
On Time and A
tion Lo
k Free Des
ription ofTimed SystemsHoward Bowman�Computing Laboratory, University of Kent at Canterbury,Canterbury, Kent, CT2 7NF, United KingdomEmail: H.Bowman�uk
.a
.ukWWW: http://www.
s.uk
.a
.uk/people/sta�/hb5/Abstra
tTime and a
tion lo
ks
an arise freely in timed automata spe
i�
a-tion. While both are error situations, time lo
ks are by far the moreserious fault. This is be
ause their o

urren
e prevents any further evo-lution of the system. First we investigate te
hniques for avoiding theo

urren
e of timelo
ks. The
entral aspe
t of our solution is a rede�-nition of automata parallel
omposition based on the Timed Automatawith Deadlines Framework of Bornot and Sifakis. Then the se
ond resultwe present is a notion of parallel
omposition whi
h preserves a
tion lo
kfreeness. In the sense that, if any
omponent automaton is a
tion lo
kfree, then the
omposition will also be a
tion lo
k free.1 Introdu
tionDeadlo
ks are the
hara
teristi
 error situation arising in
on
urrent systems.In very general terms, they are states in whi
h the system is unable to progressfurther.Classi
ally the term deadlo
k has been seen as synonymous with what we will
all a
tion lo
ks . These are situations in whi
h, how ever long time is allowed toprogress, the system will never be able to perform an a
tion1. Su
h a
tion lo
ksoften result from unmat
hable a
tion o�ers, e.g. when a
omponent wishes toperform a syn
hronisation a
tion, but is unable to be
ause no other pro
ess
ano�er a mat
hing syn
hronisation. For example, if ? denotes an input a
tivityand ! an output a
tivity, the parallel
omposition |<A,B> of the two automata�Howard Bowman is
urrently on leave at VERIMAG, Centre Equation, 2 rue Vignate,38610 GIERES, Fran
e with the support of an EU Marie Curie Fellowship.1Note that even if real-time is not modelled expli
itly, e.g. in (untimed) pro
ess algebrasu
h as CCS, in temporal terms, deadlo
ks still
on
eptually have this interpretation.1

A

a?

b?

a0

a1

b0

a!

B

Figure 1: A simple a
tion lo
kshown in �gure 1 will be a
tion lo
ked in state a1 b0. This is be
ause how everlong either party waits they will never be able to ful�l the syn
hronisation theyare requesting. Mu
h of
on
urren
y theory resear
h has been dominated bythe issue of deadlo
ks and their dete
tion.In the
ontext of timed systems, new lo
king situations arise. In parti
ular,in this paper, we will be working in an environment with two main types oflo
king situation. As a result of this, we have had to be
areful with our
hoi
eof terminology. Thus, in this paper the term deadlo
k is the most general. Itembra
es a
tion lo
ks and the form of lo
king behaviour that
omes with timedsystems - timelo
ks2.Timelo
ks are situations in whi
h, informally speaking, time is preventedfrom passing beyond a
ertain point. They are highly degenerate o

urren
es[6℄ be
ause they yield a global blo
kage of the systems evolution. In parti
ular,if a
ompletely independent
omponent is
omposed in parallel with a systemthat is timelo
ked, then the entire
omposition will inherit the timelo
k. Thisis quite di�erent from an a
tion lo
k, whi
h
annot a�e
t the evolution of anindependent pro
ess. These
hara
teristi
s of timelo
ks will be illustrated inse
tion 2.In fa
t, the issue of whether timelo
ks are desirable or undesirable features oftimed models remains a hotly debated topi
. The standard argument in favour ofmodels
ontaining timelo
ks is that they represent spe
i�
ation in
onsisten
ies(like logi
al
ontradi
tions) and that by dis
overing and eliminating timelo
ksspe
i�
ations
an be
orre
ted. However, we take the
ontrary position for threemain reasons:-1. In fa
t, dete
ting timelo
ks is a diÆ
ult and expensive analysis task. The2The reader should be aware that this terminology is not universally used, for example,[12℄ uses di�erent terminology and [6℄ uses the term lo
al deadlo
k instead of a
tion lo
k.2

lassi
 method for demonstrating timelo
k freeness is to show that a for-mula su
h as (in fa
t, this is the formula that would be used with theKronos model
he
ker),init) 23=1(true)holds over a timed automaton spe
i�
ation. This is an unbounded livenessproperty whi
h is one of the most diÆ
ult
lasses of formulae to
he
k.Su
h formulae
an be
he
ked with some symboli
 real-time model
he
k-ers, e.g. Kronos [8℄3. However, the analysis that is required is extremelystate spa
e intensive and is only feasible with small and moderate sizedspe
i�
ations. Re
ent work by Tripakis [12℄ o�ers potential improvementsin su
h analysis. However, his algorithm remains unimplemented and fur-thermore, su
h improvements will always be thwarted by systems withfundamentally large state spa
es.2. We are also strongly of the opinion that in
onsisten
ies and
ontradi
tions�t in the domain of logi
al des
ription, but are diÆ
ult to re
on
ile withbehavioural spe
i�
ation te
hniques, su
h as timed automata. Contradi
-tions arise when
on
i
ting properties are asserted /
onjoined. However,although the mistake is frequently made, parallel
omposition of pro
essesis not a property
omposition operator, rather its meaning is operational- two (or more) physi
al
omponents are run in parallel. This re
e
ts the
hara
ter of behavioural des
ription whi
h is fundamentally operationalin nature. Error situations in behavioural te
hniques should have a be-havioural / operational intuition that is justi�able in terms of real worldbehaviour. This is the
ase for a
tion lo
ks and live lo
ks. However, thereis no real world
ounter-part for time stopping.3. The real-world should always be the yardsti
k for judging formal modelsand timelo
ks do not arise in the real-world!Broadly there are two approa
hes to responding to the existen
e of lo
kingerrors:1. Dete
tion: provide analysis te
hniques whi
h
an lo
ate su
h lo
king sit-uations. Then system developers
an dete
t and re
tify the deadlo
ks.2. Prevention: adapt / limit the spe
i�
ation models used in order to ensurethat su
h lo
king situations
annot arise, e.g. [6℄ [3, 4℄.As already suggested, a problem that arises with the �rst of these approa
hesis that deadlo
k dete
tion analysis is typi
ally expensive and when state spa
esbe
ome large the te
hniques are infeasible. Thus, in this paper we investigatethe se
ond option.It is also important to emphasize that the situation with a
tion lo
ks andtimelo
ks is, in this respe
t, a little di�erent. In our opinion timelo
ks are3Although it
annot
urrently be
he
ked with UPPAAL.3

highly
ounter-intuitive and thus we believe that the se
ond option above of
onstru
tively preventing the o

uren
e of timelo
ks is essential. However, sin
ea
tion lo
ks are not in the same way
ounter-intuitive, prevention is not in thesame sense essential. Nonetheless investigating te
hniques whi
h ensure a
tionlo
k freeness is useful sin
e it highlights forms of parallel
omposition that
anbe employed when building systems that are \
orre
t by
onstru
tion".The model of timed systems that we employ is timed automata [1℄. Theseare an enhan
ement of automata whi
h enables
on
urren
y, syn
hronisationand timing aspe
ts to be expressed. Furthermore, be
ause of their amenabilityto veri�
ation (via symboli
 model
he
king), timed automata are now perhapsthe most a

epted real-time spe
i�
ation notation. We will introdu
e timedautomata shortly.Although pleasingly simple, the timing model of timed automata has theweakness that timelo
ks
an freely arise and in a number of di�erent ways.Perhaps most problemmati
ally they
an arise through the interplay of urgen
yand syn
hronous intera
tion. We argue that urgen
y is given too strong aninterpretation in timed automata. In the sense that an a
tion
an be for
ed (i.e.it be
omes urgent) even if it is not possible (i.e. is not enabled). We will returnto this issue a number of times during this paper and parti
ularly in subse
tion3.3.The �rst of the two main
ontributions of this paper is to present a re-interpretation of syn
hronisation that weakens the e�e
t of urgen
y and thuslimits the o

urren
e of timelo
ks. The approa
h borrows heavily from theTimed Automata with Deadlines (TADs) framework of Bornot and Sifakis [3, 4℄.However, in the same way as we did in [6℄ we adapt the TADs de�nitions tomeet our needs.The timed prioritised
hoi
e features o�ered by the TADs framework yieldthe possibility that the dynami
 enabling of \
ompeting" transitions
an bede�ned stati
ally. Hen
e we
an investigate notions of parallel
ompositionthat preserve di�erent dynami
 properties. In this vein the se
ond of the main
ontributions of this paper is to present a notion of parallel
omposition whi
hpreserves a
tion lo
k freeness, in the sense that, if any of the
omponent TADsis a
tion lo
k free then the parallel
omposition will also be a
tion lo
k free.Stru
ture of Paper. Se
tion 2 presents ba
kground material. We introdu
esome basi
 timed automata notation, we
larify the di�eren
e between timeand a
tion lo
ks and we introdu
e our running example - a simple timeoutbehaviour. Then we ta
kle the issue of timelo
ks in se
tion 3. We �rst
onsiderzeno timelo
ks. Then we illustrate the problem of time a
tion lo
ks (whi
hare perhaps the most degenerate example of timelo
ks) through an attempt tospe
ify the running example.Then we
onsider solutions based on TADs. However using the timeout as anexample, we argue that the TADs parallel
omposition presented in [3, 4℄ yieldsan unsatisfa
tory solution. We thus
onsider alternative solutions (Sparse TADsand TADs with minimal priority es
ape transitions) whi
h yield valid solutionsbased on the paper [6℄. 4

In se
tion 4 we
onsider how to de�ne parallel
omposition in su
h a way thatif
omponents are free of a
tion lo
ks the
omposition will also be free of a
tionlo
ks. By way of ba
kground material we
onsider independent parallelismin untimed and timed settings whi
h have this a
tion lo
k freeness property.However, sin
e it fails to support syn
hronisation, independent parallelism isof only limited value. Thus, we present a new notion of parallel
ompositionthat builds from TADs with minimal priority es
ape transitions, whi
h preservesa
tion lo
k freeness in the desired manner.2 Ba
kgroundThis se
tion introdu
es ba
kground material. Firstly, we de�ne timed automataand some asso
iated notation in subse
tion 2.1, then (in subse
tion 2.2) we
larify the di�eren
e between time and a
tion lo
ks and �nally, in subse
tion2.3, we introdu
e our running example - the spe
i�
ation of a bounded timeout.2.1 Timed Automata and Basi
 NotationNotation. We brie
y review some basi
 timed automata notation. We assumethe following items.� CA is a set of
ompleted (or internal) a
tions, x, x0, x1, x2, ..., y, y0, y1,y2, ..., z, z0, z1, z2, ... range over CA.� HA= fx?; x! jx 2 CA g is a set of half (or un
ompleted) a
tions, a, a0,a1, a2, ... , b, b0, b1, b2 range over HA. These give a simple CCS style [9℄point-to-point
ommuni
ation similar, for example, to the syn
hronisationprimitives found in UPPAAL [2℄. Thus, two a
tions, x? and x!
ansyn
hronise and generate a
ompleted a
tion x. For a half a
tion a we let# a denote the underlying
ompleted a
tion, i.e. # (x?) =# (x!) = x.� A = HA [CA is the set of all a
tions, e, e0, e1, e2, ... range over A .� We use a
omplementation notation over elements of A ,x = x if x 2 CA (1)x? = x! (2)x! = x? (3)� R+ denotes the positive reals without zero and R+0 = R+ [f0g.� C is the set of all
lo
k variables, whi
h take values in R+0 . C is rangedover by
,
0,
1,
2, et
. CC is a set of
lo
k
onstraints4. Also if C � Cwe write CCC for the set of
lo
k
onstraints generated from
lo
ks in C.4The form that su
h
onstraints
an take is typi
ally limited, however sin
e we are not
onsidering veri�
ation this is not an issue for us.5

� V = C ! R+0 is the spa
e of possible
lo
k valuations. V is ranged overby v, v0, v1, v2, et
 and VC = C ! R+0 is the spa
e of
lo
k valuationsfor
lo
ks in C.� L is the set of all possible automata lo
ations (these appear as
ir
les inour timed automata diagrams, e.g. see �gure 2), ranged over by l, l0, l1,l2, et
.Timed Automata. An arbitrary element of A, the set of all timed automata,has the form: (L; l0; T; I; C)where,� L � L is a �nite set of lo
ations;� l0 2 L is a designated start lo
ation;� T � L� A �CC C �P(C)�L is a transition relation (where P(S) denotesthe powerset of S). A typi
al element of T would be, (l1; e; g; r; l2), wherel1; l2 2 L are automaton lo
ations; e 2 A labels the transition; g 2 CCC isa guard; and r 2 P(C) is a reset set. (l1; e; g; r; l2) 2 T is typi
ally written,l1 e;g;r����! l2, stating that the automaton
an evolve from lo
ation l1 to l2 ifthe (
lo
k) guard g holds and in the pro
ess a
tion e will be performed andall the
lo
ks in r will be set to zero. When we depi
t timed automata,we write the a
tion label �rst, then the guard and then the reset set, seee.g. �gure 2. Guards that are true or resets that are empty are often leftblank.� I : L ! CCC is a fun
tion whi
h asso
iates an invariant with ev-ery lo
ation. Intuitively, an automaton
an only stay in a state whileits invariant is satis�ed. Invariants are shown adja
ent to states in ourdepi
tions, see e.g. �gure 2.� C is the set of
lo
ks of the timed automaton.It is important to understand the di�eren
e between the role of guards andof invariants. In this respe
t we
an distinguish between may and must timing.If we
onsider the TA in �gure 2, we
an see that the guard, t>=5, expressesmay behaviour, i.e. it states that the transition is possible or in other wordsmay be taken whenever t>=5. However, guards
annot \for
e" transitions to betaken.In
ontrast, the invariant, t<=10, de�nes must behaviour, i.e. if t rea
hes 10in state b0, xxx must be taken immediately. This must aspe
t
orresponds tourgen
y , sin
e an alternative expression of this situation is that at time t=10xxx be
omes urgent - it must be taken straightaway.Semanti
s. Timed automata are semanti
ally interpreted over transition sys-tems whi
h are triples, (S; s0;)), where,6

b0 (t<=10)

