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Abstract

Time and action locks can arise freely in timed automata specifica-
tion. While both are error situations, time locks are by far the more
serious fault. This is because their occurrence prevents any further evo-
lution of the system. First we investigate techniques for avoiding the
occurrence of timelocks. The central aspect of our solution is a redefi-
nition of automata parallel composition based on the Timed Automata
with Deadlines Framework of Bornot and Sifakis. Then the second result
we present is a notion of parallel composition which preserves action lock
freeness. In the sense that, if any component automaton is action lock
free, then the composition will also be action lock free.

1 Introduction

Deadlocks are the characteristic error situation arising in concurrent systems.
In very general terms, they are states in which the system is unable to progress
further.

Classically the term deadlock has been seen as synonymous with what we will
call action locks. These are situations in which, how ever long time is allowed to
progress, the system will never be able to perform an action'. Such action locks
often result from unmatchable action offers, e.g. when a component wishes to
perform a synchronisation action, but is unable to because no other process can
offer a matching synchronisation. For example, if ? denotes an input activity
and ! an output activity, the parallel composition |<A,B> of the two automata
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INote that even if real-time is not modelled explicitly, e.g. in (untimed) process algebra
such as CCS, in temporal terms, deadlocks still conceptually have this interpretation.
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Figure 1: A simple action lock

shown in figure 1 will be action locked in state alb0. This is because how ever
long either party waits they will never be able to fulfil the synchronisation they
are requesting. Much of concurrency theory research has been dominated by
the issue of deadlocks and their detection.

In the context of timed systems, new locking situations arise. In particular,
in this paper, we will be working in an environment with two main types of
locking situation. As a result of this, we have had to be careful with our choice
of terminology. Thus, in this paper the term deadlock is the most general. It
embraces action locks and the form of locking behaviour that comes with timed
systems - timelocks?.

Timelocks are situations in which, informally speaking, time is prevented
from passing beyond a certain point. They are highly degenerate occurrences
[6] because they yield a global blockage of the systems evolution. In particular,
if a completely independent component is composed in parallel with a system
that is timelocked, then the entire composition will inherit the timelock. This
is quite different from an action lock, which cannot affect the evolution of an
independent process. These characteristics of timelocks will be illustrated in
section 2.

In fact, the issue of whether timelocks are desirable or undesirable features of
timed models remains a hotly debated topic. The standard argument in favour of
models containing timelocks is that they represent specification inconsistencies
(like logical contradictions) and that by discovering and eliminating timelocks
specifications can be corrected. However, we take the contrary position for three
main reasons:-

1. In fact, detecting timelocks is a difficult and expensive analysis task. The

2The reader should be aware that this terminology is not universally used, for example,
[12] uses different terminology and [6] uses the term local deadlock instead of action lock.



3.

classic method for demonstrating timelock freeness is to show that a for-
mula such as (in fact, this is the formula that would be used with the
Kronos model checker),

init = OO_(true)

holds over a timed automaton specification. This is an unbounded liveness
property which is one of the most difficult classes of formulae to check.
Such formulae can be checked with some symbolic real-time model check-
ers, e.g. Kronos [8]2. However, the analysis that is required is extremely
state space intensive and is only feasible with small and moderate sized
specifications. Recent work by Tripakis [12] offers potential improvements
in such analysis. However, his algorithm remains unimplemented and fur-
thermore, such improvements will always be thwarted by systems with
fundamentally large state spaces.

We are also strongly of the opinion that inconsistencies and contradictions
fit in the domain of logical description, but are difficult to reconcile with
behavioural specification techniques, such as timed automata. Contradic-
tions arise when conflicting properties are asserted / conjoined. However,
although the mistake is frequently made, parallel composition of processes
is not a property composition operator, rather its meaning is operational
- two (or more) physical components are run in parallel. This reflects the
character of behavioural description which is fundamentally operational
in nature. Error situations in behavioural techniques should have a be-
havioural / operational intuition that is justifiable in terms of real world
behaviour. This is the case for action locks and live locks. However, there
is no real world counter-part for time stopping.

The real-world should always be the yardstick for judging formal models
and timelocks do not arise in the real-world!

Broadly there are two approaches to responding to the existence of locking
errors:

1.

Detection: provide analysis techniques which can locate such locking sit-
uations. Then system developers can detect and rectify the deadlocks.

Prevention: adapt /limit the specification models used in order to ensure
that such locking situations cannot arise, e.g. [6] [3, 4].

As already suggested, a problem that arises with the first of these approaches
is that deadlock detection analysis is typically expensive and when state spaces
become large the techniques are infeasible. Thus, in this paper we investigate
the second option.

It is also important to emphasize that the situation with action locks and
timelocks is, in this respect, a little different. In our opinion timelocks are

3 Although it cannot currently be checked with UPPAAL.



highly counter-intuitive and thus we believe that the second option above of
constructively preventing the occurence of timelocks is essential. However, since
action locks are not in the same way counter-intuitive, prevention is not in the
same sense essential. Nonetheless investigating techniques which ensure action
lock freeness is useful since it highlights forms of parallel composition that can
be employed when building systems that are “correct by construction”.

The model of timed systems that we employ is timed automata [1]. These
are an enhancement of automata which enables concurrency, synchronisation
and timing aspects to be expressed. Furthermore, because of their amenability
to verification (via symbolic model checking), timed automata are now perhaps
the most accepted real-time specification notation. We will introduce timed
automata shortly.

Although pleasingly simple, the timing model of timed automata has the
weakness that timelocks can freely arise and in a number of different ways.
Perhaps most problemmatically they can arise through the interplay of urgency
and synchronous interaction. We argue that urgency is given too strong an
interpretation in timed automata. In the sense that an action can be forced (i.e.
it becomes urgent) even if it is not possible (i.e. is not enabled). We will return
to this issue a number of times during this paper and particularly in subsection
3.3.

The first of the two main contributions of this paper is to present a re-
interpretation of synchronisation that weakens the effect of urgency and thus
limits the occurrence of timelocks. The approach borrows heavily from the
Timed Automata with Deadlines (TADs) framework of Bornot and Sifakis [3, 4].
However, in the same way as we did in [6] we adapt the TADs definitions to
meet our needs.

The timed prioritised choice features offered by the TADs framework yield
the possibility that the dynamic enabling of “competing” transitions can be
defined statically. Hence we can investigate notions of parallel composition
that preserve different dynamic properties. In this vein the second of the main
contributions of this paper is to present a notion of parallel composition which
preserves action lock freeness, in the sense that, if any of the component TADs
is action lock free then the parallel composition will also be action lock free.

Structure of Paper. Section 2 presents background material. We introduce
some basic timed automata notation, we clarify the difference between time
and action locks and we introduce our running example - a simple timeout
behaviour. Then we tackle the issue of timelocks in section 3. We first consider
zeno timelocks. Then we illustrate the problem of time action locks (which
are perhaps the most degenerate example of timelocks) through an attempt to
specify the running example.

Then we consider solutions based on TADs. However using the timeout as an
example, we argue that the TADs parallel composition presented in [3, 4] yields
an unsatisfactory solution. We thus consider alternative solutions (Sparse TADs
and TADs with minimal priority escape transitions) which yield valid solutions
based on the paper [6].



In section 4 we consider how to define parallel composition in such a way that
if components are free of action locks the composition will also be free of action
locks. By way of background material we consider independent parallelism
in untimed and timed settings which have this action lock freeness property.
However, since it fails to support synchronisation, independent parallelism is
of only limited value. Thus, we present a new notion of parallel composition
that builds from TADs with minimal priority escape transitions, which preserves
action lock freeness in the desired manner.

2 Background

This section introduces background material. Firstly, we define timed automata
and some associated notation in subsection 2.1, then (in subsection 2.2) we
clarify the difference between time and action locks and finally, in subsection
2.3, we introduce our running example - the specification of a bounded timeout.

2.1 Timed Automata and Basic Notation

Notation. We briefly review some basic timed automata notation. We assume
the following items.

e CA is a set of completed (or internal) actions, z, z', =1, 2, ..., ¥, ¥', Y1,
Y2, eey 2, 2’y 21, 22, ... range over CA.

o HA= {x?,2!|z € CA} is a set of half (or uncompleted) actions, a, da',
ai, as, ... , b, b', by, ba range over HA. These give a simple CCS style [9]
point-to-point communication similar, for example, to the synchronisation
primitives found in UPPAAL [2]. Thus, two actions, ¢ and z/ can
synchronise and generate a completed action z. For a half action a we let
1 a denote the underlying completed action, i.e. | (z?) =| (z!) = z.

e A= HAU CA is the set of all actions, e, €, e1, es, ... range over A.

e We use a complementation notation over elements of A,

T = x ifzeCA (1)
z? = ! (2)
z! = z? (3)

e R* denotes the positive reals without zero and R*® = R* U {0}.

o C is the set of all clock variables, which take values in Rt?. C is ranged
over by ¢, ¢, c1, 2, etc. CC'is a set of clock constraints*. Also if C C C
we write CC¢ for the set of clock constraints generated from clocks in C.

4The form that such constraints can take is typically limited, however since we are not
considering verification this is not an issue for us.



e V =C — R*? is the space of possible clock valuations. V is ranged over
by v, v', v1, v2, etc and Vo = C' — R*0 is the space of clock valuations
for clocks in C.

e L is the set of all possible automata locations (these appear as circles in
our timed automata diagrams, e.g. see figure 2), ranged over by I, I', I,
l5, etc.

Timed Automata. An arbitrary element of A, the set of all timed automata,

has the form:
(La an T7 Ia C)

where,

e L C L is a finite set of locations;
e [y € L is a designated start location;

e TCLxAXCC¢xP(C)xLis a transition relation (where P(S) denotes
the powerset of S). A typical element of T would be, (I1, ¢, g,r,l2), where
l1,13 € L are automaton locations; e € A labels the transition; g € CC¢ is
a guard; and r € P(C) is areset set. (I1,e,g,7,l2) € T is typically written,
I} 2274 5, stating that the automaton can evolve from location Iy to l5 if
the (clock) guard ¢ holds and in the process action e will be performed and
all the clocks in r will be set to zero. When we depict timed automata,
we write the action label first, then the guard and then the reset set, see

e.g. figure 2. Guards that are true or resets that are empty are often left
blank.

e ] : L —» C(CC¢ is a function which associates an invariant with ev-
ery location. Intuitively, an automaton can only stay in a state while
its invariant is satisfied. Invariants are shown adjacent to states in our
depictions, see e.g. figure 2.

e (' is the set of clocks of the timed automaton.

It is important to understand the difference between the role of guards and
of invariants. In this respect we can distinguish between may and must timing.
If we consider the TA in figure 2, we can see that the guard, t>=5, expresses
may behaviour, i.e. it states that the transition is possible or in other words
may be taken whenever t>=5. However, guards cannot “force” transitions to be
taken.

In contrast, the invariant, t<=10, defines must behaviour, i.e. if t reaches 10
in state b0, xxx must be taken immediately. This must aspect corresponds to
urgency, since an alternative expression of this situation is that at time t=10
xxx becomes urgent - it must be taken straightaway.

Semantics. Timed automata are semantically interpreted over transition sys-
tems which are triples, (S, sp, =), where,



(t<=10)

XXX,
t>=5,
t:=0

@

Figure 2: May and must timing

e S CL x Visaset of states (notice the terminological distinction - timed
automata have locations while transition systems have states);

e 39 € S is a start state;

e =C S x Lab x S is a transition relation, where Lab = A U Rt. Thus,
transitions can be of one of two types: discrete transitions, e.g. (s1, ¢, $2),
where e € A and time transitions, e.g. (s1,d,s3), where d € R and
denotes the passage of d time units. Transitions are written:

. d
§1 == $9 respectively s = $o

Also, we will use the standard notation, s = iff 3s’,e.s == s’ and s qeé> iff (s =).
For a clock valuation v € Vo and a delay d, v +d is the clock valuation such
that (v +d)(c) = v(c) +d for all ¢ € C. For a reset set r, we use 7(v) to denote
the clock valuation v’ such that v'(¢) = 0 whenever ¢ € r and v'(¢) = v(c)
otherwise. vq is the clock valuation that assigns all clocks to the value zero.
The semantics of a timed automaton A = (L,ly,T,I,C) is a transition sys-
tem, (S, s0,=), where S = {s' € LxV¢|3s € S, y € Lab.s=5 s } U {[lo, v0] },
so = [lo,vo] and = is defined by the following inference rules:-

12205 11 g(v) vd <d.I(l)(v+d)
[1,0] == [, r(v)] [l 0] =2 (1,0 + d]

The semantic map which generates transition systems from timed automata is
written [[]. Also, notice that our construction ensures that only reachable states
arein S.

