
ept for the se
ond
ondition, labelled C2,1 until C1z }| {(time >= 1.5) then(2 until C2z }| {(time <= 0.5) then D2z}|{3)| {z }D1 :

CHAPTER 5. BEHAVIOUR EXPRESSIONS 70Intuitively we expe
t this behaviour to start as t 7! 1 and then swit
h to D1at time 1:5 as before. Then it should be t 7! 2 forever be
ause the
onditionC2 will never be
ome true, sin
e we have already passed time 0:5;
-

6Value
Time0 1 2 3123 br

But this is not what our semanti
s gives, be
ause it evaluates
onditions overall times. The set of times when the se
ond
ondition C2 is true is given byT2 = ft 2 T j [[C2℄℄tg= ft 2 T j t � 0:5g= [0; 0:5℄;and so when we swit
h to D1 (at time 1.5) we will immediately swit
h to D2(i.e., the value 3) be
ause all times are in " T2 = [0;1) = T; this results inthe behaviour with graph
-

6Value
Time0 1 2 3123 br

CHAPTER 5. BEHAVIOUR EXPRESSIONS 71This is not what we intended. We want behaviours to be memoryless, thatis, have an intrinsi
 meaning not dependent on what has gone before. Froma pra
ti
al perspe
tive this property is essential; if it were absent it would bene
essary to evaluate
ondition behaviours for all times in the past, whi
hwould be very ineÆ
ient. More importantly, it is not useful for
onditions innested rea
tive behaviours to apply for times in the past.In summary, we should not evaluate
onditions like C2 sin
e time began,but rather from the time when their en
losing behaviour (in this
ase, D1)was swit
hed to. In this example, we should test the
ondition C2 from time1:5 onwards. This is simple to
apture semanti
ally: the behaviour D1 isused for all times after C1 be
ame true, that is, all times in the set," T1where T1 = ft 2 T j [[C1℄℄tgSo we should only evaluate the
ondition C2 at times in this set, whi
h
anbe expressed as, T2 = ft 2 " T1 j [[C2℄℄tgThus all
onditions should be evaluated with respe
t to some set of timeswhi
h is the set of times when the behaviour is \alive"|all the times afterthe (en
losing) behaviour was swit
hed to. This is
ontextual informationne
essary to make sense of
onditions in rea
tive behaviours.This
ontextual information must be passed through by our semanti
fun
tion so that it is available to the
omponents of
ompound expressions.Therefore [[℄℄ needs an extra argument that gives the set of times when thebehaviour is alive. (Re
all that these sets do not always have a least time, sowe
annot pass a single time denoting when the behaviour is alive from|see

CHAPTER 5. BEHAVIOUR EXPRESSIONS 72[[time℄℄(T0) = t 7! t[[lift0 x℄℄(T0) = t 7! [[x℄℄[[fb $* x℄℄(T0) = t 7! ([[fb℄℄(T0) t) ([[x℄℄(T0) t)[[B until C then D℄℄(T0)= t 7! 8<: [[B℄℄(T0)t t =2 " T [" Bad[[D℄℄(" T)t t 2 " T ^ " T ! " Bad?where T = ft 2 T0 j [[C℄℄(T0)t = truegBad = ft 2 T0 j [[C℄℄(T0)t = ?B gFigure 5.2: The semanti
 fun
tion [[℄℄Se
tion 5.7.) The new de�nition of [[℄℄ whi
h in
ludes this is given in Fig-ure 5.2. Note that for $* the set T0 is just passed through to its
omponents,but for until-then the behaviours B and C are passed T0, while the afterbehaviour D is passed " T , whi
h is the times when it is alive.We have
overed the
ase when D is rea
tive, so now we need to
onsiderthe
ase when B or C are rea
tive. In fa
t, the new semanti
 fun
tion is
orre
t for these
ases be
ause the behaviours B and C are alive as soon asthe overall until-then statement is, that is, for times in the set T0 in thesemanti
 equation.5.6 IntegralsSometimes it is easier to des
ribe the rate of
hange of a quantity than thequantity itself. It is essentially this observation that led Newton to develop

CHAPTER 5. BEHAVIOUR EXPRESSIONS 73the di�erential
al
ulus. For example, it is easy to des
ribe the a

elerations(the rate of rate of
hange) of three bodies under gravitational attra
tion|ea
h a

eleration is proportional to the gravitational for
es a
ting on thebody|but it is very diÆ
ult to give a formula for their positions (in generalit is impossible). To allow quantities to be des
ribed by their rate of
hange,CONTROL provides an operator that yields the integral of any given be-haviour.The integral of a top-level behaviour, f , is represented by integral f ,and results in the behaviour that, at time t, yields the integral of [[f ℄℄ from 0to t (i.e., the area under the graph of [[f ℄℄ from 0 to t). If integral is usedin the after part of some rea
tive behaviour, then the integrand is integratedfrom the in�mum of the times when it is alive, that is from inf(T0). Thisappears to be at odds with until-then whi
h distinguishes between eventssu
h as time >= 1 and time > 1, as explained in Se
tion 5.2. Taking thein�mum of the set of times when a behaviour is alive yields the same forboth of these behaviours, so integral does not make the distin
tion thatuntil-then does. However, the reason we de�ne integral this way is thatin
luding or ex
luding the endpoint of the interval integrated over does not
hange its value|a line of zero width has no area. So taking the in�mum isthe simplest way to de�ne integral using the standard notation for de�niteintegrals.The formal de�nition is as follows:[[integral f ℄℄(T0) = t 7! Z tinf(T0)([[f ℄℄(T0) s):dsIntegration only makes sense for real-valued behaviours, so f : Beh Real.The integrand [[f ℄℄ may have unde�ned points, that is, map
ertain timesto ?R. Su
h points
ould make the integral unde�ned; for example, if theunde�ned points are singularities (unde�ned values resulting from a division

CHAPTER 5. BEHAVIOUR EXPRESSIONS 74by zero). If the integral is unde�ned, the above integral expression shouldyield ?R.We have not said how we should evaluate the integral expression in theabove de�nition. This must be done using mathemati
al analysis, and neednot
on
ern us. Our semanti
s gives an impli
it des
ription of the meaningof any given behaviour in terms of equations and integrals. If we requirean expli
it formula for the fun
tion of time that the behaviour represents,then it is obviously ne
essary to do some mathemati
al analysis. Our theorya

ounts for the possibility that there may not be a unique solution to theequations by allowing the result to be bottom. In pra
ti
e, however, it issometimes not possible to solve the equations even when solutions exist, andthis limits our ability to reason about su
h programs. This is a
onsequen
eof the limitations of
urrent mathemati
al knowledge, however, and is notdue to our approa
h to giving a semanti
s to CONTROL.A related issue is the meaning of integrals of rea
tive behaviours. Rea
tivebehaviours are parti
ular to CONTROL, and so we must de�ne what itmeans to integrate su
h behaviours. This is straightforward be
ause oursemanti
s interprets behaviours as fun
tions of time, and rea
tive behavioursare just pie
ewise fun
tions of time. Integrating pie
ewise fun
tions is wellunderstood; integrate the pie
es and add up the results. In summary, thede�nition of integral is well de�ned for all real valued behaviours.5.7 Avenue on event timesThe usual notion of an event is some o

urren
e whi
h happens at a parti
ulartime; for example, two obje
ts
olliding or a temperature rea
hing a givenlevel. This is the view taken by Ar
ti
, Fran and most of the dis
rete timelanguages we have seen. In languages using
ontinuous time where it is

CHAPTER 5. BEHAVIOUR EXPRESSIONS 75possible to spe
ify events by boolean behaviours, this view must assign anevent time to events su
h as t > 1 whi
h have no earliest time when they aretrue. An event
ondition using greater than may
orrespond to the event thatan obje
t has passed a given position, or that a temperature has ex
eededa given level. The distin
tion is quite subtle; using > instead of � in a
ondition behaviour only makes a di�eren
e at one value, and so it makeslittle di�eren
e in languages using approximation te
hniques. But our theoryis exa
t, and so the di�eren
e is vitally important. In this se
tion we will
onsider the di�erent approa
hes in Ar
ti
, Fran and CONTROL with regardto this issue.The simplest example of a
ondition that has no earliest time when itbe
omes true is the behaviour time > 1:This represents the fun
tion
(t) = t > 1whi
h is true for times in the setT = ft 2 T j
(t)g = (1;1):This set has no minimum element and therefore there is no earliest time whenthe
ondition be
omes true. If all events must have an o

urren
e time, thenwe must have some way of
al
ulating the event time from the set T . Noti
ethat the semanti
s we gave to until-then in CONTROL does not have toaddress this issue be
ause it swit
hes to the new behaviour for all times inthe upperset of T , and uppersets exist for any set. Thus the behaviourB until time > 1 then D

CHAPTER 5. BEHAVIOUR EXPRESSIONS 76will a
t like B for times in the set [0; 1℄ and like D for times in the set (1;1).Ar
ti
 simply ignores the problem. The last paragraph in Se
tion 8of [Dan84℄ states that... a boolean fun
tion is evaluated to �nd the �rst moment[after it
ame alive℄ at whi
h the fun
tion is true.This semanti
s
annot be applied to
onditions like t > 1 be
ause there is no�rst moment when it is true.Fran re
ognises the problem, and avoids it by taking the event time tobe the in�mum of times when the
ondition is true. In�mums of sets of realnumbers always exist (see [Apo74℄) so there is always an event time if the
ondition is ever true. Fran's time domain is extended with 1 so that if theevent
ondition never be
omes true the event time is1; this simply requiresthe in�mum of the empty set to be 1, whi
h
auses no diÆ
ulty.Although Fran assigns an event time to any possible
ondition behaviour,it is not as re�ned as CONTROL be
ause events like t � 1 and t > 1 aresemanti
ally the same in Fran|they both have an event time of 1. A rea
tivebehaviour in Fran swit
hes stri
tly after its event time, so for both
onditionst � 1 and t > 1 the old behaviour is used at time 1 and the new one stri
tlyafter time 1. If Fran swit
hed to the new behaviour at time 1, it would seemto early for the event t > 1 be
ause it would swit
h before the event
onditionhas ever been true. On the other hand, swit
hing stri
tly after time 1, asFran does, seems to late for the event t � 1 whi
h is true at time 1. As weshall see in the next se
tion, the only rea
tivity
onstru
t that yields the oldbehaviour for times when the event
ondition has never been true and thenew behaviour otherwise is the one we have de�ned for CONTROL.We suspe
t that the reason rea
tive behaviours in Fran swit
h stri
tlyafter the event time is that this is what the implementation does. In the

CHAPTER 5. BEHAVIOUR EXPRESSIONS 77implementation this avoids re
ursive rea
tive behaviours looping when sam-pled, and it may have been hoped that this method whi
h works in dis
retetime also
arries over to
ontinuous time. We have found this not to be the
ase, as we shall see in Se
tion 6.11.5.8 Avenue on alternative semanti
s for re-a
tivityIn this se
tion we will
onsider alternative semanti
s that
ould be given tountil-then, and whether any semanti
s other than CONTROL's or Fran'sis reasonable. Firstly we must de�ne what we regard as a reasonable se-manti
s for until-then. Given that our language is idealised, we expe
trea
tive behaviours to respond to events without any delay; otherwise thelanguage would be approximate, and our approa
h is to avoid the
omplexityof approximation by �rst
onsidering the exa
t language.We will
onsider the two event
onditions time >= 1 and time > 1,whi
h represent the values t � 1 and t > 1, and the semanti
s of rea
-tive behaviours using these event
onditions. All
onditions are equivalentto one of these two in the sense that they either be
ome true at a parti
ulartime, or for times stri
tly after some time.Firstly, a rea
tive behaviour with the
ondition t � 1 only has two
hoi
es;either swit
h at time 1 or stri
tly after. Swit
hing any �nite length of timebefore or after time 1 would
learly be an approximate response. These two
hoi
es only di�er at time 1|for all other times they are the same.Similarly, a rea
tive behaviour with the
ondition t > 1
ould swit
h ei-ther at time 1 or stri
tly after. So there are two
hoi
es for both kinds ofevent, giving four possible semanti
s for until-then that are not approxi-mate. It would be absurd to swit
h at time 1 for the
ondition t > 1 and

CHAPTER 5. BEHAVIOUR EXPRESSIONS 78t � 1 t > 1CONTROL at 1 after 1Fran after 1 after 1Early at 1 at 1Figure 5.3: Di�erent semanti
s of until-thenstri
tly after time 1 for the
ondition t � 1, however, so there are threepossibilities that are reasonable. These are shown in Figure 5.3. The �rst
orresponds to the semanti
s of until-then in CONTROL, the se
ond tothe semanti
s in Fran and the third we have
alled Early be
ause it swit
hesat time 1 in both
ases.In summary, there are three di�erent semanti
s for until-then that arereasonable in the sense that they do not swit
h a �nite duration before orafter the �rst time or times when the event
ondition be
omes true. CON-TROL's semanti
s gives the before-behaviour (in a rea
tive behaviour) fortimes before any time when the
ondition is true and the after-behaviourotherwise. The other semanti
s
an be de�ned by �nding event times bytaking the in�mum of the times when the
ondition is true, and then eitherswit
hing stri
tly after that time (Fran) or at that time (Early). At thisstage it seems that CONTROL's semanti
s is the most natural, and it ismore re�ned be
ause it distinguishes between events like t � 1 and t > 1whi
h the other semanti
s do not, but the other semanti
s are still reasonablepossibilities. Later on in Se
tion 6.11 we dis
uss how the
hoi
e a�e
ts thesemanti
s of re
ursive rea
tive de�nitions.

CHAPTER 5. BEHAVIOUR EXPRESSIONS 795.9 Avenue on integrabilityAny real valued behaviour
an be used as an argument to the integraloperator yielding the integral if the behaviour is integrable and bottom if itis not. In this se
tion we
onsider
riteria for
lassifying behaviours a

ordingto integrability.Firstly we need a pre
ise de�nition of integration. The standard de�nitionuses Riemann sums whi
h are approximations of the area under the
urveobtained by dividing the interval into strips and making a re
tangle theheight of the
urve at some point in ea
h strip. The sum of the area ofthese re
tangles is the Riemann sum, and if the limit as the width of thestrips tends to zero
onverges, then this is the value of the integral. If itdoes not then the fun
tion is not integrable over that interval. (The limithas to
onverge regardless of what point in ea
h strip is
hosen for the heightof the re
tangle.) The formal de�nition of Riemann-integrability and otherte
hni
al terms in this se
tion
an be found in [Apo74℄.All
ontinuous fun
tions are Riemann-integrable (from now on, inte-grable). We use
ontinuous in at least three di�erent ways in this dissertation,but when we are referring to real valued fun
tions we mean
ontinuous inthe sense of real analysis and not domain theory.Many behaviours do not represent
ontinuous fun
tions, for example:1. lift1 floor time2. 1 / (time - 1)3. 1 until (time >= 1) then 2The �rst behaviour lifts the floor fun
tion whi
h is dis
ontinuous. These
ond has a dis
ontinuity be
ause of division by zero at time 1. The third

CHAPTER 5. BEHAVIOUR EXPRESSIONS 80expli
itly de�nes a step fun
tion using a rea
tive behaviour. The �rst andthird examples are integrable, and more generally all bounded fun
tions withdis
ontinuities at dis
rete points are integrable (see [TF92℄). A strongerresult is the following:Theorem 5.1 (Lebegue's
riteria for Riemann-integrability) If fis bounded on [a; b℄ and the set of dis
ontinuities S on [a; b℄ has zero measure,then f is Riemann-integrable on [a; b℄.Sets with zero measure in
lude all
ountable sets as well as some pe
uliarun
ountable sets (su
h as the Cantor set, [Apo74, pp. 180℄). A rea
tive be-haviour may rea
t many times, but event o

urren
es are in sequen
e and sothe set of dis
ontinuities in any rea
tive behaviour must be
ountable. There-fore it follows that any bounded rea
tive behaviour is integrable (assumingthat no built in fun
tions that are not integrable are lifted).5.10 Avenue on axiomsThere are a few simple axioms whi
h hold for behaviour expressions. Usingour semanti
s it is straightforward to verify these axioms. In Se
tion 5.3 wesaw the following equivalen
es:B until false then D = BB until true then D = DThe following property of lifting holds:(lift0 f) $* (lift0 a) = lift0 (f a)Assuming a fun
tion integrate whi
h
al
ulates the symboli
 integral ofbehaviours, we have integral b = integrate b

CHAPTER 5. BEHAVIOUR EXPRESSIONS 81Often the symboli
 integral does not exist or is diÆ
ult to
ompute, so thisequivalen
e only applies to a relatively small subset of behaviours.There are very few useful axioms in terms of the basi
 operators. Inparti
ular, until-then is not asso
iative.Chapter summaryThere are four operators for
onstru
ting behaviour expressions: lift0, $*,until-then and integral. The lifting operators provide a way of apply-ing existing fun
tions to behaviours. The until-then operator is used forexpressing rea
tivity. It is quite subtle for two reasons:1. Conditions spe
ifying events do not always have a �rst time when theyo

ur.2. Nested until-then expressions must test
onditions from when theiren
losing behaviour
ame alive, and not for all times.These
onsiderations lead to de�ning event o

urren
es in terms of uppersetsof times when the
ondition is true, and de�ning a semanti
 fun
tion thatpasses these uppersets on to after-behaviours.The integral operator is relatively straightforward be
ause rea
tive be-haviours
an be integrated in a pie
ewise fashion. However, we
an notalways obtain expli
it formulas for the meaning of integral expressions asthe existing te
hniques for analyti
al integration do not
over all
ases.

Chapter 6Behaviour de�nitions
So far we have seen how to write behaviour expressions whi
h are used torepresent fun
tions of time. In this
hapter, we will introdu
e behaviour def-initions whi
h let us name behaviours by variables and then refer to thosebehaviours elsewhere by their names. This
an be useful when a behaviourexpression appears more than on
e in a program, be
ause it avoids dupli
at-ing the expression. More importantly, if behaviour de�nitions are allowed tobe re
ursive then they in
rease the expressiveness of the language
onsider-ably. In this
hapter we dis
uss simple re
ursive de�nitions and later on inChapter 9 we give realisti
 examples of programs that
annot be written inCONTROL without using them.As we shall see, the standard approa
h for giving a semanti
s to re
ursivede�nitions does not work for behaviours. This leads us to develop a newapproa
h, whi
h is the main subje
t of this
hapter.

82

CHAPTER 6. BEHAVIOUR DEFINITIONS 836.1 Re
ursive behaviour de�nitionsA
ommon syntax for de�ning multiple, mutually re
ursive fun
tions is,letre
 a1 = E1...an = Enin Fwhere ea
h variable ai may appear in any Ej, and, of
ourse, in the body F .It is mu
h simpler to des
ribe the semanti
s of a single re
ursive de�nition,and in fa
t it is suÆ
ient to do so be
ause there is a standard method of trans-lating multiple re
ursive de�nitions into a single nested re
ursive de�nition(see Se
tion 7.7).We will
all our
onstru
t for re
ursive de�nitions letbeh to avoid
on-fusion with letre
, and to emphasise that it
an only be used to de�nebehaviours. The syntax is, letbeh a = E in Fwhere a is a variable, and E and F are behaviours.Many re
ursive behaviour de�nitions, su
h asletbeh a = a in a;are not meaningful, but are two situations where they are parti
ularly useful:1. De�ning a behaviour that
hanges when it rea
hes a
ertain value.This requires a rea
tive behaviour where the
ondition refers to thebehaviour being de�ned.

