
Smith, Neil (1996) The UK National Web Cache - A State of the Art Report. 
 Technical report. UKC, University of Kent, Canterbury, UK 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21369/ The University of Kent's Academic Repository KAR 

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/21369/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


The UK National Web Cache
A State of the Art Report
Neil G. Smith,
HENSA Unix,
The University of Kent at Canterbury. 

Abstract

Two years after its introduction at the First International World-Wide Web Conference at CERN,
Geneva, the use of caching technology to improve the efficiency of network utilisation has become
a hot topic. With relatively poor international connectivity, if was through necessity that UK
academia was one of the first communities to make widespread use of this technology on a large
scale. The implementation of a national strategy proposed by HENSA Unix in June 1995 has led an
experimental project to become what is probably the most mature caching facility in the world
today. In this paper we present a brief history of the project, a discussion of the evolution of the
hardware, software and networking systems involved, and take a look to the future of the project
within the framework of the UKs networking strategy. It is hoped that some of our experiences may
be of use to other large bodies of users who are tired of waiting for their Web pages to arrive.

Contents

Introduction 
System Evolution 

Lagoon - CERN - Netscape 
Alternative Servers 
Hardware Demands 
Hardware Resource Balancing 
Networking and Machine Load Balancing 
The Users 

Future Developments 
Proxy Auto-configuration 
Cache co-operation 
Networks for Caches 
New HTTP Protcols 

Conclusion 
References 

Introduction

The World-Wide Web has long suffered as a result of its own popularity. The combination of the
ease with which large video and audio data types can be incorporated into documents, and the
model of a single publisher serving countless clients places great demands on bandwidth. While this



may not present a problem on a local area network, or even within a national context, as soon as
information passes across international networks the lack of bandwidth and the resulting congestion
is immediately apparent. (This problem is very obvious in the UK. Nationally we have good
connectivity with a 150Mbps backbone, but our international links are relatively slow: 4Mbps to the
United States, 4Mbps to Europe and 2Mbps to Scandinavia.) The problem was already recognised
by the time of the First International World-Wide Web Conference [1] in May 1994 and has
received a steady stream of attention since then. The consensus of opinion suggests that distributing
the publication responsibility through the deployment of Web proxy caches gives us the quickest
route to a medium term solution. In future more sophisticated schemes may allow for more flexible
publication mechanisms that avoid some of the problems that proxies introduce. However, for the
moment they are all that we have and their role is now central in many users’ access to the Web.
This means that all new protocol developments must take account of these intermediate servers and
work with them. This makes protocol development more complicated, but the impact that proxy
caches can have is so great that we cannot afford to ignore them.

System Evolution

The evolution of the systems in use at HENSA Unix has been forced by the great demand on the
service. Until recently this demand always out-stripped the resources available. At points in the
services history the demand has been so great that queues on the servers resulted in using the cache
actually being slower than going direct. The graph below shows how the service has grown
(December’s dip is, of course, the seasonal norm). 

 



Lagoon - CERN - Netscape

In November 1993, after initial experiments confirmed that the wholesale mirroring of Web pages
was not an effective way to reduce the latency seen on the networks, HENSA Unix adopted
Lagoon[2] as an experimental proxy cache. At the time, the necessary protocol extensions to
support proxying were not in place and early versions of Lagoon had to make use of a CGI script
that rewrote HTML on the fly in order to direct clients back to the cache for each subsequent page
that they retrieved. Despite some innovative features (cache co-operation was already being
discussed) this HTML rewriting and other performance related problems meant that the client base
being supported by HENSA Unix was becoming too large for Lagoon.

At about the time of the First International Conference, a proxy mechanism was introduced into the
the CERN HTTP server[3]. New versions of Mosaic made the use of this facility transparent to the
user and proxying started to become a viable proposition. HENSA Unix continued to use the CERN
server for almost a year but with the increasing popularity of the cache, the forking process model
used by the CERN server started to place a higher and higher load on our hardware. At this point
the caching service was still experimental and not receiving its own funding.

It was because the CERN server forked for each connection it received that the service eventually
started to fail. The incoming connections could not be accepted fast enough and users were being
turned away. Hacks to increase the priority of the parent process while decreasing that of the child
processes only helped for a very short time. 