Parallel Composition. We assume our system is described as a network
of timed automata. These are modelled by a vector of automata® denoted,

5 Although our notation is slightly different, our networks can be related, say, to the process
networks used in UPPAAL.



|[A = [(A[1],..., A[n]) where A[i] is a timed automaton. In addition, we let
u, u' etc, range over the set U of vectors of locations, which are written,
(u[1], ..., u[n]), where each u[i] is the current location in the ith automaton, i.e.
in A[{]. In addition, |u| and |A| denote the length of the corresponding vector.
We use a substitution notation as follows: (u[l],...,u[f], ..., u[n])[u[] /ulj]] =
1], oy ulj — 1, uj)',ulj + 1],...,u[n]) and we write [ulj'/ulj] as [j'/4] and
wliy /ir]. i, Jim] as wlif [iv, .oy il [im]-

If Vi(l < i < n).A[i] = (L;,lio, T3, 1;, C;) then the product automaton,
which characterises the behaviour of |(A[1], ..., A[n]) is given by,

(L,lU,T,I,C)

where L = {|u|u € L1 x ... x L, }, lo = [{l1,0,--,11,n), T is as defined by the
following two inference rules, I(|[(u[l],...,u[n])) = L (u[l]) A ... A I,(u[n]) and
C=C,uU..Uucg,.

uli] R ufi)_ulf] Tl uli] 25 ufi) @€ CA
ju LR ufi! /i, /] Ju =225 uli'/i]

where 1 < i # j < |u|. Note, we write z < k # r < y in place of z < k <
y Nre<r<yAk#r.

2.2 Time and Action Locks

Timelocks. We can formulate the notion of a timelock in terms of a test-
ing process. Consider, if we take our system which we denote System and
compose it completely independently in parallel with the timed automaton,
Tester, shown in figure 3, where, since it is completed, the zzz action is inde-
pendent of all actions in the system. Then for any d€ R*, if the composition
[<Tester(d),System> cannot perform zzz then the system contains a timelock
at time d.

Tester(y)

Z7Z,
t::y

Figure 3: A tester process

This illustration indicates why timelocks represent such degenerate situa-
tions - even though the Tester is in all respects independent of the system,



e.g. it could be that Tester is executed on the Moon and System is executed
on Earth without any co-operation, the fact that the system cannot pass time
prevents the tester from passing time as well. Thus, time really does stop and
it stops everywhere because of a degenerate piece of local behaviour.

We can also give a semantic definition of the notion®. However, we first need
a little notation.

A trace of a timed automaton A has the form,

P =S0Y151Y252...5n—1Yn Sn
where,

e Vi(0<i<n).s; € [A].1 (throughout the paper we use the notation ¢.i
to access the ith element of a tuple);

e s0 = [lo, vo);
e 4, c AURT;
e Vi(0<i<mn—1).8=2>si1.

and we let Tr(A) denote the set of all traces of A. Furthermore, we define
the function delay as,

delay(p) =S{yi|1<i<n A y; € R"}
Now we say that A can timelock at time d iff

dp e Tr(A). (delay(p) <d A Yo € Tr(A).(ppref o = delay(o) < d))

where p; pref ps if and only if p; is a prefix of po. Intuitively this expresses
that there is a state reachable before d time units has passed, from which it is
not possible for time to elapse beyond d. Notice this definition does not preclude
the system evolving “while timelocked” but it simply prevents time eventually
reaching d. Indeed, as will become clear shortly, this is necessary to embrace
zeno timelocks within the definition.

Also notice that situations in which time is able to, but does not have to
evolve beyond a certain point, are not categorised as timelocks, e.g. a timed
automaton such as that shown in figure 4 could perform an infinite number of
xxx actions at time zero but since it is not forced to behave in this way we do
not view it as timelocked.

There are two different forms of timelock:-

1. Zeno Timelocks. These arise when the system has an infinite behaviour
but time cannot pass beyond a certain point. In other terms, an infinite
number of discrete transitions are performed in a finite period of time. An
example of such a specification is Systeml (see figure 5); this is a zeno

6Similar definitions can be found in [12].



XXX,
t<=2

Figure 4: Zeno Behaviour without a Zeno Time Lock

process which performs an infinite number of xxx actions at time zero.
This system is timelocked at time zero and if we compose it independently
in parallel with any other system, the composite system will not be able
to pass time.

2. Time Action Locks. These are situations in which a state is reached from
which neither time or action transitions can be performed. An example
of such a lock is the trivial timed automaton shown in figure 6 which
timelocks immediately since the system can neither idle in state b0 or
perform an action transition to escape the state.

However, more problemmatically, time action locks can be generated through
mismatched synchronisations, e.g. the network | <System2,System3> (from
figure 5) contains a timelock at time 2, which arises because System2
must have performed (and thus, synchronised on) action xxx by the time

t reaches 2 while System3 does not start offering xxx until after t has
past 2. Technically the timelock is due to the fact that at time 2 System2
only offers the action transition xxx and importantly, it does not offer a
time passing transition. Since the synchronisation cannot be fulfilled the
system cannot evolve to a point at which it can pass time.

The interesting difference between these two varieties of timelock is that the
first one locks time, but it is not action locked, since actions can always be
performed. However, the second reaches a state in which neither time passing
or action transitions are possible.

A relevant property which appears in the literature is that of time reactivity
which is defined as follows.

Definition 1 A system is said to be time reactive if it can never reach a state
in which neither time or action transitions can be performed.

Clearly if a system is time reactive it cannot contain time action locks. One
aspect we investigate in this paper is how to obtain time reactivity in a timed
automata setting.

Action Locks. Timelocks are much more serious faults than action locks. For
example, the action locked automaton Stop, shown in figure 7, generates a local
deadlock, however, it cannot prevent an independent process from evolving.

10



(t==0) System1

@ (t<=2) System2 @ System3

XXX?,
XXX! t>=3

Y Y

Figure 5: Timelock Illustrations

The natural interpretation of action lock in the setting of timed systems is
as follows.

Definition 2 A state [I,v] of a TA A is an action lock, denoted AL([l,v]), if
and only if,

VEERY (Lu+1 e [A]1 = [Lv+f]=5)

where [l,v+t] € [A] .1 implies [I,v +t] is reachable from [l,v] by the definition
of [1-

The timed automaton A contains an action lock if and only if Is € [ A] .1. AL(s).

(false)

Figure 6: A Trivial Time Action Lock

11



Stop

Figure 7: A Trivial Action Lock

Thus, a timed automaton is action locked when it reaches a state from which,
however long time is allowed to pass, an action will never be possible. Notice
also that if all guards are true and all invariants are true, we obtain the untimed
case and action locks reduce to untimed “deadlocks”.

2.3 A Bounded Timeout

As an illustrative specification example we will consider the description of a
bounded timeout. This has been chosen because, firstly, it is one of the most
common real-time specification scenarios and secondly, during timed automata
specification and verification of a lip-synchronisation algorithm [7] it was dis-
covered that describing such bounded timeouts in a deadlock free manner was
surprisingly difficult.

The general scenario is that a Timeout process is monitoring a Component
and the timeout should expire and enter an error state if the Component does
not offer a particular action, which we call good, within a certain period of time.

The precise functionality that we want the timeout to exhibit is:

1. Basic behaviour. Assuming Timeout is started at time ¢, it should generate
a timeout action at a time ¢ 4+ D if and only if the action good has not
already occured. Thus, if action timeout occurs, it must occur exactly
at time ¢ + D and if action good occurs, then it must occur at some time
from t up to, but not including, ¢ + D. Using the terminology of [10]
this yields a strong timeout. A weaek timeout would, in contrast, allow
a non-deterministic choice between the good action and the timeout at
time ¢t + D.

2. Urgency of good action. We also require that if the good action is enabled
before time ¢ + D then it is taken urgently, i.e. as soon as good is enabled
it happens.

3. Timelock Free. Finally we want our composed system to be free of time-
locks, for obvious reasons.

7Our presentation here is similar to that in [7]. However, although our work here was
inspired by that in [7], it is somewhat different. In particular, [7] presents a bounded timeout
in a discrete time setting, thus, the final time at which the good action can be performed and
the time of expiry of the Timeout are at different discrete time points.

12



4. Simple. We also require that the solution is not “prohibitively” complex.

Notice that in the first two of these requirements, urgency arises in two ways.
Firstly, we require that timeout is urgent at time ¢+ D and secondly, we require
that good is urgent as soon as it is enabled. Without the former requirement
the timeout might fail to fire even though it has expired and without the latter,
even though the good action might be able to happen it might nonetheless not
occur and thus, for example, the timeout may expire even though good was
possible.

3 Timelocks

This section considers the issue of timelocks. We begin in subsection 3.1 by con-
sidering how to ensure zeno lock freeness based on an approach of Tripakis [12].
Then we move to the more difficult issue of time action locks. We further mo-
tivate the problem with time action locks, in subsection 3.2, by considering the
specification of the bounded timeout example. Then we argue in subsection 3.3
that the timed automata interpretation of synchronisation should be adapted
and we consider possible approaches to do this, including only allowing urgency
on internal actions. However, this fails to be a suitably expressive approach
and thus, subsection 3.4 considers a revised timed automata framework, due to
Bornot and Sifakis, called Timed Automata with Deadlines (TADs). However,
specification of the bounded timeout reveals a problem with the TADs frame-
work as it was presented in [3, 4]. We revise the framework in subsection 3.5 in
order to resolve this difficulty.

3.1 Zeno Timelocks

As highlighted earlier, zeno timelocks are situations in which an infinite number
of discrete transitions are performed in a finite period of time. In contrast
to the approach we will present for tackling time action locks, to handle zeno
timelocks we will not define a new parallel composition operator. In contrast,
we will consider a static construction which ensures zeno timelock freeness.

The standard approach to obtaining zeno timelock freeness in timed process
algebra is to ensure that all recursions are time guarded, i.e. that all processes
can pass time by at least ¢ € RT between each recursive invocations. This
provides a static mechanism that specifiers can use to ensure zeno timelock
freeness.

The approach we advocate in the timed automata setting has a similar
flavour. The idea is to ensure that for each loop in an automaton, time must
pass by at least € on every iteration.

We follow closely the presentation in [12]. Firstly two definitions.

Definition 3 For A € TA we define a structural loop to be a sequence of distinct

transitions,
lO €1,91,71 N ll 6279277‘2> €n,9n,"n 5 ln

13



such that lo = 1,,.

Definition 4 A € TA is called strongly non-zeno if, for every structural loop,

€1,91,71 €2,92,r2 e T
lO 291, )ll 292, s n,9dn, n/ln

there exists a clock c € A.5, ¢ € RT and 0 < i,j < n such that,
1. c€ri; and

2. ¢ is bounded from below in step j, i.e. (c < €) N g; = false.

Clearly, Systeml of figure 5 fails to be strongly non-zeno since a suitable
€ € Rt does not exist. However, the automaton in figure 8 is stongly non-zeno.

Q

XXX,

Figure 8: A Strongly Non-Zeno Specification

The following result was presented in [12].

Proposition 1 If A € TA is strongly non-zeno then Tr(A) does not contain a
path that is both infinite and yields a timelock.

In addition, strong non-zenoness is well behaved through parallel composi-
tion. Specifically, the following result was also presented in [12]. It ensures that
we cannot generate new zeno timelocks through parallel composition.

Proposition 2 If Ay,...,A,, € TA are strongly non-zeno then |(A1,...,A,) is
also strongly non-zeno.