CHAPTER 6. BEHAVIOUR DEFINITIONS 842. De�ning a behaviour in terms of its rate of
hange using integral,where the rate of
hange refers to the behaviour being de�ned. This
orresponds to integral equations in mathemati
s, whi
h are essentiallyordinary di�erential equations expressed di�erently.Re
ursive rea
tive de�nitions turn out to be quite diÆ
ult to give a semanti
sto be
ause the standard approa
h does not work. In the following se
tionswe will explain the problem with applying the standard approa
h, and themethod by whi
h we give a semanti
s to these de�nitions. Finally, we willextend the method to in
lude re
ursive integral de�nitions.6.2 Re
ursive rea
tive de�nitionsTo des
ribe a behaviour that
hanges when it rea
hes some value, a re
ursivede�nition of the following form is required:letbeh a = : : : B until C[a℄ then D : : : in F : (6.1)That is, part of the expression de�ning a is rea
tive and
hanges when area
hes some value, as spe
i�ed by the
ondition C[a℄ that depends on a.So these kinds of behaviours are ones that rea
t to themselves. If we
on-sider multiple de�nitions like these, where the
onditions refer to any of thevariables, we see that we are des
ribing behaviours that intera
t with ea
hother. Intera
tion between
omponents is an essential aspe
t of most rea
tivesystems, and in CONTROL it is not possible to express intera
tion withoutthis kind of re
ursive de�nition.We will now
onsider a subset of de�nitions of the form (6.1), where theright hand side is an until-then expression at the top-level,letbeh a = B until C[a℄ then D in F: (6.2)

CHAPTER 6. BEHAVIOUR DEFINITIONS 85We restri
t our attention to this
lass of de�nitions be
ause they have asimple meaning; they are equivalent to non-re
ursive de�nitions of the form,letbeh a = B until C[B℄ then D in F:The
ondition C[a℄ is only relevant before the event o

urs|afterwards a isD and C[a℄ is no longer required|and before the event o

urs a a
ts likeB. This is a
onsequen
e of a basi

ausality requirement; D will be usedafter the event has o

urred, and so it should not a�e
t the event itself.This prin
iple is not adhered to if we take a naive approa
h to re
ursion,however, be
ause the semanti
s of until-then stipulates that as soon as the
ondition be
omes true, the behaviour swit
hes to some new behaviour, andin programs like (6.2) this means that D is not used only after the event, it isused at the event time as well. We will now des
ribe this problem formally.6.3 Least �xed pointsTo give a
ompositional semanti
s to a language with de�nitions, we needsome way of
apturing bound variables so that we
an interpret them insub-expressions where they appear free. This
an be a
hieved by passing anenvironment to the semanti
 fun
tion; then the environment gives the valuesof the free variables in every program phrase. Abstra
tly, an environment,u, is a fun
tion from variables to values, and we write [uja : x℄ for theenvironment that is identi
al to u ex
ept that it maps a to x, overridingany previous assignment for a in u. We write [[P ℄℄u for the meaning of theprogram P in the environment u.Using environments, the semanti
s of letre
 pres
ribes that a re
ursivede�nition means a solution to the
orresponding equation in the appropriate

CHAPTER 6. BEHAVIOUR DEFINITIONS 86semanti
 domain; that is,[[letre
 a = E in F ℄℄u = [[F ℄℄[uja : x℄x = [[E℄℄[uja : x℄:To re-iterate, the meaning of a is a solution to the equation in x. For aPCF-like language, these equations
an be solved by expressing the problemslightly di�erently, as �nding the �xed points (i.e., x1 su
h that G(x1) = x1)of the fun
tion G(x) = [[E℄℄[uja : x℄;and then
hoosing the least �xed point with respe
t to an information order-ing as dis
ussed in Se
tion 4.2. This ordering is su
h that there is always aleast solution (so we have a
anoni
al
hoi
e for the meaning of a), and thatthis is the solution we require from a
omputational perspe
tive.Adopting this approa
h for re
ursive behaviour de�nitions yields,[[letbeh a = E in F ℄℄(T0)u = [[F ℄℄(T0)[uja : x℄ (6.3)x = [[E℄℄(T0)[uja : x℄ (6.4)(i.e., as for letre
 but with the extra argument T0 whi
h is the set of timeswhen the behaviour argument is alive). For now, we will ignore the issue of
hoosing
anoni
al solutions to these equations, and just
onsider whethersolutions exist.Let E in Equations (6.3) and (6.4) beE � B until C[a℄ then D:Then Equation (6.4) isx = [[B until C[a℄ then D℄℄(T0)[uja : x℄:

CHAPTER 6. BEHAVIOUR DEFINITIONS 87Now, using the semanti
s of until-then given in Figure 5.2 (we assume thatC[a℄ is not bottom in this dis
ussion) we obtain,x = t 7! � [[B℄℄(T0)[uja : x℄t t =2 " T[[D℄℄(" T)[uja : x℄tT = ft 2 T0 j [[C[a℄℄℄(T0)[uja : x℄tg:At this stage it is instru
tive to try this semanti
s with some programs;for example, applying the semanti
s to the programletbeh a = 1 until (time >= a) then 2 in a:Doing so yields the following equation for x (we let T0 = T):x = t 7! � 1 t =2 " T2 (6.5)T = ft 2 T j t � x(t)g: (6.6)There are no solutions to these equations, whi
h we will now prove formally.Proposition 6.1 Equations (6.5) and (6.6) have no solutions for x 2 T !R? and T 2 P(T).Proof For t < 1 the
ondition t � x(t) must be false be
ause x(t) is either1 or 2. Therefore, T
ontains no times less than 1, and so t =2 " T is truefor t < 1. Hen
e, by (6.5) we have x(t) = 1 for t < 1. But at t = 1 thereis a kind of Russellian paradox. We know that x(1) is either 1 or 2. Let us
onsider both
ases:� Suppose that x(1) = 1. Then 1 � x(1) =) 1 2 T by (6.6), and so1 2 " T . But 1 2 " T =) x(1) = 2 by (6.5), whi
h
ontradi
ts ourassumption.� Suppose that x(1) = 2. Then 1 � x(1) =) 1 =2 T by (6.6), and,sin
e T
ontains no times less than 1 or 1 itself, we have 1 =2 " T . But1 =2 " T =) x(1) = 1 by (6.5), whi
h
ontradi
ts our assumption. 2

CHAPTER 6. BEHAVIOUR DEFINITIONS 88In short, if we assume that x(1) = 1, then equations (6.5) and (6.6) implythat x(1) = 2, and
onversely, if we assume that x(1) = 2, then equations(6.5) and (6.6) imply that x(1) = 1.We
ould
on
lude from this that the meaning of the program is ?T!R?(or is t 7! 1 for t < 1 and unde�ned for t � 1), but we want to give su
hprograms a stronger meaning|in fa
t, they are only useful if we
an do so.The problem is exa
tly the same in the general
ase (6.2), and it arisesbe
ause until-then stipulates that as soon as the
ondition be
omes trueit should yield the after-behaviour, D, but this
hanges the
ondition atthe instant it be
omes true, so it may then not be true (as in the exampleabove). The only way to avoid this
ontradi
tory situation, and retain theview of re
ursive de�nitions as solutions to equations, is to delay swit
hingslightly. This goes against our intention that CONTROL is an idealised,instantaneous response language, and moreover, it
an be shown that allreasonable possibilities for de�ning until-then this way lead to una

eptableanomalies in the semanti
s. (These alternatives are explored in Se
tion 6.11.)Therefore we must take a di�erent approa
h to the semanti
s of re
ursiverea
tive de�nitions.6.4 Non-rea
tive evaluationIn this se
tion we will give an informal des
ription of our solution to theproblem with re
ursive rea
tive de�nitions. We have just seen a proof thatsome re
ursive rea
tive behaviours denote bottom be
ause a
ontradi
tionarises at the times when the
ondition be
omes true. Put simply, interpretinga de�nition of the forma = B until C[a℄ then D;

CHAPTER 6. BEHAVIOUR DEFINITIONS 89leads to a
ontradi
tion be
ause the
ondition C[a℄ depends on the meaningof a, and a
hanges from B to D at the instant C[a℄ be
omes true, whi
hmeans it may not be true after all.We
ould avoid su
h
ontradi
tions by preventing rea
tive behavioursfrom swit
hing when determining event o

urren
es. The idea is to interpretall rea
tive behaviours of the formB until C then Das if they were just B. We
all this non-rea
tive evaluation. It is ne
essaryto evaluate the whole program this way be
ause any rea
tive behaviour, in-
luding nested until-then's,
ould
ause the problem. Note that before anyevents have o

urred, interpreting programs using non-rea
tive evaluation isno di�erent from an interpretation that takes rea
tivity into a

ount.As an example, the rea
tive behaviour1 until (time >= a) then 2is interpreted non-rea
tively as the behaviour 1. This ignores the
onditionwhi
h refers to a variable, possibly re
ursively.Say there are n until-then expressions in our program, and we refer tothem by Ai, where, Ai � Bi until Ci then Di:One of these, say Ae for some index e, must rea
t �rst (we will begin byignoring the possibilities of no events ever o

urring and of simultaneousevents o

urring). Using non-rea
tive evaluation, we
an �nd the set of times,Ti, when Ci is true, for ea
h until-then expression. For the behaviour thatrea
ts �rst, Ae, the set Te must
ontain earlier times than all the other setsTi. This means that we know non-rea
tive evaluation will give the
orre
t

CHAPTER 6. BEHAVIOUR DEFINITIONS 90meaning of the program for times before those in Te, be
ause no event haso

urred. It does not tell us anything about the value of any behaviours fortimes in " Te, be
ause they may depend on the value of the expression Ae,whi
h has rea
ted (and non-rea
tive evaluation assumes it has not rea
ted).We
an evaluate behaviours for times in " Te if we repla
e Ae by De in ourprogram, to a

ount for it rea
ting. Then, if we use non-rea
tive evaluationagain, we will get the
orre
t meaning up to the next event o

urren
e. Thissuggests the following iterative pro
edure for interpreting behaviours in aprogram P :1. Evaluate P non-rea
tively.2. For ea
h rea
tive behaviour Ai, �nd Ti.3. Let Te be the set with the earliest times.4. The evaluation in 1 is valid for times before Te.5. To evaluate P for times in " Te, repla
e Ae by De in P , and repeat thispro
edure.6.5 TransitionsWe will now formalise the pro
edure des
ribed above. The pro
edure yieldsa sequen
e of programs (Pi) beginning with the program P (= P0). Ea
hprogram in the sequen
e is the same as the previous one ex
ept that onerea
tive behaviour (or more, if events are simultaneous)|sayAei � Bei until Cei then Deifor the i-th program|has been repla
ed by Dei (this of
ourse assumes thatAei is the �rst behaviour to rea
t in Pi).

CHAPTER 6. BEHAVIOUR DEFINITIONS 91This is a kind of redu
tion, similar to term re-writing or redu
tion inthe lambda
al
ulus. One di�eren
e is that we are not only interested inthe sequen
e of programs (Pi); we are also interested in the result of non-rea
tively evaluating ea
h program and in the intervals when these evalua-tions are valid. Thus, we begin by evaluating P : � non-rea
tively over T.This yields p0 2 T ! [[�℄℄, and enables us to �nd the set of times Te0 whenthe �rst
ondition Ce0 be
omes true. Then we know that p0 is the meaningof P over the interval Tn " Te0 . We will annotate arrows denoting transitionswith these values using the following notation:P p0����!T n "Te0 P1:For the se
ond transition we evaluate P1 over the times " Te0 to obtain themeaning p1 whi
h is valid over the interval " Te0n " Te1; hen
e the se
ondtransition is P1 p1������!"Te0 n "Te1 P2;and so on.In general, we need to de�ne a transition relation su
h that a program Pis related to P 0 when evaluating P non-rea
tively over T0 (the times when Pis alive) yields p and this is valid up to times in T1|in other words over theinterval T0 n T1. Using our notation this is written asP p����!T0 n T1 P':For example, the rea
tive behaviour1 until (time >= 1) then 2alive for times in T makes a transition to the behaviour 2, and a
ts like thebehaviour 1 over the interval [0; 1), thus,1 t7!1�����!T n [1;1) 2:

CHAPTER 6. BEHAVIOUR DEFINITIONS 92The behaviour 1 is shorthand for lift0 1 whi
h is non-rea
tive and thereforeequals t 7! 1 over any interval.This transition relation
an be de�ned
ompositionally, that is, on thesynta
ti
 stru
ture of programs. This way the transition P makes is
al
u-lated from the transitions of its immediate sub-phrases, and so on, produ
inga tree-stru
tured derivation of the overall transition.We must ensure that only the behaviour (or behaviours) that rea
ts �rstmakes a transition. So, if Ce is the �rst
ondition to be
ome true then atsome pla
e in the tree we will haveBe until Ce then De be����!T0 n "Te Deand as we go down the tree this behaviour is
ombined with other behavioursin su
h a way that only this one
hanges. (The other behaviours rea
t laterand therefore should not
hange.)As an example of a behaviour with two sub-phrases, we will
onsiderA+B where + is the behaviour level addition operator. This is a spe
ial
aseof lift2, and in turn lift2 is de�ned in terms of lift0 and $*, but it issimpler to use + to illustrate transitions of
ompound expressions.Say we take a bottom up approa
h to
onstru
ting the derivation tree forthe transition A+B makes, and start by �nding the transitionsA a����!T0 n TA A0 B b����!T0 n TB B0: (6.7)This means that A is non-rea
tive for times before those in TA, and similarlyfor B. The overall expression A+B is non-rea
tive over the smaller of theintervals T0 n TA and T0 n TB. This gives three possibilities for the transitionthat A+B makes:1. A rea
ts �rst (TA ! TB):A + B t7!a(t)+b(t)������!T0 n TA A0 + B:

CHAPTER 6. BEHAVIOUR DEFINITIONS 932. B rea
ts �rst (TB ! TA):A + B t7!a(t)+b(t)������!T0 n TB A + B0:3. A and B rea
t simultaneously (TA = TB):A + B t7!a(t)+b(t)������!T0 n TA A0 + B0:This bottom up approa
h works, but we
an redu
e the number of rules bytaking a top down approa
h. All we need is a rule for Case 3, so A+B makesa transition to A0+B0, and a no-
hange rule whi
h allows B0 to be B whenCase 1 applies, or A0 to be A when Case 2 applies. We will now explain thisin more detail.6.6 The no-
hange ruleTaking a top-down approa
h means that we start by trying to �nd the tran-sition the overall behaviour makes. Continuing our last example, we wantto �nd the transition that the behaviour A+B makes. It is non-rea
tive overthe interval T0 n M , where M is either TA or TB, whi
hever
ontains theearliest times. Then we �nd the transitions that A and B make, as in 6.7.But we require the transitions they make over T0 nM and so one of themmay have to make a no-
hange transition; if A rea
ts �rst, B will have tomake a no-
hange transition and vi
e-versa.The rule for addition of behaviours, whi
h we
all lift2 (+), isA a����!T0 nM A0 B b����!T0 nM B0A + B t7!a(t)+b(t)������!T0 nM A0 + B0 hlift2 (+)iThis
aptures Case 3 with M = TA = TB. The derivations for the premisesare exa
tly as in 6.7.

CHAPTER 6. BEHAVIOUR DEFINITIONS 94If A rea
ts �rst (Case 1) then TA ! TB (TA
ontains earlier times than TB)and B makes a no-
hange transition. Firstly we will des
ribe the no-
hangerule, whi
h is as follows:B b����!T0 n TB B0B b���!T0 n X B hno-
hangei � X ! TBX = " X �The side
ondition X ! TB spe
i�es that X
ontains earlier times than TB(re
all that TB is an upperset, so if X
ontains more times than TB thenit must
ontain earlier times). Sin
e X
ontains earlier times, the intervalT0 nX must be stri
tly smaller than T0 nTB and therefore B must make a no-
hange transition (i.e., a transition from B to B) over this smaller interval,as the rule di
tates. The se
ond side
ondition is ne
essary to ensure that Xis an upperset, be
ause otherwise T0 nX would not be an interval.The following derivation shows how the no-
hange rule and the lift2 (+)rule
an be used to deal with Case 1:A a����!T0 n TA A0 B b����!T0 n TB B0B b����!T0 n TA B hno-
hangei � TA ! TBTA = " TA �A + B t7!a(t)+b(t)������!T0 n TA A0 + B hlift2 (+)iNotes:1. The transitions for A and B at the leaves (top) are exa
tly as in 6.7.2. For Case 1, TA ! TB is true.3. TA = " TA is true be
ause TA is an upperset.The result of this derivation is that a transition to A0 +B is made, whi
h iswhat we require for Case 1. Case 2 is symmetri
al to this one.

CHAPTER 6. BEHAVIOUR DEFINITIONS 95A
on
ern is that the
hoi
e of rules in derivations is no longer deter-ministi
 be
ause the no-
hange rule
an be used anywhere. This would be aproblem if it resulted in many di�erent meanings for some programs be
ausewe want our semanti
s to give a unique meaning to all programs. In fa
tthis is not the
ase and it is easy to show that the rules are deterministi
 solong as the non-rea
tive interval for every transition is as long as possible;see Theorem 8.10 in Se
tion 8.7.The lift2 (+) rule above is a spe
ial
ase of the lift2 rule whi
h in turnis a derived rule from the basi
 lift0 and $* rules. These two rules arestraightforward be
ause they yield the same values as in Figure 5.2. The lift0rule is valid over the interval T0 n ; = T0 be
ause the value the behaviouryields never
hanges. The set T0 is an upperset and thus the value is validfor all times in the future. It is therefore irrelevant what behaviour this rulemakes a transition to, and so the rule yields the empty term " as the nextbehaviour; lift0 lift0 x t7![[x℄℄���!T0 n ; "The rule for $* uses the same method as the lift2 rule to deal with thethree
ases when FB rea
ts �rst, A rea
ts �rst, or FB and A rea
t simulta-neously;$* FB fb����!T0 nM FB0 A a����!T0 nM A0FB $* A t7!(fb(t))(a(t))��������!T0 nM FB0 $* A0The rule for time is as we would expe
t:time time t7!t���!T0 n ; ".