b1

xxx,
t>=5,
t:=0

Figure 2: May and must timing� S � L � V is a set of states (noti
e the terminologi
al distin
tion - timedautomata have lo
ations while transition systems have states);� s0 2 S is a start state;�)� S � Lab � S is a transition relation, where Lab = A [R+ . Thus,transitions
an be of one of two types: dis
rete transitions, e.g. (s1; e; s2),where e 2 A and time transitions, e.g. (s1; d ; s2), where d 2 R+ anddenotes the passage of d time units. Transitions are written:s1 e=) s2 respe
tively s1 d=) s2Also, we will use the standard notation, s e=) i� 9s0; e : s e=) s0 and s e=6) i� :(s e=)).For a
lo
k valuation v 2 VC and a delay d, v+d is the
lo
k valuation su
hthat (v + d)(
) = v(
) + d for all
 2 C. For a reset set r, we use r(v) to denotethe
lo
k valuation v0 su
h that v0(
) = 0 whenever
 2 r and v0(
) = v(
)otherwise. v0 is the
lo
k valuation that assigns all
lo
ks to the value zero.The semanti
s of a timed automaton A = (L; l0; T; I; C) is a transition sys-tem, (S; s0;)), where S = f s0 2 L�VC j 9s 2 S; y 2 Lab : s y=) s0 g [f [l0; v0℄ g,s0 = [l0; v0℄ and) is de�ned by the following inferen
e rules:-l e;g;r����! l0 g(v)[l; v℄ e=) [l0; r(v)℄ 8d0 � d : I(l)(v + d0)[l; v℄ d=) [l; v + d℄The semanti
 map whi
h generates transition systems from timed automata iswritten [[℄℄. Also, noti
e that our
onstru
tion ensures that only rea
hable statesare in S.Parallel Composition. We assume our system is des
ribed as a networkof timed automata. These are modelled by a ve
tor of automata5 denoted,5Although our notation is slightly di�erent, our networks
an be related, say, to the pro
essnetworks used in UPPAAL. 7

jA = jhA[1℄; :::; A[n℄i where A[i℄ is a timed automaton. In addition, we letu, u0 et
, range over the set U of ve
tors of lo
ations, whi
h are written,hu[1℄; :::; u[n℄i, where ea
h u[i℄ is the
urrent lo
ation in the ith automaton, i.e.in A[i℄. In addition, juj and jAj denote the length of the
orresponding ve
tor.We use a substitution notation as follows: hu[1℄; :::; u[j℄; :::; u[n℄i[u[j℄0=u[j℄℄ =hu[1℄; :::; u[j � 1℄; u[j℄0; u[j + 1℄; :::; u[n℄i and we write [u[j℄0=u[j℄℄ as [j0=j℄ andu[i01=i1℄:::[i0m=im℄ as u[i01=i1; :::; i0m=im℄.If 8i(1 � i � n) : A[i℄ = (Li; li;0; Ti; Ii; Ci) then the produ
t automaton,whi
h
hara
terises the behaviour of jhA[1℄; :::; A[n℄i is given by,(L; l0; T; I; C)where L = f ju ju 2 L1 � ::: � Ln g, l0 = jhl1;0; :::; l1;ni, T is as de�ned by thefollowing two inferen
e rules, I(jhu[1℄; :::; u[n℄i) = I1(u[1℄) ^ ::: ^ In(u[n℄) andC = C1 [::: [Cn.u[i℄ x?;gi;ri������!u[i℄0 u[j℄ x!;gj ;rj�����!u[j℄0ju x;gi ^ gj ;ri[rj����������!ju[i0=i; j0=j℄ u[i℄ x;g;r����!u[i℄0 x 2 CAju x;g;r����!ju[i0=i℄where 1 � i 6= j � juj. Note, we write x � k 6= r � y in pla
e of x � k �y ^ x � r � y ^ k 6= r.2.2 Time and A
tion Lo
ksTimelo
ks. We
an formulate the notion of a timelo
k in terms of a test-ing pro
ess. Consider, if we take our system whi
h we denote System and
ompose it
ompletely independently in parallel with the timed automaton,Tester, shown in �gure 3, where, sin
e it is
ompleted, the zzz a
tion is inde-pendent of all a
tions in the system. Then for any d2 R+ , if the
omposition|<Tester(d),System>
annot perform zzz then the system
ontains a timelo
kat time d.
Tester(y)

s0

s1

zzz,
t==y

Figure 3: A tester pro
essThis illustration indi
ates why timelo
ks represent su
h degenerate situa-tions - even though the Tester is in all respe
ts independent of the system,8

e.g. it
ould be that Tester is exe
uted on the Moon and System is exe
utedon Earth without any
o-operation, the fa
t that the system
annot pass timeprevents the tester from passing time as well. Thus, time really does stop andit stops everywhere be
ause of a degenerate pie
e of lo
al behaviour.We
an also give a semanti
 de�nition of the notion6. However, we �rst needa little notation.A tra
e of a timed automaton A has the form,� = s0 y1 s1 y2 s2 ::: sn�1 yn snwhere,� 8i(0 � i � n) : si 2 [[A ℄℄ :1 (throughout the paper we use the notation t:ito a

ess the ith element of a tuple);� s0 = [l0; v0℄;� yi 2 A [R+ ;� 8i(0 � i � n� 1) : si yi==) si+1.and we let Tr(A) denote the set of all tra
es of A. Furthermore, we de�nethe fun
tion delay as,delay(�) = �f yi j 1 � i � n ^ yi 2 R+gNow we say that A
an timelo
k at time d i�9� 2 Tr(A) : (delay(�) < d ^ 8� 2 Tr(A) : (� pref � =) delay(�) < d))where �1 pref �2 if and only if �1 is a pre�x of �2. Intuitively this expressesthat there is a state rea
hable before d time units has passed, from whi
h it isnot possible for time to elapse beyond d. Noti
e this de�nition does not pre
ludethe system evolving \while timelo
ked" but it simply prevents time eventuallyrea
hing d. Indeed, as will be
ome
lear shortly, this is ne
essary to embra
ezeno timelo
ks within the de�nition.Also noti
e that situations in whi
h time is able to, but does not have toevolve beyond a
ertain point, are not
ategorised as timelo
ks, e.g. a timedautomaton su
h as that shown in �gure 4
ould perform an in�nite number ofxxx a
tions at time zero but sin
e it is not for
ed to behave in this way we donot view it as timelo
ked.There are two di�erent forms of timelo
k:-1. Zeno Timelo
ks. These arise when the system has an in�nite behaviourbut time
annot pass beyond a
ertain point. In other terms, an in�nitenumber of dis
rete transitions are performed in a �nite period of time. Anexample of su
h a spe
i�
ation is System1 (see �gure 5); this is a zeno6Similar de�nitions
an be found in [12℄. 9

b0

xxx,
t<=2Figure 4: Zeno Behaviour without a Zeno Time Lo
kpro
ess whi
h performs an in�nite number of xxx a
tions at time zero.This system is timelo
ked at time zero and if we
ompose it independentlyin parallel with any other system, the
omposite system will not be ableto pass time.2. Time A
tion Lo
ks. These are situations in whi
h a state is rea
hed fromwhi
h neither time or a
tion transitions
an be performed. An exampleof su
h a lo
k is the trivial timed automaton shown in �gure 6 whi
htimelo
ks immediately sin
e the system
an neither idle in state b0 orperform an a
tion transition to es
ape the state.However, more problemmati
ally, time a
tion lo
ks
an be generated throughmismat
hed syn
hronisations, e.g. the network |<System2,System3> (from�gure 5)
ontains a timelo
k at time 2, whi
h arises be
ause System2must have performed (and thus, syn
hronised on) a
tion xxx by the timet rea
hes 2 while System3 does not start o�ering xxx until after t haspast 2. Te
hni
ally the timelo
k is due to the fa
t that at time 2 System2only o�ers the a
tion transition xxx and importantly, it does not o�er atime passing transition. Sin
e the syn
hronisation
annot be ful�lled thesystem
annot evolve to a point at whi
h it
an pass time.The interesting di�eren
e between these two varieties of timelo
k is that the�rst one lo
ks time, but it is not a
tion lo
ked, sin
e a
tions
an always beperformed. However, the se
ond rea
hes a state in whi
h neither time passingor a
tion transitions are possible.A relevant property whi
h appears in the literature is that of time rea
tivitywhi
h is de�ned as follows.De�nition 1 A system is said to be time rea
tive if it
an never rea
h a statein whi
h neither time or a
tion transitions
an be performed.Clearly if a system is time rea
tive it
annot
ontain time a
tion lo
ks. Oneaspe
t we investigate in this paper is how to obtain time rea
tivity in a timedautomata setting.A
tion Lo
ks. Timelo
ks are mu
h more serious faults than a
tion lo
ks. Forexample, the a
tion lo
ked automaton Stop, shown in �gure 7, generates a lo
aldeadlo
k , however, it
annot prevent an independent pro
ess from evolving.10

System2
a0

a1

System1

a0

(t==0)

(t<=2) a0

a1

System3

xxx,
t:=0

xxx!
xxx?,
t>=3

Figure 5: Timelo
k IllustrationsThe natural interpretation of a
tion lo
k in the setting of timed systems isas follows.De�nition 2 A state [l; v℄ of a TA A is an a
tion lo
k, denoted AL([l; v℄), ifand only if, 8t 2 R+0 ([l; v + t℄ 2 [[A ℄℄ :1 =) [l; v + t℄ e=6))where [l; v+ t℄ 2 [[A ℄℄ :1 implies [l; v+ t℄ is rea
hable from [l; v℄ by the de�nitionof [[℄℄.The timed automaton A
ontains an a
tion lo
k if and only if 9s 2 [[A ℄℄ :1 : AL(s).
b0 (false)

Figure 6: A Trivial Time A
tion Lo
k11

Stop

s0Figure 7: A Trivial A
tion Lo
kThus, a timed automaton is a
tion lo
ked when it rea
hes a state from whi
h,however long time is allowed to pass, an a
tion will never be possible. Noti
ealso that if all guards are true and all invariants are true, we obtain the untimed
ase and a
tion lo
ks redu
e to untimed \deadlo
ks".2.3 A Bounded TimeoutAs an illustrative spe
i�
ation example we will
onsider the des
ription of abounded timeout. This has been
hosen be
ause, �rstly, it is one of the most
ommon real-time spe
i�
ation s
enarios and se
ondly, during timed automataspe
i�
ation and veri�
ation of a lip-syn
hronisation algorithm [7℄ it was dis-
overed that des
ribing su
h bounded timeouts in a deadlo
k free manner wassurprisingly diÆ
ult.The general s
enario is that a Timeout pro
ess is monitoring a Componentand the timeout should expire and enter an error state if the Component doesnot o�er a parti
ular a
tion, whi
h we
all good, within a
ertain period of time.The pre
ise fun
tionality that we want the timeout to exhibit is7:1. Basi
 behaviour. Assuming Timeout is started at time t, it should generatea timeout a
tion at a time t + D if and only if the a
tion good has notalready o

ured. Thus, if a
tion timeout o

urs, it must o

ur exa
tlyat time t+D and if a
tion good o

urs, then it must o

ur at some timefrom t up to, but not in
luding, t + D. Using the terminology of [10℄this yields a strong timeout. A weak timeout would, in
ontrast, allowa non-deterministi

hoi
e between the good a
tion and the timeout attime t+D.2. Urgen
y of good a
tion. We also require that if the good a
tion is enabledbefore time t+D then it is taken urgently , i.e. as soon as good is enabledit happens.3. Timelo
k Free. Finally we want our
omposed system to be free of time-lo
ks, for obvious reasons.7Our presentation here is similar to that in [7℄. However, although our work here wasinspired by that in [7℄, it is somewhat di�erent. In parti
ular, [7℄ presents a bounded timeoutin a dis
rete time setting, thus, the �nal time at whi
h the good a
tion
an be performed andthe time of expiry of the Timeout are at di�erent dis
rete time points.12

4. Simple. We also require that the solution is not \prohibitively"
omplex.Noti
e that in the �rst two of these requirements, urgen
y arises in two ways.Firstly, we require that timeout is urgent at time t+D and se
ondly, we requirethat good is urgent as soon as it is enabled. Without the former requirementthe timeout might fail to �re even though it has expired and without the latter,even though the good a
tion might be able to happen it might nonetheless noto

ur and thus, for example, the timeout may expire even though good waspossible.3 Timelo
ksThis se
tion
onsiders the issue of timelo
ks. We begin in subse
tion 3.1 by
on-sidering how to ensure zeno lo
k freeness based on an approa
h of Tripakis [12℄.Then we move to the more diÆ
ult issue of time a
tion lo
ks. We further mo-tivate the problem with time a
tion lo
ks, in subse
tion 3.2, by
onsidering thespe
i�
ation of the bounded timeout example. Then we argue in subse
tion 3.3that the timed automata interpretation of syn
hronisation should be adaptedand we
onsider possible approa
hes to do this, in
luding only allowing urgen
yon internal a
tions. However, this fails to be a suitably expressive approa
hand thus, subse
tion 3.4
onsiders a revised timed automata framework, due toBornot and Sifakis,
alled Timed Automata with Deadlines (TADs). However,spe
i�
ation of the bounded timeout reveals a problem with the TADs frame-work as it was presented in [3, 4℄. We revise the framework in subse
tion 3.5 inorder to resolve this diÆ
ulty.3.1 Zeno Timelo
ksAs highlighted earlier, zeno timelo
ks are situations in whi
h an in�nite numberof dis
rete transitions are performed in a �nite period of time. In
ontrastto the approa
h we will present for ta
kling time a
tion lo
ks, to handle zenotimelo
ks we will not de�ne a new parallel
omposition operator. In
ontrast,we will
onsider a stati

onstru
tion whi
h ensures zeno timelo
k freeness.The standard approa
h to obtaining zeno timelo
k freeness in timed pro
essalgebra is to ensure that all re
ursions are time guarded, i.e. that all pro
esses
an pass time by at least � 2 R+ between ea
h re
ursive invo
ations. Thisprovides a stati
 me
hanism that spe
i�ers
an use to ensure zeno timelo
kfreeness.The approa
h we advo
ate in the timed automata setting has a similar
avour. The idea is to ensure that for ea
h loop in an automaton, time mustpass by at least � on every iteration.We follow
losely the presentation in [12℄. Firstly two de�nitions.De�nition 3 For A 2 TA we de�ne a stru
tural loop to be a sequen
e of distin
ttransitions, l0 e1;g1;r1������! l1 e2;g2;r2������! :::: en;gn;rn������! ln13

su
h that l0 = ln.De�nition 4 A 2 TA is
alled strongly non-zeno if, for every stru
tural loop,l0 e1;g1;r1������! l1 e2;g2;r2������! :::: en;gn;rn������! lnthere exists a
lo
k
 2 A:5, � 2 R+ and 0 � i; j � n su
h that,1.
 2 ri; and2.
 is bounded from below in step j, i.e. (
 < �) \ gj = false.Clearly, System1 of �gure 5 fails to be strongly non-zeno sin
e a suitable� 2 R+ does not exist. However, the automaton in �gure 8 is stongly non-zeno.
a0

xxx,
t>=1,
t:=0Figure 8: A Strongly Non-Zeno Spe
i�
ationThe following result was presented in [12℄.Proposition 1 If A 2 TA is strongly non-zeno then Tr(A) does not
ontain apath that is both in�nite and yields a timelo
k.In addition, strong non-zenoness is well behaved through parallel
omposi-tion. Spe
i�
ally, the following result was also presented in [12℄. It ensures thatwe
annot generate new zeno timelo
ks through parallel
omposition.Proposition 2 If A1,...,An 2 TA are strongly non-zeno then jhA1; :::; Ani isalso strongly non-zeno.Also although we have no empiri
al eviden
e, in a

ordan
e with [12℄, webelieve that in pra
ti
e spe
i�
ations will almost always be strongly non-zeno.3.2 Trying to Model the Bounded TimeoutNow we move onto the issue of time a
tion lo
ks. As an illustration of theproblem we des
ribe the bounded timeout in timed automata.Basi
 Formulation. We begin by
onsidering the Timeout shown in �gure 9.This pro
ess realises the �rst requirement that we identi�ed for modelling thebounded timeout - good is o�ered at all times in whi
h t<D. Then timeout is14

performed when t==D, in whi
h
ase the system passes into state a2 whi
h playsthe role of an error state. Importantly, the guard (t<=D) for
es the requiredurgen
y on the timeout a
tion. Thus, if good has not happened earlier, timeoutmust happen when t==D. Furthermore, it is easy to see that this is indeed astrong timeout - its behaviour is deterministi
 when t==D.
(t<=D)

good?
t<D

a0

a1

a2

Timeout1

timeout
t==D

Figure 9: An Automaton for Timeout1
b0

b1

b2

good!