Also although we have no empirical evidence, in accordance with [12], we
believe that in practice specifications will almost always be strongly non-zeno.

3.2 Trying to Model the Bounded Timeout

Now we move onto the issue of time action locks. As an illustration of the
problem we describe the bounded timeout in timed automata.

Basic Formulation. We begin by considering the Timeout shown in figure 9.
This process realises the first requirement that we identified for modelling the
bounded timeout - good is offered at all times in which t<D. Then timeout is

14



performed when t==D, in which case the system passes into state a2 which plays
the role of an error state. Importantly, the guard (t<=D) forces the required
urgency on the timeout action. Thus, if good has not happened earlier, timeout
must happen when t==D. Furthermore, it is easy to see that this is indeed a
strong timeout - its behaviour is deterministic when t==D.

(t<=D) Timeoutl
a0 a2
O timeout =Q
t==D
good?
t<D

@)

Figure 9: An Automaton for Timeoutl

@ Componentl @ Component2
tau tau
r<=C oo
é]b él (r::())
good! good!
r==
| ) |
® ®

Figure 10: Automata for Componentl and Component2

However on its own, this automaton is not sufficient since nothing forces
the good action to be taken if it can be. This was our second requirement. For
example, consider Component1 shown in figure 10 which will perform an internal
action tau at some time r<=C and then offer the good action. The internal
action can be viewed as modelling some internal computation by Component1.
The completion of which is signalled by offering good!. Now if we put Timeout1
and Componentl in parallel then even if good could occur while t<D, it might
not be taken. Thus, a possible evolution of the system:

15



| <Timeoutl,Component1>

is, (tau, 1) (timeout, z5) where, ; < C, #; <D and x2 =D.

Thus, we need some way to make good urgent. The standard approach is
to enforce urgency in the component. For example, we could use Component?2
shown in figure 10. This automaton will perform the internal action as before
and then it must immediately perform the good action.

Now the problem with the composition:

[ <Timeoutl,Component2>

is the relative values of D and C. In particular, if C is larger than D then this
system can timelock in the following way:-

1. the timeout could fire when t==D;

2. then if tau happens when r==C say, good! will become urgent, however
it. cannot be performed since Timeout1 is no longer offering it, causing a
timelock. Component2 will not let time pass until good is performed, but
good cannot, be performed because of a mis-matched synchronisation.

We would argue that this is a big problem. In particular, it is not generally
possible to ensure that C is less than D since our component behaviour would
typically be embedded in the complex functioning of a complete system. In
fact, writing C as we have done, abstracts from a likely multitude of complexity
and deriving such a value from a system would typically require analysis of
many components of the complete system, some of which might be time non-
deterministic at the level of abstraction being considered.

Furthermore, in some situations we might actually be interested in analysing
what happens if the good action arrives after the timeout has fired. Consider,
for example, that our timeout behaviour is being used to wait for an acknowl-
edgement in a sender process. The component performing good after timeout
has fired corresponds to the acknowledgement arriving after the timeout has
expired, which is of course a possible scenario in practical analysis of communi-
cation protocols.

The problem with our |<Timeoutl,Component2> solution is that it does
not enable us to analysis this situation, rather the system timelocks when
Component? forces the good action to happen. Unfortunately, as mere mor-
tals, we are unable to analyse systems after the end of time!

One way to avoid this timelock is to add “escape” transitions in the timeout.
For example, consider the timeout behaviour encapsulated by Timeout2. Now
the composition,

| <Timeout2,Component2>

cannot block time. However, this is not a satisfactory solution since rather
than Timeout2 just evolving to a single deadlock state, a2, after performing
timeout, it could evolve to a complex behaviour; of course in practice it is
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(t<=D) Timeout2

timeout
t==D

good? good?
t<D

@D

Figure 11: An Automaton for Timeout2

almost certain to do this. However then, escape transitions would have to be
scattered throughout the complex behaviour. This would generate significant
specification clutter, which would be compounded if the system contained more
than one timeout.

The consequences become particularly severe if the timeout is enclosed in
some repetitive behaviour, e.g. see figure 12. This is because, since no assump-
tions can be made about the time at which the component will want to perform
the good action, escape transitions on good will have to be added at a0, a2,
b0, bl (and actually a1 as well). Thus, firstly, the behaviour prior to reaching
the timeout has been altered, i.e. escape transitions must be added at b0 and
secondly, it is unclear how many escape transitions need to be added to each
node in the loop, since state a2 may be reached many times before the first
good escape transition is performed.

Other Solutions. In [5] and [7] we have also considered other approaches to
obtaining a satisfactory bounded timeout solution. In particular, we considered
whether a suitable solution could be obtained using the UPPAAL notion of
urgent channels. According to this model, the specifier is allowed to denote
a particular channel as urgent, which means that as soon as synchronisation
on that channel can take place, it does. However, UPPAAL restricts the use
of such urgent channels. In particular, an urgent transition can only have the
guard true.

Intuitively, urgent channels seem to be what we require in order to avoid en-
forcing urgency in the component process. In particular, they enforce urgency
in a “global” manner, rather than requiring it to be enforced in the component
process. However, it turns out that the restriction on guarding of urgent chan-
nels that UPPAAL imposes prevents derivation of a suitable solution, see [5]
which investigates possible solutions with urgent channels which were inspired
by the solutions presented in [7].
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aO\ a2
(t<=D) N/ timeout
t==D
good?
t<D

@

Figure 12: Timeout?2 in a repetitive context

3.3 The Nature of Synchronisation

Perhaps the most counter-intuitive aspect of the timelock story is the manner
in which timelocks can arise from mis-matched synchronisations, such as the
composition |<System2,System3> in figure 5 and the timeout / component
composition just highlighted. If we consider how this problem arises we can see
that it is caused by the particular interpretation of urgent interaction employed
in timed automata.

It is without doubt true that facilities to express urgency are required. In
particular, if urgency is not supported, certain important forms of timing be-
haviour cannot be expressed. For example, as illustrated earlier, urgency plays
a pivotal role in the formulation of the bounded timeout and indeed without it,
it is unclear how one could describe timeouts in any vaguely sensible way.

Thus, it is necessary to include urgency in the timed automata model. How-
ever, it is our perspective that while urgency is needed, currently it is given
an excessively strong formulation. We illustrate the issue with the following
example.

Example 1 Consider the specification of the Dying Dining Philosophers prob-
lem. The scenario is basically the same as the Dining Philosophers except here
we have extra constraints which state that philosophers die if they do not eat
within certain time periods.

For example, if at a particular state, Aristotle must eat within 10 time units
to avoid death, in timed automata his situation could be represented as state 10
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of timed automata Aris in figure 13. In addition, if say the fork he requires is
being used by another philosopher, the environment might not be able to satisfy
this requirement. For example, the relevant global behaviour of the rest of the
system might correspond to the behaviour of the automaton Rest in state mO
(see figure 13 again).

Rest

(t<=10) Aris @

pick?, pick!,
t<=10 t>=15
\ \
// \ // \
Z— — N\ L— — _\

Figure 13: Dying Dining Philosophers Situation

In the present timed automata formulation the composition |<Aris,Rest>
will timelock when t reaches 10. But, this seems counter-intuitive.

Aristotle knows he must pick-up his fork by a certain time otherwise drastic
consequences will result for him (this is why he “registers” his pick request as
urgent). However, if he locally fails to have his requirement satisfied, he cannot
globally prevent the rest of the world from progressing, rather a local deadlock
should result. As a consequence Aristotle might be dead, but as we all know,
“the world will go on!”.

Conceptually what is happening is that Aristotle is enforcing that his pick
action must be taken even if it is not possible, i.e. it is not enabled. However, we
would argue that urgency can only be forced if an action is possible / enabled.

The situation is the same with our bounded timeout example - it is reason-
able to state that good occurs urgently if both parties are able to perform it,
but it is not reasonable to give urgency precedence over enabling. We would
argue that it should only be possible to make an action urgent if it is enabled,
ie.

must requires may or, in other terms, you can only force what is
possible.

One way in which such an interpretation of urgency has previously been
obtained is through only allowing urgency to be applied to internal actions.
This is the so called as soon as possible (asap) principle [11], much discussed
in the timed process algebra community. According to this principle internal
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actions are scheduled to occur as soon as they are possible, i.e. urgently, while,
since they are subject to control by the environment, external actions (which
closely correspond to our half actions) are not subject to such an interpretation
- they can not be made urgent.

This property indeed prevents the occurrence of timelocks due to synchro-
nisation mismatches, but unfortunately, it is not a suitable solution for timed
automata. This is because TA do not have a hiding operator. In timed pro-
cess algebra with asap the hiding operator, which turns observable into internal
actions, has an important role since (implicitly) it makes actions urgent.

The absence of hiding in TA means that we cannot (selectively) take an
observable action that results from synchronising half actions and turn it into
an (urgent) internal action. This is for example what we would like to do with
the synchronisation on the good action in our bounded timeout example.

Consequently, in the next section, we consider a new framework for timed
automata specification - Timed Automata with Deadlines (TADs) which was
initially devised by Bornot and Sifakis [3, 4] and with which we can obtain the
synchronisation interpretation we desire.

3.4 Timed Automata with Deadlines

Components of the Framework. For a full introduction to TADs, we refer
the interested reader to [3, 4]; here we highlight the main principles. The ma-
terial and results included in this subsection borrow heavily from the previous
work of Bornot and Sifakis. However, in our presentation we revise the Bornot
and Sifakis definitions in order that they fit with the timed automata notation
we are using and furthermore we present some new results that will be used in
the sequel.

e Deadlines on Transitions. Rather than placing invariants on states, dead-
lines are associated with transitions. Transitions are annotated with 4-

tuples:

(67 g7 d7 T‘)
where e is the transition label, e.g. good; g is the guard, e.g. t<=D; d is the
deadline, e.g. t==D; and ris the reset set, e.g. t:=0. e, g and r are familiar

from timed automata and the deadline is new. Conceptually, deadlines
state when transitions must be taken and taken immediately. Since we
have deadlines on transitions there is no need for invariants on states.
Thus, they are not included in the framework.

It is also assumed that the constraint,

d=g

holds, which ensures that if a transition is forced to happen it is also able
to happen. Clearly, if this constraint did not hold then we could obtain
timelocks because a transition is forced to happen, but it is not enabled.
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(e1,g1’,d1r1) (€2,92,d2,12)

Figure 14: A Prioritised Choice

e (Timewise) Priorities. By restricting guards and deadlines in choice con-
texts, prioritised choice can be expressed. For example, if we have two
transitions:

bl = (el,g1,d1,r1) and b2 = (e2,g2,d2,r2)

then when placing them in a choice context we can give b2 priority over
bl by restricting the guards and deadlines of b1, see figure 14. [3] consid-
ers a variety of priority operators, which ensure that if the higher priority
action will eventually be enabled within a particular period of time then it
takes precedence over competing actions. These different priority mecha-
nisms are obtained by including timed temporal operators in the restricted
guards and deadlines. The extreme example of which is to enforce the fol-
lowing restricted guard and deadline:

gl'=gl A O-g2 and di'=d1 A gt

which ensures that b1 is only enabled if g1 holds and there is no point in
the future at which g2 will hold.

e Parallel Composition with Escape Transitions. The TADs framework em-
ploys a different parallel composition operator to that arising in standard
timed automata. The key idea is that of an escape transition. These are
the local transitions of automaton components that are combined when
generating a synchronisation transition. Thus, not only are synchronisa-
tions included, but component transitions of the synchronisation are as
well. The timewise priority mechanism is then used to give the synchro-
nisation transition highest priority. Intuitively, the escape transitions can
only happen if the synchronisation transition will never be enabled. We
will illustrate this aspect of TADs shortly.

e Synchronisation Strategies. [3] also consider a number of different syn-
chronisation strategies, but these are not relevant to our discussion. In
terms of [3] we only consider AND synchronisation.
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In fact, in addition to ensuring time reactivity, the TADs framework lim-
its the occurrence of action locks. Specifically, the escape transitions allow the
components of a parallel composition to escape a potential action lock by evolv-
ing locally. Associated with such avoidance of action locks is the enforcement of
mazimal progress®, which exactly requires that if a synchronisation is possible,
it is always taken in preference to a corresponding escape transition.