CHAPTER 6. BEHAVIOUR DEFINITIONS 966.7 Transitions for rea
tive behavioursThe most important transition rules are those for until-then be
ause theyallow a rea
tive behaviour to update when an event o

urs, whi
h is the pur-pose of the transition system. When an event o

urs, part of the derivationtree for the transition will be of the formB b����!T0 n TB B0 C
����!T0 n TC C 0B until C then D b����!T0 n "T D (ut-a)where T = ft 2 T0 j
(t)g (this assumes that
 is not bottom). This derivationis only valid when the event spe
i�ed by C o

urs before either B or C rea
t,that is, when " T ! TB [TC :Otherwise (i.e., when B or C rea
ts �rst) the derivation is like that for lift2(+); we introdu
e a variableM to represent the earlier of TB and TC and usethe following derivation:B b����!T0 nM B0 C
����!T0 nM C 0B until C then D b����!T0 nM B0 until C 0 then D. (ut-b)As for lift2 (+), this rule, in
onjun
tion with the no-
hange rule, is suÆ
ientto deal with the three
ases (i.e., when B rea
ts �rst, when C rea
ts �rst,and when B and C rea
t simultaneously). Noti
e that we are not
on
ernedwith when D rea
ts be
ause it is not yet alive. The
ondition when thisrule applies is when either B or C rea
ts before the
ondition spe
i�ed by Cbe
omes true, that is, when M ! " T:

CHAPTER 6. BEHAVIOUR DEFINITIONS 97What about the
ase when C be
omes true exa
tly when B or C rea
t,that is, when " T =M? In this
ase we give priority to the top-level rea
tivebehaviour, and make the transition to D as in (ut-a) above.There is an alternative derivation for (ut-a) that a
hieves the same resultand is more like (ut-b). The rule obtained is preferred be
ause then therules for the two
ases are similar. All we need to do is repla
e TB and TCin (ut-a) with M whi
h represents the earlier of the two uppersets, that is,M = TA [TB. Then the derivation is as in (ut-a) with possible appli
ationsof the no-
hange rule when TA and TB are not both equal to M . The side
ondition when this derivation is valid is " T � M (re
all that this ruleapplies when B or C rea
t at or after the time/s when C be
omes true,whi
h is when the set " T is a superset of M). Thus, the rule for derivationslike (ut-a), whi
h we
all o

, iso

 B b����!T0 nM B0 C
����!T0 nM C 0B until C then D b����!T0 n "T D � " T �M �
An example of applying the o

 rule is:1 t7!1��!T n ; " time >= 1 t7!t�1���!T n ; "1 until (time >= 1) then 2 t7!1�����!T n [1;1) 2 (ex-o

)Here the set T is given byT = ft 2 T j (t 7! t � 1)(t)g= ft 2 T j t � 1g= [1;1):The rule when the event does not o

ur before B or C rea
ts is
allednon-o

 and is as follows:

CHAPTER 6. BEHAVIOUR DEFINITIONS 98non-o

 B b����!T0 nM B0 C
����!T0 nM C 0B until C then D b����!T0 nM B0 until C 0 then D (M ! " T) .An example of applying non-o

 requires B or C to be a rea
tive behaviour,and one that rea
ts before C be
omes true; say B is the behaviour in (ex-o

),B � 1 until (time >= 1) then 2and we denote the transition tree for B by X:X � 1 t7!1��!T n ; " time >= 1 t7!t�1���!T n ; "1 until (time >= 1) then 2 t7!1�����!T n [1;1) 2Using this as the before-behaviour in a rea
tive behaviour yields:X time >= 2 t7!t�2���!T n ; "time >= 2 t7!t�2�����!T n [1;1) time >= 2 hno-
hangeiB until (time >= 2) then 0 t7!1�����!T n [1;1) 2 until (time >= 2) then 0In the pre
eding dis
ussion we assumed that the
ondition does not yieldbottom at any time. As dis
ussed in Se
tion 5.2, we
an only determinewhen the event o

urs if the
ondition be
omes true before any times map tobottom. We
an
apture this by de�ning the set of times when the
onditionis bottom, Bad = ft 2 T0 j
(t) = ?B g;as in Se
tion 5.2, and then restri
ting the o

 and non-o

 rules by addingside
onditions whi
h ensure that no bottoms have thus far been found. So,for the o

 rule we must add the extra side
ondition" T ! " Bad;

CHAPTER 6. BEHAVIOUR DEFINITIONS 99and for the non-o

 rule we requireM ! " Bad:(The set T is given by T = ft 2 T0 j
(t) = trueg:)To deal with rea
tive behaviours where the
ondition be
omes bottombefore it is true we require the rulebad-
ond B b����!T0 nM B0 C
����!T0 nM C 0B until C then D b0���!T0 n ; "where b0 is the fun
tion that is like b until the
ondition be
omes bottom,and is then bottom: b0 = t 7! � b(t) t =2 " Bad? :The side
ondition for this rule just requires the
ondition to yield bottomat or before B or C rea
ts and at or before the
ondition is bottom;" Bad � M ^ " Bad �" T () " Bad �M [" T:Noti
e that the side
onditions for o

, non-o

 and bad-
ond are mutuallyex
lusive and exhaustive. This is ne
essary for the rules to be deterministi
be
ause the premises are the same in all these rules.We now have transition rules for lift0, $*, time, and until-then. Thenext step is to de�ne a rule for letbeh.6.8 Transitions for re
ursive rea
tive de�ni-tionsRe
all that our motivation for developing the transition rules was to
apturea pro
edure that enables us to give meanings to re
ursive rea
tive de�nitions

CHAPTER 6. BEHAVIOUR DEFINITIONS 100su
h as letbeh a = 1 until time >= a then 2 in a: (6.8)A transition rule for de�nitions will require an environment to map variablesto values. In keeping with our inferen
e style rules we will adopt the syntaxoften used for dedu
tions; if E
an make a transition to E 0 in the environmentu, we write u ` E e����!T0 n Te E':The letbeh rule interprets a de�nitionletbeh a = E in Fusing the transition E makes in the environment where a maps to the non-rea
tive evaluation of E (i.e., the value e on the top of the arrow). This givesthe rule[uja : e℄ ` E e����!T0 nM E' [uja : e℄ ` F f����!T0 nM F'u ` letbeh a = E in F f����!T0 nM letbeh a = E 0 in F 0(Again, M is used in the same way as in the lift2 (+) rule.) This approa
hdoes not have the problem en
ountered in Se
tion 6.3 be
ause E is evaluatednon-rea
tively.It is instru
tive to apply these rules to Example 6.8 above. This requiresa rule for lift2 (=>) analogous to the lift2 (+) rule.6.9 Transitions for integral behavioursIn an integral behaviour, the integrand may be rea
tive. This presents noreal diÆ
ulty, however, be
ause we
an integrate over non-rea
tive intervals|whi
h are obtained using the transition rules|and then add up the pie
es.

CHAPTER 6. BEHAVIOUR DEFINITIONS 101For example, using the transition rules we have already seen that1 until (time >= 1) then 2represents the behaviour that is t 7! 1 over the interval T n [1;1) = [0; 1)and t 7! 2 afterwards. The integral of this behaviour is the integral of thesetwo parts, adding the overall interval of t 7! 1 over [0; 1) (whi
h equals 1) tothe se
ond part:t 7! � R t0 1:ds t 2 [0; 1)1 + R t1 2:ds = t 7! � t t 2 [0; 1)1 + 2tMathemati
ally this is just integrating a dis
ontinuous fun
tion by addingtogether the integrals over the
ontinuous parts. Hen
e the transition rulefor integral evaluates the integrand over a non-rea
tive interval and then
omputes the integral, that is,integral A a����!T0 nM A0integral A t7!R tinf(T0) a(s):ds����������!T0 nM XTo
omplete the rule we need to de�ne X, the behaviour for the next tran-sition. The next transition will evaluate the behaviour from the times inM , and sin
e integrals are
umulative we must add the integral so far (i.e.,a

umulated over the previous intervals) to this. So we must addk = Z inf(M)inf(T0) a(s):dsto the integral of the new integrand, A0. The value k is a real number,however, and we require the representation of this number in CONTROL.The fun
tion Real 2 R ! Real serves this purpose; it is the inverse of [[℄℄ forterms of type Real. Using Real we de�neX � Real Z inf(M)inf(T0) a(s):ds! + integral A':

CHAPTER 6. BEHAVIOUR DEFINITIONS 102A similar problem arises for integrals with badly behaved integrands asfor rea
tive behaviours with bad
onditions. The integral rule above requiresthe side
ondition that a is integrable on the interval T0 nM . If this is notthe
ase, then the following rule applies:bad-integral A a����!T0 nM A0integral A t7!?R���!T0 n ; "This asserts that if a is not integrable on the interval T0 nM , then the valueof the integral expression is bottom for all times in the future. The reasonfor this is that integrals are
umulative and so if we do not know its valueover some interval, then we
annot determine its value at any time afterthat interval. As an example, we
annot integrate the behaviour1 / (time - 1)be
ause there is a division by 0 at time 1. Therefore the bad-integral ruleapplies and yields t 7! ?R for this behaviour.6.10 Transitions for re
ursive integral de�ni-tionsUnlike re
ursive rea
tive de�nitions, re
ursive integral de�nitions do meanthe solutions to the
orresponding equations. For example, the de�nitiona = 1 + integral ameans a solution to the integral equationx(t) = 1 + Z t0 x(s):ds:This equation has a unique solution, x(t) = et. In general, however, theremay not be a unique solution, and su
h de�nitions denote t 7! ?R.

CHAPTER 6. BEHAVIOUR DEFINITIONS 103We need to obtain integral equations from side
onditions in the transitionsystem. This means introdu
ing mathemati
al variables, su
h as x above,and equating them to the result of the right hand side of a re
ursive de�nitionin the letbeh rule. More expli
itly, the right hand side of a re
ursive integralde�nition de�ning a variable a is evaluated in the environment where a mapsto x, and the result of this is equated with x. Thus, assuming x is a newvariable, the letbeh rule is modi�ed as follows:[uja : x℄ ` E e����!T0 nM E' [uja : x℄ ` F f����!T0 nM F'u ` letbeh a = E in F f����!T0 nM letbeh a = E 0 in F 0 (x = e)It is easy to verify that this new rule, together with the integral rule, givesthe
orre
t integral equation for the example from the start of this se
tion.Note that for non-integrals, the introdu
tion of the variable x is super
u-ous, and eliminating it yields the same result as for the previous letbehrule. Therefore our new letbeh rule works as before for re
ursive rea
tivede�nitions.The values above the arrows are no longer the denotations of behavioursover non-rea
tive intervals be
ause they may
ontain free variables. Thesefree variables are
onstrained by side
onditions, and have a �xed value when-ever the program is meaningful. So the transition rules are used to formequations, and the solutions to these equations are the denotations. Thisinterpretation of the transition rules is explained further in Se
tion 9.1.Before we introdu
ed the above rules to a

ommodate integrals, we stillneeded to solve equations to �nd the denotations of programs; in parti
ular,to de
ide whether the o

 or non-o

 rule should be used it was ne
essaryto solve a side
ondition. So this is a fundamental feature of our semanti
s,and not due solely to integration. Of
ourse, solving equations|parti
ularly

CHAPTER 6. BEHAVIOUR DEFINITIONS 104integral equations|may involve very diÆ
ult mathemati
al analysis. Thiswas observed in Se
tion 5.6 in the
ontext of plain integrals, and
learlyallowing integral equations greatly in
reases the diÆ
ulty of the analysis.6.11 Avenue on delayed swit
hingIn Se
tion 5.8 we
onsidered alternative semanti
s for until-then whi
h werestill exa
t in the sense that there was not a �nite length of time between thetimes when the
ondition be
omes true and the rea
tive behaviour swit
h-ing. It is now worth re
onsidering these alternatives in relation to re
ursiverea
tive de�nitions in
ase they provide a simpler semanti
s.In Se
tion 6.3 we proved that some re
ursive rea
tive programs have nomeaning if we take the view that re
ursive de�nitions are equations. This isthe usual interpretation of re
ursive de�nitions, so it is perhaps more satisfa
-tory to
hange the semanti
s of until-then than devise a new interpretationof re
ursive de�nitions. However, we shall see that none of the alternativesemanti
s for until-then make this possible.There are two possible alternative semanti
s for until-then whi
h we
alled Fran and Early. We will
onsider only the Fran alternative in thisse
tion; the analysis for Early is similar.The Fran alternative uses Elliott and Hudak's semanti
s for untilB andpredi
ate in Fran for until-then in CONTROL,[[B until C then D℄℄t0 u = t 7! � [[B℄℄t0 u t t � te[[D℄℄te u twhere T = ft 2 T j t � t0 ^ [[C℄℄t0 u tgte = inf(T)Here the values t0 and te are times; these repla
e the sets of times used inour semanti
s be
ause every event has an event time. Note that we have

CHAPTER 6. BEHAVIOUR DEFINITIONS 105ignored the possibility that the
ondition may yield ? at some times. Withthis semanti
s a rea
tive behaviour swit
hes from B to D stri
tly after thein�mum of the times when C is true (te). Part of the reason for swit
hingstri
tly after is to avoid the problem with re
ursive de�nitions. The idea isthat a re
ursive rea
tive behaviour of the formletbeh a = B until C[a℄ then D in Falways yields B at the time when the event o

urs, and so the
ondition (interms of a) is not a�e
ted by a swit
hing. For example, given the termletbeh b = 1 until (time >= b) then 2 in bwe obtain the
orresponding equations:x = t 7! � 1 t � te2te = inf(ft 2 T j t � x(t)g)This has one solution, x = t 7! � 1 t � 12This approa
h looks very promising until we
onsider some other exam-ples. The following program does not have any meaning under this semanti
s:letbeh b = 1 until (time > b) then 2 in b (6.9)In other words, there are no solutions to the following equations:x = t 7! � 1 t � te2te = inf(ft 2 T j t > x(t)g)One
ould be argued that su
h programs should not have any meaning, butthere is a more serious problem. Consider the programletbeh b = 1 until (time > b) then 0 in b (6.10)

CHAPTER 6. BEHAVIOUR DEFINITIONS 106whi
h gives the equations,x = t 7! � 1 t � te0te = inf(ft 2 T j t > x(t)g)These equations have a solution, whi
h is anomalous be
ause 6.9 is the sameprogram as 6.10 ex
ept for the after-behaviour. So under this semanti
s theafter-behaviour
an in
uen
e whether the event
an be determined or not.This breaks the
ausality prin
iple that things in the future
annot a�e
t thepresent.In summary, Elliott and Hudak's semanti
s for untilB and predi
atein Fran
an be used for until-then in CONTROL, but this does not pro-vide a reasonable semanti
s for re
ursive de�nitions under the equationalinterpretation of de�nitions. In fa
t, it is worse than using our semanti
sfor until-then be
ause although it gives a meaning to more programs itviolates the
ausality prin
iple.Chapter summarySome behaviours
an only be expressed if we
an refer to them in their ownde�nition, in other words, if we
an de�ne them re
ursively. In parti
ular, insome rea
tive behaviours the
ondition needs to refer to the behaviour itself.This te
hnique is not an equational approa
h to de�ning behaviours re
ur-sively be
ause there are no solutions to the resulting equations. The intendedmeaning of su
h de�nitions relies on the operational notion of non-rea
tiveevaluation, and this
an be formalised by a transition system. Integrals
analso be a

ommodated by the transition system so that re
ursive integralde�nitions make sense.

Chapter 7Fun
tions and behaviours
So far we have seen operators for
onstru
ting behaviours, but we have nofa
ilities for:� Parameterising a behaviour by a variable.� Constru
ting a periodi
, or repeating, behaviour (or more generally abehaviour with an in�nite number of states).Most programming languages provide parameterised expressions that
an benamed and referred to elsewhere. This allows the same expression to bere-used with di�erent values of the parameter. These parameterised expres-sions are often
alled fun
tions be
ause they behave similarly to fun
tionsin mathemati
s. Another ingredient universal in programming is repetition,often provided for by re
ursion in fun
tional languages and by loops in im-perative languages. Re
ursion in CONTROL makes it possible to des
ribeperiodi
 behaviours; that is, behaviours that repeat the same values oversome interval, as sin does. In imperative and fun
tional programming the
ombination of parameterising
ode by variables and repetition is essentialfor many programs. We will see that this also applies to CONTROL whenwe introdu
e fun
tions and re
ursion.107

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 108Fun
tions and re
ursion are key aspe
ts of PCF, and the me
hanisms weadopt for CONTROL are the same. However, in addition to re
ursive fun
-tions CONTROL has re
ursive behaviours whi
h we dis
ussed in Chapter 6.These two me
hanisms for re
ursive de�nitions are quite di�erent, but, aswe shall see, they
omplement ea
h other to provide a powerful program-ming paradigm. In this
hapter we show how the semanti
s for the separateme
hanisms
an be uni�ed within one language.7.1 Fun
tionsConsider the term:integral (time * lift0 2) + integral (time * lift0 3): (7.1)Assuming that we
an de�ne a fun
tion f of a variable x byf x = integral (time * lift0 x); (7.2)then Term 7.1
an be re-expressed asf 2 + f 3:This saves writing almost the same expression twi
e.We will use �-notation for fun
tions in CONTROL. A term�x:Lrepresents a fun
tion that takes an argument and yields the term L with thevalue of the argument substituted for all free o

urren
es of x. With thisnotation we would write f from (7.2) as follows:f = �x. integral (time * lift0 x):

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 109In some languages there is a let
onstru
t so that fun
tions
an be de�nedand then used within the main program term. Using su
h a fa
ility Term 7.1
ould be written aslet f = �x. integral (time * lift0 x)in f 2 + f 3:In general, the let
onstru
t binds a variable, f , to a term, F , within a body,M, let f = F in M:However, we already have a me
hanism for binding variables within a term,�-abstra
tion. The let notation is equivalent to an abstra
tion, to abstra
tover f in M , and an appli
ation, to apply F to this abstra
tion. Lambdanotation therefore subsumes let, and we
an de�ne let as synta
ti
 sugaras follows: let f = F in M � (�f:M)F:We
an also de�ne the fun
tion de�nition notation we used in (7.2) as syn-ta
ti
 sugar: let f n = F in M � let f = �n.F in M:We will now give a brief des
ription of the syntax and semanti
s of �-terms. Firstly, re
all the syntax of variables, �-abstra
tions and appli
ationsfrom Chapter 4,Types � ::= � -> � fun
tion typesTerms E ::= x variablesj �x:�.E �-abstra
tionsj E E appli
ations:

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 110Noti
e that a type must be supplied for �-bound variables. In the abovedis
ussion we omitted types for simpli
ity, but from now on types will begiven for all bound variables.Both the operational and denotational semanti
s of �-terms are importantin our theory of CONTROL. The following informal des
riptions are madepre
ise in Chapter 8.The operational semanti
s of �-terms is based on �-redu
tion, whi
h de-�nes the appli
ation of a fun
tion (i.e., an abstra
tion) to an argument to bethe result of substituting the argument for the bound variable,� � rule (�x : �:L)N ! L=[x : N ℄;where L=[x : N ℄ denotes substituting the term N for free o

urren
es of thevariable x in L.The denotational semanti
s requires an environment to be passed to thesemanti
 fun
tion. The environment assigns a value to every free variable inthe term. The semanti
 equations are as follows, where x is a variable and uis an environment: for variables,[[x℄℄u = ux;�-abstra
tions represent a
tual fun
tions,[[�x : �:L℄℄u = d 7! [[L℄℄[ujx : d℄;and appli
ations are de�ned as fun
tion appli
ation,[[MN ℄℄u = ([[M ℄℄u)([[N ℄℄u):(The formulas on the right hand side are guaranteed to be type
orre
t byour use of the simple type system.)