Component1

tau
r<=C

b0

b1

b2

(r==0)

good!
r==0

Component2

tau
r<=C
r:=0

Figure 10: Automata for Component1 and Component2However on its own, this automaton is not suÆ
ient sin
e nothing for
esthe good a
tion to be taken if it
an be. This was our se
ond requirement. Forexample,
onsider Component1 shown in �gure 10 whi
h will perform an internala
tion tau at some time r<=C and then o�er the good a
tion. The internala
tion
an be viewed as modelling some internal
omputation by Component1.The
ompletion of whi
h is signalled by o�ering good!. Now if we put Timeout1and Component1 in parallel then even if good
ould o

ur while t<D, it mightnot be taken. Thus, a possible evolution of the system:15

|<Timeout1,Component1>is, (tau; x1) (timeout; x2) where, x1 < C, x1 < D and x2 = D.Thus, we need some way to make good urgent. The standard approa
h isto enfor
e urgen
y in the
omponent. For example, we
ould use Component2shown in �gure 10. This automaton will perform the internal a
tion as beforeand then it must immediately perform the good a
tion.Now the problem with the
omposition:|<Timeout1,Component2>is the relative values of D and C. In parti
ular, if C is larger than D then thissystem
an timelo
k in the following way:-1. the timeout
ould �re when t==D;2. then if tau happens when r==C say, good! will be
ome urgent, howeverit
annot be performed sin
e Timeout1 is no longer o�ering it,
ausing atimelo
k. Component2 will not let time pass until good is performed, butgood
annot be performed be
ause of a mis-mat
hed syn
hronisation.We would argue that this is a big problem. In parti
ular, it is not generallypossible to ensure that C is less than D sin
e our
omponent behaviour wouldtypi
ally be embedded in the
omplex fun
tioning of a
omplete system. Infa
t, writing C as we have done, abstra
ts from a likely multitude of
omplexityand deriving su
h a value from a system would typi
ally require analysis ofmany
omponents of the
omplete system, some of whi
h might be time non-deterministi
 at the level of abstra
tion being
onsidered.Furthermore, in some situations we might a
tually be interested in analysingwhat happens if the good a
tion arrives after the timeout has �red. Consider,for example, that our timeout behaviour is being used to wait for an a
knowl-edgement in a sender pro
ess. The
omponent performing good after timeouthas �red
orresponds to the a
knowledgement arriving after the timeout hasexpired, whi
h is of
ourse a possible s
enario in pra
ti
al analysis of
ommuni-
ation proto
ols.The problem with our |<Timeout1,Component2> solution is that it doesnot enable us to analysis this situation, rather the system timelo
ks whenComponent2 for
es the good a
tion to happen. Unfortunately, as mere mor-tals, we are unable to analyse systems after the end of time!One way to avoid this timelo
k is to add \es
ape" transitions in the timeout.For example,
onsider the timeout behaviour en
apsulated by Timeout2. Nowthe
omposition,|<Timeout2,Component2>
annot blo
k time. However, this is not a satisfa
tory solution sin
e ratherthan Timeout2 just evolving to a single deadlo
k state, a2, after performingtimeout, it
ould evolve to a
omplex behaviour; of
ourse in pra
ti
e it is16

(t<=D)

good?
t<D

a0

a1

a2
timeout
t==D

good?

Timeout2

Figure 11: An Automaton for Timeout2almost
ertain to do this. However then, es
ape transitions would have to bes
attered throughout the
omplex behaviour. This would generate signi�
antspe
i�
ation
lutter, whi
h would be
ompounded if the system
ontained morethan one timeout.The
onsequen
es be
ome parti
ularly severe if the timeout is en
losed insome repetitive behaviour, e.g. see �gure 12. This is be
ause, sin
e no assump-tions
an be made about the time at whi
h the
omponent will want to performthe good a
tion, es
ape transitions on good will have to be added at a0, a2,b0, b1 (and a
tually a1 as well). Thus, �rstly, the behaviour prior to rea
hingthe timeout has been altered, i.e. es
ape transitions must be added at b0 andse
ondly, it is un
lear how many es
ape transitions need to be added to ea
hnode in the loop, sin
e state a2 may be rea
hed many times before the �rstgood es
ape transition is performed.Other Solutions. In [5℄ and [7℄ we have also
onsidered other approa
hes toobtaining a satisfa
tory bounded timeout solution. In parti
ular, we
onsideredwhether a suitable solution
ould be obtained using the UPPAAL notion ofurgent
hannels. A

ording to this model, the spe
i�er is allowed to denotea parti
ular
hannel as urgent, whi
h means that as soon as syn
hronisationon that
hannel
an take pla
e, it does. However, UPPAAL restri
ts the useof su
h urgent
hannels. In parti
ular, an urgent transition
an only have theguard true.Intuitively, urgent
hannels seem to be what we require in order to avoid en-for
ing urgen
y in the
omponent pro
ess. In parti
ular, they enfor
e urgen
yin a \global" manner, rather than requiring it to be enfor
ed in the
omponentpro
ess. However, it turns out that the restri
tion on guarding of urgent
han-nels that UPPAAL imposes prevents derivation of a suitable solution, see [5℄whi
h investigates possible solutions with urgent
hannels whi
h were inspiredby the solutions presented in [7℄.
17

(t<=D)

good?
t<D

a0

a1

a2
timeout
t==D

b0 b1

Figure 12: Timeout2 in a repetitive
ontext3.3 The Nature of Syn
hronisationPerhaps the most
ounter-intuitive aspe
t of the timelo
k story is the mannerin whi
h timelo
ks
an arise from mis-mat
hed syn
hronisations, su
h as the
omposition |<System2,System3> in �gure 5 and the timeout /
omponent
omposition just highlighted. If we
onsider how this problem arises we
an seethat it is
aused by the parti
ular interpretation of urgent intera
tion employedin timed automata.It is without doubt true that fa
ilities to express urgen
y are required. Inparti
ular, if urgen
y is not supported,
ertain important forms of timing be-haviour
annot be expressed. For example, as illustrated earlier, urgen
y playsa pivotal role in the formulation of the bounded timeout and indeed without it,it is un
lear how one
ould des
ribe timeouts in any vaguely sensible way.Thus, it is ne
essary to in
lude urgen
y in the timed automata model. How-ever, it is our perspe
tive that while urgen
y is needed,
urrently it is givenan ex
essively strong formulation. We illustrate the issue with the followingexample.Example 1 Consider the spe
i�
ation of the Dying Dining Philosophers prob-lem. The s
enario is basi
ally the same as the Dining Philosophers ex
ept herewe have extra
onstraints whi
h state that philosophers die if they do not eatwithin
ertain time periods.For example, if at a parti
ular state, Aristotle must eat within 10 time unitsto avoid death, in timed automata his situation
ould be represented as state l018

of timed automata Aris in �gure 13. In addition, if say the fork he requires isbeing used by another philosopher, the environment might not be able to satisfythis requirement. For example, the relevant global behaviour of the rest of thesystem might
orrespond to the behaviour of the automaton Rest in state m0(see �gure 13 again).
(t<=10)

pick?,
t<=10

l0

l1

Aris m0

m1

pick!,
t>=15

Rest

Figure 13: Dying Dining Philosophers SituationIn the present timed automata formulation the
omposition |<Aris,Rest>will timelo
k when t rea
hes 10. But, this seems
ounter-intuitive.Aristotle knows he must pi
k-up his fork by a
ertain time otherwise drasti

onsequen
es will result for him (this is why he \registers" his pi
k request asurgent). However, if he lo
ally fails to have his requirement satis�ed, he
annotglobally prevent the rest of the world from progressing, rather a lo
al deadlo
kshould result. As a
onsequen
e Aristotle might be dead, but as we all know,\the world will go on!".Con
eptually what is happening is that Aristotle is enfor
ing that his pi
ka
tion must be taken even if it is not possible, i.e. it is not enabled. However, wewould argue that urgen
y
an only be for
ed if an a
tion is possible / enabled.The situation is the same with our bounded timeout example - it is reason-able to state that good o

urs urgently if both parties are able to perform it,but it is not reasonable to give urgen
y pre
eden
e over enabling. We wouldargue that it should only be possible to make an a
tion urgent if it is enabled,i.e. must requires may or, in other terms, you
an only for
e what ispossible.One way in whi
h su
h an interpretation of urgen
y has previously beenobtained is through only allowing urgen
y to be applied to internal a
tions.This is the so
alled as soon as possible (asap) prin
iple [11℄, mu
h dis
ussedin the timed pro
ess algebra
ommunity. A

ording to this prin
iple internal19

a
tions are s
heduled to o

ur as soon as they are possible, i.e. urgently, while,sin
e they are subje
t to
ontrol by the environment, external a
tions (whi
h
losely
orrespond to our half a
tions) are not subje
t to su
h an interpretation- they
an not be made urgent.This property indeed prevents the o

urren
e of timelo
ks due to syn
hro-nisation mismat
hes, but unfortunately, it is not a suitable solution for timedautomata. This is be
ause TA do not have a hiding operator. In timed pro-
ess algebra with asap the hiding operator, whi
h turns observable into internala
tions, has an important role sin
e (impli
itly) it makes a
tions urgent.The absen
e of hiding in TA means that we
annot (sele
tively) take anobservable a
tion that results from syn
hronising half a
tions and turn it intoan (urgent) internal a
tion. This is for example what we would like to do withthe syn
hronisation on the good a
tion in our bounded timeout example.Consequently, in the next se
tion, we
onsider a new framework for timedautomata spe
i�
ation - Timed Automata with Deadlines (TADs) whi
h wasinitially devised by Bornot and Sifakis [3, 4℄ and with whi
h we
an obtain thesyn
hronisation interpretation we desire.3.4 Timed Automata with DeadlinesComponents of the Framework. For a full introdu
tion to TADs, we referthe interested reader to [3, 4℄; here we highlight the main prin
iples. The ma-terial and results in
luded in this subse
tion borrow heavily from the previouswork of Bornot and Sifakis. However, in our presentation we revise the Bornotand Sifakis de�nitions in order that they �t with the timed automata notationwe are using and furthermore we present some new results that will be used inthe sequel.� Deadlines on Transitions. Rather than pla
ing invariants on states, dead-lines are asso
iated with transitions. Transitions are annotated with 4-tuples: (e; g; d; r)where e is the transition label, e.g. good; g is the guard, e.g. t<=D; d is thedeadline, e.g. t==D; and r is the reset set, e.g. t:=0. e, g and r are familiarfrom timed automata and the deadline is new. Con
eptually, deadlinesstate when transitions must be taken and taken immediately. Sin
e wehave deadlines on transitions there is no need for invariants on states.Thus, they are not in
luded in the framework.It is also assumed that the
onstraint,d) gholds, whi
h ensures that if a transition is for
ed to happen it is also ableto happen. Clearly, if this
onstraint did not hold then we
ould obtaintimelo
ks be
ause a transition is for
ed to happen, but it is not enabled.20

(e1,g1’,d1’,r1) (e2,g2,d2,r2)

Figure 14: A Prioritised Choi
e� (Timewise) Priorities. By restri
ting guards and deadlines in
hoi
e
on-texts, prioritised
hoi
e
an be expressed. For example, if we have twotransitions: b1 = (e1; g1; d1; r1) and b2 = (e2; g2; d2; r2)then when pla
ing them in a
hoi
e
ontext we
an give b2 priority overb1 by restri
ting the guards and deadlines of b1, see �gure 14. [3℄
onsid-ers a variety of priority operators, whi
h ensure that if the higher prioritya
tion will eventually be enabled within a parti
ular period of time then ittakes pre
eden
e over
ompeting a
tions. These di�erent priority me
ha-nisms are obtained by in
luding timed temporal operators in the restri
tedguards and deadlines. The extreme example of whi
h is to enfor
e the fol-lowing restri
ted guard and deadline:g10 = g1 ^ 2:g2 and d10 = d1 ^ g10whi
h ensures that b1 is only enabled if g1 holds and there is no point inthe future at whi
h g2 will hold.� Parallel Composition with Es
ape Transitions. The TADs framework em-ploys a di�erent parallel
omposition operator to that arising in standardtimed automata. The key idea is that of an es
ape transition. These arethe lo
al transitions of automaton
omponents that are
ombined whengenerating a syn
hronisation transition. Thus, not only are syn
hronisa-tions in
luded, but
omponent transitions of the syn
hronisation are aswell. The timewise priority me
hanism is then used to give the syn
hro-nisation transition highest priority. Intuitively, the es
ape transitions
anonly happen if the syn
hronisation transition will never be enabled. Wewill illustrate this aspe
t of TADs shortly.� Syn
hronisation Strategies. [3℄ also
onsider a number of di�erent syn-
hronisation strategies, but these are not relevant to our dis
ussion. Interms of [3℄ we only
onsider AND syn
hronisation.21

In fa
t, in addition to ensuring time rea
tivity, the TADs framework lim-its the o

urren
e of a
tion lo
ks. Spe
i�
ally, the es
ape transitions allow the
omponents of a parallel
omposition to es
ape a potential a
tion lo
k by evolv-ing lo
ally. Asso
iated with su
h avoidan
e of a
tion lo
ks is the enfor
ement ofmaximal progress8, whi
h exa
tly requires that if a syn
hronisation is possible,it is always taken in preferen
e to a
orresponding es
ape transition.Basi
 De�nitions. We now brie
y review the de�nition of timed automatawith deadlines. In order to preserve some
ontinuity through the paper, eventhough it is di�erent to that used in [3℄, we build our de�nitions out of the timedautomata notation and
onstru
ts that we have already introdu
ed.An arbitrary element of TAD, the set of timed automata with deadlines, hasthe form: (L; l0;!; C)where, L is a �nite set of lo
ations; l0 is the start lo
ation; C is the set of
lo
ksand� !� L�A �CCC �CCC�P(C)�L is a transition relation. A typi
al ele-ment of whi
h is, (l1; e; g ; d ; r ; l2), where l1; l2 2 L are automata lo
ations;e 2 A labels the transition; g 2 CCC is a guard; d 2 CCC is a deadline;and r 2 P(C) is a reset set. (l1; e; g ; d ; r ; l2) 2! is typi
ally written,l1 e;g;d;r�����! l2Also, as was the
ase in [3, 4℄, for te
hni
al reasons, we will require that alldeadlines have
losed lower bounds.As was the
ase with TAs, TADs are semanti
ally interpreted as transitionsystems. The following two inferen
e rules are used for this,(S1) l e;g;d;r�����! l0 g(v)[l; v℄ e=) [l0; r(v)℄ (S2) 8l0 : l e;g;d;r�����! l0 =) 8t0 < t ::d(v + t0)[l; v℄ t=) [l; v + t℄Now we de�ne the semanti
 map [[℄℄ from TADs to transition systems asfollows9: [[(L; l0;!; C) ℄℄ = (S; s0;))where,� s0 = [l0; v0℄;�) is the subset of (L � V) � Lab � (L � V) that satis�es the above tworules; and� S = f s0 2 L� VC j 9s 2 S; y 2 Lab : s y=) s0 g [f [l0; v0℄ g.8Note, the term is used in a related but somewhat di�erent way in the timed pro
essalgebra setting [11℄.9The overloading of [[℄℄, i.e. to interpret both TAs and TADs, will not
ause any
onfusion.22