Basic Definitions. We now briefly review the definition of timed automata
with deadlines. In order to preserve some continuity through the paper, even
though it is different to that used in [3], we build our definitions out of the timed
automata notation and constructs that we have already introduced.

An arbitrary element of TAD, the set of timed automata with deadlines, has
the form:

(La l07 —, C)
where, L is a finite set of locations; Iy is the start location; C' is the set of clocks
and

e »C LxAxCCc xCCc xP(C)x L is a transition relation. A typical ele-
ment of which is, (I1, e, g, d, r,1l2), where l1,l> € L are automata locations;
e € A labels the transition; g € CC¢ is a guard; d € CC¢ is a deadline;
and r € P(C) is a reset set. (I1,e,9,d,r, 1) €= is typically written,

d
ll 9,07 l2

Also, as was the case in [3, 4], for technical reasons, we will require that all
deadlines have closed lower bounds.

As was the case with TAs, TADs are semantically interpreted as transition
systems. The following two inference rules are used for this,

(51) LRl g) g VI S8dry s <t —d(v + 1)
L] = [I',7(v)] ENEEY

Now we define the semantic map [[]] from TADs to transition systems as
follows®:

[[(L7 lOa —, C) ]] = (Sa S0, =>)
where,
® 50 = [lo, vo];

e = is the subset of (L x V) x Lab x (L x V) that satisfies the above two
rules; and

e S={secLxVeg|IseS,yeLab.s=s"} U {[lo,v0] }.

8Note, the term is used in a related but somewhat different way in the timed process
algebra setting [11].
9The overloading of [], i.e. to interpret both TAs and TADs, will not cause any confusion.
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Notice that, once again, S only contains reachable states.
In addition, we will use the function:

0s() = { (e,g,d,r) |3 .1 22475 " A ec B}

Properties of TADs. Now we consider a number of basic properties of TADs.
The first two are well known from previous TA and TADs work.

A standard property when considering dense time models is time continuity.
We prove that TADs are time continuous in the following proposition.

Proposition 3 (Time Continuity)
VA € TAD .Vsy,s2 € [A].1.Vt,t' € RT.

tt' t t'
s51=—=57 <= Js|(s1=35] A s] = 82)

Proof
Assuming that sy = [[,v] and sy = [[,v +t + ¢'],
[l 0] =25 1,0 + ¢+ ]
< { Rule (S2) ; equivalence holds since no other rules overlap }
VI (1 2220 1 — Wy <t 4+t =d(v + )
< { Distributivity of V over V ; y does not appear on left of = }
VI'Vy < t+ ' (12220 ) — —d(v +y))
< { Reordering quantifiers ; rewriting range }
Vyly <t V t<y<t+t) V([ 2227 — —d(v+y))
< { Range split }
Vy < tVI' (122475 1 — —d(v +y)) A
Vy(t <y <t+t")VI' (1 2240 ) — —d(v +y))
& { Rearranging conjuncts }
VI (1 22T 11— Yy <t =d(v + ) A
VI (1228 11— Wy <t —d(v 4+t + )
< { Rule (S2) }
o)== Lo+t A [Lo+t]== v+t +t]
O

Now we consider formally why the property d = ¢ is important. The fol-
lowing proposition shows that it guarantees time reactivity.

Proposition 4 If d = g on all transitions, TADs are time reactive.
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Proof
If a state [I,v] can be reached such that

t
vt e R .[l,v] =%

then the condition of the inference rule S, fails, i.e.,

Vi e RY =W (1 2227 " — Vi’ < t.-d(v + 1))

< { Logic }
Vie RY 31 (1222050 A Tt < t.d(v +1"))

= { Instantiating outer quantifier with an arbitrarily small ¢ }
(122 A Je.d(v+ €))

= { Deadlines have closed lower bounds, thus, Je.d(v +¢€) = d(v) }
3 (122471 A d(v))

= { d=g;logic }
A (122250 A g(v))

= { Rule (S1) }
[1,v] = [, r(v)]

Thus, if any state cannot pass time, it can perform an action transition. The
result follows.

O

We will use the following result later, it states that either time can pass
forever, it cannot pass at all or there exists an upper bound beyond which time
cannot pass.

Proposition 5
VAe TADVs e [JA].1.

VteRY.s= V
t
VteRt.s=A V
RERY (s== A WERH (s== < t'<t)

Proof
First we can reason as follows:-

t
VieRF.s== Vv VteRT.s=A V
It eRF (s= A VH ER' (s = ' <1))
< { Logic }
t
HeRT.sA — (FteRt.s= —
HER (s AV ERY (s2= = ' <1)))
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< { Logic }
t
3t1,t2€R+ (8;15 A S%) —
FHER (s A VI ERY (s2= = ' <1))

and this is what we prove. So, assume that,

+ore t2
Jt1,t2 € R (s;é) A S:)
and take s = [I,v] and t € R" as the smallest value (hence ¢ < #;) such that,
A (1 -2LL 1 A d(v +t))

Such a ¢t must exist since we have assumed that all deadlines have closed lower
bounds.
Thus, we have,
(122 A dw +1)) A (3 <3 (122D A d(v + 1))
< { logic }
(122 A d(w 1) A V(122 ) — Y <t -d(v 4 1))

Now the second conjunct gives us [I,v] =5 and also because of time continuity
we have,

Vit <t = [l,u]é»)
Furthermore, if we take ¢’ € Rt such that ¢ > ¢ then (since ¢ itself is a suitable
value for ¢'") the first conjunct ensures that,
Vi > 3 < 31 (122D ) A d(v + 1))
< { Interchange of existentials ; distributivity of A over 3 }
VH > 3 (122Dt A <t d(v + 1))
< { Logic }
Vi > (VI (1228 ) — i <t —d(v + 1))
< { Rule (S2) }

t/
Vt' >t [l v] =

The contrapositive of which is, V&' € R* ([l,v] = = t' < t).
Now if we put everything together we obtain,
HYeR (s A
Vi ERF (H <t = s==>) A
Vi e RY (s== = t' < 1))
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which is as required.

O

In addition, the following proposition gives an alternative characterisation
of time reactivity.

Proposition 6
VA € TAD . A is time reactive if and only if,

V[l,v] € [A] .1
at([l,v]% = Je([l,v]= V at'gt([l,u]é[l,wt'] A [l +t]==)))

Proof
(=)

t
Assume A is time reactive and take [I,v] € [A].1 such that 3¢.[l,v] =% . Now
proposition 5 implies that either,

t ' 7
V' [Lv]=£ or A (Lu]= A V' ([v]= < t"<t)

Consider these in turn.

t/
Vi’ [l v] =~
= { Definition of time reactivity }
Je € A.[l,v] =

which is as required. In addition,

I ([1,v] == A V' ([0o] 2 e 7 <t))
= { Otherwise time continuity would give [I,v] => }

I <t(l,o]== A V(]2 = <))

= { Otherwise time continuity causes contradiction of second conjunct

3t <t (0] 2= Lo+ 1] A Vre R (Lo +t]=5))
= { Definition of time reactivity }

I < t([lv]==[Lv+t] A [Lv+t]=2)

which is also as required.

(=)
Take [I,v] € [A] .1, now,

Ve[, 0] =
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= { RV #0}
r t
Ir e RY . [l,v]=% A Vt.[l,v]=~
= { From Assumptions }
r t
Fe(lo]== Vv IH <r(lo]= A [Lv+t]==)) A Vt.[l,0] =~
< { Distributivity of Existentials }

Fe.[lLo]== Vv FeTt <r(lo]== A [Lv+t]=))

t
AVt [l v] =~
< { Distributivity of A over V }
t
(Fe.[l,v]= A Vt.[l,v]=%)V

’ t
eI <r(lv]== A [Lo+t]==) A VE.[l,0]55)
< { Second disjunct is contradictory }

¢
Je.[l,v]= A Vt.[l,v]=~
= { Logic }
Je.[l,v] =

which is as required.

O

Standard TADs. We will introduce a number of different TADs approaches in
this paper. These are distinguished by their rules of parallel composition. Here
we consider the basic approach, as introduced in [3, 4], which we call standard
TADs. A TADs expansion theorem for deriving the product behaviour from a
parallel composition is given in [3]. Here we give an equivalent inference rule
definition for our state vector notation (we denote the standard TADs vector as

||<U[1],...u[n]>);_

zl,g5,dj,rj

uli] ERAy i ) Oy gy

,9',d' riUr; NPT
gy RS i /i, 5]
[ =2 i ]

! ’
zl,9;,d;,7;

[lu === [[uj"/J]

where 1 < # j < |u| and,

g = giNgj

d = ¢ A(d;Vd)

gi = gi ANO=(gi A gj)
d; = g Nd;

g; = g; AO=(gi A gj)
d;- = g;- A d;
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uli] 2200 i) (e € HA A Tk £ ulk]=>)

€,9,d,7

R2
) |lu =225 [[uld /1]

where 1 < ¢ < Ju|. (R1) generates synchronisation and escape transitions with
the constrained guards and deadlines ensuring that synchronisation has priority
in the required manner. (R2) is the interleaving rule, which is straightforward
apart from the second condition which ensures that transitions on incomplete
actions are only generated by this rule if synchronisation, and hence rule (R1),
is not possible.

@ Al @ A2

a?, al,
t<=2, true,
t<=2 false

Figure 15: TADs A1 and A2

As an illustration of these inference rules consider | |<A1,A2> where A1 and
A2 are shown in figure 15. The unreduced composition arising from directly
applying the inference rules is shown in figure 16(a) (O is denoted [] and - is
denoted ~) and figure 16(b) depicts the resulting composed TAD when guards
and deadlines have been reduced by expanding out temporal operators and
applying propositional logic. In addition, transitions with unfulfillable guards,
e.g. false, have been removed.

a?,

t<=2 N\ []~(t<=2 A\ true),

t<=2 N\ []~(t<=2 N true)
Nt<=2

al,

true N []~(t<=2 N\ true),
true A []~(t<=2 A true)
N\ false

@

@ ©

Figure 16: Unreduced and reduced composition of A1 and A2
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We can observe the following:-

1. In figure 16(a) and (b) the transition coming from s1t1 labelled a is the
synchronisation transition.

2. In figure 16(a) the two transitions coming from s1t1 labelled a? and a!
respectively, are the escape transitions. The first arises from automaton A1
and the second from automaton A2. The guards of these escape transitions
ensure that they can only fire if the synchronisation will never be possible
in the future. Thus, synchronisation transitions have priority over escape
transitions.

3. Figure 16(b) shows that since the synchronisation transition inherits the
guards of a? from A1, no escape transition on a? is possible. If s1t1 is
entered with t>2 then the escape transition on a! can be taken, enabling
A2 to escape its action lock.

@ Component3

. tau,
Timeout4 r<=C,

.—>' false,
@ timeout,t==D,t==D @ ! r=0

€
good!

r==0,
r==0

good?,t<D,false

|

@ ®

Figure 17: TADs for Timeout4 and Component3

Bounded Timeout in Standard TADs. Now we reformulate our bounded
timeout in standard TADs. The component that we consider is Component3
and the timeout is Timeout4 both shown in figure 17.

In the terminology of [3], a transition such as good? is lazy since nothing
ever forces it to happen. In contrast, the transition good!, say, is eager [3], since
its guard and deadline are the same. This implies that as soon as the transition
can happen it will happen.

Now by applying the above inference rules and removing impossible transi-
tions, the composite automaton shown in figure 18 results.

If we first focus on state aObl then we can see that this composite be-
haviour gives priority to the synchronisation between good? and good! which
is indicated by the transition labelled good. Thus, while t<D this is the only
transition that can fire (notice r==0 automatically when entering state a0 b1)
and furthermore it is eager.
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good?
t<D,
false

timeout,
t::D,
t==D

timeout,
t::D'
t==D

false,
r=0

Figure 18: | [<Timeout4,Component3> in standard TADs

Also, if state a0b1 is entered with t==D then timeout is urgent. Further-
more, from this state the action good! happens. This is the escape transition,
which allows Component3 to move out of state bl. Remember the timelock that
we obtained previously arose because the component could not exit the state
where it wished to perform good!.