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 1117.2 Re
ursive fun
tionsAlthough �-abstra
tions are
onvenient, they do not by themselves add mu
hexpressiveness to the language be
ause of the restri
tions imposed by thesimple type system. In parti
ular, it is not possible to des
ribe repeatedpatterns of
omputation, su
h as a behaviour that repeats over some interval.In this se
tion we will explain this point and introdu
e a re
ursion operatorthat allows a fun
tion to
all itself, whi
h enables repeated
omputation.Operationally this operator is straightforward, but denotationally it is morediÆ
ult to
apture. However, we will show that the usual treatment ofre
ursive fun
tions is
ompatible with our semanti
s of behaviour operators(this does not in
lude re
ursive behaviours as dis
ussed in Chapter 6).A re
ursive de�nition has the formf = F (7.3)where the fun
tion f re
urs on the right hand side, that is, in F . If we wrotethis de�nition using let then the o

urren
e of f on the right hand sidewould be free, and not asso
iated with the fun
tion f being de�ned.In the untyped �-
al
ulus it is possible to de�ne re
ursion
ombinatorssu
h as Y � �f:(�x:f(xx))(�x:f(xx)):They have the property that Y G! G(Y G); (7.4)and this allows re
ursive de�nitions (7.3) to be written asY (�f:F):

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 112To see how this de�nition provides re
ursion,
onsider the following redu
-tion: Y (�f:F)! hby 7:4i(�f:F)(Y (�f:F))! h�-redu
tioniF=[f : (Y (�f:F))℄:In the fun
tion body F the variable f is repla
ed by Y (�f:F) whi
h is thede�nition of f , and by the same redu
tion sequen
e the de�nition of f
an beunwound as many times as ne
essary. The
ombinator Y is not a valid termof the simply typed �-
al
ulus be
ause xx is untypable (x is a fun
tion andits own argument). In fa
t, all re
ursion
ombinators are untypable in thesimply typed �-
al
ulus, and therefore we need a built in re
ursion operatorin CONTROL to enable us to write re
ursive fun
tions.We
ould de�ne a re
ursion operator, say re
, that allows us to writere
ursive fun
tion in the same way that Y does in the untyped �-
al
ulus,re
 (�f : �:F):But in su
h de�nitions we always write an abstra
tion to abstra
t over f inF . Therefore an alternative is to de�ne a binding
onstru
t, �, whi
h bindsa variable within a fun
tion body re
ursively, giving the equivalent term�f : �:FWe prefer this
onstru
t be
ause it avoids an extra �-abstra
tion and makesit
lear whi
h variable is bound re
ursively.

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 113As for �-abstra
tions, we
an de�ne a let me
hanism as synta
ti
 sugar:letre
 f = F in M � let f = �f : �:F in M� (�f : �:M)(�f : �:F):Noti
e that we require a type for f on the right hand side. Stri
tly speaking,types should be given in all letre
 de�nitions, but as letre
 is not part ofthe formal language we will not do so.Operationally the semanti
s of re
ursive de�nitions is very simple; werequire the following redu
tion rule to unwind a re
ursive fun
tion one level:�-rule �f : �:F ! F=[f : (�f : �:F)℄This rule gives the equivalent term in the simply typed �-
al
ulus to redu
tionon Y (�f:F) in the untyped �-
al
ulus.Denotationally the semanti
s of � is more
ompli
ated. We dis
usseddomains for fun
tion types in Chapter 4 and des
ribed a domain stru
turethat ensures re
ursive de�nitions have a unique meaning. We will
ompletethe pi
ture by showing how that theory enables us to de�ne the meaning ofre
ursive de�nitions.In fun
tional languages a re
ursive fun
tion de�nition su
h asfa
t n = if n == 0 then 1 else n * (fa
t (n-1))is interpreted as the solution to an equation involving an unknown ff(n) = � 1 n = 0n� (f(n� 1))This is why fun
tional languages are de
larative|de�nitions are equationsthat always hold, so the right hand side
an always be substituted for thefun
tion. So the meaning of fa
t is a solution for f in this equation, but

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 114unfortunately there are many solutions:f?(n) = � n! n � 0?f0(n) = � n! n � 00fx(n) = 8<: n! n � 0x n = �1(�1)n�1x�Qjnj�1i=1 1iThe last solution fx is valid for any value of x, so there are in�nitely manysolutions.In general there are many solutions to equations arising from re
ursivede�nitions, but there is only ever one solution that agrees with the opera-tional interpretation of re
ursive de�nitions. Operationally, we evaluate are
ursive de�nition by unwinding the fun
tion body and substituting for theargument ea
h time a re
ursive
all is made. The solution that agrees withevaluation is always the one that satis�es the equations and terminates foras few arguments as possible, that is, the least de�ned solution (for the ex-ample above this is f?). Intuitively this is be
ause the term does not
ontainany information about the result when
omputation loops inde�nitely, sothe result should be bottom|the least de�ned value. For example, there isnothing in the de�nition of fa
t to suggest that the result should be 0, orany other number, for negative arguments.Suppose that g0 is the meaning of the re
ursive de�nition �f : �:F insome environment u; that is,g0 = [[�f : �:F ℄℄u (7.5)The meaning should remain the same after a �-redu
tion step; that is, the

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 115denotational semanti
s should agree with the operational semanti
s. Thus,g0= hby 7.5i[[�f : �:F ℄℄u= h�i[[F=[f : (�f : �:F)℄℄℄u= hsubstitutioni[[F ℄℄[ujf : [[(�f : �:F)℄℄℄= hby 7.5i[[F ℄℄[ujf : g0℄:Therefore g0 is
ertainly a solution to the following equation in g:g = [[F ℄℄[ujf : g℄:This equation is usually expressed equivalently as �nding a �xed point of thefun
tion G = g 7! [[F ℄℄[ujf : g℄:The solution we require, g0, is
ertainly a �xed point of G, but in generalthere may be many �xed points. Fortunately, there is a way of sele
ting theone that
orresponds to our operational semanti
s|the solution we requireis always the least �xed point with respe
t to the ordering on domains wede�ned in Se
tion 4.2. Moreover, the following theorem guarantees that forany G arising from a re
ursive de�nition, there must be a least �xed point.Theorem 7.1 (Least fixed point) If G : D ! D is an !-
ontinuousfun
tion on the CPO D, then G has a least �xed point given byg0 = 1Gn=0Gn(?) 2

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 116So the Least Fixed Point Theorem guarantees that all re
ursive de�nitions
an be assigned a meaning, and provides a formula for these meanings. Be-
ause of the ordering on domains, we expe
t these meanings to
orrespond tothe fun
tions obtained from an operational perspe
tive, and it
an be shownthat this is so.7.3 Examples of re
ursive fun
tionsUsing re
ursive fun
tions we
an write many new behaviours that
annotbe expressed without them. For example, the following re
ursive fun
tionde�nes a rea
tive behaviour that in
rements by one as ea
h se
ond passes:letre
 a n = n until (time>=n+1) then a(n+1) in a 0The right hand side of the de�nition is a rea
tive behaviour that yields nuntil the time equals n + 1. At this time it
alls itself with the argumentn + 1, so every se
ond the behaviour in
reases by 1. If �-abstra
tions orre
ursive fun
tions were not part of CONTROL, and no other me
hanismswere introdu
ed, it would not be possible to write a program whi
h yields anequivalent behaviour.Formally we
an interpret the above program operationally and deno-tationally given the semanti
 te
hniques introdu
ed thus far. We begin bydesugaring the program as follows (we omit type de
larations on � and �

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 117bound variables for
larity):letre
 a n = n until (time>=n+1) then a(n+1) in a 0� letre
 a = �n.n until (time>=n+1) then a(n+1)| {z }A in a 0� let a = �a.A in a 0� (�a.a 0) (�a.A)The �nal line is a program in the
ore syntax, and therefore it
an be inter-preted operationally by the � and � rules:(�a.a 0) (�a.A)! h�i(�a.A) 0 (7.6)! h�i(A=[a:�a.A℄) 0� (�n.n until (time>=n+1) then (�a.A)(n+1))0! h�i0 until (time>=0+1) then (�a.A) (0+1)� 0 until (time>=1) then (�a.A) 1We now have an until-then term at the top-level. This
an be evaluatedusing the transition rules from Chapter 6, and we �nd that the behaviour

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 118yields 0 over the interval [0, 1) and then behaves like (�a.A) 1. The term(�a.A) 1 is exa
tly the same as Term 7.6 above ex
ept 1 repla
es 0. Thus,by repla
ing 0 with 1 in the above evaluation it is straightforward to
al
ulatethat over the interval [1, 2) the behaviour yields 1 and then behaves like(�a.A) 2. An indu
tive argument
an be used to �nd the
omplete meaningof the program, e�e
tively
apturing the repetition of this pro
edure.We will now interpret the same program denotationally, beginning withthe unsugared program, (�a.a 0) (�a.A) (7.7)We need to apply the semanti
 equations for � and �, but our semanti
fun
tion also requires the set of times when the behaviour is alive, initiallyT, as dis
ussed in Chapter 5. Thus,[[(�a.a 0) (�a.A)℄℄(T)[℄= h� and �i(d 7! [[a 0℄℄(T)[a : d℄)(1Gn=0(g 7! [[A℄℄(T)[a : g℄)n?)= (d 7! d(0))(1Gn=0(g 7! [[A℄℄(T)[a : g℄)n?)= (1Gn=0(g 7! [[A℄℄(T)[a : g℄)n?)0 (7.8)

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 119Next we must evaluate g 7! [[A℄℄(T)[a : g℄. We will do this as a side step:g 7! [[A℄℄(T)[a : g℄= g 7! [[�n.n until time>=n+1 then a(n+1)℄℄(T)[a : g℄= h�ig 7! d 7! [[n until time>=n+1 then a(n+1)℄℄(T)[a : gjn : d℄= huntil-thenig 7! d 7! t 7! � [[n℄℄(T)[a : gjn : d℄ [[time>=n+1℄℄(T)[a : gjn : d℄[[a(n+1)℄℄(" T)[a : gjn : d℄= g 7! d 7! t 7! � d t � d+ 1g(d+ 1)Now substituting this formula in the Equation 7.8 yields the value of Term 7.7as follows: [[(�a.a 0) (�a.A)℄℄(T)[℄= (1Gn=0(g 7! d 7! t 7! � d t � d+ 1g(d+ 1))n?)07.4 Re
ursive behaviours revisitedIn Chapter 6 we studied a
onstru
t for re
ursive behaviour de�nitions withthe syntax letbeh a = B in F:This is similar to the syntax for letre
 and we
an de�ne letbeh as synta
ti
sugar in terms of a re
ursive binding
onstru
t, �, and a �-abstra
tion (as

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 120we did for letre
) as follows:letbeh a = B in F � let a = �a : �:B in F� (�a : �:F)(�a : �:B)The example from Se
tion 6.3,letbeh a = 1 until (time >= a) then 2 in a;
an then be expressed as�a:Beh Real.1 until (time >= a) then 2:To interpret this behaviour we must use the transition rules be
ause they
apture non-rea
tive evaluation and this is essential for making sense of termssu
h as this one. In other words, we
an �nd the meaning of su
h terms usingthe operational semanti
s, but not using the purely denotational methods.The denotational semanti
s developed in Chapter 5 and in this
hapter doesnot a

ount for the
omplete language be
ause it does not interpret � de�-nitions. For this reason our
omplete semanti
s in the next
hapter will onlydes
ribe the operational style semanti
s based on the transition rules. It isunlikely that any
ompositional denotational semanti
s extending ours
ould
apture �-de�nitions be
ause of the problem dis
ussed in Chapter 6 withre
ursive rea
tive behaviours.7.5 Combining re
ursive behaviours and re-
ursive fun
tionsWe now have des
ribed two me
hanisms for de�ning a behaviour re
ursively:letbeh and letre
. They both work very di�erently, and have di�erent

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 121semanti
s. In this se
tion we will dis
uss the following points regardingthese re
ursion me
hanisms:� Why we need both.� When ea
h one should be used.� How both
an be used in the same program.� The
ombined semanti
s.We will
onsider examples to demonstrate why both me
hanisms areneeded. There is no way to programletbeh a = 1 until (time >= a) then 2 in ausing letre
 be
ause there are no solutions to the
orresponding equations(as we saw in Se
tion 6.3). This was the motivation for the letbeh
on-stru
t. It is essential that a on the right hand side of the de�nition refers tobehaviour being de�ned, and unwinding the de�nition by repla
ing a by theright hand side, as letre
 does, leads to an in�nite regression. This programis not des
ribing a repeating pattern, as letre
 does, but rather it assumesthe existen
e of a behaviour obje
t, a, and refers to this obje
t in its ownde�nition. As we saw in Chapter 6, the method of non-rea
tive evaluationallows us to interpret su
h de�nitions
orre
tly.Similarly, we
annot write the programletre
 a n = n until (time>=n+1) then a(n+1) in a 0using letbeh. The letbeh
onstru
t is only de�ned for behaviours, and inthis de�nition a is a fun
tion from numbers to behaviours. Furthermore,there is no simple extension of letbeh to a

ount for fun
tions be
ause this

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 122interpretation would suggest there are an in�nite number of behaviour ob-je
ts, one for ea
h value of the fun
tion argument. But re
ursive de�nitionssu
h as this example do not refer to the behaviour with the same value of theargument, so no behaviour obje
t refers to itself and the letbeh me
hanismis therefore unne
essary. The usual semanti
s of letre
 gives exa
tly theinterpretation we have in mind for su
h fun
tions.We will now
onsider when we should use ea
h me
hanism. When wehave an a
tual behaviour obje
t that
an only be de�ned in terms of itselfthen we must use letbeh. When we have a fun
tion that yields a behaviourwhen supplied with an argument, and that behaviour is rea
tive and
allsitself in when the behaviour rea
ts, we must use letre
. In fa
t, we donot ne
essarily require a fun
tion to write a letre
 de�nition. Consider thebehaviour that yields the time until the time is 1, and then repeats thesevalues every se
ond. Its graph is a saw wave that in
reases linearly withgradient 1 for one se
ond, and then drops instantly ba
k to 0:
-

6Value
Time0 1 2 3123 ���br���br���brThis
an be des
ribed by the following term:letre
 a = (integral 1) until (integral 1 >= 1) then a in a:

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 123We use letre
 here be
ause we are des
ribing a repeating behaviour. Thisis similar to the program ones,letre
 ones = 1 : ones in ones;in a lazy fun
tional language with lists (e.g., Haskell), whi
h yields the in�nitelist of ones. Both programs de�ne a re
ursive value rather than a re
ursivefun
tion.It is useful to use both re
ursion me
hanisms in the same program as thenext example demonstrates:letbehp = integral(letre
v = 1 until p >= 1 then-1 until p <= -1 then vin v)in pThis behaviour is 0 initially and in
reases at a rate, v, of 1 until it rea
hes1. Then it in
reases at a rate of -1 until it rea
hes -1 and then in
reases ata rate of 1 again. Thus it is a triangle wave with amplitude 1 and period4. Graphi
ally we may think of this program as des
ribing the horizontalposition of a ball boun
ing (elasti
ally) between two walls at -1 and 1, andtravelling at a
onstant speed of 1.It is not diÆ
ult to write an equivalent behaviour that does not useletbeh be
ause it is easy to work out what p is on the right hand side andsubstitute it for an equivalent behaviour. However, if in the above program

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 124we add some term to the integral expression then it be
omes more diÆ
ult tosolve for p, and in some
ases impossible. Therefore many slight variationsof the above program make essential use of both letbeh and letre
.Our �nal question
on
erns the semanti
s of programs like the exampleabove that use both re
ursion me
hanisms in the same program. As wesaid earlier, our denotational semanti
s does not a

ount for letbeh so wemust use the operational semanti
s provided by the transition system. Toa

ommodate �-abstra
tions and re
ursive de�nitions we need to extend thetransition system. The method for doing this derives from the example inSe
tion 7.3. A behaviour term that is an appli
ation or re
ursive fun
tionat the top-level must be evaluated by �rst performing some evaluation stepsusing the � and � rules. This is repeated until a behaviour is obtained at thetop-level; that is, the top-level synta
ti

onstru
t is lift0, $*, until-then,integral or �. Then the transition rules
an be applied to interpret theterm. This
an be a
hieved by adding the following rule to the transitionsystem: redu
e E ! E 00 E 00 e����!T0 nM E 0E e����!T0 nM E 0A term E that is an appli
ation or re
ursive fun
tion is �rst evaluated onestep to the term E 00, and then if E 00
an make a tranistion to E 0 the overallterm
an make this transition. Note that the redu
e rule may need to beapplied repeatedly, as many times as ne
essary to obtain a behaviour at thetop-level. The evaluation relation! is de�ned pre
isely in the next
hapter.7.6 Lo
al and global timeIn this se
tion we provide de�nitions of lo
al and global time behaviours.This serves three purposes: �rst, it demonstrates that the behaviour time

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 125does not need to be a primitive; se
ond, that we
an de�ne lo
al time (thetime sin
e the en
losing behaviour
ame alive); and third, it further illustratesthe di�eren
e between letbeh and letre
.The following program de�nes a behaviour ltime that gives the timesin
e the en
losing behaviour
ame alive; that is, the lo
al time. By usingthis behaviour in a rea
tive behaviour we
an observe the semanti
s of lo
altime, for example,letre
 ltime = integral 1in ltime until (time >= 1) then ltimeBy applying the semanti
s it is straightforward to show that the graph
or-responding to this behaviour is
-

6Value
Time0 1 2 3123 ���br�������

�
Intuitively, letre

reates a re
ursive binding for ltime and ea
h o

urren
ein the main body is unwound by the � rule. Therefore the se
ond ltime is anew behaviour that is alive from time 1 onwards, and it equals the integral of1 from time 1 onwards. In general, behaviours de�ned using letre
 produ
ea family of behaviours, one for ea
h o

urren
e of the behaviour in the mainbody, and ea
h one
omes alive when the en
losing behaviour
omes alive.This explains why a behaviour su
h as ltime seems to be reset and start

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 126integrating from zero again after the event. We would expe
t fun
tions thatyield behaviours to work this way be
ause when su
h fun
tions are appliedto an argument a new behaviour results, but the same applies to behaviourvalues su
h as in the example above.Now let us write the same program but with letbeh instead of letre
and gtime instead of ltime,letbeh gtime = integral 1in gtime until (time >= 1) then gtimeApplying the semanti
s yields a behaviour whose graph is:
-

6Value
Time0 1 2 3123 �������

���
In this program the se
ond o

urren
e of the behaviour gtime is not reset attime 1. Intuitively, a behaviour de�ned using letbeh is an obje
t, and thatobje
t is the same wherever it is referred to in the main body. Examining thesemanti
s we
an
on�rm this be
ause the � transition rule updates the body(in this example, integral 1) in the new behaviour, thus a letbeh de�nitionlifts a behaviour out of the main body and ensures that all referen
es to thisbehaviour yield this value.

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 1277.7 Multiple de�nitionsWe have seen that both letbeh and letre
 are useful re
ursion me
hanismsand that sometimes we need both in the same program. To allow re
ursivefun
tions and behaviours that are mutually re
ursive, we require a form ofde�nition that enables us to give both simultaneously. In PCF multiplemutually re
ursive de�nitions
an be dealt with by forming a tuple of thevariables and a tuple of the right hand sides, and forming a single re
ursivede�nition (see [Rey98, pp. 301℄ or [Mit96, pp. 64℄). For example, for twomutually re
ursive de�nitions:letre
 f = F [f; g℄g = G[f; g℄in M � letre
 (f; g) = (F [f; g℄; G[f; g℄)in MThis will not work for us be
ause we have two di�erent re
ursion me
hanisms,and so multiple de�nitions
annot be redu
ed to a single de�nition usingtuples.There is another standard method whi
h redu
es multiple de�nitions intoa nested de�nition (see [Ten91, pp. 111℄ or [Mit96, pp. 338℄). For two mutu-ally re
ursive de�nitions the translation is as follows:letre
 f = F [f; g℄g = G[f; g℄in M � letre
 f = letre
 g = G[f; g℄in F [f; g℄in letre
 g = G[f; g℄in MThe right hand side of the de�nition for f de�nes g so that it
an be referredto in the expression F [f; g℄. The main body also de�nes g, this time sothat it
an be referred to in the term M . The variable f
an be referred toon the right hand side of its de�nition, be
ause letre
 allows this, and inthe main body of
ourse. Therefore this translation preserves the meaningof the overall term. The only slight drawba
k is that the de�nition of g isdupli
ated.