Noti
e that, on
e again, S only
ontains rea
hable states.In addition, we will use the fun
tion:�B(l) = f (e; g; d; r) j 9l0 : l e;g;d;r�����! l0 ^ e 2 B gProperties of TADs. Now we
onsider a number of basi
 properties of TADs.The �rst two are well known from previous TA and TADs work.A standard property when
onsidering dense time models is time
ontinuity.We prove that TADs are time
ontinuous in the following proposition.Proposition 3 (Time Continuity)8A 2 TAD :8s1; s2 2 [[A ℄℄ :1 :8t; t0 2 R+ :s1 t+t0===) s2 () 9s01 (s1 t=) s01 ^ s01 t0==) s2)ProofAssuming that s1 = [l; v℄ and s2 = [l; v + t+ t0℄,[l; v℄ t+t0===) [l; v + t+ t0℄, f Rule (S2) ; equivalen
e holds sin
e no other rules overlap g8l0 (l e;g;d;r�����! l0 =) 8y < t+ t0 ::d(v + y)), f Distributivity of _ over 8 ; y does not appear on left of =) g8l0 8y < t+ t0(l e;g;d;r�����! l0 =) :d(v + y)), f Reordering quanti�ers ; rewriting range g8y(y < t _ t � y < t+ t0) 8l0 (l e;g;d;r�����! l0 =) :d(v + y)), f Range split g8y < t 8l0 (l e;g;d;r�����! l0 =) :d(v + y)) ^8y(t � y < t+ t0) 8l0 (l e;g;d;r�����! l0 =) :d(v + y)), f Rearranging
onjun
ts g8l0 (l e;g;d;r�����! l0 =) 8y < t ::d(v + y)) ^8l0 (l e;g;d;r�����! l0 =) 8y < t0 ::d(v + t+ y)), f Rule (S2) g[l; v℄ t=) [l; v + t℄ ^ [l; v + t℄ t0==) [l; v + t+ t0℄
 Now we
onsider formally why the property d) g is important. The fol-lowing proposition shows that it guarantees time rea
tivity.Proposition 4 If d) g on all transitions, TADs are time rea
tive.23

ProofIf a state [l; v℄
an be rea
hed su
h that8t 2 R+ : [l; v℄ t=6)then the
ondition of the inferen
e rule S2 fails, i.e.,8t 2 R+ :8l0 (l e;g;d;r�����! l0 =) 8t0 < t ::d(v + t0)), f Logi
 g8t 2 R+ 9l0 (l e;g;d;r�����! l0 ^ 9t0 < t : d(v + t0))) f Instantiating outer quanti�er with an arbitrarily small t g9l0 (l e;g;d;r�����! l0 ^ 9� : d(v + �))) f Deadlines have
losed lower bounds, thus, 9� : d(v + �)) d(v) g9l0 (l e;g;d;r�����! l0 ^ d(v))) f d) g ; logi
 g9l0 (l e;g;d;r�����! l0 ^ g(v))) f Rule (S1) g[l; v℄ e=) [l0; r(v)℄Thus, if any state
annot pass time, it
an perform an a
tion transition. Theresult follows.
 We will use the following result later, it states that either time
an passforever, it
annot pass at all or there exists an upper bound beyond whi
h time
annot pass.Proposition 58A 2 TAD 8s 2 [[A ℄℄ :1 :8t 2 R+ : s t=) _8t 2 R+ : s t=6) _9t 2 R+ (s t=) ^ 8t0 2 R+ (s t0==) () t0 � t))ProofFirst we
an reason as follows:-8t 2 R+ : s t=) _ 8t 2 R+ : s t=6) _9t 2 R+ (s t=) ^ 8t0 2 R+ (s t0==) () t0 � t)), f Logi
 g9t 2 R+ : s t=6) =) (9t 2 R+ : s t=) =)9t 2 R+ (s t=) ^ 8t0 2 R+ (s t0==) () t0 � t)))24

, f Logi
 g9t1; t2 2 R+ (s t1==6) ^ s t2==)) =)9t 2 R+ (s t=) ^ 8t0 2 R+ (s t0==) () t0 � t))and this is what we prove. So, assume that,9t1; t2 2 R+ (s t1==6) ^ s t2==))and take s = [l; v℄ and t 2 R+ as the smallest value (hen
e t � t1) su
h that,9l0 (l e;g;d;r�����! l0 ^ d(v + t))Su
h a t must exist sin
e we have assumed that all deadlines have
losed lowerbounds.Thus, we have,9l0 (l e;g;d;r�����! l0 ^ d(v + t)) ^ :(9t0 < t 9l0 (l e;g;d;r�����! l0 ^ d(v + t0))), f logi
 g9l0 (l e;g;d;r�����! l0 ^ d(v + t)) ^ 8l0 (l e;g;d;r�����! l0 =) 8t0 < t ::d(v + t0))Now the se
ond
onjun
t gives us [l; v℄ t=) and also be
ause of time
ontinuitywe have, 8t0 (t0 � t =) [l; v℄ t0==))Furthermore, if we take t0 2 R+ su
h that t0 > t then (sin
e t itself is a suitablevalue for t00) the �rst
onjun
t ensures that,8t0 > t 9t00 < t0 9l0 (l e;g;d;r�����! l0 ^ d(v + t00)), f Inter
hange of existentials ; distributivity of ^ over 9 g8t0 > t 9l0 (l e;g;d;r�����! l0 ^ 9t00 < t0 : d(v + t00)), f Logi
 g8t0 > t:(8l0 (l e;g;d;r�����! l0 =) 8t00 < t0 ::d(v + t00))), f Rule (S2) g8t0 > t : [l; v℄ t0=6)The
ontrapositive of whi
h is, 8t0 2 R+ ([l; v℄ t0==) =) t0 � t).Now if we put everything together we obtain,9t 2 R+ (s t=) ^8t0 2 R+ (t0 � t =) s t0==)) ^8t0 2 R+ (s t0==) =) t0 � t)) 25

whi
h is as required.
 In addition, the following proposition gives an alternative
hara
terisationof time rea
tivity.Proposition 68A 2 TAD : A is time rea
tive if and only if,8[l; v℄ 2 [[A ℄℄ :19t ([l; v℄ t=6) =) 9e ([l; v℄ e=) _ 9t0 � t ([l; v℄ t0==) [l; v + t0℄ ^ [l; v + t0℄ e=))))Proof(=))Assume A is time rea
tive and take [l; v℄ 2 [[A ℄℄ :1 su
h that 9t : [l; v℄ t=6) . Nowproposition 5 implies that either,8t0 : [l; v℄ t0=6) or 9t0 ([l; v℄ t0==) ^ 8t00 ([l; v℄ t00==) () t00 � t0))Consider these in turn.8t0 : [l; v℄ t0=6)) f De�nition of time rea
tivity g9e 2 A : [l; v℄ e=)whi
h is as required. In addition,9t0 ([l; v℄ t0==) ^ 8t00 ([l; v℄ t00==) () t00 � t0))) f Otherwise time
ontinuity would give [l; v℄ t=) g9t0 � t ([l; v℄ t0==) ^ 8t00 ([l; v℄ t00==) () t00 � t0))) f Otherwise time
ontinuity
auses
ontradi
tion of se
ond
onjun
tg 9t0 � t ([l; v℄ t0==) [l; v + t0℄ ^ 8r 2 R+ ([l; v + t0℄ r=6)))) f De�nition of time rea
tivity g9t0 � t ([l; v℄ t0==) [l; v + t0℄ ^ [l; v + t0℄ e=))whi
h is also as required.((=)Take [l; v℄ 2 [[A ℄℄ :1, now,8t : [l; v℄ t=6) 26

) f R+ 6= ; g9r 2 R+ : [l; v℄ r=6) ^ 8t : [l; v℄ t=6)) f From Assumptions g9e ([l; v℄ e=) _ 9t0 � r ([l; v℄ t0==) ^ [l; v + t0℄ e=))) ^ 8t : [l; v℄ t=6), f Distributivity of Existentials g(9e : [l; v℄ e=) _ 9e 9t0 � r ([l; v℄ t0==) ^ [l; v + t0℄ e=)))^ 8t : [l; v℄ t=6), f Distributivity of ^ over _ g(9e : [l; v℄ e=) ^ 8t : [l; v℄ t=6)) _(9e 9t0 � r ([l; v℄ t0==) ^ [l; v + t0℄ e=)) ^ 8t : [l; v℄ t=6)), f Se
ond disjun
t is
ontradi
tory g9e : [l; v℄ e=) ^ 8t : [l; v℄ t=6)) f Logi
 g9e : [l; v℄ e=)whi
h is as required.
Standard TADs. We will introdu
e a number of di�erent TADs approa
hes inthis paper. These are distinguished by their rules of parallel
omposition. Herewe
onsider the basi
 approa
h, as introdu
ed in [3, 4℄, whi
h we
all standardTADs . A TADs expansion theorem for deriving the produ
t behaviour from aparallel
omposition is given in [3℄. Here we give an equivalent inferen
e rulede�nition for our state ve
tor notation (we denote the standard TADs ve
tor asjjhu[1℄; :::u[n℄i):-(R1) u[i℄ x?;gi;di;ri�������!u[i℄0 u[j℄ x!;gj ;dj;rj�������!u[j℄0jju x;g0;d0;ri[rj���������!jju[i0=i; j0=j℄jju x?;g0i;d0i;ri�������!jju[i0=i℄jju x!;g0j;d0j ;rj�������!jju[j0=j℄where 1 � i 6= j � juj and,g0 = gi ^ gjd0 = g0 ^ (di _ dj)g0i = gi ^ 2:(gi ^ gj)d0i = g0i ^ dig0j = gj ^ 2:(gi ^ gj)d0j = g0j ^ dj27

(R2) u[i℄ e;g;d;r�����!u[i℄0 :(e 2 HA ^ 9k 6= i : u[k℄ e=))jju e;g;d;r�����!jju[i0=i℄where 1 � i � juj. (R1) generates syn
hronisation and es
ape transitions withthe
onstrained guards and deadlines ensuring that syn
hronisation has priorityin the required manner. (R2) is the interleaving rule, whi
h is straightforwardapart from the se
ond
ondition whi
h ensures that transitions on in
ompletea
tions are only generated by this rule if syn
hronisation, and hen
e rule (R1),is not possible.
A1 A2

s1

s2

t1

t2

a?,
t<=2,
t<=2

a!,
true,
false

Figure 15: TADs A1 and A2As an illustration of these inferen
e rules
onsider ||<A1,A2> where A1 andA2 are shown in �gure 15. The unredu
ed
omposition arising from dire
tlyapplying the inferen
e rules is shown in �gure 16(a) (2 is denoted [℄ and : isdenoted �) and �gure 16(b) depi
ts the resulting
omposed TAD when guardsand deadlines have been redu
ed by expanding out temporal operators andapplying propositional logi
. In addition, transitions with unful�llable guards,e.g. false, have been removed.
s1 t1

s2 t1

s2 t2

s1 t2

a,
t<=2 /\ true,
t<=2 /\ true /\
 (t<=2 \/ false)

a?,
t<=2,
t<=2

a!,
true,
false

a?,
t<=2 /\ []~(t<=2 /\ true),
t<=2 /\ []~(t<=2 /\ true)
 /\ t<=2

a!,
 true /\ []~(t<=2 /\ true),
 true /\ []~(t<=2 /\ true)
 /\ false

(a)	

s1 t1

s1 t2a,
t<=2,
t<=2

a!,
 t>2,
 false

s2 t2
(b)Figure 16: Unredu
ed and redu
ed
omposition of A1 and A228

We
an observe the following:-1. In �gure 16(a) and (b) the transition
oming from s1 t1 labelled a is thesyn
hronisation transition.2. In �gure 16(a) the two transitions
oming from s1 t1 labelled a? and a!respe
tively, are the es
ape transitions. The �rst arises from automaton A1and the se
ond from automaton A2. The guards of these es
ape transitionsensure that they
an only �re if the syn
hronisation will never be possiblein the future. Thus, syn
hronisation transitions have priority over es
apetransitions.3. Figure 16(b) shows that sin
e the syn
hronisation transition inherits theguards of a? from A1, no es
ape transition on a? is possible. If s1 t1 isentered with t>2 then the es
ape transition on a!
an be taken, enablingA2 to es
ape its a
tion lo
k.
a0

timeout,t==D,t==D

Timeout4

a1

a2

good?,t<D,false

b0

b1

b2

tau,
r<=C,
false,
r:=0

Component3

good!
r==0,
r==0

Figure 17: TADs for Timeout4 and Component3Bounded Timeout in Standard TADs. Now we reformulate our boundedtimeout in standard TADs. The
omponent that we
onsider is Component3and the timeout is Timeout4 both shown in �gure 17.In the terminology of [3℄, a transition su
h as good? is lazy sin
e nothingever for
es it to happen. In
ontrast, the transition good!, say, is eager [3℄, sin
eits guard and deadline are the same. This implies that as soon as the transition
an happen it will happen.Now by applying the above inferen
e rules and removing impossible transi-tions, the
omposite automaton shown in �gure 18 results.If we �rst fo
us on state a0 b1 then we
an see that this
omposite be-haviour gives priority to the syn
hronisation between good? and good! whi
his indi
ated by the transition labelled good. Thus, while t<D this is the onlytransition that
an �re (noti
e r==0 automati
ally when entering state a0 b1)and furthermore it is eager. 29