This solution seems to fulfil our requirements - it is a strong timeout, urgency
is enforced as required on both timeout and good and the solution is timelock
free. However, there are some peculiarities with the resulting composite be-
haviour. Consider for example, the transition from a0b0 labelled good?. This
represents the timeout performing its good escape transition. However, concep-
tually it is being performed too early - before the synchronisation on good is
even offered and if this transition is taken the good synchronisation does not
even have the chance to occur. The problem is the rule (R2) which adds escape
transitions too liberally. In response to this observation we consider alternative
TADs formulations in the next section.

3.5 Alternative TAD Formulations

We consider two alternative TAD formulations'®. [5] actually considers a third
formulation, but this turns out to be unsatisfactory. Both satisfy the require-

10We still call these timed automata with deadlines, because the basic principles, as con-
cieved by Bornot et al [3, 4], still apply, i.e. placing deadlines on transitions and using priori-
tised choice.
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ments that we identified for our bounded timeout. Thus, in particular, they
are both time reactive. However, the solutions vary in the extent to which they
limit action locks.

3.5.1 Sparse Timed Automata with Deadlines

This is a minimal TADs approach, in which we do not generate any escape
transitions. Furthermore, since escape transitions are not generated, we do not
have to enforce any priority between the synchronisation and escape transitions.

With sparse TADs the following parallel composition (denoted ||*) rules are
used:

fi] “ERgidinig g 710 gy [f] “EILTs gy 157 ufi] 2220 i)z € CA
||sum>||su[i'/i’j'/j] || LTy | |50 /4]

where 1 <i#j<|ul,¢ =g ANgjandd =g A (d; V d;).

These rules prevent uncompleted actions from arising in the composite be-
haviour; they only arise in the generation of completed actions, while (already)
completed actions offered by components of the parallel composition can be
performed independently. This definition has the same spirit as the normal
UPPAAL rules of parallel composition [2]. The difference being that here we
have deadlines which we constrain during composition to preserve the property
d = g, and hence to preserve time-reactivity.

Let us consider once again the behaviour,

| 1°<Timeout4,Component3>

which is the network we were focussing on in the previous section. Now with
our new parallel composition rules, we obtain the composite behaviour shown
in figure 19. This is an interesting and very reasonable solution. Firstly, it
meets all the requirements identified at the start of this paper for our bounded
timeout. Thus, in particular, it is time-reactive. However, it makes no effort to
limit action locks, so communication mis-matches yield action locks rather than
timelocks.

Furthermore as a consequence of these characteristics of sparse TADs we
have revised the interpretation of synchronisation in the manner we proposed in
subsection 3.3. For example, if we consider again the Dying Dining Philosophers
illustration from that subsection, the obvious TADs formulation of the automata
of figure 13 are those shown in figure 20. Now sparse TADs composition of the
two automata yields the behaviour shown in figure 21, which is action locked.

This is the outcome that we were seeking - since the pick synchronisation
is not enabled, urgency cannot be enforced. This is reflected in both the guard
and deadline in figure 21 being false. This, in turn, is caused by the deadline
constraint d' = ¢’ A (d; V d;) in the Sparse TADs product rule, whereby the
generated deadline is “pruned” according to the enabling of the guard.
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timeout, tau,
t==D, 1<=C,
t==D false,
r=0

timeout,
t::D]
t==D

r<=C,

false,

r=0
good,
t<D \ r==0,
t<D \ r==0

Figure 19: | [*<Timeout4,Component3> in Sparse TADs

3.5.2 TADs with Minimal Priority Escape Transitions

The idea here is to ensure maximal progress as standard TADs do, but rather
than just giving escape transitions lower priority than their corresponding syn-
chronisation, we also give them lower priority than other completed transitions.
Thus, a component can only perform an escape transition if the component will
never be able to perform a completed transition. This seems appropriate as
our view of escape transitions is that they should only be performed as a very
last resort - when the choice is between performing them or reaching an “error”
state.
The parallel composition (denoted ||™) rules are:

zlygj,dj,rj

uli] Ry i ) S0y o)

(Rl) $7917d’77‘iU7‘j

" === [|""u[i' /1, j'/ ]
where, 1 <i#j<|ul,9g'=¢i A gj,d =9¢ A (d; V d;). and,

ufi] 2240 ufi) w € CA uli] 2L [ a € HA

(R2) — o (R3) o AT "y
™0 =225 [ uli' /] " u === " uli'/i]
where, 1 <4 < |u| and,
9" = g AN NMB-q2|geboa(uli)} A
M O~(@2 A ¢ 2) g € Omaluli) A ¢ €0 uli)) A 1<j#i< Jul}
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Rest

Aris @

pick?, pick!,
t<=10, t>=15
t==10
\ 7/ \
// \ / \
Z— — N\ L— — _\

Figure 20: Dying Dining Philosophers Situation in TADs

ab

pick,
false,
false

Figure 21: TADs Composition of Dying Dining Philosophers

dll — d /\ gll

(R1) is the normal synchronisation rule; (R2) defines interleaving of com-
pleted transitions; and (R3) defines interleaving of incomplete, i.e. escape, tran-
sitions. In this final rule, g” holds when,

1. g holds; and

2. it is not the case that an already completed transition from w[i] could
eventually become enabled; and

3. it is not the case that an incomplete transition (including a itself) offered
at state u[i] could eventually be completed.

Furthermore, the definition of d” ensures that the rules preserve the property
d = g and thus, the product is time reactive.
Applying these rules to the composition:

| |™<Timeout4,Component3>

and removing impossible transitions yields the composition shown in figure 22.
This solution removes the excessively early escape transition from a0b0, but

33



timeout,
t==D,
t==D

timeout,
t::D’

tau, t==D

r<=C,

false,

r:=0
good,
t<D N\ r==0,
t<D A\ r==

Figure 22: | |™<Timeout4,Component3>in TADs with minimum priority escape
transitions

preserves all other transitions. In addition, we again obtain the “weaker” han-
dling of urgency in synchronisation that subsection 3.3 proposed.

3.6 Discussion

This section has presented a number of means to “constructively” ensure time-
lock freeness in a timed automata setting. We can summarise our results as
follows:-

e we highlighted a static specification device which can be used to ensure
that zeno timelocks cannot arise;

e we considered the standard TADs framework. However, this proved un-
satisfactory as it generated too many escape transitions;

e in response, we presented two new TADs formulations - Sparse TADs and
TADs with minimal priority escape transitions, which do not allow time
action locks to be generated and are thus, time reactive; and secondly,
resolve the problem of escape transitions being generated excessively early;

e furthermore, the TADs parallel composition that we present “weakens”
the interpretation of urgency in synchronisation. Specifically, we obtain
a situation in which urgency can only be enforced if a synchronisation is
possible.
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You should also note that all these approaches are compositionally well be-
haved, in the sense that, if component automata satisfy the particular property,
e.g. zeno timelock freeness or time action lock freeness, then the product will
satisfy the same property.

4 Action Locks

One of the main results of the last section and of the TADs framework in
general is to provide a means to compose automata together without generating
timelocks. This then raises the issue of whether the same can be done for
action locks, i.e. can a notion of parallel composition be defined which cannot
introduce action locks. It turns out that by manipulating guards and deadlines
appropriately such a notion of compositionality can be obtained. This is the
subject matter of this section.

As an indication of the background to the problem of action locks we review
the issue of action lock freeness in untimed systems in subsection 4.1. Then we
consider a simple way to obtain action lock compositionality in subsection 4.2.
However, this approach is very limited. Finally, in subsection 4.3 we consider a
more satisfactory approach.

4.1 Independent Parallelism in Untimed Systems

We consider automata / transition systems, (L,ly, —) where L is a set of loca-

tions, — is a transition relation on actions in A and Iy € L is a start location.
Now we can define untimed action lock freeness. It is a straightforward

extrapolation from (timed) action lock freeness which was definition 2.

Definition 5 An automaton, (L,ly,— ) is action lock free iff
VieL(lp=>1 = JeeA.l-%)
where = is the obvious reachability relation, i.e.
I iff (1=1)V Beryemen I, clprr i Sl Al=1 A1 =1lh41)

Now we can easily identify a notion of parallel composition that preserves
action lock freeness:-

(L1, 110, =) ||| (L2, 12,0, —2) = (L, 1o, —)
where,
o L=1I,xLy:
e — is defined by,

I %114 Iy 55504
(llalQ)L)( I17l2) (llal2)—e)(llall2)
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o lp= (11,0,12,0)

i.e. ||| gives the independent parallel composition of two automata.
||| ensures the property,

If either (L1,11,0,—1) or (La,l2,0, —2) are action lock free then so is
(Llall,f)) _)1) ||| (L2712,07 _)2)

To prove this property we need a small lemma.
Lemma 1 Assuming (L,lo,—) = (L1,11,0,—1) ||| (L2, 12,0, —>2) then,
(11,0,12,0) = (11,12) zmplzes ll,O =10 A 1270 E?

Proof

We prove just l1p = li, the other case is symmetric. (l10,l2,0) = (l1,02)
implies 361, ey En 3l171, ceey ll7n+1l271, ceey l27n+1 . (l170, l270) = (1171, l271) A (ll, 12) =
(ll,n+1; 12,n+1) A (ll,i7 l27i) i) (ll,i+1; 12,i+1)- Now we work by induction.

Base Case. Assume n = 1. Then (l1 g,l2,0) = (I1,l2) and by the inference
rules of ||| either I3 o =1y or I o = 111, but in either case we are done.

Inductive Step. Assume the result holds for n — 1 and that (I;0,l20) =

(I n+1,l2,n+1) which implies (11,0,12,0) = (li,nyl2,0) A (liny l2,0) =2 (I g1, l2,041)
which by induction gives l1 o = [1,, and by the inference rules gives us either
ll,n = l17n+1 or ll,n L)1117,,14_1, either of which gives us l170 = l17n+1 as re-
quired.

O

Proposition 7 If (Li,l1 0, —1) or (La,la0,—>2) are action lock free then so is
(Lylo, =) = (L1,11,0, =1) ||| (L2, 2,0, —2).

Proof

Wlog assume (L1,l19,—1) is action lock free. Take (l1,l2) € L such that
(I10,120) = (l1,12) then by lemma 1 we know that 1o = I1 and also since
(L1,11,0, = 1) is action lock free we have I; —+1. But then the inference rules
immediately give us that (I;,l>) < and we are done.

O

However, independent parallelism is not very interesting because it does not
allow any synchronisation. Unfortunately synchronisation brings the possibility
that new action locks can be introduced in the product. For example, the CCS
parallel composition operator would ensure action lock freedom preservation if
you could ensure that only actions that successfully synchronise are restricted.
However, restriction is a static operator and determining whether actions syn-
chronise is a dynamic property. This is why we need to use the TADs priority
mechanisms, because they enable us to define parallel composition where the
choice between the transitions is tied to the dynamic evolution of the system.
This point will become clearer in subsection 4.3. First though, in subsection
4.2, we show that the results for untimed independent parallelism that we have
deduced in this subsection can be extrapolated to the timed setting.
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Figure 23: Automata illustrating the need for disjoint clock sets

4.2 Independent Parallelism in Timed Systems

We can easily define independent parallelism in the timed setting. Although it
would be easy to give a definition for TA, here we give a definition for TADs.
The independent product, denoted ||?, of a vector of TADs is defined,

(A1), ..., A[n]) = (L,lo,—, |J Ali]4)

1<i<n
where,
o Iy = |[{(A]1].2,..., A[n].2);
o L={lo}U{|l' | |['u-2225||'u" A [Jlue L}
e — is defined by,

ufi] 45, ufi)
a2 fiufi /]

(RIP)

Once again since we assume d = ¢ throughout each component automaton,
(RIP) ensures that d = ¢ in the independent product and thus we have time
reactivity.