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 128This translation works for multiple letre
 and letbeh de�nitions be-
ause the appropriate
onstru
t
an be used for ea
h one. Thus, we
an adda general let me
hanism for multiple de�nitions, whi
h allows either re
ur-sion me
hanism to be used for ea
h de�nition by tagging the de�nition; forexample: let beh a = Are
 f = Fin M.This program de�nes a re
ursive behaviour a, and a re
ursive fun
tion f ,and they
an be mutually re
ursive. Su
h programs
an be translated intothe
ore syntax using the method des
ribed above. In this
ase eliminatingthe multiple de�nitions givesletbeh a = letre
 f = Fin Ain letre
 f = Fin M.The translation may be
ontinued by desugaring letbeh and letre
 to ob-tain a term in the
ore syntax.7.8 Avenue on ZenoMany rea
tive systems run forever, sending outputs
ontinually and rea
tingto inputs. This is di�erent to non-termination when a program gets into anin�nite loop, be
ause outputs are always being produ
ed. An example ofsu
h a program is the one we saw earlier whi
h in
rements a behaviour byone ea
h se
ond. It is also possible to write programs that be
ome stu
ktemporally, yet never stop produ
ing output. Here is an example:

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 129letre
 zeno n = n until time>=((n-1)/n) then zeno(n+1)in zeno 1In this program a sequen
e of events o

ur at times 01 ; 12 ; 34 ; 45 ; : : : , and ea
htime the value of the behaviour in
reases by 1. The limit of this sequen
e ofevent times is 1, so there are in�nitely many events that o

ur before time 1.We
annot say anything about the value of this behaviour at or after time 1be
ause it never rea
hes time 1.Semanti
ally we should regard values of this behaviour after time 1 to be?. However, our semanti
s
annot make this expli
it be
ause it is not possiblein general to determine when a behaviour will be
ome stu
k temporally. We
an use our semanti
s to reason about the value of terms su
h as these, butunfortunately it is not true in general that our semanti
s gives the value ofbehaviours at all times. Although this is a limitation, it is no worse thanbeing unable to determine whi
h values terminate in PCF. Furthermore, inmany
ases, su
h as for zeno, using meta-level reasoning we are able toidentify when a behaviour will be
ome stu
k temporally.Chapter summaryThe fun
tional subset of CONTROL has the same operational and denota-tional semanti
s as PCF. In this
hapter we saw how the operational seman-ti
s
an be
ombined with our semanti
s of behaviours, and in parti
ularhow the two di�erent re
ursion me
hanisms
an be in
orporated. This in-volved adding a rule to the transition system for redu
ing �-abstra
tions andre
ursive fun
tions. Then we
onsidered a general let
onstru
t for multi-ple mutually re
ursive letre
 and letbeh de�nitions. This is based on atranslation that
onverts multiple mutually re
ursive de�nitions into a nestedre
ursive de�nition. This way terms
an be translated into the
ore syntax

CHAPTER 7. FUNCTIONS AND BEHAVIOURS 130and evaluated by the operational semanti
s.

Chapter 8Complete formal semanti
s
In this
hapter we present a
omplete formal semanti
s for CONTROL. Thisbrings together the development from the pre
eding
hapters, and formalisesthe type system, evaluation rules and transition rules. The semanti
s isdes
ribed bottom up so that all parts are de�ned before they are used. Theseparts are then brought together to give a semanti
s for terms.8.1 SyntaxThe abstra
t syntax of CONTROL is as follows (x represents variables):Types � ::= Real j Bool j �->� j Beh �Constants K ::= 0 j 1 j : : : j true j false j + j : : : j if� j : : :Terms E ::= K j x j �x:�.E j E E j �x:�.E jlift0 E j E $* E j integral E jE until E then E j �x:�.EThis abstra
t grammar is ambiguous if interpreted as a
on
rete
ontext-freegrammar. Therefore, when we write terms they must be fully parenthesisedto avoid ambiguity. However, we
an relax this requirement, and therebymake terms more readable, by de
laring the pre
eden
e and asso
iativity131

CHAPTER 8. COMPLETE FORMAL SEMANTICS 132of ea
h
onstru
t. (This is useful for dis
ussing terms, but is not part ofthe formal language des
ription.) The
onstru
ts listed in des
ending orderof pre
eden
e, and grouped into
onstru
ts with equal pre
eden
e, are asfollows:Types Beh, ->Terms (lift0, integral), $*, until-then, (�, �, �)As usual, fun
tion types asso
iate to the right and fun
tion appli
ation as-so
iates to the left|similarly for behaviour appli
ation. The until-thenoperator is neither left nor right asso
iative. The
onstants assume theirusual pre
eden
e and asso
iativity.Built in fun
tions are in
luded as
onstants. A full list of
onstants isgiven in Appendix A.Free variables are de�ned as follows:Definition The set of free variables of a term E is given by FV (E), whi
his de�ned by the following equations:FV (0) = fg(and similarly for all
onstants),FV (x) = fxgFV (�x:�.L) = FV (L) n fxg(and similarly for � and �),FV (MN) = FV (M) [FV (N)(and similarly for all the remaining
onstru
ts). 2

CHAPTER 8. COMPLETE FORMAL SEMANTICS 133A term that has no free variables is
losed, and otherwise it is open. ACONTROL program is a
losed term.We sometimes want to distinguish non-behaviour terms from behaviourterms. The set of non-behaviour terms
an be de�ned synta
ti
ally, ratherthan via types, as follows:NonBeh E ::= K j x j �x:�.E j E E j �x:�.E.There are no behaviour
onstants in CONTROL.8.2 Type systemA typing judgement asserts that a term E has type � in a
ontext �, and iswritten as � ` E : �:The
ontext � gives the types of the free variables in E. Contexts are de�nedas follows:Definition A
ontext � 2 Context is a partial fun
tion from variablesto types: Context = Variable* Type: 2A
ontext � is valid for a term E if it assigns types to all the free variablesin E, that is, if FV (dom �) � FV (E):We use inferen
e rules to spe
ify whi
h typing judgements are valid; thatis, valid typing judgements in our type system are those that
an be derivedusing the inferen
e rules given in Figure 8.1. We use standard inferen
e style

CHAPTER 8. COMPLETE FORMAL SEMANTICS 134rules (see [Ten91℄ or [Car97℄) with one notational shorthand: if the typeassignment is the same for all the premises as for the
on
lusion, then weleave it out.All
onstants have a type rule, or more pre
isely, a type axiom be
ausethere are no premises. The types of all the
onstants in CONTROL aregiven in Appendix A from whi
h the
orresponding type rules
an be inferred.Some rules, su
h as the rule for if�, are axiom s
hemas whi
h de�ne a familyof
onstants, in this
ase an if fun
tion for ea
h type.The lift0 typing rule has a side
ondition, x 2 NonBeh. This is requiredto ensure that the argument to lift0 is not a behaviour type, as dis
ussedin Se
tion 5.1.The rules for $*, until-then, and integral are straightforward. Thevar, �, app and � rules are standard for PCF-like languages (see [Rey98,pp. 319℄). The
onstru
t � is the re
ursive binding me
hanism for behavioursfrom Chapter 6.8.3 Expli
it typingWe take an intrinsi
 view of types, whi
h means that only terms that have avalid typing judgement have any meaning, and that the meaning of a termmay depend on the typing judgement, not just on the term itself. In general,if the meaning of a term may depend on its typing judgement, then termswith many di�erent typing judgements may not have a unique meaning.However, we shall see that given a valid
ontext there is a unique typingjudgement for every term, whi
h allows us to omit typing information insemanti
 de�nitions. We will prove this and also give a simple algorithm fortype
he
king terms.The syntax requires a type annotation for all bound variables. This uses

CHAPTER 8. COMPLETE FORMAL SEMANTICS 135
var � ` x : �x� [�jx : �℄ ` F : �� ` �x:�.F : �->�app E : �->� F : �E F : �� [�jf : �℄ ` F : �� ` �f:�.F : �lift0 x : �lift0 x : Beh � x 2 NonBeh$* FB : Beh (�->�) A : Beh �FB $* A : Beh �until-then B : Beh � C : Beh Bool D : Beh �B until C then D : Beh �integral A : Beh Realintegral A : Beh Real� [�ja : Beh �℄ ` A : Beh �� ` �a:Beh �.A : Beh �Figure 8.1: Typing rules

CHAPTER 8. COMPLETE FORMAL SEMANTICS 136the notation hVariablei : hTypei whi
h is similar to the notation hTermi :hTypei that appears in the type rules for expressing the types of terms. Itis not ne
essary for these notations to be the same, and to be
lear we willemphasise the distin
tion: the only purpose of type annotations in termsis to simplify the pro
ess of deriving typing judgements, whereas a typingjudgement provides all the type information ne
essary to interpret a term.So the pro
ess of deriving a valid typing judgement for a term is a ne
essarypart of interpreting the term semanti
ally. However, the pro
ess is
ompletelyroutine, be
ause with the help of the type annotations on bound variablesit is possible to obtain a valid typing judgement using a simple bottom upapproa
h. This is what is meant by expli
it typing. Terms
ould
ontainmore typing information|every subterm
ould be expli
itly annotated byits type|but this would be tiresome and make programs diÆ
ult to read.Annotating bound variables is the minimum typing information that mustbe present, for arbitrary terms, to enable expli
it typing.The bottom up type
he
king algorithm is given in Figure 8.2. It works byre
ursively traversing the syntati
 stru
ture of the term and
onstru
ting thetype bottom up. This mirrors the way we would
onstru
t a typing derivationusing the rules. We begin with a term E belonging to the grammar and avalid
ontext �. The type rules are syntax dire
ted, that is, there is one rulefor ea
h synta
ti

onstru
t, and this rule de�nes the type of a term fromthe types of its immediate subterms. Therefore there must be one type rulethat mat
hes the top-level synta
ti

onstru
t for E, and so on re
ursivelyuntil we rea
h the leaves (terminals of the grammar). So, if the leaves haveunique types then by indu
tion all �nite terms have unique types. The leavesare either
onstants, whi
h have a �xed type, or variables, whi
h are eitherfree or bound in E. If a variable is free in E then � gives its type. If it is

CHAPTER 8. COMPLETE FORMAL SEMANTICS 137bound then at some point in the derivation tree the type of the variable isprovided by a type annotation, and this will have been added to the
ontextby the rule for the binding
onstru
t. Thus the types of all terminals areknown and the type of the overall term is built up
ompositionally fromthese types. Type
he
king would be more diÆ
ult without expli
it typesfor bound variables, and in fa
t many programs would have more than onevalid typing judgement (e.g., �x:x : �->� for any �). This is not the
asewith expli
it typing, as we shall now prove.Theorem 8.1 (Uniqueness of typing judgements) For any
ontext �that is valid for a term E, there is either a unique typing judgement of theform � ` E : �;or else there is no valid typing judgement for E in �.Proof By indu
tion on the stru
ture of proofs of typing judgements. Forea
h typing rule we assume that the property holds for the premises and weshow that it holds for the
on
lusion. If there are no judgements satisfyingall the premises then there is no valid judgement for the overall term, so thetheorem holds in su
h
ases.Base
ases.All
onstants have a unique type by de�nition.var: The
ontext gives the unique type for any variable.Indu
tive
ases.�: If there is a judgement � ` F : �, then the
on
lusion � ` �x : �:F :� ! � is unique be
ause � is �xed by the type annotation on x, and � isunique by the indu
tion hypothesis.

CHAPTER 8. COMPLETE FORMAL SEMANTICS 138
T : Context� Term * TypeT (�; 0) = Real(and similarly for all
onstants),T (�; x) = �xT (�; �x : �:E) = T ([�jx : �℄; E)T (�; E F) = 8<: � T (�; E) = �->�T (�; F) = �errorT (�; �x : �:E) = � � T ([�jx : �℄; E) = �errorT (�; lift0 x) = � Beh T (�; x) x 2 NonBeherrorT (�; E$*F) = 8<: Beh � T (�; E) = Beh (�->�)T (�; F) = Beh �errorT (�; B until C then D) = 8<: Beh � T (�; B) = T (�; D) = Beh �T (�; C) = Beh BoolerrorT (�; integral A) = � Beh Real T (�; A) = Beh RealerrorT (�; �x : �:E) = � Beh � T ([�jx : �℄; E) = Beh �errorFigure 8.2: A bottom up type
he
king algorithm

CHAPTER 8. COMPLETE FORMAL SEMANTICS 139app: If there are valid judgements � ` E : �->� and � ` F : �, then theyare unique by the indu
tion hypothesis, and so � ` EF : � is the uniquejudgement.Similarly for all remaining rules: if there are unique judgements for thepremises, then they will
onstru
t a unique judgement in the
on
lusion.2Corollary 8.2 For any
losed term E, there is a unique typing judgementof the form ` E : �: 28.4 Semanti
s of non-behaviour termsTerms in the grammar for NonBeh do not use behaviours at all, and theseterms have a parti
ularly simple meaning be
ause they are terms of thesimply typed lambda
al
ulus with a re
ursion operator. We need a denota-tional semanti
s for these terms be
ause non-behaviour values
an be liftedusing lift0, and then used in
onditions of rea
tive behaviours. Conditionsmust be evaluated to �nd when behaviours rea
t, and so their value must beknown.As for arbitrary terms, non-behaviour terms only have a meaning if theysatisfy a typing judgement. Valid typing judgements are spe
i�ed by exa
tlythe same inferen
e rules as for arbitrary terms, but be
ause none of the
onstru
ts in the syntax build behaviours all terms will be of non-behaviourtype.The domains for ea
h (non-behaviour) type are as dis
ussed in Se
tion 4.2;Real and Bool
orrespond to
at domains and fun
tions
orrespond to !-
ontinuous fun
tions between pointed !-CPOs. This ensures that the least

CHAPTER 8. COMPLETE FORMAL SEMANTICS 140�xed point theorem
an be applied to interpret re
ursive de�nitions. Fig-ure 8.3 gives these domains and the semanti
 fun
tion F for non-behaviourterms.The semanti
 fun
tion F is valid for open and
losed terms. It is usefulto be able to interpret open terms so that we
an reason about programfragments and programs parameterised by a variable. To interpret openterms we need an environment that maps variables to values:Definition An environment u 2 Env is a partial fun
tion from variablesto values: Env = Variable* Value: 2An environment u is valid for a
ontext � if it assigns meanings to values inthe appropriate domains for all variables; that is,dom u � dom � ^ 8v 2 �; uv 2 [[�v℄℄:Here [[�v℄℄ is the domain
orresponding to the type of v (the
ontext � mapsvariables to types).To interpret a term E we require a valid
ontext, � (whi
h
an be emptyif E is
losed), and an environment that is valid for �. This ensures that thesemanti
 equations are type
orre
t. For terms of type �F [[℄℄ 2 Term! Env! [[�℄℄:The semanti
 equations (in Figure 8.3) for
onstants and variables arestraightforward. Lambda abstra
tions build
ontinuous fun
tions (for a proofof this see [Gun92, pp. 130℄). Appli
ations evaluate the fun
tion and argu-ment in the environment and then use fun
tion appli
ation. Finally, re
ursivede�nitions
ompute least �xed points whi
h are guaranteed to exist by the

CHAPTER 8. COMPLETE FORMAL SEMANTICS 141
Types: � ::= Real j Bool j � -> �[[Real℄℄ = R?[[Bool℄℄ = B?[[�1 -> �2℄℄ = [[�1℄℄! [[�2℄℄Terms: K 2 Constants; x 2 V ariablesE ::= K j x j �x:�.E j E E j �x.EF [[0℄℄u = 0 (et
:)F [[x℄℄u = u(x)F [[�x:�.L℄℄u = d 7! F [[L℄℄[ujx : d℄F [[M N ℄℄u = (F [[M ℄℄u)(F [[N ℄℄u)F [[�x:�.L℄℄u = �x�(d 7! F [[L℄℄[ujx : d℄)where �x�(f) = F1n=0 fn(?�)Figure 8.3: Dire
t denotational semanti
s of non-behaviour terms

CHAPTER 8. COMPLETE FORMAL SEMANTICS 142least �xed point theorem (and they
orrespond to the fun
tions we expe
tfrom a
omputational perspe
tive|that is, \unwinding" re
ursive fun
tions).These semanti
 equations give the unique meaning of any well-typed non-behaviour term.8.5 SubstitutionWe will de�ne substitution whi
h is required for the evaluation rules that areused in our semanti
s. We then give some properties of the semanti
 fun
tionF with regard to substitution.It is easier to de�ne the simultaneous substitution of all free variables inan expression and then take the substitution of a single variable as a spe
ial
ase. This requires a substitution map that gives the terms to substitute forea
h free variable:Definition A substitution map is a partial fun
tion from Variables toTerms, Æ 2 Variable* Term: 2A substitution map Æ is valid for a term E in the
ontext � if it assigns termsto all the free variables in E, dom Æ � FV (E);and if ea
h term is the same type as the variable it repla
es,8v 2 dom Æ;� ` Æv : �v:This requires � to be a
ontext that gives the types of all the free variablesin E and all the free variables in the terms in the range of Æ.