At the beginning of 1995 Netscape started beta testing their own proxy server and HENSA Unix
was asked to act as a test site. The Netscape server[4] relies on a non-forking process model and
thereby places a significantly lower strain on the hardware. The Netscape proxy server is still used
to provide the main caching service; a service currently responding to over 1,100,000 requests
every day.

Alternative Servers

While the evolution from Lagoon to the CERN server and finally to the Netscape proxy server
represents a considerable improvement in stability, configurability and performance, the
fundamental principles involved have not changed a great deal. Each of these servers still merely
acts a simple proxy with a cache of pages to improve performance. Other projects have developed
proxy servers that attempt to go further. The most notable of these being the Harvest Object Cache
[5]. 

Harvest allows a single cache to interact with neighbour and parent caches in a co-operating
hierarchy. These neighbours will normally be on networks that the cache has good access to. This
model improves performance in the case of a cache miss by allowing other close-by caches to say
whether they have the requested page. If another local cache has the page then it will be retrieved
from that cache rather than the remote site. This means that any cache that is part of a large
co-operative hierarchy benefits from the pages stored in all the other caches in that hierarchy. 

While Harvest’s approach goes one better than other simpler proxies it, unfortunately, relies on a
single process model. This process uses non-blocking I/O and this results in relatively good
performance. However, the question remains as to whether this model can ever be fast enough to
serve the size of community currently using HENSA Unix. This community currently averages 28
connections a second at peak times in the afternoons, with peaks in activity of more than 100
connections per second.



Hardware Demands

For the first eighteen months of service, the HENSA Unix cache was placed on the same single
processor Sparc 10 serving the HENSA Unix FTP archive. As the popularity of both services
increased an upgrade was required and a Silicon Graphics Challenge S was deployed. It was
anticipated that the cache would remain on the Sparc 10 while the FTP archive moved to the Silicon
Graphics machine. Unfortunately the demand on the service increased to fill all the spare capacity
on the Sparc and with the Challenge S being the fastest machine available both the FTP and the
Web caching service were moved to this machine. 

The very high connection rate being experienced on this server and on other conventional HTTP
servers at other sites, stressed operating systems in ways in which they had never been stressed
before. Now it was not the hardware that was insufficient, but bugs in TCP code implementations
that made the service unstable. With the obvious demand for fixes from all quarters of the
community, the vendors were quick to patch up the problems and demand could continue to grow.
At this point another problem struck the HENSA Unix service. The Silicon Graphics machine had
always been intended to support the FTP archive and as a result it was ordered with a small number
of very large disks (three 9GB disks). Even with the cached files spread across three disks, the I/O
bottleneck was great enough to mean that in some cases going via the cache was actually slower
than going to a site directly. The impact this had on the FTP archive (the service for which we
received our funding) was that FTP users were unable to connect to the machine at all. At this point
the cache was serving about 300,000 requests each day.

The solution to the problem came when an emergency equipment purchase expanded the service
with a dual processor Silicon Graphics Challenge DM. This machine was ordered with six 2GB
disks to ensure that bandwidth within the machine would not be a constraint on the service. The
service was migrated to this machine in June 1995. The start of the UK academic year in October
1995 saw this machine responding to over 900,000 requests each day. Once again, the demand had
expanded to fill the available capacity.

A proposal by HENSA Unix to take the experience gained through operating this experimental
service and deploy a scalable and reliable national service was accepted in July 1995 and for the
first time ever, enabled us to invest in equipment that would be capable of keeping up with the
demand. In order to provide resilience in the case of hardware failure a number of machines would
be used. Based on previous experience, each of these machines would have the optimum balance of
processor power, disk bandwidth and system memory.

Hardware Resource Balancing

A busy Web cache tests all the sub-systems in a machine. Surprisingly, network bandwidth is not
always the most important concern or the first bottleneck hit. This reflects the disparity between
transfer rates on local and on international networks. Instead, a lack of disk bandwidth, processor
speed or real memory can bring a cache server to a grinding halt.

In the case of the Netscape Proxy server it is the combination of the speed of the processor and the
amount of real memory that determines how many concurrent users you may support. Each of our
175MHz R4400 based servers, with 128MB of memory can support approximately 650 concurrent
connections.

Disk bandwidth is a more serious concern than disk space once a minimum level has been passed.