It turns out that in order to obtain action lock freeness preservation we will
have to assume that the clock sets of our component automata are disjoint. The
two automata in figure 23 indicate why we must make this assumption. Individ-
ually, these are both action lock free since once entering state s1 (respectively
t1) the clock r (respectively t) is already too high to allow the s2 (respectively
t2) branch. However, the independent product of the two will evolve to state
s2t2 (i.e. an action lock) since each resets the other’s clock to zero.
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Consequently, we will assume that the component automata in a vector have
disjoint clock sets, i.e.

(A[1], ..., A[n]y is only defined if, Vi, j(1 < i,j <n).A[li]4NA[jl4=10
Now we introduce some notation related to disjointness of clock sets.
v[C

is the restriction of the (larger) clock valuation v to the valuation on clocks of
C,i.e.

v[C =vN(C xR

We can also build up larger clock valuations from smaller ones by taking the
union of the two functions (note, disjointness of clock valuations prevents this
from being dangerous). Also, we will often write v[(A[i].4) as v[?, i.e. to restrict
the valuation v to the clocks of A[i].

We have the following two straightforward lemmas concerning restriction of
clock sets.

Lemma 2

C'CC = C'(w[C)=(C'(v)[C
Proof

C'(v[C)
= { Definitions of [ and clock reset }
(011 (C x REN\(C' x RF)) U (C” x {0})
= { Definition of \ }
(vN(C xRMY) N (C\C" x RT)) U (C" x {0})
= { Associativity and commutativity of N }
(vN(C\C" x RT)) N (C x RT)) U (C" x {0})
= { Distributivity of U over N ; definition of \ }
((6\(C x BH)) U (€ x {0})) 1 (€ x R¥) U (C" x {0})
- {cccy
((0\(C" x BF)) U (C" x {0}) N (C x B*)
= { Definitions of [ and clock reset }
(" (w)ic

O

Lemma 3
(w[C)+t=(v+1)[C
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Proof

Trivial.

O

We will need the following lemma. It states that if the independent product can
reach a state then all components can reach a corresponding state. In particu-
lar, this correspondence ensures that all clock valuations that the independent

product can reach, can (with appropriate restriction) also be reached by all
component automata.

Lemma 4

Vi(l <i < [ul).[[['u,0] € [IFA].1 = [uli],o["] € [A[li]] .1

Proof
We prove this by induction over the rules for generating time/action transition
systems for TADs. Take i € N such that 1 <i <mn and n = |ul.

Base Case:

[1|1(A[1]).2,..., A[n].-2),v0] € [||*!A] .1 and [A[i].2,v0[?] € [A[i]] .1 by construc-
tion.

Inductive Step:

Assume [||'u,v] € [||*A].1 and [u[i],v[?] € [A[{]].1 (this is the inductive
hypothesis). We need to show that the next state reachable from [||*u,v] also
corresponds to a state in [ A[i]].1. We argue by case analysis of the means by
which [|[®u,v] can reach a new state.

Case 1 [ [||'u,v] == [||'u/, '] ]
[[]fw, 0] = [|['u’,0']
< { Rule (S1) }

[Fu 29025 il A g(o) A o = r(v)

Case 1.1 [ u[i] = u[i]" ]
uli] = uld]’
& { Clock sets are disjoint, i.e. 7N (A[i].4) =0 }
[uld]', v'['] = [uli], v["]
= { By inductive hypothesis }
[uld]',v'['] € [A[i]] -1
which is as required.
Case 1.2 [ ufi] # u[i]' ]
uli] # uli]
= { Rule (RIP) ; case assumption }

uli] 22T ufi) A g(v) A v =r(v)
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= { Inductive hypothesis; disjoint clock sets gives g(v[i); rule (S1) }
[wli], v[*]=> [uli]',r(vD)] A v =r(v)
< { Disjointness of clock sets, so r C (A[i].4); Lemma 2 }
[uli], v["]==> [uli]',r()[] A v' =r(v)
= { Substitution }
[uli], v[*] = [uli]',v'[]
= { Transition system construction }
[uli)',v'["] € [Ali]] -1

which is as required.

Case 2 [ [||u, v] = [ ||fu, v + 1] ]
We seek to show that -, )
[uli], v[']=>[u[i], (v + )["]

which will require us to show that,
Vuli] (u[i] <229ty o[ = V' < t.=d;(v + 1))
Thus, we take u[i]" € A[i].1 such that u[i] _ehgidiari u[i]" and proceed as follows:-
uli] S il A [ 0] = [, +1]
< { Rule (S2) }
ulé] —<Lgindiiriy uli]’ A V(') (|)fu 2280 )iy = Y < t.-d(v +t'))
& { Rule (RIP) }
[ et | fufi /3] A
V([[fu') (|[fu 2280 ||y = Vi’ < t.-d(v +t'))
= { Instantiating universal }
V' < t.d;(v+t)
which gives us that,
Vuli] (u[i] <22e9iriy i) = V' < t.-d;(v + 1))
but then by (S2) and our inductive hypothesis, we have,
. i1t . i
[uli), o['] = [uli], (v[") + 1]
and by lemma 3 it follows that,
. i1t . i
[uli), o['] = [uli, (v + 1)[']
and hence,

[uli], (v +)["] € [A[]] -1
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which is as required and completes the inductive case.

O

Now we show that action lock freeness is indeed preserved when taking the
independent product.

Proposition 8
Ji (1 < i < |A|). A[d] is action lock free => ||'A is action lock free.

Proof
We prove the contrapositive,

||IA contains an action lock implies Vi (1 < i < |A|). A[i] is action
locked.

So, assume ||*A contains an action lock, i.e.,

Property (*)

30, o] € [FA] 1.2 € R ([[fu,v+ 1] € [IFA]1 = [0+ 1] =)
Take i such that 1 <i < |A|, we need to show that A[i] is action locked. Now

by lemma 4 we know that,

[uli],v["] € [A[l]] -1

and we will show that this state is action locked. We proceed by contradition.
Thus, assume the state is not action locked. There are two possibilities:-

L. [u[i],v[]]=> or
2. 3t ([ufi], v["] = [ulil, v[*+] A [uli],v[i+t] =).
We consider these cases in turn.
Case 1 [ [u[i],v[']= ]
[uld], o[ =
= { Rule (S1) }
uli] 245, A g(uf)
= { Rule (RIP); disjointness of clock sets }
[fu =245 A g(v)
= { Rule (S1) }
[I[fu,v] =
which would contradict property (*). Thus, this case is not possible.

Case 2

[ 3 (ufil, o) =5 [ufi], v[+6] A [ufil, o[+1] =) ]

Let us consider the behaviour of the independent product. Firstly, can it pass
time by ¢?
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Case 2.1 [ [[[iu,v] 2 ]

[l
= { Since ||'A will be time reactive we can use proposition 6 }
Je ([|['u,v] = Vv 3t" < t([||"u,v] N [, v+t A [|[fu, v +t']=))
which would contradict property (*). Thus, this case is not possible.
Case 2.2 [ [||'u,v] = [||fu, v + 1] ]
(11, 0] = [, 0 + 1]
= { Introducing our case 2 assumption }
[, v] = [|fu, 0 + 8] A [uli], o]+ =
< { Lemma3 }
[, 0] =5 [[[fu,0 + 4 A [uli], (0 +6)[7] =
= { Rule (S1) }
[l o] = [l v 1] A uli] =225 ufi) A g0 +0))
= { Rule (RIP); disjointness of clock sets }
[, 0] S (w0 + 4] A [Jfu 2280 |fufif/i] A g(v+1)
= { Rule (S1) }
[, 0] =5 [Ju,0 + 8] A [|fu,0 + 1] =

which would also contradict property (*). Thus, this case is also not possible.
This completes all the possibilities that would arise if,

[ui], v[]

were not action locked and all these possibilities generate contradictions. Thus,
it must be the case that the state is action locked and the result follows.

O

4.3 Timed Case with Synchronisation
4.3.1 Composition Rules

As stated earlier, independent parallelism is theoretically interesting, but such
interaction free parallel composition is of limited value. Thus, here we consider
how the same action lock compositionality property can be obtained but while
allowing interaction between processes. Our definition builds upon the parallel
composition arising in TADs with Minimum Priority Escape Transitions, which
has a number of the required characteristics. However, it does not go far enough
in its generation of escape transitions. Particularly in respect of preserving
component deadlines. These issues will become clear shortly.
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Consider the following composition rules where u is a vector of TADs loca-
tions. The product that is generated is denoted ||*A.
z,9;,d5,r;

Ry IR i ] e ol

R )
Wherea 1 S i #] S |’U’|ﬂ gl = Gi A 95, d = gl A (dl \4 d]) a“nda

ufi] 22LT ofi]' x € CA uli] 2227 /(] a € HA

(RIA) (RHA)

70 2Ly o0 /] [ B o]
where (1 <i < |ul) and,
9" = (9 A MDO-q2qeboai} A
MO~(@2 A ¢'2)[q € 9ualulil) A ¢ €0gmy(ulil) A j#i}) v

dll
d A N{—~g3lq €bcaluli)} A
ANM—(a2 A d'2 A (@3Vq3)[qg€0mauli]) A g €0gmy(uljl) A j#i}

dll

Now we give an explanation of the components of the definition.

(RCA). This is the (now) familiar “conjunctive” synchronisation rule, with the
deadline constraint ensuring that d = ¢ and thus preserving time reactivity.

(RIA). This gives the also familiar interleaving modelling of independent par-
allelism, i.e. non-synchronizing internal actions.

(RHA). This generates escape transitions in order to avoid action locks, with
the guard and deadline constructions controlling when the escape transitions
can occur. We justify our guard and deadline definitions as follows:-

1. The guard is constructed as a disjunction between the guard construction
first proposed in [6] for escape transitions and re-iterated in subsection
3.5.2 and the deadline. We justify the guard based disjunct (i.e. the first)
here. A later point justifies disjoining with the deadline.

The basic idea of this first disjunct,

g AN N{O=q2|qe€boa(uli])} A
MO=(a2 A q'2)[q € 0mauli]) A q' €0gm(uli]) A j#i}

is to enable the product to escape action locks resulting from mismatched
synchronisations. As was motivated in subsection 3.5 the construction
refines the escape transition construction presented by [3, 4]. It does
this by constraining escape transitions to only occur when the component
automaton from which the escape transition originates can never perform
any other transition.
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@ AO @ Al

?aa!, bbb!,
rue, true,
false false

Figure 24: Action lock free TADs

aaal, bbb!,
true, true,
false false

Figure 25: Composition of A0 and A1l

As a simple illustration of why this disjunct is required consider the two
automata in figure 24. Both of these TADs are action lock free since in
their single state they can always perform their respective transition and
then evolve back into the same state.

However, if just rules (RCA) and (RIA) are used the composition of A0
and A1 will action lock immediately as neither synchronisation can be
fulfilled. Also notice, this is not an issue of deadlines as both automata
have unsatisfiable deadlines.

However, application of the rule (RHA) in conjunction with (RCA) and
(RIA) will allow the action lock to be escaped as shown in the composi-
tion in figure 25. Thus, as a consequence of failing to synchronise, both
automata evolve locally.

. Now we justify the deadline construction in (RHA). The construction,

d AN AN{—¢3|qg€bca(uli])} A
M-@2Ad2A @3V d3)|qgebraluli) A €05l Aj#i}
has a similar shape to the guard construction we just considered, however,

the temporal operators are not included. To explain the construction in
words, it states that,

the deadline (d") of the escape transition holds if and only if,

(a) the deadline of the corresponding component transition (d)
holds;
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aaal,
t<=5,
false,
t:=0

Figure 26: A strongly connected TAD that can action lock

® o

t<=5,

Figure 27: A strongly connected TAD that is action lock free

(b) no internal transition of the component is at its deadline;
and

(¢) no synchronisation which includes a half action of the com-
ponent is at its deadline.

The intuition behind the rule is that any (non competing) deadline that
appears in the component but that does not arise in the product (because
of a failed synchronisation) has its deadline preserved in an escape tran-
sition of the product. A deadline of a transition is competing at a state if
the deadline of an alternative transition also holds at that state.