CHAPTER 8. COMPLETE FORMAL SEMANTICS 143One subtlety of substitution is that we must be
areful that free variablesin the terms we are inserting are not bound by mistake. This
an happenwhen we substitute open terms into the body of a �-abstra
tion or otherbinding me
hanism. The solution we adopt is to rename bound variablesto some
ompletely fresh variable so that this problem
annot arise. Thisraises a slight
ompli
ation, however, be
ause unless you have some
anon-i
al way of
hoosing new variables, this method
an lead to di�erent termsresulting from the same substitutions. In pra
ti
e, this does not
ause anyreal diÆ
ulty be
ause su
h terms are semanti
ally equivalent, they just havedi�erent names for
ertain bound variables. Therefore it is usual to studyterms modulo renaming of bound variables. This is known as �-equivalen
ein the �-
al
ulus.(It is often overlooked that name
lashes do not arise when evaluatingprograms, that is,
losed terms. It is easy to show that evaluation|by whi
hwe mean leftmost outermost redu
tion, stopping at �-abstra
tions, as inSe
tion 8.6|never substitutes open terms if the overall term is
losed, andso substitution
an be simpli�ed by removing renaming entirely.)Definition Substitution of all the free variables of an expression E by thesubstitution map Æ is written E=Æ and de�ned by the following equations:0=Æ = 0(and similarly for all
onstants), x=Æ = Æx�x:�.E=Æ = �xnew:�.(E=[Æjx : xnew℄)where 8w 2 FV (E) n fxg : xnew =2 FV (Æw)

CHAPTER 8. COMPLETE FORMAL SEMANTICS 144(and identi
ally for � and � in pla
e of �),(E F)=Æ = (E=Æ)(F=Æ)(and = distributes through all the remaining operators). 2Substitution of a term N for a single variable x in E
an then be a
hievedby E=[idV arjx : N ℄where idV ar is the identity fun
tion on variables. This gives the substitutionthat maps all variables to the same variable, ex
ept for x whi
h is mapped tothe term N . This notation is slightly
umbersome, so for substitution onlywe will interpret the notation [x : N ℄ as [idV arjx : N ℄.It is essential that substitution preserves types. This
an be proved bystraightforward indu
tion on the above de�nition of substitution.Theorem 8.3 (Substitution preserves types) If � is a valid
ontextfor both E and Æ, and Æ is a valid substitution map for E, then� ` E : � =) � ` E=Æ : � 2
Next we
onsider some properties of the semanti
s of non-behaviour terms(i.e., F) with regards to substitution and environments. In the followingtheorems we assume that all environments and substitution maps are validfor the terms involved. Proofs of these properties
an be found in Reynoldsbook [Rey98℄.Theorem 8.4 (Coin
iden
e theorem for F) If ux = u0x for all x 2FV (E), then F [[E℄℄u = F [[E℄℄u0. 2

CHAPTER 8. COMPLETE FORMAL SEMANTICS 145Theorem 8.5 (Substitution theorem for F) If ux = F [[Æx℄℄u0 for allx 2 FV (E) then F [[E℄℄u = F [[E=Æ℄℄u0. 2Theorem 8.6 (Renaming theorem for F) If xnew =2 FV (E)nfxg, thenF [[�x : �:E℄℄ = F [[�xnew : �:(E=[x : xnew℄℄℄:(and similarly for �). 28.6 Evaluation rulesThe redu
e transition rule|whi
h will be de�ned in the next se
tion|performs evaluation on terms to redu
e fun
tion appli
ations and expandre
ursive fun
tions. We use the terminology evaluation rather than redu
-tion be
ause evaluation stops at �-abstra
tions; that is, we never evaluateinside an abstra
tion. The evaluation rules are de�ned as a relation on termsas follows:Definition A term E evaluates in one step to E 0 if (E;E 0) belongs to therelation !2 Term� Term, whi
h is de�ned by the axiom s
hemas:� (�x:�.L)N ! L=[x:N℄� (�x:�.L) ! L=[x:(�x:�.L)℄and the inferen
e rulelazy M !M 0M N !M 0 N . 2These three rules are standard for an operational semanti
s of PCF-like lan-guages; see [Ten91, pp. 104℄ or [Gun92, pp. 106℄. However, we need toperform evaluation on behaviour valued terms, so we will prove that somestandard properties whi
h hold for the PCF fragment also hold for the
om-plete language.

CHAPTER 8. COMPLETE FORMAL SEMANTICS 146The ! relation is deterministi
, whi
h is equivalent to stating that it isa partial fun
tion. We will now prove this property.Theorem 8.7 (Evaluation is deterministi
) For any term E, if E !E 0 and E ! E 00 then E 0 � E 00. Consequently, ! is a partial fun
tion.Proof By indu
tion on the stru
ture of terms. We will show that for anyterm only one evaluation rule
an apply, and it always gives a unique eval-uation step. There are two
ases, be
ause the evaluation rules
an only beapplied to an appli
ation or a re
ursive de�nition.Case E � MN . If M � �x : �:L then the � rule applies (the lazy rule
annot apply be
ause an abstra
tion
annot be evaluated further, that is,there does not exist M 0 su
h that M ! M 0) and otherwise the lazy ruleapplies. The result of the � rule is a substitution, whi
h is unique assuminga
anoni
al
hoi
e of new variable names. For the lazy rule, M 0 is unique bythe indu
tion hypothesis, and so the result M 0N is unique.Case E � �x : �:L. The � rule gives a unique term, again assuming a
anoni
al
hoi
e of new variables in the substitution. 2As we would expe
t, evaluation preserves
losedness.Theorem 8.8 If E is
losed and E ! E 0 then E 0 is
losed.Proof By indu
tion on the stru
ture of terms.Case E � (�x : �:L)N . The � rule applies. The overall term is
losedand so N must be
losed. The only free variable in L is possibly x, so if the
losed term N is substituted for x in L, then the resulting term is
losed.Case E � (�x : �:L). The � rule applies. x is the only possible freevariable in L, so if it is substituted for the term �x : �:L, whi
h is
losed byassumption, then the result is
losed.

CHAPTER 8. COMPLETE FORMAL SEMANTICS 147Case E �MN . The lazy rule applies. M and N must be
losed be
auseE is
losed. M 0 is
losed by the indu
tion hypothesis, and therefore M 0N is
losed. 2This property allows us to evaluate programs by performing sequen
esof evaluation steps be
ause a
losed term will always remain
losed. Let!� be the transitive, re
exive
losure of !, then E !� E 0 signi�es that Eevaluates to E 0 in a �nite number of steps (possibly zero). This relation isnot a fun
tion, but be
ause ! is a fun
tion there is only one term that E
an evaluate to in any given number of steps.An important property of evaluation is that it preserves types, whi
h westate formally in the following subje
t redu
tion theorem.Theorem 8.9 (Subje
t redu
tion for !) If � ` E : � and E ! E 0then � ` E 0 : �.Proof By indu
tion on the stru
ture of terms.Case E � (�x : �:L)N . The � rule applies. By assumption, � ` (�x :�:L)N : �. This judgement must be obtained from the app rule, hen
e thepremises � ` �x : �:L : �! � and � ` N : �must be valid. Then, by the � type rule we must have[�jx : �℄ ` L : �and so L=[x : N ℄ is a valid substitution be
ause both x and N have type �.Therefore, by Theorem 8.3, � ` L=[x : N ℄ : � as required.Case E � (�x : �:L). The � rule applies. By assumption� ` �x : �:L : �

CHAPTER 8. COMPLETE FORMAL SEMANTICS 148and by the �-rule the premis [�jx : �℄ ` L : �must hold. Hen
e L=[x : (�x : �:L)℄ is a valid substitution be
ause both xand �x : �:L have type �, and by Theorem 8.3 � ` L=[x : (�x : �:L)℄ : �.Case E � MN . The lazy rule applies. By the indu
tion hypothesis M 0has the same type as M , and so by the app rule M 0N must have the sametype as MN . 2We will need this theorem to prove subje
t redu
tion for our transitionsystem, and ultimately soundness of the type system with respe
t to evalu-ation (i.e., well typed programs will not go wrong with a type error at anystage during evaluation).8.7 Transition rulesIn Se
tion 6.5 we motivated a transition system to formalise the operationalmethod of non-rea
tive evaluation. Here we give the
omplete rules for thetransition system and prove some important properties.Re
all that the meaning of a behaviour depends on the set of times when itis alive. To interpret a behaviour over
onse
utive intervals using transitionswe start with a (term, set of times) pair and make a transition to anothersu
h pair. For example, the term1 until (time >= 1) then 2alive for times in T makes a transition to the term 2 alive for times in [1;1).The transition rules also spe
ify the value of the behaviour over the interval,so one possibility is to de�ne the transition system as a ternary relation,�! 2 (Term� P(T)) � V alue� (Term� P(T)):

CHAPTER 8. COMPLETE FORMAL SEMANTICS 149For readability, we will write an element of the relation su
h as((1 until (time>=1) then 2;T); t 7! 1; (2; [1;1))) 2 �!using the notation1 until (time>=1) then 2 t7!1�����!T n [1;1) 2:This emphases that the value of the behaviour over the interval T n [0;1) ist 7! 1.Sometimes we
an interpret a behaviour for all times. For example, thebehaviour lift0 1 represents t 7! 1 for all times. In su
h
ases it does notmake sense for the transition rule to give a new (term, set of times) pairbe
ause there are no more transitions that
an be made. In other words,su
h transitions have rea
hed a terminal
on�guration. To make this
lear,we write the empty term, ", as the resulting term, so the pair ("; ;) is aterminal
on�guration. The empty term is not part of the grammar, so wede�ne the transition system as follows to a

ount for this:�! 2 (Term� P(T)) � V alue� (Term [f"g � P(T)):The transition rules are given in Figures 8.4, 8.5 and 8.6. In the rulesfor $*, integral and � there is a problem when the premis transition yields" be
ause the
on
lusion transition will
onstru
t a new behaviour using ",but " is not in the grammar. However, this is a minor point be
ause in su
h
ases the value of the overall behaviour is known for all times, so the newbehaviour is not required. One way to address this problem is to assert thatwhenever " appears in any premise, the resulting value in the
on
lusion isalways ".Re
all that to interpret open terms we require an environment, u, andthat we
an add this to the transition rules using the notation for assumptions

CHAPTER 8. COMPLETE FORMAL SEMANTICS 150
lift0 u ` lift0 E t7!F [[E℄℄u�����!T0 n ; "
$* F f����!T0 nM F 0 B b����!T0 nM B0F $* B t7!(f(t))(b(t))�������!T0 nM F 0 $* B0
no-
hange B b����!T0 n TB B0B b���!T0 n X B X ! TBX = " X
integral B b����!T0 nM B0integral B I����!T0 nM K + integral B0 R b existsK � Real(R inf(M)inf(T0) b(s):ds)I = t 7! R tinf(T0) b(s):ds
bad-integral B b����!T0 nM B0integral B ?T!R?����!T0 n ; " no R b existsFigure 8.4: Transition rules I : Behaviour expressions and no-
hange

CHAPTER 8. COMPLETE FORMAL SEMANTICS 151
Formulas for o

, non-o

 and bad-
ond rules:T = ft 2 T0 j
(t) = truegBad = ft 2 T0 j
(t) = ?B gTransition rules:
o

 B b����!T0 nM B0 C
����!T0 nM C 0B until C then D b����!T0 n "T D " T �M" T ! " Bad
non-o

 B b����!T0 nM B0 C
����!T0 nM C 0B until C then D b����!T0 nM E M ! " TM ! " BadE � B0 until C 0 then D
bad-
ond B b����!T0 nM B0 C
����!T0 nM C 0B until C then D b0����!T0 nM " " Bad �M [" Tb0 = t 7! � b(t) t =2 " Bad?[[�℄℄Figure 8.5: Transition rules II : Rea
tive behaviours

CHAPTER 8. COMPLETE FORMAL SEMANTICS 152
� [uja : x℄ ` B b����!T0 nM B0u ` �a:B b����!T0 nM �a:B0 x = b
env u ` a u(a)���!T0 n ; "
redu
e E ! E 00 E 00 e����!T0 nM E 0E e����!T0 nM E 0Figure 8.6: Transition rules III: Behaviour de�nitions and redu
ein inferen
e systems: u ` A a����!T0 nM A0:The environment does not
hange from one transition to the next be
auseCONTROL is purely de
larative. However, it does serve a dual purpose inthe transition system; it is also used by the � rule to bind variables to values.The lift0 rule yields a
onstant valued fun
tiont 7! F [[E℄℄uusing the denotation semanti
s of non-behaviour terms from Se
tion 8.4.The rules for until-then are exa
tly as given in Se
tion 6.7 and the rulesfor integral are as given in Se
tion 6.9.For re
ursive behaviour de�nitions the � rule is like the letbeh rule fromSe
tion 6.10 but without the body. This is be
ause letbeh is de�ned as

CHAPTER 8. COMPLETE FORMAL SEMANTICS 153synta
ti
 sugar in terms of � and �, as dis
ussed in Se
tion 7.4.We would like the transition system to be deterministi
, in other words,any given (term, set of times) pair should appear at most on
e (as the �rstelement) in the relation. This makes it possible to assign unique meanings toprograms using the transition system, whi
h otherwise would require a proofthat di�erent transitions for a term result in the same overall value. To bedeterministi
 we require that only one rule applies to any (term, set of times)pair, and that every rule spe
i�es a unique transition. The �rst requirementis broken by the no-
hange rule, whi
h
an be used on any (term, set oftimes) pair, giving two possible rules in most
ases. However, in pra
ti
e theno-
hange rule is only used when
ombining sub-behaviours of a
ompoundexpression so that all of the behaviours ex
ept one
an remain un
hangedby the overall transition. So long as the overall transition is made over thelongest possible interval, the uses of the no-
hange rule are ne
essary sothere is only one possible derivation of the overall transition. This suggeststhe following theorem for the determina
y of transitions.Theorem 8.10 (Transitions are deterministi
) Given any behaviourA, upperset T0 and valid environment u, there is at most one triple (A0; a;M)su
h that M is the smallest set satisfyingu ` A a����!T0 nM A0:
Proof By indu
tion on proofs of transitions. We assume that the theoremholds for sub-proofs and show that the resulting transition is unique.Case A � lift0 E. The lift0 rule gives the transition where A0 � ",a = F [[E℄℄u and M = ;. These values are unique (F is a fun
tion). Another

CHAPTER 8. COMPLETE FORMAL SEMANTICS 154transition is possible by �rst applying the no-
hange rule. In fa
t, this rule
an be applied any number of times before �nally applying the lift0 rule.However, any su
h transition results in larger sets for M (
onsider the side
ondition X ! TB for the no-
hange rule). Therefore, the transition withthe smallest set M
an only be obtained by applying the lift0 rule on itsown. The same is true for all other
ases, so from now on we will ignore theno-
hange rule unless it is a
tually needed in a transition derivation.Case A � MN . The redu
e rule is the only rule (other than no-
hange)whi
h applies. If A ! A00 then A00 is unique (by Theorem 8.7) and by theindu
tion hypothesis A00 a����!T0 nM A0is the unique transition (for the smallest M).Case A � F $* B. Only the $* rule applies. By the indu
tion hypothe-sis, the transitions F and B make, if they
an make any, are unique for thesmallest sets MF andMB. To apply the $* rule we must apply the no-
hangerule on one of these transitions so the overall transition
an be made overM = MF [MB. This is the smallest su
h M
ontaining both MF and MB(it must
ontain these sets be
ause the interval of the transition must benon-rea
tive), and so the overall transition is unique.The remaining
ases are similar to this one. For
onstru
ts whi
h havemany rules, su
h as until-then, only one applies for any (term, set of times)pair be
ause the side
onditions are mutually ex
lusive. 2Transitions preserve
losedness of terms and preserve types.Theorem 8.11 If A is
losed andu ` A a����!T0 nM A0

CHAPTER 8. COMPLETE FORMAL SEMANTICS 155then A0 is
losed.Proof By indu
tion on proofs of transitions. No transition rule introdu
esan open term (assuming the indu
tion hypothesis holds) when the initialterm is
losed, so this proof is straightforward. Note that the
ase for theredu
e rule relies on evaluation preserving
losedness. 2Theorem 8.12 (Subje
t redu
tion for �!) If � ` A : Beh � andu ` A a����!T0 nM A0then � ` A0 : Beh �. (It is not meaningful to
onstru
t a judgement whenA0 = " be
ause " is not a term, so the theorem does not in
lude this
ase.)Proof By indu
tion on proofs of transitions. The rules lift0, bad-integral,bad-
ond and env yield A0 = " so we do not need to
onsider them.Cases $*, no-
hange, integral, non-o

 and �. These rules re
onstru
t thesame kind of term with new behaviours, and these new behaviours have thesame types as the original ones by the indu
tion hypothesis.Case o

. The typing rule for until-then stipulates that D has the sametype as B until C then D.Case redu
e. By subje
t redu
tion for !, E 00 has the same type as E,and by the indu
tion hypothesis E 0 preserves this type. 28.8 Semanti
s of behaviour termsThe semanti
s of behaviours is de�ned in terms of the transition system.This gives the meaning of a behaviour term over a non-rea
tive interval. If a

CHAPTER 8. COMPLETE FORMAL SEMANTICS 156value beyond this interval is required then the next transition must be found,and so on. Thus, if A is a behaviour that satis�es a typing judgement� ` A : Beh �and u is a valid environment for A, then the meaning of A is given by thefollowing semanti
 fun
tion:B : Term! P(T) ! Env ! T ! [[�℄℄B[[A℄℄(T0)u = t 7! � a(t) t 2 T0 nMB[[A0℄℄(M)u(t)where u ` A a����!T0 nM A0:8.9 Semanti
s of all termsGiven a term, if it is a behaviour then its meaning
an be found using B,and if it is a fun
tion in the non-behaviour fragment of CONTROL then itsmeaning
an be found using F . This suggests the following semanti
 fun
tionfor a term E satisfying a typing judgement� ` E : �and an environment u that is valid with respe
t to �:[[E℄℄u 2 [[�℄℄[[E℄℄u = � F [[E℄℄u � 2 NonBehB[[E℄℄(T)uThere are other possibilities, however, su
h as a term whi
h is a fun
tionyielding a behaviour, and our semanti
s does not dire
tly give a meaning forsu
h terms. This is be
ause there are no transitions that a fun
tion yielding

CHAPTER 8. COMPLETE FORMAL SEMANTICS 157a behaviour
an make|it is ne
essary to apply the fun
tion �rst. However,be
ause free variables are allowed in our semanti
s it is possible to apply thefun
tion to a variable that is bound within the environment, thus giving abehaviour whi
h
an be evaluated with our semanti
s.Chapter summaryIn this
hapter we brought together the methods des
ribed in the previous
hapters to form a
omplete formal semanti
s for CONTROL. We used thetransition system introdu
ed in Chapter 6 and the evaluation rules fromChapter 7 to
onstru
t an operational semanti
s for any term. This requiresevaluating non-behaviour terms using the standard denotational semanti
sbe
ause to determine whi
h transition to make it is ne
essary to know thevalue of
ondition behaviours.We proved some useful properties of our semanti
s. It is determinis-ti
, whi
h requires �rst proving that the evaluation and transition rules aredeterministi
. Finally, type soundness follows from the subje
t redu
tiontheorems.

Chapter 9Appli
ations of the semanti
s
The semanti
s from Chapter 8
an be used to �nd the value of any well-typedCONTROL program. We will des
ribe how to apply the semanti
s and thenwe will provide some examples. For the �rst three examples we give detaileda

ounts of how the semanti
s is used to �nd the value of ea
h program; forea
h of the remaining examples we des
ribe the program but do not give a
omplete interpretation.9.1 Interpreting programsWe will explain how, in pra
ti
e, the formal semanti
s from the previous
hapter
an be used to �nd the meaning of any given program.In some examples we have assumed that time is a primitive in CON-TROL, but in fa
t it needs to be de�ned expli
itly. However, we do not wantto de�ne time, or other often used terms, in every program, so we will as-sume that there is a `prelude' whi
h
ontains su
h de�nitions. The �rst steptowards interpreting a program is to add the prelude to the main program.Then we must desugar all let statements to obtain a program in the
oresyntax. Only programs that are well typed|in other words generated bythe typed syntax rules|have any meaning; by de�nition the meaning of pro-158

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 159grams that are ill typed is unde�ned. At this stage we have either a programthat does not
onstru
t any behaviours, in whi
h
ase we
an apply the se-manti
s of non-behaviour terms from Se
tion 8.4, or else we have a programwhose result is a behaviour, in whi
h
ase we use the transition rules. Thepro
edure des
ribed so far is shown in Figure 9.1.Now we will des
ribe the pro
edure for evaluating a behaviour-valuedprogram. The transition rules yield formulas involving free variables. Inturn the free variables are
onstrained by side
onditions, and these side
onditions must be solved to �nd the value of the variables and hen
e of theoverall program. This is generally over a �nite interval when no behavioursrea
t, and so this pro
ess is repeated to �nd the meaning of the program forlater times. If there are no rea
tive behaviours in a program, then the ruleswill give its meaning over all times and no more transitions will be required.For some programs, however, there may always be rea
tive
omponents, andso this pro
ess
ould
ontinue inde�nitely. In su
h
ases, it is ne
essary touse indu
tion arguments to reason about programs; this is illustrated by theexample in Se
tion 9.4. The iterative pro
edure we have just des
ribed isshown in Figure 9.2.To
omplete the interpretation, the values obtained over non-rea
tiveintervals are pie
ed together as follows:[[P ℄℄ = t 7! 8><>: p0(t) t 2 T n T1p1(t) t 2 T1 n T2... ...where the values pi and sets Ti are obtained by deriving the transitionsP p0���!T n T1 P1 p1����!T1 n T2 : : :As we said above, this involves solving equations for all the free variables forea
h transition.