good,
t<D /\ r==0,
t<D /\ r==0

a0 b0

timeout,
t==D,
t==D

a0 b1

a2 b1

a2 b2

a0 b2

a1 b2

a1 b1

a2 b0

tau,
r<=C,
false,
r:=0

tau,
r<=C,
false,
r:=0

a1 b0

timeout,
t==D,
t==D

timeout,
t==D,
t==D

tau,
r<=C,
false,
r:=0

good?
t<D,
false

good!,
r==0,
r==0

good!,
r==0 /\ t>=D,
r==0 /\ t>=D

good!,
r==0,
r==0

Figure 18: ||<Timeout4,Component3> in standard TADsAlso, if state a0 b1 is entered with t==D then timeout is urgent. Further-more, from this state the a
tion good! happens. This is the es
ape transition,whi
h allows Component3 to move out of state b1. Remember the timelo
k thatwe obtained previously arose be
ause the
omponent
ould not exit the statewhere it wished to perform good!.This solution seems to ful�l our requirements - it is a strong timeout, urgen
yis enfor
ed as required on both timeout and good and the solution is timelo
kfree. However, there are some pe
uliarities with the resulting
omposite be-haviour. Consider for example, the transition from a0 b0 labelled good?. Thisrepresents the timeout performing its good es
ape transition. However,
on
ep-tually it is being performed too early - before the syn
hronisation on good iseven o�ered and if this transition is taken the good syn
hronisation does noteven have the
han
e to o

ur. The problem is the rule (R2) whi
h adds es
apetransitions too liberally. In response to this observation we
onsider alternativeTADs formulations in the next se
tion.3.5 Alternative TAD FormulationsWe
onsider two alternative TAD formulations10. [5℄ a
tually
onsiders a thirdformulation, but this turns out to be unsatisfa
tory. Both satisfy the require-10We still
all these timed automata with deadlines, be
ause the basi
 prin
iples, as
on-
ieved by Bornot et al [3, 4℄, still apply, i.e. pla
ing deadlines on transitions and using priori-tised
hoi
e. 30

ments that we identi�ed for our bounded timeout. Thus, in parti
ular, theyare both time rea
tive. However, the solutions vary in the extent to whi
h theylimit a
tion lo
ks.3.5.1 Sparse Timed Automata with DeadlinesThis is a minimal TADs approa
h, in whi
h we do not generate any es
apetransitions. Furthermore, sin
e es
ape transitions are not generated, we do nothave to enfor
e any priority between the syn
hronisation and es
ape transitions.With sparse TADs the following parallel
omposition (denoted jjs) rules areused:u[i℄ x?;gi;di;ri�������!u[i℄0 u[j℄ x!;gj ;dj;rj�������!u[j℄0jjsu x;g0;d0;ri[rj���������!jjsu[i0=i; j0=j℄ u[i℄ x;g;d;r�����!u[i℄0 x 2 CAjjsu x;g;d;r�����!jjsu[i0=i℄where 1 � i 6= j � juj, g0 = gi ^ gj and d0 = g0 ^ (di _ dj).These rules prevent un
ompleted a
tions from arising in the
omposite be-haviour; they only arise in the generation of
ompleted a
tions, while (already)
ompleted a
tions o�ered by
omponents of the parallel
omposition
an beperformed independently. This de�nition has the same spirit as the normalUPPAAL rules of parallel
omposition [2℄. The di�eren
e being that here wehave deadlines whi
h we
onstrain during
omposition to preserve the propertyd) g, and hen
e to preserve time-rea
tivity.Let us
onsider on
e again the behaviour,||s<Timeout4,Component3>whi
h is the network we were fo
ussing on in the previous se
tion. Now withour new parallel
omposition rules, we obtain the
omposite behaviour shownin �gure 19. This is an interesting and very reasonable solution. Firstly, itmeets all the requirements identi�ed at the start of this paper for our boundedtimeout. Thus, in parti
ular, it is time-rea
tive. However, it makes no e�ort tolimit a
tion lo
ks, so
ommuni
ation mis-mat
hes yield a
tion lo
ks rather thantimelo
ks.Furthermore as a
onsequen
e of these
hara
teristi
s of sparse TADs wehave revised the interpretation of syn
hronisation in the manner we proposed insubse
tion 3.3. For example, if we
onsider again the Dying Dining Philosophersillustration from that subse
tion, the obvious TADs formulation of the automataof �gure 13 are those shown in �gure 20. Now sparse TADs
omposition of thetwo automata yields the behaviour shown in �gure 21, whi
h is a
tion lo
ked.This is the out
ome that we were seeking - sin
e the pi
k syn
hronisationis not enabled, urgen
y
annot be enfor
ed. This is re
e
ted in both the guardand deadline in �gure 21 being false. This, in turn, is
aused by the deadline
onstraint d0 = g0 ^ (di _ dj) in the Sparse TADs produ
t rule, whereby thegenerated deadline is \pruned" a

ording to the enabling of the guard.31

good,
t<D /\ r==0,
t<D /\ r==0

a0 b0

a0 b1

a2 b2

a1 b1

tau,
r<=C,
false,
r:=0

a1 b0

timeout,
t==D,
t==D

timeout,
t==D,
t==D

tau,
r<=C,
false,
r:=0

Figure 19: ||s<Timeout4,Component3> in Sparse TADs3.5.2 TADs with Minimal Priority Es
ape TransitionsThe idea here is to ensure maximal progress as standard TADs do, but ratherthan just giving es
ape transitions lower priority than their
orresponding syn-
hronisation, we also give them lower priority than other
ompleted transitions.Thus, a
omponent
an only perform an es
ape transition if the
omponent willnever be able to perform a
ompleted transition. This seems appropriate asour view of es
ape transitions is that they should only be performed as a verylast resort - when the
hoi
e is between performing them or rea
hing an \error"state.The parallel
omposition (denoted jjm) rules are:(R1) u[i℄ x?;gi;di;ri�������!u[i℄0 u[j℄ x!;gj ;dj;rj�������!u[j℄0jjmu x;g0;d0;ri[rj���������!jjmu[i0=i; j0=j℄where, 1 � i 6= j � juj, g0 = gi ^ gj , d0 = g0 ^ (di _ dj). and,(R2) u[i℄ x;g;d;r�����!u[i℄0 x 2 CAjjmu x;g;d;r�����!jjmu[i0=i℄ (R3) u[i℄ a;g;d;r�����!u[i℄0 a 2 HAjjmu a;g00;d00;r�������!jjmu[i0=i℄where, 1 � i � juj and,g00 = g ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ 1 � j 6= i � juj g32

l0

l1

Aris m0

m1

pick!,
t>=15

Rest

pick?,
t<=10,
t==10

Figure 20: Dying Dining Philosophers Situation in TADs
pick,
false,
false

l0 m0

l1 m1Figure 21: TADs Composition of Dying Dining Philosophersd00 = d ^ g00(R1) is the normal syn
hronisation rule; (R2) de�nes interleaving of
om-pleted transitions; and (R3) de�nes interleaving of in
omplete, i.e. es
ape, tran-sitions. In this �nal rule, g00 holds when,1. g holds; and2. it is not the
ase that an already
ompleted transition from u[i℄
ouldeventually be
ome enabled; and3. it is not the
ase that an in
omplete transition (in
luding a itself) o�eredat state u[i℄
ould eventually be
ompleted.Furthermore, the de�nition of d00 ensures that the rules preserve the propertyd) g and thus, the produ
t is time rea
tive.Applying these rules to the
omposition:||m<Timeout4,Component3>and removing impossible transitions yields the
omposition shown in �gure 22.This solution removes the ex
essively early es
ape transition from a0 b0, but33

a0 b0

timeout,
t==D,
t==D

a0 b1

a2 b2

a0 b2

a1 b2

a1 b1

tau,
r<=C,
false,
r:=0

a1 b0

timeout,
t==D,
t==D

timeout,
t==D,
t==D

tau,
r<=C,
false,
r:=0

good,
t<D /\ r==0,
t<D /\ r==0

good!,
r==0 /\ t>=D,
r==0 /\ t>=D

good!,
r==0,
r==0

Figure 22: ||m<Timeout4,Component3> in TADs with minimum priority es
apetransitionspreserves all other transitions. In addition, we again obtain the \weaker" han-dling of urgen
y in syn
hronisation that subse
tion 3.3 proposed.3.6 Dis
ussionThis se
tion has presented a number of means to \
onstru
tively" ensure time-lo
k freeness in a timed automata setting. We
an summarise our results asfollows:-� we highlighted a stati
 spe
i�
ation devi
e whi
h
an be used to ensurethat zeno timelo
ks
annot arise;� we
onsidered the standard TADs framework. However, this proved un-satisfa
tory as it generated too many es
ape transitions;� in response, we presented two new TADs formulations - Sparse TADs andTADs with minimal priority es
ape transitions, whi
h do not allow timea
tion lo
ks to be generated and are thus, time rea
tive; and se
ondly,resolve the problem of es
ape transitions being generated ex
essively early;� furthermore, the TADs parallel
omposition that we present \weakens"the interpretation of urgen
y in syn
hronisation. Spe
i�
ally, we obtaina situation in whi
h urgen
y
an only be enfor
ed if a syn
hronisation ispossible. 34

You should also note that all these approa
hes are
ompositionally well be-haved, in the sense that, if
omponent automata satisfy the parti
ular property,e.g. zeno timelo
k freeness or time a
tion lo
k freeness, then the produ
t willsatisfy the same property.4 A
tion Lo
ksOne of the main results of the last se
tion and of the TADs framework ingeneral is to provide a means to
ompose automata together without generatingtimelo
ks. This then raises the issue of whether the same
an be done fora
tion lo
ks, i.e.
an a notion of parallel
omposition be de�ned whi
h
annotintrodu
e a
tion lo
ks. It turns out that by manipulating guards and deadlinesappropriately su
h a notion of
ompositionality
an be obtained. This is thesubje
t matter of this se
tion.As an indi
ation of the ba
kground to the problem of a
tion lo
ks we reviewthe issue of a
tion lo
k freeness in untimed systems in subse
tion 4.1. Then we
onsider a simple way to obtain a
tion lo
k
ompositionality in subse
tion 4.2.However, this approa
h is very limited. Finally, in subse
tion 4.3 we
onsider amore satisfa
tory approa
h.4.1 Independent Parallelism in Untimed SystemsWe
onsider automata / transition systems, (L; l0;!) where L is a set of lo
a-tions, ! is a transition relation on a
tions in A and l0 2 L is a start lo
ation.Now we
an de�ne untimed a
tion lo
k freeness. It is a straightforwardextrapolation from (timed) a
tion lo
k freeness whi
h was de�nition 2.De�nition 5 An automaton, (L; l0;!) is a
tion lo
k free i�8l 2 L (l0) l =) 9e 2 A : l e�!)where) is the obvious rea
hability relation, i.e.l) l0 i� (l = l0) _ (9e1; :::; en 9l1; :::; ln+1 : li ei��! li+1 ^ l = l1 ^ l0 = ln+1)Now we
an easily identify a notion of parallel
omposition that preservesa
tion lo
k freeness:-(L1; l1;0;!1) jjj (L2; l2;0;!2) = (L; l0;!)where,� L = L1 � L2;� ! is de�ned by, l1 e�! 1l01(l1; l2) e�! (l01; l2) l2 e�! 2l02(l1; l2) e�! (l1; l02)35

� l0 = (l1;0; l2;0)i.e. jjj gives the independent parallel
omposition of two automata.jjj ensures the property,If either (L1; l1;0;!1) or (L2; l2;0;!2) are a
tion lo
k free then so is(L1; l1;0;!1) jjj (L2; l2;0;!2)To prove this property we need a small lemma.Lemma 1 Assuming (L; l0;!) = (L1; l1;0;!1) jjj (L2; l2;0;!2) then,(l1;0; l2;0)) (l1; l2) implies l1;0) l1 ^ l2;0) l2ProofWe prove just l1;0) l1, the other
ase is symmetri
. (l1;0; l2;0)) (l1; l2)implies 9e1; :::; en 9l1;1; :::; l1;n+1l2;1; :::; l2;n+1 : (l1;0; l2;0) = (l1;1; l2;1) ^ (l1; l2) =(l1;n+1; l2;n+1) ^ (l1;i; l2;i) ei��! (l1;i+1; l2;i+1). Now we work by indu
tion.Base Case. Assume n = 1. Then (l1;0; l2;0) e1��! (l1; l2) and by the inferen
erules of jjj either l1;0 = l1 or l1;0 e1��! 1l1, but in either
ase we are done.Indu
tive Step. Assume the result holds for n � 1 and that (l1;0; l2;0))(l1;n+1; l2;n+1) whi
h implies (l1;0; l2;0)) (l1;n; l2;n) ^ (l1;n; l2;n) en��! (l1;n+1; l2;n+1)whi
h by indu
tion gives l1;0) l1;n and by the inferen
e rules gives us eitherl1;n = l1;n+1 or l1;n en��! 1l1;n+1, either of whi
h gives us l1;0) l1;n+1 as re-quired.
Proposition 7 If (L1; l1;0;!1) or (L2; l2;0;!2) are a
tion lo
k free then so is(L; l0;!) = (L1; l1;0;!1) jjj (L2; l2;0;!2).ProofWlog assume (L1; l1;0;!1) is a
tion lo
k free. Take (l1; l2) 2 L su
h that(l1;0; l2;0)) (l1; l2) then by lemma 1 we know that l1;0) l1 and also sin
e(L1; l1;0; �! 1) is a
tion lo
k free we have l1 e�! 1. But then the inferen
e rulesimmediately give us that (l1; l2) e�! and we are done.
 However, independent parallelism is not very interesting be
ause it does notallow any syn
hronisation. Unfortunately syn
hronisation brings the possibilitythat new a
tion lo
ks
an be introdu
ed in the produ
t. For example, the CCSparallel
omposition operator would ensure a
tion lo
k freedom preservation ifyou
ould ensure that only a
tions that su

essfully syn
hronise are restri
ted.However, restri
tion is a stati
 operator and determining whether a
tions syn-
hronise is a dynami
 property. This is why we need to use the TADs priorityme
hanisms, be
ause they enable us to de�ne parallel
omposition where the
hoi
e between the transitions is tied to the dynami
 evolution of the system.This point will be
ome
learer in subse
tion 4.3. First though, in subse
tion4.2, we show that the results for untimed independent parallelism that we havededu
ed in this subse
tion
an be extrapolated to the timed setting.36

s0 A1

s1 s2

t0

t1 t2

A2

x,
r==1,
r==1 x,

r==o,
r==o,
t:=0

x,
r>=1,
false,
t:=0

x,
t==1,
t==1 x,

t==o,
t==o,
r:=0

x,
t>=1,
false,
r:=0Figure 23: Automata illustrating the need for disjoint
lo
k sets4.2 Independent Parallelism in Timed SystemsWe
an easily de�ne independent parallelism in the timed setting. Although itwould be easy to give a de�nition for TA, here we give a de�nition for TADs.The independent produ
t, denoted jji, of a ve
tor of TADs is de�ned,jjihA[1℄; :::; A[n℄i = (L; l0;�!; [1�i�nA[i℄:4)where,� l0 = jjihA[1℄:2; :::; A[n℄:2i;� L = f l0 g [f jjiu0 j jjiu e;g;d;r�����!jjiu0 ^ jjiu 2 L g;� �! is de�ned by, (RIP) u[i℄ e;g;d;r�����!u[i℄0jjiu e;g;d;r�����!jjiu[i0=i℄On
e again sin
e we assume d) g throughout ea
h
omponent automaton,(RIP) ensures that d) g in the independent produ
t and thus we have timerea
tivity.It turns out that in order to obtain a
tion lo
k freeness preservation we willhave to assume that the
lo
k sets of our
omponent automata are disjoint. Thetwo automata in �gure 23 indi
ate why we must make this assumption. Individ-ually, these are both a
tion lo
k free sin
e on
e entering state s1 (respe
tivelyt1) the
lo
k r (respe
tively t) is already too high to allow the s2 (respe
tivelyt2) bran
h. However, the independent produ
t of the two will evolve to states2t2 (i.e. an a
tion lo
k) sin
e ea
h resets the other's
lo
k to zero.37