This deadline construction is motivated by the observation that in the
majority of cases it is the deadline that ensures action lock freeness of
an automaton. For example, although the automaton A in figure 26 is
strongly connected it is not action lock free. In particular, assuming s0 is
first entered with t==0, if it stays in state sO for longer than 5 time units,
it will action lock.

Furthermore, there is nothing constraining the length of time the automa-
ton can idle in state sO as the deadline of the aaa! transition is false.
However, (assuming s0 is entered with t<=5) the automaton shown in
figure 27 is action lock free, since the deadline on the aaa! transition
prevents excessive idling in state sO.

Now in order to obtain the action lock freeness property that we desire we
need to guarantee that deadlines that ensure action lock freeness of com-
ponent automata are preserved in the product (either through appearing
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B’

aaal, bbb!,
t<=5, <=8,
==5, r==8,
t:=0 r=0

Figure 28: Two action lock free TADs

aaal, bbb!,
t<=5, <=8,
==5, r==8,
t:=0 r:=0

Figure 29: Composition of B and B’

as a result of rules (RCA) or (RIA) or by including relevant escape tran-
sitions). Our rule does this. Firstly, consider the two action lock free
automata B and B’ shown in figure 28. With just rules (RCA) and (RIA)
the product of B and B’ would be action locked. However, with (RHA) as
well, the product automaton shown in figure 29 would result.

In fact, this product would have resulted from application of the rules
presented in subsection 3.5 where the deadline is simply d” = d A g".
However, the example in figure 30 of two more action lock free TADs (CO
and C1) shows that this is not sufficient in the general case. This is because
according to the rules of subsection 3.5, the parallel composition of CO and
C1 would be as shown in figure 31 which will action lock at state s1t1.

Co C1
X,t==6,t==6 X,r==9,r==9
aaal, bbb!,
t<=5, <=8,
t==5, r==8,
t:=0 =0

Figure 30

: Two more action lock free TADs
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Figure 31: Composition of CO and C1 without preserving deadlines

The problem is that the guards of the aaa! and bbb! escape transitions
that the rules of subsection 3.5 generate, are false. This is because in both
automata an internal action can eventually be taken and this internal
action will take priority.

However, if we apply the rules (RCA), (RIA) and (RHA) of the product
[|* then the left most product in figure 32 results which is “behaviourally
equivalent” to the right most product. This is because the deadline pre-
vents clock t passing 5 and clock r passing 8. Notice that the guard
has been pruned to match the deadline. This ensures that the enabling
of aaa! and bbb! is minimised to only what is required to preserve the
desired action lock freeness property.

Also notice that this example illustrates why the priority enforced in the
deadline has to be immediate and including temporal operators is inappro-
priate. Specifically, if a deadline d ensures action lock freedom then even
if later transitions are possible the deadline must be preserved exactly in
the product in order to prevent later transitions from being enabled which
allow an action lock to be reached, e.g. the internal transition above!!.

3. Finally, we need to disjoin the deadline in the guard in order to ensure that
d = g everywhere and thus to preserve time reactivity. For example, with-
out such a disjunct, the product of CO and C1 would be the composition
shown in figure 33 which timelocks when t reaches 5.

Also notice that the standard approach, used e.g. by [3, 4], for obtaining
d = g which is to conjoin the guard with the deadline, will not work since
it could remove some part of a deadline that is needed to ensure action

1 This may not be the most refined solution since we might add an escape transition even
though a later transition may prevent the action lock. But, such a more refined solution is
very difficult to analyse, since you must be sure that the later deadline prevents an action
lock and this is very difficult to analyse.
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Figure 32: Composition of CO and C1 with deadlines preserved

Figure 33: Non time reactive composition of CO and C1
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lock freeness. This can again be seen in the above example. In particular,
if we conjoined the guard,

J" = g ANOa2]q€boali)} A
MO~(a2 A ¢'2)|q € Omalulil) A ' €0y (ulil) A j#i)

to the deadline,

d'" = d A N -g3|g€boaluli])} A
AM—(a2 A d' 2N (g3V q3)[qg€0mauli]) A" €0my(ulj]) A j#i}

in order to ensure that d = ¢ then the deadlines of aaa! and bbb! would
be false and the product could evolve to an action lock at state s1t1.

4.3.2 Verification of Rules

Now we give a formal verification that the parallel composition ||* does indeed
preserve action lock freeness. Before coming to our main theorem, we need
two results. The first is a simple consequence of a state being action locked in
a TADs setting. Tt states that time can pass arbitrarily in any action locked
state.

Proposition 9
VAeTAD V[l,v] e [A] 1
([l,v] is action locked = Vt € RY .[l,v+t] € [A].1)

Proof
Assume [l, v] is action locked, i.e.

e
[l,v]=~ A
Vi e RY (o] 2= Lo +t] = [Lv+t]=5)
Now we know from proposition 5 that either,

Vte RY . [l,u] == V
t
Vie RT.[l,v]=% V
e R (o] AV eRN([1]= < t'<t))
Now disjunct 2 is not possible since if [I,v] cannot pass time and cannot

perform an action transition we have contradicted time reactivity. So, consider
disjunct 3. We can reason as follows:-
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3t ([1,v] == [Lo+ 8] A Y ([lv] 2= < t' <1t))
= { Logic }

(o] = [Lv+t] A VE>t([l,0] :t;s )

< { Otherwise time continuity would contradict 2nd conjunct }

W (o] Lo+ 1] A VE Lo+ =)

But this yields a contradiction since [l,v + t] cannot let time pass and (as
[I,v] is action locked) it cannot perform an action transition, which invalidates
time reactivity.

Thus, our third disjunct is also impossible. This implies that the first dis-
junct must hold, i.e.

vt (L v] = 1o + 1

which is as required.

O

Now we consider the corresponding lemma to lemma 4 which we used to
prove that the independent product preserved action lock freeness. The lemma
states that if the product can reach a state then all components can reach a
corresponding state. In particular, this correspondence ensures that all clock
valuations that the product can reach, can (with appropriate restriction) also
be reached by all component automata.

Lemma 5
Vi(l <i < [ul).[||*u,v] € [[|*"A].1 = [uli],v[] € [A[i]].1

Proof

We prove this by induction on the rules for generating transition systems from
TADs. So, consider an arbitrary component automaton, say automaton ¢ € N
such that 1 <i <mn,

Base Case:

If [(A[1].2,..., A[n].2),v0] € [||*A].1 then, by construction, we know that,
[A[i]-2,v0["] € [A[i]] -1.

Inductive Step:

Assume [||%u,v] € [||*A].1 and [u[i],v[!] € [A[i]].1 (this is the inductive
hypothesis). We need to show that the next state reachable from [||%u,v] also
corresponds to a state in [ A[¢]].1. We argue via a case analysis of how a new
state can be reached.

Case 1 [ [||%,v] == [||%u,v"] ]
[1]%u, v] = [[|*u', v']
< { Rule (51) }

|| —22Ls 2y A g(v) A 0" =r(v)
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Case 1.1 [ u[i] = u[i]" ]
uli] = uli)
= { Disjointness of clock sets, i.e. r N (A[i].4) =0 }
[uli]', o' '] = [uld], v["]
= { Inductive hypothesis }
[uli)',v'["] € [Ali]] -1
which is as required.
Case 1.2 [ u[i] # u[i]" ]
Case 1.2.1 [ e € CA by an application of rule (RIA) ]
uli] #uli] N ee CA
= { Rule (RIA); case assumption }
ufi] 2L i) A gv) A ' =r(v)
= { Inductive hypothesis ; rule (S;) ; disjoint clock sets ensure g(v[?) }
[uli], v['] == [uli]',r(v)] A v =r(v)
< { Disjointness of clock sets, i.e. r C A[i].4 ; lemma 2 }
[uli], o[} = [uli]',r(v)[]] A ' =1(v)
= { Substitution }
[uli], v[*] == [uli]',v'[]
= { Transition system construction }
[uli)',v'["] € [Al]] 1
which is as required.
Case 1.2.2 [ e € CA by an application of rule (RCA) |
uli] #uli] N e€ CA
= { Rule (RCA) ; wlog use e! rather than e? }
uli] LT ufi) A (g A gi)(v) A V= (r Ury)(v)
= { Definition of guards }
uli] B i A gi(0) A 0 = (1 Ur))(0)
= { Inductive hypothesis ; disjoint clock sets ; rule (Sy) }
[uli], o[ == [ulil', 7 (0[] A o' = (r; Ury)(v)
< { Lemma 2 ;r; N A[i].4 =0 ; substitution }
[uli), 0[] == i), o' '
= { Transition system construction }
[uli]',v'["] € [Ali]] 1

which is as required.
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Case 1.2.3[ e € HA |

uli] # ufi]’ A e€ HA

= { Rule (RHA); with X and Y st. g=(g: A X) V (di AY) }
uli] S u[i) A (g0 A X))V (di AY))(0) A 0 =1i(0)

= { d; = g¢; by time reactivity }
ufi] 2By ol A gi(v) A v =ri(v)

= { Inductive hypothesis ; disjoint clock sets ; rule (S;) }
[uli], o] = [ui]', i (v[")] A 0" =ri(v)

< { Lemma 2 ; substitution }
[uli], v["] = [uli]', v'[]

= { Transition system construction }
[uld]',v'['] € [A[i]] -1

which is as required.

Case 2 [ [||%u,v] = [||"u,v + 1] |
[1]%u, 0] = [ []*u, v + 1]
& { Rule (S,) }
V| |ou! (|| 2Ly |0y = V' < t.=d(v+ 1)) — (X)
We seek to show that,

Vuli] (ui] %u[i]' = V' <t.~di(v+1))

Thus, we take u[i]’ € A[i].1 and assume,

ufi] 2Tl g )

Then we have two cases dependent upon the nature of ej.
Case 2.1 [ e, € CA ]
ej € CA
= { Case assumption }
[]—)”g“ uli] A eje CA
= { Rule (RIA) ; assumption (x) }
||“u%>||“u’ A eje CA N (x)
= { Instantiating universal in (x) }
V' < t.adi(v+t)

which is as required.
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Case 2.2 [ e, € HA ]
e, € HA
= { Case assumption }
uli ]—)”g“ uli] A e, e HA
= { Rule (RHA) (X asin (RHA)) ; assumption (x) }

||“u—>“g d”ri [[%u" A e € HA A (X) A ¢g"=X A

d"=d; N N{—q¢.3|qg€0ca(uli])} A
A —(g2 A q2n(¢3V¢.3)|q€bma(uli]) A
¢ €0y (ulil) A j#i}
= { Instantiating universal in (x) ; def. of timing constraints ; logic }
V' <t=(dj(v+t') AN A{-g3v+1t)|qg€bcaluli])} A
AM=(@2 A g 2A @3V q3)(v+t)]q€bmaluli]) A
¢ €0y (ulil) A j#i}
= { De Morgan’s }
Vi' <t(=di(v+t) vV V{g3w+t)|qge€bca(uli])} V
V{@2Ad2A g3V qd3)(v+t)]q€bnaluli) A
¢ el (i) A GEIT  — ()
Our strategy from here is to show that the second two disjuncts cannot hold
for any t' < t.
Case 2.2.1 [ 3t <t \V{qg3(v+1t)]|q€bca(uli])}]

' <t \V{g3w+1t)|qgebca(uli])}
= { Definition of 6 ; evaluating disjunct }
A < tJufi]” (ufi] =i zoldird ult]" A dl(v+1t))
= { Rule (RIA) ; assumption (x) }
' < tJufd]” (||GUM> [|*u[d"/i] A df(v+t)) A (%)
= { Instantiating universal in (x) ; logic }
I < tJu[]" (V" <t.d (v +t") A dY(v+t))
= { Reducing contradiction to false }
false

So, this subcase is contradictory and hence impossible.