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 160

?PAdd prelude?P 0Desugar?P 00Well typed? -No Unde�ned?YesP 00 : �� =2 NonBeh? -No [[P 00℄℄?YesP 00 : Beh �0Apply transition rulesFigure 9.1: Interpreting programs, part I

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 161

?A : Beh �Apply transition rules?EquationsMathemati
al analysis?Possible solutionsUnique solution? -No t 7! ?[[�℄℄?YesOne solutionValid for all times? -No Next transition

�

?YesValue

A0 : Beh �

Figure 9.2: Interpreting programs, part II

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 1629.2 A re
ursive rea
tive de�nitionThe �rst example is the program,letbeh a = 1 until (time >= a) then 2 in a:For
onvenien
e, we will use B to refer to the right hand side of thede�nition of a, B � 1 until (time >= a) then 2:We begin by de-sugaring the program,letbeh a = B in a� hletbehi(�a.a) (�a.B):Let A denote this unsugared program. The next step is to use the transitionrules to �nd the value of A over a non-rea
tive interval, that is,` A a0���!T nM A1:The term A is an appli
ation, and the only rule that applies is the redu
erule whi
h will redu
e it to a top-level behaviour, using the evaluation rules,as follows: (�a.a) (�a.B)! h�i�a.B:Then, by the � rule, we must interpret B in the environment where a mapsto x, that is, [a : x℄ ` B b���!T nM B0; (9.1)

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 163
1 t7!1���!T nM 1 hlift0'i time t7!t���!T nM time htime'i a x���!T nM a henv'itime >= a t7!t�x(t)�����!T nM time >= a hlift2'i[a : x℄ ` 1 until (time >= a) then 2 t7!1���!T nM 2 ho

i

Figure 9.3: First transition for Example 9.2and then we solve for x = b (9.2)whi
h is the side
ondition from the � rule. The derivation of this transitionis best represented as a tree; see Figure 9.3. Note that we use a spe
ial
onvention in tree-like derivations; if the environment is the same in thepremis as it is in the
on
lusion, then we leave it out. The environment doesnot
hange at all in this derivation (it is always [a : x℄), so it only appears atthe bottom.The side
ondition from the o

 rule is,M = " T; (9.3)where T = ft 2 T j (t 7! t � x(t))(t)g= ft 2 T j t � x(t)g: (9.4)The derivation tree shows that the variable b used in (9.1) is equal to t 7! 1.Therefore we
an solve side
ondition (9.2),x = t 7! 1

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 164and substituting this into side
ondition (9.4) gives,T = ft 2 T j t � 1g = [1;1):In this
ase, " T = T , and so the variable M in the derivation tree equals[1;1) (by side
ondition (9.3)).In the derivation tree we made used dashed versions of the rules lift0,time, env and lift2. These are derived rules whi
h
ombine an appli
ation ofno-
hange with the rule so that the transition is over the required interval.So far we have shown that A represents the fun
tion t 7! 1 over theinterval T n [1;1) = [0; 1). The next transition is on the behaviour 2 whi
his trivial, 2 t7!2�����![1;1) n ; " hlift0iThe ; signi�es that there are no more transitions (be
ause the behaviour isnot rea
tive) and so the value is t 7! 2 for all times in [1;1). We now knowthe
omplete value of the program,[[letbeh a = B in a℄℄ = t 7! � (t 7! 1)(t) t 2 [0; 1)(t 7! 2)(t) t 2 [1;1)= t 7! � 1 t < 129.3 A re
ursive integralThis example illustrates integral equations. The program is,letbeh a = 1 + integral a in a:Again, we use B to refer to the right hand side of a,B � 1 + integral a

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 165
1 t7!1��!T n ; " hlift0i a x��!T n ; " henviintegral a t7!R tinf(T)x(s):ds���������!T n ; " hintegrali[a : x℄ ` 1 + integral a t7!1+R tinf(T)x(s):ds�����������!T n ; " hlift2 (+)i

Figure 9.4: First transition for Example 9.3and then the program is the same as in the previous example ex
ept for B.The pro
edure is therefore the same: de-sugar; use the redu
e rule; and �ndthe �rst transition that B makes; that is, �nd,[a : x℄ ` B b���!T nM B0;The derivation tree for this transition is shown in Figure 9.4. Note that thereare no side
onditions restri
ting M in the derivation tree, so it
an be anyset of times. If we
hoose M = ; then the transition is valid over the intervalT n ;; in other words, for all times.This time the side
ondition x = b is,x = t 7! 1 + Z tinf(T)x(s):dsand, sin
e inf(T) = 0, this is the integral equation,x(t) = 1 + Z t0 x(s):ds:This integral equation has a unique solution,x1(t) = et:(see [HW91℄ for details). This is the
omplete meaning of the program.

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 1669.4 A re
ursive fun
tionIn Se
tion 7.3 we saw the following programletre
 b = �n.n until (time >= n+1)then b (n+1)in b 0:The fun
tion b takes a number n and yields a behaviour that is initially nand in
rements by one for ea
h se
ond after time n. The program
alls bwith zero so that the result is a
ounter starting from zero and in
rementingea
h se
ond.We will refer to the right hand side of the de�nition of b by B,B � �n.n until (time >= n+1) then b (n+1):Then we de-sugar and apply the redu
e rule as follows:letre
 b = B in b 0� hletre
i(�b.b 0) (�b.B)! h�i(�b.B) 0! h�i(�n.n until (time >= n+1)then (�b.B) (n+1)) 0! h�i0 until (time >= 0+1) then (�b.B) (0+1)We
an apply the transition rules to this last program be
ause it is a be-haviour. We will refer to the after-behaviour of this term by F1;F1 = (�b.B) (0+1)

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 167
0 t7!0���!T nM 0 hlift0'i time t7!t���!T nM time htime'i 0+1 t7!1���!T nM 0+1 hlift0'itime >= 0+1 t7!t�1���!T nM time >= 0+1 hlift2i0 until (time >= 0+1) then F1 t7!0�����!T n [1;1) F1 ho

i

Figure 9.5: First transition for Example 9.4The derivation tree for the overall term is shown in Figure 9.5. Noti
e thatthis time the environment is empty, be
ause there are no behaviours that arede�ned re
ursively (b is a fun
tion and not a behaviour).The side
onditions from the ho

i rule areM = " TT = ft 2 T j (t 7! t � 1)(t)g= ft 2 T j t � 1g= [1;1):Hen
e, the �rst transition tell us that the program means t 7! 0 over theinterval T n [1;1) = [0; 1). The next transition is on the behaviour(�b.B) (0+1)over the interval [1;1). However, this is the same as the �rst transitionex
ept with (0+1) repla
ing 0 and [1;1) repla
ing T throughout. Hen
e,the transition will yield t 7! 1 over the interval [1; 2). Then a simple indu
tive

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 168argument shows that the meaning of the program, A, is,[[A℄℄ = t 7! 8>>><>>>: 0 t 2 [0; 1)1 t 2 [1; 2)2 t 2 [2; 3)... ... :The graph of this fun
tion is:
-

6Value
Time0 1 2 3123 br br

It is now straightforward to show that program A is semanti
ally equivalentto lift0 floor $* timewhere floor is a built in fun
tion with the following semanti
s:[[floor℄℄ = x 7! 8>>><>>>: 0 x 2 [0; 1)1 x 2 [1; 2)2 x 2 [2; 3)... ... :(i.e., the usual
oor fun
tion on real numbers.)9.5 Chess Clo
ksA
hess
lo
k has two
lo
k fa
es whi
h show the time ea
h player in a gameof
hess has remaining. At the start of the game both
lo
ks are set with a

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 169�xed amount of time and white's
lo
k begins
ounting down. After white hasmoved she presses a button whi
h stops her
lo
k, and bla
k's
lo
k beginsto
ount down. Similarly, after bla
k has moved he presses a button andwhite's
lo
k again starts to
ount down. For a
omputer implementationthis requires external input for the buttons, su
h as mouse button events.CONTROL does not provide su
h fa
ilities so we will represent button pressesby boolean behaviours that are true at times when the button is held down;say wb for white's button and bb for bla
k's. These behaviours are just freevariables in the program, so we
an interpret the program with respe
t tothese behaviours.One way to
al
ulate the time a player has used up is to integrate aplaying-indi
ator behaviour. This is a behaviour that is 1 while a player istaking their turn and 0 while their opponent is. Only one player is using uptime at any instant, so when white's playing-indi
ator swit
hes from 1 to 0bla
k's should swit
h from 0 to 1, and vi
e versa. Therefore it is easier tode�ne the playing-indi
ators for both players as a pair,letre
 pi = (1, 0) until wb then(0, 1) until bb then piin ...So we need to extend CONTROL with pairs. The syntax is extended asfollows: � ::= �*�E ::= (E, E) j fst E j snd Eand the type rules for pairs are:E : � F : �(E, F) : �*� E : �*�fst E : � E : �*�snd E : �

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 170The domains for pair types are produ
t domains ordered pointwise, and apair of values is interpreted denotationally by interpreting ea
h element ofthe pair.Returning to the playing indi
ator pi, the semanti
s of until-then en-sures that it rea
ts the next time when wb or bb is true, ignoring all thebutton presses in the past. This is exa
tly what we require. (In Fran this
an only be a
hieved by using user arguments whi
h would
ompli
ate theprogram
onsiderably.) Furthermore, if white presses her button whilst bla
kis playing (or vi
e versa) it has no e�e
t. This is important be
ause playersmay a

identally press their button twi
e in rapid su

ession.The behaviour pi is a repeating behaviour, so it must be de�ned byletre
 and
ould not be de�ned by letbeh. The amount of time ea
hplayer has left, say wt and bt,
an be de�ned as follows:wt � t0 - integral (fst pi)bt � t0 - integral (snd pi)Here t0 is the amount of time players have at the start of the game. Thesevalues
ould be represented graphi
ally in an extension of CONTROL withoutput. (We have implemented a similar program in Fran to display
hess
lo
ks.)Here is a
omplete program whi
h yields the pair (wt, bt),letre
 pi = (1, 0) until wb then(0, 1) until bb then piin (t0 - integral (fst pi), t0 - integral (snd pi))

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 171Desugaring this program gives,(� pi : Beh (Real * Real).(t0 - integral (fst pi), t0 - integral (snd pi)))(� pi : Beh (Real * Real).(1, 0) until wb then ((0, 1) until bb then pi))Be
ause this program does not make use of re
ursive behaviours, it
an beinterpreted by either our denotational or operational semanti
s. Given valuesfor wb and bb we
an then
ompute the value of the behaviour. This requiresa lengthy but straightforward
al
ulation.9.6 Water tankIn Se
tion 2.8 we
onsidered a hybrid system that des
ribes a water tank
ontroller whi
h maintains the level of water in a tank by opening and
losinga valve; when the level rises to 60 units it
loses the valve and when it falls to30 units it re-opens the valve. This system
an be implemented in CONTROLas follows: let beh h = 40 + integral h're
 h' = 0.2 until h >= 60 then-0.1 until h <= 30 then h'in hThis program is
onsiderably simpler than the des
ription given in the CSP-based spe
i�
ation notation used in Se
tion 2.8. Moreover, it is a CONTROLprogram and so it is exe
utable as well as a pre
ise spe
i�
ation of the system.Again, to �nd the
omplete meaning of the program requires a lengthy butroutine
al
ulation. It is then possible to prove
onditions su
h as 30 � h �60, whi
h is the main goal of the �nal se
tion of He's paper [Jif94℄.

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 1729.7 LiftLifts are a typi
al example of rea
tive systems and lift simulations are valu-able for analysing proposed designs. Our lift program has only two
oorswith a button on ea
h
oor to
all the lift. There are no buttons inside thelift to sele
t whi
h
oor.The buttons are modelled by boolean behaviours b0 and b1 for the ground
oor and �rst
oor; these are true when the button is pressed and falseotherwise. When a button is pressed it lights up and remains lit until thelift stops at that
oor. The status of the ground
oor button is given by thefollowing behaviour, where at0 is a boolean behaviour that is true when thelift is at the ground
oor,l0 = false until b0 thentrue until at0 then l0(and similarly for l1). So the button is unlit (l0 is false) until it is pressed(b0 be
omes true) and then it is lit (true) until the lift arrives (at0), andthen it returns to its original unlit state.The lift waits at
oor 0 until there is a request from
oor 1 (i.e., until thebutton on
oor 1 be
omes lit). Then it goes up to
oor 1 and waits thereuntil there is a request from
oor 0. Then it goes down and is ba
k to itsinitial position. The position of the lift, where p0 and p1 are the positionsof the
oors, is as follows:p = p0 until l1 thengoUp until at1 thenp1 until l0 thengoDown until at0 then p

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 173The position behaviours goUp and goDown are just linear fun
tions:goUp = p0 + integral vgoDown = p1 - integral vwhere v is the velo
ity of the lift. (Ideally this should vary as the lift a

el-erates and de
elerates, but as a �rst approximation it
ould be
onstant.)The behaviour at0 is just a boolean behaviour:at0 = (p == p0)(and similarly for at1).These de�nitions seem intuitive but when we try to
onstru
t the wholeprogram it is not
lear whether we should use letre
 or letbeh to de�nep. It is
ertainly a repeating behaviour, whi
h suggests that we should useletre
, but it also refers to itself (it appears in the
onditions at0 andat1) whi
h suggests that we should use letbeh. The solution is to de�ne arepeating behaviour p' using letre
, and then de�ne the a
tual behaviour pin terms of p' using letbeh. The resulting de�nitions are mutually re
ursiveso we must use the multiple let statement des
ribed in Se
tion 7.7. The samete
hnique is used for l0 and l1. The overall program whi
h gives the positionof the lift is as follows:let re
 p' = p0 until l1 thengoUp until at1 thenp1 until l0 thengoDown until at0 then p'beh p = p're
 l0' = false until b0 then

CHAPTER 9. APPLICATIONS OF THE SEMANTICS 174true until at0 then l0'beh l0 = l0're
 l1' = false until b1 thentrue until at1 then l1'beh l1 = l1'beh at0 = (p == p0)beh at1 = (p == p0)in p

Chapter 10Summary and future work
In this
hapter we
onsider the impli
ations of our work and identify themain
ontributions. Then we des
ribe some possibilities for future work.10.1 SummaryWe have presented a
omplete formal semanti
s for a new language
alledCONTROL. This language provides powerful fa
ilities for des
ribing be-haviours and for using them in
onjun
tion with fun
tions. It is intendedas a
ore for pra
ti
al languages for programming rea
tive systems, and webelieve that su
h languages will bene�t from the simple way temporal andrea
tive
omponents
an be des
ribed. This simpli
ity was demonstrated bythe example programs given in Chapter 9.The semanti
 theory of CONTROL is interesting �rstly be
ause it solvessome te
hni
al problems
on
erning events and integration, and se
ondly be-
ause it
ombines the
ontinuous mathemati
s of behaviours with the dis
retemathemati
s of fun
tions. Traditionally these bran
hes are quite separate butin the �eld of rea
tive systems it is
lear that they are both essential. Ourtheory may therefore have impli
ations to related areas su
h as spe
i�
ationof rea
tive systems and hybrid systems.175

CHAPTER 10. SUMMARY AND FUTURE WORK 176Our original motivation was to develop a semanti
s for Fran, and ourtheory of CONTROL is a valuable �rst step towards this. Our semanti
s ofthe
ore operators improves on previous attempts by distinguishing eventsthat o

ur at a given time from those that o

ur stri
tly after some time.Also we de�ne
on
rete domains of values for all types. We will not proposeto use our theory as a basis for a semanti
s for Fran, however, be
ause wehave improved the design of CONTROL, based on semanti

onsiderations,and it di�ers from Fran in a number of ways, as we shall now des
ribe.Firstly, we have eliminated user arguments (or start times) whi
h
om-pli
ate rea
tive programs in Fran. This was a
hieved by making the timeswhen behaviours are alive impli
it in the stru
ture of programs. Se
ondly,we have introdu
ed a new fa
ility for de�ning re
ursive behaviours. Thismakes the distin
tion between re
ursive fun
tions that yield behaviours anda
tual behaviour obje
ts that have a re
ursive de�nition. The examples inthis dissertation show the pra
ti
al importan
e of this distin
tion, and theelegant programming style that results. Furthermore, it provides resetableand persistent behaviours whi
h are essential given that the start time ofbehaviours
an no longer be spe
i�ed.These
hanges improve signi�
antly on Fran, and CONTROL programsare often mu
h simpler than the
orresponding Fran programs. Consequentlywe would prefer to
hange Fran so that its
ore is based on CONTROL ratherthan adapting our semanti
s for the existing Fran language.Our formal semanti
s provides a rigorous basis for reasoning about CON-TROL programs. For small examples it is possible to use the semanti
s toprove that programs are
orre
t. This generally involves a
ombination ofte
hniques; in parti
ular, applying the transition rules, using mathemati
alanalysis for integrals and using indu
tion for re
ursive de�nitions. This makes

CHAPTER 10. SUMMARY AND FUTURE WORK 177it less suitable for automati
 veri�
ation
ompared to many languages, and sowe may need to develop new te
hniques for reasoning about large programs.We will now
onsider some spe
i�
 topi
s for future work in addition tothose mentioned above.10.2 Implementations of CONTROLAn implementation of CONTROL would allow us to experiment with largerprograms and develop the language so that it is usable for real appli
ations.There are a number of diÆ
ulties with implementing our semanti
s, however,as we shall now dis
uss.We have developed a theory of an idealised language. In parti
ular, CON-TROL makes the following assumptions:� Real numbers and operations on them are exa
t.� Integration of real valued behaviours is exa
t.� Events in rea
tive behaviours are determined exa
tly.In pra
ti
e, we do not have the te
hniques to implement these features. Theoperations available on representations of exa
t real numbers has expandedin re
ent years ([PEE97℄), but not suÆ
iently to implement CONTROL.The te
hniques for exa
t integration ([EE96℄) are not enough for CONTROLbe
ause integrals may appear in re
ursive behaviours, and su
h programs arethen equivalent to integral equations rather than plain integrals. However,future progress in this area may allow an implementation of CONTROL usingthese exa
t representations of real numbers. That said, it is important todistinguish these te
hniques from symboli
, or analyti
, te
hniques for solvingintegral equations. It is highly unlikely that we will ever have symboli