Consequently, we will assume that the
omponent automata in a ve
tor havedisjoint
lo
k sets, i.e.hA[1℄; :::; A[n℄i is only de�ned if, 8i; j(1 � i; j � n) : A[i℄:4 \A[j℄:4 = ;Now we introdu
e some notation related to disjointness of
lo
k sets.vdCis the restri
tion of the (larger)
lo
k valuation v to the valuation on
lo
ks ofC, i.e. vdC = v \ (C � R+0)We
an also build up larger
lo
k valuations from smaller ones by taking theunion of the two fun
tions (note, disjointness of
lo
k valuations prevents thisfrom being dangerous). Also, we will often write vd(A[i℄:4) as vdi, i.e. to restri
tthe valuation v to the
lo
ks of A[i℄.We have the following two straightforward lemmas
on
erning restri
tion of
lo
k sets.Lemma 2C 0 � C =) C 0(vdC) = (C 0(v))dCProofC 0(vdC)= f De�nitions of d and
lo
k reset g((v \ (C � R+0))n(C 0 � R+0)) [(C 0 � f0g)= f De�nition of n g((v \ (C � R+0)) \ (C nC 0 � R+0)) [(C 0 � f0g)= f Asso
iativity and
ommutativity of \ g((v \ (C nC 0 � R+0)) \ (C � R+0)) [(C 0 � f0g)= f Distributivity of [over \ ; de�nition of n g((vn(C 0 � R+0)) [(C 0 � f0g)) \ ((C � R+0) [(C 0 � f0g))= f C 0 � C g((vn(C 0 � R+0)) [(C 0 � f0g)) \ (C � R+0)= f De�nitions of d and
lo
k reset g(C 0(v))dC
Lemma 3(vdC) + t = (v + t)dC 38

ProofTrivial.
We will need the following lemma. It states that if the independent produ
t
anrea
h a state then all
omponents
an rea
h a
orresponding state. In parti
u-lar, this
orresponden
e ensures that all
lo
k valuations that the independentprodu
t
an rea
h,
an (with appropriate restri
tion) also be rea
hed by all
omponent automata.Lemma 48i(1 � i � juj) : [jjiu; v℄ 2 [[jjiA ℄℄ :1 =) [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1ProofWe prove this by indu
tion over the rules for generating time/a
tion transitionsystems for TADs. Take i 2 N su
h that 1 � i � n and n = juj.Base Case:[jjihA[1℄:2; :::; A[n℄:2i; v0℄ 2 [[jjiA ℄℄ :1 and [A[i℄:2; v0di℄ 2 [[A[i℄ ℄℄ :1 by
onstru
-tion.Indu
tive Step:Assume [jjiu; v℄ 2 [[jjiA ℄℄ :1 and [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1 (this is the indu
tivehypothesis). We need to show that the next state rea
hable from [jjiu; v℄ also
orresponds to a state in [[A[i℄ ℄℄ :1. We argue by
ase analysis of the means bywhi
h [jjiu; v℄
an rea
h a new state.Case 1 [[jjiu; v℄ e=) [jjiu0; v0℄ ℄[jjiu; v ℄ e=) [jjiu0; v0 ℄, f Rule (S1) gjjiu e;g;d;r�����!jjiu0 ^ g(v) ^ v0 = r(v)Case 1.1 [u[i℄ = u[i℄0 ℄u[i℄ = u[i℄0, f Clo
k sets are disjoint, i.e. r \ (A[i℄:4) = ; g[u[i℄0; v0di℄ = [u[i℄; vdi℄) f By indu
tive hypothesis g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whi
h is as required.Case 1.2 [u[i℄ 6= u[i℄0 ℄u[i℄ 6= u[i℄0) f Rule (RIP) ;
ase assumption gu[i℄ e;g;d;r�����!u[i℄0 ^ g(v) ^ v0 = r(v)39

) f Indu
tive hypothesis; disjoint
lo
k sets gives g(vdi); rule (S1) g[u[i℄; vdi℄ e=) [u[i℄0; r(vdi)℄ ^ v0 = r(v), f Disjointness of
lo
k sets, so r � (A[i℄:4); Lemma 2 g[u[i℄; vdi℄ e=) [u[i℄0; r(v)di℄ ^ v0 = r(v)) f Substitution g[u[i℄; vdi℄ e=) [u[i℄0; v0di℄) f Transition system
onstru
tion g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whi
h is as required.Case 2 [[jjiu; v℄ t=) [jjiu; v + t℄ ℄We seek to show that [u[i℄; vdi℄ t=) [u[i℄; (v + t)di℄whi
h will require us to show that,8u[i℄0 (u[i℄ e0;gi;di;ri�������!u[i℄0 =) 8t0 < t ::di(v + t0))Thus, we take u[i℄0 2 A[i℄:1 su
h that u[i℄ e0;gi;di;ri�������!u[i℄0 and pro
eed as follows:-u[i℄ e0;gi;di;ri�������!u[i℄0 ^ [jjiu; v℄ t=) [jjiu; v + t℄, f Rule (S2) gu[i℄ e0;gi;di;ri�������!u[i℄0 ^ 8(jjiu0) (jjiu e;g;d;r�����!jjiu0 =) 8t0 < t ::d(v+ t0)), f Rule (RIP) gjjiu e0;gi;di;ri�������!jjiu[i0=i℄ ^8(jjiu0) (jjiu e;g;d;r�����!jjiu0 =) 8t0 < t ::d(v + t0))) f Instantiating universal g8t0 < t ::di(v + t0)whi
h gives us that,8u[i℄0 (u[i℄ e0;gi;di;ri�������!u[i℄0 =) 8t0 < t ::di(v + t0))but then by (S2) and our indu
tive hypothesis, we have,[u[i℄; vdi℄ t=) [u[i℄; (vdi) + t℄and by lemma 3 it follows that,[u[i℄; vdi℄ t=) [u[i℄; (v + t)di℄and hen
e, [u[i℄; (v + t)di℄ 2 [[A[i℄ ℄℄ :140

whi
h is as required and
ompletes the indu
tive
ase.
Now we show that a
tion lo
k freeness is indeed preserved when taking theindependent produ
t.Proposition 89i (1 � i � jAj) : A[i℄ is a
tion lo
k free =) jjiA is a
tion lo
k free.ProofWe prove the
ontrapositive,jjiA
ontains an a
tion lo
k implies 8i (1 � i � jAj) : A[i℄ is a
tionlo
ked.So, assume jjiA
ontains an a
tion lo
k, i.e.,Property (*)9[jjiu; v℄ 2 [[jjiA ℄℄ :1 :8t 2 R+0 ([jjiu; v + t℄ 2 [[jjiA ℄℄ :1 =) [jjiu; v + t℄ e=6))Take i su
h that 1 � i � jAj, we need to show that A[i℄ is a
tion lo
ked. Nowby lemma 4 we know that, [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1and we will show that this state is a
tion lo
ked. We pro
eed by
ontradition.Thus, assume the state is not a
tion lo
ked. There are two possibilities:-1. [u[i℄; vdi℄ e=) or2. 9t ([u[i℄; vdi℄ t=) [u[i℄; vdi+t℄ ^ [u[i℄; vdi+t℄ e=)).We
onsider these
ases in turn.Case 1 [[u[i℄; vdi℄ e=) ℄[u[i℄; vdi℄ e=)) f Rule (S1) gu[i℄ e;g;d;r�����! ^ g(vdi)) f Rule (RIP); disjointness of
lo
k sets gjjiu e;g;d;r�����! ^ g(v)) f Rule (S1) g[jjiu; v℄ e=)whi
h would
ontradi
t property (*). Thus, this
ase is not possible.Case 2[9t ([u[i℄; vdi℄ t=) [u[i℄; vdi+t℄ ^ [u[i℄; vdi+t℄ e=)) ℄Let us
onsider the behaviour of the independent produ
t. Firstly,
an it passtime by t? 41

Case 2.1 [[jjiu; v℄ t=6) ℄[jjiu; v℄ t=6)) f Sin
e jjiA will be time rea
tive we
an use proposition 6 g9e ([jjiu; v℄ e=) _ 9t0 � t ([jjiu; v℄ t0==) [jjiu; v + t0℄ ^ [jjiu; v + t0℄ e=)))whi
h would
ontradi
t property (*). Thus, this
ase is not possible.Case 2.2 [[jjiu; v℄ t=) [jjiu; v + t℄ ℄[jjiu; v℄ t=) [jjiu; v + t℄) f Introdu
ing our
ase 2 assumption g[jjiu; v℄ t=) [jjiu; v + t℄ ^ [u[i℄; vdi+t℄ e=), f Lemma 3 g[jjiu; v℄ t=) [jjiu; v + t℄ ^ [u[i℄; (v + t)di℄ e=)) f Rule (S1) g[jjiu; v℄ t=) [jjiu; v + t℄ ^ u[i℄ e;g;d;r�����!u[i℄0 ^ g((v + t)di)) f Rule (RIP); disjointness of
lo
k sets g[jjiu; v℄ t=) [jjiu; v + t℄ ^ jjiu e;g;d;r�����!jjiu[i0=i℄ ^ g(v + t)) f Rule (S1) g[jjiu; v℄ t=) [jjiu; v + t℄ ^ [jjiu; v + t℄ e=)whi
h would also
ontradi
t property (*). Thus, this
ase is also not possible.This
ompletes all the possibilities that would arise if,[u[i℄; vdi℄were not a
tion lo
ked and all these possibilities generate
ontradi
tions. Thus,it must be the
ase that the state is a
tion lo
ked and the result follows.
4.3 Timed Case with Syn
hronisation4.3.1 Composition RulesAs stated earlier, independent parallelism is theoreti
ally interesting, but su
hintera
tion free parallel
omposition is of limited value. Thus, here we
onsiderhow the same a
tion lo
k
ompositionality property
an be obtained but whileallowing intera
tion between pro
esses. Our de�nition builds upon the parallel
omposition arising in TADs with Minimum Priority Es
ape Transitions, whi
hhas a number of the required
hara
teristi
s. However, it does not go far enoughin its generation of es
ape transitions. Parti
ularly in respe
t of preserving
omponent deadlines. These issues will be
ome
lear shortly.42

Consider the following
omposition rules where u is a ve
tor of TADs lo
a-tions. The produ
t that is generated is denoted jjaA.(RCA) u[i℄ x?;gi;di;ri�������!u[i℄0 u[j℄ x!;gj ;dj;rj�������!u[j℄0jjau x;g0;d0;ri[rj���������!jjau[i0=i; j0=j℄where, 1 � i 6= j � juj, g0 = gi ^ gj , d0 = g0 ^ (di _ dj) and,(RIA) u[i℄ x;g;d;r�����!u[i℄0 x 2 CAjjau x;g;d;r�����!jjau[i0=i℄ (RHA) u[i℄ a;g;d;r�����!u0[i℄ a 2 HAjjau a;g00;d00;r�������!jjau[i0=i℄where (1 � i � juj) and,g00 = (g ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g) _d00d00 = d ^ Vf:q:3 j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3)) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i gNow we give an explanation of the
omponents of the de�nition.(RCA). This is the (now) familiar \
onjun
tive" syn
hronisation rule, with thedeadline
onstraint ensuring that d) g and thus preserving time rea
tivity.(RIA). This gives the also familiar interleaving modelling of independent par-allelism, i.e. non-syn
hronizing internal a
tions.(RHA). This generates es
ape transitions in order to avoid a
tion lo
ks, withthe guard and deadline
onstru
tions
ontrolling when the es
ape transitions
an o

ur. We justify our guard and deadline de�nitions as follows:-1. The guard is
onstru
ted as a disjun
tion between the guard
onstru
tion�rst proposed in [6℄ for es
ape transitions and re-iterated in subse
tion3.5.2 and the deadline. We justify the guard based disjun
t (i.e. the �rst)here. A later point justi�es disjoining with the deadline.The basi
 idea of this �rst disjun
t,g ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i gis to enable the produ
t to es
ape a
tion lo
ks resulting from mismat
hedsyn
hronisations. As was motivated in subse
tion 3.5 the
onstru
tionre�nes the es
ape transition
onstru
tion presented by [3, 4℄. It doesthis by
onstraining es
ape transitions to only o

ur when the
omponentautomaton from whi
h the es
ape transition originates
an never performany other transition. 43

t0
A1

bbb!,
true,
false

s0
A0

aaa!,
true,
falseFigure 24: A
tion lo
k free TADs

bbb!,
true,
false

aaa!,
true,
false

s0 t0

Figure 25: Composition of A0 and A1As a simple illustration of why this disjun
t is required
onsider the twoautomata in �gure 24. Both of these TADs are a
tion lo
k free sin
e intheir single state they
an always perform their respe
tive transition andthen evolve ba
k into the same state.However, if just rules (RCA) and (RIA) are used the
omposition of A0and A1 will a
tion lo
k immediately as neither syn
hronisation
an beful�lled. Also noti
e, this is not an issue of deadlines as both automatahave unsatis�able deadlines.However, appli
ation of the rule (RHA) in
onjun
tion with (RCA) and(RIA) will allow the a
tion lo
k to be es
aped as shown in the
omposi-tion in �gure 25. Thus, as a
onsequen
e of failing to syn
hronise, bothautomata evolve lo
ally.2. Now we justify the deadline
onstru
tion in (RHA). The
onstru
tion,d ^ Vf:q:3 j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3)) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i ghas a similar shape to the guard
onstru
tion we just
onsidered, however,the temporal operators are not in
luded. To explain the
onstru
tion inwords, it states that,the deadline (d00) of the es
ape transition holds if and only if,(a) the deadline of the
orresponding
omponent transition (d)holds; 44

s0
A

aaa!,
t<=5,
false,
t:=0Figure 26: A strongly
onne
ted TAD that
an a
tion lo
k

s0
A’

aaa!,
t<=5,
t==5,
t:=0Figure 27: A strongly
onne
ted TAD that is a
tion lo
k free(b) no internal transition of the
omponent is at its deadline;and(
) no syn
hronisation whi
h in
ludes a half a
tion of the
om-ponent is at its deadline.The intuition behind the rule is that any (non
ompeting) deadline thatappears in the
omponent but that does not arise in the produ
t (be
auseof a failed syn
hronisation) has its deadline preserved in an es
ape tran-sition of the produ
t. A deadline of a transition is
ompeting at a state ifthe deadline of an alternative transition also holds at that state.This deadline
onstru
tion is motivated by the observation that in themajority of
ases it is the deadline that ensures a
tion lo
k freeness ofan automaton. For example, although the automaton A in �gure 26 isstrongly
onne
ted it is not a
tion lo
k free. In parti
ular, assuming s0 is�rst entered with t==0, if it stays in state s0 for longer than 5 time units,it will a
tion lo
k.Furthermore, there is nothing
onstraining the length of time the automa-ton
an idle in state s0 as the deadline of the aaa! transition is false.However, (assuming s0 is entered with t<=5) the automaton shown in�gure 27 is a
tion lo
k free, sin
e the deadline on the aaa! transitionprevents ex
essive idling in state s0.Now in order to obtain the a
tion lo
k freeness property that we desire weneed to guarantee that deadlines that ensure a
tion lo
k freeness of
om-ponent automata are preserved in the produ
t (either through appearing45

t0s0
B B’

aaa!,
t<=5,
t==5,
t:=0

bbb!,
r<=8,
r==8,
r:=0Figure 28: Two a
tion lo
k free TADs

s0 t0

aaa!,
t<=5,
t==5,
t:=0

bbb!,
r<=8,
r==8,
r:=0Figure 29: Composition of B and B'as a result of rules (RCA) or (RIA) or by in
luding relevant es
ape tran-sitions). Our rule does this. Firstly,
onsider the two a
tion lo
k freeautomata B and B' shown in �gure 28. With just rules (RCA) and (RIA)the produ
t of B and B' would be a
tion lo
ked. However, with (RHA) aswell, the produ
t automaton shown in �gure 29 would result.In fa
t, this produ
t would have resulted from appli
ation of the rulespresented in subse
tion 3.5 where the deadline is simply d00 = d ^ g00.However, the example in �gure 30 of two more a
tion lo
k free TADs (C0and C1) shows that this is not suÆ
ient in the general
ase. This is be
ausea

ording to the rules of subse
tion 3.5, the parallel
omposition of C0 andC1 would be as shown in �gure 31 whi
h will a
tion lo
k at state s1t1.