Simulations based on real cache activity show the hit-rates being achieved by larger and larger
caches stabalizing at approximately 55%. The growth in hit-rate is quite rapid, and with very large
disk drives now available at a fraction of their cost even two years ago, there is no reason why all
caches could not achieve this hit-rate. While the size of the disk determines the hit-rate, bandwidth
to the disks is most likely to be the first bottleneck after the international networks. Making use of a
large number of disks, and distributing the cache data across these disks is a facility now offered by
both Harvest and the Netscape Proxy server.

It remains to be seen whether the continual growth of both server and client populations on the Web
makes a significant difference to the hit-rates attained by, and the disk space demanded by, caching
proxies. It is true to say that with more servers there will be more potentially cachable data, but on
the other hand, with more clients there are a greater number of hits on the popular pages. This may
lead to caches that are as effective without any increase in disk capacity.

Networking and Machine Load Balancing

Throughout the first two years of service, the network structure surrounding the HENSA Unix
cache did not change. It was only with the acceptance of the proposal for a national strategy that
changes were made to the operation of the cache on the network.

Having multiple machines provides resilience in the case of hardware failure. If these machines are
distributed across several sites then resilience against network failure is also gained. Currently the
HENSA Unix cache is implemented with machines at two sites, the University of Kent and the
University of Leeds. This distribution also ensures that the bandwidth into or, more importantly, as
the caches are bandwidth magnifiers, out of any particular site does not become the bottleneck in
the whole scheme.

In order to evenly distribute the load across the machines supporting the cache we anticipated
having to modify a DNS name server to return the name of the most lightly loaded machine. In fact,
this proved unnecessary as more recent versions of BIND provide a round-robin facility that rotates
the list of addresses corresponding to a single name. With a five minute Time-To-Live on the name
this is sufficient to ensure that, over a 24 hour period, the load across all six machines is even. It
also gives us the ability to quickly reconfigure the group of machines supporting the service in the
event of a hardware failure.

Further distribution of the caching facility is envisaged in the UK’s overall strategy. This
distribution consists of local caches operated by an institution or even a department within an
institution. We are encouraging these local caches to then make use of the national cache to
minimise redundant transfers across the international network links. Simulations based on the log
files collected at HENSA Unix show us that an institution, even with only a relatively small cache,
500MB of disk, can reduce the load placed on the national facility by as much as 40%. Institutions
without the specialist knowledge to operate a WWW proxy cache are being encouraged to approach
their closest Metropolitan Area Network to make use of a cache at this point.

Through the study of server log files from sites outside the UK a number of institutions were found
who were not making use of the national caching facility. When questioned, the most common
response was that they intended to install a local cache and did not want to have to go through the
user education procedure twice, first they would be telling their users to make use of the national
cache at HENSA, and shortly afterwards redirecting them to the local cache.

We are sympathetic to their problem as educating a population that is increasingly unaware that it is



even using a cache is exceedingly difficult. In order to provide a solution and encourage the early
use of the caches available the "virtual local cache" was created. This technique allows an
institution to give its users the impression that they already have a local cache. The education
programme can start without investment in hardware, software, or time. The technique makes use
of the DNS to direct clients to the national cache through the use of a Canonical Name (an alias for
another machine). Once a local cache has been installed this Canonical Name can be changed to
point at the new machine without the users seeing a break in service.

The Users

As the service offered by the HENSA Unix cache has evolved, so has the user community that it
serves. In 1993 and 1994 virtually all of the users were conscious of the fact that they were using a
cache, and all of them understood the function that it served. With the wider use of institutional
caches installed by computing service departments a larger population is now making unconscious
use of caching technology.

These users are obviously aware of the congestion on the international network links, they
experience it every day. Unfortunately they are not aware of the techniques that can be used to
maximise throughput on a congested link, and they are not prepared to accept these techniques
when they are forced upon them. 

The Netscape proxy server’s process model allows a cache administrator to exactly specify the
number of simultaneous connections that the proxy can hold open at one time. At HENSA Unix this
fact was used to restrict the number of connections to between 400 and 600 in a vain hope that this
restriction would reduce network congestion and result in better throughput. In order to ensure that
all the processes in the process pool were not in use at the same time, which would result in users
being turned away, the timeout placed on each connection was kept deliberately short, 90 seconds.