CHAPTER 10. SUMMARY AND FUTURE WORK 178te
hniques for solving all integral equations be
ause in most
ases there doesnot exist a formula that represents the fun
tion that satis�es the equations.More pre
isely, for some
ases it is possible to prove that a fun
tion satisfyingthe equations exists, but that there is no
losed form formula for this fun
tion.At present there are two possible approa
hes for implementations:1. Restri
t the types and operators so that real numbers, integrals andevent o

urren
es
an be
omputed exa
tly.2. Use approximation methods.We have done preliminary investigations into both these approa
hes. A sub-set of the reals with exa
t operations
an be obtained using ratios of integers.We have tried this in Haskell by using the type Ratio Integer for real num-bers. We must be sure to avoid all operations that
an
ompute irrationalnumbers. One way is to restri
t behaviours to linear fun
tions, and
onse-quently integration may only be applied to
onstant behaviours otherwisethe result will be non-linear. Be
ause all behaviours are linear, event dete
-tion is simply �nding the interse
tion of straight lines (whi
h are always atrational points). Of
ourse this approa
h is very restri
tive and only usefulin appli
ations where we know beforehand that all behaviours are linear.Approximation methods are used by Fran for the same three features thatwe require them for in CONTROL. We have experimented with many dif-ferent representations of behaviours and te
hniques for integration [Dan97b℄,but we have not implemented full CONTROL using approximation te
h-niques. One reason is that the embedded language approa
h that Fran usesis not possible for CONTROL be
ause there are two di�erent me
hanismsfor re
ursion. Embedding CONTROL in Haskell would only allow re
ursivede�nitions using Haskell's re
ursion me
hanism. For this reason it is ne
es-

CHAPTER 10. SUMMARY AND FUTURE WORK 179sary to write a new interpreter or
ompiler for CONTROL rather than usethe embedded language approa
h. Disappointingly for Fran resear
hers, we
annot improve the existing implementation of Fran with our
ore languagesemanti
s for the same reason.10.3 Dis
rete modelsIt is important to have an operational semanti
s for approximate implementa-tions. This would provide a formal des
ription for verifying implementationsand for reasoning about the behaviour of programs. It must
apture theapproximation te
hniques used, ideally in a modular way so that di�erentmethods
an be substituted into the same semanti
 framework. A semanti
staking this approa
h will be based on dis
rete time models of behavioursbe
ause the approximation methods are dis
rete. In this se
tion we will
onsider dis
rete models.A dis
rete representation of behaviours uses (time, value) pairs to give thevalue of a behaviour at various points in time. This is similar to imperativestreams, ex
ept that they also allow side e�e
ts [S
h96b℄. One way to de�nea sequen
e of (time, value) pairs is to de�ne a fun
tion whi
h maps lists oftimes to
orresponding lists of values. Using this approa
h we have de�nedthe
ore operators of CONTROL as a Haskell program|see Appendix B. Itonly implements real valued behaviours to illustrate the approa
h; extendingthis to all types of behaviours may be possible using the advan
ed extensionsof the Haskell type system [Jon97℄. We have used Euler's method [BF93℄ for
al
ulating integrals.The dis
rete model gives an operational semanti
s for the
ore operators.It be
omes more
ompli
ated when �-abstra
tions and re
ursive fun
tions areintrodu
ed, but there are no serious diÆ
ulties. Re
ursive behaviours
an be

CHAPTER 10. SUMMARY AND FUTURE WORK 180a

ounted for by introdu
ing a variable whi
h denotes a list of values. Thiswill lead to re
ursively de�ned lists, but these should be valid for re
ursiveintegrals and rea
tive behaviours for the following reasons:� Euler's method for integration is designed to solve integral equations,so it does not need the
urrent sample point to
al
ulate the integralat that point, only the previous points. Therefore re
ursive integralsnever
reate
y
li
 dependen
ies.� Re
ursive rea
tive behaviours
an be dealt with in the same way Frandoes; until evaluates the
ondition at the previous point, ensuringthat the de�nitions are never
y
li
.One interesting idea for validating the semanti
s of re
ursive behaviours withthis semanti
s is to use re
ursive lists in Haskell and then show that they areprodu
tive [Sij89℄.Given that the dis
rete model has a relatively simple semanti
s it seemsnatural to try and extrapolate an exa
t semanti
s as the limit of the approx-imate semanti
s. In other words, de�ne the exa
t semanti
s to be the list of(time, value) pairs obtained as the gap between points tends to zero. Thisapproa
h was explored early on in our resear
h, but there are some te
hni
alproblems:� Assuming that our aim is to show that dis
rete models approximatethe idealised exa
t model, the approa
h is
ir
ular be
ause the exa
tmodel is in terms of a parti
ular dis
rete model.� Say we approa
h the limit by inserting new points between existingpoints. At the limit the number (time, value) pairs is
ountable, andso they do not
over the real line. Therefore it is not a
ontinuous timemodel.

CHAPTER 10. SUMMARY AND FUTURE WORK 181It may be possible to over
ome these problems, but there is another drawba
kwith this approa
h; it does not provide a
onvenient and useful theory forreasoning about programs be
ause all values are expressed as limits. Thismakes it very diÆ
ult to manipulate the values obtained, whereas our dire
tapproa
h gives a
tual fun
tions of time whi
h are simple to use.10.4 Approximation and
onvergen
eIn the previous se
tion we dis
ussed dis
rete models of behaviours. Theintention is that they approximate the exa
t semanti
s and are easier toimplement, but we need to establish what it means for a dis
rete model toapproximate the exa
t semanti
s. The situation is similar to approximationte
hniques in numeri
al analysis, where
areful analysis of the errors forea
h methods is
ru
ial to the development of new methods. The approa
htaken in numeri
al analysis is usually the one suggested by Stra
hey thatwe mentioned in the introdu
tion: �rst
onsider the result if the values wereexa
t, and then
onsider the errors due to approximation. It may be easier toreason about the errors for individual programs, but if we
an obtain usefulerror results for the language, then we save mu
h repetition of e�ort.Following numeri
al methods the most promising dire
tion is trying toestablish when a dis
rete model
onverges to the exa
t semanti
s as the gapbetween sample times tends to zero. The idea of
onvergen
e is similar tothe suggestion in the previous se
tion of extrapolating an exa
t model froma dis
rete model, but the problems we identi�ed there are less importanthere be
ause we are not using
onvergen
e to
onstru
t a model, merely toestablish a
orresponden
e. So
onvergen
e is just making a
laim about agiven dis
rete model, and if a model
onverges to the exa
t semanti
s thenit is likely to be easier to reason about the errors due to approximation than

CHAPTER 10. SUMMARY AND FUTURE WORK 182if it does not.An open question is whether the limit of the dis
rete model we outlinedin Se
tion 10.3
onverges to our exa
t semanti
s. Without integration weexpe
t there is a
lose
orresponden
e. The term lift x always yields x, andf $* b will
onverge so long as f and b do. Integrals may
ause diÆ
ultiesbe
ause our exa
t semanti
s yields bottom when there are many solutions tointegral equations, whereas Euler's method will always
ompute a solution.Convergen
e results for rea
tivity, fun
tions and re
ursive behaviours are
hallenging areas for future work.

Appendix AConstants in CONTROL
0, 1, : : : : Realtrue, false : Boolif� : Bool -> � -> � -> �+, -, *, / : Real -> Real -> Real-, sin,
os, tan, exp, log : Real -> Real/\, \/, <-> : Bool -> Bool -> Boolnot : Bool -> Bool>, <, >=, <= : Real -> Real -> Bool==�, /=� : � -> � -> Bool

183

Appendix BA dis
rete model of CONTROLin Haskell
type MReal = Doubletype Time = MRealdata Beh = Lift0 MReal| Time| Lift1 (MReal -> MReal) Beh| Until Beh Cond Beh| Integral Behdata Cond = LiftB (Bool -> Bool -> Bool) Cond Cond| LiftC (MReal -> MReal -> Bool) Beh Behats :: Beh -> [Time℄ -> [MReal℄ats (Lift0 x) ts = map (\t -> x) tsats (Time) ts = tsats (Lift1 f b) ts = map f (ats b ts)ats (Until b
 d) ts = take i bs ++ ats d (drop i ts)wherebs = ats b ts
s = atsC
 ts 184

APPENDIX B. A DISCRETE MODEL OF CONTROL IN HASKELL 185i = length (takeWhile (== False)
s)ats (Integral b) ts = euler ts (ats b ts)euler ts xs = eulerStep 0 ts xswhereeulerStep s (t0:ts�(t1:_)) (x:xs)= s : eulerStep (s + (t1-t0)*x) ts xsatsC (LiftB op
1
2) ts= zipWith op (atsC
1 ts) (atsC
2 ts)atsC (LiftC op b1 b2) ts= zipWith op (ats b1 ts) (ats b2 ts)

Referen
es
[Apo74℄ T. M. Apostol. Mathemati
al Analysis. Addison Wesley, 2 edi-tion, 1974.[Ber97℄ G. Berry. The foundations of Esterel, 1997.[BF93℄ R.L. Burden and J.D. Faires. Numeri
al analysis. PWS-KentPublishing Company, 1993.[Car97℄ Lu
a Cardelli. Type systems. Allen B. Tu
ker (Ed.): The Com-puter S
ien
e and Engineering Handbook. CRC Press, ISBN:0-8493-2909-4. Chapter 103, pp 2208-2236, 1997.[CRH93℄ Zhou Chao
hen, A. P. Ravn, and M. R. Hansen. An extendedduration
al
ulus for hybrid systems. In Hybrid Systems, R.L.Grossman, A. Nerode, A.P. Ravn, H. Ris
hel (Eds.), LNCS 736,Springer-Verlag, pages 36{59, 1993.[Dan84℄ R. B. Dannenberg. Ar
ti
: A fun
tional language for real-time
ontrol. In ACM Symposium on LISP and Fun
tional Program-ming, pages 96{103, 1984.[Dan97a℄ Anthony C. Daniels. Fran in a
tion!http://www.
s.nott.a
.uk/~ a
d/publi
ations.html, 1997.186

REFERENCES 187[Dan97b℄ Anthony C. Daniels. Implementing real-valued fun
tions for in-tegrals and ODEs. http://www.
s.nott.a
.uk/~ a
d/report.ps,1997.[EE96℄ Mart�in Es
ard�o and Abbas Edalat. Integration in Real PCF.In Pro
eedings of the 11th Annual IEEE Symposium on Logi
In Computer S
ien
e, New Brunswi
k, New Jersey, USA, pages382{393, 1996.[EH97℄ Conal Elliott and Paul Hudak. Fun
tional rea
tive animation.In Pro
eedings of the 1997 ACM SIGPLAN International Con-feren
e on Fun
tional Programming, 1997.[Ell96℄ Conal Elliott. A brief introdu
tion to A
tiveVRML. Te
hni
alReport MSR-TR-96-05, Mi
rosoft Resear
h, 1996.[Ell97℄ Conal Elliott. Modeling intera
tive 3D and multimedia anima-tion with an embedded language. In In the Pro
eedings of the�rst
onferen
e on Domain-Spe
i�
 Languages, O
tober 1997.[Ell98a℄ Conal Elliott. Composing rea
tive animations. Dr. Dobb's Jour-nal, July 1998.[Ell98b℄ Conal Elliott. De
larative event-oriented programming.http://www.resear
h.mi
rosoft.
om/
onal/papers/default.htm,1998.[Ell98
℄ Conal Elliott. A �fteen puzzle in Fran.http://www.resear
h.mi
rosoft.
om/
onal/papers/default.htm,1998.

REFERENCES 188[Ell98d℄ Conal Elliott. Fun
tional implementations of
ontinuous mod-eled animation. In In the Pro
eedings of PLILP/ALP '98, 1998.[Ell98e℄ Conal Elliott. Two-handed image navigation in Fran. In 1998Glasgow Fun
tional Programming Workshop, 1998.[Ell99a℄ Conal Elliott. An embedded modeling language approa
h tointera
tive 3D and multimedia animation. To appear in IEEETransa
tions on Software Engineering, 1999.[Ell99b℄ Conal Elliott. From fun
tional animation to sprite-based display.In Pro
eedings of PADL '99, 1999.[ESAE95℄ Conal Elliott, Greg S
he
hter, and Salim Abi-Ezzi. Media
ow,a framework for distributed integrated media. Te
hni
al ReportSMLI TR-95-40, Sun Mi
rosystems Laboratories, June 1995.[ESYAE94℄ Conal Elliott, Greg S
he
hter, Ri
ky Yeung, and Salim Abi-Ezzi.TBAG: A high level framework for intera
tive, animated 3Dgraphi
s appli
ations. In Pro
eedings of SIGGRAPH '94, 1994.[Gun92℄ Carl Gunter. Semanti
s of programming languages. MIT Press,1992.[HCRP91℄ N. Halbwa
hs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
hronous data
ow programming language LUSTRE. In Pro
eed-ings IEEE, volume 79, pages 1305{1305, 1991.[Hoa72℄ C. A. R. Hoare. Towards a theory of parallel programming. InOperating systems te
hniques: Pro
eedings of a seminar. Hoare,C. A. R. and Perrott, R. H. editors. A. P. I. C. studeies in Datapro
essing 9., pages 61{71. A
ademi
 Press, London, 1972.

REFERENCES 189[Hoa85℄ C. A. R. Hoare. Communi
ating sequential pro
esses. Prenti
e-hall international, London, 1985.[HW91℄ J.H. Hubbard and B.H. West. Di�erential equations: A dynam-i
al systems approa
h. Part 1: Ordinary di�erential equations.Springer-Verlag, 1991.[Jif94℄ He Jifeng. From CSP to hybrid systems. In A Classi
al Mind,Essays in Honour of C.A.R. Hoare, Prenti
e Hall, pages 171{189, 1994.[Jon97℄ Mark P. Jones. First-
lass polymorphism with type inferen
e. InIn Pro
eedings of the Twenty Fourth Annual ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages,1997.[KM77℄ G. Kahn and D.B. Ma
Queen. Coroutines and networks of par-allel pro
esses. In IFIP77, B. Gil
hrist (ed.), North-Holland,pages 993{998, 1977.[Koy90℄ R. Koymans. Spe
ifying real-time properties with metri
 tem-poral logi
. Real-Time Systems, Kluwer A
ademi
 Publishers,2(4):255{299, 1990.[Lan66℄ P. Landin. The next 700 programming languages. Communi
a-tions of the ACM, 9(3):157{166, 1966.[LGLL91℄ P. LeGuerni
, T. Gautier, M. LeBorgne, and C. LeMarire. Pro-gramming real times appli
ations with Signal. In Pro
eedingsIEEE, pages 1321{1336, 1991.

REFERENCES 190[Lin97℄ Gary Shu Ling. Fran: Its semanti
s and existing problems.http://pantheon.yale.edu/~ sling/resear
h/690Report.ps.zip,1997.[Lin98℄ Gary Ling. Frob|fun
tional roboti
s.http://www.
s.yale.edu/ ling/, 1998.[Mil91℄ R. Milner. The polyadi
 �-
al
ulus: A tutorial. Te
hni
al ReportECS-LFCS-91-180, Department of Computer S
ien
e, Universityof Edinburgh, 1991.[Mit96℄ John C. Mit
hell. Foundations for programming languages. MITPress, 1996.[MP92℄ Z. Manna and A. Pnueli. The Temporal Logi
 of Rea
tive andCon
urrent Systems. Springer-Verlag: Heidelberg, Germany,1992.[PEE97℄ P. J. Potts, A. Edalat, and M. H. Es
ard�o. Semanti
s of ex-a
t real arithmeti
. In Pro
eedings of the Twelfth Anual IEEESymposium on Logi
 in Computer S
ien
e, pages 248{257, 1997.[PHE99℄ John Peterson, Paul Hudak, and Conal Elliott. Lambda in mo-tion: Controlling robots with haskell. In Pro
eedings of PADL'99, 1999.[Rey98℄ John C. Reynolds. Theories of programming languages. Cam-bridge University Press, 1998.[RR87℄ G.M. Reed and V.W. Ros
oe. Metri
 spa
es as models for real-time
on
urren
y. Mathemati
al Foundations of Programming.

REFERENCES 191Le
. Notes in Comp. S
i. 298, Springer-Verlag, pages 331{343,1987.[Sag98℄ Meurig Sage. Chronos. http://www.d
s.gla.a
.uk/~meurig/
hronos/,1998.[S
h90℄ S. S
hneider. Corre
tness and
ommuni
ation in real-time sys-tems. PhD thesis, Oxford University Computing Laboratory,1990.[S
h96a℄ E. S
holz. Pidgets|unifying pi
tures and widgets in a
onstraint-based framework for
on
urrent fun
tional gui pro-gramming. In 8th International Symposium on ProgrammingLanguages: Implementations Implementations, Logi
s, and Pro-grams, Aa
hen, Germany, Springer-Verlag, 1996.[S
h96b℄ Enno S
holz. A monad of imperative streams. In Glasgow FPworkshop, 1996.[S
h98℄ E. S
holz. A framwork for programming intera
tive graphi
s in afun
tional programming language. PhD thesis, Freien Universit�atBerlin, 1998.[S
o70a℄ Dana S. S
ott. The latti
e of
ow diagrams. Te
hni
al ReportPRG-3, Programming Resear
h Group, Oxford University Com-puting Laboratory, 1970.[S
o70b℄ Dana S. S
ott. Outline of a mathemati
al theory of
omputation.Te
hni
al Report PRG-2, Programming Resear
h Group, OxfordUniversity Computing Laboratory, 1970.

REFERENCES 192[S
o76℄ Dana S. S
ott. Data types as latti
es. SIAM journal on
om-puting, 5(3):522{587, 1976.[S
o93℄ Dana S. S
ott. A type-theoreti
al alternative to ISWIM, CUCH,OWHY. Theoreti
al
omputer s
ien
e, 121, 1993.[SEYAE94℄ Greg S
he
hter, Conal Elliott, Ri
ky Yeung, and Salim Abi-Ezzi.Fun
tional 3D graphi
s in C++|with an obje
t-oriented, mul-tiple dispat
hing implementation. In Pro
eedings of the 4th Eu-rographi
s Workshop on Obje
t-Oriented Graphi
s, 1994.[Sij89℄ Ben A. Sijtsma. On the produ
tivity of re
ursive list de�ni-tions. ACM Transa
tions on Programming Languages and Sys-tems, 11(4):633{649, 1989.[SS71℄ Dana S. S
ott and Christopher Stra
hey. Toward a mathemati
alsemanti
s for
omputer languages. Te
hni
al Report PRG-6,Programming Resear
h Group, Oxford University ComputingLaboratory, 1971.[Sto77℄ Joseph E. Stoy. Denotational semanti
s: The S
ott-Stra
heyapproa
h to programming language theory. MIT press, 1977.[Str73℄ Christopher Stra
hey. The varieties of programming language.Te
hni
al Report Te
hni
al monograph PRG-10, Programmingresear
h group, Oxford University
omputing laboratory, 1973.[Ten91℄ R. D. Tennent. Semanti
s of programming languages. Prenti
e-Hall, 1991.[TF92℄ Thomas and Finney. Cal
ulus and analyti
 geometry. Addison-Wesley Publishing Company, 1992.

REFERENCES 193[Tho98℄ Simon Thompson. A fun
tional rea
tive animation of a lift us-ing Fran. Te
hni
al Report TR 5-98, Computing Laboratory,University of Kent, May 1998.[Vui90℄ J. E. Vuillemin. Exa
t real
omputer arithmeti
 with
ontinuedfra
tions. IEEE Transa
tions on Computers, 39(8):1087{1105,1990.