s0

aaa!,
t<=5,
t==5,
t:=0

s1

C0 C1

bbb!,
r<=8,
r==8,
r:=0

t0 t1
x,t==6,t==6 x,r==9,r==9

Figure 30: Two more a
tion lo
k free TADs46

s0 t0

s1 t0

s1 t1

x,
t==6,
t==6

x,
r==9,
r==9

Figure 31: Composition of C0 and C1 without preserving deadlinesThe problem is that the guards of the aaa! and bbb! es
ape transitionsthat the rules of subse
tion 3.5 generate, are false. This is be
ause in bothautomata an internal a
tion
an eventually be taken and this internala
tion will take priority.However, if we apply the rules (RCA), (RIA) and (RHA) of the produ
tjja then the left most produ
t in �gure 32 results whi
h is \behaviourallyequivalent" to the right most produ
t. This is be
ause the deadline pre-vents
lo
k t passing 5 and
lo
k r passing 8. Noti
e that the guardhas been pruned to mat
h the deadline. This ensures that the enablingof aaa! and bbb! is minimised to only what is required to preserve thedesired a
tion lo
k freeness property.Also noti
e that this example illustrates why the priority enfor
ed in thedeadline has to be immediate and in
luding temporal operators is inappro-priate. Spe
i�
ally, if a deadline d ensures a
tion lo
k freedom then evenif later transitions are possible the deadline must be preserved exa
tly inthe produ
t in order to prevent later transitions from being enabled whi
hallow an a
tion lo
k to be rea
hed, e.g. the internal transition above11.3. Finally, we need to disjoin the deadline in the guard in order to ensure thatd) g everywhere and thus to preserve time rea
tivity. For example, with-out su
h a disjun
t, the produ
t of C0 and C1 would be the
ompositionshown in �gure 33 whi
h timelo
ks when t rea
hes 5.Also noti
e that the standard approa
h, used e.g. by [3, 4℄, for obtainingd) g whi
h is to
onjoin the guard with the deadline, will not work sin
eit
ould remove some part of a deadline that is needed to ensure a
tion11This may not be the most re�ned solution sin
e we might add an es
ape transition eventhough a later transition may prevent the a
tion lo
k. But, su
h a more re�ned solution isvery diÆ
ult to analyse, sin
e you must be sure that the later deadline prevents an a
tionlo
k and this is very diÆ
ult to analyse. 47

s1 t0

s1 t1

bbb!,
r==8,
r==8,
r:=0

x,
t==6,
t==6

s0 t0
aaa!,
t==5,
t==5,
t:=0

bbb!,
r==8,
r==8,
r:=0

s0 t1

x,
r==9,
r==9

x,
r==9,
r==9

x,
t==6,
t==6

aaa!,
t==5,
t==5,
t:=0

s0 t0
aaa!,
t==5,
t==5,
t:=0

bbb!,
r==8,
r==8,
r:=0

Figure 32: Composition of C0 and C1 with deadlines preserved

s1 t0

s1 t1

x,
t==6,
t==6

s0 t0

s0 t1

x,
r==9,
r==9

x,
r==9,
r==9

x,
t==6,
t==6

aaa!,
false,
t==5,
t:=0

bbb!,
false,
r==8,
r:=0

bbb!,
false,
r==8,
r:=0

aaa!,
false,
t==5,
t:=0

Figure 33: Non time rea
tive
omposition of C0 and C148

lo
k freeness. This
an again be seen in the above example. In parti
ular,if we
onjoined the guard,g00 = g ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i gto the deadline,d00 = d ^ Vf:q:3 j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3)) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i gin order to ensure that d) g then the deadlines of aaa! and bbb! wouldbe false and the produ
t
ould evolve to an a
tion lo
k at state s1t1.4.3.2 Veri�
ation of RulesNow we give a formal veri�
ation that the parallel
omposition jja does indeedpreserve a
tion lo
k freeness. Before
oming to our main theorem, we needtwo results. The �rst is a simple
onsequen
e of a state being a
tion lo
ked ina TADs setting. It states that time
an pass arbitrarily in any a
tion lo
kedstate.Proposition 98A 2 TAD 8[l; v℄ 2 [[A ℄℄ :1([l; v℄ is a
tion lo
ked =) 8t 2 R+ : [l; v + t℄ 2 [[A ℄℄ :1)ProofAssume [l; v℄ is a
tion lo
ked, i.e. [l; v℄ e=6) ^8t0 2 R+ ([l; v℄ t0==) [l; v + t0℄ =) [l; v + t0℄ e=6))Now we know from proposition 5 that either,8t 2 R+ : [l; v℄ t=) _8t 2 R+ : [l; v℄ t=6) _9t 2 R+ ([l; v℄ t=) ^ 8t0 2 R+ ([l; v℄ t0==) () t0 � t))Now disjun
t 2 is not possible sin
e if [l; v℄
annot pass time and
annotperform an a
tion transition we have
ontradi
ted time rea
tivity. So,
onsiderdisjun
t 3. We
an reason as follows:- 49

9t ([l; v℄ t=) [l; v + t℄ ^ 8t0 ([l; v℄ t0==) () t0 � t))) f Logi
 g9t ([l; v℄ t=) [l; v + t℄ ^ 8t0 > t ([l; v℄ t0=6))), f Otherwise time
ontinuity would
ontradi
t 2nd
onjun
t g9t ([l; v℄ t=) [l; v + t℄ ^ 8t0 : [l; v + t℄ t0=6))But this yields a
ontradi
tion sin
e [l; v + t℄
annot let time pass and (as[l; v℄ is a
tion lo
ked) it
annot perform an a
tion transition, whi
h invalidatestime rea
tivity.Thus, our third disjun
t is also impossible. This implies that the �rst dis-jun
t must hold, i.e. 8t : [l; v℄ t=) [l; v + t℄whi
h is as required.
 Now we
onsider the
orresponding lemma to lemma 4 whi
h we used toprove that the independent produ
t preserved a
tion lo
k freeness. The lemmastates that if the produ
t
an rea
h a state then all
omponents
an rea
h a
orresponding state. In parti
ular, this
orresponden
e ensures that all
lo
kvaluations that the produ
t
an rea
h,
an (with appropriate restri
tion) alsobe rea
hed by all
omponent automata.Lemma 58i(1 � i � juj) : [jjau; v℄ 2 [[jjaA ℄℄ :1 =) [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1ProofWe prove this by indu
tion on the rules for generating transition systems fromTADs. So,
onsider an arbitrary
omponent automaton, say automaton i 2 Nsu
h that 1 � i � n,Base Case:If [hA[1℄:2; :::; A[n℄:2i; v0℄ 2 [[jjaA ℄℄ :1 then, by
onstru
tion, we know that,[A[i℄:2; v0di℄ 2 [[A[i℄ ℄℄ :1.Indu
tive Step:Assume [jjau; v℄ 2 [[jjaA ℄℄ :1 and [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1 (this is the indu
tivehypothesis). We need to show that the next state rea
hable from [jjau; v℄ also
orresponds to a state in [[A[i℄ ℄℄ :1. We argue via a
ase analysis of how a newstate
an be rea
hed.Case 1 [[jjau; v℄ e=) [jjau0; v0℄ ℄[jjau; v℄ e=) [jjau0; v0℄, f Rule (S1) gjjau e;g;d;r�����!jjau0 ^ g(v) ^ v0 = r(v)50

Case 1.1 [u[i℄ = u[i℄0 ℄u[i℄ = u[i℄0) f Disjointness of
lo
k sets, i.e. r \ (A[i℄:4) = ; g[u[i℄0; v0di℄ = [u[i℄; vdi℄) f Indu
tive hypothesis g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whi
h is as required.Case 1.2 [u[i℄ 6= u[i℄0 ℄Case 1.2.1 [e 2 CA by an appli
ation of rule (RIA) ℄u[i℄ 6= u[i℄0 ^ e 2 CA) f Rule (RIA) ;
ase assumption gu[i℄ e;g;d;r�����!u[i℄0 ^ g(v) ^ v0 = r(v)) f Indu
tive hypothesis ; rule (S1) ; disjoint
lo
k sets ensure g(vdi) g[u[i℄; vdi℄ e=) [u[i℄0; r(vdi)℄ ^ v0 = r(v), f Disjointness of
lo
k sets, i.e. r � A[i℄:4 ; lemma 2 g[u[i℄; vdi℄ e=) [u[i℄0; r(v)di℄ ^ v0 = r(v)) f Substitution g[u[i℄; vdi℄ e=) [u[i℄0; v0di℄) f Transition system
onstru
tion g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whi
h is as required.Case 1.2.2 [e 2 CA by an appli
ation of rule (RCA) ℄u[i℄ 6= u[i℄0 ^ e 2 CA) f Rule (RCA) ; wlog use e! rather than e? gu[i℄ e!;gi;di;ri�������!u[i℄0 ^ (gi ^ gj)(v) ^ v0 = (ri [rj)(v)) f De�nition of guards gu[i℄ e!;gi;di;ri�������!u[i℄0 ^ gi(v) ^ v0 = (ri [rj)(v)) f Indu
tive hypothesis ; disjoint
lo
k sets ; rule (S1) g[u[i℄; vdi℄ e!==) [u[i℄0; ri(vdi)℄ ^ v0 = (ri [rj)(v), f Lemma 2 ; rj \ A[i℄:4 = ; ; substitution g[u[i℄; vdi℄ e!==) [u[i℄0; v0di℄) f Transition system
onstru
tion g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whi
h is as required. 51

Case 1.2.3 [e 2 HA ℄u[i℄ 6= u[i℄0 ^ e 2 HA) f Rule (RHA) ; with X and Y s.t. g = (gi ^ X) _ (di ^ Y) gu[i℄ e;gi;di;ri������!u[i℄0 ^ ((gi ^ X) _ (di ^ Y))(v) ^ v0 = ri(v)) f di) gi by time rea
tivity gu[i℄ e;gi;di;ri������!u[i℄0 ^ gi(v) ^ v0 = ri(v)) f Indu
tive hypothesis ; disjoint
lo
k sets ; rule (S1) g[u[i℄; vdi℄ e=) [u[i℄0; ri(vdi)℄ ^ v0 = ri(v), f Lemma 2 ; substitution g[u[i℄; vdi℄ e=) [u[i℄0; v0di℄) f Transition system
onstru
tion g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whi
h is as required.Case 2 [[jjau; v℄ t=) [jjau; v + t℄ ℄[jjau; v℄ t=) [jjau; v + t℄, f Rule (S2) g8jjau0 (jjau e;g;d;r�����!jjau0 =) 8t0 < t ::d(v + t0)) � (�)We seek to show that,8u[i℄0 (u[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 =) 8t0 < t ::d0i(v + t0))Thus, we take u[i℄0 2 A[i℄:1 and assume,u[i℄ e0i;g0i;d0i;r0i�������!u[i℄0Then we have two
ases dependent upon the nature of e0i.Case 2.1 [e0i 2 CA ℄e0i 2 CA) f Case assumption gu[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 ^ e0i 2 CA) f Rule (RIA) ; assumption (�) gjjau e0i;g0i;d0i;r0i�������!jjau0 ^ e0i 2 CA ^ (�)) f Instantiating universal in (�) g8t0 < t ::d0i(v + t0)whi
h is as required. 52

Case 2.2 [e0i 2 HA ℄e0i 2 HA) f Case assumption gu[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 ^ e0i 2 HA) f Rule (RHA) (X as in (RHA)) ; assumption (�) gjjau e0i;g00;d00;ri��������!jjau0 ^ e0i 2 HA ^ (�) ^ g00 = X ^d00 = d0i ^ Vf:q:3 j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3)) j q 2 �HA(u[i℄) ^q0 2 �fq:1g(u[j℄) ^ j 6= i g) f Instantiating universal in (�) ; def. of timing
onstraints ; logi
 g8t0 < t:(d0i(v + t0) ^ Vf:q:3(v + t0) j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3))(v + t0) j q 2 �HA(u[i℄) ^q0 2 �fq:1g(u[j℄) ^ j 6= i g) f De Morgan's g8t0 < t (:d0i(v + t0) _ W f q:3(v + t0) j q 2 �CA(u[i℄) g _W f (q:2 ^ q0:2 ^ (q:3 _ q0:3))(v + t0) j q 2 �HA(u[i℄) ^q0 2 �fq:1g(u[j℄) ^ j 6= i g � (�)Our strategy from here is to show that the se
ond two disjun
ts
annot holdfor any t0 < t.Case 2.2.1 [9t0 < t W f q:3(v + t0) j q 2 �CA(u[i℄) g ℄9t0 < t W f q:3(v + t0) j q 2 �CA(u[i℄) g) f De�nition of � ; evaluating disjun
t g9t0 < t 9u[i℄00 (u[i℄ x;g00i ;d00i ;r00i��������!u[i℄00 ^ d00i (v + t0))) f Rule (RIA) ; assumption (�) g9t0 < t 9u[i℄00 (jjau x;g00i ;d00i ;r00i��������!jjau[i00=i℄ ^ d00i (v + t0)) ^ (�)) f Instantiating universal in (�) ; logi
 g9t0 < t 9u[i℄00 (8t00 < t ::d00i (v + t00) ^ d00i (v + t0))) f Redu
ing
ontradi
tion to false gfalseSo, this sub
ase is
ontradi
tory and hen
e impossible.Case 2.2.2[9t0 < t W f (q:2 ^ q0:2 ^ (q:3 _ q0:3))(v + t0) jq 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g ℄9t0 < t W f (q:2 ^ q0:2 ^ (q:3 _ q0:3))(v + t0) jq 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g) f De�nition of � ; evaluating disjun
ts g53