Unfortunately this scheme did not prove popular. The cache administrator had not understood the
way in which the vast majority of clients use the Web, that is, in batch fashion. The author had
assumed that a user who had not received their page within 90 seconds would probably have given
up and moved on. In reality is seems that large numbers of users are prepared to wait much longer
for their pages. Often this waiting time is spent doing other things with the client visiting their
browser every so often to see how much longer the transfer is estimated to take. In order to
accommodate these users the timeout on cache connections was increased to 15 minutes. This is not
15 minutes for the complete transfer, but rather 15 minutes between individual packets. It is
probably safe to assume that if packets are more than 15 minutes apart the network is not worth
using.

This significantly increased timeout means that a much larger proportion of the Netscape proxy
server processes are in use simply waiting for packets. These processes are no longer available to
other users. In order to ensure that users are not turned away, a much large number of processes
must be made available. Currently each of the servers in use at HENSA Unix runs 650 processes,
meaning that the whole cache can support nearly 4,000 simultaneous connections.

This very large number of connections almost certainly results in far greater congestion on the
international links. However, at least the users never have to wait for a process to become available,
and they never see a time out as a result of the cache. Perversely, throughput is down, but the
customers are happy.



Future Developments

In terms of efficiency, and as a method of saving bandwidth, caching has a lot of potential still to be
developed. Stable, and well understood cache co-operation is one goal, client resilience in the event
of cache or network failure another. These issues are currently under development, while others,
such as "missed hit" reporting (reporting hits that a server would have seen if the cache had not
been there), and user identification on the far side of a cache, or chain of caches, receive less
coverage. For a cache to be totally acceptable its use has to be completely transparent to both
clients and servers. There is still some way to go, but some of the most recent developments
representing the state of the art are discussed here.

Proxy Auto-configuration [6]

The problems of user education and resilience are addressed by version 2 of the Netscape
Navigator, currently available in a beta test version. This client has the ability to run arbitrary
pieces of Javascript to determine which proxy or proxies it should use. This script can be
downloaded from anywhere on the Web, thereby giving cache maintainers or site administrators a
single point at which they can define the configuration of all their users’ clients. 

In addition to choosing whether or not to use a cache, or which cache to use, this Javascript can
return a list of caches that should be tried. In the event of one proxy becoming unavailable the next
in the list is tried. If no proxy responds to the client then the final option is for a direct connection.
In the worst case the client will simply behave as if it were not configured to use a proxy at all.

By encouraging users of the national cache to upgrade to a client that understands this proxy
auto-configuration it is hoped that we will be able to make significantly more efficient use of the
caches. Currently each of the six cache machines operates independently and as a result the caches
have a large number of pages in common. Disk space is wasted with duplicated pages, and can
result in a client having to wait for a remote transfer when another cache may already have the page
locally. 

By using proxy auto-configuration we hope to dedicate each of the cache machines to a specific list
of domains. These domains would be chosen to balance the load across all the machines, and would
result in the same machine always being used for pages from a specific domain. This should result
in higher hit-rates as fewer duplicate pages will give more efficient use of disk space, and every
client accessing a particular domain will use the same cache.

Cache co-operation

As far as cache co-operation is concerned Harvest is leading the field. Unfortunately this
co-operation is limited to networks of Harvest caches as no other server currently understands the
inter-cache communication protocol used. In order to make cache co-operation the norm rather than
the exception it is necessary to extend and standardize this protocol.

Currently the protocol talks in terms of cache hits or cache misses. Both the CERN server and the
Netscape proxy server have an additional state which is a cache hit based on the result of a
conditional request to the remote server. This means that the CERN or Netscape server may
physically have the appropriate file in its cache, but before releasing it, the server would like to
ensure that the file is up to date. This up-to-date check consists of a conditional request to the
remote server. If the cache’s copy is still up to date then no further transfer is required. If the cached



copy has gone out of date then the remote server sends a fresh copy. In any case, a conditional
request will take significantly longer than a pure cache hit. However, in the case where a transfer of
the whole file does not occur, the conditional request will very often be significantly faster than a
cache miss.

Ultimately, what is required is a server with the co-operative model implemented by Harvest and
the speed, ease of configuration and administrative features of Netscape.