Case 2.2.2
[T <t V{{@2Aqd2A @3V ’3))(v+t’)|
q € 0maluli]) A ¢ €0gg(ulj]) A jF#i}]
W<t V{(@2ANd 2N @3V d3)v+t)]
1€ 0malulil) A ¢ €0l A j#£i)
= { Definition of 8 ; evaluating disjuncts }

93



3t < ¢ 3ulil” ulj) (ufi] 2Ll i p uly] L gy
gi'(w+t) A gifw+i) A @W+f)Vj@+tm
= { Rule (RCA) ; assumption (x)

}
3t'<t3||au”(||au ta,g’,d ' ||a "oA
)

d=(g" N (d Vv dj) Ag'lo+t
(di(v+t') vV djv+t)) A (x)
= { Instantiating universal in (X) ; logic ; substitution }
I <t (V" <t.-d'(v+t") A d = (g A g AN (d] VvV d}))A
giw+t) A gilv+t') A (&l (v+t) VvV df(v+1)))
= { Substitution }
W<tV <t.~d'(v+t") A d(w+t))
= { Reducing contradiction to false }
false

So, this subcase is also contradictory and hence impossible.

g = (g N gj) A
A gi(v+t) A

Thus, the last two disjuncts of (*) cannot hold for any ¢’ < ¢ and hence we know
that for all ¢ < ¢ the first disjunct must be true. Thus,

(*)
= { Above cases 2.2.1 and 2.2.2 }
V<t (~dy(o + 1)
as required to complete case 2.2.
Now bringing cases 2.1 and 2.2 together, we have,
Vuli] (u]i] eogidiri, uli]’ = V' <t.-dj(v+1t))
However, due to disjointness of clock sets we can deduce that,
Vuli]' (ufi] “2Llry i) = W < t.di(0[+t))
and by our inductive hypothesis we know that,
[uli],v[] € [A[i]] .1
from which (by S») it follows that,
[uld], o) = [ufi], vl +4

and thus, ‘
[uli], v*+t] € [A[]] -1
which is as required to complete our proof of the inductive case.

O

Now we turn to the central result of this section. It states that || preserves
action lock freeness.
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Theorem 1
Ji(1 <i < JA]). Ali] is action lock free => ||*A is action lock free.

Proof
We can express the desired property as follows,

Ji V[uli],v[] € [A[i]] .13t € R* ([u[i], v['4+t] € [A[i]].1 A [ufi],v]*+t] =)
implies
V[ll"u,v] € [11"A] .13t € R ([||"u,v +t] € [II"A].1 A [[|*u, 0+ 1] =)
Thus, we assume,
Ji V[uli],v[?] € [A[i]] 13t € R ([u[i],v[*+t] € [A[i]]-1 A [uli],v[*+t] =)
and then we take, [||%u,v] € [||*A] .1, However,
[*u,v] € [l|*AT -1
= { Lemmal }

[ufil,v[] € [A[i]] -1

Now we will show that =AL([u[i],v[?]) implies that =AL([||%u, v]). We consider
two cases (t = 0 and ¢ > 0) depending upon whether [u[i], v[?] can immediately
perform an action or only after passing time.

Case1[t=0]
t=0
& { Case assumption }
[uli], v[] ==
< { Rule (Sy) ; g; only uses clocks in A[i].4 }
i) SR A i) - ()
which yields subcases dependent upon the nature of e;.
Case 1.1[e; € CA |
e;€ CA
= { Rule (RIA) ; case assumption (+) }
||t —Lgidiriy oy A gi(v) A e; € CA
< { Rule (51) }
[l|*u, v] ==
which is as required.

Case 1.2 [e; € HA |

Case 1.2.1 [ Jufi)’ (ufi] Z2=%eT=s y[i)' A z€ CA A 3t.go((v+8)) ]
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Case 1.2.1.1 | [||“u,v];$ ]

t
[[1"u, v]
= { Proposition 6 }
Je ([||°u,v] = Vv 3’ St([||au,v]t=’>[||“u,v+t’] A T||%u, v +t]==))
which is as required.

Case 1.2.1.2 [ [||%, v] = [ ||%u, v + 1] ]

11w, 0] = (|20, v + 1]
= { Rule (RIA) ; assumptions ; disjoint clock sets }
(2w, v] == [[|%u, 0 + 4] A ||0u-Z8edeley A g (p41)
= { Rule (51) }
[190, v] 5 [||u, 0 + 1] A [||%u,v + ] ==
which is as required.
Case 1.2.2 [ ~Tufi] (u[i] ZL=leay i) A 2€ CA A Tt.g.((v+1)[7)) ]

Case 1.2.2.1 [ Jufi]', ulk], u[k]' (k # i) (u[i] <22ebwry o [i]7 A ulk] —Sd=daTey ] A
. (gy A g:)(v+1))]

t
Case 1.2.2.1.1 [ [||*u,v] =5 ]
Similar to case 1.2.1.1.

Case 1.2.2.1.2 [ [||%u, v] == [ ||%u, v + 1] |

L1170, 0] = []|*u, v + 1
= { Rule (RCA) ; assumptions ; disjointness of clock sets }
(170, 0] = [||"u,0 4] A [|*u 20500 A g = (g, A g:) A
d'=(g' A (dy vV d.)) A (gy A g:)(v+1)
= { Rule (S1) }
(17w, o] == w0 + 2] A [[[ou,0 + 1] =2
which is as required.
Case 1.2.2.2 [ ~(Ju[i]’, u[k], u[k] (k # i) (u[i] ~22220 vy y[i] A ufk] 22222y k] A
. (gy A g:)(v+1)))]
—(Fuld], ulk], ulk]) (k # 1) (u[i] a’gy’—dy’”>u[i]’ A ulk] M)u[k]’ A
Jt.(gy A g:)(v+1)))
= { Accumulating assumptions ; disjointness of clock sets }
=(Fuld])’ (ulf] z’g”“—d”“”>u[i]’ A Ft.g.(v+1)) A
—(Fuld], ulk], ulk]) (k # i) (u[i] a’g”’—dy’”’)u[i]’ A ulk] M)u[k]’ A
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Jt.(gy A g:)(v+1)))
= { Definition of temporal operators }
=(Fufi]’ (ufi] 2Lt i) A Oga(v))) A
—(Sufi], u[k], u[k] (k # i) (u]i] “22ederey y[j] A uk] —2L=d=Tey (k] A
Olgy A g2)(v)))
< { Logic }
Vu[i] (ui] ZdzdeTey i) = O-g,(v)) A
vuli], ulk], ulk) (k # i) ((u]i] ~222Bervy ) A ulk] 22202y [k])) =
O=(gy A g2)(v))
= { Definition of A and 6 }

A{O-g.2(v) |q € bcaluli]) } A
A O~(¢2A ¢ 2)(v) |q € Oma(uli]) Nq' € O gzy (u[k]) Ak £} — (3)

However, in addition, we are in case 1 (with assumption (+)) and 1.2 which
gives us,

ufi] gy i A gi(v) A e; € HA
= { Rule (RHA) }
|70 2RI |20 A g = ((95 A A{O=g.2|q € Bea(uli]) } A
A O~(22 A ¢-2)1q € bra(ulil) A ¢ €8y (li]) A j£i 1) V di) A
g:(v) A e; € HA
= { Assumption (#) ; logic }
o 20 o A g(r)
= { Rule (S1) }
[ll*u, v] ==

which is as required and completes case 1.

Case 2 [t>0]
t>0

& { Case assumption }

3t ([ufil, o] = [wfd], ) + 1] A [uli], @) + ] =)
= { Lemma3 }

3t ([uli], o] = [uli], (0 + O] A [ufi], (v + O[] =)
< { Rule (S1) ; g; only uses clocks in A[i].4 }

uli] <SS A gi(v 1) = ()
t
Case 2.1 [ [||%u,v] =~ ]
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Similar to case 1.2.1.1.

Case 2.2 [ [||%u,v] == [||%u, v + 1] |
Now we have subcases dependent upon the nature of e;.

Case 2.2.1[e; € CA]
e; € CA
= { Rule (RIA) ; case assumption (++) }
||t —Sgidiriy oy A gi(v41t) A e; € CA
& { Case 2.2 assumption ; rule (Sy) }
[1ow, 0] = [[|*u, 0 + 8] A []|%u,0 + ] ==
which is as required.
Case 2.2.2 [e; € HA |
Case 2.2.2.1 [ Ju[i] (ufi] Zf=deley i) A 2 CA A Tt . go((v+t+1)]7) ]
tl
Case 2.2.2.1.1 [ [||*u,v +t] =F |
Similar to case 1.2.1.1.
Case 2.2.2.1.2 [ [||"u,v + ] == [||*u, v + t + ] ]
[1*u,v + == [||*u,0 + ¢ + 1]
= { Time cont. ; rule (RIA) ; case 2.2.2.1 assumption ; disjoint clocks }

(170, 0] 2225 ||, 0+ £ 4+ 8] A [|ou Zdeleley A g (o4 ¢+ ¢)
= { Rule (S1) }

(17w, o] 2 [[|ou, v+ £+ 8] A [][0u,0 + ¢+ ] =2
which is as required.
Case 2.2.2.2 [ ~Fu[i]’ (u[i] 22Ty y[i) Az € CAAN I . go((v+t+1)[)) ]
Case 2.2.2.2.1 [ Ju[i]', u[k], ulk]' (k # i) (u[i] ~222%0s y[i]) A u[k] 24202y k) A
gy A g:)v+t+1)]

tl

Case 2.2.2.2.1.1 [ [||*u,v + t] =5 ]
Similar to case 1.2.1.1.
Case 2.2.2.2.1.2 [ [||%u, v + t] == [||%u,v + t + '] ]

[, v + ] == [||*u, 0+ ¢ + 1

= { Time continuity; rule (RCA) ; assumptions }

(1%, 0] 5 w04+ ¢+ ¢] A [|ou 22T A g = (g, A g2) A
d=(g"N(dyVd)) A (9N g)v+t+t)
= { Rule (S:) }
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(170, 0] 2225 |2, v+ £+ 8] A [0, 0 + ¢+ ] 22
which is as required.
Case 2.2.2.2.2 [ ~(u[i]’, u[k], u[k] (k # i) (u[i] <22odelyy o [i] A ulk] —Sd=daTey ] A
3 (gy A g:)0+1E+1))) ]
—(Fuli], ulk], ulk) (k # i) (u[i] a’g”’—m’)u[i]’ A ufk] Lgzdeare g ik A
3 (gy A g2)(v+t+ 1))
= { Accumulating assumptions ; disjointness of clock sets }
(Fufi] (ufi] Zf=tatay i) A B . gu(v+t+1))) A
—(Fuli]’, ulk], ulk] (k # i) (u[i] 222Dl gy [i]) A ufk] 222y (k] A
3. (gy A g)(v+t+1t)))
= { Definition of temporal operators }
~(Fufi]’ (u]i] Llmdelzy 1] A Og,(v+ 1)) A
—(Fufi]’, ulk], ulk] (k # i) (u[i] 22220l y[i]) A u[k] -S22derey (k] A
Olgy A g:)(v+1)))
< { Logic }
Vu[i] (ufi] ZdedeTey )] = O-g, (v +1)) A
Vuli]', ulk], ulk] (k # i) ((u[i] 22250 s o] A uk] -22=d=2y k) =
O=(gy A g2)(v+1))
= { Definition of A and 6§ }
A{O-g2(v+1t)|q € Ocaluli]) } A
A{O=(a2 A ¢ 2)(v+1t)[q €Onaluli]) A ¢ €057 (ulk]) A
k#iy = (##)
However, in addition, we are in case 2 and 2.2.2 which gives us,
ufi] Cegditiy it A gi(v+1) A e; € HA
= { Rule (RHA) }
|70 2L 2w A g = ((9; A A{O-g.2|q € Boa(uli]) } A
AN B2 A ¢ 2)[q€brauli]) A ¢ €b0gqy(ulj]) A J#i})Vdi)A
gilv+t) A e; € HA
= { Assumption (##) ; logic }
|90 SRR 0w A g(v + 1)
= { Case 2.2 assumption ; Rule (S;) }
[low, o] S (2,0 + 4 A 2,0+ 1] ==

which is as required and completes case 2 and thus, the whole proof.

O
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