9t0 < t 9u[i℄00; u[j℄00 (u[i℄ a;g00i ;d00i ;r00i��������!u[i℄00 ^ u[j℄ a;g00j ;d00j ;r00j��������!u[j℄00 ^g00i (v + t0) ^ g00j (v + t0) ^ (d00i (v + t0) _ d00j (v + t0)))) f Rule (RCA) ; assumption (�) g9t0 < t 9jjau00 (jjau "a;g0;d0;r0�������!jjau00 ^ g0 = (g00i ^ g00j) ^d0 = (g0 ^ (d00i _ d00j)) ^ g00i (v + t0) ^ g00j (v + t0) ^(d00i (v + t0) _ d00j (v + t0))) ^ (�)) f Instantiating universal in (�) ; logi
 ; substitution g9t0 < t (8t00 < t ::d0(v + t00) ^ d0 = (g00i ^ g00j ^ (d00i _ d00j)) ^g00i (v + t0) ^ g00j (v + t0) ^ (d00i (v + t0) _ d00j (v + t0)))) f Substitution g9t0 < t (8t00 < t ::d0(v + t00) ^ d0(v + t0))) f Redu
ing
ontradi
tion to false gfalseSo, this sub
ase is also
ontradi
tory and hen
e impossible.Thus, the last two disjun
ts of (*)
annot hold for any t0 < t and hen
e we knowthat for all t0 < t the �rst disjun
t must be true. Thus,(*)) f Above
ases 2.2.1 and 2.2.2 g8t0 < t (:d0i(v + t0))as required to
omplete
ase 2.2.Now bringing
ases 2.1 and 2.2 together, we have,8u[i℄0 (u[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 =) 8t0 < t ::d0i(v + t0))However, due to disjointness of
lo
k sets we
an dedu
e that,8u[i℄0 (u[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 =) 8t0 < t ::d0i(vdi+t0))and by our indu
tive hypothesis we know that,[u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1from whi
h (by S2) it follows that,[u[i℄; vdi℄ t=) [u[i℄; vdi+t℄and thus, [u[i℄; vdi+t℄ 2 [[A[i℄ ℄℄ :1whi
h is as required to
omplete our proof of the indu
tive
ase.
Now we turn to the
entral result of this se
tion. It states that jja preservesa
tion lo
k freeness. 54

Theorem 19i(1 � i � jAj) : A[i℄ is a
tion lo
k free =) jjaA is a
tion lo
k free.ProofWe
an express the desired property as follows,9i :8[u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1 9t 2 R+0 ([u[i℄; vdi+t℄ 2 [[A[i℄ ℄℄ :1 ^ [u[i℄; vdi+t℄ e=))implies8[jjau; v℄ 2 [[jjaA ℄℄ :1 9t 2 R+0 ([jjau; v + t℄ 2 [[jjaA ℄℄ :1 ^ [jjau; v + t℄ e=))Thus, we assume,9i :8[u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1 9t 2 R+0 ([u[i℄; vdi+t℄ 2 [[A[i℄ ℄℄ :1 ^ [u[i℄; vdi+t℄ e=))and then we take, [jjau; v℄ 2 [[jjaA ℄℄ :1, However,[jjau; v℄ 2 [[jjaA ℄℄ :1) f Lemma 5 g[u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1Now we will show that :AL([u[i℄; vdi℄) implies that :AL([jjau; v℄). We
onsidertwo
ases (t = 0 and t > 0) depending upon whether [u[i℄; vdi℄
an immediatelyperform an a
tion or only after passing time.Case 1 [t = 0 ℄t = 0, f Case assumption g[u[i℄; vdi℄ ei==), f Rule (S1) ; gi only uses
lo
ks in A[i℄:4 gu[i℄ ei;gi;di;ri�������! ^ gi(v) � (+)whi
h yields sub
ases dependent upon the nature of ei.Case 1.1 [ei 2 CA ℄ei 2 CA) f Rule (RIA) ;
ase assumption (+) gjjau ei;gi;di;ri�������!jjau0 ^ gi(v) ^ ei 2 CA, f Rule (S1) g[jjau; v℄ ei==)whi
h is as required.Case 1.2 [ei 2 HA ℄Case 1.2.1 [9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ x 2 CA ^ 9t : gx((v + t)di)) ℄55

Case 1.2.1.1 [[jjau; v℄ t=6) ℄[jjau; v℄ t=6)) f Proposition 6 g9e ([jjau; v℄ e=) _ 9t0 � t ([jjau; v℄ t0==) [jjau; v+ t0℄ ^ [jjau; v+ t0℄ e=)))whi
h is as required.Case 1.2.1.2 [[jjau; v℄ t=) [jjau; v + t℄ ℄[jjau; v℄ t=) [jjau; v + t℄) f Rule (RIA) ; assumptions ; disjoint
lo
k sets g[jjau; v℄ t=) [jjau; v + t℄ ^ jjau x;gx;dx;rx�������! ^ gx(v + t)) f Rule (S1) g[jjau; v℄ t=) [jjau; v + t℄ ^ [jjau; v + t℄ x=)whi
h is as required.Case 1.2.2 [:9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ x 2 CA ^ 9t : gx((v + t)di)) ℄Case 1.2.2.1 [9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy ;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t : (gy ^ gz)(v + t)) ℄Case 1.2.2.1.1 [[jjau; v℄ t=6) ℄Similar to
ase 1.2.1.1.Case 1.2.2.1.2 [[jjau; v℄ t=) [jjau; v + t℄ ℄[jjau; v℄ t=) [jjau; v + t℄) f Rule (RCA) ; assumptions ; disjointness of
lo
k sets g[jjau; v℄ t=) [jjau; v + t℄ ^ jjau #a;g0;d0;r0�������! ^ g0 = (gy ^ gz) ^d0 = (g0 ^ (dy _ dz)) ^ (gy ^ gz)(v + t)) f Rule (S1) g[jjau; v℄ t=) [jjau; v + t℄ ^ [jjau; v + t℄ #a==)whi
h is as required.Case 1.2.2.2 [:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy ;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t : (gy ^ gz)(v + t))) ℄:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t : (gy ^ gz)(v + t)))) f A

umulating assumptions ; disjointness of
lo
k sets g:(9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ 9t : gx(v + t))) ^:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^56

9t : (gy ^ gz)(v + t)))) f De�nition of temporal operators g:(9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ 3gx(v))) ^:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^3(gy ^ gz)(v))), f Logi
 g8u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 =) 2:gx(v)) ^8u[i℄0; u[k℄; u[k℄0(k 6= i) ((u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0) =)2:(gy ^ gz)(v))) f De�nition of ^ and � gVf2:q:2(v) j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2)(v) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[k℄) ^ k 6= i g � (#)However, in addition, we are in
ase 1 (with assumption (+)) and 1.2 whi
hgives us,u[i℄ ei;gi;di;ri�������!u[i℄0 ^ gi(v) ^ ei 2 HA) f Rule (RHA) gjjau ei;g;d;ri������!jjau0 ^ g = ((gi ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g) _ di) ^gi(v) ^ ei 2 HA) f Assumption (#) ; logi
 gjjau ei;g;d;ri������!jjau0 ^ g(v)) f Rule (S1) g[jjau; v℄ ei==)whi
h is as required and
ompletes
ase 1.Case 2 [t > 0 ℄t > 0, f Case assumption g9t ([u[i℄; vdi℄ t=) [u[i℄; (vdi) + t℄ ^ [u[i℄; (vdi) + t℄ ei==))) f Lemma 3 g9t ([u[i℄; vdi℄ t=) [u[i℄; (v + t)di℄ ^ [u[i℄; (v + t)di℄ ei==)), f Rule (S1) ; gi only uses
lo
ks in A[i℄:4 gu[i℄ ei;gi;di;ri�������! ^ gi(v + t) � (++)Case 2.1 [[jjau; v℄ t=6) ℄ 57

Similar to
ase 1.2.1.1.Case 2.2 [[jjau; v℄ t=) [jjau; v + t℄ ℄Now we have sub
ases dependent upon the nature of ei.Case 2.2.1 [ei 2 CA ℄ei 2 CA) f Rule (RIA) ;
ase assumption (++) gjjau ei;gi;di;ri�������!jjau0 ^ gi(v + t) ^ ei 2 CA, f Case 2.2 assumption ; rule (S1) g[jjau; v℄ t=) [jjau; v + t℄ ^ [jjau; v + t℄ ei==)whi
h is as required.Case 2.2.2 [ei 2 HA ℄Case 2.2.2.1 [9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ x 2 CA ^ 9t0 : gx((v+ t+ t0)di)) ℄Case 2.2.2.1.1 [[jjau; v + t℄ t0=6) ℄Similar to
ase 1.2.1.1.Case 2.2.2.1.2 [[jjau; v + t℄ t0==) [jjau; v + t+ t0℄ ℄[jjau; v + t℄ t0==) [jjau; v + t+ t0℄) f Time
ont. ; rule (RIA) ;
ase 2.2.2.1 assumption ; disjoint
lo
ks g[jjau; v℄ t+t0===) [jjau; v + t+ t0℄ ^ jjau x;gx;dx;rx�������! ^ gx(v + t+ t0)) f Rule (S1) g[jjau; v℄ t+t0===) [jjau; v + t+ t0℄ ^ [jjau; v + t+ t0℄ x=)whi
h is as required.Case 2.2.2.2 [:9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ x 2 CA ^ 9t0 : gx((v+ t+ t0)di)) ℄Case 2.2.2.2.1 [9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t0 : (gy ^ gz)(v + t+ t0)) ℄Case 2.2.2.2.1.1 [[jjau; v + t℄ t0=6) ℄Similar to
ase 1.2.1.1.Case 2.2.2.2.1.2 [[jjau; v + t℄ t0==) [jjau; v + t+ t0℄ ℄[jjau; v + t℄ t0==) [jjau; v + t+ t0℄) f Time
ontinuity; rule (RCA) ; assumptions g[jjau; v℄ t+t0===) [jjau; v + t+ t0℄ ^ jjau #a;g0;d0;r0�������! ^ g0 = (gy ^ gz) ^d0 = (g0 ^ (dy _ dz)) ^ (gy ^ gz)(v + t+ t0)) f Rule (S2) g 58

[jjau; v℄ t+t0===) [jjau; v + t+ t0℄ ^ [jjau; v + t+ t0℄ #a==)whi
h is as required.Case 2.2.2.2.2 [:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t0 : (gy ^ gz)(v + t+ t0))) ℄:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t0 : (gy ^ gz)(v + t+ t0)))) f A

umulating assumptions ; disjointness of
lo
k sets g:(9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ 9t0 : gx(v + t+ t0))) ^:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t0 : (gy ^ gz)(v + t+ t0)))) f De�nition of temporal operators g:(9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ 3gx(v + t))) ^:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^3(gy ^ gz)(v + t))), f Logi
 g8u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 =) 2:gx(v + t)) ^8u[i℄0; u[k℄; u[k℄0(k 6= i) ((u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄)0 =)2:(gy ^ gz)(v + t))) f De�nition of ^ and � gVf2:q:2(v + t) j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2)(v + t) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[k℄) ^k 6= i g � (##)However, in addition, we are in
ase 2 and 2.2.2 whi
h gives us,u[i℄ ei;gi;di;ri�������!u[i℄0 ^ gi(v + t) ^ ei 2 HA) f Rule (RHA) gjjau ei;g;d;ri������!jjau0 ^ g = ((gi ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g) _ di) ^gi(v + t) ^ ei 2 HA) f Assumption (##) ; logi
 gjjau ei;g;d;ri������!jjau0 ^ g(v + t)) f Case 2.2 assumption ; Rule (S1) g[jjau; v℄ t=) [jjau; v + t℄ ^ [jjau; v + t℄ ei==)whi
h is as required and
ompletes
ase 2 and thus, the whole proof.
 59

A
knowledgementsThe author has bene�ted greatly from dis
ussions with Sebastian Bornot, JosephSifakis and Stavros Tripakis and would also like to re
ognise the
ontributionof Giorgio Fa
onti, Joost-Pieter Katoen, Diego Latella and Meike Massink whowere involved in preliminary dis
ussions from whi
h this paper has grown.Referen
es[1℄ R. Alur and D. Dill. A theory of timed automata. Theoreti
al ComputerS
ien
e, pages 183{235, 1994.[2℄ Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, and Paul Petterssonamd Wang Yi. Uppaal - a tool suite for automati
 veri�
ation of real-timesystem. In Pro
eedings of the 4th DIMACS Workshop on Veri�
ation andControl of Hybrid Systems, 1995.[3℄ S. Bornot and J. Sifakis. On the
omposition of hybrid systems. In HybridSystems: Computation and Control, LNCS 1386, pages 49{63, 1998.[4℄ S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgen
y in timed systems.In Compositionality, COMPOS'97, LNCS 1536, 1997.[5℄ H. Bowman. Dis
ussion do
ument - modelling timeout behaviour in timedautomata. Te
hni
al report, Available from author, 1998.[6℄ H. Bowman. Modelling timeouts without timelo
ks. In ARTS'99, For-mal Methods for Real-Time and Probabilisti
 Systems, 5th InternationalAMAST Workshop, LNCS 1601, pages 335{353. Springer-Verlag, 1999.[7℄ H. Bowman, G. Fa
onti, J-P. Katoen, D. Latella, and M. Massink. Au-tomati
 veri�
ation of a lip syn
hronisation algorithm using UPPAAL. InPro
eedings of the 3rd International Workshop on Formal Methods for In-dustrial Criti
al Systems, 1998. To Appear in Spe
ial Issue of Formal As-pe
ts of Computing.[8℄ C.Daws, A.Olivero, S.Tripakis, and S.Yovine. The tool KRONOS. In Hy-brid Systems III, Veri�
ation and Control, LNCS 1066. Springer-Verlag,1996.[9℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.[10℄ X. Ni
ollin and J. Sifakis. An overview and synthesis on timed pro
ess alge-bra. In Real-time Theory in Pra
ti
e, LNCS 600, pages 549{572. Springer-Verlag, June 1991.[11℄ T. Regan. Multimedia in temporal LOTOS: A lip syn
hronisation algo-rithm. In PSTV XIII, 13th Proto
ol Spe
i�
ation, Testing and Veri�
ation.North-Holland, 1993. 60

[12℄ S. Tripakis. Verifying progress in timed systems. In ARTS'99, For-mal Methods for Real-Time and Probabilisti
 Systems, 5th InternationalAMAST Workshop, LNCS 1601. Springer-Verlag, 1999.

61