Networks for Caches

The Web caching service at HENSA Unix provides real benefits. However these benefits are only
appreciated in the case of a cache hit. Cache misses, or checks to ensure that documents are up to
date, have to make use of the same shared and highly congested bandwidth as all other international
traffic. While this shared bandwidth is soon to be augmented, past experience has shown that
demand will quickly rise to fill that capacity, and we will quickly return to the same congested
situation. With the cache’s relatively low demand for and extremely efficient use of bandwidth it
would make sense to provide dedicated international network links for use by caches alone. In this
case, cache hits are as fast as they always were, but cache misses are accelerated to a point where
they are significantly better than if the shared bandwidth were used. It is with this property that the
cache starts to become a very much more attractive service. As the UK’s shared international links
are upgraded it is hoped that the old, now redundant, links will become dedicated to the caching
service. With hit-rates at their current levels, a dedicated 4Mbps link could mean the cache
delivering as much as a conventional, shared 10Mbps link.

In order to demonstrate the effectiveness of the cache in a situation where there is spare bandwidth,
HENSA Unix asked for help from Lulea University in Sweden. The UK has a 2Mbps connection to
Scandinavia which typically runs at 50% capacity. Scandinavia has a 34Mbps link to the US which
is running at well below full capacity. By directing the HENSA Unix cache to make use of another
proxy at Lulea University we were able to test its performance with, what was virtually, a dedicated
1Mbps line. In order not to place too great a load on the Lulea server, and in order to be able to
compare the two routes, direct and via Sweden, only two out of the five machines operating the
cache at HENSA Unix were configured to go via Sweden. In addition it was only the .gov domain
that would be fetched by that route. This resulted in about 17,000 requests to the Swedish proxy
over a two day period. The results are clear from the graph below which shows the percentage of all
requests that have been successfully serviced within a specific number of seconds.



 

New HTTP Protocols

Dedicated bandwidth will offer the UK National Cache a lot more than just faster access to pages in
the United States. Extensions to, or developments of the HTTP protocol protocol such at
Keep-Alive [7] and HTTP-NG [7], will make use of connections persistent across many URL
requests. 

On a congested line these protocols are liable to result in poorer performance as the TCP protocol
slows down the transfer rates as the connection ages in order to attempt to reduce the congestion.
This effect can be clearly seen when retrieving large files across congested network. The transfer
rate starts relatively high, but gradually degrades as the connection ages. 

On a non-congested link the cache will be able to take full advantage of these protocols. This
advantage can be gained whether or not the user’s browser makes use of the new protocols as the
cache will be able to translate from plain HTTP to the new protocols and back again. 

It is possible to imagine a situation where a particularly busy cache holds open a connection to a
popular server permanently. This would completely eliminate the costs associated with making a
new connection for every URL requested. 

Conclusion



"Necessity is the mother of invention". In the summer of 1993 it was clear that the bandwidth
demands placed on the Internet by the World-Wide Web made the dream of global hypermedia
communication very difficult to achieve. The problems faced by the United Kingdom (good
national bandwidth allowing individuals easy access to very limited international bandwidth) will
sooner or later be faced by all other countries as they embrace the revolution. We hope that the
description of the problems that we have faced and overcome will help these other communities
deploy bandwidth saving measures that are also ‘state of the art’. 

References

[1] The First International World-Wide Web Conference,
http://www.elsevier.nl/cgi-bin/ID/WWW94

World-Wide Web Proxies, Ari Luotonen and Kevin Altis, CERN, CH 
A Caching Relay for the World Wide Web, Steve Glassman, SRC, DEC, US 
What can Archives offer the World Wide Web, Neil Smith, Unix Hensa, The University of
Kent at Canterbury, UK 

[2] Lagoon, http://www.win.tue.nl/lagoon/ 

[3] CERN Server, http://www.w3.org/pub/WWW/Daemon/ 

[4] Netscape Proxy Server, http://home.netscape.com/comprod/proxy_server.html 

[5] Harvest Object Cache, http://excalibur.usc.edu/ 

[6] Netscape’s Proxy Auto-Config,
http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html 

[7] HTTP issues such as Keep-Alive and HTTP-NG,
http://www.w3.org/hypertext/WWW/Protocols/ 


